

Semantic Web
Services Challenge

Results from the First Year

SEMANTIC WEB AND BEYOND
Computing for Human Experience

Series Editors:

Ramesh Jain Amit Sheth

University of California, Irvine University of Georgia
http://ngs.ics.uci.edu/ http://lsdis.cs.uga.edu/~amit

As computing becomes ubiquitous and pervasive, computing is increasingly becoming
an extension of human, modifying or enhancing human experience. Today's car reacts
to human perception of danger with a series of computers participating in how to handle
the vehicle for human command and environmental conditions. Proliferating sensors
help with observations, decision making as well as sensory modifications. The emergent
semantic web will lead to machine understanding of data and help exploit
heterogeneous, multi-source digital media. Emerging applications in situation
monitoring and entertainment applications are resulting in development of experiential
environments.

SEMANTIC WEB AND BEYOND
Computing for Human Experience

addresses the following goals:
 brings together forward looking research and technology that will shape our

world more intimately than ever before as computing becomes an extension of
human experience;

 covers all aspects of computing that is very closely tied to human perception,
understanding and experience;

 brings together computing that deal with semantics, perception and experience;
 serves as the platform for exchange of both practical technologies and far

reaching research.

AdditionalTitles in the Series:
Ontology Management: Semantic Web, Semantic Web Services, and Business Applications
edited by Martin Hepp, Pieter De Leenheer, Aldo de Moor, York Sure; ISBN: 978-0-387-69899-1
The Semantic Web:Real-World Applications from Industry edited by Jorge Cardoso, Martin
Hepp, Miltiadis Lytras; ISBN: 978-0-387-48530-0
Social Networks and the Semantic Web by Peter Mika; ISBN: 978-0-387-71000-6
Ontology Alignment: Bridging the Semantic Gap by Marc Ehrig, ISBN: 0-387-32805-X
Semantic Web Services: Processes and Applications edited by Jorge Cardoso, Amit P. Sheth,
ISBN 0-387-30239-5
Canadian Semantic Web edited by Mamadou T. Koné., Daniel Lemire; ISBN 0-387-29815-0
Semantic Management of Middleware by Daniel Oberle; ISBN: 0-387-27630-0

Additional information about this series can be obtained from

http://www.springer.com ISSN: 1559-7474

Semantic Web
Services Challenge

Results from the First Year

Edited by

Charles Petrie
Stanford University
Stanford, CA, USA

Tiziana Margaria

University of Potsdam
Potsdam, Germany

Holger Lausen

Michal Zaremba
University of Innsbruck

Innsbruck, Austria

1 3

Editors:
Charles Petrie
Stanford University
Computer Science Dept.
353 Serra Mall
Stanford, CA 94305-9020
petrie@stanford.edu

Tiziana Margaria
Chair Service and Software Engineering
Institute for Informatics
University Potsdam
August-Bebel-Str.89 – Haus 4
D-14482 Potsdam, Germany
margaria@cs.uni-potsdam.de

Holger Lausen
Semantics Technology Institute (STI)
University of Innsbruck ICT
Technologie Park
Technikerstraße 21a
6020 Innsbruck Austria
mail@holgerlausen.net

Michal Zaremba
Semantics Technology Institute (STI)
University of Innsbruck ICT
Technologie Park
Technikerstraße 21a
6020 Innsbruck Austria
michal.zaremba@sti2.at

Library of Congress Control Number: 2008935405

ISBN-13: 978-0-387-72495-9 e-ISBN-13: 978-0-387-72496-6

© 2009 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Foreword by James A. Hendler

Back in 2001, I published a paper called ”Agents and the Semantic Web,” [1] which
outlined a vision of how the then-new Semantic Web technologies being explored at
DARPA could be used as a mechanism for connecting descriptions of software to the
dynamic content engines of the Web - essentially, outlining the idea that what we now
call Web services could be tied to semantics and ontologies. The paper has become
one of my more highly cited ones, but really it was more of a vision paper than a
technological prescription. Luckily for those people interested, Sheila McIlraith and
her colleagues published a paper in that same issue [2] (which has been even more
highly cited) which outlined a technical approach for Semantic Web Services, the
name by which this area has come to be known.

In the years since, Semantic Web Services have become an increasingly impor-
tant part of Semantic Web research. This work has essentially co-evolved with the
growing importance of service-oriented architectures (SOAs), to the industrial com-
puting sector, providing a set of interesting, and realistic, challenges to researchers.
The area has thrived on a combination of research funding for universities, espe-
cially from the EU’s framework 6 and framework 7 programs, and industrial support
within corporate laboratories. In fact, since the coining of the term in 2001, a Google
Scholar search on ”semantic web services” now finds over 8,000 publications that
discuss some aspect of this integration of semantics and Web services, a staggering
amount of research in such a short amount of time.

However, this growth in interest in the area, and the wide swath of research it
engendered, also led to significant confusion over, well, what was it really all good
for? Could the addition of Semantics really increase the capabilities of Web Ser-
vices? Could the theoretical results from the research labs be transitioned into work-
able and scalable systems? Could the techniques of the researchers be made to work
with the commercial languages - SOAP, WSDL, BPEL, etc. - being used in the real
world? Finding papers that showed clean results on toy problems was easy, but find-
ing practicable technologies that could be used in real world applications required
more effort.

In short, we had an odd situation. With Service-Oriented Computing becoming
more and more important as a means of software engineering for distributed systems,

VI Foreword by James A. Hendler

the Semantic Web community was finding it hard and harder to explain what it was
able to do or to compare the many competing approaches that were being developed.
The many different approaches could not easily be reconciled on purely theoretical
grounds, rather, an empirical means of evaluating their capabilities with standard
testbeds was clearly needed.

Starting in the middle of this decade, a set of workshops was held to explore
this issue. Researchers who felt their work was reaching a capability level that could
lead to transition came together to explore how they could develop testbeds that
could compare and contrast the various approaches to mediation, composition and
choreography, and discover of Web Services that were being proposed. The idea
of a Semantic Web Services Challenge was born, and in 2006 the first workshop to
include the challenge was held. In the following year, a series of these meetings were
held around the world, and a number of systems were tested. This book is the result
- the first collection to pull together these results and to allow readers to evaluate the
results. Whether they are professionals, interested in using this information to help
shape investments in technology, or students, looking for up to date information on
the application of semantics to Web Services, readers will find this book to contain a
wealth of information.

Since the early days of the Semantic Web, I have often been asked to give talks
about emerging trends and capabilities. I must confess that in the past two years,
I have avoided discussion of Semantic Web Services due to the very confusion I
mentioned earlier. However, the question I’ve been asked most often is ”what is the
status of Semantic Web Services?” and until now, I didn’t really have very good
answers. Thus, I am indebted to the editor of this book for all the work he has done
in helping to create and run the challenge, and now in making sure that the results
are documented in this book. It’ll be nice to put this topic back in my talks!

Professor James A. Hendler
Rensselaer Polytechnic Institute, NY, USA
August 11, 2008

References

1. James A. Hendler: Agents and the Semantic Web. In 16(2):30-37, IEEE Intelligent
Systems (2001)

2. Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng: Semantic Web Services. In
16(2):46-53, IEEE Intelligent Systems (2001)

Foreword by Michael L. Brodie

This book documents lessons learned in the first year of the Semantic Web Services
Challenge - the first significant step towards the creation of a set of benchmarks and
processes by which to define and measure the performance and correctness of se-
mantic web services at web-scale. The Semantic Web Services Challenge is at an
early stage in the development of semantic web services benchmarks for the Web of
services, similar to that of the Database Derby in mid-1980s for relational databases.
As with relational databases and the Web of documents, the Web of services will
have an enormous impact on our increasingly digital lives that in turn will become
increasingly dependent on the underlying technologies including semantic web ser-
vices. Unlike relational databases, the Web of services posses, as does each Next
Generation of Computing, qualitatively greater challenges in defining and achieving
performance and correctness. The lessons told in this book are not only guides down
that path, they will be the tales told of the origins of the Web of services, just as today
we tell tales of Ted Codd and origins of relational databases and of Jim Gray and the
origins of relational benchmarks.

Let me try to put this book in an historical perspective and tell you why this topic
is important and challenging.

In our increasingly digital world the Web has become an integral part of our
professional and personal lives. ”Just Google it!” can be heard from Anchorage to
Zambia, from executives in boardrooms to 13 year olds in grade schools, to grannies
in kitchens. We are constantly amazed at the Web, the largest man-made artifact ever
created, with over 30 billion Web pages - 5 pages for every man, woman, and child
on the planet. More information is added to the Web yearly than has been created in
the preceding 5,000 years and will grow by a factor of six from 2007 to 2010 with
more than 11 billion searches each month, almost double the world’s population.
While the size and the growth of the Web constantly amaze us, what may be more
striking is the impact of the Web on our world.

Given the significance and size of the Web, how readily can we find what we
need? A search for my name produces 227,000 pages. A search for my company
produces 98 million pages. While the first entries are often what I want, how would
an automated process select the correct one for a specific purpose? This imprecision

VIII Foreword by Michael L. Brodie

prohibits current web search technology for automated business interactions. The
Semantic Web vision is to augment web resources with meta-data to improve web
search and facilitate automated interactions between web resources.

Service-orientation is emerging as the paradigm of the Next-Generation of com-
puting. Happily, it will take some time - time to figure out what we are doing. With its
origins in the 1970s in abstract data types, objects, and containers, the notion of a ser-
vice - an interoperable, composable, reusable, and remotely invokable function - will
evolve, mature, and persist. So services are not Johnnie-come-latelys. The typically
overblown estimates of new technology adoption and growth are far from reality for
services in 2007, a year that marked the first significant adoption of services since
their introduction in 2000. In 2008, 1,000 services is considered large even for very
large enterprises. Converting the major systems of a large enterprise might result in
1 million services of which less than 50% would be published externally resulting in
a Web of services two orders of magnitude larger than the Web of documents.

As web and service technologies evolve, the web will move from a Web of docu-
ments to a Web of functional and data services in which a web page may contain 5 to
10 services. Services will move the web from the surface web, information available
to current web browsers, to the deep web, information and services in databases and
systems that underlie current web pages. The deep web is estimated to be 500 times
larger than the surface web.

The move from the surface Web of documents to a deep Web of services not only
increases the search space by a factor of 500, it also leads to a qualitatively new form
of computing. The scale pushes the web beyond the size and complexity that can be
dealt with by humans. The Web of services requires a services automation solution
in which services interact without human intervention. The vision is for services to
achieve a goal by discovering services that meet a requirement and negotiate the use
of that service or even adaptation of the service or composition with other services
that collectively meet the requirement. The Semantic Web Services vision is to en-
hance web services with meta-data to enable automated service discovery, selection,
negotiation, mediation, adaptation, composition, invocation, and monitoring.

As we enter the Web of services we face two great challenges - scale and au-
tomation. While these challenges are familiar, the scale and complexity of this new
computing environment make these problems qualitatively different from past com-
puting environments. Scale poses challenges of performance while automation poses
challenges of correctness.

In the past, performance issues were primarily addressed with hardware and sys-
tems engineering solutions. While these are still fruitful, we are now looking to soft-
ware for solutions. Augmenting web services with semantics is a software solution
emerging from the Semantic Technologies community, a community with little ex-
perience in engineering solutions especially at web-scale. Indeed few communities
have experience with web-scale computing. Hence, the semantic web services space
is novel in many ways and may require more sophisticated measures of engineering
as well as of performance and correctness.

It is easy to envisage services interacting dynamically to discover other services
with which to negotiate, adapt, and compose, and then to invoke to achieve a re-

Foreword by Michael L. Brodie IX

quirement. It is quite another matter to specify correctness in this context, let alone
achieve it in implementations.

Almost three decades ago, the Next Generation of Computing, at the time, faced
similar challenges. In the early 1980’s the projected scale of relational databases
was unimaginable, and like the Web of documents far exceeded its projections. As
with our current Web of services we are facing unimaginable scale and complex-
ity with novel, unproven technology and with few benchmarks. Now, as then, we
require efficient, scalable solutions to problems for which we lack definitions of cor-
rectness. But this time we do not control the architecture, which is both distributed
and emergent. We require objective means of testing whether the new technology
solutions meets realistic performance and correctness requirements. We want to en-
courage innovation via competition amongst possible solutions, and the development
of an objective basis of appropriate measures against which to compare them, and
the standardization of accepted solutions. In addition to providing benchmarks for
emerging technologies, we want to provide a focal point for such engineering chal-
lenges, discussions, and achievements where well-defined industrial problems can
be used to drive and test technology solutions. Ideally semantic web services bench-
marks will contribute to the development and acceptance of semantic technologies
just as relational benchmarks did for relational technology.

In the early 1980’s several database benchmark activities emerged as candidates
against which to measure the performance and correctness of emerging relational
database technologies. One of the earliest candidates, The Database Derby, run by
an emerging database magazine, was run as a series of workshops at database con-
ferences. The importance and need for an objective database benchmark lead to the
definition of the ”DebitCredit” benchmark [1] by Jim Gray and 24 academic and in-
dustrial co-authors. By 1988 eight companies formed the Transaction Processing Per-
formance Council (TPC) [2]. Since then, TPC has defined benchmarks with which
to measure the performance and correctness of DBMSs and methodologies by which
they are conducted, fairly and objectively. TPC benchmarks have been used to de-
fine requirements for emerging workloads such as for e-commerce, decision support,
application servers, and web services.

Let me conclude with a projection and a challenge to consider as you read this
book. Each Next Generation of Computing needs benchmarks - for the web services
era as for the database era. Next Generation challenges will always be at a greater
scale and complexity than those of the previous generation. However, the Web of ser-
vices poses qualitatively greater unknowns and opportunities than did the database
era. The relational model of 1970 is largely in tact today. Relational database bench-
marks evolved with dramatically new workloads prompting radically new hardware,
engineering, and systems technologies, all within the bounds of the relational data
model.

There is no such constraining model for web services. While the lack of a sin-
gle model permits opportunities for other computational and informational models,
it also opens the space for engineering and technology solutions. Are there multiple
computational models for web services that require multiple benchmarks? Is the Se-

X Foreword by Michael L. Brodie

mantic Web Services Challenge the entrance to a wide but single path to the future
or to a myriad of paths to parallel but distinct computational futures?

Michael L. Brodie
Chief Scientist Verizon
Cambridge, MA, USA
August 19, 2008.

References

1. A Measure of Transaction Processing Power, Datamation, April 1, 1985.
2. http://tpc.org/

Preface

This “first year” book addresses results of the the SWS Challenge through the
November 2007 workshop at Stanford University (USA). The first workshop was
held at Stanford in March of 2006, setting up the organization and the drafting the
methodology. The subsequent workshops were functioning evaluations: at Budva
(Montenegro), Athens (USA), Innsbruck (Austria), and again at Stanford.

This series of workshops has provided a forum for discussion based on a common
application. The Challenge focuses on the use of semantic annotations: participants
are provided with semantics in the form of natural language text that they can formal-
ize and use in their technologies. Being a challenge rather than a contest, workshop
participants mutually evaluate and learn from each others’ approaches.

In this book, the focus is on the understanding of the technical issues in the pro-
posed solutions, and of their tradeoffs. Therefore, solution chapters that describe in
depth the technologies of the participant teams are complemented by other chapters
containing pairwise comparisons of solutions. A full list of the workshops in the
ongoing initiative is available at the SWS Challenge wiki1.

There have been further results, and teams, in 2007 and 2008 and we invite new
teams to participate in any of the coming workshops announced on the Challenge
wiki as well to join the W3C SWS Challenge Testbed Incubator during 2008.

We are grateful for the continual and substantial support from Professor Di-
eter Fensel of the Semantic Technologies Institute Innsbruck and Professor Michael
Genesereth of the Stanford Logic Group. This book reflects the major efforts of all
the technology contributors and the STII and Potsdam staff, including Omair Shafiq
and Christian Winkler, who not only supported the SWS Challenge directly, but who
did the final composition of this book in LaTeX.

August 2008, Charles Petrie
Tiziana Margaria
Michal Zaremba

Holger Lausen
1 http : //sws− challenge.org/

Contents

1 Introduction to the First Year of the Semantic Web Services Challenge
Charles Petrie . 1
1.1 SWS Challenge Mission and Organization . 1
1.2 Scope of the Challenge and this Book . 2
1.3 Related Initiatives . 3
1.4 SWS Challenge Evaluation Methodology . 5
1.5 SWS Challenge Problem Scenarios . 7
1.6 Overview of Technologies . 8
1.7 Organization of the Book . 10
1.8 The Challenge is Open . 11
References . 11

2 SWS Challenge Scenarios
Holger Lausen, Ulrich Küster, Charles Petrie, Michal Zaremba, Srdjan
Komazec . 13
2.1 Introduction . 13
2.2 The Mediation Scenarios . 14
2.3 The Discovery Scenarios . 21
2.4 Summary . 26

Part I Mediation Individual Solutions

3 Mediation using WSMO, WSML and WSMX
Tomas Vitvar, Maciej Zaremba, Matthew Moran, Adrian Mocan 31
3.1 Introduction . 31
3.2 Execution Model . 32

XIV Contents

3.3 Implementation . 42
3.4 Evaluation . 47
3.5 Related Work . 48
3.6 Conclusion and Future Work . 48
References . 48

4 A Software Engineering Approach based on WebML and BPMN to
the Mediation Scenario of the SWS Challenge
Marco Brambilla, Stefano Ceri, Emanuele Della Valle, Federico M. Facca,
Christina Tziviskou . 51
4.1 Introduction . 51
4.2 Background technologies . 53
4.3 Our solution to the mediation scenario of the SWS challenge 57
4.4 Related Work . 66
4.5 Conclusions . 67
References . 68

5 Service-oriented Mediation with jABC/jETI
Christian Kubczak, Tiziana Margaria, Bernhard Steffen, Ralf Nagel 71
5.1 Introduction . 71
5.2 Service Oriented development for Telecommunications 72
5.3 Basic Concepts of the jABC Modeling Framework . 73
5.4 jABC as Service Assembly Framework . 74
5.5 Model Checking-Based High-Level Compliance Validation 80
5.6 Using jETI for Remote Service Inclusion and Execution 82
5.7 Solving the SWS Mediation with jETI/jABC . 85
5.8 Verifiying the Mediator . 91
5.9 Automatic Web Service Generation in Practice . 92
5.10Related Work . 96
5.11Conclusions and Ongoing Work . 97
References . 98

6 A Declarative Approach using SAWSDL and Semantic Templates
Towards Process Mediation
Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller . . 101
6.1 Introduction . 101
6.2 Background and Related Work . 102
6.3 Motivating Scenario . 104
6.4 Declarative Approach towards Solution . 104
6.5 Discovering Services . 109
6.6 Automatic Web service composition . 112
6.7 Conclusions and Future Work . 117
References . 118

Contents XV

7 Automatic Generation of the SWS- Challenge Mediator with
jABC/ABC
Tiziana Margaria, Marco Bakera, Christian Kubczak, Stefan Naujokat,

Bernhard Steffen . 119
7.1 The SWS Challenge Mediator . 119
7.2 The Concrete Mediator Workflow . 120
7.3 Abstract Semantics: Using Abstraction and Constraints 124
7.4 A Loose Solution, and its Declarative Refinement . 125
7.5 How to work with the Synthesis Tool . 127
7.6 Plan Generation in Detail . 129
7.7 Implementing the Synthesis Process as a jABC Orchestration 133
7.8 Related Approaches . 135
7.9 Conclusions . 137
References . 137

Part II Mediation Solutions Comparisons

8 Comparison: Mediation Solutions of WSMOLX and
WebML/WebRatio
Maciej Zaremba, Raluca Zaharia, Andrea Turati, Marco Brambilla, Tomas
Vitvar, Stefano Ceri . 141
8.1 Introduction . 141
8.2 Comparison . 142
8.3 Conclusion . 150
References . 152

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI
Marco Brambilla, Stefano Ceri, Emanuele Della Valle, Federico M. Facca,

Christian Kubczak, Tiziana Margaria, Bernhard Steffen, Christian Winkler . . . 153
9.1 Introduction . 153
9.2 Designing the Mediator with WebML . 154
9.3 Designing the Mediator with jABC . 155
9.4 Comparison . 156
9.5 Boiling Down to the Essence . 162
9.6 Conclusion . 165
References . 165

Part III Discovery Individual Solutions

10 Instance-based Service Discovery with WSMO/WSML and WSMX
Maciej Zaremba, Matthew Moran, Tomas Vitvar . 169
10.1Discovery with Data Fetching . 169
10.2Solution to SWS-Challenge Discovery . 173
10.3Implementation and Evaluation . 174

XVI Contents

10.4Related Work . 180
10.5Summary . 181
References . 182

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge
Andrea Turati, Emanuele Della Valle, Dario Cerizza, Federico M. Facca 185
11.1Introduction . 185
11.2WSMO as starting point . 186
11.3Glue . 187
11.4The discovery scenarios . 189
11.5Our solution to the discovery scenarios . 190
11.6Conclusion and Future Work . 197
References . 197

12 Semantic Service Discovery with DIANE Service Descriptions
Ulrich Küster, Birgitta König-Ries . 199
12.1What is DSD? . 199
12.2Solving the SWS-Challenge discovery problems with DSD and the

DIANE framework . 201
12.3Discussion and Summary . 213
References . 215

13 An Approach to Discovery with miAamics and jABC
Christian Kubczak, Tiziana Margaria, Bernhard Steffen, Christian Winkler,

Hardi Hungar . 217
13.1The miAamics Framework . 217
13.2Rule Based Discovery for the Discovery Scenario . 223
13.3The Discovery Application in the jABC . 227
13.4Conclusion and Perspectives . 232
References . 233

Part IV Discovery Solutions Comparisons

14 Service Discovery with SWE-ET and DIANE - An In-depth
Comparison By Means of a Common Scenario
Ulrich Küster, Andrea Turati, Birgitta König-Ries, Dario Cerizza, Emanuele
Della Valle, Federico M. Facca . 237
14.1Introduction . 237
14.2Formalism Used to Model Ontologies . 238
14.3Formalism Used to Model Services and Goals . 239
14.4Goals and Web services alignment . 240
14.5The Process of Functional Matchmaking . 241
14.6Preferences and Ranking . 244
14.7Dynamic Aspects of Service Descriptions . 245
14.8Invocation . 246

Contents XVII

14.9Conclusions . 246
References . 247

15 Comparison: Discovery on WSMOLX and miAamics/jABC
Christian Kubczak, Tomas Vitvar, Christian Winkler, Raluca Zaharia, Maciej
Zaremba . 249
15.1Introduction . 249
15.2WSMOLX – miAamics/jABC Comparison . 250
15.3Coping with the scenario changes . 262
15.4Conclusions . 263
References . 263

16 Comparison: Handling Preferences with DIANE and miAamics
Ulrich Küster, Birgitta König-Ries, Tiziana Margaria, Bernhard Steffen 265
16.1Realizing Preferences with miAamics . 265
16.2Realizing Preferences with DIANE . 267
16.3Challenging Example: Goal B2 . 268
16.4Comparison . 269

Part V Lessons Learned

17 Status, Perspectives, and Lessons Learned
Charles Petrie, Ulrich Küster, Tiziana Margaria, Michal Zaremba, Holger
Lausen, Srdjan Komazec . 275
17.1Introduction to Lessons Learned . 275
17.2Methodology . 275
17.3Infrastructure and Support . 279
17.4Use of Industrial Standards . 281
17.5Evolution and Future Plans . 282
17.6Conclusions . 284

List of Figures

2.1 Purchase Order Process Mediation . 16
2.2 The Mediation PO Scenario: Legacy System Interaction 17
2.3 Production Management Mediation Scenario . 18
2.4 The Payment Scenario overview . 20
3.1 Control State Diagram for the Execution Model 38
3.2 Solution Architecture . 44
4.1 The E-R diagram for the data model used of the initial Mediator. 55
4.2 Example of WebML hypertext model with invocation of remote

service - a . 56
4.3 Example of WebML hypertext model with invocation of remote

service - b . 56
4.4 Phases in the development process of semantic Web applications. . . . 57
4.5 Overall design methodology for Semantic Web Service-based

applications. 58
4.6 Example of WebML model exploiting the Semantic Web units. 59
4.7 The BPMN model of the Mediator from Blue-to-Moon. 60
4.8 Blue-to-Moon mediator . 62
4.9 Moon-to-Blue mediator. 62
4.10 The WebML model of the modified portion of the Mediator (cfr.

Figure 4.9). 63
4.11 Improved version of the Mediator . 64
4.12 The ER metamodel for the dynamic service invocation in Phase IV. . . 65
4.13 The WebML model of the dynamic service invocation in Phase IV. . . 65
5.1 The Service Creation Process . 75
5.2 The SWS Mediator SIBs and the abstract process model 79
5.3 The jETI architecture. 83
5.4 Consuming and producing web services with jABC/jETI. 83
5.5 a) Taxonomy view for the Mediator SIB Palette: (jETI-) SIBs

imported from the WSDLs and b) Hierarchical input parameters of
the generated SIB OMServiceCreateNewOrder 84

5.6 Receiving a POR - Modelchecked SLG, Mediator #1 Part 1 85

XX List of Figures

5.7 Sending a PurchaseOrderConfirmation - SLG of the Mediator #1,
Part 2 . 86

5.8 Sending a PurchaseOrderConfirmation with LineItems - SLG of the
Mediator #2, Part 2 . 87

5.9 Decomposition of Mediation Scenario #1: the Receiving POR and
the Sending POC services . 88

5.10 Decomposition of Mediation Scenario #2: the same Receiving
POR and extended Sending POC services . 89

5.11 Architecture of the jABC/jETI SWS Mediator 92
5.12 Data Binding in Java 6 . 93
5.13 Metadata for Web service generation . 94
5.14 The Web service generator process as SLG . 95
6.1 Conceptual Model of Semantic templates . 106
6.2 Example Business Policy . 108
6.3 Mapping Between Elements in Service Structure Hierarchy and

Semantic Template Hierarchy . 109
6.4 Business Process Levels . 112
6.5 Different Heterogeneities . 117
7.1 The SWS Challenge Mediator Type Taxonomy 121
7.2 The SWS Challenge Mediator Module Taxonomy 121
7.3 (a) The synthesised SWS mediator (standard) and (b) Using loose

types: the new solution . 124
7.4 (a) Adding a LineItem: the new solution and (b) Adding a

Confirmation: the complete loose solution . 126
7.5 The Configuration Universe . 127
7.6 The Minimal (i.e. cycle free) Solutions . 128
7.7 Proof tree (upper part) . 130
7.8 Proof tree (lower part) . 130
7.9 (a) Configurations occurring in the proof tableau 132
7.10 (b) Terms occurring in the proof tableau . 132
7.11 jETI remote execution architecture for synthesis 133
7.12 The Synthesis process, itself a jETI/jABC SLG 134
7.13 The Mediator’s SLG resulting from the synthesis process 136
8.1 The WebML/WebRatio Framework . 143
8.2 The BPMN and WebML Models of Blue to Moon Mediator 144
8.3 WSMX Architecture in Mediation Scenario . 145
9.1 The BPMN editor integrated in the WebML editing environment. . . . 154
9.2 The SWS Mediator SIBs and the abstract process model 155
9.3 The compared Mediators: Functional correspondence of the

WebML (left) and jABC (right) solutions . 161
9.4 Abstracting from approach-specific entities. 163
9.5 The Reduced WebML and jABC solutions . 164
9.6 WebML mediator part 2 (scenario 2). 164
9.7 jABC mediator part 2 (scenario 2) . 166
10.1 Minimization of the Provider Interactions . 171

List of Figures XXI

10.2 Architecture for the Scenario . 173
10.3 WSDL 2.0 to Semantic Web service Mapping . 176
10.4 Knowledge Base Bgw . 179
11.1 The matchmaking process implemented by Glue. 188
11.2 SWS challenge - Discovery scenario overview. 189
12.1 DIANE Middleware architecture . 200
12.2 Excerpt from the DSD description for the Muller shipment service. . . 202
12.3 Excerpt from the DSD request description of Goal C3 205
12.4 Excerpt from the DSD request description of Goal D1 205
12.5 Excerpt from the DSD description for the Hawker vending service. . . 207
12.6 Excerpt from the DSD description for Goal C4 showing preferences. 208
12.7 Excerpt from the grounding of Bargainer’s offer description 211
12.8 Mapping definitions from the grounding of Bargainer’s offer

description . 212
13.1 miAamics’ architecture . 218
13.2 miAamics information evaluation . 219
13.3 Structure of the miAamics ontology . 220
13.4 miAamics Web Configuration Interface . 225
13.5 miAamics Result Chart . 226
13.6 The Muller Service in the jABC: a jETI SIB and its use 228
13.7 Discovery Application: the main model . 229
13.8 Setting lists of countries . 230
13.9 Price calculation . 231
13.10miAamics and Web service invocation . 232
14.1 Exerpts from the DSD request description of Goal A1 239
15.1 Price Calculation in miAamics/jABC . 257

1

Introduction to the First Year of the Semantic Web
Services Challenge

Charles Petrie

Stanford Logic Group, California, USA petrie@stanford.edu

Summary. The Semantic Web Services Challenge is an initiative that includes a set of work-
shops in which participants present papers on how they have solved some set of benchmark
problems in mediating, discovering, and composing web services. The claims are verified by
capturing the messages exchanged with the Challenge testbed, and also by code inspection
by workshop participants. Technology certifications are stated publicly on the Challenge wiki.
Experience thus far shows that even simple problems are much harder to actually solve than
is suggested by papers in venues that do not so verify such claims.

1.1 SWS Challenge Mission and Organization

Service-Oriented Computing is one of the most promising software engineering
trends for future distributed systems. Adopted by major industry players and sup-
ported by many standardization efforts, Web services is the premiere technology of
the service-oriented paradigm, promising to foster reuse and to ease the implemen-
tation of loosely-coupled distributed applications. However, there are several serious
issues that must be addressed before this potential can be reached. And there is a
serious issue with the current scientific methodology that should be considered.

The original web was designed for human use: web-based services are presented
in easy-to-read and use web pages designed for humans that understand some natu-
ral language. Computers can use them only if they have been carefully programmed
to “read” each individual web page, the format of which varies for each page. Web
services are designed for computer interoperability: a web service has no presenta-
tion page in a natural language but rather a web page that describes the service in a
common machine-readable format.

Web services are appealing especially in the area of enterprise application in-
tegration, because of the vision of thousands of services, which can be composed
to implement desired processes and achieve desired goals as needed. This vision
is especially important as enterprises become increasingly interconnected. However,
today, the discovery and composition of such services is done manually. Even though
the format of the web service descriptions is common, the meaning of the terms and
how they can be used still requires some agreement among the programmers.

2 Charles Petrie

This cannot scale and indeed offers little advantage over previous IT methods,
other than allowing all such work to be done with a common toolset (XML1 and web
protocols), instead of having to learn particular complex proprietary systems.

Semantic technology may help here, by lifting service-oriented applications to a
new level of adaptability and robustness. By using semantic annotations to describe
services and resources, the tasks of service discovery, selection, negotiation, and
binding could be automated.

Currently there are many different approaches to semantic Web service descrip-
tions and many frameworks built around them, yet a common understanding, evalua-
tion scheme, and testbed to compare and classify these frameworks in terms of their
abilities and shortcomings is still missing.

This is an opportunity. Since there are many possibilities for semantically an-
notating services, it is an open question still, which are best for which purposes. In
general, the question is what annotation is sufficient for service discovery and com-
position, and is also easy to maintain in the face of inevitable change.

The purpose of the ongoing Semantic Web Service (SWS) Challenge is precisely
to develop this common understanding of various technologies intended to facilitate
the automation of mediation, choreography and discovery for Web Services using
semantic annotations. This explores trade-offs among existing approaches, reveals
the strengths and weaknesses of the proposed approaches as well as which aspects of
the problem space are not yet covered. Furthermore, the Challenge is a certification
service that offers an independent verification that the claimed technologies actually
work.

The SWS Challenge provides a set of problems and web services to partici-
pants. The participants must semantically annotate the web services so as to solve
the problems. Unlike academic papers, the participants are not allowed to modify the
services and problems to suit their technologies. The solution code and claims are
peer-reviewed in workshops.

1.2 Scope of the Challenge and this Book

This “first year” book addresses results of the the SWS Challenge through the
November 2007 workshop at Stanford University (USA). The first workshop was
held at Stanford in March of 2006 but was only an organizing workshop. The next
workshops were functioning evaluations: at Budva (Montenegro), Athens (USA),
Innsbruck (Austria), and again at Stanford. A full list of the workshops in the ongo-
ing initiative is available at the SWS Challenge wiki2.

This series of workshops of the SWS Challenge has provided a forum for discus-
sion based on a common application. The Challenge focuses on the use of semantic
annotations: participants are provided with semantics in the form of natural language
text that they can formalize and use in their technologies. Being a challenge rather

1 http : //www.w3.org/XML/
2 http : //sws− challenge.org/

1 Introduction to the First Year of the Semantic Web Services Challenge 3

than a contest, workshop participants mutually evaluate and learn from each others’
approaches.

The Challenge has participating groups from industry and academia developing
software components and/or intelligent agents able to automate mediation, choreog-
raphy and discovery processes between Web services. All approaches and partici-
pants are invited. Though “Semantic” is in the title of this Challenge, we invite non-
semantic approaches to participate and we attempt to evenly evaluate all submissions
in our methodology.

“Semantics” is really a hypothesis that certain technologies largely derived from
logic-based ontologies would be more easily maintainable than would code written
with more traditional methods. The chief idea of the technologies is that there is
some common reference for various web service descriptions that can be used to
relate one to another. Logic-based ontologies are the most common way to do this,
though some simpler methods may turn out to be the most useful and practical.

This “maintainable hypothesis” is testable and falsifiable. The Challenge is de-
signed to do so, though the evaluation methodology is itself a research project and
the Challenge is the place where we experiment.

The SWS Challenge has another main purpose. There are many workshops and
conferences today. If a researcher has something to publish, he can find a venue.
And when publishing in a complex area such as service discovery and composition,
it is very difficult if not impossible to verify the claims of the paper. But without
verification, and reproducibility, there is no, or little, science.

The SWS Challenge addresses this major issue within the scope of web services.
The Challenge certifies that claims of functionality have been verified, by actual
testing and peer-review of the code. We hope that other workshops and conferences
will move in this direction as it is important for the credibility of at least web services
science.

Though we address this topic more in “Lessons Learned”, it is important to note
that though the Challenge problems seem simple, every team has found them to be
extremely challenging. Experience with the Challenge makes for strong skepticism
about the unverified claims of most papers published in this field today.

1.3 Related Initiatives

The SWS Challenge complements other initiatives that have similar missions.
First, there is a conference that is not on web services but with a similar mission:

The Repeatability Experiment of SIGMOD 20083. However, the SIGMOD method-
ology required that the organizers be able to run the code of the participants. We
do not do this. The Challenge requires that the participants access the testbed web
services and send and receive some correct sequence of messages (or discover the
correct services.) In the workshop, we only require that the already demonstrated

3 http : www.sigmod.org/sigmod/record/issues/0803/p39.open −
repeatability.pdf

4 Charles Petrie

functionality be demonstrable, and that the participants be able to inspect the code.
At the same time, in line with the principles of the Challenge methodology (in the
next section), we ask the participants to share as much code as possible that might
be usefully reusable by other participants.

The SWS Challenge initiative is specifically designed to develop a standard
methodology and testbed for the evaluation of Semantic Web Services technologies.
We are currently focused on web services described in WSDL4, in order to be as
industrially relevant as possible in such a setting.

We are interested in web services in general. By “web service”, we mean the
definition developed in the Dagstuhl Seminar on Service Oriented Computing [2]:
roughly a service with a description of how to use it presented in some widely-
supported format (such as XML) and reachable via some standard Internet protocol
(such as HTTP5). Such services need not be WSDL and we remain open to de-
veloping scenarios in other technologies that fit this description. But currently, the
Challenge and related contests are based upon WSDL services.

There is also the associated W3C SWS Challenge Testbed Incubator which has
issued a report6 about the evaluation methodology developed within the SWS Chal-
lenge.

The activity next most closely related to the SWS Challenge is the S3 Contest
on Semantic Service Selection7. However, the SWS Challenge and the S3 contest
are working in different parts of the research space. The S3 Contest is a competition
that measures the speed and precision of retrieval algorithms in performing discovery
tasks and declares winners each year. Moreover, the contest requires commitment to
a specific semantic formalism. Most of the existing services have been described in
OWL-S8. The SWS Challenge is interested in comparing the effectiveness of differ-
ent formalisms for different problems. The S3 contest does have different kinds of
problem sets and, in 2008, is including the SAWSDL9 specification for annotating
WSDL, which does not commit to a specific semantic formalism.

The organizers agree that the two initiatives are related and both should be ex-
plored. In fact, the cross-referencing between both events on their web sites and
inter-linkage of other activities (e.g., common use of test services) has been agreed
between organizers. This is described more in Chapter 17.

The IEEE Web Services Challenge (WSC) has changed over the years to become
closer to the SWS Challenge. At first, this was a strictly syntactic-based contest. The
latest 2008 workshop10 has been announced as focusing on the use of semantics to
compose web services. However, this newest version of this contest still differs from
the the SWS Challenge in significant ways.

4 http : //www.w3.org/TR/wsdl20/
5 http : //www.w3.org/Protocols/
6 http : //www.w3.org/2005/Incubator/swsc/XGR− SWSC − 20080331/
7 http : //www − ags.dfki.uni− sb.de/ ∼ klusch/s3/
8 http : //www.w3.org/Submission/OWL− S
9 http : //www.w3.org/2002/ws/sawsdl/

10 http : //cec2008.cs.georgetown.edu/wsc08/

1 Introduction to the First Year of the Semantic Web Services Challenge 5

First,like the S3 contest, the WSC is a contest with two winners, rather than a
certification of functionality on particular tasks. One winner is based upon speed, and
another is based upon a judgement about the elegance of the architecture. Second,
this contest does not test the efficacy of different approaches to semantics but only
the efficacy of different composition algorithms using OWL-S. Third, there is no
attempt to make various industrially-relevant scenarios that include discovery as well
as composition.

Both the S3 and the WSC are contests with well-defined metrics because they
are focused on more narrow problem sets with selected semantic formalisms. The
SWS Challenge is both more ambitious and difficult to evaluate. We now describe
the difficulties of attempting to evaluate, from a software engineering perspective,
various approaches without predetermining a formalism. Indeed, development of this
evaluation methodology has turned into something of a research experiment itself.

1.4 SWS Challenge Evaluation Methodology

At the SWS workshops, the approaches are presented and demonstrated, but also the
code is jointly reviewed. The common applications have helped to foster a profound
mutual understanding of each other’s technology and the collaborative discussion
of the profiles of the various approaches. The participants have evolved an evalu-
ation scheme that classifies the functionality and the agility offered by the various
approaches, and applied it to the participating technologies.

The SWS Challenge is an evaluation of functionality rather than performance.
We are not interested in how fast a particular piece of code works. We are interested
not in the speed of the code but in programmer productivity. For a given change in
the emerging era of Service-Oriented Architectures, how hard will it be for program-
mers to make changes in an increasingly flexible and dynamic IT environment? This
Challenge seeks to understand the advantages and tradeoffs, wrt. this question, of
various programming approaches.

There is no “winner” in these challenges, though one can look at the results
of each workshop and see which team has so far solved the most problems with
what level of difficulty. This Challenge is intended to be an objective certification of
approaches to the problems of semantic technologies, with an emphasis on industrial
problems in order to make the technologies relevant.

Therefore the SWS Challenge is taking a software engineering approach to eval-
uating Semantic Web Services [3]. The working hypothesis of the semantic technol-
ogy community is that a semantic approach will allow a given change to be made
with less difficulty than with traditional coding techniques. This is essentially a soft-
ware engineering claim. Thus we allow “all comers” to participate. If it develops that
a particular coding technique manages the problem changes of the challenge scenar-
ios better than a semantic approach, this will also be be valuable information for the
semantic community.

In the Challenge methodology, teams validate their solution to problems by hav-
ing their system send correct messages to the web services in the SWS Challenge

6 Charles Petrie

infrastructure. At the workshops, teams present papers about their approach with
claims about the ease of changing from one problem to another. Then we peer-review
these claims and agree upon an evaluation of the approach, as well as certifying the
technology problem level.

The problems are specified in English, other than the WSDL descriptions asso-
ciated with the test services. We challenge the participating teams to develop their
own semantic annotation formalisms that are sufficient to solve the problems. Addi-
tionally, we analyse the general difficulty in moving from solving one problem level
or sub-level to another.

This is why we use standards such as RosettaNet PIP3A411 and WSDL and make
our scenarios at least similar to industrial problems. It is also why we insist that sub-
missions actually solve the problems by sending correct messages to the Challenge
web services for each scenario. It is easy to make claims in academic papers that
such-and-such a problem has been solved. It turns out to be much more difficult in
practice, as our teams have discovered, to make such approaches actually work. Our
slogan is “no participation without invocation”. In order to be evaluated on a problem
level, the submission must have demonstrated the correct exchange of messages with
the corresponding Challenge web services, or in cases where this is not feasible, the
claim must be demonstrable and verifiable by the SWS Challenge community.

The specifics of the current methodology have evolved over time and are the
subject of the W3C SWS Challenge Testbed Incubator Methodology Report. Though
this book reports the developments of only the first year, the evaluation methodology
has, and continues, to evolve. But this report cites principles that summarize the
discussion above:

• We do not pre-suppose what technologies are best but rather evaluate them and
certify the results as a result of solving common problems.

• We evaluate both the ability to solve a problem and the developer effort in re-
sponding to a problem change.

• We are less interested in program speed than in correctness of program behavior
and the degree of programmer productivity.

• We are interested in learning trade-offs among technologies and which for-
malisms are successful in which contexts.

• The evaluation results should be simple but useful to people deciding among
technologies, especially within industry.

• The evaluation exercises should also result in reusable principles and code that
can be swapped among the participants and help to evolve ”best-of-breed” tech-
nologies: particularly ontologies.

• The problems and their syntactic specifications should be as industrially-relevant
as possible.

We do not describe the methodology in much more detail here but refer the reader
to the W3C report or the Challenge Wiki because the methodology continues to

11 http : //www.rosettanet.org/PIP3A4

1 Introduction to the First Year of the Semantic Web Services Challenge 7

evolve, and because there is more discussion in “Lessons Learned”. However, there
are a few issues worth noting.

In addition to the goal of scientific verification, the Challenge has an additional
goal: to understand how easy the participant’s technology is to change in the face of
a changing problem. The fundamental idea is to give the participants problems that
are variations of those already solved.

Initially, we tried a code freeze and then presented the participants with scenario
variations one time shortly before the workshop to see if they could solve them in a
limited time as a way of judging the ease of change of the technologies. We found
people had difficulty with the way we were doing code freezes, and we were getting
new participants for whom these variations were no longer new as they had been pub-
lished. We experimented with changing the methodology and as of the last workshop
in 2008 at Karlsruhe, we will require an upload of code at some point, and a com-
mitment to work on a “surprise” variation, which will then be released privately to
each agreeing participant, but which will not be made public. Participants received a
“plus” mark by their verification check on the published certification matrices if they
can solve the surprise problem by presentation time in the workshop.

It should also be noted that we have not yet developed scenarios that require
semantic unification across ontologies: all of the scenarios allow the participants to
use a ontology common to their own application. Currently, this is for two reasons.
One is that, as previously explained, we do not wish to force a particular technology
upon the participants. Therefore, we will not give them two ontologies in any given
format. We are interested in this problem however and are exploring whether we can
find some neutral expression of two ontologies the participants might be required to
express in their own formalisms, and unify. A surprise problem will be extremely
meaningful in this case.

Also, at least one of the organizers, Petrie, while supporting scientific research in
this area, is doubtful that ontology unification is compatible with our emphasis on in-
dustrial problems. Petrie rather believes that most service discovery and composition
in industry in the near future will take place in homogeneous environments[4].

1.5 SWS Challenge Problem Scenarios

The problems being solved by the teams are business scenarios divided into major
problem levels with sub-problem variations. The first major problem level consists of
developing a mediator that allows a hypothetical company, Moon, to have its legacy
web services to conform to a RosettaNet purchase order (PO) standard that is being
used by a customer, Blue. We then change the web services, the protocol, and the
order in consecutive variations.

In particular, we have presented two broad areas of problem scenarios:

• The mediation type of scenarios concern making a legacy order management
system interoperable with external systems that use a simplified version of the
RosettaNet PIP3A4 specifications.

8 Charles Petrie

• The discovery type of scenarios concern
– the dynamic discovery, selection, binding, and invocation of the most appro-

priate shipment service for a set of given shipment requests; and
– the selections of components from different suppliers and catalogs in order

to configure a computer, with different preferences and conditions.

Subsequent problem levels involve increasingly difficult web service discovery
and composition scenarios. In the larger supply chain setting, teams should process
the order from the company, mediating the PO process, order the right parts from
the suppliers, the suppliers should ship the parts, and the company should ship to the
customer the completed order, with associated “paperwork”. The computer configu-
ration scenarios are also planned to be extended and some of the elements of these
scenarios are also planned to be included into the larger supply chain setting. The
basic scenario problems are described in Chapter 2.

We expect the scenarios to grow in number of services and overall complexity.
Indeed, we believe that the results of the Challenge are likely to be really mean-
ingful when we have linked together many of the individual scenarios into a super
supply chain scenario involving multiple customers, suppliers, and shippers together
with the Moon company, and the discovery scenarios involve sufficient number of
services that blind search among them makes the problem intractable. However, we
must of necessity grow the scenarios and services incrementally, with the help of
the participants. This also allows the participants to make progress without being
presented with an overwhelming scenario at the start.

1.6 Overview of Technologies

In the first year of the SWS Challenge, we have had six (6) teams participating.
The other chapters in this paper describes the contributions of these teams, but one,
in more detail. Here we give an overview that will help the reader with an overall
perspective.

• DIANE (Universität Jena) is a method for automated service matchmaking, se-
lection, binding and invocation.

• WebML/Webratio (Politecnico di Milano/CeFRIEL) uses a combination of soft-
ware engineering and F-logic.

• jABC/jETI (Universität Dortmund/Universität Potsdam) jABC/jETI is based
upon a modeling of composition of software components using finite state au-
tomata. This team provided first a software engineering approach to the medi-
ation scenario, and later a declarative approach for automatic generation of the
Mediator workflow via Linear Time Logic (LTL)-guided synthesis.

• METEOR-S (Wright State University) uses SAWSDL + AI-Planning + Data Me-
diation.

1 Introduction to the First Year of the Semantic Web Services Challenge 9

• WSMX/WSMO (DERI) is a semantic approach based upon abstract state ma-
chines.

• Swashup (IBM) was a purely engineering approach using Ruby on Rails.

The precise current results of all current and past teams can always be found in
the SWS Challenge Wiki. It should be noted here that the three teams of Politecnico
di Milano/Cefriel, DERI, and Jena currently have solved the most problems in both
the mediation and discovery scenarios. The IBM approach was near to solving the
first level of the mediation problem but had not done so as of the publication time of
this book, and so is not included as a chapter in this book. We now give an overview
of the technical approaches to the scenarios of these six teams that will inform the
reader of the subsequent chapters.

The five of them were ranked according to the evaluation criteria (the IBM ap-
proach was not evaluated), and indeed they showed very different approaches. This
book covers the following, listed from very to less declarative approaches.

• METEOR-S achieved nearly full automation (Chapter 6), as did an approach
based on automatic generation of the workflows from semantics-enhanced LTL
specifications (Chapter 7). Both of these have solve the first mediation problem.

• Three approaches combined partially automatic generation and partially auto-
matic adaptation, but in different subproblems:
– The WSMO/WSMX approach uses a generic (abstract) state machine for the

flow, thus having an advantage on the process adaptation level. This approach
has been very successful on the mediation problems but is also, along with
DIANE, one of the most successful approaches to solving the discovery prob-
lems.

–
and a partial generation of the processes, that ease the adaptation of them.
This hybrid approach has been very successful in solving both discovery and
mediation problems.

– The fundamental jABC/jETI approach provides automatic generation of ad
hoc components from the published WSDL descriptions into its own service
components (called SIBs). One advantage of this system has been minimal
effort to otherwise semantically annotate the services. Ease of software con-
struction and maintenance is achieved by manual graphical construction of
the service logic. This approach has been shown capable of solving both me-
diation and discovery problems with fairly easy adaptation effort by the user.

• The DIANE (and SWE-ET) light-weight ontology approach is oriented primarily
(almost exclusively) towards discovery, thus the mediation solution falls outside
the specific profile. The mediation problem was solved traditionally by providing
specific adapters to the RosettaNet messages and to the Moon system, and a pro-
cess logic written in BPEL. The adaptation required for mediation is described
further in the DIANE chapter.

The WebML/Webratio uses generic import/export mechanisms from the WSDL

10 Charles Petrie

1.7 Organization of the Book

In addition to this introduction, the last chapter contains observations and insights
into the issues of conducting such an ambitious evaluation initiative as this one. Our
understanding of how to conduct such an evaluation continues to evolve and we invite
the participation of new contributors.

In terms of understanding the Challenge content, a discussion of the problem sce-
narios directly follows this introduction. A scan of this chapter will be very helpful
for the reader in understanding the technical solutions to these problems and what
they really mean. This chapter should also serve as a reference for detailed reading
of the solution chapters.

The solution chapters describe the technologies of the participant teams and are
organized into two parts, corresponding to the two main types of scenarios: Me-
diation and Discovery. Within each part, we have two further divisions: individual
solutions and pairwise comparison of solutions.

The latter are not pair-wise complete, largely because each of these compari-
son chapters involved a great deal of joint analysis by teams working with different
technologies, and because the teams had to agree on the analysis. However, exactly
for those reasons, these comparison chapters will be particularly valuable to readers
attempting to understand the technical issues and solutions.

An overview of these solution chapters follows:

• Part I: Mediation
– Mediation individual Solutions
· WSMO/WSMX
· WebML/Webratio
· jABC/jETI
· METEOR-S
· LTL-guided synthesis of the Mediator in jABC

– Mediation solution comparisons
· WSMO/WSMX vs. WebML/Webratio
· WebML/Webratio vs. jABC/jETI

• Part II: Discovery
– Discovery Individual Solutions
· WSMO/WSMX
· Glue/Webratio
· Diane
· jABC/miAamics

– Discovery solutions comparisons
· Service Discovery with SWE-ET and DIANE
· WSMO/WSMX - jABC/miAamics
· DIANE - jABC/miAamics

1 Introduction to the First Year of the Semantic Web Services Challenge 11

1.8 The Challenge is Open

Finally we would emphasize that the SWS Challenge is open, both to participation
and to the submission of new scenario problems. Some of the scenarios can be “stand
alone” and others will refine and extend the “Blue Moon” customer/company/suppli-
er/shipper scenario. Eventually, this scenario should include the company fulfilling
the customer order using a supply chain composed of the best suppliers and shippers
for the specific customer order.

Our mission is to supply not only a large useful “sandbox” for testing semantic
web service approaches, but also a de facto standard for certifying such technolo-
gies, as well as furthering an academic understanding of the benefits and trade-offs
of these approaches. The chapters in this book are the first results from this under-
standing as they include comparisons of approaches.

There have been further results, and teams, in 2007 and 2008 and we invite new
teams to participate in any of the coming workshops announced on the Challenge
wiki as well join the W3C SWS Challenge Testbed Incubator during 2008.

References

1. T. Margaria: The Semantic Web Services Challenge: Tackling Complexity at the Orches-
tration Level. Invited paper ICECCS 2008 (13th IEEE Intern. Conf. on Engineering of
Complex Computer Systems) EEE CS Press, pp 183-189, April 2008, Belfast, UK.

2. Heiko Ludwig and Charles Petrie: 05462 Session Summary – ”Cross Cutting Concerns.
Service Oriented Computing (SOC), Dagstuhl Seminar Proceedings, ISSN 1862-4405,
Dagstuhl, Germany.

3. Charles Petrie: It’s the programming, stupid IEEE Internet Computing, Vol. May-June
(2006).

4. Charles Petrie and Christoph Bussler, The Myth of Open Web Services: Rise of the
Service Parks. IEEE Internet Computing In IEEE Intelligent Systems, page 80-82, vol.
May-June (2008).

2

SWS Challenge Scenarios

Holger Lausen, Ulrich Küster, Charles Petrie, Michal Zaremba, and Srdjan
Komazec

1 Semantic Technology Institute Innsbruck, University of Innsbruck, Technikerstr. 21, 6020
Innsbruck, Austria, firstname.lastname@sti2.at

2 Institute of Computer Science, Friedrich-Schiller-University Jena, 07743 Jena, Germany,
ukuester@informatik.uni-jena.de

3 Computer Science Dept. University of Stanford, Gates Building, Stanford, CA
94305-9020, USA petrie@stanford.edu

Summary. The Semantic Web Service Challenge defines problem scenarios that serve as
the basis for the certification and comparison of approaches participating in the challenge.
These scenarios are classified in two broad types: Mediation and Discovery. The first primarily
address aspects of data and process mediation whereas the latter focus on problems around
automated service discovery. Currently, there are two main scenarios in each type which are
described in detail in this chapter.

2.1 Introduction

In this chapter, we discuss the rationale for the existing scenarios and give an
overview of them that will inform the reader about the problems solved by the vari-
ous technologies covered in other chapters of this book. What is most important for
the reader to understand is that each of these scenarios is supported by real web ser-
vices, not changeable by the participants, in a testbed; and that solving each of the
scenario problems requires really parsing the WSDL of these services and correctly
sending and processing messages to these services as required by the scenarios.

Instead of having a single giant scenario, we choose to have several problems on
different levels, which ideally build one upon the other. The rationale is that it is eas-
ier for people to attempt individual small problems rather than one large one. And,
as described elsewhere in this book, the individual problems have proved very chal-
lenging. However, some set of these problems will eventually be used to form one
large supply-chain problem that may more adequately test the software engineering
aspects of the technologies evaluated.

In addition, it has always been the intention of the challenge organizers to provide
problems that are as close to industrial reality as practical, rather than the very simple
travel agent or book order examples usually covered in academic papers. The Chal-
lenge participants have found even these simple problems, using industrial standards

14 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

and fixed real services, not designed by the paper authors, to be surprisingly chal-
lenging, which we conclude is of significant benefit to the development of semantic
web service technology and science.

There are two broad types of problems, which we have classified as “mediation”
and “discovery”. Problem scenarios in the former pushes more on service orchestra-
tion, but some of the scenarios in discovery do as well. The first mediation problem
is centering around process and data mediation during a purchase order process. The
discovery basic scenario is about discovering shipment providers given specific con-
straints such as destination country, weight, etc. Subsequent organizers and partici-
pants have together developed an enhanced discovery scenario as well as an orches-
tration scenario. In this section we familiarize the reader with the basic details of the
scenarios. These details are intended to help understanding the solutions presented
in subsequent chapters.

2.2 The Mediation Scenarios

After deciding that the mediation types of scenarios should fundamentally include
mediating a purchase order between various systems we started looking closer at
currently used solutions. We identified three industrial standards that could poten-
tially be used to derive a problem scenario:

• EDIFACT4 is the United Nations/Electronic Data Interchange For Administra-
tion, Commerce, and Transport (UN/EDIFACT). It is a plain text format for data
exchange developed by the United Nations.

• ebXML5 is sponsored by sponsored by OASIS and UN/CEFACT and commonly
known as e-business XML. ebXML is a family of XML based standards whose
mission is to provide an open, XML-based infrastructure that enables the global
use of electronic business information in an interoperable, secure, and consistent
manner by all trading partners.

• RosettaNet6 is a non-profit consortium aimed at establishing standard processes
for the sharing of business information (B2B). The standard is based on XML
and defines message guidelines, business processes interface and implementation
frameworks for interactions between companies.

As EDIFACT is based on plain text messages, we decided not to take it as basis
since this would push too many low level data transformation issues to the partici-
pants. In opposite to the two XML based standards no parsers and other tools could
be used. The choice between ebXML and RosettaNet was taken on the base of avail-
able documentation. Since only the RosettaNet messages and protocols are freely
and easily accessible we decided to use RosettaNet.

4 http://www.unece.org/trade/untdid/welcome.htm
5 http://www.ebxml.org/
6 http://www.rosettanet.org/

2 SWS Challenge Scenarios 15

In the mediation scenario we focus on interoperability problems of existing sys-
tems. The aim is to show how semantic Web technologies can help to overcome the
need for manual development of mediation systems.

In our initial scenario description we provide relevant information about the sys-
tems involved in two forms: using current Web Service description (WSDL) and
natural language text annotations. Using current state-of-the-art technologies a pro-
grammer has to interpret the information given and to code components that over-
come the heterogeneity between the different systems. In the SWS-Challenge par-
ticipants are asked to extend the syntactic descriptions in a way that their algorithm-
s/systems can perform the necessary translation tasks in a semi or fully automatic
manner.

We focused on the scenario of purchasing goods using a simplified version of
the RosettaNet specification. While the external interfaces must follow the Roset-
taNet specification, internally Moon uses a propriety legacy system in which data
model and message exchange patterns differ from those of RosettaNet. Participants
shall basically enable Moon to ”talk RosettaNet” and implement the Purchase Order
receiving role part of the interaction described in the RosettaNet PIP 3A4.

There are three main components taking part in the process are depicted in Figure
2.1:

• Company Blue, which is a customer (service requester) ordering products,
• Mediator, which is a piece of technology providing automatic or semi-automatic

mediation for the Moon company
• Legacy System of the Moon Company. While the external interfaces must fol-

low the RosettaNet specification, internally Moon uses a propriety legacy system
in which data model and message exchange patterns differ from those of Roset-
taNet.

The Moon legacy systems and the customer Web Services (Blue) are provided
by the challenge organizers and can not be altered (although their description may
be semantically enriched). The sketch of the mediator shall be implemented by the
participants.

In the mediation scenario, Moon uses two backend systems to manage its order
processing, namely a Customer Relationship Management system (CRM) and an
Order Management System (OMS). The challenge testbed provides access to both
systems through public Web Services described using WSDL. In the scenario Moon
wants to exchange purchase order messages with its client company called Blue us-
ing the RosettaNet PIP 3A4 specification.

In order to address the integration of Blue and Moon services, the participating
groups are encouraged to use Semantic Web Service technology to facilitate conver-
sation between all systems, to mediate between the PIP 3A4 and the XML schema
used by Moon, as well as to ensure that the message exchange between all parties is
correctly choreographed. In particular,

• Data mediation is involved in mapping the Blue RosettaNet PIP 3A4 message to
the messages of the Moon back-end systems.

16 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

Fig. 2.1. Purchase Order Process Mediation

• Process mediation is involved in mapping of message exchanges defined by the
RosettaNet PIP 3A4 process to those defined in the WSDL of the Moon back-end
systems.

The messages used in the challenge are simplified versions of the original specifi-
cation. To describe context of messages we provide simplified PIP3A4 as RosettaNet
XML Schemas. Within the RosettaNet PIP3A4 specification the information is given
using a DTD. We have converted this DTD to XML Schema and removed some fields
to make the message less complex. Tag names, their meaning and structure have not
been changed. The PIP 3A4 enables a buyer to issue a purchase order and to obtain
a response from the provider that acknowledges which of the purchase order product
line items are accepted, rejected, or pending.

A purchase process is initiated by the buyer when it sends the Purchase Order
message to the endpoint exposed by a mediator (this one has to be provided by chal-
lenge participants). The Purchase Order message must be synchronously confirmed
by an Acknowledgement of Receipt message. The original RosettaNet specification
allows 24 hours for confirmation of the Purchase Order Action. We changed it and
for the sake of practicability, the Purchase Order Confirmation should be issued no
later than 5 minutes since the Mediator has received Purchase Order.

RosettaNet messages contain no specific information about products, but refer
only to a global unique product identifier. For the purpose of the challenge we pro-
vide a list of products, which can be ordered from Moon. We recognize that a pure

2 SWS Challenge Scenarios 17

identifier remains quite meaningless from the perspective of Semantic Web. Never-
theless we decided not to change existing specification.

In the RosettaNet standard a purchase order is sent using just a single message,
however, in order for Moon to be able to process an order, several steps have to be
made. The overall ordering process of Legacy System is more complex that the one
defined by RosettaNet protocol and the Mediator must take care of this. This process
is illustrated in Figure 2.2

Fig. 2.2. The Mediation PO Scenario: Legacy System Interaction

First, the Mediator must communicate with the Legacy Customer Relationship
Management (CRM) System to obtain relevant customer details. With the data from
the CRM system the mediator can assess if the order is eligible, i.e. if the customer is
known and authorized to do business with. As a next step a new order must be created
with the Legacy Order Management System. Now individual line items can be added
to the order created. Once all the line items have been submitted, the order has to be
closed. Finally the Order Management System sends a response back containing the
products that are on stock and can be delivered. Challenge participants must provide
an endpoint for their mediators to which this response can be sent.

Finally the mediator must aggregate all the information received and send it back
to the originating party using the Purchase Order Confirmation message of the Roset-
taNet standard.

18 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

2.2.1 Production Management Mediation Scenario

In the second phase of the challenge a Production Management (PM) system has
been added. With the Production Management system products that are not on stock
can be scheduled for production. This means that the mediator needs to perform an
additional step, i.e. to enquiry the production costs and completion dates for every
item that is not on stock and confirm production for those where the constraints
fit those specified in the original Purchase Order. Figure 2.3 depicts this extended
scenario.

Fig. 2.3. Production Management Mediation Scenario

Unless some item of an order is not on stock, the workflow carried out by the
mediator is identical to the first version of the mediation scenario. When an item is
not on stock, the mediator must communicate with the legacy Production Manage-
ment system to enquire whether and to what conditions a production of an item is
possible.

2 SWS Challenge Scenarios 19

The Production Management system provides the relevant information on esti-
mated production date and price. If this information meets initial expectations of the
customer as specified in the RosettaNet message, the product should be ordered. Be-
side the addition of the Production Management system the RosettaNet schema has
been extended. The extended version of the RosettaNet schema provides the pos-
sibility to define a shipment address at the line item level. If present, this address
should be used instead the one defined at the purchase order level.

The changes in the scenario have been added with the intention to determine
how difficult it is to adapt the solutions to changing requirements. Or whether - in
the best case - the systems are able to adopt to the new environment without change
to the actual implementation, but purely by adding (semantic) annotations to the
services. However, as explained in Chapters 1 and 17, our methodology has evolved
so that these have become another set of problems to be solved and it is the so-called
“surprise” problems that test problem adaptation.

2.2.2 Payment Scenario

The Payment Scenario aims at covering yet another aspect of the comprehensive
SWS problem landscape. The emphasis the scenario is Web Service orchestrations.
Although positioned as a type of mediation scenario it especially challenges the or-
chestration problem solving capability domain of technologies used by participants.

After decision was made that the scenario will be in area of orchestrating var-
ious services in order to initiate purchase order payment existing solutions coming
from financial market were evaluated. Unfortunately, RosettaNet used in preceding
scenario does not provide support for communication with financial institutions (e.g.
banks) in order to conclude purchase order with a payment. After some time spent
in research it was identified that the gap between RossettaNet enabled systems and
financial institutions could be bridged with a solution relying on ISO 20022 UNIver-
sal Financial Industry (UNIFI) message scheme standard7. It is supported by major
players in financial market (e.g. SWIFT8 and TWIST9) and it provides common de-
velopment platform for exchanging and processing financial messages encoded in a
standardized XML. The standard covers wide range of possible cases found in re-
spective domain (like Cash management, Payments Clearing and Settlement, Secu-
rities management, Trade Services, etc). Among them, especially interesting for the
scenario, was Payments Initiation10 case describing set of messages used to initiate
and manage funds transfer between debtor (or customer) and creditor (or seller). This
scenario uses simplified versions of messages than the messages provided in original
specification. All message definitions are given as appropriate XML Schemas.

As in the mediation scenario there are three main components participating in the
conduction of payment initiation as depicted in Figure 2.4:

7 http://www.iso20022.org
8 http://www.swift.com
9 http://www.twiststandards.org

10 http://www.iso20022.org/index.cfm?item_id=59950

20 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

• Company Blue, which intends to pay for ordered goods,
• Integrator, which is a piece of technology providing capability to orchestrate a

number of services on behalf of Blue company, and
• Moon Company, offering interface to retrieve creditor data (e.g. bank account

number) needed to successfully complete payment initiation.

Fig. 2.4. The Payment Scenario overview

The scenario description starts where the mediation purchase order problem ends,
i.e. after reception of acknowledgment for a purchase order initiated by Blue. The
intention of Blue to pay for the approved purchase order results in a payment in-
struction message sent to its Accounting Department system (i.e. Accounting De-
partment service). The payment instruction must be completed with necessary data
(Blue’s and Moon’s addresses, bank accounts and identifiers, purchase order amount)
coming from various sources (e.g. Moon’s Financial Information Provider service).
Under certain circumstances payment instruction must be authorized by Blue’s Man-
agement Department system (i.e. Management Department service). After payment
instruction has been dispatched customer expects to receive a payment status report
from its Accounting Department system. A solution should play the role of Blue’s
integrator concerned with the proper orchestration of before mentioned services.

The conditions governing Integrator’s need to consult Management Department
system for payment authorization are based on the threshold amount. If the requested
payment amount is below threshold there is no need for communication with the
Management department, thus payment initiation orchestration can skip this step.
Otherwise, Accounting Department will reject payment instruction, unless accom-
panied with an optional authorization code obtained by making a request to the

2 SWS Challenge Scenarios 21

Management Department service. The request must designate an Authority (i.e. a
Blue employee) capable of approving or denying payment requests up to the speci-
fied amount. This system returns either an authorization code (after which payment
initiation messages can be completed and provided to the Accounting Department)
or a denial code. If a denial code is returned, the service may be questioned again,
but not with the same Authority as in previous call. Furthermore, Blue has a policy
that the least senior Authority, as determined by the amount of money up to which
an authorization could be made, should be requested first.

As in the case of the mediation scenario the challenge organizers provide a set
of services which can not be altered by participants but which descriptions can be
semantically enriched by participants. All services representing Blue and Moon sys-
tems are publicly accessible and described by accompanying WSDLs. It is expected
that the Integrator component will be implemented by the participants.

To illustrate the scenario we will assume that the threshold amount is 2e000, and
that we have two authorities, Jackie Brown (authorizes amounts up to 5e000), and
Cathy Johnson (authorizes amounts up to 1e0000). Furthermore, in order to achieve
compact description of service invocations we will annotate Blue’s Accounting De-
partment service as AD, Blue’s Management Department service as MD and Moon’s
Financial Information Provider service as FIP.

Payment amount below threshold

In the case of payment amount below threshold there is no need to request payment
authorization from MD, thus the Integrator can directly invoke AD service after suc-
cessful compilation of the payment initiation message. Correct invocation sequence
orchestrated by the Integrator should be FIP→ AD.

Payment amount above threshold

A payment amount greater than threshold adds additional step in expected orches-
tration, i.e. the Integrator must consult MD to authorize payment initiation. If we
assume that payment amount is 3e000 than expected invocation sequence could
be FIP → AD → MD → AD (FIP is contacted to gather Moon’s financial data,
AD refused to initiate payment because payment amount is above threshold and an
authorization code is missing, MD is contacted with Jackie Brown as least senior
designated authority who approves payment and gives authorization code, and AD
is contacted again with all necessary data needed to complete payment initiation).
The expected service invocation sequence could also be FIP→ AD→ MD→ MD
→ AD (if Jackie Brown as least senior authority refuses to give payment initiation
approval the Integrator is contacting MD again but with Cathy Johnson as the next
authority in hierarchy which decides to authorize payment).

2.3 The Discovery Scenarios

The discovery scenarios are independent of the integration/mediation problem. The
integration problem can be solved with current syntactic technologies, however it

22 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

shall be shown how semantic annotation can be used to make this task easier and
more flexible. The discovery scenarios - service providers have to be located, se-
lected and invoked dynamically - are more visionary scenarios, since in present busi-
ness scenarios this task always involves a human in the loop. Two complementary
scenarios have been defined, one concerned with shipping of packages, the second
dealing with requests to purchase computer hardware.

2.3.1 Shipping Discovery Scenario

The first discovery scenario defines five shipping services (described via their WSDL
and natural language documentations). It presents a set of increasingly complex ship-
ping requests. Given a request, a suitable shipper needs to be discovered and invoked.
Thus, participants have to create (semantic) descriptions for the available shippers
and the given shipping requests such that the discovery and invocation task can be
performed by an automated autonomous agent.

Shipping services are characterized by the following properties:

• Operation range: Shippers operate worldwide or in a set of listed countries or
continents.

• Package limitations: Shippers define maximum bounds on the dimensions and
the weight of packages. Additionally the notion of a dimensional weight is used:
Packages with a low weight, but big dimensions need to use the dimensional
weight (computed from the dimensions of the package) instead of the actual
weight.

• Price: Four shippers statically specify the price as rules how to compute the price
of a package depending on shipping location and package dimensions or weight.
One shipper requires to dynamically call a Web Service endpoint to gather the
current price providing the same information. Thus for goals specifying an upper
price limit for the shipping operation, this service could not be discovered by
exploiting static descriptions alone, but required dynamic negotiation during the
discovery process.

• Package collection: Shippers offer collection of packages and define various con-
straints on the minimum or maximum advance notice for collection or the total
length of the collection interval.

• Shipping time: Shippers specify rules about the maximum shipping time depend-
ing on the location of the shipment and the time of the pickup.

Predefined shipping requests specify a required shipping operation, characterized
by concrete pickup and delivery addresses as well as concrete package dimensions
and weight. The more complex goals additionally specify a maximum price for the
shipping operation or constraints regarding the maximum shipping time. During dis-
covery, participants have to filter unsuitable shippers, automatically choose a suitable
one and invoke it by calling the corresponding Web Service endpoint. Since the ship-
per do not use a common XML-Schema for their messages, participants also have to
deal with issues of data mediation to create the properly formatted messages.

2 SWS Challenge Scenarios 23

One advanced goal requests sending two packages instead of one. Since none
of the shippers support multiple packages, this goal has to be mapped to multiple
invocations of the same or different shippers.

Similar to the mediation scenario we provided implementations of all shipping
services. The implementation behavior is to be used in case of ambiguity in the tex-
tual descriptions. With an invocation of one of the corresponding Web Services an
order is triggered which allows the organizer to automatically verify if a particular
solution has chosen the right shipment provider.

To illustrate the scenario we present the details of one shipper and a sample goal.

Racer

The rates are composed of a flat fee and a fee per pound different for every con-
tinent: Europe($41/$6.75), Asia($47.5/$7.15), North America($26.25/$4.15), Rates
for South America like North America, Rates for Oceania like Asia. Furthermore for
each collection order $12.50 are added! Racer ships to 46 countries which are listed
in its interface specification (WSDL file) The maximum package weight is 70lbs.
Racer requires at least a pick-up interval of 120 minutes for collection and the latest
possible collection time is 8pm. If a package is collected by 6pm, it is shipped in 2
business days within a country and 3 business days internationally.

Example Goal

One package with dimensions 40/24/10 (l/w/h) (in inch) weighing 40 pounds shall
be shipped from an address in California to an address in Bristol, UK. As we can see
Racer is one of the shipment providers that match. Others must be excluded since the
dimensional weight is either exceeding the specified limits or they are not shipping
to the UK.

2.3.2 Hardware Purchasing Scenario

In the second discovery scenario, a customer wants to buy computer hardware with
fairly clear requirements on the products to buy. We will provide some examples
below. Additionally, three services (called Bargainer, Hawker, and Rummage) are
defined, which sell products. Each of the services offers an endpoint that allows to
inquire about the products (and their detailed properties) currently on stock. Like
in the first scenario, the task is to select the right service and invoke it with the
right input parameters to purchase the products that best match the customer’s ex-
pectations. The hardware purchasing scenario was designed to extend the shipping
scenario along three dimensions of difficulty.

• Currently, the available services offer 19 products all together which are iden-
tified by a global product id (GTIN). Clearly more realistic services offer way
more different products. It may or may not be feasible to specify all different
options and all the product details in the offer description(s). Solutions to the

24 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

scenario should indicate how they attempt to address this issue in more realis-
tic scenarios with hundreds of products available. For the future, it is planned to
extend the scenario in this direction.

• Some requests contain competing preferences as is usual for realistic matchmak-
ing: price should be as low as possible, processor power, hard disk drive size
and memory size should be as big as possible. The scenario request definitions
clearly define rankings among such competing preferences. The semantic task is
to represent these ranking rules clearly and execute them.

• The scenario requests involves increasingly difficult requirements of basic ser-
vice composition:
1. Uncorrelated composition: Some requests ask for several products that may

or may not need to be purchased from different providers. Thus, a single
request needs to be mapped to multiple invocations of the same or different
services.

2. Correlated composition: Some requests ask for several products but not all
possible pairings of requested products are compatible to each others. Making
a choice for one product may limit the choices for the remaining products to
purchase or even make it impossible to fulfil the goal.

3. Composition with global optimization goal: Some requests ask for several
products with global optimization goals and constraints. A power minimum
or a price maximum are examples of constraints that should not be violated
for the total order. Therefore, like in the previous case, products can not be
chosen independently of each other.

Example Goals

We illustrate the scenario by two exemplary goals.

Goal B2

Purchase a 13 inch Apple MacBook with a 2.0 GHz Intel Core Duo processor. It
should have at least 1 GB RAM and at least 100 GB HDD. The price should be
around $ 1500, at the very most $ 1800. If the white version is significantly cheaper
than the black one (at least $ 100) buy the white one, otherwise buy the black version.

The resulting preferred solution is a white MacBook for $ 1449 by Bargainer.
Another, albeit less preferred, solution is a black MacBook for $ 1699 by Rummage.

Goal C4

Purchase a 13 inch Apple MacBook with at least 2.0 GHz Intel Duo Core Processor,
512 MB RAM and 80 GB HDD. Additionally buy a web cam for notebooks with
a resolution of at least VGA (640*480) and a 13 inch notebook sleeve. The total
price must not exceed $ 1750. As long as the price limit is satisfied, choose the better
product: The processor power of the notebook is most important to me. Besides that I
rather need more RAM than a bigger HDD. If possible prefer webcams with a higher
resolution.

2 SWS Challenge Scenarios 25

The resulting solutions are as follows: The MacBook can be purchased by
Hawker or Bargainer (preferred since better product). The products offered by Rum-
mage either have not enough processor power or are too expensive after the web cam
is added. The web cam needs to be purchased from Rummage since other web cam
offers either do not specify a resolution or the specified resolution is too low. Hawker
is the only service that offers sleeves.

2.3.3 Status and Future of the Discovery Scenarios

As of now there are two comprehensive scenarios related to service discovery and
matchmaking. The first, original scenario, involves the discovery of an appropriate
shipment service out of five offers, each with different peculiarities regarding price,
supported locations, maximum package weight, constraints on the pickup time and
the speed of delivery. A second scenario deals with purchasing computer hardware
from a set of available vendors. The task is to determine which combination of prod-
ucts suits the needs of the client best and then to invoke the various vendor services
properly to purchase the desired products.

Based on a hierarchy of increasingly difficult given goals for both scenarios (i.e.
shipping and purchasing requests), submitted solutions are evaluated by determining
the the problem levels that they are able to solve. For the first discovery scenario the
problem levels are as follows:

1. discovery based on location,
2. discovery with arithmetic price and weight computations,
3. discovery including request for quote,
4. discovery including sending multiple packages (which had to be resolved to mul-

tiple service invocations), and
5. discovery with temporal semantics, i.e. pickup times and required speed of de-

livery.

The problem levels for the second discovery scenario have been defined as fol-
lows:

1. discovery based on clear product specifications,
2. discovery including (competing) preferences (like as cheap as possible),
3. discovery for multiple products that must be resolved to multiple service invo-

cations,
4. discovery for multiple correlated products (like a notebook and a compatible

docking station),
5. discovery for multiple products with a global optimization goal (e.g. overall min-

imal price), and
6. discovery for multiple products with a global optimization goal and preferences.

Submissions for new goals and also completely new scenarios that extend the
coverage of the complete problem space are encouraged any time. Such submissions

26 H. Lausen, U. Küster, C. Petrie, M. Zaremba, and S. Komazec

will be evaluated by the challenge organizers to become part of the official SWS-
Challenge test bed.

For the near future, two extensions to the scenarios are already planned. On the
one hand we will add goals that require automated unit conversion to either of the
discovery scenarios. This might e.g. be done by mixing products with a price stated
in Dollars with products with a price stated in Euro in the purchasing scenario. Par-
ticipants will have to detect that prices are given in different currencies and develop
means to deal with this, e.g. by automatically invoking a currency conversion service
during service matchmaking. This will be one further step towards really adaptable
systems.

On the other hand we are currently working to include a realistic number of
products into the supplier scenario. We are investigating whether it is possible to
exploit the Amazon E-Commerce service to gather the necessary amount of realis-
tic product data. Including a large number of products into the scenario will have
major implications on the solutions. First, creating meaningful descriptions will be-
come much more difficult. A broad generic description in the sense of “this service
sells electronic products” will be of little use during discovery. On the other hand it
might not be feasible to explicitly list all available products within a description for
various reasons (privacy, dynamicity, . . .). Thus participants will have to balance
their solution somewhere between these extremes, decide on the amount of statically
encoded information versus the amount of information being dynamically gathered,
and provide means how to integrate dynamic information into service descriptions
and service matchmaking algorithms.

The first of the two planned extensions is targeted at increasing the complexity
of the discovery problems at the process and reasoning level. Solutions being able
to still tackle the problems will have proven an even higher level of adaptability to
homogeneous environments.

The second extension is complementary and increases the complexity with re-
spect to the amount of information that needs to be processed and finally taken ad-
vantage of during discovery. Both extensions combined are aiming at making the
discovery scenarios even more realistic than they already are, thereby underlining
the goal of the SWS-Challenge to provide industrial level application scenarios.

2.4 Summary

The above described scenarios provide the current set of challenge problems. They
are intended as common ground to discuss semantic (and other) Web Service solu-
tions. By providing implementations to every scenario we want to ensure that solu-
tions are close to the real world. More over different solutions become comparable
with respect to the set of features supported for a particular scenario.

Finally we want to emphasize that the SWS-Challenge is open, not only to partic-
ipation but also to the submission of new scenarios that extend the current coverage
of problems.

2 SWS Challenge Scenarios 27

Such scenarios can be “stand alone” or refine and extend the “Blue Moon” cus-
tomer/company/supplier/shipper scenario. Eventually, this scenario should include
the company fulfilling the customer order using a supply chain composed of the best
suppliers and shippers for the specific customer order.

Part I

Mediation Individual Solutions

3

Mediation using WSMO, WSML and WSMX

Tomas Vitvar1, Maciej Zaremba2, Matthew Moran2, and Adrian Mocan1

1 The Semantics Technology Institute Innsbruck, University of Innsbruck, Austria,
firstname.lastname@sti2.at

2 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland,
firstname.lastname@deri.org

Summary. This chapter presents DERI’s solution to solving SWS Challenge mediation sce-
nario.We demonstrate our approach building upon an established Semantic Web Service
Framework to facilitate interoperability within the execution of heterogeneous services that
support both the RosettaNet standard and proprietary information models.

3.1 Introduction

Inter-enterprise integration is an essential requirement for today’s successful busi-
ness. With the aim of overcoming heterogeneity, various technologies and standards
for the definition of languages, vocabularies and integration patterns are being de-
veloped. For example, RosettaNet defines standardised Partner Interface Processes
(PIPs), which include standard inter-company choreographies (e.g. PIP3A4 Request
Purchase Order (PO)), and the structure and semantics of business messages. Al-
though such standards certainly enable B2B integration, they still suffer from several
drawbacks. All partners must agree to use the same standard and often the rigid con-
figuration of standards makes them difficult to adapt to local business needs. On the
other hand, the adoption of Service Oriented Architectures (SOA) for B2B integra-
tion is becoming a defacto standard approach. However, today’s SOA technologies
only provide a partial solution to interoperability, mainly through unified technolog-
ical environments, while generic and scalable solutions are still in their infancy. In
particular, message level interoperability is often hardwired in business processes
using traditional XSLT approaches, and process level interoperability is often main-
tained through manual configuration of workflows. In order to address these draw-
backs, the extension of SOA with semantics offers a scalable integration, more adap-
tive to changes in business requirements.

In this chapter we describe a generic conceptual model for execution of heteroge-
nous business services that is able to resolve a wide range of interoperability issues.
On the use case scenario from the SWS Challenge and based on the underlying tech-
nologies of Semantic Web services and B2B standards we also show how business
services can be modeled and how the execution model is implemented.

32 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

3.1.1 Chapter Overview

In Section 3.2 we describe a generic execution model based on the formal defini-
tions of service’s information and behavioral semantics. In Section 3.3 we describe
the implementation of the model based on the technology of the Web Service Mod-
eling Ontology (WSMO), the Web Service Modeling Language (WSML) and the
Web Service Execution Environment (WSMX). In addition, we use a business pro-
cess and corresponding messages defined by the RosettaNet B2B standard. In section
3.3.2 we present a case scenario and its architecture which we use as a running ex-
ample throughout the chapter while in section 3.3.3 we describe how services can
be modeled using the WSMO framework. Section 10.3.4 describes the evaluation of
our solution and in sections 4.4 and 6.7 we indicate related work and conclude the
chapter.

3.2 Execution Model

In [3], we define two phases of the semantic web service integration process, namely
late-binding phase and execution phase. The late-binding phase allows binding a
user request (goal) and a set of services through semi-automation of the service life-
cycle. We call this phase late-binding because the binding of the goal and business
services is not known a priori (during modeling) and can be performed in a semi-
automated way on-the-fly. On the other hand, execution phase allows for the invo-
cation and conversation of services with resolving interoperability issues between
heterogeneous services where necessary.

In order to enable automation in the web service integration process, the agent
needs to operate on semantic descriptions of services. For this purpose four types of
service semantics, namely information, functional, behavioral, and non-functional,
are usually exploited by various semantic service models (see e.g. [14] for definitions
of those semantics). In this section we demonstrate how information and behavioral
semantics facilitate the execution phase of the web service integration process and
how the data and process mediation is applied within that process.

3.2.1 Definitions

Information Semantics

Information Semantics is the formal definition of some domain knowledge used by
the service in its input and output messages. We define the information semantics as
an ontology:

O = (C,R,E, I) (3.1)

with a set of classes (unary predicates) C, a set of relations (binary and higher-arity
predicates)R, a set of explicit instances ofC andR calledE (extensional definition),
and a set of axioms called I (intensional definition) that describe how new instances
are inferred.

3 Mediation using WSMO, WSML and WSMX 33

Behavioral Semantics

Behavioral Semantics is a description of the public and the private behavior of a
service. For our work we only use the public behavior (called choreography3) as a
description of a protocol which must be followed by a client in order to invoke the
service. We describe a choreography as a public process, i.e. from the service point
view, all the messages are sent in to the service from the network and all the messages
are sent from the service out to the network. We define the choreography X (read:
chi) of the service using the Abstract State Machine (ASM) as [14]

X = (Σ,L), (3.2)

where Σ ⊆ ({x} ∪ C ∪ R ∪ E) is the signature of symbols, i.e. variable names
{x} or identifiers of elements from C,R,E of some information semantics O; and
L is a set of rules. Further, we distinguish dynamic symbols denoted as ΣI (input),
and ΣO (output) and static symbols denoted as ΣS . While the static symbols cannot
be changed by the service invocation, the dynamic symbols correspond to input and
output data of the service which can be changed by the invocation. Each rule r ∈ L
is a Horn formula [3] and it defines a state transition r : rcond → reff where cond
is defined as an expression in logic L(ΣI ∪ ΣS) which must hold in a state before
the transition is executed; eff is defined as an expression in logic L(ΣI ∪ΣO ∪ΣS)
describing how the state changes when the transition is executed.

For the SWS Challenge scenario we have chosen the logic L as being the inter-
section of Description Logic SHIQ(D) [4] and Horn Logic [3], extended with data
type support, value constraints and integrity constraints, meta-modeling, inequality,
(locally) stratified negation and non-recursive function symbols 4.

Grounding

Grounding defines a link between semantic descriptions of services and the underly-
ing technology used for the services invocation (such as how and where the service
can be accessed). Although the semantic descriptions are independent on the under-
lying technology, we use grounding to WSDL for on-the-wire message serialization
(WSDL binding), physical Web service access (WSDL service and endpoint) and
communication (SOAP).

For purposes of grounding definition for a WSDL description we denote the
WSDL schema as S and the WSDL interface as N . Further, we denote {x}S as

3 Please note, that in our approach the choreography defines the observable behavior and
the information exchange from a particular participant viewpoint as opposed to the global
view adopted by the Web Service Choreography Description Language (WS-CDL) http:
//www.w3.org/TR/ws-cdl-10/

4 In fact the logic L corresponds to the WSML-Flight variant (extended with non-recursive
function symbols) of the Web Service Modeling Language (WSML) [8] family of lan-
guages.

34 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

a set of all element declarations and type definitions of S, and {o}N as a set of all
operations of N . Each operation o ∈ {o}N may have one input message element
m ∈ {x}S and one output message element n ∈ {x}S .

There are two types of grounding used for information and behavioral semantics.
The first type of grounding specifies references between input/output symbols of a
choreography X = (Σ,L) and input/output messages of respective WSDL opera-
tions {o}N with schema S. We define this grounding as

ref (c,m) (3.3)

where m ∈ {x}S , c ∈ Σ and ref is a binary relation between m and c. Further, m
is the input message of operations in {o}N if c ∈ ΣI or m is the output message of
operations in {o}N if c ∈ ΣO.

The second type of grounding specifies transformations of data from schema S to
ontology O = (C,R,E, I) called lifting and vice-versa called lowering. We define
this grounding as

lower(c1) = m and lift(n) = c2, (3.4)

where m,n ∈ {x}S , c1, c2 ∈ (C ∪ R), lower is a lowering transformation function
transforming the semantic description c1 to the message m, and lift is a lifting trans-
formation function transforming the message n to the semantic description c2. Please
note that both definitions in Eq. 3.3 and Eq. 3.4 are associated either with WSDL
or semantic descriptions. For example, [5] defines the grounding associated with
WSMO semantic service model and [14] describes the grounding associated with
WSDL descriptions using the Semantic Annotations for WSDL and XML Schema
(SAWSDL) specifications [6].

Both types of grounding definitions are used when processing the choreogra-
phy rules and performing the communication with the service (see Section 10.1.1)
while following the underlying definition of WSDL operations and their Message
Exchange Patterns (MEPs). Table 3.1 shows basic choreography rules for four basic
WSDL 2.0 MEPs5, (in-out, in-only, out-only, out-in) and corresponding WSDL op-
erations. In here, the symbols c1, . . . , c6 refer to identifiers of semantic descriptions
defined as part of input or output state signature ΣI or ΣO of some choreography
X (see Eq. 3.2), the symbols msg1, . . . , msg6 refer to some XML Schema ele-
ments used for input/output messages of operations, ref (c,m) denotes the existence
of grounding definition between a semantic description c and a message m (see Eq.
3.3), and w is the prefix for URI http://www.w3.org/ns/wsdl. Please note
that a complex rule may exist in the choreography covering more than one invocation
and thus combining multiple MEPs in one rule.

The add(c) construct is only a syntactic sugaring and it actually states that a
positive fact c is ”added” to the reasoning space.

5 http://www.w3.org/TR/wsdl20-adjuncts/#meps

3 Mediation using WSMO, WSML and WSMX 35

MEP and Rule WSDL Operation
in-out:
if c1 then add(c2)
c1 ∈ ΣI , ref (c1, msg1)
c2 ∈ ΣO , ref (c2, msg2)

<operation name="oper1" pattern="w:in-out">
<input messageLabel="In" element="msg1"/>
<output messageLabel="Out" element="msg2"/>

</operation>

in-only:
if c3 then no action
c3 ∈ ΣI , ref (c3, msg3)

<operation name="oper2" pattern="w:in-only">
<input messageLabel="In" element="msg3"/>

</operation>

out-only:
if true then add(c4)
c4 ∈ ΣO , ref (c4, msg4)

<operation name="oper3" pattern="w:out-only">
<output messageLabel="Out" element="msg4"/>

</operation>

out-in:
if true then add(c5)
if c5 ∧ c6 then no action
c5 ∈ ΣO , ref (c5, msg5)
c6 ∈ ΣI , ref (c6, msg6)

<operation name="oper4" pattern="w:out-in">
<output messageLabel="Out" element="msg5"/>
<inpput messageLabel="In" element="msg6"/>

</operation>

Table 3.1. MEPs, Rules and WSDL operations

Data Mediation

When the information semantics of the two services is different, i.e. different ontolo-
gies are used, the communication cannot take place and the data mediation needs
to be performed. The data mediation transforms every incoming message from the
terms of the sender’s information semantics (the source) into the terms of the re-
ceiver’s information semantics (the target).

The agent performing data mediation has to automatically perform the transfor-
mation of the exchanged messages. Since the interoperability problems can greatly
vary in their nature and severity, automatic solution for the detection and solving of
data mismatches are not feasible in a business scenario due to the lower-than-100%
precision and recall of the existing methods6. As a consequence, alignments between
heterogenous ontologies have to be created at design-time and used by the data me-
diation engine at run-time.

An alignment consists of a set of mappings expressing the semantic relationships
that exist between the two ontologies. Technically, the mappings are expressed as
rules which concretely specify the semantics of mappings present in alignments. In
particular, a mapping can specify that classes from two ontologies are equivalent
while corresponding rules use logical expressions to unambiguously define how the
data encapsulated in an instance of one class can be encapsulated in instances of the
second class. Formally, we define an alignment A between two ontologies Os =
(Cs, Rs, Es, Is) and Ot = (Ct, Rt, Et, It) as

As,t = (Os, Ot, Φs,t) (3.5)

6 The ”Ontology Alignment Evaluation Initiative 2006” [7] shows that the best five systems’
scores vary between 61% and 81% for precision and between 65% and 71% for recall.

36 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

where Φs,t is the set of mappings m of the form

m =< εs, εt, γεs
, γεt

> (3.6)

where εs, εt represent the mapped entities from the two ontologies while γεs , γεt

represent restrictions (i.e. conditions) on these entities such as εs ∈ Cs ∪ Rs, εt ∈
Ct ∪ Rt while γεs

and γεt
are expressions in L(Cs ∪ Rs ∪ Es) and L(Ct ∪ Rt ∪

Et), respectively. Intuitively, the conditions are set on schema elements and as a
consequence, they will apply to all the exchange data (i.e. ontology instances) that
comply with these schemas.

Please note, that in order to execute the mappings, they need to be grounded
to executable rules expressed in a logical language for which a reasoning support
is available. Using this grounding, the reasoner becomes the execution engine of
these rules. We implement this grounding using the WSML language. Consequently,
the set of rules ρs,t = ΦG

s,t is obtained by applying the grounding G to the set of
mappings Φ. Every mapping rule mr ∈ ρs,t has the following form:

mr :
{x}∧

i=1..n

mrhead
i ←

{x}∧
i=1..n

mrbody
i (3.7)

where

mrhead ∈ {x′ instanceOf ε | ε ∈ Ct and x′ ∈ {x}} ∪ (3.8)
{ε(x′, x′′) | ε ∈ Rt and ε(x′, x′′) ∈ Et and x′, x′′ ∈ {x}}

mrbody ∈ {x′ instanceOf ε | ε ∈ Cs and x′ ∈ {x}} ∪ (3.9)
{ε(x′, x′′) | ε ∈ Rs and ε(x′, x′′) ∈ Es and x′, x′′ ∈ {x}} ∪
{γs | γs ∈ L(Cs ∪Rs ∪ Es ∪ {x})} ∪
{γt | γt ∈ L(Ct ∪Rt ∪ Et ∪ {x})}

In the above definitions, {x} stands for the set of variable used by the mapping
rule and x′ and x′′ are two particular variables.

A mapping rule is formed of a head and a body and it is, as in the case of the
transition rules, a Horn formula. The head is a conjunction of logical expressions
over the target elements and it constructs the instances of the target ontology which
represent the result of the mediation. Please note that by allowing the instantiations
of both concepts and relations (ε ∈ Ct or ε ∈ Rt), the mediator can construct all
complex relationships that can appear between the concepts in the target ontology.
For example, using such mapping rules it is possible to construct instances of the
concepts Person and Address linked by the hasAddress relation.

The body is formed of a set of logical expressions over the source entities which
represent the data to be mediated, plus (if necessary) a set of logical expressions
representing conditions over both the source and the target data.

3 Mediation using WSMO, WSML and WSMX 37

It is important to mention that the variables are used in such a way to assure that
there are no unsafe rules generated (i.e. in the head there are no variables that do not
appear in the body). This is achieved by the grounding mechanism, which always
(automatically) generates safe rules based on the given set of mappings. In Section
3.3.3 we show examples of mapping rules in WSML.

Process Mediation

Process Mediation handles the interoperability issues which occur in descriptions of
choreographies of the two services. In [8], Cimpian defines five process mediation
patterns:

a. Stopping an unexpected message: when one service sends a message which is
not expected by the other service, the mediator stops the message.

b. Inversing the order of messages: when one service sends messages in a differ-
ent order than the the other service expects them to receive, the mediator ensures
that messages are supplied in proper order.

c. Splitting a message: when a service sends a message which the other service
expects to receive in multiple different messages, the mediator splits the message
and ensures that all messages are supplied to the service.

d. Combining messages: when a service expects to receive a message which is sent
by the other service in multiple different messages, the mediator combines those
messages and ensures that the combined message is supplied to the service.

e. Generating a message: when one service expects to receive a message which is
not supplied by the other service, mediator generates the message and supplies
the message to the service.

The patterns are implemented using an algorithm by processing both choreographies,
i.e. evaluating choreography rules and the information semantics of both services. In
sections 10.1.1 and 3.2.3 we show how the algorithm fulfils the patterns (a) – (d). In
order to fulfill the pattern (e), the algorithm should be aware of the intention of the
messages. For example, if the algorithm is able to distinguish control interactions
(e.g. acknowledgements) among all the interactions happening between both ser-
vices, it could generate an acknowledgment message (assuming the algorithm would
be able to assess that a message to be acknowledged was successfully received by the
other service). Since we do not give semantics to message interactions, we currently
do not address the pattern (e) in our work.

3.2.2 Algorithm

The algorithm for the execution model manages the conversation between two ser-
vices with applied data and process mediation. Each such a service contains descrip-
tion of information and behavioral semantics, WSDL definition and the grounding
according to the definitions in the previous section. These services are usually sup-
plied as a result from the late-binding phase. The Figure 3.1 depicts the main steps

38 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

Fig. 3.1. Control State Diagram for the Execution Model

of the execution phase. The algorithm requires inputs and uses internal structures as
follows:

Input:
• ServiceW1 and serviceW2. Each such a serviceW contains the ontology (infor-

mation semantics) W.O (Eq. 3.1), the choreography W.X (Eq. 3.2) with set of
rules W.X.L, WSDL description and grounding (Eq. 3.3, 3.4). In addition, for a
rule r ∈ W.X.L, the condition rcond is a logical expression with set of seman-
tic descriptions {c}, and the effect reff is a logical expression with set of actions
{a}. For each element awe denote its action name as a.action with values delete
or add and a semantic description as a.c.

• Mappings Φ between W1.O and W2.O.

Uses:
• Symbols M1 and M2 corresponding to the processing memory of the chore-

ography W1.X and W2.X respectively (a memory M is a populated ontology
W.O with instance data). The content of each memory M determines at some
point in time a state in which a choreography W.X is. In addition, each memory
has methods M.add and M.remove allowing to add or remove data to/from M
and a flag M.modified indicating whether the memory was modified. The flag
M.modified is set to true whenever the method M.add or M.remove is used.

• Symbols D1 and D2 corresponding to the set of data to be added to the memory
M1 and M2 after the choreography is processed. Each D has a method D.add
for adding new data to the set.

• A symbol A corresponding to all actions to be executed while processing the
choreography. Each element of A has the same definition as the element of the
rule effect reff . A has methods A.add and A.remove for adding and removing
actions to/from the set.

3 Mediation using WSMO, WSML and WSMX 39

• A symbol o corresponding to a WSDL operation of a service and symbols m, n
corresponding to some XML data of the message (input or output) of the opera-
tion o.

States 1, 2, 7: Initialize, Control, End
1: M1 ← ∅; M2 ← ∅
2: repeat
3: M1.modified ← false; M2.modified ← false
4: D1 ← processChoreography(W1,M1)
5: D2 ← processChoreography(W2,M2)
6: if D1 6= ∅ then
7: Dm ← mediateData(D1,W1.O,W2.O, Φ)
8: M1.add(D1); M2.add(Dm)
9: end if

10: if D2 6= ∅ then
11: Dm ← mediateData(D2,W2.O,W1.O)
12: M1.add(Dm); M2.add(D2)
13: end if
14: until not M1.modified and not M2.modified

After the initialization of the processing memory M1 and M2 (line 1), the execution
gets to the control state when the whole process is managed. It can process chore-
ographies (state 3), mediate the data (state 6) or end the execution (state 7). The
execution ends when no modifications of the processing memories M1 or M2 has
occurred.

State 3: D = processChoreography(W ,M)
1: A← ∅; D ← ∅
2: {Performing rule’s conditions and sending data}
3: for all r in W.X.L : holds(rcond ,M) do
4: A.add(reff)
5: for all c in rcond : c ∈W.X.ΣI do
6: send(c,W)
7: end for
8: end for

9: {Performing delete actions}
10: for all a in A : a.action = delete do
11: M.remove(a.c)
12: A.remove(a)
13: end for

14: {Receiving data and performing add actions}
15: while A 6= ∅ do
16: c← receive(W)
17: if c 6= null then
18: for all a in A: (a.action = add and a.c = c) do

40 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

19: D.add(c)
20: A.remove(a)
21: end for
22: end if
23: end while

24: return D
The algorithm evaluates the conditions of each rule in the choreography and if

its conditions hold the effect is processed, i.e. the algorithm collects all data to be
added to the memory or removes existing data from the memory. The whole process
is divided into three major steps as follows.

• Performing rule’s conditions and sending data (lines 2-8): each rule’s condi-
tions are evaluated and if they satisfy the content of the memory the rule’s effect
is added to the set of effects A (line 4). Then, for each input symbol of the rule’s
condition (line 5), the algorithm sends the data to the service (line 6, see State 4).

• Performing delete actions (lines 9-13): all effects with delete action are per-
formed, the data of the effect is removed from the memory (line 11) while such
effects are removed from A (line 12).

• Receiving data and performing add actions (lines 14-24): When there are ef-
fects to be processed in A and the new data is received from the service (line 16),
it is checked if the new data corresponds to some of the add effect from A. In
this case, the data is added to the set D (line 19) and the effect is removed from
A (line 20).

The result of the algorithm is the set D containing all new data to be added to the
memory M . The actual modification of the memory M with the new data is per-
formed in State 2. The algorithm assumes that definition of the choreography rules
are consistent with WSDL operations and their MEPs while at the same time no fail-
ures occur in services. In lines 14-23 the algorithm waits for every message to be
received from the service for every add action of the rule’s effect. If the definition
of the rules was not consistent with WSDL description, the algorithm would either
ignore the received message which could in turn affect the correct processing of the
choreography (in case of missing add action) or wait infinitely (in case of extra add
action or a failure in a service). For the latter, the simplest solution would be to intro-
duce a timeout in the loop (lines 14-23), however, we do not currently handle these
issues in the algorithm. They will be the subject of our future work.

State 4: send(c,W)
1: m← lower(c)
2: for all o of which m is the input message do
3: send m to W
4: end for

In order to send the data c the algorithm first retrieves a corresponding message
definition according to the grounding and transforms c to the message m using the

3 Mediation using WSMO, WSML and WSMX 41

lowering transformation function (line 1). Then, through each operation of which the
message m is the input message, the algorithm sends the m to the service W .

State 5: c = receive(W)
1: if receive m from W then
2: c← lift(m)
3: return c
4: else
5: return null
6: end if

When there is a new data from the service W , the data (message m in XML) is
lifted to the semantic representation using lifting transformation function associated
with the message (line 2), and the result is returned. In the opposite case, the null is
returned.

State 6: cm = mediateData(c,Os, Ot, Φ)
1: ε← getTypeOf (c)
2: εm ← null
3: for all m =< εs, εt, γεs

, γεt
>∈ Φ where ε = εs do

4: if isMoreGeneral(εt, εm) then
5: εm ← εt

6: end if
7: ρ← ρ ∪ {mG}
8: end for
9: if εm = null then

10: return null
11: end if
12: cm ← getDataForType(εm, ρ)
13: return cm

The first step in the mediation process is to determine the type of the data to
be mediated. If this data is a concept instance the algorithm determines its concept.
After that, the set of mappings is navigated in order to determine the type of the
target, mediated data. Since there could be more mappings from a given source entity
to the several other target entities, it is necessary to determine the most general entity
to mediate the source data to. Also while traversing the set of mappings, each of them
is grounded to WSML and transformed in a set of logical mapping rules. Finally, by
using a reasoner engine all the data of the selected target type is retrieved based on
the source data and the set of mapping rules.

From the implementation point of view, several optimizations could be applied
to this algorithm. First, the mappings rules could be cached in order to avoid their
regeneration every time when a new request for data mediation is coming. Second
only the mappings and mapping rules that refer to the input source data could be
processed in order to reduce the volume of rules that need to be evaluated.

42 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

3.2.3 Discussion on Data and Process Mediation

The data mediation ensures that all new data coming from one service is translated
to the other’s service ontology. Thus, no matter from where the data originates the
data is always ready to use for both services. From the process mediation point view,
the data mediation also handles the splitting of messages (pattern c) and combining
the messages (pattern d). Since the mediated data is always added to both memories
(see State 2, lines 8, 12 and the next paragraph for additional discussion) the patterns
a) and b) are handled automatically through processing of the choreography rules. In
particular, the fact that a message will be stopped (pattern a) means that the message
will never be used by the choreography because no rule will use it (the message
remains in the memory until the end of the algorithm). In addition, the order of
messages will be inverted (pattern b) as defined by the choreography rules and the
order of ASM states in which conditions of rules hold. This means that the algorithm
automatically handles the process mediation with help of data mediation through
rich description of choreographies when no central workflow is necessary for that
purpose.

In our algorithm we always add all the data to both choreographies and not only
the data which could be of potential use, i.e. the data could be used when evaluating a
rule’s condition. However, since we use the language which allows for the intentional
definitions (axioms) which are part of the information semantics and the memory,
the data might affect the evaluation of the rule indirectly through such axioms. The
evaluation of the potential use of data would thus require a logical reasoning and
would influence the scalability and the processing time. On the other hand, we do
not expect a significant overhead when storing such additional data, however, we
leave the evaluation for the future work.

3.3 Implementation

We have implemented the execution model as part of the established Semantic Web
Services framework which includes the Web Service Modeling Ontology (WSMO),
the Web Service Modeling Language (WSML) and the Web Service Execution En-
vironment (WSMX). Building upon this framework we then show how the execution
model solves the SWS Challenge mediation scenario. In this section we describe the
details of the solution architecture together with modeling of necessary services, and
ontologies and run through the execution.

3.3.1 WSMO, WSML, and WSMX

WSMO provides a conceptual model and a language for semantic markup describing
all relevant aspects of general services which are accessible through a Web service
interface. The ultimate goal of such markup is to enable the (total or partial) automa-
tion of tasks (e.g. discovery, selection, composition, mediation, execution, monitor-
ing, etc.) involved in both intra- and inter-enterprise integration settings. WSMO

3 Mediation using WSMO, WSML and WSMX 43

defines the underlying model for the WSMX Semantic Web services architecture
and execution environment and provides the conceptual model formalised by the
Web Service Modeling Language (WSML)[8] family of ontology languages, used to
formally describe WSMO elements.

WSMO defines the conceptual model for ontologies, mediators, services and
goals. Please note, that while WSMO defines WSMO Goal for representation of
a service requester and WSMO Service for representation of a service provider, both
elements have the same structural definition (both include the description of their
ontologies and behavioral models). For purposes of service execution operating on
ontologies and choreographies, the distinction between the WSMO Goal and the
WSMO Service is not important. In addition, the WSMO Goal as well as WSMO
service defines a functional description in a form of a capability as conditions which
must hold before the execution (called preconditions and assumptions) and condi-
tions which must hold after the execution (called postconditions and effects). In this
chapter we do not use them either.

The Web Service Execution Environment (WSMX) is an execution environment
that enables discovery, selection, mediation, invocation, and interoperation of Se-
mantic Web services [9, 3]. WSMX is based on the conceptual model provided by
WSMO, being at the same time a reference implementation of it. It is the scope of
WSMX to provide a test-bed for WSMO and to prove its viability as a mean of
achieving dynamic interoperability of Semantic Web services.

For purposes of this chapter we use the WSMO ontology to model the informa-
tion semantics of the service, and the choreography interface definition of WSMO
Service/Goal to model the behavioral semantics of services. In addition, we adopt
the concept of WSMO mediators for the data and process mediation. For purposes of
describing ontologies, choreographies and mediators, we use the WSML language.

3.3.2 Solution Architecture

The SWS Challenge mediation scenario describes a situation where two companies
aim to build an automated B2B integration. A trading company, called Moon, uses
a Customer Relationship Management system (CRM) and an Order Management
system (OMS) to manage its order processing. Moon has signed agreements to ex-
change Purchase Order (PO) messages with a company called Blue using the Roset-
taNet standard for PO exchange (PIP3A4). In this scenario, Blue sends a PIP3A4
PO message, including all items to be ordered, and expects to receive a PIP3A4 PO
confirmation message. In Moon, various interactions with the CRM and OMS sys-
tems must be performed in order to process the order, i.e. get the internal ID for
the customer from the CRM system, create the order in the OMS system, add line
items into the order, close the order, and send back the PO confirmation. In order for
integration to be possible, both Moon and Blue must comply on three interoperabil-
ity levels - communication, message and process. We focus on the two latter as in
the scenario both companies communicate via SOAP over HTTP. For the message
level both partners need to understand the exchanged messages including both the
message structure and the semantics of its content. The Blue uses PIP3A4 to define

44 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

the PO request and confirmation messages, however, the Moon uses a proprietary
XML Schema for its OMS and CRM systems. On the process level, the exchange of
messages in the right order is an essential requirement for partner integration. The
Blue company conforms to the PIP3A4 process while Moon follows its own internal
business process.

Fig. 3.2. Solution Architecture

Figure 3.2 depicts the solution architecture for the scenario. It includes the ex-
isting systems of the Moons back-end applications, i.e. CRM and OMS systems on
one side and the Blue’s RosettaNet system on the other. The integration of both com-
panies is built in the WSMX middleware which operates on the WSMO semantic
descriptions. Thus, both companies must expose their system functionalities to the
WSMX middleware using the WSMO ontology for their information models and the
WSMO service/goal choreography for their behavioral models together with ground-
ing definitions. In the next section, section 3.3.3, we further show how we model
these descriptions.

3.3.3 Modeling of Ontologies and Services

The back-end systems already have their interfaces available in WSDL. The goal of
the modeling phase is to represent them semantically and define their grounding.

Ontologies and Grounding

Ontologies describe information models used in semantic service descriptions. In our
scenario, we assume that both Blue and Moon use independent ontologies i.e. differ-

3 Mediation using WSMO, WSML and WSMX 45

ent ontologies for RosettaNet and CRM/OMS systems7. The message level interop-
erability must be thus reached through mappings between used ontologies which are
defined during design-time and executed during runtime.

We assume that all ontologies are not available up-front, thus, we take the ex-
isting standards and systems as a basis (i.e. RosettaNet PIP 3A4 and CRM/OMS
schemas) and, using the Web Service Modeling Toolkit (WSMT), we create PIP3A4
and CRM/OMS ontologies. WSMT [10] is an Integrated Development Environment
(IDE) for Ontology Engineering, Semantic Web Service engineering and Mapping
engineering implemented in the Eclipse framework. It aims to support the developer
through the full development cycle of Ontologies, Semantic Web Services, and On-
tology Mappings through the WSMO paradigm, in order to improve the productivity
of the developer and to ensure the quality of the artefacts produced.

During this process we describe the information semantically, i.e. with richer ex-
pressivity as opposed to that of the underlying XML schema. When both ontologies
are available, we define the mapping between these ontologies, again using WSMT.
For example, in listing 8.2, the mapping of searchString concept of the CRM/OMS
ontology to concept customerId of the PIP3A4 ontology is shown. The construct
mediated(X,C) represents the identifier of the newly created target instance, where
X is the source instance that is transformed, and C is the target concept we map to
[8]. Such format of mapping rules is generated from the ontology mapping process
by the WSMT ontology mapping tool.

axiom aaMappingRule23
definedBy

mediated(?X21, SearchCustomerReq)[searchString hasValue ?Y22] memberOf o1#
SearchCustomerReq

:− ?X21[businessName hasValue ?Y22] memberOf o2#BusinessDescription.

Listing 3.1. Mapping Rules in WSML

In addition, we capture a logic of getting from the XML schema level to the semantic
level and vice-versa by lifting and lowering transformations.

1 /∗ Lifting rules from XML message to WSML ∗/
2 instance PurchaseOrderUID memberOf por#purchaseOrder
3 por#globalPurchaseOrderTypeCode hasValue ”<xsl:value−of select=”dict:

GlobalPurchaseOrderTypeCode”/>”
4 por#isDropShip hasValue IsDropShipPo
5 <xsl:for−each select=”po:ProductLineItem”>
6 por#productLineItem hasValue ProductLineItem<xsl:value−of select=”position()”/>
7 </xsl:for−each>
8 <xsl:for−each select=”core:requestedEvent”>
9 por#requestedEvent hasValue RequestedEventPo

10 </xsl:for−each>
11 <xsl:for−each select=”core:shipTo”>
12 por#shipTo hasValue ShipToPo
13 </xsl:for−each>
14 <xsl:for−each select=”core:totalAmount”>
15 por#totalAmount hasValue TotalAmountPo
16 </xsl:for−each>

7 Another approach would be to use one domain ontology maintained by Moon, however, we
want to show WSMO mediators and ontology to ontology mapping within the execution
phase.

46 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

17

18 /∗ message in WSML after transformation ∗/
19 instance PurchaseOrderUID memberOf por#purchaseOrder
20 por#globalPurchaseOrderTypeCode hasValue ”Packaged product”
21 por#isDropShip hasValue IsDropShipPo
22 por#productLineItem hasValue ProductLineItem1
23 por#productLineItem hasValue ProductLineItem2
24 por#requestedEvent hasValue RequestedEventPo
25 por#shipTo hasValue ShipToPo
26 por#totalAmount hasValue TotalAmountPo

Listing 3.2. Lifting from XML to WSML

Listing 3.2 shows an example extract of lifting transformation in XSLT (lines 1-16)
and the result WSML instance of a RosettaNet message (lines 18-26). Such ground-
ing is identified by an URI which is specified in the lifting/lowering non-functional
property of the service (not shown in the example). In a reality, modeling of ontolo-
gies, creating the mapping rules and the transformation rules must be performed by
a domain expert who poses the knowledge from the B2B domain, related standards
as well as relevant skills from ontology engineering.

Choreography and Grounding

In line with Eq. 3.2, the WSMO service choreography contains the definition of
the input, output and shared symbols (called state signature or vocabulary) and a
set of rules. Using these rules we model the choreography of both RosettaNet and
CRM/OMS services separately and for each define the order in which the operations
should be correctly invoked. Listing 8.1 shows a fragment of the choreography for
the CRM/OMS service. The choreography is part of the semantic descriptions of the
service (see WSMO specifications [7] for more details) and it can be developed by
a domain expert either manually or semi-automatically, in a tool assisted manner.
Even if we are not aware of any existing work concerning automatic generation of
choreographies (from WSDL descriptions for example), we envisioned that such an
approach might yield good results for simple message exchange patterns but it will
always require the support of the human user for more complicated scenarios.

There are two rules defined listing 8.1. The first rule (lines 18-23) defines that
the SearchCustomerReq will be sent to the service and on result the SearchCustomer-
Resp will be expected as the output message. The SearchCustomerReq message must
be available in the memory (in our case the data for the message will be provided by
the Blue RosettaNet after the mediation). The second rule (lines 25-31) defines that
the SearchCustomerResp must be available in the memory while its customerId will
be used for the customerId of the CreateNewOrderReq which will be sent to the ser-
vice. On result, the CreateNewOrderResp will be expected to be received back. The
data for the CreateNewOrderReq will be again supplied by the Blue RosettaNet af-
ter the mediation. All the messages used in the choreography as the input or output
symbols refer to the definition of concepts in the ontology imported in line 4 while
at the same time the mapping of those symbols to the underlying WSDL messages
is defined in lines 6-15.

3 Mediation using WSMO, WSML and WSMX 47

1 choreography MoonWSChoreography
2 stateSignature ”http://example.com/ontologies/MoonWS#statesignature”
3 importsOntology { ”http://example.com/wsml/Moon” }
4 // input symbols
5 in moon#SearchCustomerReq
6 withGrounding { ”http://example.com/MoonCRM#wsdl.interfaceMessageReference(search/in0)”}
7 moon#CreateNewOrderReq
8 withGrounding { ”http://example.com/MoonOMS#wsdl.interfaceMessageReference(openorder/

in0)”}
9

10 // output symbols
11 out moon#SearchCustomerResp
12 withGrounding { ”http://example.com/MoonCRM#wsdl.interfaceMessageReference(search/out0

)”}
13 moon#CreateNewOrderResp
14 withGrounding { ”http://example.com/MoonOMS#wsdl.interfaceMessageReference(openorder/

out0)”}
15 ...
16 transitionRules ”http://example.com/ontologies/MoonWS#transitionRules”
17 // rule 1: search the customer in CRM
18 forall {?customerReq} with (
19 ?customerReq memberOf moon#SearchCustomerReq
20) do
21 add(# memberOf moon#SearchCustomerResp)
22 endForall
23

24 // rule 2: open the order in OMS
25 forall {?orderReq, ?customerResp} with (
26 ?customerResp[customerId hasValue ?id] memberOf moon#SearchCustomerResp and
27 ?orderReq[customerId hasValue ?id] memberOf moon#CreateNewOrderReq
28) do
29 add(# memberOf moon#CreateNewOrderResp)
30 endForall

Listing 3.3. Moon CRM/OMS Choreography

3.4 Evaluation

Our implementation has been evaluated, by peer-review, according to the criteria de-
fined by the SWS Challenge. The evaluation criteria targets the adaptivity of the solu-
tions – solutions should handle introduced changes by modification of declarative de-
scriptions rather than code-changes. Success level 0 indicates a minimal satisfiability
level, where messages between middleware and back-end systems are properly ex-
changed. Success level 1 is assigned when changes introduced in the scenario require
code changes and recompilation. Success level 2 indicates that introduced changes
did not entail any code modifications and only declarative parts had to be changed.
Finally, success level 3 is assigned when the system is able to automatically adapt
to new conditions. In the data mediation scenario we had to make some changes to
the code to overcome limitations of the existing data mediation tool (success level
1). For process mediation, we only needed to change the description of the service
interfaces (choreographies) according to the changes in back-end systems (success
level 2).

48 Tomas Vitvar, Maciej Zaremba, Matthew Moran, and Adrian Mocan

3.5 Related Work

The most relevant related work is among other submissions addressing the SWS-
Challenge mediation scenario, namely WebML [?] and dynamic process binding for
BPEL[13]. They are based on software engineering methods with strong emphasis
on graphical modelling of integration process as a central point of integration. How-
ever, they do not use logical languages in their data model while they are limitted
to expressivity of UML Class Diagrams. On the other hand, WSML comes with
powerful rule and F-logic support which caters for reasoning tasks of varying com-
plexity. In addition, Preist et al [14] presented a solution covering all phases of a
B2B integration life-cycle, starting from discovering potential partners to perform-
ing integrations including mediations. They also address the lifting and lowering of
RosettaNet XML messages to ontologies but provide no details for mediation on the
ontological level. Their solutions is rather conceptual with missing details about the
actual components and algorithms used. Other, more general SWS related work, in-
clude IRS-III[15] which is an execution environment also based on WSMO as the
underlying conceptual model. Both WSMX and IRS-III have common roots in the
UPML framework of [16].

3.6 Conclusion and Future Work

One of the main advantages of our approach is the strong partner de-coupling. This
means that when changes occur in back-end systems of one partner, consequent
changes in service descriptions does not affect changes in the integration. The in-
tegration automatically adapts to the changes in service descriptions as there is no
central integration workflow (see the next paragraph for additional comment). On the
other hand, changes in back-end system still require manual effort in making changes
in semantic descriptions such as ontologies and mapping rules. Although our SWS
technology allows for semi-automated approaches in modelling and mapping defini-
tions, it is still a human user who must adjust and approve the results.

It is important to note, however, that this type of integration where no central
workflow is necessary is only usable in situations when two public processes (ASM
choreographies) are compatible, that is, they may have different order/structure of
messages but by adjusting the order/structure the integration is possible. In general,
there could be cases where third-party data need to be obtained (e.g. from external
databases) for some interactions. Although some of the tihrd-party data can be gath-
ered through the transformation functions of the mapping rules, in some cases, an
external workflow could be required to accommodate the integration process. It is
our open research work to further investigate such cases in detail.

References

1. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian,
E., Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture: Con-

3 Mediation using WSMO, WSML and WSMX 49

cepts, technology and application. In Service Oriented Computing and Applications,
Springer London 1(2) (2007)

2. Vitvar, T., Kopecky, J., Fensel, D.: WSMO-Lite: Lightweight Semantic Descriptions for
Services on the Web. In: ECOWS. (2007)

3. Lloyd, J.W.: Foundations of Logic Programming (2nd edition). Springer-Verlag (1987)
4. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description Log-

ics. In: Proceedings of the 6th International Conference on Logic for Programming and
Automated Reasoning (LPAR-1999). Number 1705, Springer-Verlag (1999) 161–180

5. Kopecký, J., Roman, D., Moran, M., Fensel, D.: Semantic Web Services Grounding. In:
AICT/ICIW. (2006) 127

6. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for wsdl
and xml schema. IEEE Internet Computing 11(6) (2007)

7. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V., van Hage,
W.R., Yatskevich, M.: Results of the Ontology Alignment Evaluation Initiative 2006. In:
Proceeding of International Workshop on Ontology Matching (OM-2006). Volume 225.,
Athens, Georgia, USA, CEUR Workshop Proceedings (2006) 73–95

8. Cimpian, E., Mocan, A.: Wsmx process mediation based on choreographies. In: Business
Process Management Workshops. (2005) 130–143

9. Mocan, A., Moran, M., Cimpian, E., Zaremba, M.: Filling the Gap - Extending Service
Oriented Architectures with Semantics. In: ICEBE, IEEE Computer Society (2006) 594–
601

10. Kerrigan, M., Mocan, A., Tanler, M., Fensel, D.: The Web Service Modeling Toolkit -
An Integrated Development Environment for Semantic Web Services. In: Proceedings of
the 4th European Semantic Web Conference (ESWC-2007), System Description Track,
Innsbruck, Austria, Springer-Verlag (2007)

11. Mocan, A., Cimpian, E., Kerrigan, M.: Formal model for ontology mapping creation. In:
International Semantic Web Conference. (2006) 459–472

12. Roman, D., Scicluna, J.: Ontology-based Choreography of WSMO Services. Wsmo final
draft v0.3, DERI (2006) Available at: http://www.wsmo.org/TR/d14/v0.3/.

13. Kuster, U., Konig-Ries, B.: Dynamic binding for bpel processes - a lightweight approach
to integrate semantics into web services. In: Second International Workshop on Engineer-
ing Service-Oriented Applications: Design and Composition (WESOA06) at 4th Interna-
tional Conference on Service Oriented Computing (ICSOC06), Chicago, Illinois, USA
(2006) 00–00

14. Preist, C., Cuadrado, J.E., Battle, S., Williams, S., Grimm, S.: Automated Business-to-
Business Integration of a Logistics Supply Chain using Semantic Web Services Technol-
ogy. In: Proc. of 4th Int. Semantic Web Conference. (2005)

15. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II A Framework and Infrastructure
for Semantic Web Services. The Semantic Web ISWC 2003. Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg 2870 (2003) 306–318

16. Fensel, D., Benjamins, V., Motta, E., Wielinga, B.: UPML: A Framework for knowledge
system reuse. In: Proceedings of the International Joint Conference on AI (IJCAI-99),
Stockholm, Sweden (1999)

4

A Software Engineering Approach based on WebML
and BPMN to the Mediation Scenario of the SWS
Challenge

Marco Brambilla1, Stefano Ceri1, Emanuele Della Valle2,
Federico M. Facca1, Christina Tziviskou1

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, I-20133 Milano, Italy

2 CEFRIEL
Via Fucini 2, I-20133 Milano, Italy

Summary. Although Semantic Web Services are expected to produce a revolution in the de-
velopment of Web-based systems, very few enterprise-wide design experiences are available;
one of the main reasons is the lack of sound Software Engineering methods and tools for the
deployment of Semantic Web applications. In this chapter, we present an approach to software
development for the Semantic Web based on classical Software Engineering methods (i.e.,
formal business process development, computer-aided and component-based software design,
and automatic code generation) and on semantic methods and tools (i.e., ontology engineering,
semantic service annotation and discovery).

4.1 Introduction

The Semantic Web promotes the vision of an extended Web of machine- understand-
able information and automated services that allows knowledge technologies to reach
Web-scale. The explicit representation of the semantics of the data and of the services
will enable a new Web that provides a qualitatively new level of service. Automated
services will improve in their capacity to assist humans in achieving their goals by
understanding more of the content on the Web, and thus providing accurate filtering,
categorization, and searches of information sources. Recent efforts around UDDI,
WSDL, and SOAP are concentrating on making the Web more service-centric, allow-
ing for on-the-fly software composition through the use of loosely coupled, reusable
software components. However, more work needs to be done before the Web Ser-
vice infrastructure can support the Semantic Web vision. Semantic Web Services
(SWS) address the automation of discovery of services of interest; mediation of data
exchanged between the different services; and mediation of processes performing
service-enabled tasks.

The emerging field of Semantic Web Services provides paradigms based on pro-
gram annotation and self-descriptive implementation, to build cross-enterprise ap-

52 M. Brambilla, S. Ceri et al

plications which favour flexibility, automatic resource discovery, and dynamic evo-
lution.

One of the main problems faced by developers to adopt Semantic Web tech-
nologies is the lack of methodological guidelines for the development and the extra
cost of semantic annotation of the developed software components. This is mostly
because software engineering techniques are seldom used in the context of Seman-
tic Web; hence, no automatic mechanism can be applied for extracting semantic
descriptions. Therefore, annotations are still added manually, in a very expensive
and subjective manner. In our solution to the Semantic Web Service Challenge, we
propose both a method and a toolset for fostering the adoption of Semantic Web
Services (i.e., WSMO) in cross-enterprise applications. Two research groups, one
from the Web Engineering community from Politecnico and one from the Seman-
tic Web community from CEFRIEL, joined their efforts and expertise in building
a structured solution to the design and implementation of Semantic Web applica-
tions. The solution exploits Web engineering methods, including visual declarative
modeling (i.e., WebML), automatic code generation (locally and globally executable
through Semantic Execution Environments such as WSMX), and automatic elici-
tation of semantic descriptions (i.e., WSMO Ontologies, Goals, Web Services and
Mediators) from the design of the application. Global choreography (in W3C sense),
front-end, and services implementations are modeled from Business Process models
and WebML models, whereas goals, descriptions of Web services (i.e., capability and
choreography interface), and descriptions of mediators are automatically generated.
The approach also comprises the importing/ exporting of ontologies. The following
techniques and notations shall be used for covering the various design aspects:

• High-level design of the global choreography of the interaction between services:
we adopt BPMN (Business Process Management Notation) to build process mod-
els, involving several actors possibly from different enterprises.

• Design of the underlying data model of the cross-enterprise application: we use
extended E-R (Entity Relationship) diagrams or equivalent subset of object ori-
ented class diagrams (whose expressive power is equivalent to WSML Flight) to
model the local ontology of the application and to import existing ontologies; we
expose the resulting set of ontologies to the underling WSMX;

• Design of web services interfaces, of integration platform, and of application
front end: we use visual diagrams representing Web sites and services accord-
ing to the WebML models [4], including specific hypertext primitives for Web
service invocation and publishing [5], and explicit representation of workflows
[3].

In this way, instead of coping with textual semantic descriptions of Semantic
Web Services, application developers will obtain them from the use of abstractions
that are supported by software engineering tools. The use of description generators,
sometimes helped by designer’s annotations, guarantees the benefits of Semantic
Web Services at nearly zero extra-cost, thus positioning the implemented applica-
tions within an infrastructure that allows for exible and dynamic reconfiguration.

4 A Software Engineering Approach based on WebML and BPMN 53

The SWS challenge aimed at employing semantics-based technologies on a set
of problems represented by two scenarios, respectively covering mediation (both for
data and processes) and discovery (both static and dynamic). Semantics is clearly
needed to address in a flexible way the Discovery scenario, but Software Engineer-
ing tools and methods are the right ones to address in a flexible way the Mediation
scenario. For this reason we adopt an original mix of Semantic Web and Software En-
gineering techniques: WSMO [5] as Semantic Web Service approach, Glue [DCC05]
as Semantic Web Service discovery engine, WebML [4] as Web engineering model
for designing and developing semantically rich Web applications implementing Ser-
vice Oriented Architecture, and WebRatio [6] as WebML CASE tool3.

Our experience introduces a significant contribution in the application of Soft-
ware Engineering techniques to SemanticWeb application design. This chapter re-
ports about the cross-fertilization between the two fields. The chapter is organized
as follows: Section 2 presents the background technologies and method used in our
approach; Section 3 describes our solution to the mediation scenario of the SWS
challenge; Section 4 compares our approach to the related work; and finally, Section
5 summarizes and draws some conclusions on our experience.

4.2 Background technologies

In the following we provide the required background on the languages and tools used
for the challenge.

4.2.1 WSMO, WSML and WSMX

The WSMO initiative [5, 6] aims at providing a comprehensive framework for han-
dling Semantic Web Services which includes the WSMO conceptual model, the
WSML language [8] and the WSMX execution environment [9].

The Web Service Modeling Ontology (WSMO) is an ontology for describing
various aspects related to Semantic Web Services. WSMO defines four modeling
elements (ontologies, Web Services, goals and mediators) to describe several aspects
of Semantic Web Services, based on the conceptual grounding of the Web Service
Modeling Framework (WSMF) [10].

Ontologies provide the formal semantics to the information used by all other
components. They serve in defining the formal semantics of the information, and in
linking machine and human terminologies.

Web Services represent the functional and behavioral aspects, which must be se-
mantically described in order to allow semi-automated use. Each Web Service rep-
resents an atomic piece of functionality that can be reused to build more complex
ones. Web Services are described in WSMO from three different points of view:
non-functional properties, capabilities (describing functionalities), and interfaces

3 Online demos and further material is available at: http://www.webml.org/
sws-challenge.html.

54 M. Brambilla, S. Ceri et al

(describing the behavior). A Web Service can have multiple interfaces, but it has
one and only one capability.

Goals specify objectives that a client might have when consulting a Web Service.
In WSMO [6], a goal is characterized in a dual way with respect to Web Services:
goal’s descriptions include the requested capability and the requested interface.

Finally, mediators provide interoperability facilities among the other elements.
They aim at overcoming structural or semantic mismatches that appear between the
different components that build up a WSMO description. For instance, a ggMedia-
tor acts as a mediator between two goals, a wgMediator mediates between a Web
Service and a goal, and a wwMediator mediates between two Web Services with
mismatching interfaces.

Web Service Modeling Language (WSML) [8] offers a set of language variants
for describing WSMO elements that enable modelers to balance between expres-
siveness and tractability according to different knowledge representation paradigms.
The most basic, and least expressive, variant is WSML-Core. WSML Core is sepa-
rately extended in two different directions by the variants WSML-DL and WSML-
Flight, respectively. WSML-Flight is based on a logic programming variant of F-
Logic [KLW95]. Web Service Execution Environment (WSMX) is a framework for
the automation of discovery, selection, mediation, and invocation of Semantic Web
Services. WSMX is based on WSMO and, at the same time, it is a reference imple-
mentation of it.

4.2.2 BPMN

Visual workflow models allow to effectively represent business processes, describ-
ing enterprise-wide operations, interactions between business partners, and orches-
trations of Web services. Several notations have been proposed for workflow design.
We adopt Business Process Management Notation (http://bpmn.org), which is asso-
ciated to the BPML standard, issued by the OMG and the Business Process Man-
agement Initiative. The BPMN notation allows one to represent all the basic process
concepts defined by the WfMC (http://wfmc.org) model and others, such as data
and control flow, activity, actor, conditional/split/join gateways, event and exception
management, and others. BPMN activities can be grouped into pools, corresponding
to the different participants. BPMN can be used to formalize the orchestration of
the services performed by the mediator in a WSMO semantic Web context. Figure
4.7 shows a BPMN model of the interaction between the parties of the mediation
scenario. This model is a high level representation of the behaviour of the mediator.

4.2.3 WebML and WebRatio

WebML [4] is a high-level notation for data- and process- centric Web applications.
It allows specifying the conceptual modeling of Web applications built on top of a
data schema used to describe the application data, and composed of one or more
hypertexts used to publish the underlying data.

4 A Software Engineering Approach based on WebML and BPMN 55

Fig. 4.1. The E-R diagram for the data model used of the initial Mediator.

The WebML data model is the standard Entity-Relationship (E-R) model ex-
tended with an Object Query Language [13]. Figure 4.1, described in details in Sec-
tion 4.3.2, is an E-R representation of the data needed for the Challenge scenario. The
expressive power of the WebML E-R model can be compared to the WSML-Flight
language (the detailed comparison can be found in [14]).

Upon the same data model, it is possible to define different hypertexts (e.g., for
different types of users or for different publishing devices), called site views. A site
view is a graph of pages, allowing users from the corresponding group to perform
their specific activities. Pages consist of connected units, representing at a concep-
tual level atomic pieces of homogeneous information to be published: a unit displays
instances of an entity, possibly restricted by a selector. Units within a Web site are
related to each other through links, representing navigational paths and carrying data
from a unit to another, to allow the computation of the hypertext. WebML allows
specifying also update operations on the underlying data (e.g., the creation, modifi-
cation and deletion of instances of entities or relationships) or operations performing
other actions (e.g. sending an e-mail). In [3] the language has been extended with
operations supporting process specifications.

To describe Web Services interactions, WebML includes some Web Service
primitives [5]. Web Services operation symbols correspond to the WSDL classes
of Web Service operations: Request-response, Response, Solicit, and
One-way units can be used in WebML for describing Web Service interactions.

Request-response and One-way operations are triggered when the user
navigates one of their input links; from the context transferred by these links, a mes-

and Notification are instead triggered on the service-side by the reception of
a message. Indeed, these units represent the publishing of a Web Service, which is
exposed and can be invoked by third party applications. In the case of One-way, the

sage is composed, and then sent to a remote service as a request.Solicit-response

56 M. Brambilla, S. Ceri et al

Fig. 4.2. Example of WebML hypertext model with invocation of remote service - a

Fig. 4.3. Example of WebML hypertext model with invocation of remote service - b

WebML specification may dictate the way in which the response is built and sent to
the invoker. Moreover, Web Services publishing units cannot have output links lead-
ing to pages, because there is no user interaction involved in the response to the caller.
Another operation typically involved in Web Service interactions is the Adapter
unit, which is able to apply any kind of XSLT transformation to a XML document.
This unit is often used in conjunction with the XML-In unit or the XML-Out unit:
the first is used to import canonic XML data (formatted according a particular XSD)
into the database, the latter to extract database instances and convert them to the a
canonic XML format.

Figures 4.2 and 4.3 shows a hypertext example that includes the model of a Web
Service call and of the called service. Supply Area of Figure 4.2 is an area of a Web
site for supply management. The employee can browse the SupplySearch page, in
which the SearchProducts entry unit permits the input of search criteria. navigat-
ing the link outgoing the entry unit, a request message is composed and sent to the
RemoteSearch operation of a Web Service. The user then waits for the response mes-
sage, containing a list of products satisfying the search criteria. From these options,
a set of instances of Product are created, and displayed to the user by means of the
Products index unit in the Products page; the user may continue browsing, e.g., by
choosing one of the displayed products and looking at its details. Figure 4.3 rep-
resents the model of the RemoteSearch service invoked by the previously described
hypertext. The interaction starts with the SearchSolicit unit, which denotes the recep-
tion of the message. Upon the arrival of the message, an XML-out operation extracts
from the local data source the list of products and formats the resulting XML docu-
ment. The SearchResponse unit produces the response message for the invoking Web
Service.

4 A Software Engineering Approach based on WebML and BPMN 57

MODEL DRIVEN DESIGN

Business Requirements

PROCESS DESIGN

REQUIREMENTS SPECIFICATION

DATA DESIGN

HYPERTEXT DESIGN

TESTING & EVALUATION

ARCHITECTURE DESIGN

IMPLEMENTATION

MAINTENANCE & EVOLUTION

SEMANTIC DESCRIPTION

Existing Ontologies Existing Services and Goals

Fig. 4.4. Phases in the development process of semantic Web applications.

The WebML language is extensible, allowing for the definition of customized
operations and units. It has been implemented in the CASE tool WebRatio [6], a de-
velopment environment for the visual specification of Web applications and the auto-
matic generation of code for the J2EE platform. The design environment is equipped
with a code generator that deploys the specified application and Web Services, by
automatically generating all the necessary pieces of code, including data extraction
queries, Web Service calls, data mapping logics, page templates, and WSDL service
descriptors.

4.3 Our solution to the mediation scenario of the SWS challenge

In this section we describe the general approach to the SWS challenge scenarios.
We adopt a software engineering approach to the issue, by defining and following
a clearly specified development process, as shown in Figure 4.4. In line with the
classic Boehm’s Spiral model and with modern methods for Web and software en-
gineering, the development phases must be applied in an iterative and incremental
manner, in which the various tasks are repeated and refined until results meet the
business requirements.

Requirements specification collects and formalizes the essential information
about the application domain and expected functions. Process design focuses on the
high-level schematization of the (possibly distributed) processes underlying the ap-
plication. Data design organizes the main information objects identified during re-
quirements specification into a comprehensive and coherent domain model, that may
comprise importing of existing ontologies. Hypertext design is the activity that trans-
forms the functional requirements into one or more Web services and Web site views
embodying the needed retrieval and manipulation methods. Hypertext design may
comprise importing or referencing existing services and goals. It exploits high level
models, which let the architect specify how content elements are published within
pages, how services provide information to requesters, and how hypertext elements

58 M. Brambilla, S. Ceri et al

Fig. 4.5. Overall design methodology for Semantic Web Service-based applications.

are connected by links to form a navigable structure. Semantic description of the ap-
plication provides the bases for ontological annotation and reasoning ; it consists in a
set of tasks, partially automated, that aim at providing a set of semantic specifications
of the application to be implemented. The other phases of Figure 4.4 are outside of
the scope of the Challenge.

4.3.1 Integration of Web engineering and Semantic Web tools

For each step of the development process shown in Figure 4.5, a set of techniques
and tools are used. Figure 4.5 provides more details on the core development phases.
The blue blocks highlight the basic steps for the development process of Semantic
Web applications. The various steps produce some artifacts (BPMN models, WebML
skeletons, data models, hypertext models), possibly enriched by imported ontolog-
ical descriptions (on top of Figure 4.5). These ”conventional” software engineering
artifacts are exploited for deriving the set of WSMO specifications (at the bottom of
Figure 4.5):

• the description of the mediator can be extracted from the hypertext describing
the mediator;

• the Web Services capability description is derived from the hypertext model;
• the choreography information is derived from the Business Process (BP) model;
• and the user goals are derived from both the BP model and the hypertext model.

This approach seamlessly fits into traditional Software Engineering methods and
techniques based on system modeling (i.e. Model Driven Design and Model Driven
Architectures); therefore, existing CASE tool for Model Driven Design (MDD) can
be easily extended for supporting the process. We choose to adopt an approach
mainly based on the Software Engineering methods and techniques for the medi-
ation scenario and an approach mainly based on the Semantic Web technologies for
the discovery scenario, that will be discussed in another chapter.

In line with the classic Boehm’s Spiral model and with modern methods for Web
and Software Engineering, the development phases can be applied in an iterative and

4 A Software Engineering Approach based on WebML and BPMN 59

Fig. 4.6. Example of WebML model exploiting the Semantic Web units.

incremental manner, in which the various steps are repeated and refined until results
meet the business requirements [14]. Further details on the approach and relative
examples can be found in [15].

In order to support the query over ontologies, new WebML units have been de-
vised [16]. In particular we extended the WebML basic primitives provided by the
hypertext model (e.g., Index and Data units) to support ontological data sources
(e.g., RDF/OWL ontologies) and we provided a new set of primitives specifi-
cally designed to exploit ontologies characteristics and reasoning over them. These
new units are aggregated primitives that, depending on the type of parameters,
execute differently. The units (SubClassOf, InstanceOf, HasProperty,
HasPropertyValue, PropertyValue, SubPropertyOf) aim at providing
explicit support to advanced ontological queries. They allow to extract classes, in-
stances, properties, values; to check existence of specific concepts; and to verify
whether a relationship holds between two objects.

Figure 4.6 depicts a fragment a WebML application that allows to retrieve
artists or albums whose names sound in a similar way to the name specified by the
user. The ontology adopted in the example is the MusicBrainz ontology [17]. The
value submitted in the form is passed to the HasPropertyValue unit that ex-
tracts a set of URIs of instances (albums or artists) that have value as value of the
mm:soundsLike property. The set of URIs is then passed to the InstanceOf
unit that checks if they are instances of the class Artist. In this case, the URIs are
passed over through the OK link to an Index unit showing list of Artists, otherwise
the URIs are passed on the KO link to publish a list of Albums (not shown in the
figure).

In general, each WebML semantic unit can automatically extract a RDF descrip-
tion of its contents. The designer has to specify how he wants to use the RDF frag-
ments; for instance, it is possible to aggregate the fragments of all the units in the
page and publish the aggregate at the bottom of the page, as a global semantic an-
notation of the page itself; another option could be to maintain them separated and
publish the RDF annotation for each unit in the page. For instance, annotations can
be generated as RDF expressions [18].

Besides the units for ontological data query, we introduce also three new units
working at a upper level: the Set Composition operation unit is able to per-

60 M. Brambilla, S. Ceri et al

Fig. 4.7. The BPMN model of the Mediator from Blue-to-Moon.

form classic set operations (i.e., union, intersection, difference) over two input sets of
URIs, considering the hierarchy of the URIs involved; the Import Ontological
Source unit adds a remote or local data source that must be consistent with onto-
logical model of the web application (it’s validated against it before being added to
the ontology); and finally, the Describe unit returns the RDF description of an
URI, thus enabling data exporting and semantic annotation of pages.

We present our approach by following the evolution of the SWS Challenge re-
quirements of the mediation scenario: every phase we address corresponds to one
of the SWS Challenge workshops. In the first place we provide an overview of the
initial solution. Then we give some insight about how we coped with the changing
requirements and about the effort required to adapt our solution to the subsequent
new scenario specifications.

4.3.2 First phase of the challenge

The modeling of the mediator started from the design of the data model. The Roset-
taNet message was analyzed and a corresponding WebML E-R diagram was ob-
tained from it. We identified four main entities: PurchaseOrder, Partner, Status, and
ProductLineItem as shown in Figure 4.1.

As showed by relationships in Figure 4.1, each PurchaseOrder instance has: one
of more ProductLineItem instances, three Partner instances representing respectively

4 A Software Engineering Approach based on WebML and BPMN 61

the Buyer, the Seller and the Receiver. The entity Status tracks the status of each
PurchaseOrder.

Once the WebML data model was completed, we started modeling the Web Ser-
vice providing the mediation feature. An high level Business Process Modeling No-
tation (BPMN) model is created representing the mediator (see Figure 4.7), which
formalizes the orchestration of the Moon Web Services, and defines states pertain-
ing to the mediation process according to the scenario specification. Then, the BPMN
model is used to automatically generate a WebML skeleton that is manually refined to
complete the design of the mediator. The final model for the Blue to Moon mediator
is reported in Figure 4.8. Each row of the model depicted in the Figure corresponds
to a specific step that the mediator must perform. Each of these steps comprises a
set of specific operations on the received messages or on the local data. We exem-
plify in details the first two steps of the mediator, namely (i) the reception of the
RosettaNet message and its forwarding to the legacy system; and (ii) the selection of
the Buyer Partner. First, we modeled the operation receiving the RosettaNet message
and forwarding the order to the legacy system:

1. As soon as the order is received (Pip3A4PurchaseOrderRequest So-
licit Unit), the Pip3APurchaseOrder is converted (Lifting Adapter Unit)
and stored in the database (StorePip3A4PurchaseOrder Unit), the sta-
tus of the current Pip3APurchaseOrder is set to “To Be Processed” (Set-
ProcessStatus Connect Unit, that creates new relationship instances be-
tween objects) and the Acknowledge message is returned to the service invoker
(SendReceiptAcknowledgement Response Unit).

2. Next, the Buyer Partner is selected (SelectBuyer Selector Unit, that re-
trieves data instances according to a specified selector condition) and a mes-
sage to query the Customer Relationship Management service (CRM) is cre-
ated (Lowering Adapter Unit) and sent to the legacy system (ObtainMoon-
CustomerID Request-Response Unit). Once a reply has been received, the
CustomerId is extracted from the reply message (Lifting Adapter Unit) and
stored in the data model (StoreCustomerID Modify Unit). The status of the
order is set to “CustomerId received” (SetProcessStatus Connect Unit).

Analogous operations are performed for the remaining steps (lines 3 to 5 in Figure
4.8).

Figure 4.9 shows the corresponding process required at the legacy system for
receiving order lines:

1. For each line confirmation (OrderLineItemConfirmation Solicit Unit),
the status is extracted (Lifting Adapter Unit), the relative order and line
stored in mediator database are selected (SelectOrder and SelectLine-
Item Selector Units), and the status of the stored line is modified according
to the received confirmation (SetLineStatus Modify Unit). Eventually the
Acknowledge message is returned to the service invoker (OrderLineItem-
ReceiptAck Response Unit).

62 M. Brambilla, S. Ceri et al

Fig. 4.8. Blue-to-Moon mediator

Fig. 4.9. Moon-to-Blue mediator.

2. When all the lines have been received (AllLinesConfirmationRecei-
ved? Switch Unit), the XML serialization of the data for the current Pip3A-

Adapter Unit) and sent to the RosettaNet client (SendPOC Request Unit) and
the status of the order is set to “Rosetta PO Confirmation sent” (SetProcess-
Status Connect Unit).

The SOAP messages transformation to and from the WebML data model are per-
formed by proper WebML units (Adapter units) that apply XSLT transformations;
XSLT stylesheets can be designed with an XML-to-XML visual mapping tool. A
prototype tool is included in our toolsuite, but any other tool can be used (e.g., IBM
Clio [19]).

taNet Purchase Order Confirmation (POC) message is created (Lowering
PurchaseOrder is extracted (ExtractOrderDataXML-Out Unit) and a Roset-

4 A Software Engineering Approach based on WebML and BPMN 63

Fig. 4.10. The WebML model of the modified portion of the Mediator (cfr. Figure 4.9).

4.3.3 Second phase of the challenge

To test the flexibility of the solutions proposed by participants to the challenge, the
SWS challenge organizers introduced some changes in the scenarios. The approaches
we initially used to solve the two scenarios permitted us to address the new changes
in a easy way. This also proved that our initial choice of adopting a Software Engi-
neering approach for the mediation scenario and a Semantic Web approach for the
discovery scenario was good. In the Phase II of the challenge, the new requirements
of the mediation scenario imposed a change in the format of the exchanged messages
and a change in the mediation process. The change in the format required an adjust-
ment of the data model: we introduced a new relationship between the entity Pro-
ductLineItem and the entity Partner. Then we modified the mediator process: when
the Stock Management system is unable to fulfill a request from the customer and
replies that the particular line item cannot be accepted, the new Mediator contacts
the legacy Production Management system in order to search an alternative product.
To fulfill this new requirement, we changed the mediator by introducing a chain of
operations needed to query the new Production Management Web Service (Figure
4.10).

4.3.4 Third phase of the challenge

Phase III of the challenge did not introduce any substantial new requirement, there-
fore we concentrated on improving and refining our previous solution solving some
of the open issues in our approach. In the previous challenge edition we did not com-
pletely address some of the changes to the Mediation scenario. Among them we did
not consider the process changes required in order to deal with the introduction of
the optional shipment address for each line item. According to the modified scenario,
line items must be grouped according to their shipment address and for each group
an independent new order has to be sent to the Moon legacy system. We improved

64 M. Brambilla, S. Ceri et al

Fig. 4.11. Improved version of the Mediator

our mediator handling this requirement (see Figure 4.11): i.e., we introduced a loop
over every shipment address associated to the incoming RosettaNet purchase order;
inside the loop, a new shipment order for every different address is created, and each
line item with that address is added to the new order; finally the order is closed, and
the next address, if available, is processed.

4.3.5 Fourth phase of the challenge

The scenarios for the fourth phase of the challenge involved a totally new discov-
ery scenario, where a buyer of computer wants to choose among competing services
offering computers and related accessories4, depending on information that can be
provided by the services themselves. This challenges current technologies of the par-
ticipants requiring dynamic services discovery and composition. In some sense, this
also extends the concept of mediation, explicitly introducing the idea of selection and
negotiation. Therefore, we applied to the new discovery solution some techniques
borrowed from the mediation design.

At conceptual level we model both goal and Web Services making explicit dif-
ferences among:

4 http://sws-challenge.org/wiki/index.php/Scenario:_Discovery_
II_and_Composition

4 A Software Engineering Approach based on WebML and BPMN 65

Fig. 4.12. The ER metamodel for the dynamic service invocation in Phase IV.

Fig. 4.13. The WebML model of the dynamic service invocation in Phase IV.

• “discovery” capabilities, which are static description of the service in terms of
functional properties,

• “selection” capabilities, which are static or dynamic non functional descriptions;
• “negotiation” capabilities, which are description of the service that need to be

evaluated by invoking one or more operation of the service (for describing the
choreography we relay on WebML).

These aspects are explained in details in the chapter dealing with our discovery
solution. At this stage, we only highlight that some changes to the mediation and
invocation modeling have been applied too. In particular, dynamic service invocation
is needed.

To address this aspect, we specify a more detailed metamodel describing the ser-
vices, and we exploit this metamodel to dynamically invoke services. The metamodel
is shown in Figure 4.12 and comprises the concepts of Web Service Classes (with re-
lated variables) and respective Web Service Instances (with related operations and
parameters).

The WebML model of the dynamic invocation of services is shown in Figure
4.13: a general purpose Invocation service is defined, that incapsulates the dynamic
invocation behaviour, consisting of the following steps:

• the incoming invocation request (containing the name of the service to be in-
voked) is lifted to the internal model;

66 M. Brambilla, S. Ceri et al

• the webServiceClassInstance corresponding to the specified service name is re-
trieved;

• the wsOperation corresponding to the specified service name is retrieved;
• the incoming invocation request data is lowered to the specific Web service for-

mat;
• the actual Web service is invoked;
• the Web service response is lifted to the internal data format and returned to the

caller.

Similar techniques have been applied to the phase of negotiation in the discovery
scenario too. With this approach we introduce an additional level of service call, but
we keep the invocation in the general model very clean.

4.4 Related Work

The Semantic Web is a new research area that in the last five years produced a great
number of publications. However, few of them concern the systematic and method-
ological development of applications. Some early proposals (e.g., [20]) offered the
definition of UML profiles for easily handling ontological definitions; however they
haven’t been adopted because of the lack of an overall methodology. A number of
researches concentrated on the development of tools to support the generation of
semantic descriptions for existing Web Services [21, 22, 23]. [24] presents an en-
gineered approach to extraction of semantic annotations from XML schemas and
documents to be published in dynamic Web applications. Most of these tools still
require the learning of the annotation language used (e.g., OWL-S or WSMO) and
hence do not rise the level of abstraction required from developers. Furthermore,
they do not exploit the advantages of conceptual models of the Web Services to
semi-automatically derive any part of the semantic descriptions.

Our research effort is more similar to the recent efforts of the Object Management
Group (OMG)5. The OMG proposed the Ontology Definition Metamodel (ODM)
[25] to define a suitable language for modeling Semantic Web ontology languages
and hence Semantic Web applications in the context of the Model Driven Architec-
ture (MDA) [26]. In [27] MIDAS, a framework based on MDA to model and develop
Semantic Web applications, is introduced. The proposed framework focuses on the
creation of Semantic Web Services and associated WSML descriptions using a UML
model according to the MDA approach. This proposal inherits the limits of the MDA
approach: the use of a UML model is not always fitting the Semantic Web needs,
and often the model is too far from the implementation details to provide an effective
automatic code generation. Furthermore, MIDAS does not provide a clear overall
roadmap to the design of Semantic Web applications. The work of the W3C has cre-
ated a Software Engineering Task Force dedicated to the Semantic Web6 but its work
is still under development. These proposals can be regarded as first contributions to

5 http://www.omg.org/
6 http://www.w3.org/2001/sw/BestPractices/SE/

4 A Software Engineering Approach based on WebML and BPMN 67

the field, but they still do not provide a clear roadmap to the design of Semantic Web
applications.

Other research efforts are converging on the proposal of combining Seman-
tic Web Services (SWS) and Business Process Management (BPM) to create one
consolidated technology, which we call Semantic Business Process Management
(SBPM) [28]. This is based on the fact that mechanization of BPM can be ad-
dressed through machine-accessible semantics, that can be naturally provided by
SWS frameworks (e.g., WSMO).

In the last years some efforts from the Web Engineering field have been redi-
rected towards methodologies for developing Semantic Web Information Systems.
Traditional Web design methodologies (like OOHDM [29]) and new approaches
(like Hera [30]) are now focusing on designing Semantic Web applications. How-
ever, these methodologies are not supported by an effective CASE tool and they
concentrate only on Semantic Web Portals instead of the development of Semantic
Web Services.

Other works related to the mediation problem have been developed within the
SWS Challenge. In particular, [31] proposed a solution based on a SOA engi-
neered framework called jABC/Jeti, that for some aspects is similar to our solution.
[KKR06] solved the process mediation using a BPEL engine, embedding it in the
DIANE framework that provides for the data mediation; a similar solution was pro-
vided by the Meteor-S team [33]. The solution proposed by DERI [34], based on
the WSMO/WSMX framework [5] is perhaps the most interesting solution and the
most different with respect to ours. The DERI solution to the mediation scenario is
purely semantic. The entire architecture has been developed for the semantic web
from its origin, and this provides native support to internal reasoning, ontology stor-
age, and so on. The schema describing RosettaNet PIP 3A4, Customer Relationship
Management (CRM), Order Management (OM) are ontologized and Semantic Web
Services for the CRM and the OM are generated together with the Goal templates
for the service requester.

However, only limited research efforts are concerned with the environments,
methods, and tools for the systematic development of semantic Web applications.
A wide set of tools for supporting the generation of semantic descriptions for exist-
ing Web resources (e.g., services) have been developed [21] [35]. In the context of
DERI, tool support to the development is provided by WSMT [23]. However, these
tools they are intended for ontology experts and consider the annotation process as
completely separated from the actual service development. This requires mastering
of the annotation languages (e.g., OWL-S or WSMO) and hence do not help to widen
the adoption of semantic Web and semantic Web services in the software engineering
community.

4.5 Conclusions

This chapter summarized our experience of applying Semantic Web Service and Web
engineering techniques in the mediation scenario of SWS Challenge 2006. We ad-

68 M. Brambilla, S. Ceri et al

dressed the mediation problems of the challenge with the design and implementa-
tion of the wwMediator through the usage of the conceptual languages BPMN and
WebML, supported by the CASE tool WebRatio and its companion BPMN workflow
editor.

Our approach extends the design flow supported for conventional Web applica-
tions [4] which leads the designer from the process modeling to the running Web ap-
plication, by producing some intermediate artifacts (BPMN models, WebML skele-
tons, data models, hypertext models). Such models are enriched by imported on-
tological descriptions and are exploited for semi-automatically generating WSMO-
compliant semantic. The merits of our solution are: the rooting in the tradition of
Software Engineering, the use of sophisticated, up-to-date Web Enginnering tech-
nology, and the extension of the methods to the Semantic Web. We have given the
maximum attention to the methodology specification and to the practical applicabil-
ity of the approach, thanks to CASE tools and code generators that ease the work of
designers and developers, who can benefit of automatically generated semantic an-
notations and WSMO-compliant components. We believe that development methods
and tools for the Semantic Web should not be different from the classic paradigms
which are now dominating software design and deploymen. Therefore, Semantic
Web developers should adapt classic (UML-based) methods and tools hosted by clas-
sic tool frameworks (such as Eclipse). We fully agree with Charles Petrie’s words:
“If semantic technology has a future — and I’m sure that it does — it’s in Software
Engineering” [3]. Our participation to the challenge is a first attempt in this direction.
Indeed, the ability of our solution to adapt to changes is mostly the merit of our use
of enhanced Software Engineering methods and platforms. Our future work aims at
implementing a complete extension of the WebML methodology towards the design
of Semantic Web Services applications, supported by a design environment based
upon WebRatio [6].

References

1. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kauffmann, San Francisco, CA, USA (2002)

2. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-driven design
and deployment of service-enabled web applications. ACM Trans. Internet Techn. 5(3)
(2005) 439–479

3. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web applica-
tions. ACM Trans. Softw. Eng. Methodol. 15(4) (2006) 360–409

4. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2006)

5. Valle, E.D., Cerizza, D.: The mediators centric approach to automatic web service discov-
ery of glue. In Hepp, M., Polleres, A., van Harmelen, F., Genesereth, M.R., eds.: MEDI-
ATE2005. Volume 168 of CEUR Workshop Proceedings., Amsterdam, The Netherlands,
CEUR-WS.org (December 2005) 35–50 online http://CEUR-WS.org/Vol-168/
MEDIATE2005-paper3.pdf.

4 A Software Engineering Approach based on WebML and BPMN 69

6. WebModels s.r.l.: Webratio site development suite (2007)
http://www.webratio.com.

7. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontologies
1(1) (2005) 77 – 106

8. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language
wsml: An overview. In: Proceedings of the 3rd European Semantic Web Conference
(ESWC 2006). Volume 4011 of Lecture Notes in Computer Science, LNCS., Springer (6
2006)

9. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In: Proceedings of the 2005 IEEE International Conference on
Web Services (ICWS’05), Washington, DC, USA, IEEE Computer Society (2005) 321–
328

10. Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electronic Com-
merce Research and Applications 1(2) (2002) 113–137

11. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language:
An overview. In: Proc. of the European Semantic Web Conference. (2006)

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based
languages. J. ACM 42(4) (1995) 741–843

13. Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow, O., Stanienda, T., Velez, F.: The
object data standard: ODMG 3.0. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2000)

14. Brambilla, M., Ceri, S., Facca, F.M., Celino, I., Cerizza, D., Valle, E.D.: Model-driven de-
sign and development of semantic web service applications. ACM Trans. Internet Techn.
8(1) (2007)

15. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M.: A Software
Engineering Approach to Design and Development of Semantic Web Service Applica-
tions. In: Proceedings of the 5th International Semantic Web Conference (ISWC 2006).
(Nov 2006)

16. Facca, F.M., Brambilla, M.: Extending webml towards semantic web. In: WWW - World
Wide Web Conference. (2007) 1235–1236

17. MusicBrainz: Musicbrainz project (2007) http://musicbrainz.org.
18. W3C: Rdfa primer 1.0: Embedding rdf in xhtml (2007)

http://www.w3.org/TR/xhtml-rdfa-primer/.
19. Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: a semi-automatic tool for schema map-

ping. SIGMOD Rec. 30(2) (2001) 607
20. Djuric, D., Gasevic, D., Devedzic, V., Damjanovic, V.: Uml profile for owl. In Koch,

N., Fraternali, P., Wirsing, M., eds.: ICWE. Volume 3140 of Lecture Notes in Computer
Science., Springer (2004) 607–608

21. Elenius, D., Denker, G., Martin, D., Gilham, F., Khouri, J., Sadaati, S., Senanayake, R.:
The owl-s editor - a development tool for semantic web services. In Gómez-Pérez, A.,
Euzenat, J., eds.: ESWC. Volume 3532 of Lecture Notes in Computer Science., Springer
(2005) 78–92

22. Jaeger, M.C., Engel, L., Geihs, K.: A methodology for developing owl-s descriptions. In
Panetto, H., ed.: Proceedings of the INTEROP-ESA’05 Workshops, Geneva, Switzerland,
Hermes Science Publishing (2005) 153–166

23. Kerrigan, M.: D9.1v0.2 web service modeling toolkit (wsmt). Technical report, DERI
(2005) http://www.wsmo.org/TR/d9/d9.1.

70 M. Brambilla, S. Ceri et al

24. Reif, G., Gall, H., Jazayeri, M.: Weesa: Web engineering for semantic web applications.
In: Proceedings of the 14th International Conference on World Wide Web, New York,
NY, USA, ACM Press (2005) 722–729

25. OMG: Ontology definition metamodel (2007) http://www.omg.org/cgi-bin/
doc?ad/06-05-01.pdf.

26. OMG: Model driven architecture (2007) http://www.omg.org/cgi-bin/doc?
omg/03-06-01.

27. Acuña, C.J., Marcos, E.: Modeling semantic web services: a case study. In: ICWE
’06: Proceedings of the 6th international conference on Web engineering, New York, NY,
USA, ACM Press (2006) 32–39

28. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business process
management: A vision towards using semantic web services for business process manage-
ment. In: ICEBE ’05: Proceedings of the IEEE International Conference on e-Business
Engineering, Washington, DC, USA, IEEE Computer Society (2005) 535–540

29. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: 1st Latin Ameri-
can Web Congress (LA-WEB 2003), Empowering Our Web, 10-12 November 2003, San-
itago, Chile, IEEE Computer Society (2003) 93–102

30. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web Informa-
tion Systems in Hera. J. Web Eng. 2(1-2) (2003) 3–26

31. Kubczak, C., Steffen, B., Margaria, T.: The jabc approach to mediation and choreography.
2nd Semantic Web Service Challenge Workshop (June 2006)

32. Küster, U., König-Ries, B.: Discovery and mediation using diane service descriptions. In:
Third Workshop of the Semantic Web Service Challenge 2006 - Challenge on Automating
Web Services Mediation, Choreography and Discovery, Athens, GA, USA (November
2006)

33. Wu, Z., Harney, J.F., Verma, K., Miller, J.A., Sheth, A.P.: Composing semantic web
services with interaction protocols. Technical report, LSDIS Lab, University of Georgia,
Athens, Georgia (2006)

34. Zaremba, M., Vitvar, T., Moran, M., Hasselwanter, T.: WSMX discovery for sws chal-
lenge. In: Third Workshop of the Semantic Web Service Challenge 2006 - Challenge on
Automating Web Services Mediation, Choreography and Discovery, Athens, GA, USA
(November 2006)

35. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s web service annotation
framework. In: Proceedings of the 13th international conference on World Wide Web
(WWW 2004), New York, NY, USA, ACM Press (2004) 553–562

36. Petrie, C.J.: It’s the programming, stupid. IEEE Internet Computing 10(3) (2006) 95–96

5

Service-oriented Mediation with jABC/jETI

Christian Kubczak1, Tiziana Margaria2, Bernhard Steffen3, and Ralf Nagel3

1 TU Dortmund, Chair of Software Engineering
christian.kubczak@tu-dortmund.de

2 Universität Potsdam, Chair of Service and Software Engineering
margaria@cs.uni-potsdam.de

3 TU Dortmund, Chair of Programming Systems
steffen@cs.tu-dortmund.de, ralf.nagel@tu-dortmund.de

Summary. This chapter shows how we solved the Mediation task in a model driven, service
oriented fashion using the jABC framework for model driven development and its jETI exten-
sion for seamless integration of remote (Web) services. In particular we illustrate how atomic
services and orchestrations are modelled in the jABC, how legacy services and their proxies
are represented within our framework, and how they are imported into our framework, how
the mediator arises as orchestrations of the testbed’s remote services and of local services,
how vital properties of the Mediator are verified via model checking in the jABC, and how
jABC/jETI orchestrated services are exported as Web services. Besides providing a solution
to the mediation problem, this also illustrates the agility of jABC-based solutions, which is
due to what we call eXtreme Model Driven Design, a new paradigm that puts the user process
in the center of the development and the application expert in control of the process evolution.

5.1 Introduction

We solve the Mediation task in a model driven, service oriented fashion using the
jABC framework [8, 10, 19] for model driven development and its jETI extension
for seamless integration of remote (Web) services. After a brief sketch of jABC’s ori-
gin (Sect. 5.2) and philosophy (Sect. 5.3), this chapter shows how we model atomic
services and orchestrations in the jABC (Sect. 5.4 and 5.5), how we represent legacy
services and their proxies within our framework (Sect. 5.6), how we import them into
the framework, how we compose the mediator’s model as an orchestration of the
testbed’s remote services and of local services (Sect. 5.7), how we verify properties
of the Mediator via model checking in the jABC (Sect. 5.8), and how to systemati-
cally export jABC/jETI orchestrated services as Web services (Sect. 5.9).

The jABC is a flexible framework for service development based on Lightweight
Process Coordination [21] and eXtreme Model Driven Design [18]. Users easily de-
velop services and applications by composing reusable building-blocks into (flow-)
graph structures that can be animated, analyzed, simulated, verified, executed, and
compiled. We will sketch here how to handle the mediator design and the remote
integration of Web services.

72 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

An extension to this basic approach by a technique that automatically generates
the workflow from declarative specifications is described in Chapter 7.

Before addressing our solution to the Mediator problem from Sect. 5.7 onwards,
we briefly summarize the origin of the jABC as service Development Environment
for Intelligent Network services in Sect. 5.2, and the underlying formal model for
Services and orchestrations in Sect. 5.3 and 5.4.

5.2 Service Oriented development for Telecommunications

Service-Oriented Design has driven the development of telecommunication infras-
tructure and applications, in particular the so-called Intelligent Network (IN) Ser-
vices, since the early 90s. Intelligent Networks have changed the world of telecom-
munication: practically everybody has already made use of IN services, e.g., for
Televoting (0137 Service) on TV or radio, toll-free calls (0180 resp. 800 Service) for
teleshopping, prepaid or credit card calls, or the familiar Virtual Private Networks.
To satisfy the growing expectation on IN services, a flexible Service Definition En-
vironment is a must.

In 1994-96 we were involved in the development of an innovative Service Defi-
nition environment for Intelligent Networks, as part of a telecommunication project
that involved large firms like Siemens and Siemens Nixdorf, but also software
houses, consulting firms, and academia (the University of Passau), and that resulted
in the development of the first predecessor of the jABC [28, 20].

The realization of new IN services was complex, error prone, and extremely
costly until a service-oriented, feature-based architecture, a corresponding standard-
ization of basic services and applications in real standards, and adequate program-
ming environments came up: they set the market, enabled flexibilization of services,
and dramatically reduced the time to market.

Thinking about this experience, we noticed that a central role in its success was
ascribed to the introduction of incremental formal methods, realized in particular
through constraint-based formal verification techniques. The impact of those tech-
niques was sensible in all phases of the project: it contributed to the project in techni-
cal, scientific, managerial, and marketing areas [3]. In [20], we reviewed our 10 years
of experience in service engineering for telecommunication systems from the point
of view of Service-Oriented Design then and now. In particular, we were establishing
a link to the notions used by the service-oriented programming (SO) community.

The novelty of our approach consisted of introducing a declarative specification
layer, which was used for the construction of the desired services according to global
constraints guaranteeing executability and other consistency conditions. These con-
straints were the basis for an on-line verification via model checking during the in-
teractive service design process. Important for the success of the method was the
high performance and the availability of diagnostic information in the case of fail-
ure: Several hundred constraints had to be checked in real-time, and the diagnostic
information had to reflect the responsible constraint violations as concisely as possi-
ble, while preserving as much of the structure of the developed service as possible.

5 Service-oriented Mediation with jABC/jETI 73

5.3 Basic Concepts of the jABC Modeling Framework

The jABC is a flexible framework for model-driven service development based on
Lightweight Process Coordination (LPC) [21].

The LPC approach is coarse-grained in the sense that it renounces a detailed
model of the system functionality (which would be infeasible in the considered in-
dustrial settings). Thus it naturally fits to the application to Web services, which are
coarse-grained remote functionalities whose implementation is not disclosed.

The coordination is lightweight in the sense that it allows a programming-free
definition of system-level behaviors based on the coarse models of the functionali-
ties. In the Challenge, some of those functionalities are Web services, and the coor-
dination expresses orchestrations of local or remote (Web) service entities.

The LPC approach puts behaviours in the center of the modelling and design ap-
proach. Instead of the architectural aspect, as in SOA approaches, or of information
objects, as in approaches rooted in database and information systems, we have runs
and processes as the central entity of attention. The conceptual background to this
point of view is that of formally sound process-based communicating systems, as
e.g. in process algebras like CCS, CSP, LOTOS, and in standardized industrial lan-
guages like SDL. We support both modelling the system behaviours in term of coarse
grain processes, and, thanks to the mathematically sound formal models underlying
those models, also a mathematically sound analysis of the models’ behaviours. In
the jABC, we can prove the conformance of the models to behavioural properties
expressed in modal logics specifically developed to describe system runs: tempo-
ral logics, like LTL, CTL, µ-calculus. The adopted proof paradigm is called model
checking. It has meanwhile reached maturity in high-assurance branches of indus-
try like hardware design, and its scientific and economical relevance are witnessed
by the 2008 ACM Turing Award to its inventors Ed M. Clarke, Allen Emerson and
Joseph Sifakis.

The verification of the models is for the jABC an essential requirement: we target
on certifiable orchestrations of coarse grained service compositions, where the cer-
tification concerns the coordination level (i.e. the process) rather than the complete
implementation.

The first implementation of LPC was based on a general purpose environment for
the management of complex processes, METAFrame Technologies’ Agent Building
Center ABC [25]. The ABC offered built-in features for the programming-free coor-
dination and the management of libraries of functional components, which was based
on so-called Service Logic Graphs, which managed the inter-component or inter-tool
flow of control. The current jABC is an evolution of the ABC, and in particular it has
maintained complete compliance to the LPC approach.

The power and adequacy of this approach have been successfully used in in-
dustrial scenarios that combined heterogeneous architectures with black/grey-box
implementation. This is the regular case when using Web services. The challenge is
precisely how to handle this partial knowledge in an independent, understandable,
and manageable way: an ideal approach should be

74 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

• expressive enough to capture the coordination tasks, like steering tools, obtaining
and evaluating responses, and taking decisions that direct the control flow within
a system-level behaviour,

• non-intrusive, i.e. we cannot afford having to change the code of the subsystems,
and this both for economical reasons and lack of feasibility: most applications,
and all Web services are behaviourally complete black boxes,

• intuitive and controllable without requiring programming skills. This implies that
we need a lightweight, possibly graphical approach to coordination definition,
and that easy and timely validation of coordination models should be available.

The Service Logic Graphs provide an adequate abstraction mechanism to be used
in conceptual modelling because they direct developers to the identification and pro-
motion of interactions as first-class citizens, a pre-condition for taming the com-
plexity of system construction and evolution. In our solution, we have adopted a
coarse-grain approach to modelling system behavior, that accounts for the required
simplicity and allows direct animation of the models as well as validation via model
checking at the application level.

Adequacy Considerations

In order to steer services composed of several independent subservices that intercom-
municate, one must be able to coordinate a heterogeneous set of services in a con-
text of heterogeneous platforms. This task exceeds the capabilities of today’s service
composition tools, which typically cover only the needs of specific (homogeneous)
technologies and of their immediate periphery. We thus need an approach capable of
developing a formal coordination layer on top of existing blackbox implementations
which rapidly evolve.

Due to the blackbox availability of the services, the coordination is necessarily
coarse grained. Due to the rapid evolution of the services (with volatile, ad hoc
services, that have lifecycles of one week to three months, as observed e.g. in the
Web 2.0 domain) the coordination must be extremely lightweight: there is no hope
of having the resources for ”reprogramming” new orchestrations in a traditional way
once a service varies. Adaptions and changes have to be easy and programming-free.
Taken together, this defines a ‘meta-level’ on which

• service providers and aggregators are used to think,
• test cases and test suites can be easily composed and maintained,
• usage scenarios can be configured and initialized,
• critical consistency requirements (including version compatibility and frame con-

ditions for executability) are easily formulated, and
• error diagnosis and repair must occur.

5.4 jABC as Service Assembly Framework

In the jABC, developing an application consists of the behaviour-oriented combi-
nation of building blocks, called SIBs (Service Independent Building blocks), on a

5 Service-oriented Mediation with jABC/jETI 75

Application
 Program

View Prototype

Synthesis

Compilation

Abstraction

Concretization

Modification Control

Selection

Constraints

Building
Blocks

 Control

Fig. 5.1. The Service Creation Process

coarse-granular level. Service orchestrations, like the Mediator, are therefore simply
compositions of SIBs, which themselves comprise functionality, ranging from ele-
mentary statements to relatively large procedures steering e.g. complex application
machinery, to Web Services. In the Challenge scenarios we have a mix of local SIBs
(like the Receive POR SIB in Fig. 5.2 and all those with the same icon, and jETI
SIBs like the Moon SIBs in the same figure, that serve as proxies within the jABC
for the remote Web Services that run on the Challenge’s testbed in Innsbruck. The
corresponding service creation process is shown in Fig. 5.1.

Behaviour-Oriented Development:

Behaviour-oriented development means combination of Service Independent Build-
ing Blocks (SIBs) on a coarse granular level, typically understandable by the applica-
tion expert/user. SIBs are software components with a particularly simple interface,
which enables one to view them semantically just as input/output transformations.
Additional (interaction) structure can also be captured, but is not (yet) subject to the
formal synthesis and verification methods offered by the jABC environment.

SIBs are identified at the application level. They are understandable by applica-
tion experts and not tied to specific infrastructure of programming units. Usually they
encompass a number of ‘classical’ programming units (be they procedures, classes,
modules, services, or functions), and are organized in application-specific collec-
tions. In contrast to (other) component-based approaches, e.g., for object-oriented
program development, the jABC focusses on dynamic behavior: (complex) function-
alities are graphically stuck together to yield flow graph-like structures called Service
Logic Graphs (SLGs) embodying the application behavior in terms of their control
flow.

76 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

SLGs are independent of the paradigm of the underlying programming language,
which may, e.g., be an object-oriented language: here the coarse granular building
blocks are themselves implemented using all the object oriented features, and only
their combination is organized operationally. In particular, we view this flow-graph
structure as a control-oriented coordination layer on top of data-oriented communi-
cation mechanisms enforced e.g. via RMI, CORBA or (D)COM. Accordingly, the
purely graphical combination of the SIBs behaviors happens at a more abstract level,
and can be implemented in any of these technologies.

Incremental Formalization:

The successive enrichment of the application-specific development environment is
two-dimensional. Besides the library of application specific SIBs, which dynami-
cally grows whenever new functionalities are made available, jABC supports the
dynamic growth of a hierarchically organized library of constraints, controlling and
governing the adequate use of these SIBs within application programs. This library
is intended to grow with the experience gained while using the environment, e.g.,
detected errors, strengthened policies, and new SIBs may directly impose the addi-
tion of constraints. It is the possible looseness of these constraints which makes the
constraints highly reusable and intuitively understandable. Here we consciously priv-
ilege understandability and practicality of the specification mechanisms over their
completeness.

Library-Based Consistency Checking:

Throughout the behaviour-oriented development process, jABC offers access to
mechanisms for the verification of libraries of constraints by means of model check-
ing (Sect. 5.5). The model checker individually checks hundreds of typically very
small and application- and purpose-specific constraints over the flow graph struc-
ture. This allows concise and comprehensible diagnostic information in the case of a
constraint violation (see later Fig. 5.6), since the feedback is provided on the Service
Logic Graph, i.e. at the application level rather than on the code.

These characteristics are the key towards distributing labor according to the var-
ious areas of expertise. Typically, we distinguish:

Programming Experts, the software engineers responsible for the software infras-
tructure, the runtime-environment for the compiled services, as well as the program-
ming of the SIBs.

Domain Modelling Experts: They build, use, modify, and curate the underlying
domain models, typically in some knowledge basis that can be expressed via ontolo-
gies, These experts classify the SIBs, typically according to technical criteria like
their version or specific hardware or software requirements, their origin (where they
were developed) and, here, most importantly, according to their intent for a given
application area. The resulting classification scheme is the basis for the constraint
definition in terms of modal formulas and for the automatic generation of the SLGs
with the LTL guided synthesis technique explained in Chap. 7.

5 Service-oriented Mediation with jABC/jETI 77

Application Experts: They develop concrete applications just by defining their Ser-
vice Logic structure. This happens without programming: they graphically combine
building blocks into coarse-granular flow graphs and graphically configure the data
path. These flow graphs can be immediately executed by means of an interpreter, in
order to validate the intended behavior (rapid prototyping). Model checking guaran-
tees the consistency of the constructed graph with respect to a constraint library.

Additionally, End Users may customize a given (global) service according to their
needs by parametrization and specialization. This was desired for example in the
original IN project [3].

The resulting overall lifecycle for application development using jABC is two-
dimensional: both the application and the environment can be enriched during the
development process.

5.4.1 The Service Model

The jABC has a very simple service model for atomic services. A SIB always con-
sists of the following:

• a UID: a globally unique name used to internally identify a special class of a SIB.
Every instance of the service shares this identifier.

• a Name: A locally unique name of the SIB, used to identify it within a flow graph.
• a Label: A string displayed for this SIB inside a flow graph. This is useful for

(end-user) presentation purposes, and can be changed by the users as desired. It
does not have to be unique, unlike the Name and the UID. Different Services may
share one label.

• a Class: The underlying Java class implementation of a Service.
• a Taxonomy information: a structured set of labels that characterize the SIBs tool,

subsystem, or purpose and properties of the service. This is freely defined by the
domain expert, it forms the knowledge basis on which to perform model check-
ing and reasoning. Here foots the semantic approach of the Mediation solution.
As an example, Fig. 5.5 a) shows the domain expert point of view: taxonomy in-
formation classifies here the imported SIBs for the Mediation as Blue and Moon
SIBs.
In case no semantic information is available, the package and class name of the
Java implementation are taken as a default value. One can specify customized
classifications by using the taxonomy editor or changing the value manually. At
the moment we support only tree structures. Fig. 5.2 shows the programmer’s
view: Taxonomy information is expressed syntactically like ”virtual” Java pack-
age names.

• a set of formal parameters that enable a more general usage of the block (e.g.
Customer ID). In the Challenge, this is the set of input and output parameters of
a service. Technically, there is no difference between inputs and outputs, there-
fore a distinction requires an appropriate naming of the parameters. Parameters
are pairs 〈names(keys), value〉, whereby the values can also refer to variables
inside jABC’s execution context.

78 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

• a list of outgoing branches which direct the flow of execution in dependence of
the results of the SIB’s execution. This list can be declared as fixed (immutable)
or flexible (mutable) inside the SIB’s implementation (see ”Class”). Only muta-
ble branch lists can be modified during modelling.

• execution code: for the Challenge services it is a Java adapter that realizes via
jETI the remote service invocation. In case of local components it is the actual
code that realizes the functionality.

• Icon: A PNG (pixel) or SVG (vector) image used to graphically represent the SIB
inside the taxonomy (see Fig. 5.5 a)) and the flow graph on the jABC GUI (see
Figs. 5.6, 5.7 and 5.8).

Additionally, SIBs are decorated by optional plugin annotations. These are real-
ized through Java interfaces inside a service’s implementation (see ”Class”). When a
plugin interface is implemented for a SIB, the corresponding jABC plugin can access
the SIB and perform its task. Examples of such interfaces are the tracer interface (for
service execution inside the jABC), the Genesys interface (for the Genesys code gen-
erator, that compiles the SLG into code for a target external execution platform), or
the model checker interface, that decorates the service with labels, here the semantic
annotations used to define the semantic service properties.

The freedom for the plugins and interfaces is ample: each plugin used by the
jABC framework could specify any number of interfaces which can take nearly every
kind of additional data to be used by the SIB. Note that there are no restrictions on
the code level: we allow here the full expressive power of Java.

SIBs are semantically classified in our design environment in terms of a taxon-
omy, which reflects the essentials of their abstract profile. A taxonomy is a directed
acyclic graph, where sinks represent SIBs, which are atomic entities in the taxonomy,
and where intermediate nodes represent groups, that is sets of modules satisfying
some basic property (expressed as predicates). The use of taxonomy information is
discussed in detail in Chap. 7, that shows how we use it as a basis for the automatic
synthesis of the workflow.
It is easy to see that the name, taxonomy, class, formal parameters, and branches of
this service model provide a very abstract characterization of the services, which will
be used later to check the consistency of the orchestrations. The computational por-
tion is encapsulated in the execution code, which is independent of the orchestration
level, thus it is written (or, as in this application, generated) once and then reused
across the different scenarios.

5.4.2 Service Logic Graphs as Service Composition Models

Service Orchestrations, called in the jABC Service Logic Graphs (SLGs), are in-
ternally modelled as Kripke Transition Systems (KTS) [23] whose nodes represent
elementary SIBs and whose edges represent branching conditions (see Fig. 5.6):

Definition 1.
A Service Logic Graph is defined as a triple (S,Act, T rans) where

5 Service-oriented Mediation with jABC/jETI 79

Fig. 5.2. The SWS Mediator SIBs and the abstract process model

• S represents the (named) occurrences of SIBs
• Act is the set of possible branching condition
• Trans = {(s, a, s′)} is a set of transitions where s, s′ ∈ S and a ∈ Act.

Through this non-standard abstraction in our model we obtain a separation of
concerns between the control-oriented orchestration layer, where the user is not trou-
bled with implementation details while designing or evaluating the applications, and
the underlying data-oriented communication mechanisms enforced between the par-
ticipating subsystems, which are hidden in the SIB implementation. Our tools sup-
port the automatic generation of SIBs according to several communication mech-
anisms for Web services and for other widespread platforms (CORBA, RMI, and
other more application-specific ones), as done e.g. in the jETI application [26, 17].

Fig. 5.2 shows one perspective on the taxonomic classification of the SIBs: pro-
jectwise, here the SWS.Mediation project. Abstract SIBs, as imported from the
WSDL, are shown in the SIB palette on the left, and are instantiated in an SLG
by drag and drop to the right canvas. SIBs that refer to Moon’s Web services have
a moon icon, the other SIBs in this SLG are implemented in Java in the jABC, and
they have the typical jABC icon.

5.4.3 Hierarchy

The jABC supports a truly hierarchical design, where SLGs are allowed to make
full use of other already existing SLGs. Figure 5.7 shows how this works in practice
(cf. [27] for a detailed discussion): Within an abstraction step a (part of a) service
is stored as a SIB Graph, which directly becomes itself available as a new SIB. Be-
side the identifier and the name of the macro the formal parameters and the outgoing
branches have to be specified. The parameters of the macro can be mapped to (se-
lected) parameters of the underlying SIBs. Similarly, the set of (un-set) outgoing

80 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

branches of the underlying SIBs defines the outgoing branches of the macro. As
usual, the resulting hierarchy is a design and management aid without any influence
on the execution time: during the execution SIB Graphs are automatically unfolded
(concretized) and the underlying graph structure is executed by the Tracer.

5.4.4 Tracer Execution

From the execution point of view, an SLG is interpreted as a graph, where the actually
executed sequence (a path in the graph) is determined at runtime by results of the
execution of the actual SIBs. The execution of the individual SIBs is delegated by
the tracer to the corresponding execution environment.

This reflects our policy of separation between orchestration and computation:
it embodies the superposition of the orchestration on the components’ code and it
enables a uniform view on the service functionalities, abstracting from any specific
technical details like concrete data formats or invocation modalities.

Inter-component communication is realized via parameter passing and tool func-
tionality invocation by function calls which, via their arguments, pass abstract data
to the adapters encapsulating the underlying functionalities. The functionalities can
be accessed via jETI, using SOAP, or CORBA, or Java RMI. In the concrete setting
of the Challenge, the input data for the services are XML messages.

5.5 Model Checking-Based High-Level Compliance Validation

Correctness and consistency of the application design is fully automatically enforced
in the jABC via model checking. The impact of this approach on the efficiency of
design and documentation is dramatic in industrial application scenarios.

We developed a game based model checker dedicated to this application sce-
nario [6]: it is optimized for dealing with detailed diagnosis information, in order to
allow verification in real time and extensive investigations in case of unverified prop-
erties. Concretely, the algorithm verifies whether a given (behavioral) model satisfies
(temporal) properties expressed in a user friendly, natural language-like macro lan-
guage. In particular:

• the properties express correctness or consistency constraints the entire service
(e.g., the Mediator) is required to respect.

• the models are directly the Service Logic graphs, whereby SIB names correspond
to atomic propositions, and branching conditions correspond to action names.

Classes of constraints are formed according to the application domain, to the subsys-
tems, and to the purposes they serve. This way it depends on the global goals of an
application, which constraints are bound to its coordination model.

5.5.1 The Logic

The overall on-line verification during the design of a new application case captures
both local and global constraints.

5 Service-oriented Mediation with jABC/jETI 81

Local Constraints.

Local constraints specify requirements on single SIBs, as well as their admissible
later parameterization.

Whereas the specification of single SIBs is done simply by means of a predicate
logic over the predicates expressed in the taxonomy, parametrization conditions are
formulated in terms of a library of corresponding predicates. The verification of local
constraints is invoked during the verification of the global constraints.

Global Constraints: The Temporal Aspect.

Global constraints allow users to specify causality, eventuality and other vital rela-
tionships between SIBs, which are necessary in order to guarantee test case well-
formedness, executability and other frame conditions.

A test case property is global if it does not only involve the immediate neigh-
bourhood of a SIB in the SLG4, but also relations between SIBs which may be arbi-
trarily distant and separated by arbitrarily heterogeneous submodels. The treatment
of global properties is required in order to capture the essence of the expertise of de-
signers about do’s and don’ts of design in this application domain, e.g. which SIBs
are incompatible, or which can or cannot occur before/after some other SIBs. Such
properties are rarely straightforward, sometimes they are documented as exceptions
in thick user manuals, but more often they are not documented at all, and have been
discovered at a hard price as bugs of previously developed product versions. This
kind of domain-specific knowledge accumulated by experts over the years is partic-
ularly worthwhile to include in the design environment for automatic reuse. Gover-
nance, business rules, and compliance constraints are other examples of properties
often expressible at this level.

Global constraints are expressed internally in the modal µ-calculus [11, 12]. The
following negation-free syntax defines µ-calculus formulas in positive normal form.
They are as expressive as the full modal µ-calculus but allow a simpler technical
development.

Φ ::= A| X | Φ ∧ Φ | Φ ∨ Φ | [a]Φ | 〈a〉Φ | νX.Φ | µX.Φ

In the above, a ∈ Act, and X ∈ Var, where A is given by the SIB taxonomy, Act
by the library of branching conditions, and Var is a set of variables. The fixpoint
operators νX and µX bind the occurrences of X in the formula behind the dot in
the usual sense. Properties are specified by closed formulas, that is formulas that do
not contain any free variable.

The formulas are interpreted with respect to a fixed labeled transition system
〈S,Act,→〉, and an environment e : Var → 2S . Formally, the semantics of the µ-
calculus is given by:

4 I.e., the set of all the predecessors/successors of a SIB along all paths in the model.

82 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

[[X]]e = e(X)
[[Φ1 ∨ Φ2]]e = [[Φ1]]e ∪ [[Φ2]]e
[[Φ1 ∧ Φ2]]e = [[Φ1]]e ∩ [[Φ2]]e

[[[a]Φ]]e = { s | ∀s′. s a→ s′ =⇒ s′ ∈ [[Φ]]e }
[[〈a〉Φ]]e = { s | ∃s′. s a→ s′ ∧ s′ ∈ [[Φ]]e }

[[νX.Φ]]e =
⋃
{S′ ⊆ S | S′ ⊆ [[Φ]]e[X 7→ S′]}

[[µX.Φ]]e =
⋂
{S′ ⊆ S | S′ ⊇ [[Φ]]e[X 7→ S′]}

Intuitively, the semantic function maps a formula to the set of states of the KTS of an
SLG for which the formula is “true”. Accordingly, a state s satisfies A ∈ A if s is in
the valuation of A, while s satisfies X if s is an element of the set bound to X in e.
The propositional constructs are interpreted in the usual fashion: s satisfies Φ1 ∨ Φ2

if it satisfies one of the Φi and Φ1 ∧Φ2 if it satisfies both of them. The constructs 〈a〉
and [a] are modal operators ; s satisfies 〈a〉Φ if it has an a-derivative satisfying Φ,
while s satisfies [a]Φ if each of its a-derivatives satisfies Φ. Note that the semantics of
νX. Φ (and dually of µX.Φ) is based on Tarski’s fixpoint theorem [30]: its meaning
is defined as the greatest (dually, least) fixpoint of a continuous function over the
powerset of the set of states.

For application experts, it is important to provide a natural language-like feeling
for the temporal operators. As indicated by the examples below, the standard logical
connectors turned out to be unproblematic. We omit the formal definition of next,
generally, eventually, and until here, as they are standard.

5.6 Using jETI for Remote Service Inclusion and Execution

jETI (Java Electronic Tool Integration framework [16, 29, 1]) is a framework for in-
cluding remotely provided third party functionalities as remote services (both REST
and Web) as SIBs within the jABC, and to communicate with them seamlessly from
within the jABC. As for all jABC extensions, jETI is available as a plugin.

As shown in Fig. 5.4, it can generate basic service types (SIBs) from the WSDL
file of a third party service, and export the orchestrated/choreographed services inside
the jABC (the SLGs), as Web services.

Fig. 5.3 shows the distributed architecture of this infrastructure. SIBs represent
the atomic functionality of an involved service. Within the jABC, domain-specific
SIB palettes are shareable among projects, and organised in a project-specific struc-
ture using project-specific terminology. This is a simple way for adopting or adapt-
ing to different ontologies within the same application domain. Domain-specific SIB
palettes are complemented by a library of SIBs that offer basic functionality (e.g.

5 Service-oriented Mediation with jABC/jETI 83

Fig. 5.3. The jETI architecture.

Fig. 5.4. Consuming and producing web services with jABC/jETI.

SIBs for I/O or memory handling), control structures (for loops, and threads) or han-
dling of data structures like matrices (e.g. extensively used in our bioinformatics
applications [15]). Fig. 5.5 a) shows the palette of SIBs imported from the Blue and
Moon service descriptions, as they are displayed in the taxonomy view of jABC’s
inspector.

84 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

Fig. 5.5. a) Taxonomy view for the Mediator SIB Palette: (jETI-) SIBs imported from the
WSDLs and b) Hierarchical input parameters of the generated SIB OMServiceCreate-
NewOrder

Including Web services

To use Web service components inside the jABC it is only necessary to provide a
valid WSDL file or URL. jETI’s SIB generator extracts the information about the
functions defined in the WSDL file and creates a SIB for each function. Input param-
eters are handled as hierarchical SIB parameters: this enables the user to freely define
input values for the Web service, using the preexisting graphical user interface of the
jABC. In Fig. 5.5 b) we see for example the hierarchical rich parameter structure of
the OMServiceCreateNewOrder SIB.

This is useful to face the dynamic scenarios of the Mediation problem without
need of programming: if a Web service changes its interface, we only need to reim-
port the WSDL into a (new) SIB.
By generating Web service SIBs, the execution of the service remains on the server.
The SIBs simply serve as proxies for the Web services, which, in this example, are
called using the Apache Axis framework [2].

From XML to Java Objects

Using the mechanism described in the previous paragraph, services may take Java
objects bound to the XML schema of the message as an input. This way we can
now deal with ”real” objects representing orders within the mediation model. The
message is received by a Java component and automatically parsed and bound.

To specify the message object as an input of our service model we use Model-
Parameters: while SIB-Parameters are input parameters defined for a single building

5 Service-oriented Mediation with jABC/jETI 85

Fig. 5.6. Receiving a POR - Modelchecked SLG, Mediator #1 Part 1

block, Model-Parameters are parameters defined for the whole SLG. Therefore once
the received message is transformed into an object, this is also defined as a parameter
of the service model.

Response messages from the mediator are handled analogously: as described
above, they become output parameters written to the execution context of an SLG.

5.7 Solving the SWS Mediation with jETI/jABC

When we entered the SWS Challenge back in 2006, we first solved the mediation
scenario described in Chap. 2 without any specific additional enhancements to the
jABC. This meant that we had to program (in Java)

• WSDL import functionality,
• transformations from the WSDLs to SIBs, and
• the communication with the individual Web services.

These solutions, presented at the Budva (June 2006) and Athens, GA (Nov. 2006)
Workshops, were purely oriented to a professional use of model driven design, as
supported in the jABC, for the creation of bespoke applications. We used SIBs and
SLGs for the functionalities and workflows respectively, and we provided the me-
diator as a Java application. Seen from today’s point of view, this solution used the

86 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

Fig. 5.7. Sending a PurchaseOrderConfirmation - SLG of the Mediator #1, Part 2

jABC framework only to ease the work of a programmer.

One year later, at Innsbruck (June 2007) and Stanford (November 2007) we had
proceeded to providing an infrastructure that systematically aids the integration of
external (Web) services, the communication with them at runtime, and the provision
of the mediator services as Web services themselves, enhancing the entire jABC/jETI
framework.

In this section we illustrate the agility of our current framework-based solution by
considering two mediation scenarios described in Chap. 2: the basic mediation sce-
nario between the Blue customer and the Moon company, that we call here Media-
tion scenario #1, and an elaboration of this scenario that extends Moon’s capabilities
(called here Mediation scenario #2) - each Mediator consisting of two services. This
shows the impact of our

• automatic WSDL import functionality, our
• automatic generation of SIBs from the WSDLs, and the
• jETI communication framework (Sect. 5.6), which makes the communication

with (remote) SIBs transparent to the user of the Framework.

5 Service-oriented Mediation with jABC/jETI 87

Fig. 5.8. Sending a PurchaseOrderConfirmation with LineItems - SLG of the Mediator #2,
Part 2

In particular, the automatic generation of SIBs from the WSDLs describing the
communication with Moon’s and Blue’s backend services made a huge difference.
Due to the automatic WSDL import, this feature is very easy to use: one only needs
to provide the URL for the WSDL descriptor of the Web service, and the correspond-
ing SIB shows up in the SIB palette, ready to be used for orchestrations. Together
with the jETI framework, this totally frees the user from worrying about remote in-
tegration and communication, both at design time and at runtime.

Both mediation scenarios are similar in structure. As illustrated in Fig. 5.9 and
5.10 on the original Challenge’s schemata, they both consist of two services, each
modeled in their own SLG:

• Receiving a PurchaseOrderRequest: this service takes a RosettaNet PIP3A4Pur-
chaseOrderRequest from Blue and forwards it to the Moon system, handling the
whole order submission procedure (due to the different granularity of the Moon
and Blue services). This service is shared by both scenarios. The corresponding
final SLG is reported in Fig. 5.6.

• Sending a PurchaseOrderConfirmation: this service waits for all ordered items
to be confirmed by Moon’s backend system and sends a RosettaNet PIP3A4Pur-
chaseOrderConfirmation back to the Blue client. Depending on the scenario, this
service refers only to Moon’s Order Management System or also to its Production
Management System. Its SLGs are reported in Fig. 5.7 and 5.8, respectively.

The following two subsections describe the modelling of the original mediation sce-
nario and of its elaboration.

88 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

Fig. 5.9. Decomposition of Mediation Scenario #1: the Receiving POR and the Sending
POC services

5.7.1 The Original Mediation Scenario - #1

The mediation scenario concerns making a legacy order management system interop-
erable with external systems that use a simplified version of the RosettaNet PIP3A4
specifications5. It concerns therefore finding an adequate orchestration that adapts
two conversation partners that mismatch both in the interaction protocol and in the
granularity and format of data. Its three main components are

• the Company Blue, a customer (service requester) ordering products. The SIBs
in our solution that communicate with Blue’s endpoint are indicated visually in
the SLGs by an icon with blue liquid

• the Mediator, the sought-for piece of technology providing automatic or semi-
automatic mediation for the Moon company, and

• the Legacy System of the Moon Company. To manage its order processing,
Moon uses two back-end systems: a Customer Relationship Management sys-
tem (CRM) and an Order Management System (OMS), both accessible on the
SWSC testbed through public Web services described using WSDL. The SIBs in
our solution that communicate with Moon’s endpoints are indicated visually in
the SLGs by an icon with a picture of the moon’s surface.

5 http://www.rosettanet.org/PIP3A4

5 Service-oriented Mediation with jABC/jETI 89

Fig. 5.10. Decomposition of Mediation Scenario #2: the same Receiving POR and extended
Sending POC services

While the external interfaces must follow the RosettaNet specification, internally
Moon uses a propriety legacy system whose data model and message exchange pat-
terns differ from those of RosettaNet. Participants shall basically enable Moon to
”talk RosettaNet” and implement the Purchase Order receiving role part of the in-
teraction described in the RosettaNet PIP 3A4.

Both the Moon legacy systems and the customer Web services (Blue) are pro-
vided by the challenge organizers as technical infrastructure accessible online, and
cannot be altered by the participants.

Outline of the Solutions

The generic structure of the solution, shared by all our successive improvements, is
as follows:

• extract the relevant information from the PurchaseOrderRequest
• call Moon’s Customer Relation Management (CRM) to find the customer data

inside the database, if the customer already has an account.
• Use the CustomerID to create an order using Moon’s Order Management System

(OMS).
• add LineItems as needed and then

90 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

• close the order.
• Finally the middle layer receives an OrderConfirmationObject and
• sends a PurchaseOrderConfirmation back to Blue.

In the following, we present the final service logics for the three services that are
required to solve both scenarios.

Service 1: Receiving a PurchaseOrderRequest.

Its SLG is reported in Fig. 5.6 and contains the following logic:

• it receives a message from Blue (ReceivePOR), parses it and creates an order
(CRMService v1SearchCustomerSIB, OMService v1CreateNewOrderSIB).

• A loop then adds all the contained items to the order one at a time (NextLineItem,
OMService v1AddLineItemSIB, MoreItems).

• Finally the order is closed (OMService v1CloseOrderSIB).
• Both models work on the same set of data, thus we save all the information in the

execution context of the ReceivePOR service (SavePORFromContext, SaveArti-
cleIDsFromContext) as a means of communicating them to the next service.

• In a final step, the acknowledge message for receiving the POR is sent to Blue’s
service (ReturnACKFromContext).

Service 2: Sending a PurchaseOrderConfirmation.

This service (see Fig. 5.7) waits for a message sent by Moon confirming the avail-
ability of all the items.

• When the message is received (Get message)
• the context information stored by the previous service is retrieved in the new

execution context (Load Context).
• The response is then parsed (Load LineItem Response)
• and checked for more items to come (Check States).
• Since there is a single message for each line item we save the context once again

if we have to wait for another response (Save Context),
• we finally send a PurchaseOrderConfirmation once all items have been pro-

cessed (Send POC).
• As in any jABC service, the SWS Error SIB provides also here the default jABC

error handling.

5.7.2 Adding the Production Management System: Mediation Scenario #2

Mediation scenario #2 is identical in its first phase (service 1) to the previous sce-
nario, but addresses some additional requirements concerning the second phase for
purchase order confirmation: it offers on-demand production of items not available
in stock. This extension of the functionality led to the following changes in our solu-
tion:

Once the OMS’s responses of all items are received, instead of sending directly
a PurchaseOrderConfirmation there is a conditional treatment based on an additional
evaluation (LineItem validation):

5 Service-oriented Mediation with jABC/jETI 91

• The item is accepted if it is in stock and the process ends by sending the confir-
mation as described in scenario #1.

• Otherwise, we check with Moon’s Production Management service whether
the missing items can be produced on demand. To this aim we invoke two
new backend services at Moon’s legacy system. The corresponding SIBs are
of course again generated from the corresponding WSDLs. The SIBs (PMSer-
viceCheckProductionCapabilitiesSIB and PMServiceOrderLineItemForProduc-
tionSIB) check Moon’s capability to produce the missing items and order its
production. If this is successful, the process ends by sending the correspond-
ing confirmation, thus reducing an order’s rejection only to the case where it is
neither on stock nor it can be produced on demand.

Fig. 5.8 shows the resulting SLG, which turns out to require only minor mod-
ifications wrt. its predecessor shown in Fig. 5.7. For better layout of the logic we
hide here the error handling aspect in this picture. In reality, there is for each SIB a
mandatory error branch, that enables possibly specific treatment of errors.

5.8 Verifiying the Mediator

A central feature of jABC is its rich family of plugin extensions. They include GEAR,
our Model Checker for the full µ-calculus [12]. GEAR [10] enables us to semanti-
cally verify our approach by expressing behavioral properties of the Mediator as tem-
poral logic formulas in µ-calculus or in one of its derived logics, like the branching
time logic CTL [4]. A frequent pattern of behavioral properties easily expressible
in these logics concerns precedence requirements. As an example, we request that
a receivePOR must precede a searchCustomer which in turn must precede a cre-
ateNewOrder and this must occur before an addLineItem. This is expressed in the
internal CTL syntax for GEAR as

AF (receivePOR & AF (searchCustomer & AF (createNewOrder
& AF (addLineItem))))

whereby AF p means on every path starting in this state, property p will eventually
occur (at least once).

Fig. 5.6 shows the modelchecked Mediator service Part 1, where a POR is re-
ceived. GEAR highlights in green the path (the set of nodes) for which this property
holds. Additionally, on the left it shows both the property and its subformulas: click-
ing on a node, the satisfied (resp. unsatisfied) subformulas turn green (resp. red), and
clicking on a subformula all the satisfying nodes turn green. Our previous experi-
ence has shown that this direct feedback is greatly appreciated in particular by less
experienced users since it simplifies debugging complex processes directly on the
model.

We can also model the entire Mediator in a hierarchical fashion: the model of
each Mediator part is exported as a SIB, as in Fig. 5.7. The Service of the Part 2 is
connected by a virtual edge, that is taken upon successful termination of the Part 1

92 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

Fig. 5.11. Architecture of the jABC/jETI SWS Mediator

graph. This way we have a single graph, even if the execution of Part 2 starts asyn-
chronously, and thus we can also express and check properties of the entire Mediator.

5.9 Automatic Web Service Generation in Practice

Our initial solution worked, but it required execution inside the jABC Tracer. We
wanted however to provide the Mediator automatically as intermediate Web service
between the Blue customer and Moon’s legacy system, participating to this three-
party choreography (or four, if we consider that the mediator requires two services).

The missing components to achieve this concerned a robust and possibly au-
tomatic technology for providing the orchestrated services as autonomous Web ser-
vices. This is solved by a new generic component of the jETI framework [26, 14, 29],
which is provided as a plugin within jABC. As we discussed in [13], initially we
thought it would be quite easy. However, the solution turned out to be heavily depen-
dent on rather peculiar features and capabilities of a number of ’standard’ tools and
software layers, which required specific care far beyond what one would expect for
a ’mature technology’.

5 Service-oriented Mediation with jABC/jETI 93

Fig. 5.12. Data Binding in Java 6

In the following we briefly sketch the different approaches we tried out, followed
by our current solution, which extends the jABC with a specific functionality realized
itself as a jABC process (Fig. 5.14).

5.9.1 Basic Technology

There are two dual approaches for implementing Web services in general: code first
and contract first:

• In a code first approach, some implemented functionality is available that should
be published as a Web service. The related WSDL file is ideally generated by the
used Web services framework at deployment.

• In a contract first approach, one starts by writing a WSDL by hand (or tool-
supported) and then generates the Web service’s stubs and skeletons with a gen-
eration tool usually provided by the used Web services framework.

We investigated both approaches, as described in detail in [13]. Fig. 5.11 gives an
overview of our current solution (architecture and flow). Once the mediator’s services
had been modelled as described in the previous section, we could automatically gen-
erate a fully functional Web service serving as a communication component between
Blue and Moon. As before, we first had to export the model to plain and stand-alone
Java using GeneSys, followed by the Contract first approach to Web service genera-
tion: Java 6 has a fully integrated Web service support, providing an integrated web
server and an easy to use services framework. So we can just deploy and execute the
resulting application, and the service is up and running. We describe in the following
in detail the systematic process.

94 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

5.9.2 Web Service Generation: the final process

Whether the SLG Mediator is manually composed, as just described, or automati-
cally generated, as described in Chap. 7, it has at the end to be able to communicate
with the Web services on the Challenge testbed. The most natural way of achieving
this is by providing the Mediator itself as a Web service, and deploying it somewhere
with free communication to the Testbed.

To this aim, we extended the jABC with the capability of creating a Web service
from an arbitrary traceable jABC model. This section describes the organization of
this Web Service generator, that is now bundled in the jETI plugin for jABC.

The chosen approach is to create executable Java code from the given jABC
model using the Genesys code generation framework [7] and add some wrapper
classes which publish this generated class as a Web service. As Web service frame-
work we choose JAX-WS [9], which is part of the Java 6 distribution. For the creation
of the Web Service we need some additional information that cannot be fully inferred
from the model alone, such as imported XSD definitions and input/output types of
the Web service, as well as a way to append this meta information to the model.
This is realized by a dedicated annotation editor, the AppendWSInfo SIB, with a spe-
cial grammar that represents exactly the required data. Figure 5.13 shows the WS
Metadata for the Mediator process, that has been added by the AppendWSInfo SIB.

The Web service generation process results in a complete Web service, with all
its sources and dependencies being generated into a temporary directory and then
packaged to a ZIP file.

Fig. 5.13. Metadata for Web service generation

The Web Service generation process has been modelled itself as a jABC process
graph, shown in Fig. 5.14, that orchestrates a number of (new) SIBs which implement

5 Service-oriented Mediation with jABC/jETI 95

the required functionalities. This model has then been extruded6 using Genesys to
enable its seamless integration into the jABC/jETI GUI.

We now explain the Web service generation process stepwise, along the structure of
its SLG.

Fig. 5.14. The Web service generator process as SLG

Make Temp Dir creates a dedicated temporary directory for the work of the subse-
quent SIBs.

Extrude Java Class takes the target SLG to be provided as a Web service and gen-
erates the corresponding Java code using the Genesys JavaClassExtruder. The
result is a Java class that performs the same tracing of the model as it would be
done by the jABC Tracer.

Copy jABC Libraries The generated Java class depends on some core jABC li-
braries. Here, we search the Classpath for those libraries and add them to the
temporary directory.

Copy Project Classpath Entries Additional libraries required by the project can
be specified as project classpath entries within jABC. They are also necessary to
run the final Web service, thus this SIB copies those project specific JARs to the
temporary directory.

6 For Java targets, Genesys can produce either pure code, which is native Java, or extruded
code, that runs outside of the jABC within a lightweight version of the Tracer, that is itself
part of the delivered code.

96 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

Copy Project SIB Entries copies all the SIB classes of this project to the temporary
directory. These are required for the extruded trace.

Copy XSD Resources If the Web service’s interface definition contains more than
simple XSD types, one can provide XSD type definition files that are shipped
with the Web Service. This information is taken from the Web Service Metadata
annotation, as explained above.

Generate WS Wrapper generates the endpoint source code using a Velocity tem-
plate and the Message Signature subtree of the WS Metadata definition. This
class contains the annotations required by the JAX-WS framework (@Web-
Service, @WebParam, @WebResult).

Generate WS Main then generates the main class of the Web service from a veloc-
ity template. In this main class the previously created endpoint class is instanti-
ated and started.

Generate ANT Script creates an ANT build script from a velocity template con-
taining predefined targets to compile and run the generated classes.

Package ZIP Archive Here all generated and copied files are packaged into a single
ZIP file for easier delivery. The path to the ZIP file is exported as a model param-
eter. This means that it is provided as as ’procedure parameter’ in the extruded
model, giving the caller the ability to specify the output file.

Delete Temp Dir Finally, the temporary directory is cleaned up and deleted.

Most of the elements of this Web service generator are not specific to the Web
service technology. We expect that its realization as a jABC model based on compo-
nents packaged as SIBs, followed by code generation of the entire SLG will provide
a template to be reused for other exporters to specific technologies, like e.g. CORBA
or other domain-specific specialized formats.

5.10 Related Work

A detailed comparison with the WebML/Webratio approach is provided in Chap. 9.
Concerning the other Mediation solutions, we are certainly very close to the ASM

format used by WSMO-LX: Our SLGs have a formal semantics as Kripke Transi-
tion Systems, which is also a state machine based formalism. SLGs were initially
exported as list of transitions, thus close even in the notation to ASMs. However, the
WSMO Solution does not make any use of the formal model underlying the ASMs,
while we take advantage of ours both for verification purposes of the SLGs, as shown
here in Sect. 5.8, and for the semantic enhancement of the SIBs with formal proper-
ties (atomic propositions in the SLTL logic). We use in fact these properties also to
create taxonomies then used for the automatic generation of the SLGs from declara-
tive descriptions of the desired workflows, as shown in Chap. 7. That solution is the
closest to the planning-based one described in Chap. 6. The Diane mediation solution
was realized as a normal, manually produced Java program, without any generation
from a modelling layer. It represents therefore the state-of-the-art starting point of
programming in an IDE, without any kind of high-level modelling.

5 Service-oriented Mediation with jABC/jETI 97

Relative to the state of the art in Workflow systems for Web services, the popu-
lar tools used in other communities, like e.g. Taverna [24] in bioinformatics, would
likely encounter great difficulty of application for the SWS Challenge. The point is
that they are dataflow-oriented modelling tools born on top of fine granular grid com-
puting projects: activities there concern basic data management operations on a grid
such as Put, Get, Connect, ProxyCommand - quite a different granularity from the
user-level addressed in jABC/jETI and in the Challenge. Moreover, their provenance
is not from a software engineering/programming environment background, nor from
a process model semantics and formal verification culture. Thus they address the
process design and management with a focus on explicit model of data connections.
This is already emerging as a limit in their original area of application, where Web
services communicate via a few, simple datatypes. Handling complex structures like
the Challenge’s business objects (as shown in Fig. 5.5 b)) would exceed their capa-
bilities and original purpose.

Regarding Web services standards, jABC supports meanwhile also BPEL as a
graphical entry notation [5] alternative to the SLG format, and it supports code gen-
eration for the Active BPEL and Oracle BPEL engines. We could have therefore also
formulated the flows as BPEL processes, and executed them on one of those plat-
forms. However, since BPEL has no clean formal semantics, we would have lost the
formal methods support offered by jABC, which is in our opinion a central asset of
the environment.

Regarding the standards of Semantic Web, our SLGs are very close to the pro-
cesses expressible in OWL-S [22]. We may decide to export our SLGs in that format
too in the near future.

5.11 Conclusions and Ongoing Work

We have discussed our model driven, service oriented solution to the Mediation task
with the intent to also illustrate the agility of jABC-based solutions: users easily de-
velop services and applications by composing reusable building-blocks into (flow-)
graph structures that can be animated, analyzed, simulated, verified, executed, and
compiled. In particular, we have proceeded to providing an infrastructure that sys-
tematically aids the integration of external (Web) services, the communication with
them at runtime, and the provision of the mediator services as Web services them-
selves, enhancing the entire jABC/jETI framework.

This approach is adequate whenever one wants to put the user process at the cen-
ter of the development and the application expert in control of the process evolution
- in our opinion the key to agility.

Currently, we are investigating this new paradigm of user-centric process/system
design, which we call eXtreme Model Driven Design, in various dimensions: we
address how it can be technically further supported, how it complements classical
software/service development, and which are the natural limitations of this approach.
The SWS challenge provides an interesting scenario for this investigation, in partic-

98 C. Kubczak, T. Margaria, B. Steffen, R. Nagel

ular as it allows one to compare the own solutions with solutions proposed by others
for the same problem scenarios.

References

1. A. Arenas, J. Bicarregui, and T. Margaria. The FMICS view on the verified software
repository, proc. integrated design and process technology. In IDPT 2006. Society for
Design and Process Science, June 2006.

2. Apache Axis Web Service Framework, 2007. http://ws.apache.org/axis/.
3. V. Braun, T. Margaria, B. Steffen, H. Yoo, and T. Rychly. Safe service customization. In

Proc. IN’97, IEEE Communication Soc. Workshop on Intelligent Network. IEEE Comm.
Soc. Press., May 1997.

4. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995–1072. MIT Press/Elsevier, 1990.

5. J. Gaeb. Entwicklung eines BPEL-Plugins für das jABC-Framework. Master’s thesis,
Universität Dortmund, 2007.

6. GEAR Model Checker, 2007. http://jabc.cs.uni-dortmund.de/opencms/
opencms/jabc/plugins/gear.html.

7. GeneSys Code Generation, 2007. http://jabc.cs.uni-dortmund.de/
opencms/opencms/jabc/plugins/genesys/index.html.

8. jABC Website, 2007. http://www.jabc.de.
9. JAX-WS Developers’ Website:, 2007. https://jax-ws.dev.java.net/.

10. Sven Jörges, Christian Kubczak, Ralf Nagel, Tiziana Margaria, and Bernhard Steffen.
Model-driven development with the jABC. In HVC - IBM Haifa Verification Conference,
LNCS 4383, Haifa, Israel, October 23-26 2006. IBM, Springer Verlag.

11. D. Kozen. Results on the propositional mu-calculus. In Proc. ALP’82, 9th Colloquium on
Automata, Languages and Programming, LNCS 140, pages 348–359, Aarhus, DK, July
1982. Springer Verlag.

12. D. Kozen. Results on the propositional mu-calculus. TCS N.27, pages 333–354, 1983.
13. C. Kubczak, T. Margaria, B. Steffen, and S. Naujokat. Service-oriented mediation with

jETI/jABC: Verification and export. In Worksh. on Service Composition & SWS Chal-
lenge, part of WI-IAT’07, the IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, November
2007, Stanford (CA), volume ISBN-10: 0-7695-3028-1. IEEE CS, 2007.

14. T. Margaria. Web services-based tool-integration in the ETI platform. SoSyM, Int. Journal
on Software and System Modelling, 4(2):141–156, May 2005.

15. T. Margaria, C. Kubczak, M. Njoku, and B. Steffen. Model-based design of distributed
collaborative bioinformatics processes in the jABC. In Proc. ICECCS 2006, 11th IEEE
International Conference on Engineering of Complex Computer Systems, Stanford (CA),
pages 169–176. IEEE CS, August 2006.

16. T. Margaria, C. Kubzcak, and B. Steffen. Bio-jETI: a service integration, design, and
provisioning platform for orchestrated bioinformatics processes. BioMed Central (BMC)
Bioinformatics 2008; Supplement dedicated to Network Tools and Applications in Biology
2007 Workshop (NETTAB 2007) ISSN 1471-2105. Published online 2008 April 25. doi:
10.1186/1471-2105-9-S4-S12., 9 (Suppl 4): S12, 2008.

17. T. Margaria, H. Raffelt, B. Steffen, and M. Leucker. The LearnLib in FMICS-jETI. In
Proc. ICECCS 2007, 12th IEEE Int. Conf. on Engineering of Complex Computer Systems,
pages 340–349. IEEE CSoc. Press., July 2007.

5 Service-oriented Mediation with jABC/jETI 99

18. T. Margaria and B. Steffen. From the how to the what. In VSTTE: Verified Software—
Theories, Tools, and Experiments, Proc. IFIP Working Conference, Zurich, Oct 2005,
volume LNCS 4171. Springer, 2005.

19. T. Margaria and B. Steffen. Service engineering: Linking business and it. IEEE Computer,
issue 60th anniv. of the Computer Society, pages 53–63, October 2006.

20. T. Margaria, B. Steffen, and M. Reitenspieß. Service-oriented design: The roots. In
ICSOC 2005: 3rd ACMSIGSOFT/SIGWEB Int. Conf. on Service-Oriented Computing,
LNCS N.3826, pages 450–464, Amsterdam, December 2005. Springer Verlag.

21. Tiziana Margaria and Bernhard Steffen. Lightweight coarse-grained coordination: a scal-
able system-level approach. STTT, 5(2-3):107–123, 2004.

22. D. Martin, M. Burstein, D. McDermott, S. McIlraith, M. Paolucci, and K. Sycara et al.
Bringing semantics to web services with OWL-S. In World Wide Web, volume 10, page
243277. Springer, 2007.

23. M. Müller-Olm, D. Schmidt, and B. Steffen. Model-checking: A tutorial introduction. In
Proc. SAS’99, pages 330–354. LNCS 1503, Springer Verlag, September 1999.

24. T. Oinn, M. Addis, J. Ferris, D. Marvin, and M. Senger et al. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–
3054, 2004.

25. B. Steffen and T. Margaria. Metaframe in practice: Intelligent network service design. In
Correct System Design - Issues, Methods and Per-spectives, E.-R. Olderog and B. Steffen
(eds.), LNCS 1710, pages 390–415. Springer Verlag, 1999.

26. B. Steffen, T. Margaria, and V. Braun. The electronic tool integration platform: Concepts
and design. Int. Journal on Software Tools for Technology Transfer (STTT), 1(2):9–30,
1997.

27. B. Steffen, T. Margaria, V. Braun, and N. Kalt. Hierarchical service definition. In Annual
Review of Communication, pages 847–856. Int. Engineering Consortium Chicago (USA),
IEC, 1997.

28. B. Steffen, T. Margaria, A. Claßen, V. Braun, and M. Reitenspieß. An environment for the
creation of intelligent network services. In (invited contribution) Annual Review of Com-
munication, pages 919–935. Int. Engineering Consortium Chicago (USA), IEC, Novem-
ber 1996.

29. Bernhard Steffen, Tiziana Margaria, and Ralf Nagel. Remote Integration and Coordi-
nation of Verification Tools in jETI. In Proc. ECBS 2005, 12th IEEE Int. Conf. on the
Engineering of Computer Based Systems, pages 431–436, Greenbelt (USA), April 2005.
IEEE Computer Soc. Press.

30. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5, 1955.

6

A Declarative Approach using SAWSDL and Semantic
Templates Towards Process Mediation

Karthik Gomadam1, Ajith Ranabahu1, Zixin Wu2, Amit P. Sheth1 and John Miller3

1 kno.e.sis center, Wright State University, Dayton, OH
kgomadam@gmail.com,{ranabahu.2,amit.sheth}@wright.edu

2 Nextag Corporation, San Mateo, CA
wuzixin@gmail.com

3 LSDIS Lab, Department of Computer Science, University of GA, Athens, GA
jam@cs.uga.edu

Summary. In this paper we address the challenges that arise due to heterogeneities across
independently created and autonomously managed Web service requesters and Web service
providers. Previous work in this area either involved significant human effort or in cases of
the efforts seeking to provide largely automated approaches, overlooked the problem of data
heterogeneities, resulting in partial solutions that would not support executable workflow for
real-world problems. In this paper, we present a planning-based approach to solve both the
process heterogeneity and data heterogeneity problems. We adopt a declarative approach to
capture the partner specifications external to the process and demonstrate the usefulness of
this approach in adding more dynamism to Web processes. Our system successfully outputs a
BPEL file which correctly solves a non-trivial real-world problem in the SWS Challenge.

Semantic Templates, Process Mediation, Semantic Web Services, SAWSDL, SWS Challenge

6.1 Introduction

Web services are software systems designed to support interoperable machine-to-machine in-
teractions over a network. They are the preferred standards-based way to realize Service Ori-
ented Architecture (SOA) computing. A problem that has seen much interest from the research
community is that of automated composition (i.e., without human involvement) of Web ser-
vices. The ultimate goal is to realize Web service compositions or Web processes by leveraging
the functionality of autonomously created services. While SOAs loosely coupling approach is
appealing, it inevitably brings the challenge of heterogeneities across these independently de-
veloped services. Two key types of heterogeneities are those related to data and process. It
is necessary and critical to overcome both types of these heterogeneities in order to organize
autonomously created Web services into a process to aggregate their power.

Previous efforts related to Web service composition considered various approaches, and
have included use of HTN [1], Golog [2], classic AI planning [3], rule-based planning [4]

102 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

model checking [5], theorem proving [6] etc. Some solutions involve too much human ef-
fort; some overlook the problem of data heterogeneities. Overcoming both process and data
heterogeneities is the key to automatic generation of executable process.

One of the metrics for evaluating the solution is to measure the flexibility of a solution.
The objective is to minimize the human effort required when the execution scenario is mod-
ified. We adopt a declarative approach towards achieving a greater degree of flexibility. Our
solution externalizes the partner and the process requirements from the process control flow.
Various variable parameters including QoS requirements, data and functional requirements
are specified using semantic templates in a declarative manner. In the event of a change in the
environment, one can reconfigure the process by changing the external specification.

In our solution, we extend GraphPlan[7], an AI planning algorithm, to automatically gen-
erate the control flow of a Web process. Our extension is that besides the preconditions and
effects of operations, we also take into consideration in the planning algorithm the structure
and semantics of the input and output messages. This extension reduces the search space
and eliminates plans containing operations with incompatible messages. Our approach for the
problem of data heterogeneity is a data mediator which may be embedded in the middleware
or an externalized Web service. By separating the data mediation from the process media-
tion, we allow the process mediation system concentrate on generating the control flow. This
separation of concerns also makes it easier to analyze the control flow.

The key benefits of our solution are

1. The ability to automatically generate executable workflow that addresses both control
flow and data flow considerations (in our current implementation it is a BPEL process
specification).

2. A pattern-based approach for loop generation in planning.
3. A loosely coupled data mediation approach and a context-based ranking algorithm for

data mediation.
4. Declarative approach towards specifying requirements that makes it easier to manage

change.

We demonstrate the above capabilities using a case/scenario in the 2006 SWS Challenge.
The remainder of this paper is organized as follows. We first give some background infor-

mation of the problem of Web service composition in section 6.2, and then introduce a mo-
tivating scenario in section 6.3. The next two sections form the technical core of this paper–
section 6.4 presents a formal definition of semantic Web services and Semantic Templates,
and section 6.6 discusses the automatic Web service composition capability.

Finally, we give conclusions and future work in section 6.7.

6.2 Background and Related Work

6.2.1 Background

There are two categories of partners that are described within the Web services domain,
namely the service provider and service requester. A service provider presents its Web service
functionality by providing a set of operation specifications (or operations for short). These
operations allow service requesters to use the services by simply invoking them. These oper-
ations might be inter-dependent. The dependences can be captured using precondition, effect,
input, and output specifications of the operation. Using these available operations, a service

6 A Declarative Approach using SAWSDL and Semantic Templates 103

requester performs one or more inter-related steps to achieve the desired goal. These steps
can be best viewed as activities in a process and can be divided into smaller and more con-
crete sub-steps, and eventually invocations of concrete operations. Specifications by service
requesters and providers are often times autonomously created. This causes heterogeneities to
exist between the requester and provider when Web services need to interoperate as part of a
composition of Web services. Two key types of heterogeneities may exist – the data related
and the communication/process related. We say that process heterogeneity exists when the
goal of the service requester cannot be achieved by atomically invoking exactly one operation
once. On the other hand, data heterogeneity exists when the output message of an operation
has different structure or semantics from the input message of the consecutive operation.

It is also important that we use a framework that has the flexibility to support both func-
tional and non-functional requirements for service discovery. Such a framework must allow
service providers to publish their non-functional capabilities. In such a framework the criteria
for selection must not be too restrictive, since it may be very difficult to find services that
exactly match the requirements. The requester must be able to specify the expected level of
match for the different aspects of the request. For example, a requester can specify that an
exact match is needed with respect to the operation while a sufficiently similar match would
suffice for the input and output parameters.

SAWSDL

We describe Web services and Semantic Templates (discussed next) in SAWSDL. SAWSDL
[8] is a W3C standard to add semantics to Web services descriptions. SAWSDL does not
specify a language for representing the semantic models, e.g., ontologies. Instead, it provides
mechanisms by which concepts from the semantic models that are defined either within or out-
side the WSDL document can be referenced from within WSDL components as annotations.
Semantic annotations facilitate process composition by eliminating ambiguities. We annotate
a Web service by specifying Model References for its operations as well as Model References
and Schema Mappings for the input and output message of its operations. We also extend
SAWSDL by adding preconditions and effects as in our W3C submission on WSDL-S [9] for
an operation, which will be discussed in later sections.

Rao et al. [3] discuss the use of the GraphPlan algorithm to successfully generate a pro-
cess. While it is good to consider the interaction with the users, their approach suffers from the
extent of automation. Also this work, unlike ours does not consider the input/output message
schema when generating the plan, though their system does give alert of missing message to
the users. This is important because an operation’s precondition may be satisfied even when
there is no suitable data for its input message. Another limitation of their work is that the only
workflow pattern their system can generate is sequence, although the composite process may
contain other patterns. As the reader may observe from the motivation scenario, other patterns
such as loops are also frequently used.

Duan et al. [10] discuss using the pre and post-conditions of actions to do automatic
synthesis of Web services. This is initiated by finding a backbone path. One weakness of their
work is the assumption that task predicates are associated with ranks (positive integers). Their
algorithm gives priority to the tasks with higher rank. However, this is clearly invalid if the
Web services are developed by independent organizations, which is the common case and the
main reason leading to heterogeneities.

Pistore et al. [11] propose an approach to planning using model checking. They encode
OWL-S process models as state transition systems and claim their approach can handle non-
determinism, partial observability, and complex goals. However, their approach relies on the

104 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

specification of OWL-S process models, i.e., the users need to specify the interaction between
the operations. This may not be a realistic requirement in a real world scenario where multiple
processes are implemented by different vendors.

6.3 Motivating Scenario

The 2006 SWS Challenge mediation scenario version 1 is a typical real-world problem where
distributed organizations are trying to communicate with each others . A customer (depicted
on the left side of the figure) desires to purchase goods from a provider (depicted on the
right side of the figure). The anticipated process, i.e., the answer of this problem, is depicted
on the middle of the figure which should be generated by a mediation system automatically.
Both process and data heterogeneities exist in this scenario. For instance, from the point of
view of the service requester called Blue, placing an order is a one-step job (send PO), while
the service provider called Moon, involves four operations (searchCustomer, createNewOrder,
addLineItem, and closeOrder). The message schemas they use are not exactly the same. For
example, Blue uses fromRole to specify the partner who wants to place an order, while Moon
uses billTo to mean the same thing. The structures of the message schemas are also different.
To make matters worse, an input message may involves information from two or more output
message, for example, the operation addLineItem requires information from the order request
message by Blue and the newly created order ID from the output message of operation cre-
ateNewOrder. In order to solve this problem successfully and automatically, the composition
system at least should be able to do the following: generate the control flow of the mediator
that involves at least two workflow patterns (Sequence and Loop) based on the specification
of the task and the candidate Web service(s), and convert (and combine if needed) an input
message to an acceptable format annotated with appropriate semantics.

6.4 Declarative Approach towards Solution

One of the evaluation measures to determine the efficiency of the composition approach is the
ability to manage change with minimal programming efforts. Systems developed using con-
ventional approaches where the requirements and the services are not externalized from the
actual system itself, may often prove to be inflexible. To overcome this limitation, we adopt
an declarative approach to capture the requirements of the process and the service descrip-
tion of partner services. Our system generates a plan based on the requirement and discovers
partner services based on their descriptions. A Web process is then generated that can be
deployed and executed. When there is a change in the requirement, a new process can be gen-
erated using the changed requirements. The requirements are captured as semantic template
and partner services are described using SAWSDL. The non-functional properties of both the
requirement and the service can be captured using WS-Policy. We define a new class of as-
sertions called business assertions that can be added to WS-Policy to describe business level
non-functional properties such as shipment destinations and shipment weight. It is our belief
that the availability of visual XML editors and WSDL editors would make it easier to change
these specifications. Further, this externalization eliminates re-compilation of the system for
each change.

6 A Declarative Approach using SAWSDL and Semantic Templates 105

6.4.1 Semantic Templates

A semantic template captures the functional and non-functional requirements of a service
requestor. It allows service requesters to semantically describe their requirements. Similar to
SAWSDL the semantics are captured using the model reference attribute.The elements in a
semantic template are the template term, operation, input, output, and term policy. The model
reference attribute in a template term captures the domain requirement which is a concept in a
classification hierarchy such as the NAICS industry classification hierarchy. In addition to the
domain attribute, a template term also consists of one or more operations. The model reference
attribute in the operation element carries a reference to a concept in a semantic meta-model that
provides a richer description of the operation including its behavioral aspects. Each operation
element has input and output elements. The model reference attribute of the input and the
output elements is a concept in the semantic meta-model that describes their schema. The non-
functional requirements are captured using the term policy element. Each term policy element
is a collection of assertions. The term policy element can be attached to a operation, template
term or to the entire semantic template. [12] and [13] discuss the Semantic Template in great
detail. However for the sake of clarity and completion we describe the semantic template
briefly.

Formally semantic templates are defined by:

ω
r , Iω, Oω, πω, pω, eω} is a 7-tuple with:

• ω: the operation
• Mω

r : set of operation model references
• Iω: operation inputs and their model references
• Oω: operation outputs and their model references
• πω: operation level term policy and the non-functional semantics
• pω: operation precondition
• eω: operation effect

The template term θs = {ε, ε, ε, ε, πs, ε, ε} defining just the term policy defines semantic
template wide term policies.

Figure 6.1 illustrates the conceptual model of a semantic template.

6.4.2 Business assertions in WS-Policy

The motivating scenario illustrates the importance to model the non-functional properties to-
wards enhancing the discovery of partner services. In this section we present our approach
to declaratively specify the non-functional properties of both a request as well as a service.
The WS-Policy specification provides a flexible grammar for describing the non-functional
properties. The WS-Policy specification defines a policy as a collection of alternatives; each
policy alternative is a collection of assertions [14]. Leveraging this flexibility, we define a new
class of assertions called business assertions to capture business level non-functional metrics.
Examples of these metrics in the Muller service include maximum weight of shipment and
shipping destinations. When used by service providers, they are attached to the SAWSDL
service descriptions in the same manner as WS-Policy, using WS-PolicyAttachment.The ele-
ments of a business assertion are described in Table 6.1. These assertions are illustrated in the
business policy example in Figure 6.2

A template term θ = {ω,M
Definition 1. A semantic templateψ is a collection of template terms = {θ|θ is a template term}.

106 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

Fig. 6.1. Conceptual Model of Semantic templates

6.4.3 Formal model of abstract Web services:

WSDL is a widely accepted industry standard (a W3C recommendation) for describing Web
services. SAWSDL is expressive for functional and data semantics, and sufficient to solve
the problem of semantic discovery and data mediation. We extend SAWSDL by adding pre-
conditions and effects in the operations for process mediation. Preconditions and effects are
necessary because not all the states of a Web service are represented by the input/output mes-
sage. For example, both a book buying service and book renting service may take as the input
the user ID and the ISBN, and give as the output the status succeed or fail. Importance of
pre-condition and effects have been recognized by major semantic Web services initiatives
including OWL-S, WSMO and WSDL-S, here we do that by extending the emerging standard
of SAWSDL.

For the purpose of service composition, our model only focuses on the abstract represen-
tation of Web services, i.e., operations and messages, but does not consider the binding detail.
Before giving our formal model, we need to introduce some definitions of the basic build-
ing blocks. Most classic AI planning problems are defined by the STRIPS representational
language (or its variants like ADL), which divides its representational scheme into three com-
ponents, namely, states, goals, and actions. For the domain of Web service composition, we
extend the STRIPS language as the representational language of our method.

• Extended state: We extend a state by adding a set of semantic data types in order to
ensure that the data for the input message of an operation is available before the operation
is invoked. An extended state s has two components: s = <SSF, SDT >, where:
– SSF is a set of status flags, each of which is an atomic statement with a URI in a

controlled vocabulary. SSF defines the properties of the world in the specific state.
We use ternary logic for status flags, thus the possible truth values are True, False,
and Unknown. We use the open-world assumption, i.e., any status flag not mentioned
in the state has the value unknown.

– SDT is a set of semantic data types representing the availability of data. A semantic
data type is a membership statement in Description Logic of a class (or a union of

6 A Declarative Approach using SAWSDL and Semantic Templates 107

Business As-
sertion Element

Definition Example

Assertion Ex-
presssion

captures a unit assertion. Assertion ex-
pressions can either be quantitative or
logical.The ignorable tag from the WS-
Policy specification can be added to
an assertion expression to indicate that
the assertion encapsulated in this ex-
pression can be ignored during policy
matching.

Assertion
Concept

The ontology concept that describes the
entity of the assertion

Assertion Op-
erator

The fulfillment condition that this asser-
tion will satisfy in case of a guarantee or
the condition that needs to be satisfied
in case of a requirement

In the cost constraint illus-
trated in the above example, the
lessthan operator is the asser-
tion operator.

Assertion
Constraint

Captures the value of the assertion ex-
pression. Each assertion constraint has
a constraint value and a unit that de-
notes the unit in which the constraint is
expressed in.

In the cost constraint illustrated
in the above example, 50 is
the constraint value and Amer-
icanDollar is the unit. The unit
is usually a ontology concept.
This mapping allows us to rep-
resent unit conversion rules in
the ontology.

Assertion Op-
tions

When the assertion expression can have
multiple values, one or more either is
guaranteed or required, they are repre-
sented as options. Options contains as-
sertion constraints

In the business assertion exam-
ple, the provider agrees to a 2
day shipping if express ship-
ping option is chosen and a 5
day delivery if priority shipping
is chosen.

Table 6.1. Elements in a Business Assertion

classes) in an ontology. An example state could be: <{ orderComplete=True, order-
Closed=False }, { ontology1#OrderID(Msg1)} >

The reason why we use predicate logic for status flags is because it is simple for the user
to specify the values of status flags in predicate logic, and computationally efficient. On
the other hand, we use description logic for semantic data types since it makes it easier to
express relationships such as sub-class relationships.

• Abstract semantic Web service [13]: Our definition of an abstract semantic Web service
is built upon SAWSDL [8] An abstract semantic Web service SWS can be represented as a
vector: SWS = (sop1, sop2, , sopn) Each sop is a semantic operation, which is defined
as a 6-tuple: sop = <op, in, out, pre, eff, fault>where,
– op is the semantic description of the operation. It is a membership statement of a class

or property in an ontology.
– in is the semantic description of the input message. It is a set of semantic data types,

stating what data are required in order to execute the operation.

108 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

Fig. 6.2. Example Business Policy

– out is the semantic description of the output message. It is a set of semantic data types,
stating what data are produced after the operation is executed.

– pre is the semantic description of the precondition. It is a formula in predicate logic
of status flags representing the required values of the status flags in the current state
before an operation can be executed.

– eff is the semantic description of the effect. It can be divided into two groups: positive
effects and negative effects, each of which is a set of status flags describing how the
status flags in a state change when the action is executed.

– fault is the semantic description of the exceptions of the operation represented using
classes in an ontology.

Table 6.2 illustrates an example of the representation of part of the Order Management System
Web service described in our running scenario.

6 A Declarative Approach using SAWSDL and Semantic Templates 109

sop sop1 sop2 sop3

op CreateNewOrder AddLineItem CloseOrder
in CustomerID LineItemEntry,Order OrderID

out OrderID AddItemResult ConfirmedOrder
pre orderComplete ∧ order-

Closed
orderComplete ∧ order-
Closed

eff negative:{orderComplete,
orderClosed}

positive:{orderComplete} positive: { orderClosed }

fault sop1fault sop2fault sop3fault

Table 6.2. Representation of Order Management System Web service

6.5 Discovering Services

In this section we discuss the hierarchy-based matching algorithm. for discovering services
The algorithm exploits the hierarchical structure of service definitions and the semantic tem-
plate to compute the level of similarity between them. We define a mapping between the
elements in the service structure hierarchy and the elements in the structure hierarchy of the
semantic template. This mapping is illustrated in Figure 6.3. The elements in the service struc-
ture hierarchy are then compared with their mapped counterparts in the structural hierarchy of
the semantic template.

Fig. 6.3. Mapping Between Elements in Service Structure Hierarchy and Semantic Template
Hierarchy

6.5.1 Overview of the Hierarchy-based Matching Algorithm

Adopting an approach that exploits the hierarchy found in service descriptions allows us to
customize the comparison technique for each of the service elements. While techniques based
on description logic can help in determining the semantic similarity and can be used in match-
ing the interface and operation elements. They would not be sufficient for matching the data

110 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

objects , however, because when comparing data objects one must also consider the structural
similarity between them in addition to the semantic similarity.

We define a weighted scheme to compute the match score. The weights are determined
by the matchlevel attribute of each element defined in the semantic template. This weighted
scheme is used in ranking the discovered services. The rest of this section discusses the match-
ing approach for different elements and the ranking of discovered services.

6.5.2 Description Logic Based Matching

We employ a description logic-based matching for identifying the semantic similarity be-
tween the ontological concepts captured in the modelreference attributes of the elements in
the service structure and semantic template hierarchies. The similarity measure can be one of
subsumption-similar, equivalence, or generalized-similar defined as:

• Equivalence: The interface element is equivalent to the templateterm element, if the on-
tological concepts represented by their respective modelreferences are either the same or
equivalent. The equivalence measure is similarly defined for operations, input and output
elements.

• Generalized-Similar: The interface element is generalized-similar to the templateterm
element , if the ontology concept represented by modelreference attribute of the interface
element subsumes the ontology concept represented by the modelreference attribute of
the templateterm element. For example, a service whose domain is electronics would be
generalized-similar to a semantic template for personal computers since electronics sub-
sumes personal computers in the NAICS ontology illustrated in The generalized-similar
measure is similarly defined for operations, input and output elements..

• Subsumption-Similar: The interface element is subsumption-similar to the templateterm
element , if the ontology concept represented by modelreference attribute of the interface
element is subsumed by the ontology concept represented by the modelreference attribute
of the templateterm element. The subsumption-similar measure is similarly defined for
operations, input, and output elements.

6.5.3 Non-functional Matching

In this section we describe the approach to matching non-functional requirements during ser-
vice discovery. Non functional requirements consist of certain quality of service (QoS) guran-
tees the service provider advertices and possibly the service requestor would expect other than
the functional capabilities such as security and reliability. These non-functional aspects are
usually expressed using policies. To match non-functional requirements, we match the poli-
cies of the provider and the requestor. We first create the normalized effective policy for the
operations in the service and in the semantic template. The procedure for creating the normal-
ized policy is described in [14]. The effective policy of a service operation is the disjunction
of the service policy, the interface policy and the operation policy. The normalized effective
policy of a service operation is the normalized form of the effective policy of the operation.
We define this policy as the effective provider policy. The effective policy of a semantic tem-
plate operation is the disjunction of the template policy, templateterm policy and the operation
policy. The normalized effective policy of a semantic template operation is the normalized
form of the effective policy of the operation. We define this as the effective requestor policy.
[14] describes two modes for policy matching: (1) The Lax mode in which assertions marked

6 A Declarative Approach using SAWSDL and Semantic Templates 111

Requestor
Assertion
Operator

Provider
Assertion
Operator

Jess Rule Example

<, >, ≤ <, >,≤,≥
=

(Requestor Assertion
Operator, Provider
Assertion Value, Re-
questor Assertion
Value)

Requestor assertion
expression: Memory
>512 MB; Provider
assertion expression:
Memory <2GB;Jess
rule: (>, 2048, 512).

= <, ≤,>,≥,
=

(Inverse of provider op-
erator, Provider Asser-
tion Value, Requestor
Assertion Value)

Requestor assertion
expression: Memory
= 512 MB; Provider
assertion expression:
Memory <2GB;Jess
rule: (>, 2048, 512).

Table 6.3. Generating Jess Rules From Assertion Expressions

as ignorable can be ignored. It is not necessary for such assertions to match for the policies to
match and (2) The Strict mode in which all the assertions must match for the two policies to
match. In our policy matching approach we adopt the lax mode.

Given two policies, the first step is to identify the equivalent business assertions. This
is done by comparing the assertion concept elements of the business assertions in the two
policies. Two business assertions are equivalent if the ontology concepts described in their
assertion concept elements are equivalent. The two policies are said to match, if all pairs of
equivalent assertions that are not ignorable match. To match a pair of equivalent business
assertions, we first identify the type of the assertion expression. If the assertion expression is
quantitative, then they are compared using the Jess framework. Assertion expressions that are
logical are compared using description logics.

In case of quantitative assertion expressions, we first ensure that both expressions are ex-
pressed in the same assertion unit. If not, we convert the provider assertion expression into the
same unit as the requestor assertion expression. We assume that the rules for unit conversion
are modeled in the ontology.Once the units are normalized, a Jess is rule is created from the
assertion expressions. This rule is evaluated and if it evaluates to True, then we say the asser-
tions match. The approach to creating the rule is determined by the assertion operator of the
assertion expression obtained from the effective requestor policy. This is described in Table
6.3. The assertions expressions are said to match if the rule can be asserted.

Logical expressions are evaluated using description logics. If the provider assertion value
subsumes or is equivalent to the requestor assertion, then we deem the expressions are a com-
plete match. If the requestor assertion value subsumes that of the provider, then we deem it a
partial match. If the subsumption or equivalence relationship cannot be determined between
the provider and requestor assertion units, we check if there is a property in the schema that
relates the assertion concept elements. If such a property P exists, we check if P holds between
the provider and requestor assertion values. We deem a match, if P holds. The following ex-
ample illustrates this better. The provider assertion expression is : Shipment destination is
Europe. The client assertion expression is: Shipment destination is Germany. The provider
assertion unit is a continent and the requestor assertion unit is a country. From the ontology

112 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

(ISOCountries.rdf available at the web resource4), we identify that belongs to property exists
between country and continent. We check in the ontology, if Germany belongs to Europe.
Since it does, we deem it a match.

6.6 Automatic Web service composition

6.6.1 Formal definition of Web service composition

A semantic Web service composition problem involves composing a set of semantic Web
services (SWSs) to fulfill the given requirements, or in our case a Semantic Template. Figure
6.4 illustrates our approach.

Fig. 6.4. Business Process Levels

A semantic operation (Operationk in figure 6.4) has to be checked by the satisfy oper-
ator (X in figure 6.4)against the current extended state before it can be added in the process
specification. After it is added, a successor extended state is created by applying the apply (+
in figure 6.4) operator. We will give the formal definition of satisfy and apply operators below.
For convenience, we use the following notations.

Satisfy operator is a function mapping an extended state si and a semantic operation
sopk to T or F. Formally textitsatisfy is defined as:

Definition 2. satisfy: (si, sopk)→ {T, F}
This function maps to T (in such case, si satisfies sopk and is written as: si × sopk) if and
only if:

• ε(Pre(sopk), SSF (si)) = True, where ε(f, v) is an evaluation of formula f based on
the truth values in v.

• (Onto ∪ SDT (si)) � in(sopk) , where Onto is the ontology schema for semantic data
types.

4 http://knoesis1.wright.edu/swsc/

6 A Declarative Approach using SAWSDL and Semantic Templates 113

Notation Explanation
SSF(s) The set of status flags of extended state s

Value(s) The truth value of a status flag sf in extended state s
SDT(s) The set of semantic data types of extended state s
in(sop) The input messages of semantic operation sop
pre(sop The output messages of semantic operation sop
eff(sop) The effect of semantic operation sop

positive(eff) The positive effects of eff
negative(eff) The negative effects of eff

Table 6.4. Representation of Order Management System Web service

That is, the precondition of sopk holds based on the truth values of the status flags in state si,
and the semantic data types of si together with the ontology schema entails the input of sopk.
For example, the following state satisfy the operation sop3 in table 6.2:

¡ {orderComplete = True, orderClosed = False}, {ontology1#OrderID(Msgx}¿

Here the semantic data type OrderID comes from an output message of any previous operation,
or the initial message of the Semantic Template, so we put Msgx in the above example.

Apply operator is a function mapping an extended state si and a semantic operation sopk
to a new extended state sj . Formally this is defined as

Definition 3. apply: (si, sopk)→ sj
Alternatively, we write si + sopk → sj This operator does the transition both on status flags
and semantic data types.

• For status flags:

∀sf ∈ positive(eff(sopk)), value(sf, sj) = True

∀sf ∈ negative(eff(sopk)), value(sf, sj) = False

∀sf ∈ (eff(sopk)), sf(sj) = sf(si)

That is, a status flag in the positive effects is true in sj , a status flag in the negative effects
is false in sj , while any status flag in si but not in the effect is assumed to be unchanged
in sj .

• For semantic data types: SDT (sj) = SDT (si) ∪ out(sopk) That is, the semantic data
types (membership statements) in sj are the union of the semantic data types in si and the
output of sopk.

As an example, if we apply the operation sop3 in 6.2 to the state

we will get a new state:

< {orderComplete = True, orderClosed = True}, {
ontology1#OrderID(Msgx),

ontology1#ConfirmedOrder(sop3OutMsg)} >

< {orderComplete = True, orderClosed = False}, {ontology1#OrderID(Msgx)} >

114 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

6.6.2 Composition of semantic Web services

We consider a SWS composition problem as an AI planning problem such that the semantic
operation template defines the initial state and the goal state of the problem specification: Ini-
tial state is the extended state at the beginning of the process. It is defined by the precondition
and initial message of the semantic operation template ψ.

s0 =< ssf0(sopt), in(sopt) >

Goal state is a requirement of the extended state at the end of the process. It is defined by the
goal and output of sopt.

goalstate =< gl(sopt), out(sopt) >

Composition of semantic Web services is a function

swsc : (sopt, SWSs)→ plan

Where,

• sopt is a semantic operation template.
• SWSs is the set of the semantic operations in the semantic Web services.
• plan is a DAG (Directed Acyclic Graph) of operations. Every topological sort of the DAG

(say one of them is sop1, sop2, , sopn) must conform to the following restrictions:
– s0× ¡ pre(sop1), in(sop1) ¿
– s0 + sop1 → s1
– si−1× ¡ pre(sopi), in(si) ¿
– si−1 + sop1 → si
– sn × goalstate

That is, every topological sort of the plan must transform the initial state into the goal state by
conforming to the satisfy and apply operators. Loops are generated in a post-process step that
is explained in section 6.6.6.

6.6.3 Planning For Process Mediation

AI planning is a way to generate a process automatically based on the specification of a prob-
lem. Planners typically use techniques such as progression (or forward state-space search),
regression (or backward state-space search), and partial-ordering. These techniques attempt
to use exploration methods such as searching, backtracking, and/or branching techniques in
order to extract such a solution. There are two basic operations in every state-space-based
planning approach. First, the precondition of an action needs to be checked to make sure it is
satisfied by the current state before the operation can be a part of the plan. Second, once the
operation is put into the plan, its effect should be applied to the current state and thus produce
a consecutive state. We address the significant differences between classic AI planning and
semantic Web service composition as follows:

1. Actions in AI planning can be described completely by its name, precondition, and effect,
while Web services also include input and/or output message schema.

6 A Declarative Approach using SAWSDL and Semantic Templates 115

2. For AI planning, it is assumed that there is an agreement within an application on the
terms in the precondition and effect. Terms with same name (string) mean the same thing,
while terms with different name (string) mean different things. For example, in the famous
block world scenario, if both block and box exist in the precondition/effect, they are
treated as different things. This obviously does not carry over to the resources on the
Web, thus it is necessary to introduce semantics in Web service composition.

3. More workflow patterns such as loops are desired in Web service composition. We ad-
dress this problem by a pattern-based approach.

As discussed in the previous sections, both Web services and the specification of the task,
i.e., Semantic Template are described in extended SAWSDL standard, so the terms in the
precondition, effect, and input/output messages reach an agreement which is captured by the
ontologies. For the first two types of differences we mentioned above, to apply AI planning
techniques to semantic Web service composition, any state-space-based planning algorithm
needs to be revised according to the following criteria.

1. State space should include status flags, as in the existing AI planning approaches, and
semantic data types to represent the availability of data.

2. For each candidate action, besides checking its precondition against the status flags in
the current state, it is also necessary to check its input message schema against the se-
mantic data types in the current state. This reduces the search space and eliminates plans
containing operations whose input message is unavailable in the state.

3. Since the states and the actions/operations are semantically annotated by referring to
ontologies, the checking in the previous step involves reasoning based on the ontologies,
not just comparing the name of the terms.

4. Once an action/operation is added into the plan, not only the status flags are updated by
applying the effect, the semantic data types should also be updated by put a new semantic
data type based on the output message schema.

6.6.4 Discovering Services

6.6.5 Extended GraphPlan Algorithm

Although most AI planning algorithms are suitable for the task here, we use GraphPlan algo-
rithm [7]. It is sound and complete thus we can always construct correct plans if there exist
any, and its compact representation of the states makes it space efficient while doing a breadth-
first style search. It also uses mutex links to avoid exploring some irrelevant search space. Like
other classical AI planning algorithms, GraphPlan only considers the precondition and effect
of actions, thus does not take into account the input/output message of actions. Our approach
requires an extension of the algorithm to accommodate the semantic data types defined above.
An operation may only be added in the next action level when its preconditions hold based
on the current state level of the planning graph and the data types of the input message of the
operation can be entailed by the union of ontology and the current state level. When an oper-
ation is placed in the next action level, its effects as well as output data types are applied to
the current state level, and thus produce the next state level. Afterwards, mutex links between
actions must be evaluated and placed so that they may be used when backtracking through
the graph for the solution. Note that the creation of the mutex links should also consider the
semantic data types accordingly.

116 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

6.6.6 Pattern-Based Approach For Loop Generation

GraphPlan algorithm may generate plans only with sequence and AND-split workflow pat-
terns [15]. However, loops are also a frequently used pattern. Loop generation (or iterative
planning) itself is a difficult and open problem in AI. Much work on iterative planning is based
on theorem-proving [16]. It is believed by Stephan and Biundo [17] and other researchers that
iterative planning cannot be carried out in a fully automatic way. [18] proposes a new way that
is not tied to proving a theorem, but it is only correct for a given bound or a certain class of
simple planning problems. Here we proposed a pattern-based approach for loop generation. It
is based on the observation of frequently used patterns of iterations. For example, in the mo-
tivation scenario, the order request includes multiple line items (an array of line items) while
the addLineItem operation takes as input only one line item. It is obvious that the process
needs to iterate all the line items in the order request. We may extract the pattern as follows. If
an operation has an input message including an element with semantic annotation SDTi and
attribute maxOccurs in XML Schema whose value is 1, while the matched (see satisfy opera-
tor) semantic data type in the current state is from an output message where the corresponding
element in that message has maxOccurs with value unbounded or greater than 1, then a loop
is needed for this operation to iterate the array. Our approach avoids the computationally hard
problem by restricting possible patterns of loops. The limitation is that the patterns need to be
identified and put in the code beforehand.

Lifting and Lowering Mechanism of Data Mediation

The data mediation approach is primarily based on the lifting and lowering mechanism pre-
sented in [8]. This section looks in detail of how this lifting and lowering mapping schema
functions.The base technique is to convert the message into an intermediate semantic data
model and re-convert the semantic data model back into the required specific format. Convert-
ing from the message to the intermediate model is known as lifting and the reverse conversion
is known as lowering. It is important to note that the data heterogeneities cannot be overcome
merely by attaching an ontology reference. These conversions require specific references to
templates or other conversion resources in order to carry out the lifting and lowering. Due to
the use of XML as the primary message format, the most commonly used intermediate model
is also XML and hence the conversion references are often references to XSLT documents.

To understand the importance of this approach rather than the direct use of XSLT to trans-
form between each and every message format consider the following example. Given that there
are five heterogeneous (but convertible) messages that requires conversion from message A. If
direct conversion is used this requires ten conversion specifications. If the intermediate seman-
tic model is used this conversion would require a total of tweleve conversion specifications.
The advantage of the intermediate model can be seen when there is another message added
along with A. This will double the number of conversion specifications if direct conversion
is used. However if the intemediate model is used it results only in the addition of two new
conversion specifications. It can be clearly seen that the intermediate model approach is the
scalable mediation strategy.

in Figure 6.5 we describe the different heterogeneities that can exist between two XML
schemas and how such heterogeneities can effect the mediations as discussed in [19]

6 A Declarative Approach using SAWSDL and Semantic Templates 117

Fig. 6.5. Different Heterogeneities

6.7 Conclusions and Future Work

This paper presents an automatic approach for Web service composition, while addressing the
problem of process heterogeneities and data heterogeneities by using a planner and a data me-
diator. Specifically, an extended GraphPlan algorithm is employed to generate a BPEL process
(the currently supported workflow patterns are sequence, AND-split and loop) based on the
task specification (Semantic Template) and candidate Web services described in SAWSDL.
Data mediation can be handled by assignment activities in the BPEL, or by a data mediator
which may be embedded in a middleware or an externalized Web service. While the BPEL pro-
cess is running, it calls the data mediator to convert (and combine if necessary) the available
messages into the format of the input message of an operation which is going to be invoked.
A context-based ranking algorithm is employed in the data mediator to select the best element
from the source messages if more than one element has acceptable semantics for the target
element.

Our experiment shows that our systems solved the problem in SWS challenge 2006 me-
diation scenario successfully, which is a non-trivial challenging problem that involves process
and data heterogeneities. We consider our approach to be highly flexible, since the only thing
a user need to change for a new scenario is the task specification (Semantic Template).

Our future work includes supporting more workflow patterns especially OR-Split, the
propogation/scopes of semantic data types in messages, and non-functional semantics.

118 Karthik Gomadam, Ajith Ranabahu, Zixin Wu, Amit P. Sheth and John Miller

References

1. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: Htn planning for web service composi-
tion using shop2. Journal of Web Semantics 1(4) (2004) 377–396

2. Narayanan, S., Mcilraith, S.A.: Simulation, verification and automated composition of
web services. In: WWW ’02: Proceedings of the 11th international conference on World
Wide Web, New York, NY, USA, ACM Press (2002) 77–88

3. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A mixed initiative approach to semantic
web service discovery and composition: Sap’s guided procedures framework. In: ICWS.
(2006) 401–410

4. Ponnekanti, S.R., Fox, A.: Sword: A developer toolkit for web service composition.
(2001)

5. Traverso, P., Pistore, M.: Automated composition of semantic web services into exe-
cutable processes (2004)

6. Rao, J., Küngas, P., Matskin, M.: Logic-based web services composition: From service
description to process model. In: ICWS. (2004) 446–453

7. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education
(2003)

8. for WSDL, S.A., working group, X.S.: Semantic annotations for wsdl and xml schema.
Technical report, W3 Consortium (2007)

9. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M., Sheth, A.P., Verma, K.:
Web service semantics – wsdl-s. Technical report, LSDIS Lab and IBM Corporation
(2004)

10. Duan, Z., Bernstein, A.J., Lewis, P.M., Lu, S.: A model for abstract process specification,
verification and composition. In: ICSOC. (2004) 232–241

11. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated synthesis of composite
bpel4ws web services. In: ICWS. (2005) 293–301

12. Gomadam, K., Ranabahu, A., Ramaswamy, L., Sheth, A.P., Verma, K.: A Semantic
Framework for Identifying Events in a Service Oriented Architecture. In: ICWS. (2007)
545–552

13. Verma, K.: Configuration And Adaptation of Semantic Web Processes. PhD thesis, Uni-
versity of Georgia (2006)

14. working group, W.S.P.: Web services policy 1.2 - framework (ws-policy)
15. van der Aalst, W., Hofstede, A.: Yawl: Yet another workflow language (2002)
16. Biundo, S.: Present-day deductive planning. In Bäckström, C., Sandewell, E., eds.: Cur-

rent Trends in AI Planning: Proceedings of the 2nd European Workshop on Planning
(EWSP-93), Vadstena, Sweeden, IOS Press (Amsterdam) (1994) 1–5

17. Stephan, W., Biundo, S.: Deduction-based refinement planning. Technical Report RR-
95-13 (1995)

18. Levesque, H.J.: Planning with loops. In: IJCAI. (2005) 509–515
19. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A., Lathem, J.: Semantic interoperability

of web services - challenges and experiences. In: ICWS. (2006) 373–382

7

Automatic Generation of the SWS- Challenge
Mediator with jABC/ABC

Tiziana Margaria1, Marco Bakera2, Christian Kubczak2, Stefan Naujokat2, and Bernhard
Steffen2

1 Chair of Service and Software Engineering, Universität Potsdam (Germany),
margaria@cs.uni-potsdam.de

2 Chair of Programming Systems, TU Dortmund (Germany),
{marco.bakera,christian.kubczak,stefan.naujokat,steffen}@cs.
uni-dortmund.de

Summary. We show how to apply a tableau-based software composition technique to auto-
matically generate the mediator’s service logic, as a declarative alternative to the mediator
solution presented in Chap. 5. Here we use an LTL planning (or configuration) algorithm orig-
inally embedded in the ABC and in the ETI platforms. The algorithm works on the basis of
the existing jABC library of available services (SIB library) already introduced in Chap. 5,
and it uses an enhanced description of their semantics that is given in terms of a taxonomic
classification of their behaviour (modules) and abstract interfaces/messages (types). The re-
sulting approach is a forward synthesis algorithm that users can configure to provide the set of
shortest, or cycle-free, or all orchestrations, that satisfy the given LTL specification.

7.1 The SWS Challenge Mediator

The ongoing Sematic Web Service Challenge [22] proposes a number of increasingly com-
plex scenarios for workflow-based service mediation and service discovery. We use here the
technology presented in [11] to automatically generate (or synthesize) a process that realizes
the communication layer for the Challenge’s initial mediation scenario.

In this scenario, a customer (technically, a client) initiates a Purchase Order Request speci-
fied by a special message format (RosettaNet PIP3A4) and waits for a corresponding Purchase
Order Confirmation according to the same RosettaNet standard. The seller however does not
support this standard. Its backend system or server awaits an order in a proprietary message
format and provides appropriate Web Services to serve the request in the proprietary format.
As client and server here speak different languages, there is a need for a mediation layer that
adapts both the data formats and also the granularity.

Of course we can easily define the concrete process within our jABC modelling frame-
work, as we have shown in Chap. 5 and in the past [12, 6, 7].

To provide a more flexible solution framework, especially to accommodate later declara-
tive specification changes on the backend side or on the data flow, we show here how to syn-
thesize the whole mediator using the synthesis technology introduced in [11] and explained

120 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

module name input type output type description
Mediator Maps RosettaNet messages to the backend

startService {true} PurOrderReq Receives a purchase order request message

obtCustomerID PurOrderReq SearchString Obtains a customer search string from the req. message

createOrderUCID CustomerObject CustomerID Gets the customer id out of the customer object

buildTuple OrderID Tuple Builds a tuple from the orderID and the POR

sendLineItem Tuple LineItem Gets a LineItem incl. orderID, articleID and quantity

closeOrderMed SubmConfObj OrderID Closes an order on the mediator side

confirmLIOperation OrderConfObj PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

searchCustomer SearchString CustomerObject Gets a customer object from the backend database

createOrder CustomerID OrderID Creates an order

addLineItem LineItem SubmConfObj Submits a line item to the backend database

closeOrderMoon OrderID TimeoutOut Closes an order on the backend side

confRefLineItem Timeout orderConfObj Sends a conf. or ref. of a prev. subm. LineItem

Table 7.1. The SWS mediation Modules

in [9]. We proceed here exactly along the lines already presented in that paper.

In the following, we show in Sect. 7.2 how to use the SLTL synthesis methodology to
generate the mediator workflow based on a knowledge base that expresses the semantics of
the concrete types from the SWS mediator scenario, then in Sect. 7.3 we add a more business-
level-like abstraction to the knowledge base, and in Sect. 7.4 we show how this leads to a
looser solution, and how this solution can be step-wisely refined towards the first solution by
adding business-level knowledge to the problem definition, in a declarative way. Subsequently,
Sect. 7.5 describes how to work with the synthesis tool, Sect. 7.6 illustrates the plan genera-
tion, and Sect. 7.7 sketches the service-oriented realization of the synthesis process. Finally,
Sect. 7.8 discusses related work and Sect. 7.9 draws some conclusions and sketches ongoing
work.

7.2 The Concrete Mediator Workflow

7.2.1 Abstract Semantics: Taxonomies for Modules and Types

Table 7.1 shows the modules identified within the system. They represent at the semantic level
the collection of basic services available for the mediator. In order to produce a running solu-
tion as demonstrated in Stanford in November they are then bound (grounded) to the concrete
SIBs that in the jABC constitute the running services. How this happens is sketched in [19].

This information about the single modules is complemented by simple ontologies
that express in terms of is-a and has-a relations properties over the types and the
modules of the scenario. We call these relations Taxonomies. The taxonomies re-
garding the mediation scenario are shown in Fig. 7.1 (Type Taxonomy) and Fig. 7.2
(Module Taxonomy).

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 121

Fig. 7.1. The SWS Challenge Mediator Type Taxonomy

Fig. 7.2. The SWS Challenge Mediator Module Taxonomy

This information is expressed in a Prolog-like fashion in a concrete knowledge
base which is used by the synthesys algorithm.

7.2.2 The Concrete Knowledge Base

The synthesis tool takes as input a textfile with the definitions of the taxonomies
(module and type taxonomy), the module descriptions, and some documentation.
The first line of the file declares a name for the knowledge base:

$program(sws_challenge).

The file contains statements (one per line) of facts in the following three forms:

• tax(type, output, customerObject).
• tax(module, mediator, sendLineItem).
• module(searchCustomer, searchString, customerObject).

The two first statements show how to specify the type and module taxonomy:

• The first line declares customerObject as a subtype of the output type.

122 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

• The second line declares module sendLineItem to be a mediator module.

The third statement form is used to specify the relation between input and output
types for particular modules. It describes the module definition as already presented
in Table 7.1: the searchCustomermodule takes a searchString as input type
and produces a customerObject output type.

This way it is possible to concisely represent the taxonomies of Fig. 7.1 and 7.2
as well as the module description of Table 7.1 in one single file.

7.2.3 Semantic Linear-time Temporal Logic

The loose specification language supported by the synthesis is the Semantic Linear-
time Temporal Logic (SLTL)[16], a temporal (modal) logic comprising the taxo-
nomic specifications of types and activities. This lifts the classical treatment of types
and activities in terms of actions and propositions to a semantical level in a way
typical today in the context of the semantic Web.

Definition 1 (SLTL).

The syntax of Semantic Linear-time Temporal Logic (SLTL) is given in BNF format
by:

Φ ::= type(tc) | ¬Φ | (Φ ∧ Φ) | <ac> Φ | G(Φ) | (ΦUΦ)

where tc and ac represent type and activity constraints, respectively, formulated as

taxonomy expressions.

SLTL formulas are interpreted over the set of all legal coordination sequences, i.e.
alternating type correct sequences of types and activities3, which start and end with
types. The semantics of SLTL formulas is now intuitively defined as follows4:

• type(tc) is satisfied by every coordination sequence whose first element (a type)
satisfies the type constraint tc.

• Negation ¬ and conjunction ∧ are interpreted in the usual fashion.

• Next-time operator <> :
<ac> Φ is satisfied by coordination sequences whose second element (the first
activity) satisfies ac and whose continuation5 satisfies Φ. In particular, <tt> Φ is
satisfied by every coordination sequence whose continuation satisfies Φ.

• Generally operator G:
G(Φ) requires that Φ is satisfied for every suffix6 satisfies Φ.

3 During the description of the semantics, types and activites will be called elements of the
orchestration sequence.

4 A formal definition of the semantics can be found online.
5 This continuation is simply the coordination sequence starting from the third element.
6 According to the difference between activity and type components, a suffix of a coordina-

tion sequence is any subsequence which arises from deleting the first 2n elements (n any
natural number).

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 123

• Until operator U:
(ΦUΨ) expresses that the property Φ holds at all type elements of the sequence,
until a position is reached where the corresponding continuation satisfies the
property Ψ . Note that ΦUΨ guarantees that the property Ψ holds eventually
(strong until).

The definitions of continuation and suffix may seem complicated at first. However,
thinking in terms of path representations clarifies the situation: a subpath always
starts with a node (type) again. Users should not worry about these details: they may
simply think in terms of pure activity compositions and should not care about the
types, unless they explicitly want to specify type constraints.

The online introduction of derived operators supports a modular and intuitive
formulation of complex properties.

7.2.4 Declarative LTL Specification for the Concrete Mediator

For the mediator, we look for a workflow (a service coordination) that satisfies the
following requirement:

The mediator service should produce a Purchase Order Confirmation.

The corresponding formal specification formulated in SLTL is simple: we need to
start the service (module startService) and reach the result PurOrderCon (a
type). We may simply write: (startService < PurOrderCon) where the
symbol < denotes a derived operator meaning before or precedes and is defined as

f1 < f2=df F(f1 ∧ F(f2))

The jABC process model shown in Fig. 7.3(a) resembles very closely the expected
required solution.

If we adopt the very fine granular model of the types shown in Table 7.1, a natural
choice given the SWS Challenge problem description, this is in fact the only solution.

In this setting, we use abstract type names in the taxonomy to model de facto
almost the concrete operational semantics: we distinguish for instance an OrderID
from an OrderConfObject, modelling the described application domain at the
concrete level of datatypes and objects - a direct rendering of what happens at the
XML level, or for programs in the memory and on the heap. This is however al-
ready a technical view, and it corresponds to lifting the concrete, programming-level
granularity of data to the semantic level: the resulting ontology is as concrete as the
underlying program.

This is however not the intention of Service Orientation, nor of the semantic web:
the idea there is to decouple the business-level view (captured at the semantic level)
from the technical view of a specific implementation, in order to allow a coarser
description of business-level workflows and processes that then must be concretized
and grounded to a running implementation. In the following we show how this can
be done, also including automatic synthesis.

124 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

Fig. 7.3. (a) The synthesised SWS mediator (standard) and (b) Using loose types: the new
solution

7.3 Abstract Semantics: Using Abstraction and Constraints

For a specifier and definer of the business domain it is much more realistic to say that
the modules concerned with orders work on an Order type, which is a business-level
abstraction for order-related objects and records, and to leave further distinctions to a
problem-specific refinement of the desired solutions via constraints added separately
at need.

For the abstract semantics we work on the taxonomies. The taxonomy design and
module specification decides here the balance between concreteness and flexibility
(looseness). In this specific case, we change the definition of the modules that deal
with orders as shown in Table 7.2: they now operate on the abstract Order type. We
can be as concrete, or as abstract and generic as we wish, and choose the suitable
description level driven by the semantics or application domain modelling. This ab-
straction determines how much flexibility we build in into our solutions. At the one
extreme we can have very specific types, as fine granular as a description in terms
of structural operational semantics [13]. In this case, solutions are type-determined,
and basically render the concrete labelled transition system underlying the manually
programmed solution as in Fig. 7.3(a). At the other extreme one could also use one

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 125

module name input type output type description
Mediator Maps RosettaNet messages to the backend

buildTuple Order Tuple Builds a tuple from the orderID and the POR

closeOrderMed SubmConfObj Order Closes an order on the mediator side

confirmLIOperation Order PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

createOrder CustomerID Order Creates an order

closeOrderMoon Order TimeoutOut Closes an order on the backend side

confRefLineItem Timeout Order Sends a conf. or ref. of a prev. subm. LineItem

Table 7.2. The SWS Mediation Modules with abstract Order

generic type and model the process structure solely by means of temporal constraints.
However, most flexible is a hybrid approach which combines loose taxonomies, types
and module descriptions with temporal constraints in order to arrive at an adequate
specification formalism.

No matter the choice, the algorithm covers the whole spectrum, leaving it free to
the application domain designer to determine where to be precise and where to be
loose, leaving space for exploring alternatives and tradeoffs.

7.4 A Loose Solution, and its Declarative Refinement

7.4.1 The base case

If we now solve the planning problem with the modified module description and the
original goal, we obtain a much shorter solution, shown in Fig. 7.3(b). This is due
to the fact that the module specifications now refer to the abstract type Order. As a
consequence, closeOrderMoon is a suitable direct successor of createOrder. This
solution corresponds to a degenerate workflow where an empty order is sent.

7.4.2 Refinement1: Nonempty Orders

Since in the normal case orders contain items, the business expert needs to be more
precise in the specification of the solution, adding knowledge by means of SLTL
constraints. If one just knows that the items are referred to via the LineItem type,
one may simply refine the goal as follows:
(startService < LineItem < PurOrderCon)

This way, we have added as additional intermediate goal the use of a LineItem
type. Accordingly, at least one of the modules {addLineItem, sendlineItem} must
appear in the required minimal workflow. We see the result in Fig. 7.4(a): this so-
lution coincides with the previous one till the createOrder module, then the type
mediator buildTuple is added, after which sendLineItem satisfies the intermediate
goal. The remaining constraint at that point is simply the reaching of the final type

126 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

Fig. 7.4. (a) Adding a LineItem: the new solution and (b) Adding a Confirmation: the complete
loose solution

PurOrderCon, which is done by generating the sequence CloseOrderMediator fol-
lowed by CloseOrder.

This solution however corresponds only to the first part of the Web service re-
alizing the mediator. There is in fact a subsequent second service that realizes the
confirmation part of the mediator.

7.4.3 Refinement2: Confirmed Nonempty Orders

To cover the second part as well, we have to additionally specify that we need to see
a confirmation, e.g. as confRefLineItem module:

(startService < LineItem <
confRefLineItem < PurOrderCon)

This generates the solution of Fig. 7.4(b), which includes also the rest of the sequence
shown in Fig. 7.3(a).

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 127

Fig. 7.5. The Configuration Universe

7.5 How to work with the Synthesis Tool

The synthesis tool takes as input the text file containing the knowledge base: the
module and type taxonomy, the module descriptions, and some documentation for
the integrated hypertext system. It is steered from the ABC GUI. There, users can
input the SLTL formulas that describe the goal and can ask for different kinds of
solutions. The tool produces a graphical visualization of the satisfying plans (module
compositions), which can be executed, if the corresponding module implementations
are already available, or they can be exported for later use.

The knowledge basis implicitly describes the set of all legal executions. We call
it configuration universe, and it contains all the compatible module compositions
with respect to the given taxonomies and to the given collection of modules. Fig. 7.5
shows the configuration universe that emerges when simply considering the atomic,
concrete input/output types.

128 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

Fig. 7.6. The Minimal (i.e. cycle free) Solutions

7.5.1 Specifying Solution Types

Users never see the configuration universe. They have a number of simple options to
state which kind of solutions they would like to have displayed.

• minimal solutions denotes plans that achieve the goal without repetition of con-
figurations. In particular, this excludes cycles.

• shortest solutions returns the set of all minimal plans that are also shortest, mea-
sured in number of occurring steps.

• one shortest solution returns the first shortest plan satisfying the specification.

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 129

• all solutions returns all the satisfying solutions, which includes also cyclic ones.

Minimal plans generated for our working example are shown in Fig. 7.6. Since
these plan descriptions are directed acyclic graphs, it is rather simple to select and
execute one plan.

If we require all plans, in this simple case we are returned the configuration
universe. As we see in the lower part of Fig. 7.5, it contains a loop that successively
handles the line items.

The typical user interaction foresees a successive refinement of the declarative
specification by starting with an initial, intuitive specification, and asking typically
for shortest or minimal solutions, and using the graphical output for inspection and
refinement.

This is exactly what we did in Sect. 7.3, where we used abstract types to enlarge
the solution space and then tightened successively the LTL specification by adding
salient characteristics that yield a good declarative characterization of the desired
solutions.

7.6 Plan Generation in Detail

In the following 〈a〉true, meaning next follows an a step, will be abbreviated by 〈a〉,
and T the whole set of types of the taxonomy. Based on these conventions, we are
now going to describe the tableau-based synthesis for the following simple example
specification

φ = 〈startService〉 < PurOrderCon

and the configuration universe in Fig. 7.5.

7.6.1 The Synthesis Algorithm

The algorithm produces internally the proof tree shown in Figures 7.7 and 7.8 and it
is built following the presentation outlined in [20].

Intuitively, the proof proceeds forward, from an initial configuration where we
have no type prescriptions (None) and the complete formula still to satisfy.

The guiding formula is successively split in a subformula that restricts the current
state and the next step, and a rest concerning a deeper future. The constraints at the
current state concern admissible types, which preselect (as preconditions) the set of
modules from which to choose at this stage. Admissible modules that satisfy the next
step constraint give rise to a reduction step: these modules are added to the tree and
the algorithm continues from the configurations (output-type, rest-formula). Emp-
tyness of the set of admissible modules means failure of the corresponding attempt
to find a solution. The formulas arising as intermediate steps and their evaluations
in the concrete example are presented in Fig. 7.10. They help to understand how
the algorithm successively develops the proof tree, which is now illustrated in more
detail.

130 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

None,

None,a
1
 None,b

1
 None,c

1

ε
startService

PurOrderReq,2

startService

PurOrderReq,

PurOrderReq,a
2
 PurOrderReq,b

2
 PurOrderReq,a

1
 PurOrderReq,b

1
 PurOrderReq,c

1

ε

SearchString,2

obtCustomerID ε ε

SearchString,

obtCustomerID

SearchString,a
2
 SearchString,b

2

ε

CustomerObject,2

searchCustomer

SearchString,a
1
 SearchString,b

1
 SearchString,c

1

ε ε

CustomerObject,

searchCustomer

CustomerObject,a
2
 CustomerObject,b

2

ε

CustomerID,2

createOrderUCID

CustomerObject,a
1
 CustomerObject,b

1
 CustomerObject,c

1

ε ε

CustomerID,

createOrderUCID

ε

splitting step
reduction step
empty step

Fig. 7.7. Proof tree (upper part)

CustomerID,a
2
 CustomerID,b

2

ε

Order,2

createOrder

CustomerID,a
1
 CustomerID,b

1
 CustomerID,c

1

ε ε

Order,

createOrder

Order,a
2

ε

TimeoutOut,2

closeOrderMoon

Order,a
1
 Order,b

1
 Order,c

1

ε ε

PurOrderCon,2

confirmLIOperation

Tuple,2

buildTuple closeOrderMoon

PurOrderCon,

confirmLIOperation

Tuple,

buildTuple

TimeoutOut,

PurOrderCon,a
2

PurOrderCon⇒a
2

discarded

Order,b
2

discarded

Fig. 7.8. Proof tree (lower part)

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 131

7.6.2 Example: Applying the Algorithm

As the technique [20] relies on the declarative specifications of the plan provided by
the LTL formula φ, this is broken down in the first step into the following equivalent
formula in basic LTL, where U is the strong until operator7:

φ = 〈startService〉 < PurOrderCon

= F (〈startService〉 ∧ F (PurOrderCon))

= true U (〈startService〉 ∧

ϕ2︷ ︸︸ ︷
(true U PurOrderCon))︸ ︷︷ ︸

ϕ1

The first step of the algorithm searches for input types that are admissible for the
given specification. For our example we do not have any precondition here, so all the
input types qualify, symbolized by input type None.

We thus start with the configuration (None, φ).
These configurations are called continuation constraint: they express the sub-

problem still to be solved at any stage of the proof derivation, in the context of a
partial solution. The algorithm reduces the initial configuration stepwise by unrolling
the specification on one hand and applying admissible modules on the other hand.
The occurring configurations are reported in Fig. 7.10.

The split and reduction steps in the proof tree are carried out with respect to the
outcome of the adm function to determine the set of (locally) admissible modules.
Outcomes relevant for the proof tree are depicted in Fig. 7.10, which refers to Ta-
ble 7.1. Please note that we are here in a relaxed setting, where the types Order ID
and OrderConfObj are identified.

The root of the tableau in Fig. 7.7 describes the situation when no module has
been applied and the overall formula has to be satisfied. Starting from this initial
configuration a split-function splits up the property into several new continuation
constraints that need to be validated. Mainly this splitting technique relies on the
inherent splitting character of LTL’s until-operator. This step produces (in our case
three) new subproblems.

Each new subproblem can be reduced by applying an admissible module via the
reduction operator red. This results into a new continuation constraint that takes into
account the execution of that module.

If the split step produces a local specification that cannot be satisfied, the corre-
sponding reduction step is denoted by ε if it yields the empty set, by a contradiction
symbol if the local specification is inconsistent (this does not occur in this example),
and in both cases it closes this branch of the tableau without a solution.

This exposition is only for illustration of the principle. Users do not see the proof
tree. They directly obtain the set of legal solutions as shown in Sect. 7.5.
7 The formula φ = φ1 U ψ is decomposed into the two formulas ψ and φ1 ∧ 〈adm(φ)〉φ,

expressing that either ψ holds directly in this state, or φ1 holds here locally and in all its
reachable successors until a successor is reached where ψ holds.

132 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

split(φ) = split(ϕ1) ∪ {true ∧ 〈adm(true)〉φ}
split(ϕ1) = {φa ∧ φb|φa ∈ split(〈startService〉) and φb ∈ split(ϕ2)}

using

split(〈startService〉) = {〈startService〉}
split(ϕ2) = {split(PurOrderCon) ∪ {true ∧ 〈adm(true)〉ϕ2}

= {{PurOrderCon︸ ︷︷ ︸
φ2

a

} ∪ {true ∧ 〈adm(true)〉ϕ2︸ ︷︷ ︸
φ2

b

}

it follows that

split(ϕ1) = {〈startService〉 ∧ PurOrderCon︸ ︷︷ ︸
φ1

a

,

〈startService〉 ∧ true ∧ 〈adm(true)〉ϕ2︸ ︷︷ ︸
φ1

b

,

true ∧ 〈adm(true)〉φ︸ ︷︷ ︸
φ1

c

}

red(φ1
b) = red(< startService >) ∧ red(< adm(true) > ϕ2)

= true ∧ ϕ2

red(φ1
c) = φ

red(φ2
b) = ϕ2

Fig. 7.9. (a) Configurations occurring in the proof tableau

adm(φ1
a) = adm(< startService >) ∩ adm(PurOrderCon)

= {startService} ∩ ∅
= ∅

adm(φ1
b) = adm(< startService >) ∩ adm(< adm(true) >

(true U PurOrderCon))

= {startService} ∩ adm(true)

b = {startService}
adm(φ1

c) = T
adm(φ2

a) = ∅
adm(φ2

b) = adm(< adm(true) > ϕ2)

= T
adm(true) = {startService}

adm(PurOrderReq) = {obtCustomerID}
adm(SearchString) = {searchCustomer}

adm(CustomerObject) = {createOrderUCID}
adm(CustomerID) = {createOrder}

adm(Order) = {buildTuple, closeOrderMoon, confirmLIOperation}

Fig. 7.10. (b) Terms occurring in the proof tableau

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 133

7.7 Implementing the Synthesis Process as a jABC Orchestration

Fig. 7.11. jETI remote execution architecture for synthesis

To enable easy integration of our legacy systems, such as the synthesis algo-
rithm and the converter from old ABC’s graph file format to jABC’s graph file for-
mat, we modelled the complete synthesis process within the jABC. The process is
now realized itself as a Service Logic Graph containing remote execution calls via
jETI to those legacy services. The user of these services does not need to care about
maintaining over ten year old software, but rather can simply use it for the intended
purpose. Figure 7.11 illustrates the distributed architecture of the synthesis process,
which includes remote calls to our legacy services.

Fig. 7.12 shows the Service Logic Graph that is executed to perform the synthe-
sis. The individual steps of the process are described in the following. Table 7.3 gives
an overview of the data exchange between the process’ elements.

• CollectModules We require that the modules themselves provide the synthesis
process with their type and behaviour information. Technically, this is achieved
by a Java interface EtiSynthesis. Implementing this interface, the module
provides the type information via a certain method. The CollectModules SIB
searches all the modules of the current jABC project that implement this inter-
face. This set of modules is then written to the jABC execution context and can
be used by the following SIBs.

• LoadSymbolicTypes This SIB reads the symbolic type mapping from a given
text file. At the current state of development, this text file maps symbolic names
to a set of unique type identifiers that are provided by the previously introduced
EtiSynthesis interface. It is planned for the future to replace this simple mapping
by a more general taxonomy concept. This will allow the modules to be further
grouped, so that the requirement to the synthesis can be specified more loosely.

• GenerateQuery Here the SLTL formula for the synthesis is created from the
previously collected modules using the symbolic type mapping. The SIB iterates
over all symbolic type names and adds corresponding compatibility constraints

134 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

Fig. 7.12. The Synthesis process, itself a jETI/jABC SLG

to the SLTL formula. Furthermore, the SIB contains parameters to set start and
goal types, as well as the option to specify additional constraints.

• GenerateLola This SIB translates the information about the modules and types
into Lola format. LOLA was in the early ’90s a logic language for deductive
databases. We used it since 1994 as a text format for the file that defines the
configuration universe in terms of modules, types, module taxonomy and type
taxonomy, and it is part of the legacy synthesis system. Different from our orig-
inal approach, the type information is now equivalently encoded into the query
file. This Lola file plus the SLTL formula are input to the vintage ABC synthesis
algorithm of [4].

• SynthOneShort This is where the actual synthesis algorithm is invoked. As al-
ready mentioned, it is embedded in the old version of the ABC, which was writ-
ten in C. Thus for execution this SIB accesses remotely a jETI service provider
in Dortmund, where a server with a very old version of C and of the ABC is
running, and where the ABC synthesis is installed.

• PL2jABC Of course, the synthesis’ output is a graph file for the old ABC, in
PLGraph format. To enable further processing or displaying of the synthesized
model, the file needs to be converted to jABC file format. This is also done by an
externally provided service, via a jETI call to the corresponding service provider.

• Synth2Exec This SIB transforms the graph into its dual view (SIBs → edges,
edges → SIBs), as the legacy synthesis associates edges with actions (since it
has an internal Labelled Transition System representation) whereas the jABC
considers SIBs to perform the actions. After this step, the graph contains the real
SIBs that constitute the mediator.

• AppendWSInfo The jETI Web Service Generator requires some meta informa-
tion about the processed graph model. AppendWSInfo appends this information
according to the models parameters. The meta information includes imported
XSD type definitions as well as the service’s interface definition. This meta in-
formation is described in detail in Chap. 5, where we explain how we generate
Web services from jABC’s SLGs.

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 135

SIB Input Output
CollectModules none ModuleSet
LoadSymbolicTypes none SymbolicTypeMap
GenerateQuery ModuleSet, SympolicTypeMap Query
GenerateLola ModuleSet, SymbolicTypeMap Lola
SynthOneShort Query, Lola PLGraph
PL2jABC PLGraph jABCGraph
Synth2Exec jABCGraph ExecutableJABCGraph
AppendWSInfo ExecutableJABCGraph ExecutableJABCGraph
DisplayExecutable ExecutableJABCGraph none

Table 7.3. Type behaviour of the SIBs for the synthesis process

• DisplayExecutable Finally, the resulting SLG of the mediator is displayed
within the jABC for manual inspection and modification (cf. Fig. 7.13).

After completion of the synthesis process, one can now use the jETI Web Service
Generator to export the graph as a Web Service, or use the Genesys library to produce
a binary executable for the workflow.

7.8 Related Approaches

Our approach was introduced 1993 ins [17, 4] and applied in [18, 10] and [21] to syn-
thesize Statecharts, CAD design processes, and heterogeneous verification algorithm
for concurrent systems, respectively. The idea of LTL guided process composition
has later been taken up by others: Bacchus and Kabanza [1] extensively discuss their
technique that implements a first order extension of LTL, Mandell and McIlraith use
LTL in the context of BPEL compositions [8], and Falcarin et al. [23] use LTL as
a starting point for their compositions, transforming single LTL formulas to finite
state automata, then composing them to a global specification, and finally finding the
correct shortest solutions as the acyclic accepting paths in that automaton.

Concerning the relation with planning, the state variables in an LTL formula are
directly fluents: their value changes from state to state along the process, and the
formulas describe mutual dependencies naturally and compactly. In this sense, there
is a close kinship between the temporal logic mentality and event calculus [14] or
logics for timing diagrams [3]: all three describe what is true at what time, associating
the evolution of time with a succession of states, and offering a well chosen set of
operators to express dependencies between temporal variables along possible paths
within models.
The fundamental advantages of LTL guided synthesis over planning are the follow-
ing:

• the supported guidance is process driven and not state driven. Therefore the con-
trol it offers can in general depend on the entire history of predecessors, and
not only on the current state. This is extremely efficient in focussing the search,
resulting in small memory usage and quick execution.

136 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

Fig. 7.13. The Mediator’s SLG resulting from the synthesis process

• it is decoupled from the (internal) state of a solver/planner: the search control in-
formation relates exclusively to properties of the domain knowledge, not on any
information on the internal state of an algorithm, which is often the case for plan-
ning techniques in order to capture and encode the relevant history aspects (what
is enabled, what is true, etc.) that govern the correct chaining of transitions, i.e.
the temporal/causal/precedence aspects. In contrast, a user of our technique does
not need to know anything about the algorithm underlying the solver/planner.

Among the mediation approaches described in this book, the planning technique
by Sheth et al. of Chap. 6 is the closest to ours. It is very similar in its perspective,
but in a sense dual in its technical realization. We both adopt

• separation of control and data
• declarative requirement specifications, and
• a loose coupling mechanism, very important for obtaining a manageable process

synthesis, and
• we both propose a pattern-based approach to dealing with loops.

However, in contrast to their data and state-centric approach, our synthesis frame-
work is behaviour oriented, giving the technical realization a quite different look.
E.g., where Chap. 6 exploits the multitude of data elements to detect a loop struc-
ture, our approach is based on a repetitive occurrence of events, where they match
tuples, we introduce symbolic data mediation functionality based on ontological de-
scriptions (see e.g. [15]), and were they define the planning problem via initial and
goal states, we use temporal formulas as a loose goal specification.

7 Automatic Generation of the SWS- Challenge Mediator with jABC/ABC 137

7.9 Conclusions

We have applied the automatic tool composition feature of the ABC/ETI platform as
a synthesis tool for the mediator. Our LTL-based synthesis approach is not restricted
to compute one solution, but it may compute all (shortest/minimal) solutions, with
the intent to provide maximum insight into the potential design space.

In future we plan to investigate various forms of synthesis approaches in order
to compare their application profiles. In particular, we are interested in comparing
game-based methods which work via synthesis of winning strategies with the de-
scribed tableau-based methods, that construct a linear model as a result of proof con-
struction. We also plan to enhance the user-friendliness in terms of graphical support
for the declarative specifications, for example by means of the Formula Builder [5]
and by the use of patterns [2].

References

1. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge
for planning. Artificial Intelligence, 116(1-2):123 – 191, 2000.

2. M. Dwyer and J.Corbett G. Avrunin. Specification Patterns Website. http://
patterns.projects.cis.ksu.edu/.

3. Kathi Fisler. Toward diagrammability and efficiency in event-sequence languages. STTT,
Int. J. on Software Tools for Technology Transfer, 8(4-5):431–447, 2006.

4. B. Freitag, B. Steffen, T. Margaria, and U. Zukowski. An approach to intelligent soft-
ware library management. In Proc. 4th Int. Conf. on Database Systems for Advanced
Applications (DASFAA ’95), National University of Singapore, Singapore, 1995.

5. S. Jörges, T. Margaria, and B. Steffen. Formulabuilder: A tool for graph-based modelling
and generation of formulae. In Proc. ICSE’06, May 2006.

6. C. Kubczak, T. Margaria, B. Steffen, and S. Naujokat. Service-oriented mediation with
jETI/jABC: Verification and export. In Worksh. on Service Composition & SWS Chal-
lenge, part of WI-IAT’07, the IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, November
2007, Stanford (CA), volume ISBN-10: 0-7695-3028-1. IEEE CS, 2007.

7. C. Kubczak, T. Margaria, C. Winkler, and B. Steffen. An approach to discovery with
miAamics and jABC. In Worksh. on Service Composition & SWS Challenge, part of WI-
IAT’07, the IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, November 2007, Stanford
(CA), volume ISBN-10: 0-7695-3028-1. IEEE CS, 2007.

8. Daniel J. Mandell and Sheila A. McIlraith. Adapting BPEL4WS for the semantic web:
The bottom-up approach to web service interoperation. In Proc. ISWC2003, Sundial
Resort, Sanibel Island, FL (USA), LNCS N.2870, 2003, pp. 227 - 241, Springer Verlag,
2003.

9. T. Margaria, M. Bakera, H. Raffelt, and B. Steffen. Synthesizing the mediator with
jABC/ABC. In EON-SWSC 2008, Proc. 6th Int. Worksh. on Evaluation of Ontology-based
Tools and the Semantic Web Service Challenge, Tenerife, Spain, June 2008. CEUR-WS,
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-359/Paper-4.pdf, 2008.

10. T. Margaria and B. Steffen. Backtracking-free design planning by automatic synthesis in
METAFrame. In Proc. FASE’98, Lisbon(P), LNCS, Springer Verlag, 1998.

138 T. Margaria, M. Bakera, C. Kubczak, S. Naujokat, B. Steffen

11. T. Margaria and B. Steffen. LTL guided planning: Revisiting automatic tool composition
in ETI. In SEW: 31st Annual Software Engineering Workshop. IEEE Computer Society
Press, March 2007.

12. T. Margaria, C. Winkler, C. Kubczak, B.Steffen, M. Brambilla, D. Cerizza S. Ceri,
E. Della Valle, F. Facca, and C. Tziviskou. The SWS mediator with WebML/WebRatio
and jABC/jETI: A comparison. In Proc. ICEIS’07, 9th Int. Conf. on Enterprise Informa-
tion Systems, Funchal (P), June 2007.

13. G.D. Plotkin. a structural approach to operational semantics. Journal of Logic and Alge-
braic Programming, 60-61:17–140, 2004.

14. M. Shanahan. The event calculus explained. In LNAI (1600):409-430. Springer Verlag,
1999.

15. B. Steffen, T. Margaria, and V. Braun. The electronic tool integration platform: Concepts
and design. Int. Journal on Software Tools for Technology Transfer (STTT), 1(2):9–30,
1997.

16. B. Steffen, T. Margaria, and A. Claßen. Heterogeneous analysis and verification for dis-
tributed systems. SOFTWARE: Concepts and Tools, 17(1):13–25, 1996.

17. B. Steffen, T. Margaria, and B. Freitag. Module configuration by minimal model con-
struction. In Tech. rep. MIP 9313, Universität Passau, Passau (D), 1993.

18. B. Steffen, T. Margaria, and M. von der Beeck. Automatic synthesis of linear pro-
cess models from temporal constraints: An incremental approach. In Proc. AAS’97,
ACM/SIGPLAN Int. Workshop on Automated Analysis of Software, Paris (F),(affiliated
to POPL’97), pp. 127-141., 1997.

19. B. Steffen and P. Narayan. Full lifecycle support for end-to-end processes. IEEE Com-
puter, 40(11):64–73, Nov., 2007.

20. Bernhard Steffen, Tiziana Margaria, and Burkhard Freitag. Module configuration by min-
imal model construction. Technical Report MIP-9313, University of Passau, Germany,
December 1993.

21. Bernhard Steffen, Tiziana Margaria, and Ralf Nagel. Remote Integration and Coordi-
nation of Verification Tools in jETI. In Proc. ECBS 2005, 12th IEEE Int. Conf. on the
Engineering of Computer Based Systems, pages 431–436, Greenbelt (USA), April 2005.
IEEE Computer Soc. Press.

22. SWS Challenge Workshops: Website. http://sws-challenge.org/wiki/
index.php/Workshops.

23. J. Yu, J. Han, Y. Jin, and P. Falcarin. Synthesis of service compositions process models
from temporal business rules.

Part II

Mediation Solutions Comparisons

8

Comparison: Mediation Solutions of WSMOLX and
WebML/WebRatio

Maciej Zaremba1, Raluca Zaharia1, Andrea Turati2, Marco Brambilla3, Tomas
Vitvar4, and Stefano Ceri3

1 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland,
firstname.lastname@deri.org

2 CEFRIEL, Milan, Italy, andrea.turati@cefriel.it
3 Department of Electronics and Information Technologies, Technical University of Milan,

Italy, {mbrambil,ceri}@elet.polimi.it
4 The Semantics Technology Institute Innsbruck, University of Innsbruck, Austria,
tomas.vitvar@sti2.at

Summary. In this chapter we compare the WSMO/WSML/WSMX andWebML/WebRatio
approaches to the SWS-Challenge workshop mediation scenario in terms of the utilized under-
lying technologies and delivered solutions. In the mediation scenario one partner uses Roset-
taNet to define its B2B protocol while the other one operates on a proprietary solution. Both
teams shown how these partners could be semantically integrated.

In this chapter we compare the WSMO/WSML/WSMX and WebML/WebRatio
approaches to the SWS-Challenge workshop mediation scenario in terms of the uti-
lized underlying technologies and delivered solutions. In the mediation scenario one
partner uses RosettaNet to define its B2B protocol while the other one operates on
a proprietary solution. Both teams shown how these partners could be semantically
integrated.

8.1 Introduction

enabled client with legacy systems in the context of the Semantic Web Services
Challenge. Here we compare the submissions to the mediation problem based on
WSMO[6], WSML [8], WSMX[3] of the Digital Enterprise Research Institute5 and
WebML/WebRatio [4] approach provided by the joint team of Technical University
of Milan, DEI6 and Cefriel7.

5 http://www.deri.org
6 http://www.dei.polimi.it
7 http://www.cefriel.it

This chapter compares two different approaches to semantic integration of a RosettaNet-

142 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

The solutions of both groups differ quite substantially in terms of the underlying
technologies. The DERI team based its solution on the WSMO conceptual frame-
work for Semantic Web services which comes from the relatively young Semantic
Web research area, while DEI-Cefriel followed the path of well-established Software
Engineering methods. We compare the similarities and differences of the provided
solutions mainly with respect to the data and process modeling, execution environ-
ments, tool support, but also from the perspective of dealing with changes in the
integration requirements.

8.2 Comparison

Both submissions have successfully addressed the SWS-Challenge Moon mediation
scenarios. In this section we elaborate on the similarities and differences on the ap-
proaches taken by DERI and DEI-Cefriel to the mediation tasks.

Underlying Technologies

WebML is a high-level notation language for data- and process- centric Web appli-
cations. It allows specifying the conceptual modeling of Web applications built on
top of a data schema used to describe the application data, and composed of one
or more hypertexts used to publish the underlying data. The WebML data model is
the standard Entity-Relationship (E-R) model extended with Object Query Language
(OQL) constraints. The hypertext model is specified through pages and units. Each
WebML unit has its own well defined semantic and its execution complies with its
semantic. The composition of different units lead to the description of the semantic of
hypertext or Web services. The language is extensible, allowing for the definition of
customized operations and units. To describe Web service interactions, WebML has
been extended with Web service units [5]. In particular the Request-Response
and One-way operations are used to consume external Web services, while the
Solicit and Response units are used to publish Web services. In [3] the lan-
guage has been extended with operations supporting process specifications, and a fur-
ther modeling level was added to the framework, allowing to start workflows/orches-
trations using a BPMN model that is later automatically translated to a WebML skele-
ton to be refined by designers.

The WebML methodology has been implemented in a prototype that extends the
CASE tool WebRatio8, a development environment for the visual specification of
Web applications and the automatic generation of code for the J2EE platform. The
design environment is equipped with a code generator that deploys the specified ap-
plication and Web services in the J2EE platform, by automatically generating all
the necessary pieces of code, including data extraction queries, Web service calls,
data mapping logics, page templates, and WSDL service descriptors. The overall
framework is shown in Figure 8.1: the modeling and design aspect rely on high-level

8 http://www.webratio.com

8 Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio 143

Fig. 8.1. The WebML/WebRatio Framework

BPMN model, which is instantiated for user- and machine- oriented applications,
with appropriate primitives for domain description, hypertext navigation specifica-
tion, and presentation design. The outcome of human-oriented application design
is a website, whilst the machine oriented case results in a service-oriented applica-
tion. Technically speaking, the project models are stored as XML serializations, that
in turn are translated by code, and documentation generation, that produce running
applications.

The DERI approach follows the Web Services Modeling Ontology (WSMO)
framework reflecting four top elements by explicitly modeling Goals, Web ser-
vices, Ontologies and Mediators. The solution provided by DERI is technically re-
alized using WSMX - a Semantic Web service middleware facilitating tasks like
service discovery, composition, mediation and execution. WSMX is a component-
based middleware following the Service Oriented Architecture (SOA) principles of
loose-coupling. Major WSMX components include: Data Mediation (handles the
mismatches at instance level between heterogeneous ontologies), Process Media-
tion (deals with solving the interaction mismatches between the Goal and the Web
service), Discovery (determines matching services for the given Goal), Choreogra-
phy Engine (drives the conversation between service requester and providers follow-
ing their public processes - WSMO Choreographies defined using ontologized Ab-
stract State Machines(ASM)[7]). Ontology-to-ontology mediation (OO-Mediation
between heterogenous ontologies) is reflected in the Data Mediation WSMX com-
ponent while goal-to-Web service mediation (WG-Mediation facilitating communi-

144 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

Fig. 8.2. The BPMN and WebML Models of Blue to Moon Mediator

cation between Goal and Web service) is handled by the Process Mediation WSMX
component.

8 Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio 145

Fig. 8.3. WSMX Architecture in Mediation Scenario

Modeling of WSMO elements can be performed using WSMT9 or WSMO Stu-
dio10. WSMT is a collection of tools for management of Semantic Web Services (e.g.
WSMO service and ontology editor and visualizer, WSMX monitoring, etc.).

On the other hand, WebML focuses more on the modeling of the WSMO WW-
Mediators (Web service-to-Web service mediation) and of the internal logics of the
services (if they need to be developed), that are defined through visual diagrams
representing the execution chains, while little emphasis is given to the design of
the Goals and of the other semantic aspects. Indeed, the approach provides a semi-
automatic extraction of WSMO Goal and Web service behaviour from the designed
models, that need to be refined later by the designer.

In the WSMOLX approach, the following artefacts have to be created and applied
to the WSMX middleware to get full system integration: ontologies for both involved
parties (i.e. service requestors and providers), bidirectional XML–WSML adapters
and lifting/lowering rules, WSMO Goals and Services, data mediation mapping rules
between heterogenous otologies. Each artefact must be registered with WSMX in
order to be utilized during the runtime phase. Once these artefacts are provided,
the WSMX framework will handle all aspects of the communication: discovery of
a WSMO Web service that will fulfill the requester’s Goal, mediation between the
involved parties, WSDL service invocations including lowering from/lifting back to
WSML and Web service execution.

The WSMX runtime architecture is shown in Figure 8.3. Instance data is sent
from the RosettaNet enabled Blue company in its native XML data format to the
dedicated adapter where it is lifted to the semantic level and from there it is sent to
WSMX as a WSMO Goal. The PIP3A4-WSMX and CRM/OMS-WSMX adapters

9 http://wsmt.sourceforge.net
10 http://www.wsmostudio.org

146 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

were developed for handling the lifting and lowering between XML schema and
ontologies in the mediation scenario.

Data Model

The WSMOLX solution starts with creating ontologies, with existing standards and
systems as their basis, namely RosettaNet PIP 3A4 and CRM/OMS schemas. Next,
Semantic Web services for the CRM and OMS systems of the Blue legacy system as
well as Goal templates, conforming to PIP3A4, for the service requestor are created.
In addition, a grounding must be defined from the semantic (WSMO) descriptions to
the syntactic (WSDL) descriptions. Lifting and lowering has to be defined between
utilized ontologies and XML data models.

The DEI-CERFIEL solution starts with designing the data model underlying
the RosettaNet messages with an extended E-R model. Three main entities are
identified: the Pip3A4PurchaseOrder, the Partner and the ProductLineItem. Each
Pip3APurchaseOrder instance is related with one or more ProductLineItem in-
stances, one Partner representing the Buyer, one Partner representing the Seller and
one Partner representing the Receiver. Every ProductLineItem instance may have
one Partner representing a Receiver for the single line. Only the essential data for the
scenario was modeled under this approach.

Both teams provided expressive data models reflecting domain specific knowl-
edge and exchanged messages on the data schema and instance level. WebML al-
lows to specify a data model describing the domain data structure as an Entity-
Relationship (E-R) or, equivalently, a UML class diagram. WebML E-R diagram
provides rich notation for specifying structure and relationships between concepts
occurring in the given domain and it allows to impose simple constraints over the
modeled domain by using WebML-OQL. Logic rules are not explicitly supported,
however the authors showed that the expressive power of the model is very close
to WSML-Flight. DERI used the WSML-Rule variant, a fully-fledged ontology lan-
guage with rule support. SWS-Challenge mediation scenario data model did not re-
quire to utilize complex rules while modeling the ontology. Thus, despite of using
more expressive language by DERI, both underlying data models were quite sim-
ilar in terms of their expressiveness. Both teams modeled existing concepts, their
attributes and relationships between these concepts without imposing additional con-
straints over the data models taking advantage of the expressiveness provided on the
level of UML class diagrams. In both cases, mature tools exist to edit underlying data
models: for WSMO, WSMT and WSMO Studio are available, while for WebML one
can use the WebRatio CASE tool.

Process Model

Provided solutions differ quite significantly with respect to the process modeling.
The joint team DEI-Cefriel followed a Software Engineering approach to model

8 Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio 147

Moon orchestration, while DERI specified orchestration using the ontologized Ab-
stract State Machines[7] formalism which falls into process execution based on un-
derlying rich knowledge base formalism. In the utilized Abstract State Machines
(ASM), an ontology constitutes the underlying knowledge representation and tran-
sition rules are specified in terms of logic formulas. ASM provide a precise and
executable model for specifying processes allowing simulation (e.g. deadlock, live-
lock freedom detection) and elaborate reasoning over the model. DERI focused on
the executable aspect of the ASM, not utilizing process simulation since there is cur-
rently no tool for WSML supporting ASM simulation. Execution of the ontologized
ASM has been carried out by ASM Engine used both in WSMX Choreography and
Orchestration. ASM-based modeling allows to model processes in a more flexible
way, supporting strong decoupling between service requester and service provider
where delivery of exchanged messages do not have to be explicitly modeled. Instead
the internal ontology of the ASM Engine will be populated with allowed messages
and it is up to the state of the execution and the transition rules to determine and
evaluate the usability of the available information.

In the WebML approach, RosettaNet, the Moon CRM and ORM related mes-
sages are modeled as a part of the same process, tightly coupling the Moon media-
tion process with the RosettaNet client. This coupling is embedded within the design
of the WW-Mediatior, specified as a WebML operation chain triggered by a Web
service call. The DERI approach is more flexible by being more client independent,
where the orchestrated service is not aware of any incoming or outgoing RosettaNet
messages. It simply specifies messages in its native ontology and it is up to the Data
Mediator to resolve and mediate data heterogeneities between service requester and
service provider.

Listing 8.1 shows a fragment of the WSMO Choreography for the CRM/OMS
service. The Choreography is described from the service point of view thus the
rule says that in order to send a SearchCustomerResponse message, the Search-
CustomerRequest message must be available. By executing the action of the rule
(add(SearchCustomerResponse)), the underlying operation is invoked according to
the grounding definition of the corresponding message which in turn results in re-
ceiving instance data from the Web service.� �

choreography MoonChoreography
stateSignature

in moon#SearchCustomerRequest withGrounding { ... }
out moon#SearchCustomerResponse withGrounding { ... }

transitionRules MoonChoreographyRules
forall {?request} with (

?request memberOf moon#SearchCustomerRequest
) do

add(# memberOf moon#SearchCustomerResponse)
endForall� �

Listing 8.1. CRM/OMS Choreography

In WebML/WebRatio after modeling the data structures, a high level BPMN
model is created representing the mediator (see Figure 8.2 for the mediation from

148 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

Blue to Moon); this model formalizes the orchestration of the Moon Web ser-
vices and defines states pertaining to the mediation process as defined in the SWS-
Challenge specification. Then, the BPMN model is used to automatically generate
a WebML skeleton that is manually refined to complete the design of the mediator.
The final model for the Blue to Moon mediator is reported also in Figure 8.2:

1. In the first line, as soon as the order is received (Solicit unit), the Pip3A4Pur-
chaseOrder is converted to the Canonic XML (Adapter unit) and stored in the
database (XML-In unit), the status of the current Pip3APurchaseOrder is set to
“To Be Processed” (Connect unit) and the Acknowledge message is returned
to the service invoker (Response unit).

2. Next, the Buyer Partner is selected (Selector Unit) and a message to query
the CRM service is created (Adapter unit) and sent to the Moon Legacy Sys-
tem (Request-Response unit). Once a reply has been received, the Cus-
tomerId is extracted from the reply message (Adapter unit) and stored in the
data model (Modify unit). The status of the order is set to “CustomerId re-
ceived” (Connect unit).

3. For each Receiver Partner in the order (Selector unit) a message for the
createNewOrder operation is created (Adapter unit) and sent to the Moon
Legacy System (Request-Response unit). Once a reply has been received,
the OrderId is extracted from the reply message (Adapter unit) and stored in
the data model (Modify unit). The status of the order is set to “OrderId re-
ceived”(Connect unit).

4. Next, the ProductLineItem instances related to current Pip3APurchaseOrder and
Receiver Partner are processed by a cycle: at every interaction a message for a
single line is created and sent to the Moon Legacy System (Request-Res-
ponse unit), and the received LineId is stored (Modify unit).

5. Finally when all the lines have been processed the message for the closeOrder
operation is created (Adapter unit) and sent to the Moon Legacy System
(Request-Response unit) and the status of the order is set to “Order closed”
(Connect unit). If there are still Receiver Partner to be processed, the loop
starts again.

Data Mediation

As mentioned before, WSMX puts a strong emphasis on mediation, allowing the in-
teracting participants to be completely decoupled so that they do not need to directly
comply with the requirements of the other party.

The WSMOLX solution requires the user to create mappings between the do-
main ontologies (OO-Mediator) with the help of the WSMT Data Mediation plugin.
At runtime, the Data Mediator component performs mediation at the level of the
exchanged messages following the mappings (OO-Mediator) defined during the de-
sign time. Listing 8.2 shows an example mapping of searchString concept of the
CRM/OMS ontology to concepts cusomterId of the PIP3A4 ontology follow-
ing the model defined in [8]. The constructmediated(X,C) represents the identifier

8 Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio 149

of the newly created target instance, where X is the source instance that is trans-
formed, and C is the target concept we map to.� �

axiom mapping001 definedBy
mediated(X, o2#searchString) memberOf o2#searchString :−
X memberOf o1#customerId.� �

Listing 8.2. Mapping Rules in WSML

In WebML, the SOAP messages transformation to and from the WebML data
model are performed by proper WebML units (Adapter units) that apply XSLT
transformations; XSLT stylesheets are designed with the visual mapping tool (a frag-
ment is reported in Listing 8.3).� �

<xsl:template match=”//po:Pip3A4PurchaseOrderRequest”>
<xsl:variable name=”fromId” select=”./core:fromRole//core:businessName/core:FreeFormText”/>
<xsl:variable name=”toId” select=”./core:toRole//core:businessName/core:FreeFormText”/>� �

Listing 8.3. Fragment of the XSLT for Mapping RosettaNet Messages to the WebML Data
Model

In the WebML approach, the notion of data mediation and data mapping from one
RosettaNet to the Moon specific data model is encoded in XSLT transformations that
can be reused, but they do not exploit ontological information. XSTL transformations
provide a one-to-one mapping between XML documents. New transformations need
to be devised for new message models. In short-term it is a faster solution; however,
if the number of clients using different data formats grows, then scalability becomes
an issue for the WebML approach. For each customer it is required to change and
redefine the orchestrated business process. For instance, when considering customers
using other data formats and following different message exchange patterns, new
OO-Mediators and WW-Mediators need to be designed. This can be partially avoided
when there is no need to process the content of the messages, simply by not checking
the format of the incoming message and lifting it to the internal model dynamically
according to the incoming message format.

Tool Support

It is also worth overviewing the maturity of both solutions and respective tools in
the design as well as the execution phase. Currently, there is a better tool support for
WebML modeling, especially on the process modeling level. A good support is al-
ready provided for editing WSMO elements (e.g., ontologies, Goals), but only a basic
support currently exists for editing processes in the form of ontologized ASMs and
no support for simulation and model testing. However, the tools utilized throughout
the development lifecycle of the WSMOLX submission are being actively developed
(WSMO editor, Data Mediation, WSMX, others). Some of them are not yet as mature
as the WebRatio CASE tool especially in terms of ontologized ASM-based process
modeling. However, other modeling aspects involved in the semantic integration, like
for instance WSMO ontology editing using WSMT, are already supported by quite
advanced and user-friendly functionality.

150 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

8.2.1 Comparison Table

The comparison of the two solution is summarized in the Table 8.1.

8.2.2 Coping with the scenario changes

Both solutions were able to comply with the changes required by the second version
of the mediation scenario. In particular, as regards the WebML solution, the scenario
changes required to update the data model by introducing the fact that there may
be a receiver for each single item lines. With regard to the process mediation, the
BPMN model was updated to consider the new loop required to handle a different
receiver and to invoke the production Web service. Accordingly, data mappings have
also been updated. The cost of copying with the changes was relatively low and it
required less than one day of work.

For the WSMOLX based solution, minor changes were required in the ontology
similar to the case of the WebML data model. Also the Choreography of the Moon
service had to be updated to model the loop required in the changes introduced in
the second version of the scenario. Lack of process simulation and graphical support
for ontologized ASM modeling requires good understanding of this technology and
the DERI team was able to incorporate the required changes also within less than
one day. Nevertheless, it is acknowledged that it would take longer for a person
unfamiliar with this formalism to make the necessary changes, while the WebML
solution is more likely to be grasped and modified reasonably quick even by a non-
expert.

8.3 Conclusion

In this chapter we have compared two different approaches to the SWS-Challenge
mediation scenario. The mediation requirements are very similar to a real world sit-
uation, where two partners having different B2B protocols want to interact with each
other, but also complex enough to stress both compared solutions and to evidence
their advantages and disadvantages. While the WebML based solution exploits well-
established Software Engineering methods that allow some de-coupling and reuse,
the WSMO based solution goes beyond the standard way of system integration al-
lowing for a better de-coupling and reusability of the modeled elements.

The WebML based solution offers a mature and easy to use design environment
totally based on a visual paradigm, with a set of automatic facilities for partial gener-
ation of semantic descriptions and definitions. From the WSMOLX user perspective
the most difficult part is modeling ontologized ASM-based processes what should
be accommodated in a more user-friendly way. However an easy visual paradigm is
available, facilitating modeling of other WSMO elements (e.g., ontologies, Goals,
etc.) involved in the semantic integration.

Future activities will focus on the refinement of the two approaches, also for
coping with the new challenge scenarios that will be proposed. Both teams were

8 Comparison: Mediation Solutions of WSMOLX and WebML/WebRatio 151

Feature WebML/WebRatio WSMO/WSMX
Data Model De-
sign

ER-model manually created from
analyzing the RosettaNet mes-
sages and adding status informa-
tion. Used to keep the data per-
sistent.

Independent ontologies created
both from analyzing the Blue
RosettaNet messages and inter-
nal data requirements by Moon’s
legacy services.

Process Media-
tion Design

WebML model structure with
standard units generated from
BPMN model. Units are then
configured and other units are
added from the library manually
(no need for any implementation,
no code generation, just compo-
nent configuration).

The process mediation is mod-
eled explicitly using an ontolo-
gized ASM that represents the
orchestration of the mediation
service or the choreography of
the invoked services. The or-
chestration and the choreogra-
phies are hence decoupled.

Data Mediation
Design

XSLT mapping designed within a
visual environment to lift SOAP
messages to the WebML data
model and lower the data se-
lected from the WebML data
model to a SOAP message.

WSMT data mediation plugin
for creating OO-Mediators. Ad-
ditionally, dedicated bidirectional
XML–WSML adapters generated
semi-automatically are used for
handling ontology lifting and low-
ering.

Web service
publishing

Generic standard units for receiv-
ing SOAP messages.

Generated WSs are internally
published on Axis2 or as JAX-
WS services.

Web service in-
vocation

Generic standard units for calls
to Web services that are config-
ured (at design time or at run-
time) to invoke the Web services.

WSMX Invoker component han-
dles all communication with ser-
vices using grounding informa-
tion provided in SWS descrip-
tions.

Process Media-
tion Execution

The designed mediator repre-
sents the process that will be
executed. The configuration of
the execution environment is au-
tomatically obtained from the
model.

WSMO Choreography and Or-
chestrations modeled during the
design time are directly exe-
cutable.

Data Mediation
Execution

Incoming and outgoing mes-
sages, according to the modeled
mediator are lowered to the in-
ternal data model calling the pre-
configured XSLT mapping.

Handled automatically by the
Data Mediator component by
applying the OO-mediators (ex-
pressed as data mapping rules)
on exchanged messages level.

Execution Moni-
toring

The WebRatio runtime offers de-
fault logging facilities that store
all the execution threads. Stan-
dard WebML units can be used
to develop a dedicated monitor-
ing hypertext.

WSMX execution is presented as
components’ events flow on the
Java SWING-based panel.

Table 8.1. Comparison of the Presented Solutions

152 M. Zaremba, R. Zaharia, A. Turati, M. Brambilla et al.

able to handle the scenarios separately up to now and hence we are confident that
both technologies employed will be able to propose an effective solution for the new
scenario. The WebML based solution will further exploit the integration with the
Glue discovery engine by exploiting it for the discovery phase and modeling within
WebML a solution to dynamically compose and invoke the services according to
the discovery results. The WSMO based solution will incorporate service discovery
via AchieveGoal construct into its Orchestration allowing late-binding and runtime
service composition.

References

1. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontologies
1(1) (2005) 77 – 106

2. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Language:
An Overview. In: Proc. of the European Semantic Web Conference. (2006)

3. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian, E.,
Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture: Concepts,
technology and application. In Service Oriented Computing and Applications, Springer
London 1(2) (2007)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kauffmann (2002)

5. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-driven design and
deployment of service-enabled web applications. ACM Trans. Internet Techn. 5(3) (2005)
439–479

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in Web applica-
tions. ACM Trans. Softw. Eng. Methodol. 15(4) (2006) 360–409

7. Roman, D., Scicluna, J.: Ontology-based Choreography of WSMO Services. Wsmo final
draft v0.3, DERI (2006) Available at: http://www.wsmo.org/TR/d14/v0.3/.

8. Mocan, A., Cimpian, E., Kerrigan, M.: Formal model for ontology mapping creation. In:
International Semantic Web Conference. (2006) 459–472

9

Comparison: Mediation on WebML/WebRatio and
jABC/jETI

Marco Brambilla1, Stefano Ceri1, Emanuele Della Valle2, Federico M. Facca1,
Christian Kubczak3, Tiziana Margaria4, Bernhard Steffen5, and Christian Winkler4

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy,
{mbrambil,ceri,facca}@elet.polimi.it

2 CEFRIEL, Milano, Italy, dellava@cefriel.it
3 Chair of Software Engineering, Technical University of Dortmund, Germany,
christian.kubczak@cs.uni-dortmund.de

4 Chair of Service and Software Engineering, University of Potsdam, Germany,
{margaria,winkler}@cs.uni-potsdam.de

5 Chair of Programming Systems, Technical University of Dortmund, Germany,
steffen@cs.uni-dortmund.de

Summary. In this chapter we compare two solutions to the mediation scenario of the SWS
challenge that are based on the use of WebML [1] and of the jABC [2, 3] as modeling and
execution platforms. In particular, first we give a general overview of the differences among
the to approaches, and then we compare in the details the two solutions for the SWS challenge.

We use selected parts from the mediation scenarios to keep the comparison simple but
expressive. Looking on the advanced scenarios would be more complex but would obviously
lead to the same results.

9.1 Introduction

Both presented solutions adopt a model based approach, supported by model driven
design tools and environments. This allows modeling the mediator in a graphical
high level modeling language and supports the derivation of an executable mediator
from these models. The solutions are thus similar in their spirit, and we provide here
a description and comparison of the similarities and differences, at the modeling,
language, tool, and change management levels.

The complete discussion on the two solutions can be found in Chap. 4 and 5.
Hence we do not go into the solutions’ details here but give a brief description of both
submissions in Sect. 9.2 and 9.3. In Sect. 9.4 we compare the applied techniques of
both approaches in details and in Sect. 9.5 we present a reduction of the two solutions
to their mere common essence before we conclude in Sect. 9.6.

154 M. Brambilla, S. Ceri et al

Fig. 9.1. The BPMN editor integrated in the WebML editing environment.

9.2 Designing the Mediator with WebML

The solution for the mediation problem starts by designing the data model under-
lying the RosettaNet messages with an extended E-R model. We identified three
main entities: the Pip3A4PurchaseOrder, the Partner and the ProductLineItem. Each
Pip3A4PurchaseOrder instance is related with one or more ProductLineItem in-
stances, one Partner representing the Buyer, one Partner representing the Seller and
one Partner representing the Receiver. Every ProductLineItem instance may have
one Partner representing a Receiver for the single line.

Then the WebML solution models the high-level scenario of the challenge using
BPMN (see Fig. 9.1). This model includes all parts of the scenario on the whole –
Blue’s side as well as the mediator and Moon’s side – and describes the scenario
workflow.

This model is used as a guidance in the production of two WebML models that
implement the workflow’s functionality. The BPMN workflow is split by a corre-
sponding annotation of the BPMN model into two separate WebML models that
represent two independent parts of the process: sending a purchase order and receiv-
ing acknowledgments for the ordered items. The generation of WebML diagrams is
based on an algorithm that populates the WebML diagram with the standard general
purpose units mentioned before, e.g. for receiving Web service calls and calling Web
services and sending Web service responses, according to the BPMN model. The
design of the mediator is refined manually by configuring existing units and adding

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 155

Fig. 9.2. The SWS Mediator SIBs and the abstract process model

new ones from the WebML unit library (no new unit had to be developed to cope
with the mediation scenario). It could be possible also to model the mediator without
storing data but working only in memory. The data storage was preferred to allow
a better monitoring of the mediation process. The conversion from RosettaNet mes-
sages is handled by Adapter units that are configured by a proper XSLT stylesheet
that transforms messages in an XML format compatible with WebML’s internal data
format. In the same way conversion to and from Moon legacy messages are handled
by proper XSLT stylesheets that act as templates for SOAP messages and that are
then populated by runtime queries during the workflow execution.

9.3 Designing the Mediator with jABC

The modeling process with the jABC framework is strongly control flow driven.
The mediation task is analyzed under this aspect and then mapped into a jABC
model consisting of Service Independent Building Blocks (SIBs) that are derived
from WSDL6 descriptions of the provided services and a palette of standard SIBs for
data extraction and control flow management called common services that are deliv-
ered with the jABC. In the Mediator scenario we have a rather flat domain structure
for the SWS specific services (see Fig. 9.2 left): we only distinguish SWS services
from common services, and we import the entities in the domain of discourse (part
of an underlying ontology) through the WSDL import.

We compare here the user-designed solution described in Chap. 5. Since it is
closer to the WebML/WebRatio approach than the synthesized solution of Chap. 7 it
enables a more interesting comparison.

6 Web Services Description Language (http://www.w3.org/TR/wsdl)

156 M. Brambilla, S. Ceri et al

The workflow is created manually, by drag and drop from the palette of automati-
cally produced SIBs7. It is executed using the Tracer plugin, the jABC interpreter for
jABC service models, which uses the jETI8 facility to communicate with the remote
services provided by the SWS Challenge hosts.

We publish and provide the resulting jABC Mediator service itself as a Web
service with the technology provided by jETI as described in Chap. 5. Obviously this
implies that (Java) code has to be generated from the created model using jABC’s
code-generator plugin ’Genesys’.

When moving from one scenario level to the next, the data adaptation requires
only the reimport of the changed WSDL descriptions into SIBs, which is automatic.
The process adaptation requires a manual modification of the workflow (called Ser-
vice Logic Graph or SLG), which happens graphically in the jABC. For comparison,
in our declarative approach based on LTL guided synthesis described in Chapter 7 the
modification of the workflow might be achieved by just adding/modifying the LTL
formulas that describe the new desired workflow and running the synthesis again.

9.4 Comparison

Table 9.1 summarizes the profiles of the two solutions, which we describe in more
detail below.

Table 9.1: Comparison of the presented technologies

Function WebML jABC
BPMN model Manually modelled from the

SWSC task description. Man-
ually annotated to steer the
WebML generation to meet the
challenge’s needs.

Not a distinct model, just an ab-
stract jABC graph.

Mediator control
flow

WebML model structure with stan-
dard units generated from BP
model. Units are then configured
and other units are added from
the library manually (no need for
any implementation, no code gen-
eration, just component configura-
tion).

Manually created SLG along the
SWSC task description (by refin-
ing the abstract model equivalent
to the BPMN model), using auto-
matically generated- and standard
SIBs.

continued on next page

7 Automatic generation of the workflow from declarative specifications is also possible as
described in Chap. 7.

8 Java Electronic Tool Integration; an extension of the jABC framework to seamlessly inte-
grate remote (Web) services.

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 157

continued from previous page
Function WebML jABC

Data Manage-
ment

ER-model manually created from
analyzing the RosettaNet mes-
sages and adding status informa-
tion. Used to keep data persistent.

Not necessary here due to WSDL
import. The data for the media-
tor are kept in the session mem-
ory. ER-model possible, manually
created from analyzing the Roset-
taNet messages.

Web Service in-
vocation

Generic standard units for calls to
WSs

Automatically generated SIBs
representing WS functions and
containing the WS call.

Web Service
publishing

Generic standard units for receiv-
ing, processing and storing SOAP
messages. This allow the design
and publishing of complex work-
flows behind published services.

WSs automatically generated
from jABC SLGs and published.

Passing data to
a Web Service

Data must be included in the
SOAP messages. SOAP (XML)
message templates have to be
created in advance.

Data is passed to the WSs via the
generated SIB parameters pro-
vided as Java objects (general
jABC mechanism).

Receiving data
from a Web
Service

Data are extracted from the raw
SOAP messages.

Data is received from the WSs via
the generated SIB parameters (s.
above) that are correct by con-
struction.

Handling XML
messages

Standard units for handling XML
messages exist, performing XSL
transformations on XML mes-
sages.

No need to handle raw XML mes-
sages.

Monitoring User
Interface

Standard units to generate web
pages, displaying database data.

Monitoring of flow graphs and
state information within the SLG
Tracer (interpreter).

Execution out-
side the model-
ing environment

Autom. generation of standard
J2EE application deployable into
any J2EE application server.

Autom. generation of standalone
executable application.

Checking mech-
anisms

Checking mechanism based on
the semantic of the single units.

LocalChecker to verify local con-
straints concerning a single SIB.
ModelChecker to verify temporal
logic constraints on models.

Service hetero-
geneity

Extensible support for any Web
service platform.

Extensible support for local and
remote services (WS, CORBA,
jETI, etc.)

9.4.1 Workflow

WebML covers the high level specification of the business flow by means of BPMN models. A
coarse WebML skeleton is automatically generated from the BPMN model. This model con-
tains standard units for the Web service calls. Other functions that are necessary to complete
these calls have to be configured to meet the actual requirements.

158 M. Brambilla, S. Ceri et al

The jABC abstract model is essentially equivalent to the BPMN model. It can be refined
manually into the mediator graph. As done here, the main domain specific (peculiar to the
SWS Challenge) components (SIBs) used in this model are automatically generated from the
Web service’s WSDL descriptions. The SLG also contains standard control SIBs (provided
with the jABC as a library) to realize the specific control flow for the SWSC scenario descrip-
tions.

9.4.2 Data Model

The WebML model comprises a data description model consisting of an Entity-Relationship
model (E-R) that is derived from analyzing the data structures in the RosettaNet messages.
This E-R model is used to store the BP’s data as well as status information regarding the state
of the process execution. It is also possible to use in memory data storage as configuration
option.

The jABC mediator does not use persistent data storage since it keeps the information in
the session memory. The same E-R model could however also be realized persistently via the
DB-Schema plugin, if necessary. In this case the corresponding E-R model would be created
in the jABC and using this model, a corresponding schema could automatically be created on
a JDBC9 compliant database system. Databases can be accessed using a common SIB palette
provided by the DB-Schema plugin.

9.4.3 Dealing with WS

The WebML solution offers four generic WS-related functional units to use or realize a Web
service’s functionality: two units to issue calls to a WS, one for sending a request and one
for also waiting for a response, and two units to provide a WS functionality, one to wait for a
request and one for also sending a reply. See Chap. 4 for more details.
These units are parameterized (configured) with the WSDL description and with SOAP mes-
sage templates that realize the particular WS functionality and return the results of the WS call
as SOAP message. These units can also be configured dynamically at runtime passing as pa-
rameter the dynamic end point, as shown in the discovery scenario. Such feature is particular
useful if combined with dynamic Adapter units since it allows to interact with arbitrary Web
services and to store the results in the internal data model regardless of the invoked Web ser-
vices. The feature is adopted in the discovery scenario, to support dynamic binding of services
according to user goals and QoS (see Chap. 11).

While WebML choses generic templates for the communication with Web services, the
jABC solution realizes a dedicated access to external Web services: for each WS functionality,
a separate SIB is automatically generated from the corresponding WSDL description. These
SIBs are already fully instantiated: they provide access to the data exchanged with the WS
through automatically generated SIB parameters, that can be accessed in each jABC model.
The data translation to/from the parameters from/into the SOAP message that in the end is ex-
changed with the service, is also generated into the SIBs and happens implicitly at execution
time. The jABC is specifically designed to make these communication details transparent to
the user. Besides a simplified user experience, this also supports agility: the virtualization of
(distributed) middlewares and platforms allows one to flexibly exchange service implementa-
tions without touching the process model at all.

9 Java DataBase Connectivity (http://java.sun.com/javase/technologies/
database/)

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 159

Similarly, a stand-alone WS (including the corresponding WSDL) can be generated from
each jABC SLG and automatically provided on a web server.

9.4.4 Service heterogeneity

A model driven approach like the one offered by WebML is platform independent in princi-
ple. The code corresponding to the modeling primitives can be extended in order to ground
to different Web service standards or customized services. This allow a great flexibility and
requires, due to the generality of the models, few changes to the modeling primitives.

jABC is designed to be a uniform hub between different external technologies: services
and components realized in heterogeneous technologies are handled within the jABC at the
SIB and at the SLG level in a uniform way. The SIB model is independent of the technology in
which the SIBs are implemented. In this mediator we use Web services, in other applications
CORBA components, Java or C, C++, C# code, or just local or remote functionalities made
available over an API. Similarly, the SLGs are uniform orchestration models, independent
of the technology, platform, or language in which they are going to be exported. Here we
export the mediator as Web service implemented in Java, but we could as well export it as
BPEL orchestration, or any other target programming language and deployment technique the
Genesys plugin and the deployment units support.

The advantage is that users who compose models from functionalities, as is the case for
this mediator, are offered a simple, uniform level at which they use and access the SIBs and at
which they compose the SLGs, independently of the heterogeneity of technologies.

9.4.5 Dealing with XML messages

To deal with Web services WebML has to prepare the corresponding SOAP (XML) messages,
that are passed to the units that execute the call to a WS. If a WS returns a result, this value has
to be extracted from the returned SOAP message as well. To do so, WebML offers standard
units that perform (lifting and lowering) XSL transformations on XML messages. Eventually
this operations can be performed directly in units that perform the actual Web service calls.
The use of lifting and lowering adapters grants a more generic approach since they can be
configured dynamically.

As in the jABC there is no need to deal with raw XML messages, no such special functions
are required. The messages are created within the SIBs according to the structure prescribed
by the original WSDL, which is reflected later in the structured parameters of the SIBs and
thus known to them.

9.4.6 Execution outside the modeling environment

The use of a Model Driven Design principle enable the total decoupling between the WebML
models and the final application code. The WebML code generator allow to transform WebML
models into running Web applications, including Web portals, Web services, and Web based
workflows. In particular current version enable the generation of J2EE Web applications that
can be deployed to any J2EE compliant application server (e.g., Tomcat). In principle, since
WebML models are not bound to any specific implementation, it is also possible to generate
Web applications for platform different from J2EE, such as .NET. This will require to define a
new set of transformation scripts for new target platforms and the relative set of code libraries.

160 M. Brambilla, S. Ceri et al

jABC’s code generation facility allows the automatic generation of applications from
SLGs that are completely independent from the jABC framework and can be executed stand-
alone, as if they had been programmed manually. In the given scenarios this capability was
used to provide the modeled mediator SLG as a Web service implemented in pure Java. The
generation for independent execution is a central difference from other systems that support
execution only inside the own interpreter/tracer, or to extruders, i.e. code generators that sup-
port the external execution outside the design platform by including with the exported code an
own mini-runtime environment.

Since jABC’s code generator plugin is retargetable, by selecting a different target lan-
guage/platform with a few clicks we can as well provide the mediator as a “simple” Java
application or applet, or choose another programming language for code generation.

9.4.7 Checking mechanisms

WebML provides checking mechanisms both at the level of BPMN diagrams and WebML
models, ensuring that the designed models are consistent with the semantics of the adopted
primitives and hence that the code generation process can be completed without errors. For
example, if a needed parameter is missing in input to a unit, the verification tool, provides the
user with this information and assists the user into the completion of the model.

jABC provides two checking mechanisms to support the modeling process. To verify con-
straints concerning single SIBs, the LocalChecker plugin can be used. Preconditions as e.g.
provision of correct values for all necessary SIB parameters can be ensured this way. The
second verification tool is the ModelChecker plugin (named GEAR10) that allows to specify
constraints in temporal logics that are applied to jABC’s models. For example in the SWSC
scenario, the ModelChecker could be used to ensure that the closeOrder service is not in-
voked unless the addLineItem service was called at least once.

Both checking tools can be invoked manually or can be configured to support the modeling
process by continuously checking the models and giving spontaneous feedback if the user
models any errors. jABC’s checking facilities were not used in the early SWSC scenarios but
were applied in the advanced solutions.

9.4.8 State Monitoring

The WebML language offers standard abilities to display information from a relational
database on a web page. This functionality can be efficiently used to monitor the state of the
modelled workflow, as this information is stored in a relational database as well. The runtime
offers also the chance to log each single component interaction, including WS interactions.

The jABC offers white box monitoring via its SLG interpreter, the Tracer plugin, which
allows monitoring variables and communication activity of the whole hierarchical SLG. At
wish this can be done separately for each hierarchy level and each thread, in case of a dis-
tributed execution. Additionally, the LearnLib [4] and TestLib plugins support validation and
monitoring of black box systems. Not only can the behaviour of black boxes be observed at
run time. It may also be systematically learned, resulting in a user-level behavioural model.
This feature has not yet been used in the SWS Challenge.

10 Game-based, Easy And Reverse model-checking (http://jabc.cs.
uni-dortmund.de/gear/)

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 161

Fig. 9.3. The compared Mediators: Functional correspondence of the WebML (left) and jABC
(right) solutions

162 M. Brambilla, S. Ceri et al

9.5 Boiling Down to the Essence

Fig. 9.3 compares the first part of the WebML and the jABC workflows for the first medi-
ation scenario, with a layout that respects the functionalities within the mediator solutions.
Each horizontal bar matches a single functional entity in the scenario. Taking into account
the discussed differences, it is easy to reduce both solutions to their common essence. The
result demonstrates the high grade of conceptual similarity of both solutions concerning the
modeling style.

• As mentioned before, the WebML model needs a pair of lifting and lowering actions for
each Web service call to create and decode the needed XML messages. These transfor-
mations are not necessary in the jABC solution, as it does not treat communication at the
level of exchanging raw XML messages. So all the service units dealing with the transfor-
mation of XML messages in the WebML model are crossed out in red in Fig. 9.4.

• All units dealing with database access in the WebML model are additionally identified
and crossed out with X in Fig. 9.4. These components do not arise in the jABC modelling,
which allows to also virtualize these access functions.

• In the jABC solution some SIBs are used that extract values from the incoming RosettaNet
message’s type and create new types from these values that are then used for Moon’s
services. The task of these SIBs is in some way analogous to WebML’s lifting and lowering
units, though they do not work on raw XML but on the Java types generated from the
services WSDL descriptions. Those SIBs are marked with #.

• The jABC models error handling explicitly while the WebML solution does not (even if
the modeling language offers support for that). Therefore the error handling SIB from the
jABC solution is crossed using X.

The remaining workflow, shown in Fig. 9.5, represents the essence of the desired solution,
abstracted from approach-specific details of the communication, storage, and error handling
choices.

9.5.1 Comparing Advanced Models

For the previous section, we chose the first part of the first mediation scenario, for simplicity
reasons. The small and simple workflows created for both solutions made it easy to break
down the presented approaches to their essence. The example presented in this section shows
that the found conclusion also scales to more complicated applications.

Fig. 9.6 and 9.7 show the second part of the second mediation scenario for both solutions.
Once again it is possible to find the aforementioned approach-specific modeling differences
but apart from this, we can also find a difference in the logical realization. The WebML so-
lution handles each incoming message immediately and separately, depending on the state of
the received line item confirmation message. The jABC solution initially gathers all confirma-
tion messages, and it starts to process them successively when the last item confirmation was
received.

This difference in modeling the logics of the workflow makes it hard to directly compare
the solutions pointwise as done in the previous section. But abstracting from these differences
and from the approach-specific modeling properties again leads to quite similar pictures. The
different details of the presented solutions reflect the different focuses of the used tools. De-
spite that, even the granularity level of both tools proved to be quite similar as the size of the
resulting models does not differ significantly.

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 163

Fig. 9.4. Abstracting from approach-specific entities.

164 M. Brambilla, S. Ceri et al

Fig. 9.5. The Reduced WebML and jABC solutions

Fig. 9.6. WebML mediator part 2 (scenario 2).

9 Comparison: Mediation on WebML/WebRatio and jABC/jETI 165

9.6 Conclusion

In this chapter we presented two solutions to the mediation in the Semantic Web service sce-
nario. The two approaches, WebML and jABC, offer two different views on the mediation
problem, both in terms of the design-time modeling of the solution and of the runtime exe-
cution platform. The applied tools focus on different aspects and so both approaches present
advantages and drawbacks.

jABC offers a more abstract and synthetic view of the solution, e.g., disregarding some
grounding details of the communication. Modeling with the jABC framework is control driven
and it aims at the transparent integration of services in heterogeneous environments. For the
user (modeler) it makes no difference what kind of services (e.g. local or remote) are used or
how they are implemented. All services appear in a uniform way, as SIBs. The idea of service
oriented architecture is strongly maintained in the jABC. Thus it can be seen as a system-
integration platform allowing the user to select from heterogeneous services and to compose
them (orchestrate them) in a workflow.

On the other hand, WebML offers a wider coverage of the technical details and of the
efficient runtime execution. The WebML approach is based on software engineering and web
engineering practices, while jABC takes more advantage of the SOA and Web service design
fields. Both the methods are not natively meant to face Semantic Web applications, but both
proved to adapt rather well to this new class of problems.

References

1. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kauffmann (2002)

2. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven Development
with the jABC. In: HVC - IBM Haifa Verification Conference. LNCS N.4383, Springer
Verlag (2006)

3. Universität Dortmund: jABC Website. (2007) http://www.jabc.de.
4. Raffelt, H., Steffen, B., Berg, T.: LearnLib: A library for automata learning and experi-

mentation. In: ACM SIGSOFT FMICS’05, Lisbon, P, ACM Press (2005) 62–71

166 M. Brambilla, S. Ceri et al

Fig. 9.7. jABC mediator part 2 (scenario 2)

Part III

Discovery Individual Solutions

10

Instance-based Service Discovery with WSMO/WSML
and WSMX

Maciej Zaremba1, Matthew Moran1, and Tomas Vitvar2

1 Digital Enterprise Research Institute,
National University of Ireland, Galway, Ireland,
firstname.lastname@deri.org

2 The Semantics Technology Institute Innsbruck,
University of Innsbruck, Austria,
tomas.vitvar@sti2.at

Summary. In this chapter we present the solution based on WSMO[6], WSML [8]) and
WSMX[3] to solving SWS Challenge discovery tasks. Web Service Modeling Ontology
(WSMO) provides a model for Semantic Web services used for defining ontologies, services,
goals and mediators. Web Service Modelling Language (WSML) provides a family of ontol-
ogy languages used to formally describe WSMO elements used for service modelling, while
Web Service Execution Environment (WSMX) is a middleware platform used for discov-
ery, composition, execution and mediation of Semantic Web services. WSMO, WSML and
WSMX form a coherent framework covering all aspects of the Semantic Web services that we
use to address SWS Challenge discovery scenario.

10.1 Discovery with Data Fetching

Semantic descriptions enhance various descriptive parts of services. The parts regarding ser-
vice invocation (such as how and where the service can be accessed) are reused, thus so called
grounding from semantic level to the underlying technology for service invocation must be
defined. In our approach we use grounding to WSDL which is used for on-the-wire message
serialization (WSDL binding), physical Web service access (WSDL service and endpoint) and
communication (SOAP). Semantic input messages are transformed to the XML representing
the input message (lowering) and passed to the underlying operation which responds with an
output message in XML. The output messages are transformed to the corresponding semantic
output data (lifting).

We define two phases for the discovery process, namely (1) Web Service Discovery and (2)
Service Discovery. Web Service Discovery operates on the capability descriptions of the Goal
GF and Web serviceWF without any data being taken into account. The matching is defined
by the following set-theoretic relationships [13]: (1) exact match, (2) subsumption match, (3)
plug-in match, (4) intersection match and (5) disjointness. Exact match denotes perfect match
between GF and WF . Subsumption match indicates that WF is more specific than request
in GF , e.g., Goal specifies a request of finding a connection from Galway to Dublin, while
service offers bus transportation between these two locations. Plug-in match indicates the case

170 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

whereWF is more general then what is requested in GF , e.g, Goal specifies search for Apple
laptops while service offers assorted laptops. Intersection match indicates some common parts
betweenWF and GF , e.g.,WF specifies packaged flight and hotel deals in Europe while GF
requests flight only. If the Goal and the Web service match, based on relationships 1-4, then
service discovery is performed where it is checked if the service can satisfy the specifics of the
service request, by consulting the data of the Goal and the service. If all data is not available,
it needs to be obtained from the service by performing so called data fetching. In this section
we further elaborate on the service discovery phase and define the algorithm.

The service requester is de-coupled from the service provider through separate Goal and
Web service descriptions. For the purposes of our work we use definitions from WSMO-Lite
for semantic description of both parties using the following types of semantics: information,
functional, and behavioral [14]. Details of these semantics are also presented in “Mediation
using WSMO, WSML and WSMX” Chapter.

For the service discovery we define the matching function

s← matching(G,W,Bgw), (10.1)

where G andW is a Goal and a service description respectively and Bgw is a common knowl-
edge base for the Goal and the service. The knowledge base contains data which must be di-
rectly (through descriptions GO andWO) or indirectly (through data fetching) available so that
the matching function can be evaluated. The result s of this function can be: (1) match when
the match was found (in this case all required data in Bgw is available), (2) nomatch when
the match was not found (in this case all required data in Bgw is available), or (3) nodata
when some required data in Bgw is not available and thus the matching function cannot be
evaluated.

We denote the description of the Web service and the Goal asW and G respectively. For
each such description, D, we denote the information semantics as DO , the capability as DF ,
and choreography as DX .

We further assume that all required data for the Goal is directly available in the description
GO . The data fetching step is then performed for the service when the matching function
cannot be evaluated (the result of this function is nodata). We then define the knowledge base
as:

Bgw = GO ∪WO ∪ {y1, y2, ..., ym}, (10.2)

where {yi} is all additional data that needs to be fetched from the service in order to evaluate
the matching function.

Further, we denoteWX as the data-fetch interface of the serviceW with output symbols
ΣO and input symbols ΣI . The matching function can be then evaluated if data {yi} can be
fetched from the service through the data fetch interface if input data ΣI is either initially
available in the knowledge base Bgw (data directly available from the Goal or Web service
ontologies) or the input data becomes available during the processing of the interface.

In addition, as illustrated in Figure 10.1, we only fetch the data from the interface if this
data can be used for evaluation of the matching function (in general the data-fetch interface
can provide data not required for the matching – see the rule r3 in Figure 10.1). In Bgw full
circles denote available information while dotted circles denote unavailable information which
can be obtained through the data-fetch interface. However, since the fetching operation can be
costly in terms of the generated communication, only the parts of Bgw which are referenced
from the Goal effect φeff should be fetched.

10 Instance-based Service Discovery with WSMO/WSML and WSMX 171

Knowledge Base (Bgw)

Service
Data

Fetching
interface

Goal Effect
List of symbols referring to the elements of the KB

(x1, x2, … xn)

Refers to

Refers toRefers toIs executed on

h

r2

r3
h

h

r1

Fig. 10.1. Minimization of the Provider Interactions

Let φeff be the effect of the Goal capability GF , L be the set of rules of the data-fetch
interface WX , and let ΣO be the set of output symbols of that interface. Then, we only use
the rule r ∈ L iff exists x ∈ reff , x ∈ ΣO such that x ∈ φeff . Please note that this rule can
be in addition executed if the input data is available during processing (i.e. rcond holds in the
Bgw) (see the algorithm in Section 10.1.1).

10.1.1 Algorithm

In algorithm 1, the matching function is integrated with the data fetching which provides
instance data for the concepts referred from the Goal effect φeff . The algorithm operates on
inputs, produces outputs and uses internal structures as follows:

Input:
• Web serviceW for which we denoteWO as the Web service ontology with initial instance

data andWX as data-fetch interface of the Web service with rule base L. In addition, for
each rule r ∈ L we specify the data of the rule effect reff as r.data and the action
r.action with values add, update, delete meaning that if the rule is executed the action
performs the effect of the rule, i.e. changing the state by adding, updating or deleting data
in the memory (knowledge base).

• Goal description G for which we denote GO as the Goal ontology with initial instance
data and Geff as the Goal capability effect. For W and G it must hold that they match at
abstract level (Web service discovery).

Output:
• Boolean variable s indicating the result of the matching function between W and G, i.e.

match or nomatch.

Uses:
• Processing memoryM containing data fetched during execution of rules of the data fetch-

ing interface.

172 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

• Knowledge base Bgw which contains data for processing of the matching function.
• Boolean variable modified indicating whether the knowledge base has been modified or

not during the processing.

1: Bgw ← GO ∪WO

2: M ← Bgw
3: repeat
4: modified← false
5: s← matching(G,W,Bgw)
6: if s = nodata then
7: while get r from L: holds(rcond,M) and r.data∈ Geff

8: if r.action = add then
9: add(r.data,M)

10: add(r.data,Bgw)
11: modified← true
12: end if
13: if r.action = remove then
14: remove(r.data,M)
15: end if
16: if r.action = update then
17: update(r.data,M)
18: update(r.data,Bgw)
19: modified← true
20: end if
21: end while
22: end if
23: until s 6= nodata or not modified

Algorithm 1: Minimized Data Fetching for Discovery

The algorithm tries to fetch data from the service by processing the service’s data-fetch
interface. For each rule present, which can be executed, it checks whether its result will provide
any information referenced by Geff . For example Geff may refer to the concept price of a
given product which is unavailable in the Bgw, however a rule exists which can result in an
instance of the price concept being obtained. Once the data fetching operations are executed
and new facts are added, updated or removed, a modified flag is set to true and Bgw can be
matched again. This cycle ends when no data can be fetched from the interface or the matching
function can be evaluated (the result is match or nomatch).

The algorithm assumes that the rules of the data-fetch interface can be executed indepen-
dently. In particular this means that if there is a symbol referencing a concept in the knowledge
base and there is a rule which can fetch the data for that concept, there is no other rule which
needs to be executed prior in order to execute the rule fetching the data. Although our as-
sumption that more realistic scenarios of data fetching should have independent rules (see
Section 10.3.1), we acknowledge that this is an open issue of our approach which we plan to
investigate in our future work.

The algorithm uses independent memory (memory M) from the knowledge base (Bgw)
for processing the data-fetch interface. This allows that already-obtained data cannot be re-
moved from the knowledge base while, at the same time, correct processing of the interface

and notmodified do

10 Instance-based Service Discovery with WSMO/WSML and WSMX 173

is ensured. The memory M is used not only for data but also for control of interface pro-
cessing (in general, the content of the memory does not need to always reflect the content of
the knowledge base). According to the particular interface definition, the data can be fetched
step-wise allowing minimization of the interactions with the service during discovery. This
also aligns with the strong decoupling principle when services are described semantically and
independently from users’ requests. For example, during the service-creation phase a service
provider (creator) does not know which particular data will be required for a particular data-
fetch (in general, matching with a Goal could require some or all defined data which depends
on the definition of the request). The interface defined using rules allows to get only the data
which is needed for the matching (for example in some cases only price is needed, in other
cases a price and location of the selling company could be needed, if offered by the service
depending on what is referred in the user request).

10.2 Solution to SWS-Challenge Discovery

In this section we describe the case scenario from the SWS Challenge used to demonstrate
our approach to discovery. The scenario is depicted in figure 10.2, a user wants to buy certain
products and ship them to a certain location. A user accesses the e-marketplace called Moon
where a number of companies such as Muller and Racer have registered their services (we
further refer to Muller and Racer as service providers). Moon runs a (1) web portal through
which it provides services to users and (2) the WSMX middleware system through which it
facilitates integration between users and service providers.

WSMX middleware (2)

Execution Semantics

Discovery

Selection

Choreography
Engine

h

h

Service
Repository

select from L

Portal (1)

WSMO
Goal

Execution
Interface

Data Fetch
Interface

Capability

User

h

h

invoke G, S

description
implementation

Publish
descriptions

data fetching

invocation

W
S

 e
nd

po
in

ts

Moon e-marketplace

Request

Response

Racer

Mueller

Fig. 10.2. Architecture for the Scenario

We make the following assumptions which hold for both, the service interface model definition
and implementation of the scenario.

• Service providers and Moon both use WSMO for Web service description. Service
providers make their WSMO service descriptions available to Moon. The payload of mes-
sages exchanged is represented in WSML. We assume that both service requesters and

174 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

providers maintain adapters to their back-end systems which provide lifting and lowering
operations between their existing technology (e.g. WSDL, XML Schema) and WSML.

• All service providers utilize a common ontology maintained by the Moon e-marketplace.
This assumption reflects the fact that we assume no data interoperability issues between
service providers and the Moon e-marketplace.

• Each service requester provides purchase and shipment requests in one message. As we
focus on discovery, we do not deal with service composition in this example. However,
in general, purchase and shipment could be two separated services provided by two inde-
pendent service providers.

• A user defines requests through a Web portal’s user interface. The Web portal generates a
WSMO Goal corresponding to the request, sends it to WSMX, receives the response, and
presents the result back to the user.

• The execution process is run in WSMX after the receipt of the Goal, including discovery
with fetch of the required data from services, selection of the best service, and its invo-
cation. Although we present the complete process, the contribution in this chapter is only
in the model for the dynamic data-fetch interface integrated with discovery. Other parts
of the process, i.e. semantic matching for discovery and selection are not subject of our
contribution in this work.

• During the execution process, the message exchange pattern between the user and the
Moon is simplified to request-response only (e.g. the user could approve a selected service
or select a service himself before the invocation). This assumption reflects the fact that
meta-interactions between users and the middleware system are not of our interest at this
point.

10.3 Implementation and Evaluation

In this section we detail the required modeling steps and explain the overall WSMX-based dis-
covery process. Two SWS Challenge discovery scenarios has been introduced and addressed
by our framework. The first was related to package shipment where five different shippers
offer various purchasing and shipment options. They provide different availability and pricing
for their services with constraints on package destination, weight, dimension and shipment
date where not all information can be statically provided. The second SWS-Challenge dis-
covery use-case tackles product provisioning where different vendors provide PC hardware
where their stock and prices change very often. It also involves simple composition since
sometimes only a combination of the devices from different vendors can satisfy user requests
and constraints. We have comprehensively addressed both scenarios and provided Web ser-
vices proven to be a suitable testbed for evaluating our model since not all information could
be provided in service descriptions meaning they had to be dynamically obtained at discovery-
time.

Both the descriptions of WSMO Goals and Web services include elements for describing
capabilities. We use the following parts of WSMO Capabilities in our service discovery:

• Preconditions describe conditions which must hold in a state required before the service
can be executed. WSMO Preconditions map to φpre of the capability descriptions.

• Postconditions describe conditions in a state which must hold after the service is exe-
cuted. WSMO Postconditions map to φeff of the capability descriptions.

From the perspective of a Goal description, the capability describes the functionality that
the owner of the Goal wishes to achieve from a Web service. Correspondingly, the capability

10 Instance-based Service Discovery with WSMO/WSML and WSMX 175

of a Web service describes the functionality offered by that service. To a large extent, the
responsibility of a discovery mechanism, in the context of WSMO, is to find services whose
capability matches that of the provided Goal.

In addition, the Web service interface defines choreography and orchestration allowing the
modeling of external and internal behavior of the service respectively. We define the interface
for data-fetch using a specific choreography namespace3 allowing to distinguish a specific
meaning for its usage from the meaning of the interface defining execution choreography used
for consuming the service functionality within the same WSMO service.

10.3.1 WSDL to Choreography Mapping

The modeling of Semantic Web service behavioral descriptions is, to a significant extent,
based on existing Web service standards. We map existing WSDL service descriptions to the
WSMO Semantic Web services where additional descriptions can be provided. Mapping from
existing, syntactic service descriptions to the semantic layer is the first step of the modeling
process after which resulting descriptions can be aligned by the domain expert.

XML Schema defined in the WSDL can be mapped to the given domain ontology using
Semantic Annotations of Web Service Description Language and XML Schema (SAWSDL
[15]) which provides a generic and agnostic mechanism for semantically annotating Web ser-
vices. As described in [14], the SAWSDL allows to annotate WSDL schema elements with
elements from the information semantics and WSDL interfaces with behavioral semantics of
the service. In addition, the extension of WSDL 2.0 comes with the notion of so called safe
methods, relevant from the dynamic discovery point of view. When the safe attribute of an
operation is set to true, the operation indicates that it has an informative character and will
not cause any real world effect when invoked (e.g. like agreeing to buy something). For the
purpose of our work, safe operations may be mapped to the data-fetch interface allowing a
user to find out more about the functionality of the service. Figure 10.3 presents this mapping.
WSDL operations without the safe attribute are mapped to the service execution interface.

10.3.2 Modeling Ontologies, Goals and Services

We base examples on a simple composition service for computer hardware, where PC hard-
ware stock and price information is not available in the service description and needs to be
fetched during the service discovery. We also emphasize how this communication is mini-
mized by looking at the concepts referred to in the Goal capability. In section 10.3.3 we further
describe the evaluation of our implementation in the broader context of the SWS Challenge
requirements. In order to implement the scenario, we first need to create semantic models for
ontologies, Goals and services. We describe these models in the following sub-sections. We
present examples of ontologies, services and Goals definition in WSML using the following
prefixes to denote their respective namespaces: do – domain ontology, df – data fetch inter-
face, gl – Goal ontology.

Ontologies

Ontologies provide rich data models used for the definition of Goals and services. In our
scenario we use a common domain ontology with additional ontologies to define specific
axioms or concepts used by the descriptions of services and/or Goals.

3 we specify the URI for the namespace as ”http://wsmx.org/datafetch#”

176 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

Domain Ontology

WSDL 2.0

<description
xmlns:wsdlx= "http://www.w3.org/ns/

wsdl-extensions"
…..

<operation
wsdlx:safe = "true">

 <input messageLabel="In"
 element="x" />

 <output messageLabel="Out"
 element="y" />

</operation>

…...

<operation>
…...

</operation>
….

<description/>

Semantic Web
Service

Behavioral View

Data Fetch
Interface

h

h

Execution
Interface

h

Maps to

Maps to

IN

OUT

Fig. 10.3. WSDL 2.0 to Semantic Web service Mapping

The common ontology defines shared concepts used in the description of the Goal and
services, such as Location, Notebook, DockingStation, etc. In addition, we use the com-
mon ontology to specify named relations for services and Goals. Specific ontologies for Goals
and services declare axioms that define the relations to represent their conditions. An analogy
for this approach are interfaces in programming languages like Java. The interface declares
some functionality but does not say how this should be implemented. Using this approach, we
define a set of relations in the common ontology which represent the axioms that a service
may need to define. Listing 10.1 shows the simple definition for the isCompatible relation
from the common ontology and its implementation in the service ontology.� �

1 /∗ isCompatible relation in the domain ontology ∗/
2

3 relation do#isCompatible (ofType do#Notebook, ofType
4 do#DockingStation)
5

6 /∗ implementation of the isCompatible relation in the service
7 ontology ∗/
8

9 axiom isCompatibleDef definedBy
10 ?notebook[do#GTIN hasValue ?gtinX]
11 memberOf do#Notebook and
12 ?dockingstation[do#supportsGTIN hasValue ?gtinY]
13 memberOf do#DockingStation
14 and ?gtinX = ?gtinY) implies
15 do#isCompatible(?notebook, ?dockingstation).� �

Listing 10.1. isCompatible relation

The relation isCompatible is true if the notebook sold by the service provider can be used
with one of the available docking stations. This axiom can be used in the Goal query to check
compatibility of the two components.

10 Instance-based Service Discovery with WSMO/WSML and WSMX 177

Services

We focus on the description of the data-fetch interface of one of the vendors service showing
how and which data can be fetched during discovery. In listing 10.2, the first rule (line 14)
describes how to get the list of notebook prices depending on the user location. A user-location
(location variable) is taken from the notebook quote request. For the listing of notebooks the
location matters and first the location of the client has to be checked. Computer hardware
vendors can send their hardware only to some of the countries and availability of shipment to
the given location is checked by evaluating mo#isAvailable(?clientLocation) rule.� �

1

2 stateSignature WSVendorStatesignature
3

4 in do#NotebookListReq withGrounding { ”http://sws−challenge.org/vendor.wsdl#(VendorPort/
listNotebooks/in0)”}

5 in do#WebCamListReq withGrounding { ”http://sws−challenge.org//vendor.wsdl#(VendorPort/
listWebCams/in0)”}

6 out do#NotebookList
7 out do#WebCamList
8

9 interface df#WSVendorDataFetchInterface
10 choreography WSVendorDataFetchChoreography
11 ...
12 transitionRules WSVendorDataFetchTransitionRules
13 /∗ Rule 1: Request for the list of notebooks ∗/
14 forall {?notebookListReq} with (
15 ?notebookListReq[mo#location hasValue ?clientlocation]
16 memberOf do#NotebookListReq and
17 ?clientLocation memberOf mo#Location and
18 mo#isAvailable(?clientLocation)
19) do
20 add(# memberOf do#NotebookList)
21 endForall
22

23 /∗ Rule 2: Request for the list of Web cameras∗/
24 forall {?webcamsListReq} with (
25 ?WebCamsListReq memberOf do#WebCamListReq
26) do
27 add(# memberOf do#WebCamList)
28 endForall� �

Listing 10.2. Vendor data fetching interface

If notebooks are not shipped to the client location, no data will be fetched, since the client
will not be able to buy from this vendor due to the address constraints. For example, note-
books may be sold only in US for tax and shipment reasons while other, lightweight items
(e.g. Web cameras) may be shipped all over the world. In the definition of the second
rule there are no constraints over the client’s location and available Web cameras may be
sold to any location in the world. Concepts NotebookListReq, WebCamsListReq and
NotebookList,WebCamList are defined as input and output vocabularies respectively. The
relation isAvailable is described in the common ontology and its axiom is provided in the
Web service ontology.

Goals

The example Goal for the scenario describes the user’s aim to buy a laptop and docking station
and to ship them to a specific location. In addition, the Goal specifies a preference that price

178 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

be used for selection of the best service where multiple matching services are discovered.
The Goal as in listing 10.3 is defined for our scenario with respect to the implementation of
the matching function following the algorithm 1 (we discuss this implementation in section
10.3.3). The Goal expression contains references to two concepts, namely mo#Notebook and
mo#DockingStation.� �

1 Goal GoalPurchaseHardware
2 nfp
3 ”preference” hasValue ”?price”
4 ...
5 endnfp
6 ...
7 capability GoalPurchaseHardwareCapability
8 postcondition
9 definedBy

10 (?x[do#price hasValue ?priceX, do#hddGB hasValue ?hddGBX, do#memoryMB hasValue ?
memMBX]

11 memberOf do#MacNotebook and ?memMBX >= 512 and ?hddGBX > 40 and
12 ?y[do#price hasValue ?priceY] memberOf do#DockingStation
13 and isCompatible(?x,?y)
14 and ?price = (?priceX + ?priceY)
15 and ?price < 2000).
16 ...� �

Listing 10.3. User Goal in WSMO

Instances of these two concepts are not available in the static Web service description and

the capability postcondition specifying how to get a quote for the product while at the same
time the product must be available to be shipped to the location specified by the notebook
request. Hard constraints are expressed over the parameters of the laptop. It must have at least
512 MB RAM and over 40 GB hard drive capacity. Additionally, a compatible docking station
should be ordered. The previously-defined axiom isCompatible is used for this purpose. The
overall price of both components should not exceed 2000 Euro.

10.3.3 Implementation

The scenario is implemented as follows: when the Goal is generated out of the request speci-
fied by the user, it is sent to the WSMX system. WSMX starts a new operational thread (exe-

services matching the Goal. This list is passed to the selection component to select the service
that best fits the user request. Control passes to the choreography engine which uses the chore-
ography descriptions of the Goal and service respectively, to drive the message exchange with
the discovered service. This section describes the implementation of the algorithm 1 within
the discovery component of WSMX. The details about other parts of the execution process
can be found in our previous work in [16].

After the discovery phase, the execution semantics starts the conversation by processing
the execution choreographies of the Goal and selected service resulting in invoking and con-
suming of the service capability by the user.

Section 10.1 describes two steps for discovery. A prototype for the Web service discovery
is under development in the WSMO working group. The implementation, described here,
focuses on the steps of Service discovery matching and data-fetching. A match between the
Goal and Web services is determined on the knowledge base created out of their descriptions,

cution semantics) which first invokes the discovery component which in turn returns a list of

have to be fetched during the discovery phase as specified in algorithm 1. The Goal defines

10 Instance-based Service Discovery with WSMO/WSML and WSMX 179

including instance data (both available from the descriptions and fetched). The Goal capability
defines a query (listing 10.3) which is used to query the knowledge base.

Service Provider

Domain
Ontology

Knowledge Base
(Bgw) Semantic Web

service

Execution interface

Capability

Data Fetching
interface

Ontology
Description and
constrains over

provided functionality

Service Requester

Ontology:
Goal KB

Goal

Capability

Execution interface

Queries

Refers
to

Provides
data

Imports
Imports

Imports

Provides data

Provides data Refers
to

Fig. 10.4. Knowledge Base Bgw

According to the algorithm 1 in section 10.1, the knowledge baseBgw is created for every
Goal and Web service from the repository as shown in figure 10.4. Initially, the knowledge
base imports all concepts from the domain ontology and data from both Goal and Web service
descriptions. If the data-fetch interface is available then parts of it may be able to obtain the
instance data of some of the concepts referred to in the Goal query. In our case, data fetching
will be executed forNotebook andDockingStation provisioning. Once the knowledge base
is populated with up-to-date information on available notebooks and docking stations, a query
such as the one defined in listing 10.3, can be performed on the KB. It is worth noting that,
thanks to this approach, only the necessary parts of the data-fetch interface will be utilized and
no unnecessary communication will be generated. If the result of the evaluation is true, we
add the Web service to the listE of Web services to the position determined by the preference.
If the result of the evaluation is false, match of the next service from the list is attempted.
Otherwise, the cycle ends and the next service from the repository is processed. We briefly
discuss this implementation in the next section 10.3.4.

10.3.4 Evaluation

Our implementation was evaluated to successfully address the scenario with dynamic PC hard-
ware product data fetching, where various constraints over the hardware parameters (like HDD
capacity, type and speed of the processor, etc.), customer location and overall price had to be
considered, scoring success level 2 (i.e., introduced changes did not entail any code modifica-
tions but only declarative parts had to be modified). The implementation proved to be generic

180 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

as only modifications of the WSMO Goals were necessary in order to correctly handle intro-
duced changes. No changes in WSMX code or in the descriptions of the services were required
– only the Goal requests had to be changed.

In the initial version of our work it was not possible to distinguish between dynamically
fetched data required for the user request evaluation and data which is irrelevant resulting from
fetching from all safe endpoints exposed via data-fetch interface. The introduction of our opti-
mization allowed to fetch only the relevant data which significantly decreased communication
with the service especially since multiple service endpoints were provided for fetching in-
formation on different kinds of products. For example for the Goal of buying a laptop with
compatible docking station only information on these two products were fetched leaving out
all other unreferenced, though available, information.

The implementation of the matching function described in section 10.3.3 was able to han-
dle targeted discovery requirements of the scenario at success level 2. The algorithm presented
here allows to use various implementations of matching functions which adhere to its defined
interface.

10.4 Related Work

Other discovery approaches described in this book like DIANE, miAamics, SWE-ET are in
obvious relation to our discovery. In this section we give a broader overview of other existing
discovery approaches related to our Instance-based Discovery.

There is no directly comparable work in the SOA standards area which would allow for
the fetching of additional data to aid discovery at run-time. UDDI and ebXML registries allow
for search of the services only on the static, category level providing insufficient support for
automated discovery when using fine-grained search requests. Determining suitability and
details of the functionality offered by services advertised in service registries for the request
at hand remains a manual task. However, WSDL 2.0 safe methods could be seen as a step in
direction (see WSDL2.0 primer4) of introducing dynamism in the discovery process. Also, in
Dziembowski’s W3C position paper [17] there is a need for the instance-based Web service
discovery highlighted but with a very limited proposal on how this should be achieved.

The problem of insufficient static descriptions for fine-grained discovery requests within
dynamic domains has been addressed using CORBA’s Trading Service in the eMarketplace
domain [18] where dynamic properties of a offered functionality exposed as a CORBA object
can be calculated within a business’s private space and where results can be integrated into
the Trading Service discovery process. Trading Service consists of name-value property pairs
which can be either static or dynamic. In the case of a dynamic property, the external Dy-
namic Property Evaluator entity residing within the business provider private space is called.
Dynamic Property Evaluator returns different results depending on the current state of the
business provider (e.g., its current stock, prices or date and time of the day) and client’s re-
quest. It is worth noting that due to the code-based representation of CORBA actual evaluation
of the Trading Service is carried out in the client’s code while our semantic-based approach
allows to shift the overall discovery process to the middleware requiring the client only to
provide a fine-grained request. A similar approach to dynamic service functionality aspects is
currently missing in SOA and our work attempts to fill this gap.

Research into goal-based discovery for WSMO and WSMX takes a step-wise approach
with both theoretical and implementation concerns addressed at each stage. Three strategies

4 http://www.w3.org/TR/wsdl20-primer/

10 Instance-based Service Discovery with WSMO/WSML and WSMX 181

have been investigated in this manner. The first is keyword-based discovery [13], which uses an
algorithm that matches keywords, identified from the Goal description, with words occurring
in various parts of the Web service description, namely in, non-functional properties, concept
names and predicate names. The second strategy is for a lightweight Semantic Web services
discovery component for the WSMX platform and is described in [19]. This approach models
a service in terms of the objects it can deliver. The term object, in this sense, means something
of value the service delivers in its domain of interest. A third strategy is based around the
use of quality-of-service attributes as described in [20] and implemented by the authors as a
WSMX component. Upper level ontologies describing various domains for quality-of-service
attributes are provided and non-functional properties are introduced to the service descriptions
whose meanings are defined in these QoS ontologies. Our approach to service discovery is
compatible with each of the matching strategies as it extends the matching power by requesting
data from the service that is not directly available in its description. In [21], contracting is
identified as an activity that may take place between the requester and provider once the initial
discovery has identified candidate services.

The discovery mechanisms in OWL-S relies on subsumption reasoning to match a service
profile of a service request with candidate service profiles published by service providers as
described in [9]. As with the WSMO efforts, they acknowledge that a negotiation phase may
be necessary after discovery to allow requesters and providers agree on quality of service is-
sues. However, they do not address the problem of fetching additional data from the service
at discovery-time to enable a more informed match to be made. Our approach can be consid-
ered as pre-contracting as we concentrate on the retrieval of additional data from the service
provider to make a more exact match during discovery.

10.5 Summary

In this chapter we have presented an approach for semantic discovery supporting realistic
late-binding performed at run-time and with emphasis on minimizing any additional com-
munication. The fine granularity of both client request and service functionality descriptions,
expressed semantically, allows a greater degree of accuracy when matching requester Goals to
candidate Web services. We are aware that this approach, due to the logical reasoning, com-
putational complexity and generated communication overhead, is scalable only for a limited
number of services, therefore data fetching and detailed evaluation takes place in the final
phase of the discovery process, and is preceded by category-based matchmaking and static de-
scription semantic discovery. Applying optimization to dynamic data-fetching decreases the
generated communication, especially for more complex services that offer a broad range of
functionality (e.g. a warehouse offering multitude of products with different constraints on
shipment and different pricing options). Combining the dynamic data-fetch mechanism with
existing WSMO discovery approaches brings the target of runtime service late-binding close,
facilitating the volatile and frequently-changing nature of services in SOA.

Our future work is planned to extend our discovery framework in two directions: (1) sup-
port for service contracting, (2) evaluation of the technique with large number of services.
Service functionality details disclosed during the discovery phase should be propagated down-
wards to the service execution phase once the client (or middleware acting on the behalf of
client) decide to consume the dynamically proposed functionality. It is worth noticing that data
fetched during the discovery can be used for constructing a client-service contract with a cer-
tain time period of validity. However, an additional protocol would be required for finalizing

182 Maciej Zaremba, Matthew Moran, and Tomas Vitvar

such a contract, which may also require negotiation with the service. Our discovery frame-
work has been successfully applied to the SWS-Challenge discovery problems where several
Web services have been semantically described and their safe operations been exposed via
data-fetch interfaces. We plan to evaluate the applicability of our approach to a greater num-
ber of services from different domains, to examine the scalability of the advantages obtained
through using semantic descriptions with the data-fetch mechanism, over purely informal and
static service descriptions.

References

1. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontologies
1(1) (2005) 77 – 106

2. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Language:
An Overview. In: Proc. of the European Semantic Web Conference. (2006)

3. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian,
E., Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture: Con-
cepts, technology and application. In Service Oriented Computing and Applications,
Springer London 1(2) (2007)

4. Preist, C.: A conceptual architecture for semantic web services. In McIlraith, S., Plex-
ousakis, D., Harmelen, F.v., eds.: Third International Semantic Web Services Conference
(ISWC). Volume LNCS 3298., Hiroshima, Japan, Springer (2004) 395–409

5. Baida, Z., Gordijn, J., Omelayenko, B.: A shared service terminology for online service
provisioning. In: Proceedings of the 6th international conference on Electronic com-
merce. ACM Press, Delft, The Netherlands (2004) 1–10

6. Fensel, D., Keller, U., Lausen, H., Polleres, A., Toma, I.: What is wrong with web services
discovery. In: W3C Workshop on Frameworks for Semantics in Web Services - Position
Paper., Innsbruck, Austria, (2005)

7. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic Location of Services.
In: 2nd European Semantic Web Symposium (ESWS2005), 29th May - June 1st. (2005)

8. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: Owl-s: Se-
mantic markup for web services, w3c member submission. Technical report, W3C (2004)

9. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services
capabilities. In: 1st International Semantic Web Conference (ISWC). (2002) 333–347

10. Dogac, A., Tambag, Y., Pembecioglu, P., Pektas, S., Laleci, G., Kurt, G., Toprak, S.,
Kabak, Y.: An ebXML infrastructure implementation through UDDI registries and Roset-
taNet PIPs. In: Proc. of the 2002 ACM SIGMOD International Conference on Manage-
ment of Data. (2002) 512–523

11. Voskob, M.: UDDI Spec TC V4 Requirement - Taxonomy support for semantics. OASIS,
2004. http://www.oasis-open.org. (Technical report)

12. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian,
E., Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture : con-
cepts, technology and application. Service Oriented Computing and Applications 2(2)
(2007) 129–154

13. Keller, U., Lara, R., Lausen, H., Polleres, A., Predoiu, L., Toma, I.: WSMO D10.2 Se-
matic Web Service Discovery available at http://www.wsmo.org/TR/d10/v0.2/d10.pdf.
Technical report (2005)

10 Instance-based Service Discovery with WSMO/WSML and WSMX 183

14. Vitvar, T., Kopecky, J., Fensel, D.: WSMO-Lite: Lightweight Semantic Descriptions for
Services on the Web. In: ECOWS. (2007)

15. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema available at
http://www.w3.org/TR/sawsdl/. Technical report (2007)

16. Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T., Zaremba, M.: WSMX: A Semantic
Service Oriented Middleware for B2B Integration. In: ICSOC. (2006) 477–483

17. Dziembowski, K.: Dynamic service discovery. In: A position paper for
the W3C Workshop on Web Services for Enterprise Computing, available at
http://www.w3.org/2007/01/wos-papers/gestalt. (2007)

18. Schade, A., Facciorusso, C., Field, S., Hoffner, Y.: Advanced Dynamic Property Eval-
uation for CORBA-Based Electronic Markets. In: Second International Workshop on
Advanced issues of E-Commerce and Web-Based Information Systems. (2000) 109–116

19. Friesen, A., Grimm, S.: DIP WP4 Service Usage, D4.8 Discovery Specification, available
at http://dip.semanticweb.org/documents/D4.8Final.pdf. Technical report (2005)

20. Hauswirth, M., Porto, F., Vu, L.H.: P2P and QoS-enabled Service Discovery Specifi-
cation, available at http:/dip.semanticweb.org/documents/D4.17-Revised.pdf. Technical
report (2006)

21. Lara, R., Olmedilla, D.: Discovery and Contracting of Semantic Web Services. Technical
report (2005)

11

Using Glue to Solve the Discovery Scenarios of the
SWS-Challenge

Andrea Turati1, Emanuele Della Valle1, Dario Cerizza1, and Federico M. Facca2

1 CEFRIEL,
Via Fucini 2, I-20133 Milano, Italy,
firstname.lastname@deri.org

2 Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, I-20133 Milano, Italy
firstname.lastname@elet.polimi.it

Summary. In this chapter we present SWE-ET, which is the solution that we proposed for the
SWS-Challenge. SWE-ET is a conjunction of two components: one is the WebRatio frame-
work, which is mainly used to solve the Mediation scenarios, and the other is Glue, which is
used to solve the Discovery scenarios. This chapter focuses on the Discovery scenarios, there-
fore we describe all the features of Glue in details while we partially describe WebRatio by
discussing only those features that have been exploited to solve the Discovery scenarios of the
Challenge.

11.1 Introduction

The number of Web Services is constantly increasing and users spend more and more time
to locate the one that best fits their needs. An automated method for locating services [1] is
necessary to limit the user intervention.

Several success stories about the most common Web Service approach to discovery (e.g.,
UDDI [2], ebXML registry [3], etc.) tell us that they can be effectively used within an or-
ganization in order to collect services that run within its own borders. However, in spite of
the benefits, the current solutions fail to escape organizational borders and finding external
useful services can be a very consuming process. We believe that is necessary to enable inter-
operability between different organizations, and not only intra-operability within a single or-
ganization.

Outside the organizational border quite often, decision taking involve a complex negoti-
ation that has to take into account the existence of different view points. We prefer to refer
to such different view points with the notion of “polarization”. In communications and psy-
chology, “polarization” is the process whereby a social or political group is divided into two
opposing sub-groups with fewer and fewer members of the group remaining neutral or holding
an intermediate position. We believe such a process occurs quite often in reality and results in
a fragmented market, each sub market having its own standards. In case of “polarization” is
very difficult to agree on using a common terminology. UDDI and ebXML, being syntactic,
are very difficult to deploy in presence of polarization.

186 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

Our research on Web Service discovery lead us to believe that semantics is a key ingredient
in handling polarization. Ontologies can be used to capture the different point of view and rules
can be use to encode domain-specific notion of matching. Extending Web Service discovery
with ontologies and rules results not only in a better trade-off between precision and recall,
but also in handling polarization by avoiding to require service requesters and service provider
to commit to a common set of ontologies. We conceived as well as implemented such idea in
a Semantic Web Service discovery engine named Glue [DCC05], which we used to solve the
SWS-Challenge.

Actually, CEFRIEL and Politecnico di Milano jointly proposed a solution to the SWS-
Challenge named SWE-ET (Semantic Web Engineering – Environments and Tools), by com-
bining CEFRIEL’s Glue discovery engine with the WebRatio framework from Politecnico di
Milano. In particular, WebRatio mainly addresses the Mediation scenario of the Challenge
while Glue deals with the Discovery scenario.

In this chapter we focus on our solution to the Discovery scenario of the SWS-Challenge.
In Section 11.2 we describe the conceptual model of WSMO, that Glue extends. In Sec-
tion 11.3 we describe the extension we made to the conceptual model of WSMO, the execution
semantics of Glue and some implementation details. Then, we depict the discovery scenarios
addressed by Glue (Section 11.4) and finally we present our solution in Section 11.5. At the
end, we point out some conclusion and future works.

11.2 WSMO as starting point

One of the recent works that aim at addressing the discovery of Web Services by exploiting
semantics is the Web Service Modeling Ontology (WSMO) [5, 6]. WSMO is a conceptual
model that aims at facilitating the discovery of Semantic Web Services. In particular, it is an
ontology defining four modeling elements (Ontologies, Web Services, Goals and Mediators).

Ontologies form the data model upon which the other four elements are built.
Web Services include the functional and behavioral aspects, which must be semantically

described in order to allow semi-automated use. Web Services are described in WSMO from
three different points of view: non-functional properties, capabilities (describing functionali-
ties), and interfaces (describing the behavior).

A Goal describes the end user perspective in terms of the function that the user desires and
the way in which he/she wishes to invoke the service. It is characterized in a dual way with
respect to Web Services: goal’s descriptions include the requested capability and the requested
interface.

Finally, Mediators provide methods to overcome structural or semantic mismatches that
appear between the other top elements of WSMO. There are four types of Mediator. An
ontology-to-ontology mediator (ooMediator) can be used to resolve mismatches between two
different ontologies. A Web Service-to-Goal mediator (wgMediator) allows users to state that
a given Goal can be fulfilled by the specified Web Service, while a Goal-to-Goal mediator
(ggMediator) can be used to state the relationship between two Goals. Finally, a Web Service-
to-Web Service mediator (wwMediator) can be used to state that a given Web Service has
some relationship with another Web Service.

The WSMO conceptual model can be formalized in terms of the Web Service Model-
ing Language (WSML) [8], which provides a set of language variants for describing WSMO
elements with different levels of expressivity and reasoning complexity.

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 187

11.3 Glue

The Glue conceptual model of discovery is an extension of the WSMO model. Unlike WSMO,
we explicitly distinguish classes and instances of both Web Services and Goals. Actually, such
distinction is mentioned in the WSMO documentation, which admits the existence of both
“abstract” and “concrete” services/goals, but is completely neglected by WSMO implementa-
tions. However, classes and instances allow users to write their service/goal descriptions more
easily fostering the reuse of already defined elements.

We define a Goal class as a kind of template representing an abstract request for a generic
type of service. This way, a requester has only to fill in such template with concrete values, by
creating a corresponding Goal instance.

The same approach is used to define a Web Service class, which is a description of a
generic type of service. Web Service classes represent abstract services, while concrete ser-
vices can be described creating appropriate Web Service instances. In a following section, we
show an example of such classes and instances.

Another distinctive feature of Glue is the explicit central role assigned to the wgMediators
in the discovery process. In Glue, a wgMediator includes rules that evaluate whether a Web
Service instance provides the service required by a Goal instance (i.e. a Web Service matches
the Goal instance) or not.

Glue considers the whole discovery process divided in three subsequent phases:

• set-up time, when ontologies, Web Service classes, Goal classes and mediators are created
and loaded into the system;

• publishing time, when the providers create Web Service instances and publish them into
the system;

• discovery time, when a user creates a Goal instance and submits it to the system to start the
matchmaking process and consequently gets the list of Web Service instances that match
the Goal instance.

11.3.1 Execution Semantics

In Glue, the matchmaking process is a composite procedure, which is graphically represented
in Figure 11.1 by means of a UML activity diagram.

As said before, this procedure is fired when a user submits a Goal instance to Glue. At the
beginning (steps 1, 2 and 3), Glue checks the existence of a Goal class corresponding to the
given Goal instance. Then it tries to use ggMediators to translate the user Goal instance in an
equivalent instance expressed using a different terminology (cf. steps 4, 5, 6 and 7). Indeed,
if a ggMediator exists, Glue uses the rules within the ggMediator to translate the goal in an
equivalent one expressed in another terminology. This is a loop that can be re-iterated, for
example to gradually reduce the polarization and make the user’s point of view closer to the
providers’ one consequently. If more then one ggMediator exists, this loop can result in a goal
expansion similar to the query expansion mechanism largely adopted in Information Retrieval.

For each identified Goal class, Glue looks for the wgMediator that is able to handle such
Goal class (steps 8, 9 and 10), that is the wgMediator having that Goal class as target. By
inspecting the sources of the identified wgMediator, it gets the Web Service classes (step 9)
that potentially satisfy the request because they offer a service that is of the same type of the
one requested in the corresponding Goal class. At that point, Glue extracts the Web Service
instances that are related to the previously identified Web Service classes (step 10). Finally,
Glue executes the matchmaking process evaluating all the obtained Web Service instances

188 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

i t G l Cl ? no

goalInstance

goalInstance

di
goalInstance

exists Goal Class?
yes

no

L d G l Clol
ar

iz
at

io
n 1 2

3 6

needs ggMediation?

gg-mediate

select ggMediator
goalInstance

goalInstance, ggMed
Load Goal Class

goalInstance, goalClass

M
an

ag
e

po

4 5
7 select ggMediatoryes

l t M di t

goalInstance, goalClass
no

7

8
select wgMediator

select WS Classes

goalInstance, goalClass, wgMed

fil
te

rin
g

9
select WS Classes

Load WS Instances

goalInstance, goalClass, wgMed, wsClass[]W
S

10

goalInstance, goalClass, wgMed, wsClass[], wsInstance[]

wg-mediatem
ak

in
g

11

wsInstance[]

M
at

ch

Fig. 11.1. The matchmaking process implemented by Glue.

against the Goal instance, by running the rules included into the wgMediator within a reasoner
(step 11). The entry rule of the wgMediator takes the Goal instance description along with a
set of Web Service instance descriptions as input and returns a subset of the Web Service
instances, which are the only ones that satisfy all the rules (i.e. provides the service requested
in the Goal instance). Actually, the result is a ranked list of Web Service instances.

11.3.2 Implementation

Glue an open-source3 discovery engine implemented in Java. It is built on an open-source F-
logic inference engine named Flora-2 [8] that runs over XSB4, an open source implementation
of tabled-prolog and deductive database system. Flora-2 provides only the reasoning support,
while Glue wraps the inference engine and builds a WSMO infrastructure around it. For this
reason, Web Service and Goal descriptions are represented in F-logic, as well as ontologies
and mediators.

The basis of Glue infrastructure is a set of facilities for insertion and retrieval of WSMO
elements. In addition, Glue provides a Web Service endpoint that allows developers to inte-
grate Glue into their infrastructure as a service. The Web Service interface of Glue exposes

3 http://sourceforge.net/projects/sws-glue
4 http://xsb.sourceforge.net/

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 189

two methods. The first one is used to put the element descriptions into the internal repository,
while the second one activates the actual discovery process.

In addition, for the SWS-Challenge we exploit the WebRatio framework to provide an
end-user interface, which is Web-based and user-friendly. Through such graphical interface, a
user can fill in an HTML form which represents a Goal class and submit the input to the sys-
tem. WebRatio takes the user inputs and creates a corresponding Goal instance, then submits
it to Glue and starts a discovery process for that Goal instance. When Glue returns the list of
the matching Web Service instances, WebRatio shows them to the end user, who may choose
among them the one to be invoked. To do this, internally we used a WebML model which
shares the model of the goal with Glue.

11.4 The discovery scenarios

During the first year of the SWS-Challenge, the organizers proposed two different Discovery
scenarios, with increasing difficulty.

The first discovery scenario of the SWS-Challenge requires to automatically provide the
best shipping option among different shipment services for the purchased goods (see Fig-
ure 11.2). The set of shipment Web Services offers different destinations, delivery times,
prices, and pick-up policies. Hence according to the shipment details, not all the services
are suitable. The organizers provided implementations of several shipping services, each of
them with a WSDL and a more concise natural language description.

Goal Submit Interface

Organize
Shipment

Discovery Engine

Shipment
Confirmation

Discovery

Results

Goal

Muller WS

Racer WS

Runner WS

Walker WS

Weasel WS

Invoke
Invoke

Invoke
Invoke

Invoke

ShippersCustomer Discovery Service
Web Services

(provided by workshop organizers)
(to be built by partecipants)

Fig. 11.2. SWS challenge - Discovery scenario overview.

What makes the scenario interesting is (i) the realistically heterogeneous nature of the
services descriptions, which focus on different characteristics, (ii) the presence of polarization,
and (iii) the domain specific notion of “matching”.

As we introduced in Section 11.1, the scenario presents the polarization problems between
requesters and providers enumerated in Table 11.1.

Moreover, the scenario requires several domain specific notions of matching:

• Products: a provider completely matches a request if all the requested categories of prod-
ucts are available and it partially matches in case a subset is available.

190 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

Aspect Requester Provider
Products concrete list of products set of products
Shipment Location concrete location set of locations
Shipment Price preferences / restrictions concrete value, resp. functional

(like less than 100) dependency on selected products
Payment Method concrete list of accepted concrete list of accepted payment

payment methods methods
Units specific of the requester’s specific of the provider’s

country country

Table 11.1. Differences between providers’ and requesters’ point of views.

• Shipment Location: A service advertises the locations where it ships to; if the requester
wish to send goods in Bristol and the supplier ships to Europe, then an exact matching
exists.

• Payment Method: both the requester and supplier advertise a list of acceptable payment
methods. A complete match exists if at least one payment method is in common between
requester and supplier.

In order to test the solutions, the organizers provided a set of heterogeneous shipment
goals expressed in natural language. An example of such goal is: send one package (length 10,
width 2, height 3 inches; weight 20 lbs) from California to Bristol (UK) for less than 120$.

The organizers of the SWS-Challenge proposed another scenario that is different from the
one previously described and is focused on the purchase of products. The interesting issues
arose by this scenario are: (i) the dynamic invocation of the providers to get the list of the
products that they sell, (ii) the need to manage user preferences such as “at least 512 MB of
RAM” and (iii) the request of composite goals such as “a laptop with 40 GB of hard disk and
a compatible docking station”.

11.5 Our solution to the discovery scenarios

The standard Web Service discovery solutions described in Section 11.1 do not cover polariza-
tion and encoding of domain specific notion of matching. In this section, we propose a solution
to the Discovery scenario described in the previous section exploiting Glue and putting accent
on the use of rules.

The first phase of the development of the solution concerns the creation of all the ele-
ments involved in the discovery process (i.e. the set-up time and published time described in
Section 11.3). This implies the creation of the ontologies as first step.

11.5.1 Ontologies

Each ontology defines a set of concepts within a domain and the relationships between
them. In particular, we modeled four ontologies including date-time, location, products and
shipments. Listing 11.1 shows an excerpt of such ontologies. It includes the definitions
of some concepts (both geographical concepts, like italy, and temporal concepts like
dateTime, that is an instant enriched with a date and a time) and axioms (like

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 191

calculateWeightForPricing, which encodes the rules to compute the weight used
to determine the price of a package).

The development of these ontologies was kept to the minimum necessary. This implies
that, for example, our date-time ontology is not expressive enough to model the generic notion
of “business day”.� �

1 // temporal aspects
2 dateTime::instant[date=>date, time=>time].
3 before(X,Y) :− before(X.date,Y.date)); ((equal(X.date,Y.date), before(X.time,Y.time)).
4

5 // geographical aspects (i.e., taxonomy of continents, countries, nations and cities)
6 worldwide.
7 europe::worldwide.
8 italy::europe.
9 checkContainmentOfPickupLocation(Request, Provider) :−

10 Request[pickupLocation−>X], Provider[pickupLocations−>>Y], (X=Y;X::Y).
11

12 // price aspects (e.g., dimensional weight)
13 calculateWeightForPricing(ActualGoodWeight,GoodDimension,CalculatedWeightForPricing) :−
14 DimensionalWeight is (GoodDimension.l∗GoodDimension.w∗GoodDimension.h)/166,
15 (
16 (ActualGoodWeight > X , CalculatedWeightForPricing is ActualGoodWeight);
17 (ActualGoodWeight = X , CalculatedWeightForPricing is ActualGoodWeight);
18 (ActualGoodWeight < X , CalculatedWeightForPricing is DimensionalWeight)
19)
20 .� �

Listing 11.1. Ontologies modeled for the discovery scenario.

11.5.2 Goals

Secondly, we focused on the user side, that is the design of the Goal classes. We defined two
classes of goals, one for the shipment and one for the purchase. Listing 11.2 shows the Goal
class description (named goalClass Shipment) that models a generic shipment request
(lines 1 to 19). In addition, it also shows the description of a possible Goal instance (named
goalInstance) that a user could create: it asks for a service that is able to ship a spe-
cific good (given its weight, its dimensions and other data) at a given time from Stanford to
Sacramento.� �

1 /∗ The Shipment Goal Class ∗/
2 goalClass Shipment::goalClass[
3 capability=>capabilityGoal Shipment::capabilityGoal[
4 postcondition=>requestsShipmentService
5]
6].
7

8 requestsShipmentService[
9 requestedPickupLocation=>location,

10 requestedDeliveryLocation=>location,
11 currentDateTime=>dateTime,
12 requestedPickupDateTimeInterval=>dateTimeInterval,
13 requestedDeliveryDateTime=>dateTime,
14 requestedDeliveryModality=>deliveryModality,
15 requestedGuarantee=>guarantee,
16 goodWeight=>float,
17 goodDimension=>dimension,
18 requestedShipmentPriceInterval=>priceInterval
19].
20

192 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

21 /∗ A Shipment Goal Class Instance ∗/
22 goalInstance:goalClass Shipment[
23 capability−> #:capabilityGoal Shipment[
24 postcondition−> #:requestsShipmentService[
25 requestedPickupLocation−>stanford,
26 requestedDeliveryLocation−>sacramento,
27 currentDateTime−> #:dateTime[
28 date−> #:date[dayOfMonth−>28,monthOfYear−>4,year−>2006],
29 time−> #:time[hourOfDay−>23,minuteOfHour−>0,secondOfMinute−>0]
30],
31 requestedPickupDateTimeInterval−> #:dateTimeInterval[
32 start−> #:dateTime[...],
33 end−> #:dateTime[...],
34],
35 requestedDeliveryDateTime−> #:dateTime[...],
36 requestedDeliveryModality−>letter,
37 requestedGuarantee−>guaranteeYes,
38 goodWeight−>10,
39 goodDimension−> #:dimension[l−>100,w−>100,h−>100],
40 requestedShipmentPriceInterval−> #:priceInterval[start−>0,end−>1000]
41]
42]
43].� �

Listing 11.2. The shipment Goal class and an example of a possible Goal intance.

11.5.3 Web Services

Concerning the provider side, we created a Web Service class modeling a generic shipment
service and a Web Service class representing a generic purchasing service. In both cases, we
modeled all the restrictions that must hold in order to invoke the service as assumptions, and
the results provided by the service as postconditions. Listing 11.3 shows the description of the
Web Service class for the shipment services (named wsdClass Shipment) and an instance
of it. The instance, named wsdInstance Shipment13) describes the service provided by
Muller: it can deliver goods in north and south America, Africa, Asia and Europe.� �

1 /∗ The Shipment Service Class ∗/
2 wsdClass Shipment::wsdClass[
3 capability=>capabilityWSD Shipment::capabilityWSD[
4 assumption=>restrictionsOnShipmentService,
5 postcondition=>providesShipmentService
6]
7].
8

9 restrictionsOnShipmentService[
10 minNumOfHoursBetweenOrderAndPickup=>integer,
11 maxNumOfDaysBetweenOrderAndPickup=>integer,
12 maxNumOfDaysBetweenOrderAndPickup=>integer,
13 maxNumOfDaysBetweenOrderAndDelivery=>integer,
14 minPickupDTInterval=>integer,
15 maxPickupDTInterval=>integer,
16 maxGoodWeight=>float,
17 weightToDimensionalWeightThreshold=>float
18].
19

20 providesShipmentService[
21 pickupLocations=>>location,
22 deliveryLocations=>>location,
23 pickupTimeInterval=>timeInterval,
24 price=>>shipmentPricing
25].

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 193

26

27

28 /∗ An instance of the Shipment Service Class ∗/
29 wsdInstance Shipment13:wsdClass Shipment[
30 nonFunctionalProperties−> #[dc publisher−>’Muller’],
31 capability−> #:capabilityWSD Shipment[
32 assumption−> #:restrictionsOnShipmentService[
33 minNumOfHoursBetweenOrderAndPickup=>0,
34 maxNumOfDaysBetweenOrderAndPickup=>2,
35 maxNumOfDaysBetweenOrderAndPickup=>5,
36 minPickupDTInterval=>7200,
37 maxPickupDTInterval=>259200,
38 maxGoodWeight=>50,
39],
40 postcondition−> #:providesShipmentService[
41 pickupLocations−>>{northAmerica,africa,asia,europe},
42 deliveryLocations−>>{northAmerica,africa,asia,europe},
43 pickupTimeInterval−> #:timeInterval[...],
44 price−>>{ #:shipmentPricing[
45 location−>worldwide,
46 deliveryModality−>deliveryModality,
47 guarantee−>guaranteeNo,
48 basePrice−>10,
49 pricePerWeight−>5],
50 }
51]
52]
53].� �

Listing 11.3. The shipment service class and an instance of it.

11.5.4 Mediators

Finally, we created the wgMediators that connect Web Service classes to Goal classes and
include the rules that handle both polarization and domain specific notion of matching. During
the discovery process execution, by evaluating those rules by means of a reasoner Glue checks
whether a specific Web Service instance satisfies a given Goal instance.

In our case, we wrote the rules by using the F-logic syntax and we created two wgMedia-
tors. A wgMediator links the Web Service class representing a generic shipment service to the
Goal class representing a generic request of a shipment and includes the rules that evaluate the
degree of matching between a Goal instance and a Web Service instance. Another wgMediator
is responsible for checking which real purchasing services satisfy a given purchasing request.

As mentioned before, wgMediators are the core of the matchmaking process in Glue.
Since the objective of a wgMediator is to implement the rules that allow the system to check
if a Web service satisfies a goal, such rules have to deal with the different representations of
Goals and Web Services (i.e. polarization).

The content of a wgMediator can be structured at developer’s pleasure: the number of
rules as well as their extent depend on the developer’s preferences. Anyway, usually there is
one special rule that we call entry rule because is the one that returns the references to all Web
service instances that match the Goal instance. Internally, the entry rule calls many other rules
in turn, which are responsible for checking if a single aspect of the Goal instance is satisfied
by the Web Service instance considered at the moment in which the rules are executed.

In Listing 11.4, the first rule (lines 1-3) addresses the first polarization problem described
in Section 11.4 by allowing a supplier to state that it sells “computers” and matching the
service with a goal in which a requester states that he wants a “notebook” (which is a sub-
class of computer). Indeed, this rule states that when a service provides a product X, then this

194 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

service provides all products that are sub-classes of X as well. The second rule (lines 5-7)
encodes a domain specific notion of exact match between a goal and a service by stating that
an exact match occurs when all the required products listed into the goal are also present in the
list of the provided products. Similarly, the third rule (lines 9-11) states that when a product is
present both in the goal description and in the service description then there is a partial match.� �

1 SubsumeAllProducts[providesSubsumedProducts−>>{Y}] :−
2 SubsumeAllProducts[providesProducts−>>X],
3 (Y=X;Y::X).
4

5 exactMatch Products(RequestsPurchaseService,ProvidesPurchaseService) :−
6 L=collectset{X|RequestsPurchaseService[requestedProducts−>>X]},
7 ProvidesPurchaseService[providesSubsumedProducts+>>L].
8

9 partialMatch Products(RequestsPurchaseService,ProvidesPurchaseService) :−
10 RequestsPurchaseService[requestedProducts−>>X],
11 ProvidesPurchaseService[providesSubsumedProducts−>>X].� �

Listing 11.4. Three rules that manage sets of products.

In a similar manner, the following rule addresses the second polarization problems of
Section 11.4, because it enables a match between a goal and a Web service in the case that
a required location is in the list of the location covered by the service as well as in the case
that a location covered by the service contains the required location (e.g., the service is able
to pickup/delivery goods in Europe while the goal asks for pickup/delivery a good in Italy).� �

1 checkContainmentOfPickupAndDeliveryLocation(RequestsShipmentService,ProvidesShipmentService
) :−

2 RequestsShipmentService[requestedPickupLocation−>X],
3 ProvidesShipmentService[pickupLocations−>>Y],
4 (X=Y;X::Y),
5 RequestsShipmentService[requestedDeliveryLocation−>H],
6 ProvidesShipmentService[deliveryLocations−>>K],
7 (H=K;H::K).� �

Listing 11.5. A rule that checks the locations of pick-up and delivery.

Besides the rules directly included into a wgMediator, during the matchmaking process
other external rules can be evaluated. Indeed, some ontologies can also include rules that apply
to the concepts defined in them. An example is the rule – contained in the shipment service
ontology – described in Listing 11.6, which calculates the price that a service requires for the
shipment. First of all, it filters the services on the basis of the location and the modality of
delivery that a user required into the goal description: i.e. if the set of the locations stated for
the service does not contain the location required by the user that wrote the goal description,
then the service is discarded. Then, for each service, it calculates the price of the shipment
taking into consideration the base price and the price per weight that the service entails for
the required location and required delivery modality, as well as the weight of the good to be
shipped.� �

1 calculateShipmentPrice(ShipmentPricing,Location,DeliveryModality,Guarantee,GoodWeight,
PriceCalculated) :−

2 (Location::ShipmentPricing.location;Location=ShipmentPricing.location),
3 (DeliveryModality::ShipmentPricing.deliveryModality;DeliveryModality=ShipmentPricing.

deliveryModality),
4 (Guarantee=ShipmentPricing.guarantee;Guarantee=guaranteeNo),
5 PriceCalculated is (ShipmentPricing.basePrice + (GoodWeight−1)∗ShipmentPricing.pricePerWeight

) .� �
Listing 11.6. A rule that calculates the price of a shipment.

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 195

11.5.5 Ranking

Into a wgMediator it is possible to define several entry rules - each of them is related to a
different level of matching between the Goal and the Web Services. The level of matching
related to an entry rule R depends on the rules invoked by R. For example, the top level is
assigned to the entry rule that invokes all the rules (checking the satisfiability of all the aspects
of the Goal), while lower levels are assigned to the entry rules that invoke subsets of the rules
(checking the satisfiability of only some features required in the Goal). In particular, during
the creation of the entry rules of the wgMediator, it is possible to choose which are the rules
that have to be satisfied for every specific matching level. This way we obtain discrete levels
of ranking like “exact”, “subsume”, or “partial”. For example, for the shipment scenario we
defined four levels of ranking of the discovery results, allowing for choosing an alternative
shipment solution when no exact match is found (see Table 11.2).

Rank Checked Constraints
1 All restriction checked.
2 Shipment price is not checked.
3 No check for pickup interval.
4 Only weight and location are checked.

Table 11.2. The ranking criteria for the shipment service discovery.

11.5.6 Dynamic parameters

Initially, Glue assumed that every Web Service description was statically available because
it assumed no dynamic dependencies between Web Service instances and the Goal instance.
However, in many real scenarios a service exposes one or more operations for negotiating the
service itself. Such operations are intended to be invoked for retrieving dynamic information
that may be used to perform a more precise matchmaking. This is the case of the shipping
scenario of the SWS-Challenge, in which a service provides an operation that returns the price
for the delivery of a product, which is dynamically calculated on the basis of the goods to be
shipped.

The operations that return information without producing any other effect are named safe
methods in WSDL 2.0 and we call data-fetching the invocation of such operations. Glue has
been extended to invoke such operations during the matchmaking process, by delegating the
invocation to the application in which Glue is integrated – in the case of the SWS-Challenge,
an external invocation component implemented within the WebRatio framework. The invo-
cation occurs whenever Glue needs more information to evaluate a rule of the wgMediator,
during the matchmaking process. The need for more information arises when the description
of a Web Service instance does not include the value of a feature, which is required to the
rule that checks if that value satisfies the one requested in the Goal instance. This can happen
because that feature provided by the service vary in time or depends on the request.

196 Andrea Turati, Emanuele Della Valle, Dario Cerizza, and Federico M. Facca

In the case that a service includes special parameters that need to be fetched (e.g. shipping
price), its description has to be annotated with special tags, which point out what parameters
are “dynamic”.

For example, Listing 11.7 shows how the price of the Muller service has been modeled
in order to enable data-fetching. In particular, a tag stating that it is necessary to invoke the
invokePrice operation of the Muller service in order to retrieve the actual values of the price
has been added. In addition, the request message (invokePriceRequest) that has to be sent to
start the data-fetching has been added to Muller’s description.� �

1 wsdInstance Shipment11:wsdClass Shipment[
2 nonFunctionalProperties−> #[
3 dc title−>’Muller Shipment Service’
4 ...],
5 capability−> #:capabilityWSD Shipment[
6 assumption−> #:
7 restrictionsOnShipmentService[
8 maximalGoodWeight−>50,
9 ...],

10 postcondition−> #:
11 providesShipmentService[
12 pickupLocations−>>{africa, ...},
13 price−>>{
14 #:shipmentPricing[
15 basePrice−>0, //negotiate operation://Muller/invokePrice(out Price)
16 pricePerWeight−>0,
17 additionalPricePerCollect−>(−1)
18] ...
19].
20 invokePriceRequest[
21 country=>location,
22 packageInformation[
23 weight=>integer,
24 lenth=>integer,
25 height=>integer,
26 width=>integer
27]
28].� �

Listing 11.7. The description of the Muller service including the dynamic data-fetching
parameter.

In order to take into consideration the data-fetching, the execution semantics of Glue was
divided into two subsequent steps. The first step of the discovery runs the rules of the wg-
Mediator on the static descriptions of the Web Service instances, ignoring the parameters that
have been tagged as “dynamic”. The second step takes the result set of the services returned
by the previous step and runs again the rules of the wgMediator only on those services whose
description contains some dynamic parameters and only after the invocation of the service and
the retrieval of the actual values of the dynamic parameters.

Splitting the matchmaking process into two subsequent phases speeds up the discovery
task because the invocation of the safe methods of the services – which can be slow due to
the bandwidth of the communication channel, the execution speed of the machine in which
resides the service and so on – is executed only for the services that survive to the first step, in
which the other “static” parameters are checked.

11 Using Glue to Solve the Discovery Scenarios of the SWS-Challenge 197

11.6 Conclusion and Future Work

In this chapter we described our solution to the SWS-Challenge focusing on the Discovery
scenarios. For this reason, we deeply described our discovery engine named Glue and we
showed how we were able to successfully address the SWS Challenge Discovery scenario.
Such results mainly relies on our refinement of WSMO discovery conceptual model which
consist in:

• introducing the notion of class of Goals and class of Web Services;
• using rules encoded in wgMediators to handle domain specific notion of matching; and
• redefining the discovery process as a composite procedure where the discovery of the

appropriate mediators and the discovery of the appropriate services is combined.

The descriptions of all the elements are coded in an F-logic syntax. However, we aim at a
better formalization of the Glue model by means of a new language that is independent from
the underlying reasoner. For this reason, we are going to design and implement a completely
new version of the Glue architecture which takes advantages from the conceptual model of
Glue and, at the same time, allows users to customize and monitor the execution semantics.

Acknowledgements

This work has been partially supported by the Italian FIRB project NeP4B and the IST FP6
European project SEEMP.

References

1. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location of services.
In: ESWC. (2005) 1–16

2. OASIS UDDI Technical Committee: The uddi technical white paper. Technical report,
OASIS (2004)

3. OASIS/ebXMLM Registry Technical Committee: Oasis/ebxml registry services specifica-
tion v3.0. Technical report, OASIS (2005)

4. Della Valle, E., Cerizza, D.: The mediators centric approach to automatic web service
discovery of glue. In: MEDIATE2005. Volume 168 of CEUR Workshop Proceedings.,
CEUR-WS.org (2005) 35–50

5. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services – The Web Service Modeling Ontology. Springer (2006)

6. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontologies
1(1) (2005) 77 – 106

7. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling language: An
overview. In: Proceedings of the 3rd European Semantic Web Conference (ESWC2006),
Budva, Montenegro, Springer-Verlag (2006)

8. Yang, G. Kifer, M., Zhao, C., Chowdhary, V.: Flora-2 user’s manual (2004)

12

Semantic Service Discovery with DIANE Service
Descriptions

Ulrich Küster and Birgitta König-Ries

Institute of Computer Science
Friedrich-Schiller-University Jena
07743 Jena, Germany
ukuester|koenig@informatik.uni-jena.de

Summary. In this chapter, we introduce the DIANE Service Description (DSD) and show
how it has been used to solve the discovery problems stated in the scenarios of the SWS-
Challenge. We explain our solution as of the fifth SWS-Challenge workshop in Stanford, CA,
USA (November 2007) and provide a discussion about its strengths but also shortcomings.

12.1 What is DSD?

The goal of service-oriented computing is the ability to dynamically discover and invoke ser-
vices at run-time, thus forming networks of loosely-coupled participants. The most important
prerequisite is an appropriate semantic service description language – and with DIANE Ser-
vice Description (DSD) [KKRM05, KKRKS07a] we provide such a language together with
an efficient matchmaking algorithm.

One main difference between DSD and other semantic service description languages is its
own lightweight ontology language that is specialized for the characteristics of services and
can be processed efficiently at the same time. The basis for this ontology language is standard
object orientation which is extended by four additional elements:

• Services perform world-altering operations (e.g., after invoking a shipment service, a
package will be transported and a bill will be issued) which is captured by operational
elements. We view this is the most central property of a service, thus, in DSD, services
are primarily described by their effects – all other aspects (as flow of information, chore-
ography etc.) are seen as secondary, derived properties. An effect is comprehended as the
achievement of a new state, which in DSD is an instance from a state ontology.

• Service providers offer more than one effect, e.g. a shipment provider offers shipment
to a multitude of possible locations and for various types and sizes of packages. On the
other hand requesters typically accept different services with different properties, e.g. a
fast and expensive shipping or an inexpensive but slower one. Both is captured in DSD by
aggregational elements. Thus, the effect of a service (request or offer) is typically a set of
states. For offers, these are the states the service can potentially create, for requests these
are the states the requester is interested in. In DSD, sets are declaratively defined which
leads to descriptions as trees (see examples in the next section).

200 Ulrich Küster and Birgitta König-Ries

• Services allow to choose among the offered effects (e.g. as a matter of course all shipment
providers allow to input the package being transported and to select where to pick it up and
where to ship it) which is captured by selecting elements. In DSD, selecting elements are
represented as variables that can be integrated into set definitions, thus leading to config-
urable sets. Therefore, a service offer in DSD is represented by its effects as configurable
sets of states.

• The appropriateness of different service offers and their effects is varying for a given
requester (e.g., in the first scenario, a more expensive shipment provider will still be ac-
cepted, but a less expensive one will be preferred) which is captured by valuing elements.
In DSD, these elements are represented by using fuzzy sets instead of crisp ones in request
descriptions. Set based descriptions allow expressing that quite different services are ac-
ceptable for a requester. Using fuzzy instead of crisp sets in these descriptions additionally
allows to include all preferences of the requester in a request description – the larger the
fuzzy membership value of a service in the described service set, the higher the preference
of the requester for that particular service.

For processing a semantic service description language, an efficient matchmaking algo-
rithm is needed. For a given DSD offer description o and a given DSD request r, a matchmaker
has to solve the following problem: What configuration of o’s crisp effect sets is necessary to
get the best fitting subset of r’s fuzzy effect sets. Or – in other words – how well is o’s offer
contained in what r requests and how should o be configured to maximize this value? Our im-
plementation answers this by stepping through the graphs of o and r synchronously in order to
calculate the matching value in [0, 1] as well as the optimal configuration of the variables. As
the preferences are completely included in r, in contrast to existing approaches, our matcher
does not need to apply any heuristics and thus is able to operate deterministically.

In order to interact with a service, DSD assumes a simple choreography. During match-
making several web safe estimation operations may be performed where operations of the
service are called, which provide information (like the price of a package given its weight)
but do not imply a contract between the provider and the client (in this case the matchmak-
ing agent). After the best match is found that service can be invoked by executing a single
execution operation which is supposed to produce the offered effects.

E
ff
e
c
t
G
e
n
e
ra
to
r

 Service Offer

DSD Middleware

DSD Matcher

Module

DSD Execution

Module

DSD

Service

Request

Client

Application

Service

Request

O
ff
e
r
A
g
e
n
t

DSD

Service

Offer

G
ro
u
n
d
in
g

Fig. 12.1. DIANE Middleware architecture

12 Semantic Service Discovery with DIANE Service Descriptions 201

The proposed concepts are implemented in the DIANE middleware. The overall architec-
ture of the system is depicted in Figure 12.1. On the left hand side, the client is shown. It runs
an application that at some point in time requests an external service to provide some func-
tionality. The service request is formulated using DSD (e.g. by filling a predefined semantic
request template) and sent to the middleware. There, the matcher module compares it to the
available service offers. When a matching result is found, it is configured appropriately and
passed on to the execution module. This module then invokes the service using its grounding
and finally returns the execution results to the client application. More detailed information
how to integrate semantic service requests into existing processes using the DIANE Middle-
ware can be found in [KKR06b].

12.2 Solving the SWS-Challenge discovery problems with DSD
and the DIANE framework

The SWS Challenge poses two set of discovery problems, one related to finding a shipping
provider for a given shipping request, the other one related to purchasing of IT hardware.
At the previous SWS-Challenge workshops we have presented the most complete solution to
those problems [KKRK06, KKR06a, KKR07b, KKR07a]. The complete solution including
all offer and request descriptions, all additional files, an executable version of the DIANE
Middleware and a technical description how to get the solution running can be found on the
SWS-Challenge wiki1.

In this section, we provide an in-depth description of our solution. We describe how of-
fers and requests for the first and the second scenario have been described using DSD and
particularly elaborate on the difficulties we encountered and how we solved them. At the end
of the section we explain how services are invoked automatically by the DIANE middleware,
either to gather additional information during the matchmaking or to invoke the best matching
service found. We conclude this chapter with a discussion of the strengths and shortcomings
of our approach.

12.2.1 Offer descriptions for the first scenario

Figure 12.2 shows the offer description of the Muller shipment service as an example for
all shipping services used in the first discovery scenario. We use GDSD, an informal UML
like graphical notation of DSD for our illustrations because it is more compact and easier to
understand than the more formal FDSD notation. By the example of the Muller service we
detail in the following how the various aspects of the shipper’s textual description from the
scenario have been captured in our DSD descriptions of the services.

Figure 12.2 shows a service instance presenting a profile (the grounding has been ommit-
ted) that offers a single effect set (diagonal lines in the upper left corner of a concept denote
a DSD set). The set of Shipped states that can be created by the service are characterized
by the property conditions of that set: The service collects a cargo at a certain pickup
time and ships it from fromAddress to toAddress for a certain price within the stated
shippingTime.

1 http://sws-challenge.org/wiki/index.php/Solution Jena

202 Ulrich Küster and Birgitta König-Ries

upper

muller : Service
upper.profile

: ServiceProfile
presents

effect

Address
IN,e,1
IN,e,2
IN,x,1

Address
IN,e,1
IN,e,2
IN,x,1

fromAddress toAddress

PhysicalEntity
IN,e,1
IN,x,1

cargo

WeightMeasure

weight

pickup

DateTimeFrame
IN,e,2
IN,x,1

Country

Cityy

city

locatedIn

Country

city

locatedIn

WeightUnit

== pound

Double

<=50

val unitContinent

 in {africa, northAmerica,
europe, asia}

Continent

 in {africa, northAmerica,
europe, asia}

locatedIn locatedIn

Shipped Price
OUT,e,1

Currency

== usd

City

price
currency

Doubleamount

$pickupEnd > (+;$pickupBegin,<PT90M>)

conditions

shippingTime

Duration
OUT,e,2

beginDateTime

endDateTime

$pickupBegin DateTime

>= <07:00>
 >= now as XSD_DateTime at xsd

$pickupEnd DateTime

<= <20:00>
 <= nowPlusTwoWorkingDays

as XSD_DateTime at xsd

OFFER:

Fig. 12.2. Excerpt from the DSD description for the Muller shipment service.

Offer input and outputs

Inputs (the configurability of an offer) and outputs of a service are described as variables and
directly integrated into the description. In GDSD variables are denoted by grayed rectangles.
Different types of variables are denoted by markers on the left side of a variable. The same
concept may serve as variable for different purposes, thus multiple markers are allowed. The
marker IN,e,1 on the fromAddress set in Muller’s description for instance denotes that
the value of this set needs to be given as input for the first estimation operation. More precisely
IN declares the variable as input, while OUT would have specified an output, e is used to
distinguish between web-safe estimation operations (e) and the final execution of the service
(x) and the following number (1) is used to distinguish between different operations (more on
this below).

Restrictions on package size and weight

Muller requires packages to weigh less than fifty pounds. This condition has to be captured
by the cargo set in Muller’s description using an appropriate property condition. As you can
see in Figure 12.2 the cargo set’s weight property points to a set of WeightMeasures
whose value property in turn points to a set of Double values. By the direct condition ”<=
50” this set of Double values is restricted to contain only values that are equal or smaller
than fifty. Restrictions on the maximum length or width of a package could be added in a
similar fashion by adding additional property conditions to the cargo set.

12 Semantic Service Discovery with DIANE Service Descriptions 203

Restrictions on the operation range of the service

Muller operates only in Africa, Asia, Europe and North America. Thus the fromAddress
and toAddress sets have been restricted in a similar way as the cargo set. Countries
and continents are loaded from a location ontology and the direct condition ”in {africa,
northAmerica, europe, asia}” on the Continent set refers to the names of those
ontological continent instances.

Shipping price

Muller does not publish shipping prices but provides an endpoint where prices can be in-
quired dynamically providing certain input data (like shipping addresses and the weight of the
cargo). Such dynamicity is supported by the DIANE framework using estimation operation as
introduced in Section 12.1. The marker OUT,e,1 on the price set in Muller’s description
denotes that the value for this set can be inquired by executing the associated first estimation
operation. Accordingly both addresses and the cargo need to be given as input to inquire about
the price (markers IN,e,1). Details on how the estimation operation is actually executed and
how the handling of estimation operation is integrated into the matchmaking process will be
given in Section 12.2.5. The other services (Runner, Racer, Weasel and Walker) did not offer
an endpoint to inquire dynamically about the price and instead specified rules how to compute
the price depending on the specifications of the shipping operations. Unfortunately DSD lacks
direct support for such rule based computations. Therefore auxiliary endpoints to compute
the shipping price have been created for those services similar to the one that was offered by
Muller already. During matchmaking the computation of the shipping price is delegated to
those endpoints in the same way that Muller’s endpoint is used.

Pickup and shipping times

All services made similar restrictions to available pickup times for collection. In the case
of Muller collection is possible between 7am and 8pm. This is encoded in Figure 12.2 us-
ing according direct conditions ”>= <07:00>” and ”<= <20:00>” on the properties of
the pickup set similarly as described above. Additionally, collection is only possible in the
future (but in the case of Muller no advance notice was required) and at most two work-
ing days in advance. To deal with these temporal aspects we exploited the fact that DSD
instances are internally represented as Java classes and created special Date, Time and
DateTime instances now, today or todayPlusTwoWorkingDays. These instances
contain code that accesses the system time to capture the intuitive semantic. In the case of
todayPlusTwoWorkingDays Sundays are not considered working days (which is why
we could not use an expression like ”now + <P2D>”). Finally the services made restrictions
on the length of the pickup interval (in the case of Muller at least 90 minutes). This requires
to pose a condition on an arithmetic combination of attributes (the end of the pickup interval
minus the begin of the pickup interval has to be greater than a certain duration). Such so-called
multi attribute conditions can be added to the conditions property of a ServiceProfile.
In Figure 12.2 the condition ”$pickupEnd > (+;$pickupBegin,<PT90M>)” refer-
ences the sets labelled $pickupEnd and $pickupBegin and states that values for the
former must be greater than values for the latter plus a duration of ninety minutes. Originally,
this was not supported by DSD. If the required pickup interval is given in the request it is
easy to check whether this interval adheres to the restrictions of an offer. If, however, a request

204 Ulrich Küster and Birgitta König-Ries

does not give a precise interval but, for instance, only specifies that collection is impossible
after or before certain times, the matchmaker has to determine an interval that suits both the
requirements of the offer as well as the needs of the requester. Note that this interval has to be
determined automatically in order to be able to configure the offer automatically to facilitate
automated invocation of estimation as well as execution operations. However, in the pres-
ence of multi attribute conditions an optimal configuration of an offer cannot be determined
locally for the attributes anymore. Currently, our matchmaker does not support globally opti-
mized configuration under such conditions. The current implementation guarantees that any
determined configuration is correct, but the algorithm is not complete. Under certain circum-
stances the matchmaker will fail to determine an optimal or even any valid configuration at all
although such a configuration exists. It is planned to address this issue in our future work.

Finally, the offers declare the expected shipping times depending on the pickup time and
whether the shipping is national or international. Muller for instance ships in 2/3 (domestic/in-
ternational) business days if collected by 5pm. Like in the case of the shipping prices DSD
does not support such rule based evaluations directly. To overcome this limitation we created
auxiliary services to compute the shipping time within an estimation operation (exactly like
the shipping prices). Therefore the shippingTime set is declared as an out value of the
second estimation operation (marker OUT,e,2) and the addresses and the pickup interval are
declared as input of that estimation operation (markers IN,e,2).

12.2.2 Request descriptions for the first scenario

Overall DSD request descriptions are built similarly to DSD offer descriptions. Figure 12.3
shows the request corresponding to Goal C3 of the first discovery scenario. The structure of
the request resembles the one of the Muller offer. Addresses, and the cargo to be shipped are
provided. While the price is specified as a set (denoted by the diagonal line in the upper left
corner of the concept), addresses and the cargo to be shipped are provided as concrete instances
because no variation is allowed by the requester. Note that the city instances (”bristol” and
”moonCity”) in the addresses refer to ontological instances, because the city property –
unlike street, email or zipCode which are of the primitive String type – refers to
a complex entity type with publicly known instances stored in the ontology. Thus state and
country where the two cities are located in will be read from the ontology and do not have to
be encoded in the request.

No pickup or shipping time is specified since Goal C3 poses no requirements on these
properties. It does however specify a price limit of $20. This could have been modelled by
a direct condition ”<= 20” on the amount property of the Price set. Instead we chose to
additionally model preference for lower prices by using a fuzzy Double set for the amount
property. The fuzzy direct condition ”∼==[0,20] 0” requests the set to be fuzzily equal
to 0 where the given interval [0,20] denotes the boundaries of the fuzzy equal. Thus the
double value 0 will match perfectly (membership value 1), all values greater than 20 will not
match at all (membership value 0) and values in between 0 and 20 will match with linearly
decreasing membership value.

Goal D1 differs from the other discovery goals in that this goal asks for shipment of two
packages and thus enforces two invocations of the corresponding shipping provider service. In
our first solution this goal could not be expressed with DSD. However, DSD’s effect sets pro-
vide a natural mechanism to deal with such requests. The standard semantic of a DSD request
effect set is that one (the best) effect out of the specified effect set should be provided. Iteration
directives on any set in a DSD description may be used to change this semantic. In Figure 12.4
the iteration directive "<Best 2 1>" within the PhysicalEntity set describing the cargo to

12 Semantic Service Discovery with DIANE Service Descriptions 205

upper

swsShippingC3 : Service

upper.profile

: ServiceProfile

presents

effect

Shipped

Price

Double

~==[0, 120] 0

amount currency

fromAddress

toAddress

price

cargo

name

street

zipCode

city

phoneNr

faxNr

email

domain.measure

: WeightMeasure

dimensionweight

val

domain.measure

pound : WeightUnit

unit

length

width

height

unit

unit

unit

val

val

val

top

: PhysicalEntity

domain.measure

: DimensionMeasure

20
domain.measure

: LengthMeasure

domain.measure

: LengthMeasure

domain.measure

: LengthMeasure

domain.measure

inch : LengthUnit

domain.measure

inch : LengthUnit

domain.measure

inch : LengthUnit

10

2

3

Currency

== usd

domain.location

: Address

"Mr. Michael Moon,

Moon Company"

"+1 424242 "

"michael.moon@moon.ie"

"Moon Road 13"

"1234"

domain.location

moonCity : City

"+1 424243"

name street

zipCode city

phoneNr

faxNr

email

domain.location

: Address

"Mr. Wayne

Smithers"

"+44 235 235"

"Wayne.Smithers@example.org"

"20 Denmark

Street"

"BS1 5DH"
domain.location

bristol : City

"+44 235 236"

REQUEST:

Fig. 12.3. Excerpt from the DSD request description of Goal C3

upper

swsShippingD1 : Service

upper.profile

: ServiceProfile

presents

effect

Shipped cargo

dimension

weight
top

: PhysicalEntity

<Best 2 1>

REQUEST:

Fig. 12.4. Excerpt from the DSD request description of Goal D1

206 Ulrich Küster and Birgitta König-Ries

be shipped encodes that the best two effects described by this set should be provided (the two
corresponds to the first parameter in the directive "<Best 2 1>"). The matcher thus binds
the corresponding variable in the offer description with a set of two corresponding instances
instead of a single value. For automated service invocation such a binding will either result
in two invocations of the picked shipping offer (one for each package) or a single invocation
with two package specifications sent to the service - depending on the interface of the service
described in its grounding. Allthough Goal D1 could be successfully modelled the work on
iteration directives is an ongoing effort. Thus not all possible cases of usage are currently sup-
ported by our implementation and a full discussion of the complete semantics is beyond the
scope of this work.

All shipping services of the scenario return the actual pickup time as well as the price
of the shipping operation within the response of the final invocation. The scenario did not
require to make use of this information. However, it is possible to specify this fact in the
offer descriptions and to mark corresponding concepts in the request as request out variables,
thereby declaring that this information is required by the requester as output of a service
invocation. In this case the matchmaker ensures that the information indeed is provided by
the offers at hand and links the request out variable to the corresponding concept in the offer.
After the service invocation the DIANE middleware extracts the values from the response
and forwards it to the requester. This way requirements on the output of an operation can be
specified in a request and are guaranteed by the middleware.

12.2.3 Offer descriptions for the second scenario

The second scenario contains three descriptions of imaginary online shops that sell electronic
products. A concrete list of 19 available products is given statically in the scenario description
but a listing of available products by product type (like a list of all offered notebooks) can also
be obtained by calling a specific operation at the service’s endpoints. Solutions were supposed
to indicate how they would address a more realistic situation with hundreds or thousands of
available products which change dynamically.

We think it is unrealistic to assume that extensive catalogue data can be included in offer
descriptions which are published to a service repository. Among the reasons are the dynamicity
of a large catalogue which would require an enormous number of updates, the sheer size of ser-
vice descriptions that enlist thousands of products but also privacy issues that keep providers
from revealing too much information about their current stock. We deal with these issues in
more detail in [KKR07c] and address the situation in the context of the SWS-Challenge by
using dynamic offer descriptions.

Dynamic product listings

Figure 12.5 shows the relevant excerpts from the offer descriptions of the Hawker vending
service (all grounding information has been omitted). Without the listing of the products little
information can be included in the static offer description. Basically the offer simply states,
that Hawker sells products given it’s GTIN number (a fictionary identifier used in the scenario)
as input. One could use regular estimation operations to inquire about the available products.
For performance reasons and since an offer like hawker is not very meaningful we created a
special operation: Concepts tagged as dynamic sets may have an associated estimation opera-
tion that will be evaluated right at the beginning of the matchmaking process. Recall from the
discussion about pickup times above that the matchmaker may have to determine appropriate

12 Semantic Service Discovery with DIANE Service Descriptions 207

upper

hawker : Service
upper.profile

: ServiceProfile
presents

Product
dynamic

entity

Owned

effect

gtin

String
IN,x,1

OFFER:

Fig. 12.5. Excerpt from the DSD description for the Hawker vending service.

values for inputs of estimation (and execution) operations if these are not provided in the re-
quest. To be sure that all input values of an operation have been determined already a complete
traversal of the descriptions at hand is necessary. Since at the beginning of the matchmaking
process it is not known whether all necessary input values have been determined by the match-
maker already, the corresponding operation must not have any specific IN variables. Instead
the corresponding concept description from the request will be given as input. In the case of
Hawker, Hawker’s grounding simply extracts the type of Product seeked by the requester and
then invokes Hawker’s endpoint to list the available products of this type. The returned xml
listing will be converted to a list of DSD based instances (using mapping information from
Hawker’s grounding) and Hawker’s offer will be annotated with the retrieved instances, thus
providing a concrete up-to-date listing of the available products. The matchmaking will then
be performed based on that listing. By changing it’s grounding and using additional infor-
mation from the provided request concept beside the type of product requested, Hawker may
finetune the procedure in order to avoid to return too long product listings.

12.2.4 Request descriptions for the second scenario

Figure 12.6 shows excerpts of the description corresponding to Goal C4 of the second sce-
nario. The request asks to buy an Apple notebook, a webcam and a notebook sleeve with
certain properties. The requests of the second scenario are more complex than those of the
first scenario. In this section we will discuss the features of the requests that were not used
within the first scenario in a similar way already.

Competing Request Preferences

Goal C4 states a price limit for the overall purchase but prefers better notebooks as long as
that limit is satisfied. Additionally it defines a ranking of preferences to detail what constitutes
a better product: more processor power is most important and more RAM is more important
than a bigger harddisc.

DSD is very well suited to capture finegrained and competing preferences using fuzzy
sets. Preference for more processor power, more memory, a larger harddisc and a higher res-
olution of the webcam are encoded using fuzzy direct conditions in the corresponding sets of
the request description in the same way as preference for lower shipping prices was encoded
in the first scenario. The processor speed may serve as an example. The fuzzy direct condi-
tion ”∼==[2000,5000] 5000” in the value set of the processor speed attribute is used to
build a fuzzy set of Double values. The requested value is 5000, but values from the range

208 Ulrich Küster and Birgitta König-Ries

upper

swsDiscoveryIIC4 : Service

upper.profile

: ServiceProfile

presents

effect

Owned

Product

entity

entity

producer

displaySize

hardDisc

display
hddSize

unitval

processor

Double

== 13.0

IntelCoreDuoProcessor

Notebook

(((producer mul exp(processor,3)) mul
(display mul exp(memory,2))) mul

hardDisc)

LengthMeasure

Company

== apple

HDD

Display

LengthUnit

== inch

clockSpeed

FrequencyMeasure

unit

valFrequencyUnit

== mHz

Double

~==[2000,5000] 5000.0

memory

Memory

memorySize

DataCapacityMeasure

unit

valDataCapacityUnit

== mB

Double

~==[512,2048] 2048

DataCapacityMeasure

unit

valDataCapacityUnit

== mB

Double

~==[80000,1000000] 1000000

Product

entity

entity

Webcam

resXresY

Integer

~==[480,2000] 2000

Integer

~==[640,3000] 3000

Product

entity

entity

NotebookSleeve

sleeveSize

effect

Owned

effect

Owned

unitval

Double

== 13.0

LengthMeasure

LengthUnit

== inch

price

$priceSleeve
Double

amount
currency

Price

Currency

== usd

price

$priceNotebook Double

<= 1750.0

amount

currency

Price

Currency

== usd

price

$priceWebcam
Double

amount

currency

Price

Currency

== usd

$priceNotebook <=
(-;1750,$priceSleeve,$priceWebcam)

conditions

REQUEST:

Fig. 12.6. Excerpt from the DSD description for Goal C4 showing preferences.

[2000, 5000] are included fuzzily with linearly increasing degree of membership and prefer-
ence. This encodes that the requester requires the processor speed to be at least 2000 mHz
and prefers faster processors. Typically some notebooks may have a bigger harddisc while
others may have more processor power. To rank notebooks in such a situation the importance
of each attribute must be captured. In DSD this is done using fuzzy connecting strategies. To
determine the degree of match of two DSD concepts (either two sets or a set and an instance)
the types are compared, any direct conditions (like ”== usd”) are applied and the degree of
match of every property is determined. By default the degree of match of the two concepts
is then computed as the product of the type match value, the match value that results from
applying the direct conditions and the product of the matching results from the property con-

12 Semantic Service Discovery with DIANE Service Descriptions 209

ditions. The way how the results from the property conditions are combined may be changed
by specifying a custom connecting strategy. In the Notebook set in Figure 12.6 you can see
a formula that corresponds to producer× processor3×display×memory2×hardDisc.
Thus the results from the referenced properties are not simply multiplied but the result of
the memory and processor property condition are squared respectively cubed. Since all
matching values are from the closed interval [0, 1] a lower result from the processor or
memory property will have a stronger reducing influence on the overall matching value than
results from the hardDisc property, thereby encoding stronger preference for a fast proces-
sor and a lot of memory compared to a large hardDisc. More information on how to encode
user preferences using fuzzy sets can be found in [KKRM05, KKRKS07a]. Despite the fact
that most preferences could be encoded very intuitively, one goal posed difficulties. Goal B2
of the second scenario prefers black notebooks compared to white ones, but prefers to buy
the white one if it is significantly (more than $100) less expensive than the black one. Such a
rule-based preference does not map very well to the fuzzy set-based preference mechanism of
DSD. Since the price limit was set to $1800 a price difference of $100 results in a difference
of the matchvalue of roughly 0.055 (100/1800). Therefore the preference values for the color
were chosen to reflect exactly this difference: black [1] and white [0,944]. A weighted sum
of 0.5price× 0.5color however does not result in the desired behaviour. The problem is that
any black notebook regardless of the price or any product whatsoever that does not cost much
would result in a matchvalue of at least 0.5. Therefore the connecting strategy was extended
tomin(color, price, 0.5×price+0.5×color). However, this way the matchvalue was soon
dominated by the matchvalue for the price and the weighted sum didn’t influence the outcome
any more. To resolve this issue, the influence of the weighted sum was strengthened using a
polynom yielding: min(entity, price, (0.5× price+ 0.5× entity)5). This way the desired
behavior could be successfully achieved.

Simple service composition

Beside competing request preferences and dynamic product listings the second scenario in-
troduces some simple form of service composition in four different flavors. The above shown
Goal C4 is the most complex one combining unrelated composition with global conditions
and preferences as will be discussed in the following.

Unrelated composition

As can be seen, the request asks for three different products. This can be expressed by simply
asking for multiple effects to be provided. Therefore Figure 12.6 shows three Owned effect
sets, each corresponding to one article. The DSD matchmaker will use a multi-phased ap-
proach to match such requests. In a first phase offers are matched with regard to whether they
are able to provide at least a subset of the requested effects. In a second phase offers are com-
bined in a way that each combination (called effect coverage) provides each effect and each
effect only once. In a third phase the matchvalue for complete effect coverages is determined
and the best combination is picked. This algorithm has been introduced in [KKRKS07b]. Thus
DSD is well capable of solving unrelated composition problems.

Unrelated composition with global condition

Goal C4 also states an overall price limit of $1750 for the complete purchase. This can be ex-
pressed in DSD by using the multi attribute conditions that were introduced in Section 12.2.1.

210 Ulrich Küster and Birgitta König-Ries

The condition shown in Figure 12.6 reads as $priceNotebook ≤ 1750 − $priceSleeve −
$priceWebcam and encodes the given requirement ($priceNotebook, $priceSleeve and
$priceWebcam reference the value of the sets which are labeled accordingly). This way the
goal could be expressed and solved but the same limitations that were discussed in Sec-
tion 12.2.1 apply. Our algorithm is correct but currently not complete. Goal C4 needs to be
solved by composing different properly configured services. The right services need to be cho-
sen on a global level and the right products need to be purchased from each of these services.
Our current matchmaking algorithm splits a request for multiple products into a a set of single
requests, one for each product to be purchased. When determining the configuration of a ser-
vice (i.e. choosing a product), it performs a local optimization with respect to the requirements
of the desired product at hand instead of a global optimization with respect to the total set of
requested products. Depending on the available products and the concrete global request at
hand it may happen that after the first product is chosen, too little money remains to add the
other two products. In this case the matchmaking will fail and no product will be purchased.
A backtracking mechanism could ensure completeness in such cases. Backtracking, however,
could result in an exhaustive search of the configuration space of the services at hand, which
is not feasible anymore. Therefore, a more intelligent solution is needed. For many cases the
problem at hand could likely be overcome with techniques from constraint optimization prob-
lem solving. Furthermore, a solution to a similar problem was presented in [KKRKS07b]. We
are therefore optimistic to be able to solve the issue in our future work.

Unrelated composition with global condition and preference

Preferences have been discussed above already and the combination with composition does
not add any difficulties in the setting of our solution.

Correlated composition

Goal C2 requests a notebook and a compatible docking station. Thus the two requested prod-
ucts are correlated and cannot be handled seperately. DSD is capable to express such cor-
relations and to correctly compose and configure multiple offers accordingly [KKRKS07b].
Unfortunately, we were nevertheless unable to solve goal C2 correctly. Compatibility of dock-
ing stations and notebooks in the scenario is given by a property of each docking station that
holds a list of the GTINs of the compatible notebooks. To ensure whether a notebook is com-
patible to a docking station one has to check whether the notebook’s GTIN is contained in the
docking stations compatibility list. Currently the DIANE framework lacks sufficient support
for matching of list-based attributes to handle this case.

12.2.5 Service interactions

In this section we provide details about how DIANE performs the necessary interactions with
a service endpoint to facilitate automated service consumption. We first deal with how estima-
tion operations are integrated into the matchmaking process and then describe how the actual
invocations of the services are carried out.

Integrating service interactions into the matchmaking

As mentioned in Section 12.1 our matchmaker follows a multi-phased approach [KKRKS07b].
The main idea behind this decision is to reduce the number of offers remaining in the match-
making process before the most expensive matchmaking tasks are performed. The basic idea

12 Semantic Service Discovery with DIANE Service Descriptions 211

supports = anonymous SOAPServiceGrounding at upper.grounding [
// THE ORDER OPERATION
soapOperations += anonymous SOAPExecuteOperation at upper.grounding [

soapAction = "order",
xmlTemplatePath = "bargainerOrderProductsTemplate.xml",
endpoint = "http://sws-challenge.org/shops/Bargainer",
mappingIN += anonymous XmlDsdMapping at upper.grounding [

// ommitted due to space limitations
]

],

// THE DYNAMIC OFFER COMPLECTION OPERATION
soapOperations += anonymous SOAPOfferCompletionOperation at upper.grounding [

setReference = $products,
soapAction = "list",
xmlTemplatePath = "bargainerListProductsTemplate.xml",
endpoint = "http://sws-challenge.org/shops/Bargainer",
mappingIN += anonymous XmlDsdMapping at upper.grounding [

// ommitted due to space limitations
],
mappingOUT += anonymous XmlDsdMapping at upper.grounding [

// ommitted due to space limitations
],
...

]
...

],

Fig. 12.7. Excerpt from the grounding of Bargainer’s offer description

of the matchmaking algorithm is to traverse the request description tree and to match each
concept ri from the request with the corresponding concept oi from the offer. As mentioned
before the matchvalue of ri and oi is thereby built by comparing the types of the concept,
applying any direct conditions and then combining the match values retrieved from recur-
sively comparing the properties (property conditions) of ri and oi. This structured approach
to matchmaking allows to collect precise information about which parts of an offer did not
match with the request. In a first run not only obviously unsuitable offers are filtered, but also
information about whether a particular estimation operation should be executed is collected.
This is the case when a concept from an offer that is declared as estimation out variable was
neither a perfect match nor a definite fail using static information alone.

Thus after a first run only the estimation operations that offer information about such
concepts will be executed [KKR07c]. When matching those goals of the shipping scenario
for instance, which do not specify a price limit, the corresponding price information will not
be gathered, since it has no influence on the outcome of the matchmaking. Similarly when
matching Goal C3 of the shipping scenario with the available offers, the actual price of the
Weasel offer will not be inquired since it is already known after the first matching run that
Weasel does not ship to the United Kingdom and is therefore unsuitable anyway.

After the estimation operations are executed, the information returned by the service end-
points will be used to update the offer descriptions and another matchmaking run will be
performed, yielding the most accurate and up to date results possible.

Performing service invocations

The information that is necessary to automatically invoke a service (regardless whether this
is in the context of an estimation or execution operation) is specified in the grounding part of
an offer description. Figure 12.7 shows excerpts from the grounding specification of the Bar-
gainer service. Two SOAP operations are defined, the first used to execute the service, the other
one used to complete the service description (i.e. to gather the dynamic product listings). Both

212 Ulrich Küster and Birgitta König-Ries

mappingIN += anonymous XmlDsdMapping at upper.grounding [
variable = $products,
dataNodePath = "ProductCategory",
converterClassName = "org.swschallenge.shops.ProductCategoryConverter",
converterMethodName = "convert"

],
mappingOUT += anonymous XmlDsdMapping at upper.grounding [

variable = $products,
dataNodePath = "/ProductList/Product",
// gtin
attributeMappings += anonymous XmlDsdAttributeMapping at upper.grounding [

attributePath = "gtin",
subNodePath = "productID"

],
// mapping for Notebooks and NotebookDescriptions
attributeMappings += anonymous XmlDsdAttributeMapping at upper.grounding [

subNodePath = "self::node()[productCategory=\"Notebook\"]",
className = "dsd.schema.domain.computer.Notebook",
attributePath = "entity",
attributeMappings += anonymous XmlDsdAttributeMapping at upper.grounding [
subNodePath = "name",
attributePath = "deviceSpecs"

],
// elements of ProductDescription
// macs are produced by apple
attributeMappings += anonymous XmlDsdAttributeMapping at upper.grounding [

subNodePath = "prodDescription[contains(brand,\"Mac\")]",
attributePath = "producer",
converterClassName = "[...]util.converter.InstanceNameConverter",
converterMethodName = "getInstance",
constantValue = "dsd.instance.domain.economy.Company.apple"

],
...

Fig. 12.8. Mapping definitions from the grounding of Bargainer’s offer description

specify the SOAP action header to use (soapAction) and the endpoint to call (endpoint).
The setReference property of the SOAPOfferCompletionOperation is used to
map the operation to the dynamic set it belongs to. To lower ontological DSD data to XML
messages to be sent to a service and to lift XML data extracted from the service’s response to
ontological DSD data, DSD follows a pragmatic approach that was introduced in [KKR06b].
For each operation an empty XML message template has to be deployed together with the
service description at the DIANE middleware. The xmlTemplatePath property of the
specified operations in Figure 12.7 points to that file. Mappings have to be specified in the
grounding that define how to fill the template with the values from the properly configured
offer description.

Figure 12.8 shows excerpts from the mapping definitions from the Bargainer offer’s
grounding used for the SOAPOfferCompletionOperation. mappingIN definitions
are used to create the inputs of an operation, thus lowering from DSD data to XML. The shown
example specifies the variable from the offer’s description to use (variable) and an XPath
expression that identifies the XML node in the message template to fill with data from that
variable (dataNodePath). Depending on the type of the variable standard serialization is
available, but in the case at hand a custom Java class is specified and used to deliver the proper
product type in Bargainer’s classification for a given product (converterClassName and
converterMethodName). This class has to be deployed at the DIANE middleware and
will be instantiated using reflections.

Once the given XML template is properly filled the correct message will automatically be
sent to the corresponding endpoint. The reply needs to be interpreted to make the results of the
service invocations available to the middleware, either to return them to the service requestor
or to use them during the matchmaking process.

This is accomplished by mappingOUT definitions that are used to process the outputs of
an operation, in this case by lifting the XML listing of available products to DSD instances.

12 Semantic Service Discovery with DIANE Service Descriptions 213

They work similar to mappingIN definitions but in the example in Figure 12.8 illustrate
some more features. As shown in the example, mappings can be specified in a nested way
(which allows to handle nested lists). The subNodePath and attributePath properties
identify an attribute of the variable and a descendent node of the XML node used by the
parent mapping definition. If the subNodePath XPath expression evaluates to an empty
list the mapping is not executed which allows to specify different mappings e.g. for different
types of products (like notebooks, docking stations, etc.). In Figure 12.8 this is used to set
the producer of a product to the instance apple if and only if the brand node in the given
XML contains the string ”Mac”. The name of the instance to instantiate is provided as static
value in the mapping and a converter class is used to retrieve a complex entity instance by
its name. The lightweight mapping mechanism described above was sufficient powerful and
flexible enough to not only cover the automated invocations in the shipping discovery scenario
but also to handle the dynamic product listing of the second scenario.

12.3 Discussion and Summary

We have described how DSD and the DIANE middleware has been used to solve nearly all
parts of the SWS-Challenge discovery goals. In this final section we will briefly discuss the
lessons learned and the strengths and weaknesses of the DIANE approach in a structured way.

12.3.1 Domain ontologies

The scenarios did not require very heavy-weighted ontologies with rules and restrictions. Thus
our lightweight ontology language was very well suited to describe all aspects of the domains
at hand and we did not encounter any difficulties there. In particular the temporal semantics
could be addressed easily by creating special DateTime instances that directly capture the
temporal semantics of now or today by accessing the local system time.

12.3.2 Offer descriptions

Most aspects of the offers like the operation range of the shippers, the restrictions on package
size or weight or the rates on request of the Muller shipping offer could be easily modelled in
DSD. The main limitation with regard to the offers was the lack of direct support for rules. In
the first scenario rules were needed to compute shipping prices and expected shipping times
in dependency of certain attributes of the shipment. We circumvent this limitation by delegat-
ing the evaluation of rules to external entities (in our solution we used web services, but we
could have used local method calls or any other mean, too). The integration of this delegation
could be easily done since DSD already supported to gather additional information during the
matchmaking (estimation operations). Some constraints on the possible collection time in the
shipping scenario required to pose conditions on arithmetic combinations of different proper-
ties of a service description. Originally DSD was lacking support for such conditions but this
feature (multi attribute conditions) has been added to DSD. However, as discussed in Section
12.2 this feature is problematic in combination with optimal offer configuration (which can
not be achieved efficiently anymore). This is one of the fields of future work.

214 Ulrich Küster and Birgitta König-Ries

12.3.3 Request descriptions

Most aspects of the goal descriptions could be easily expressed in DSD. Shipping discovery
based on destination, weight, price, temporal requirements or any combination could be di-
rectly solved. The same is true for the product purchasing scenario goals. DSD proved very
capable of expressing fine-grained user preferences in requests via fuzzy sets to enable power-
ful ranking of services. Modelling of those preferences was very straightforward and intuitive
except for one case where preferences were given based on rules (see Section 12.2.4). The
composition goals of both scenarios could be expressed (except for Goal C2 which will be
discussed below). In the second scenario we chose to ask for multiple effects in the request. In
the one composition goal of the first scenario we chose to use iteration directives that change
the set-based semantics of that request. Although the iteration directives were sufficient for
the problem at hand, their implementation within the DSD Middleware as proof of concept is
currently still incomplete and needs to be completed. This is subject of ongoing work.

12.3.4 Reasoning and matchmaking

DSD does not rely on standard logic for matchmaking but uses a custom set-based reasoning
operation subset. This allows to express request preferences using fuzzy sets and in particular
acknowledges the fact that offers usually need to be configured and should be configured in
an optimal way. Thus DSD matchmaking does not only check whether an offer instance is
suitable for a request instance, but also determines the best configuration of an offer. DSD has
been designed to do this efficiently without iterating over all possible configurations, largely
by allowing for local optimizations in many cases. This interferes with the multi attribute con-
ditions that have been introduced to capture certain restriction on pickup times in the first
scenario (see Section 12.2.1) and global restrictions on the price of a complete purchase in the
second scenario (see Section 12.2.4). Due to performance considerations our current match-
making implementation does not guaranteed anymore that the determined configuration is
optimal or that an existing valid composition is found if offers or requests use multi attribute
conditions. To improve on this issue is ongoing work.

Finally, DSD allows to use lists as properties of a concept. Unfortunately the current
matchmaking implementation does not completely support such properties. This prevented us
from solving Goal C2 of the second scenario (where compatibility of notebooks and docking
stations is given as a list property of the docking stations that lists the compatible notebooks).
To add the necessary support for matchmaking of list-based properties is future work, too.

12.3.5 Service interactions

DSD and DIANE have been designed to support fully automated invocation of services, thus
the need to execute service operations (estimation or execution operations) did not pose severe
difficulties to our approach. The pragmatic approach to mapping between XML and DSD
data has proven to be sufficiently flexible and powerful to cover the scenarios. The practical
experience however has shown that it is quite cumbersome and in particular error-prone to
define these mappings without appropriate tool support. This has highlighted once more that
powerful editing tools (which DIANE is currently still lacking) are an essential prerequisite
for more widespread or daily use of any semantic web service technology.

Regarding estimation operations we believe that these are a particular strength of our
approach. In [KKR07c] we argue that the ability to include dynamic information into the

12 Semantic Service Discovery with DIANE Service Descriptions 215

matchmaking is essential for any service matchmaking framework. Unfortunately however,
this can easily compromise the efficiency of any matchmaking algorithm since the matchmak-
ing time will quickly be dominated by the time spend to call external webservice’s endpoints
to gather that dynamic information. It is thus a key strength of DIANE that its structured
graph-matching approach to service matchmaking allows to precisely determine which parts
of an offer description matched how well – an important difference to the related work. This
knowledge can then easily be used to inquire precisely only that dynamic information which
will influence the outcome of the matchmaking.

12.3.6 Difficulty to switch from one problem level to another

It was one of the assumptions of the SWS-Challenge that the advantage of using semantic
technology compared to traditional programming should be proven by showing that semantic
based approaches would cope more easily with changes in the scenarios.

In our experience quite a bit of effort was involved in building a first running solution to
the challenge. This is mainly due to two reasons. First, DIANE - as a research prototype - is
partly lacking the tool support that one would wish to have (this is particularly true for the
grounding definitions). Second, some scenarios required to add new features to the DIANE
framework. However, to add these features (like multi attribute conditions) to the framework
is a one time effort related to the development of the language and framework and should pay
off when more scenarios become available that make use of these feature but do not require
new ones.

Aside of these issues we do not feel that a lot of effort was necessary to switch from
one problem level to another one. In particular little effort was needed to move from the first
scenario to the second one. This is due to the fact that DIANE uses a generic set-based and
not a domain-dependent rule-based approach to matchmaking. The principle behind DSD is
to describe what offers can provide, what requests are seeking and have the matchmaking
done by generic domain-independent matchmaking rules. Thus, when switching from the first
scenario to the second scenario, we had to create the needed domain ontologies (describing IT
hardware) and we had to describe the offers and requests. However, we did not have to specify
matchmaking rules since these remain the same for all scenarios.

References

KKR06a. Ulrich Küster and Birgitta König-Ries. Discovery and mediation using DIANE
service descriptions. In Third Workshop of the Semantic Web Service Challenge
2006 - Challenge on Automating Web Services Mediation, Choreography and
Discovery, Athens, GA, USA, November 2006.

KKR06b. Ulrich Küster and Birgitta König-Ries. Dynamic binding for BPEL processes
- a lightweight approach to integrate semantics into web services. In Second
International Workshop on Engineering Service-Oriented Applications: Design
and Composition (WESOA06) at 4th International Conference on Service Ori-
ented Computing (ICSOC06), Chicago, Illinois, USA, December 2006.

KKR07a. Ulrich Küster and Birgitta König-Ries. Semantic service discovery with DIANE
service descriptions. In Proceedings of the International Workshop on Service
Composition & SWS Challenge at the 2007 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI 2007), Silicon Valley, USA, November 2007.

216 Ulrich Küster and Birgitta König-Ries

KKR07b. Ulrich Küster and Birgitta König-Ries. Service discovery using DIANE ser-
vice descriptions - a solution to the SWS-Challenge discovery scenarios. In
Fourth Workshop of the Semantic Web Service Challenge - Challenge on Au-
tomating Web Services Mediation, Choreography and Discovery, Innsbruck,
Austria, June 2007.

KKR07c. Ulrich Küster and Birgitta König-Ries. Supporting dynamics in service descrip-
tions - the key to automatic service usage. In Proceedings of the Fifth Interna-
tional Conference on Service Oriented Computing (ICSOC07), Vienna, Austria,
September 2007.

KKRK06. Ulrich Küster, Birgitta König-Ries, and Michael Klein. Discovery and media-
tion using DIANE service descriptions. In Second Workshop of the Semantic
Web Service Challenge 2006 - Challenge on Automating Web Services Media-
tion, Choreography and Discovery, Budva, Montenegro, June 2006.

KKRKS07a. Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern. DIANE
- a matchmaking-centered framework for automated service discovery, com-
position, binding and invocation on the web. International Journal of Elec-
tronic Commerce (IJEC), 12 - Special Issue on Semantic Matchmaking and Re-
trieval(2), 2007.

KKRKS07b. Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern. DIANE -
an integrated approach to automated service discovery, matchmaking and com-
position. In Proceedings of the 16th International World Wide Web Conference
(WWW2007), Banff, Alberta, Canada, May 2007.

KKRM05. Michael Klein, Birgitta König-Ries, and Michael Müssig. What is needed for
semantic service descriptions - a proposal for suitable language constructs. In-
ternational Journal on Web and Grid Services (IJWGS), 1(3/4):328–364, 2005.

13

An Approach to Discovery with miAamics and jABC

Christian Kubczak1, Tiziana Margaria2, Bernhard Steffen3, Christian Winkler2, and Hardi
Hungar4

1 Chair of Software Engineering, Technical University of Dortmund, Germany
christian.kubczak@cs.uni-dortmund.de

2 Chair of Service and Software Engineering, University of Potsdam, Germany
{margaria,winkler}@cs.uni-potsdam.de

3 Chair of Programming Systems, Technical University of Dortmund, Germany
steffen@cs.uni-dortmund.de

4 OFFIS, Oldenburg, Germany hungar@offis.de

Summary. We present a hybrid approach to service discovery that uses miAamics, a rule-
based selection engine, as a matchmaker within the jABC, a framework for service-oriented
process modelling, execution, and evolution. This approach aims at tailoring the service dis-
covery process in such a way that different users with different technical and domain compe-
tence can efficiently participate at their level of expertise. We shape the collaboration between
business experts and IT team following the well-known 80/20 principle: more than 80% of
the discovery management, control, and use should not require any special IT knowledge. In
particular, the specification of the set of weighted rules, which is miAamics’ way of describ-
ing the aspect-oriented relevance of data/products/offers, can in our experience be dealt with
by business experts without IT knowledge after a short training. Entering the predicates that
describe the individual preferences of a user for a certain selection process can easily be done
simply by clicking at certain preference criteria: this is so intuitive that it does not even require
an explanation.

13.1 The miAamics Framework

In this chapter we address the SWS discovery scenario described in Chap. 2 using as a rea-
soning engine miAamics, a framework for rule-based evaluation originally developed for
efficient and scalable personalization purposes5. miAamics was developed in 2000-2001 at
METAFrame Technologies GmbH to address the needs of scalable real-time personalization
in large scale CRM applications [9]. The underlying technology is being patented. A later
redesign of the framework in a Java environment has made it widely portable [3]. We show
in this chapter how we use miAamics at the core of a service discovery process that is itself
implemented in the jABC framework, the same framework we used previously for the SWS
mediation scenario. The jABC is described in detail in the context of the mediation scenario
in Chapter 5. Here we concentrate on the miAamics technology and on the service discovery
process we realized in jABC that embeds miAamics as core reasoning engine.

5 Preliminary aspects of this work have been presented in [4].

218 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.1. miAamics’ architecture

Seen from an abstract point of view, miAamics can be described as a rule based and sit-
uation aware matcher, that optimally matches profiles of requests to profiles of offers. It is
situation aware in the sense that dynamic context information can also be taken into consider-
ation via a context profile, which has a direct impact on determining which offers fit and their
ranking.

miAamics solves the matching task by calculating an ordering of all possible vendors
sorted by how well they match the given criteria. Provided a proper configuration, it can be
ensured that highest ranked solutions in the resulting set of ordered offers are optimal in the
sense that no other solution satisfies the specified constraints better.

13.1.1 miAamics’ Architecture

Fig. 13.1 sketches miAamics’ overall architecture. The miAamics production server performs
at runtime the match of requests and offers. The criteria for the match are defined by users
by means of an application whose use is shown in Fig. 13.4. They are stored in a repository
of rules and strategies called Deployment repository. At runtime, a client, typically a browser,
as in the case of the SWS Challenge scenarios, provides a request. This is passed by the
web server to the miAamics production server, which determines according to the current
evaluation criteria (the evaluation strategy now active in the deployment repository) which
abstract profiles of offers fit best for the abstract profile of the request. The Web server then
returns from the offer database a concrete offer with that profile.

The information evaluation flow is depicted in Fig. 13.2:

13 Discovery with miAamics/jABC 219

Fig. 13.2. miAamics information evaluation

• concrete data provening from the SWS Challenge testbed concerning a user request (in
our case, it is a shipment request) and concrete situation data (if available, in our case
there is no situation description so this is empty), are evaluated to determine the abstract
profile of the (situated) request for miAamics.

• Alternatively, the user and context profile can be directly input by some external applica-
tion that directly works at the ontology level

• The strategy evaluation in the production server determines the matching offer IDs (OIDs),
which are an abstract description of the offers in terms of a profile.

• For matches embedded in external applications, these abstract descriptors are returned,
• for a concrete application, like in our case, the OIDs are resolved in the set of concrete

offers corresponding to that profile, and usually one of them is returned. Note that since
all the offers match that profile, they are equivalent, and thus it is legitimate to randomly
select one of them.

In the discovery scenario described by the SWS Challenge, the best ranked proposal for an
abstract description of a shipping request indeed resulted in the suggestion of a vendor which
is able to fulfill this task and respects all the constraints specified in the request.

13.1.2 miAamics Evaluation Engine

The rule evaluation structure of the production server is the central component of the match-
making. It is provided with ontological information based on attributes, categories, and rules,
which we describe in the following.

The miAamics evaluation engine uses formulas reminiscent of event-condition-action
rules to specify sets of business rules called strategies. This corresponds to the top layer of the
miAamics knowledge representation structure shown in Fig. 13.3. Single incoming requests
are evaluated with respect to the currently enforced strategy. We can define multiple strategies
in miAamics, but only one at a time is active and used for request evaluation. Rules consist of
premises based on request and/or situation data, and conclusions based on product or better
offer data, respectively; i.e. they define functions of the kind

f(request,situation)→ {offer}

220 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.3. Structure of the miAamics ontology

These functions are associated to numerical values that indicate on an integer scala the weight
of the rule, called priorities in Fig. 13.4.

The SWS challenge discovery scenario

• does not consider situations, even though they would also make sense here, e.g. making
the transport offers depend on daytime or week days, and it

• does not consider preferences: it asks for the set of suitable shippers for a given request,
rather than for the best shipper according to some additional (likely non-functional) pref-
erence criteria.

Our solution therefore does not make use of situation information. It still considers pref-
erences since they are naturally built-in the system, due to their relevance in real-life service
selection scenarios. We show here how to express preferences, and in Chap. 16 we compare
the miAamics way of defining and evaluating preferences with the Diane approach, that is
capable of handling preferences too.

miAamics’ evaluation is global to the strategy: whenever a request arrives, all rules of the
current strategy are considered. In case their left hand sides match the request’s profile, the
rules’ weights are added to the current weight of the proposed offers (in this case the ship-
per services), in order to compute the overall ranking of all offers available. This globality of
evaluation is a central asset of miAamics: in other rule based systems, policies for rule se-
lection and rule triggering play a major role in complicating the evaluation mechanism and
making it intransparent to the user. It is in fact customary for example to take the first ap-
plicable rule and ignore the subsequent ones. This leads to a hidden priority expression, that
is encoded implicitly in the ordering of the rules: changing the order of the rules affects the
results. Other systems request disjointness of premises: it must be ensured somehow that only
one rule is eligible to fire. This introduces dependencies between the rules: if a new rule is
introduced, it can impact the definition of any other rule, since any overlap must be detected

13 Discovery with miAamics/jABC 221

and eliminated, usually by rule splitting. The result is a collection of rules with very compli-
cated logical expressions in their premises, that hamper understandability and maintainability
by domain experts.

With our design choice, rules can overlap. Thus they remain ”local” in their scope, simple
in their formulation, and understandable by the domain expert that just wants to capture this
little portion of business knowledge. They all are evaluated, if more than one are applicable,
their effects are collected and cumulated in a way understandable to the rule designer, who
can inspect their effects in a result chart. This guarantees complete transparency of the results
to the user as well as full diagnostic information for adjustments or revisions.

Since evaluation can be time expensive for scenarios with many criteria, offers, and rules,
the evaluation can be also sped up by pre-computing the effects of the evaluation in an opti-
mized data structure (called RES, Rule Evaluation Structure), which is consulted at runtime,
bypassing the case by case evaluation of rules. This leads to a highly performant and scalable
selection process.

In the following, we first sketch the miAamics modelling style and its own terminology,
then we establish a relation between this style and terminology and Description Logic, a well
established modelling style for knowledge expression and ontologies in the Semantic Web
community.

13.1.3 Modelling in miAamics

We use in this case study a simple ontology to express the domain of discourse of the business
(and therefore of the rules): following the structure of miAamics’s knowledge base depicted in
Fig. 13.3, for the discovery problem we define a taxonomy6 based on abstract attributes that
are meaningful for the business expert. For instance, shippers that take ’heavy packages’
are defined by an attribute ’shipping heavy packages’ whereby the ’maximum weight’ data
field of the shipper profile can exceed e.g. 70 lbs. The corresponding definition of the attribute
is

’shipping heavy packages: (maximum weight ≥ 70 lbs)’

Attributes are thus technically predicates. They directly base on the concrete profile vocabulary
of the shippers, but rules are often more abstract, and refer to coarser concepts that combine
different attributes. These coarser concepts, called in miAamics categories, are technically
simply predicates over the set of attributes. Thus they can be logically combined, and they form
a hierarchy, often called taxonomy, reflecting an is-a relationship. In fact, our work is based
on these kinds of taxonomies rather than on the more general ontologies, whose additional
structure for knowledge expression seems to add in practice more complication than benefit
for an end user.

miAamics rules do not refer directly to the possibly huge number of involved entities
typically contained in a data base, but to the above-mentioned taxonomies, through the cate-
gories and attributes. In the Information object layer we have the connection between database
attributes (fields like ”age”, ”price”) and taxonomy attributes (predicates that refer to the infor-
mation objects over those fields, like ”age ≤ 40”. This separation of the production database
(containing in our example the concrete shipper offers) from the matching process has two
reasons:

• Performance: the run-time critical matching process fully works on main memory.

6 Under taxonomy we understand an ontology where the concepts are related only by an is-a
relation and where the resulting concept graph is acyclic, i.e. a DAG.

222 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

• Agility: it is possible to freely and dynamically exchange the data in the database, as long
as the conceptual structure defined by the taxonomy is maintained. E.g., new shippers can
be added at any time, as long as their characteristics can still be expressed in the existing
taxonomy.

The production database is only used after the matching process, to retrieve concrete in-
stances (like shippers’ profiles and data) of the computed abstract descriptions in terms of
taxonomy concepts.

As an efficient matching engine, miAamics brokers between input and output taxonomy-
based profiles. It is thus an ideal backbone service for a specific personalization or evaluation
task. The frontend, such as a graphical user interface to submit a query or display results, is
independent of miAamics. It can for instance be reused from preexisting non-personalized
versions of the application or the website. Also in this Service Discovery scenario, the match-
making technology is completely embedded within the jABC.

13.1.4 Embedding in Description Logics

The style of domain modeling adopted in miAamics can directly be related to Description
Logics (DL) [1]. In DL, the knowledge base description K is split into the

• terminological box T (TBox) describing concepts that apply for classes of individuals and
the

• assertional box A (ABox) describing properties of the individuals that populate the de-
scribed space.

TBox concepts C are defined by concept descriptions D (e.g. c v d with c ∈ C and d ∈
D). In miAamics, the TBox directly corresponds to the taxonomies the matching algorithm is
based upon: our attributes and categories correspond in fact to basic concepts and compound
concepts in DL’s TBox.

The ABox, which corresponds to miAamics’ information objects, is only relevant when
concrete instances need to be retrieved from the production database.

E.g. the attribute Parent (corresponding to a DL TBox concept) could be defined in terms
of database information objects as People (member of the (ABox)) with children:

• Parent: People.childCount > 0

Categories in miAamics correspond to concepts (thus members of the DL (TBox) defined
in terms of other concepts. In miAamics they are defined in terms of attributes and other cat-
egories, forming hierarchies of concepts. For instance, the category Mothers could be defined
as the set of female parents:

• Mothers: Female AND Parent

by using the attributes Female and Parent. This is also directly expressible in DL.
miAamics’ rules, which are based on predicate logic, define mappings of the kind

f(request,situation)→ {offer} simply via implication.
Due to its original application domain in online marketing, in miAamics rules allow

premises to refer to categories and attributes of type request and situation only, and conse-
quences to refer only to offers. Additionally it is enforced that these three types of attributes
and categories are disjoint: they give rise to three distinct taxonomies.

All this can be directly expressed also in DL, e.g., by adding attributes that tell which
concepts refer to requests, situations, and offers respectively. In particular, since the mapping

13 Discovery with miAamics/jABC 223

expressed by the rules is an implication between concepts, it directly corresponds to implica-
tion in DL.

The main difference of miAamics to the typical DL-based scenarios is due to its weighting-
based evaluation of strategies: all rules are weighted, they are always evaluated, and the re-
sulting offers are ranked according to the sum of weights of all matching rules proposing this
offer. This allows for a convenient, multi-faceted and modular specification.

It should be noted, however, that the restrictions on the rule format mentioned above
are technically not necessary: they are imposed only for convenience of the users, as user
guidance, like typing in a programming language, and they could easily be omitted or adapted
for an application domain with a different structuring profile.

13.2 Rule Based Discovery for the Discovery Scenario

Setting up the miAamics configuration for a concrete scenario means creating a taxonomy for
this domain. This expresses the knowledge base for the subsequent evaluation, therefore this
task is central to get the desired evaluation results. As is well-known, creating such a configu-
ration needs some care. In the following we present the most relevant basic steps concerning
the knowledge expression for the SWS Challenge discovery scenario.

13.2.1 Domain Model: Choosing the Vocabulary

First we need to establish a domain vocabulary to be used as concepts in miAamics’s tax-
onomies and rules. To this aim, we analyzed the textual descriptions provided both in the
scenario Wiki and in the WSDL files of the single shippers. We identified relevant data sets
for the discovery problem’s inputs (the queries) and outputs (the shippers) and established a
domain-specific terminology at the miAamics’ attribute level.

The shipping constraints are taken from those textual descriptions too. For example, two
constraints for the shipping vendors are:

• Packages weighing 50 lbs or less are shipped
• Collection is possible after 6.00 a.m.

To formalize those constraints, shippers’ profiles have to contain (at least) the following data
fields

• Maximum package weight (lbs)
• Collection start time (24h)
• Collection end time (24h)

that are then used to define the corresponding attributes. The elements of the profiles corre-
spond to miAamics’ information objects: they contain the concrete data items that are going
to be evaluated and thus determine which attributes hold for which offers.

With this information we identify the domain specific concepts to be specified in the tax-
onomy by attributes and categories. We discovered for example that it is important in this
scenario to characterize which shippers ship lightweight packages only. This is a relevant at-
tribute in the taxonomy (ships lightweight only) and is defined by the constraint

• Maximum package weight (lbs) < 51

This way we identified and formalized the necessary information in order to obtain a complete
classification of input and output data for the discovery.

224 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

13.2.2 Discretization and Preprocessing

The boolean abstraction intrinsic with miAamics’ technology, that bases on attributes that are
evaluable predicates over the information objects, brings two limitations when dealing with
concrete data values:

1. miAamics’s discrimination power is defined by the granularity level of the attributes, and
2. it cannot compute/compare numerical values. Thus the results of computations must be

either modelled by rules, or one has to resort to an adequate preprocess, external to mi-
Aamics.

During the modelling of the SWS Challenge scenario we used both discretization and pre-
processing. E.g., for modelling the weight of packages it seemed adequate to simply consider
the few weight intervals referred to in pricing schemes. This was sufficient for the required
classification, and it is quite intuitive. Doing the same for price calculations/comparisons
would, however, either lead to

• a huge rule sets, with all the implied disadvantages, or
• it would be very imprecise, and therefore lead to unsatisfactory proposals.

In such cases it is therefore advantageous to resort to a hybrid approach: the computational
part is done in a preprocess, whose aggregated results are then handed over to miAamics
for determining a globally satisfying proposal that considers all the influencing facets. This
gives one the option to play with the trade-off between general programming, that requires
IT experts, and a much simpler, highly efficient way of combining many factors of influence
expressed in simple rules, to a global optimum.

In the SWS discovery scenario, our preprocess also takes care of the user interaction (i.e.
specifying the shipping request), invoking the Web service of a shipper, to query missing data
not provided by the textual description (e.g. destination countries, shipping rates, sometimes
provided only on demand). As described in [6], the preprocessing involves substantial orches-
tration, done in the jABC. This preprocessing updates the shipper’s record accordingly at the
backend of miAamics.

This is the typical usage pattern of miAamics, which is an embedded matchmaking com-
ponent. It serves as engine to efficiently evaluate given rule sets. It communicates with the
web or with the environment via an adequate user interface component or a communication
service that fits the special needs of the scenario (e.g. display results, data preparation).

While we will describe the orchestration-based preprocessing in Sect. 13.3, we explain
now how to comfortably interface miAamics with a user-level expression of the knowledge.

13.2.3 Automatic Generation of Comprehensive Taxonomies

Though they already consist of discrete values, some data domains that have to be covered by
miAamics’ rules are quite huge. Considering the destination countries in the given scenario
explains the problem. Since we must define a complete taxonomy for the rule evaluation struc-
ture, we must create rules for all possible package destinations. The official list of countries
of the United Nations7 contains more than 240 entries. This means that the same number of
shipping request attributes (e.g. premise: package shall be shipped to the US), shipping

7 Countries or areas, codes and abbreviations in the United Nations Statistics Division
(http://unstats.un.org/unsd/methods/m49/m49alpha.htm)

13 Discovery with miAamics/jABC 225

Fig. 13.4. miAamics Web Configuration Interface

offer attributes (e.g. conclusion: ships to North-America) and matching rules (e.g. ship-
ment to the US holds if the aforementioned premise and conclusion hold) have to be created
for the miAamics rule set, and that those rules have to be added to all strategies that con-
sider shipment destinations. Of course, doing this manually would be a really cumbersome
and error-prone task. Instead it is possible to populate miAamics’ rule set in different ways.
The underlying data structure used by miAamics to manage its rules and knowledge base is
a relational database, hence it is possible to populate this database with concepts and rules in
several ways. For the given example, we used jABC’s DBSchema plug-in [10] to generate the
attributes and rules for each country, based on the official database provided by the UN.

Other methods that allow us to import external data and create corresponding attributes
and rules in miAamics are currently analyzed or already under development. For example
we intend to import user profiles from FOAF8 profiles, as well as profiles and concepts from
existing ontologies provided in other modeling languages (like OWL9).

226 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.5. miAamics Result Chart

13.2.4 miAamics Configuration Web-UI

Apart from these automated imports, the common way to provide knowledge to miAamics is
to configure miAamics manually. A comfortable web interface offers capabilities to enter the
configuration data as attributes, categories, rules, and strategies in miAamics’ database. The
web interface offers direct access to the backend database to configure requests, situations and
offers. In the discovery scenario we only have shipping requests and shipper’s offers.

The Web-UI assists the user while entering configuration data by verifying inputs and
offering input assistance. Fig. 13.4 shows the web interface with part of the list of matching
rules for the discovery scenario. As shown in the figure and already mentioned in Sect. 13.1.2,
rules consist of a premise, a conclusion, a rating value (named priority) that allows one to
provide the rules with a weight, and a name describing the rule.

Additionally to manually entering configuration data, other import methods exists to au-
tomatically import information of different formats, for example from plain text files, Excel,
or other ontology definition languages like OWL.

13.2.5 Analyzing Evaluation Results

Depending on the amount of attributes and the complexity of rules used for an evaluation,
miAamics results can often be quite surprising and hard to comprehend. To analyze the evalu-
ation results, the miAamics’ Result Monitor offers a graphical representation of the evaluation
results as a bar chart. Fig. 13.5 shows such a bar chart for (goal C3 of discovery scenario 1):

For all shipping requests, the packages are always sent from the Moon company
in the US. The destination of the example shipment is a client in Bristol (UK). A
single package of the dimension 10/2/3 (l/w/h in inch) and a weight of 20 lbs shall
be shipped for less than 120$.

The constraints in the example request can be broken down to three major classes of con-
straints, as the sender’s address is not significant in this example (but it is necessary for a

8 The Friend-of-a-Friend project (http://www.foaf-project.org)
9 Web Ontology Language, W3C Recommendation (http://www.w3.org/TR/
owl-features/)

13 Discovery with miAamics/jABC 227

comprehensive discovery scenario in the SWSC) and the package dimension is just used to
determine a dimensional weight, that might override the given weight - an issue for the pre-
calculation steps. Thus only the constraints concerning the destination, weight, and price of
the shipment need to be considered in order to solve the (simple) example request. This gives
rise to the following classes of rules:

R1: Rules handling the ability to ship to a specific destination. For each possible destination
there is a rule that ’fires’ whenever this destination is requested, with the effect that the
weights of the shippers shipping to this destination are increased by the rule’s weight.

R2: Rules handling the ability to ship a package of specific weight. These rules are set up to
distinguish the shipping weight limitations of the considered shippers. A rule for shipping
medium weight packages could have the premise package weight is ≤ 100 lbs and the
conclusion shipper’s weight limit is ≥ 100 lbs. When it fires, it increases the (priority)
weights of all shippers being at least able to handle packages weighting 100 lbs by the
rule’s (priority) weight.

R3: The third type of rules handles shipping costs. These rules are set up to distinguish ex-
pensive shipments from cheap ones. For the given request e.g. it would be necessary to
have a rule that selects offers that cost less than 120$. This rule fires whenever a cheap
shipping is requested (i.e. the price limit for the request is ≤ 120$), with the effect that
the (priority) weights of the shippers offering shipment for less than 120$ are increased
by the rule’s weight.

For the SWS discovery example, we considered the following weighting scheme: Rules of
class R1 got a rating (priority) of 100, R2 rules of 50, and R3 rules of 20. In the special case,
where only one rule per class can fire, a total rating of 170 would indicate that all requirements
are satisfied. Obviously, an offer that fulfills all criteria must have a sum of 170 rating points.

Fig. 13.5 shows the evaluation results for the example scenario. Muller’s offer is the best.
It got 170 points showing that this offer fulfills all constraints specified in the example request.
The bar also shows the fractions of the single rules that build the complete result. The second
bar represents the second best offers. Those three shippers got 150 points, meaning that their
offers are too expensive (exceed the 120$ limit). Finally, the last bar shows that this shipper
does not ship to the required destination (R1 rule missing) and the offer is not within the price
limitation.

Thus there is a solution for the example shipping request: the Muller service. However, we
also see that whenever this shipper is prohibited for some other reason, there is no equivalent
alternative and one needs at least to relax the price limitation.

13.3 The Discovery Application in the jABC

As described earlier in Sect. 13.2, miAamics is just the matchmaking engine of the full dis-
covery solution presented by our group. It is embedded as a service in a jABC application
in order to provide the service match and selection technology. As already done for Media-
tion [8, 5], we use the jABC environment [2, 7] to design a discovery application in a model
driven fashion. The jABC framework is described in details in Chap. 5. In the discovery sce-
nario, a similar application that we describe in detail in this Section uses miAamics as an
embedded rule evaluation service. The full solution is supported by some additional services
that, e.g., provide the user interaction, and select and invoke the Web service discovered with
the miAamics technology. Also the error and exception handling is controlled via the jABC,
but, in favour of readability, it is hidden here in the hierarchical structure of our process graphs.

228 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.6. The Muller Service in the jABC: a jETI SIB and its use

13.3.1 Modelling the Shippers

Fig. 13.6 shows how the Muller Web service is imported via jETI as a SIB in the jABC. On
the left, we see the invocation of the SIB to enquiry the price quote in the Discovery SLG (see
also Sect. 13.3.4 for a detailed description of this flow). On the left we see the interna of the
SIB, according to the definition of a SIB given in Chap. 5. Also here, the SIB has a name,
a label that is displayed for this instance in the SLG, taxonomy information (in this view,
just its collocation as a Java class), and the rich data types of the SIB as Java class, that are
automatically extracted by jETI from the WSDL interface description. These data types are the
same we use as Information Objects for the miAmics model: on these we base the definition
of attributes and categories, and thus also the rules. For each parameter we can in this SIB
inspector also read or set the values. The SIB has only the two standard branches: whenever
the execution of this SIB (requesting Muller for a quote) is executed and it terminates correctly
the default branch is taken, while in case of abnormal execution the error branch is taken. In
this case we decided not to stop the flow, but just to set the quote to an extremely high price,
that rules out this shipper from the competition for this shipment.

13.3.2 Discovery Solution Main Model

Fig. 13.7 shows the main jABC service logic graph (SLG), expressing the orchestration of
the discovery solution. Like for the mediation scenario, we graphically compose the business
logic of this application by means of reusable Service Independent Building blocks (SIBs) that
can be local or remote components and services.

The main SLG makes use of several standard SIBs that come with the jABC’s default
SIB palettes. The first two SIBs for example are used to simply store information to the SLG’s
shared memory that is used to exchange data between the SIBs during execution. Furthermore,
database access SIBs are used to realize access to both the miAamics backend database and
the countries database mentioned in Sect. 13.2.3. Besides standard SIBs, in the main model

13 Discovery with miAamics/jABC 229

Fig. 13.7. Discovery Application: the main model

we use an additional SIB that was implemented specifically for the discovery scenario: a SIB
displaying an input mask. This mask provides the user with some options to specify a shipment
request based on the attributes defined in miAamics in the fashion already described. For
instance the user could specify a package shipment request that

• concerns a lightweight package (≤ 50 lbs),
• ships to a destination location inside the USA,
• and shall be shipped by a cheap shipper (≤ 20$).

Here, the first two attributes select suitable shipper services, while the third indicates a prefer-
ence criterium, often called a non-functional property.

Of course it would also be possible to let the user enter concrete values and then automat-
ically evaluate which miAamics attributes hold for these values. E.g. the attribute lightweight
package (≤ 50 lbs) holds if the user enters a weight value of say 40 lbs. For simplicity rea-
sons we chose here to directly work with miAamics’ attributes in this case study. The complete
information gathered from the user via the input mask is stored to the SLG’s shared memory
for later use.

The actual processing steps of the SLG make use of jABC’s hierarchy feature. The three
SIBs at the bottom row of Fig. 13.7 are Graph-SIBs that represent sub-models within the
current model, each performing a self-contained subtask of the complete workflow.

230 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.8. Setting lists of countries

13.3.3 Setting Lists of Countries

The first sub-model (Fig. 13.8) updates the destination information of the shippers in its cor-
responding miAamics profile. The list of countries a shipper ships to is in fact not fixed in the
given scenario, but may be retrieved from various sources, like for example a Web service’s
WSDL description.

Once again this model is mainly composed of SIBs from jABC’s standard libraries, except
for the one that updates a value for a given shipper’s profile in the miAamics backend database.
In Fig. 13.8, three different ways of obtaining the destination information are modelled:

1. For the first shipper (row 1), the destination information is given as the list of continents
it ships to. The aforementioned countries database is therefore used to determine the con-
crete list of countries for this shipper. This is once again done with the help of DBSchema
SIBs for database access.

2. Three shippers include a list of countries in their WSDL descriptions of their shipping
services. A standard SIB that takes the WSDL’s URL and a XPath expression is used to
extract this information (rows 2-4).

3. The last shipper (row 5) only ships to a fixed list of countries that is specified directly in
the SIB that updates the miAamics database. Of course it is not necessary to update the
database entry for this shipper, but we decided to model also this case according to the
standard pattern, for uniformity reasons.

Fig. 13.8 shows the flexibility of the presented approach. Adding additional shippers or chang-
ing the destination information (or their sources) can simply be done by graphically modifying
or extending the model.

The effect on the underlying database of executing this model is immediately visible to
miAamics, which thus automatically always refers to the most current information.

13.3.4 Calculating Shipping Prices

Calculating the shipping prices follows the same pattern as for the list of destinations. Again
the concrete values have to be obtained from different sources. In one case, a Web service

13 Discovery with miAamics/jABC 231

Fig. 13.9. Price calculation

invocation returns the price, while in other cases the concrete costs have to be calculated
based on the package’s dimension, weight, and destination.

The sub-model shown in Fig. 13.9 demonstrates the workflow. Again the different meth-
ods to obtain the concrete values are modeled using different SIBs, and additional methods
are possible and feasible.

For the first shipper (row 1) a Web service has to be invoked that returns the shipping
price for a single request. A corresponding Web service SIB was generated using the jETI
framework in the same fashion as for the services in the mediation scenario (Chap. 5). In the
case of any anomaly occurring during service invocation, the price for this shipper is set so
high that this shipper is excluded from the further selection process.

For the remaining four shippers (rows 2-4) the prices simply depend on the destination
continent. Thus it was sufficient to extend the aforementioned countries database to store the
shipping fees for all shippers, and to implement a SIB that calculates the prices according to
this information.

13.3.5 Evaluation and Invocation

The final major step – and the last sub-graph of the main model – concerns the miAamics-
based selection and invocation of the best shipping Web service. The first SIB in Fig. 13.10

232 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

Fig. 13.10. miAamics and Web service invocation

implements a call to the miAamics evaluation API. Using the existing RES structure, built
according to the rules and strategy defined before, and using the current values of the active
database, miAamics determines the best shippers as described in Sect. 13.2.5. The process
ends invoking a concrete shipping service from the selected result set.

Concretely, the miAamics SIB that performs the invocation to miAamics is implemented
to accept a list of miAamics attributes that describe the (shipping) request and to provide
a taxonomy-based specification of the set of optimal shipping offers. It is thus a profile-to-
profile matcher, held on purpose very generic, so that it can be used in any miAamics project.
The same applies also to the switching SIB, which can be re-used in potentially all other
scenarios where a miAamics evaluation is the basis for selecting a single result. The required
Web service SIBs are again generated from the WSDL descriptions provided by the SWSC
organizers for the shipping services.

The main workflow ends displaying a message that summarizes the result of the Web
service invocation.

13.4 Conclusion and Perspectives

We have presented a hybrid approach to discovery based on the combination of miAamcis,
a rule-based selection engine, and the jABC, a framework for service-oriented process mod-
elling, execution, and evolution. This approach aims at tailoring the discovery process in a way
that different roles with different competence can efficiently participate at their level of exper-
tise. Following the well-known 80/20 principle, more than 80% of the discovery management,
control, and use should not require any special IT knowledge. In particular, the specifica-
tion of the set of weighted rules, miAamics’ way of describing the aspect-oriented relevance
of data/products/offers can, in our experience, be dealt with by business experts without IT
knowledge after a short training, while entering the predicates describing the individual pref-
erence of a user for a certain selection process, can easily be done simply by clicking at certain

13 Discovery with miAamics/jABC 233

preferences, which is so intuitive that it does not even require an explanation. We consider this
of major importance for practicality and acceptance.

As mentioned in Sect. 13.2 it is a matter of design and effort to decide how much to
model in the miAamics ontology, to be evaluated with rules and policies, and what to deal
with externally, via dedicated pre- or post-processing SIBs that enrich the overall process.
Depending on the complexity of the criteria (e.g. computing VAT and sale taxes, which exceed
the profile of the logic underlying the rules), the process option may be advantageous, since it
allows generic programs as filters.

From the joint jABC/miAamics point of view, it is important that we offer a variety of
integrated possibilities. It is in fact well possible that established strategies may need to be
adapted, but for fear of disruption specific filters that express only the desired difference of
behavior are quickly added as post-process SIBs for experimentation before integrating them
as rules in the rule set. Conversely, criteria underlying rules and rule sets may need to be re-
fined and become more and more complex, and eventually need to be extracted in a separate
processing unit. For instance, when evolving from boolean decisions to complex classifica-
tions according to elaborate computations.

Key benefit of the miAamics tool is its performance and scalability. miAamics was origi-
nally developed to match huge amounts of offers to a big number of user profiles maintaining
real-time demands in online applications (e.g. web shops). As miAamics calculates a matching
solely based on the configured ontologies, computation time never depends on the number of
instances populating those ontologies. Once the rule evaluation structure is calculated it is in
fact even possible to add additional offers without recomputing RES, unless additional criteria
(attributes, categories or rules) have to be considered.

In the SWSC discovery scenario, scalability was not yet an issue, neither concerning the
shippers, nor the structure of constraints, nor the number of users. However, as soon as at least
one of these three dimensions of complexity grow, performance will become an important
issue. We are convinced that all three dimensions will become rather large in practice, in
particular, because we think that the success of a provider of a discovery solution will grow
with his coverage of possible selections.

References

1. F. Baader and W. Nutt. The Description Logic Handbook, Theory, Implementation, and
Applications, chapter Basic Description Logics, pages 47–100. Cambridge University
Press, 2nd edition, 2002.

2. S. Jörges, C. Kubczak, R. Nagel, T. Margaria, and B. Steffen. Model-driven development
with the jABC. In Proc. HVC’06 IBM Haifa Verification Conference. Springer Verlag,
October 23-26 2006.

3. C. Kubczak. Entwicklung einer verteilten Umgebung zur Personalisierung von Web-
Applikationen. Master’s thesis, Universität Dortmund, March 2005.

4. C. Kubczak, T. Margaria, C. Winkler, and B. Steffen. An approach to discovery with
miaamics and jabc. In Worksh. on Service Composition & SWS Challenge, part of WI-
IAT07, the IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, pages 157 – 160. IEEE CS
Press, ISBN-10: 0-7695-3028-1, November 2007.

5. C. Kubczak, B. Steffen, and T. Margaria. The jABC approach to mediation and choreog-
raphy. In 2nd Semantic Web Service Challenge Workshop, June 15-16 2006.

234 C. Kubczak, T. Margaria, B. Steffen, C. Winkler, H. Hungar

6. T. Margaria. The semantic web services challenge: Tackling complexity at the orches-
tration level. In Invited paper ICECCS 2008 (13th IEEE Intern. Conf. on Engineering of
Complex Computer Systems). IEEE CS Press, April 2008.

7. T. Margaria and B. Steffen. Service engineering: Linking business and IT, cover feature.
IEEE Computing, pages 53–63, October 2006.

8. T. Margaria, C. Winkler, C. Kubczak, B.Steffen, M. Brambilla, S. Ceri, D. Cerizza,
E. Della Valle, F. Facca, and C. Tziviskou. The SWS mediator with WebML/Webratio and
jABC/jETI: A comparison. In Proc. ICEIS’07, 9th Int. Conf. on Enterprise Information
Systems, June 2007.

9. miAamics GmbH: Technische Einführung in die miAamics-Personalisierungssuite. Dort-
mund (Germany), 2000-2001.

10. C. Winkler. Entwicklung eines jABC-Plugins zum Design von JDBC-kompatiblen Daten-
bankschemata. Master’s thesis, Universität Dortmund, March 2006.

Part IV

Discovery Solutions Comparisons

14

Service Discovery with SWE-ET and DIANE - An
In-depth Comparison By Means of a Common
Scenario

Ulrich Küster1, Andrea Turati2, Birgitta König-Ries1, Dario Cerizza2, Emanuele Della
Valle2, and Federico M. Facca3

1 Institute of Computer Science, Friedrich-Schiller-University Jena, 07743 Jena, Germany,
ukuester|koenig@informatik.uni-jena.de

2 CEFRIEL, Via Fucini 2, 20133 Milano, Italy, firstname.lastname@cefriel.it
3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Italy,
firstname.lastname@elet.polimi.it

Summary. Semantic service discovery and matchmaking has received increased attention
within the last years. Various approaches have been proposed but agreed upon criteria how
to objectively evaluate and compare these approaches are widely lacking. In this paper we
present an in-depth comparison of two solutions to the discovery problems defined by the
SWS-Challenge. By means of this common and independently developed scenario we can
develop a much better understanding for the applied technologies in general, but also and in
particular for the trade-offs involved in the different approaches.

14.1 Introduction

This chapter presents a comparative evaluation of the solutions to the SWS-Challenge’s dis-
covery scenario by the team from Politecnico Milano and CEFRIEL on the one hand (see
Chapter 11) and the one by the University of Jena on the other hand (see Chapter 12). We
will describe the various aspects of these approaches in a structured way and elaborate on the
trade-offs involved in each technology.

The solution by the University of Jena is based on its DIANE-framework4 while the other
one is named SWE-ET5 (Semantic Web Engineering – Environment and Tools) and combines
CEFRIEL’s Glue discovery engine6 with the WebRatio framework7 from Politecnico Milano.
We adopt a structured approach to compare both solutions along several dimensions in the
following sections. Table 14.1 shows a compact representation of the comparison result.

4 http://hnsp.inf-bb.uni-jena.de/DIANE
5 http://sweet.cefriel.it/
6 http://glue.cefriel.it/
7 http://www.webratio.com/

238 Ulrich Küster, Andrea Turati et al.

Feature DIANE SWE-ET
Ontologies DE and DSD (custom formalism) F-logic
Services and
goals

configurable set of possible effects
fuzzy set of acceptable effects

WSMO service capabilities
WSMO goal capabilities

Ontology
alignment

viewed as complementary and not
covered

handled combined with the func-
tional matchmaking

Functional
matchmaking

set-based: subset value of configured
offer in fuzzy request

rule-based: matching rules coded into
wg-mediator

Preferences and
ranking

preferences supported through fuzzy
requests (integrated into matchmak-
ing)

limited ranking support in Glue, se-
lection done by the user through We-
bRatio interface

Dynamic
descriptions

integrated into matchmaking integrated into the discovery process
through WebRatio

Invocation automated by framework automated through WebRatio

Table 14.1. Overview of comparison between DIANE and SWE-ET

14.2 Formalism Used to Model Ontologies

The goal of the DIANE project is to create a framework that is able to completely automate
the whole process of service usage. Thus an ontology language was needed that on the one
hand was expressive enough to precisely capture the necessary aspects of service offers and
requests but on the other hand was as restricted as possible to ease the matchmaking process
and maintain efficient processability. Therefore the approach followed by DIANE is to not use
one of the logics commonly employed for semantic service descriptions, but to define its own
language specifically tailored towards the use case at hand. Consequently DIANE uses its own
ontology language, called DE (DIANE Elements) and DSD (DIANE Service Descriptions)
which has been introduced in [KKRM05]. Ontologies are very lightweight and easy to use
and the description elements of DSD used for ontologies can best be characterized as a small
subset of F-logic [KLW95] without rules and quantifiers.

In contrast Glue – the discovery engine used in SWE-ET – is directly based on F-
logic. This was motivated by the desire to create a discovery engine compliant with WSMO
[dBBD+05]. At the time development on Glue started, tools for translating WSML (which is
the official language of WSMO) into reasoner-specific formats were missing and WSML itself
was a work-in-progress. However, after an analysis of the existent formalisms and their rela-
tions with WSML, it was decided to implement Glue on an F-logic reasoner, which supports
rules and datatypes.

Thus the Glue approach models ontologies using F-Logic and can benefit from the entailed
expressivity: F-logic allows to represent classes, instances, relationships among classes and
instances, formulas that use logic operators and quantifiers, rules, and so on. F-logic provides
a second-order, object-oriented-style syntax for a first-order logical language. In other words,
as described in [KL89], F-logic has an appearance of a higher-order-logic, but, unlike it, is
tractable and has a natural direct first-order semantics. In addition, sound and complete proof
procedures for F-logic exist.

To address the SWS-Challenge’s scenarios, both teams modeled necessary domain ontolo-
gies to capture required concepts like date and time, weight and dimensions, prices, locations,
shipment etc. Despite the much bigger expressivity of the full F-logic approach taken by Glue,

14 Service Discovery with SWE-ET and DIANE 239

the modelled ontologies look fairly similar since the current scenarios did not require to use
complex rules and restrictions in the ontologies.

14.3 Formalism Used to Model Services and Goals

While the underlying ontologies are rather simple, DSD supports more complex and expres-
sive modeling operators to be used in request and offer descriptions. DSD takes a set-based
approach to service modeling. Service offers are described as the set of effects they can pro-
vide wheras service requests are described as the set of effects that are acceptable for the
requester. The default semantics of DSD defines that one effect out of the request effect set is
requested and one effect out of the offer effect set will be provided by a service invocation.
DSD sets are defined by defining direct conditions on a set and recursively defining the sets
describing the attributes of that type as appropriate. Requests may use fuzzy instead of crisp
sets to encode preference for certain effects – the higher the fuzzy membership of an effect in
the fuzzy request set, the higher the preference of the requester for that particular effect.

Figure 14.1 illustrates the set-based modelling of services within DIANE. It shows an
excerpt (hard disc and processor requirements have been omitted) from the definition of the
product to be purchased within Goal A1 of the hardware purchasing scenario in an intuitive
graphical notation.

Product

Double

<= 1500

amount currency
producer

displaySize

display

Double

== 13.0

Notebook Price

Currency

== usd

LengthMeasure

Company

== apple
Display

LengthUnit

== inch

memory

Memory

memorySize

DataCapacityMeasure

DataCapacityUnit

== mB

Double

>= 1000

color

Color

== white

val unit val unit

price

Owned entity

entity

Fig. 14.1. Exerpts from the DSD request description of Goal A1

In Glue, Web services and goal descriptions are represented in F-logic, like ontologies. To
model requests a shipping goal class was designed, capturing the desired capabilities as post-
conditions following the WSMO modeling approach [dBBD+05]. Likewise, the semantics of
the offer descriptions were captured by a Web service class for shipment. The restrictions that
must hold in order to invoke a service were modelled as assumption and the result provided by
an invocation as post-conditions. As explained in [DCC05], Glue refines the WSMO discovery
conceptual model by making the notion of class of goals and class of Web service description
explicit and by making a clear separation between instances and classes of goals and Web
services.

240 Ulrich Küster, Andrea Turati et al.

Listing 14.1 shows the Glue goal instance description corresponding to the DSD descrip-
tion from Figure 14.1. It asks for a white “Mac Book” notebook with a maximum price of
1500,00 dollars, equipped with an Intel Duo Core processor of 2.0 GHz, 1 GB of RAM and
100 GB of hard disk. Note that some domain knowledge (e.g. that the given price is a maxi-
mum price and not a precise price requirement) is not formalized in the displayed goal but in
the matchmaking rules.� �

1 goalInstanceA1:goalClass Purchase[
2 capability−> #:capabilityGoal Purchase[
3 postcondition−> #:requestsPurchaseService[
4 requestedProduct−>>{
5 #:notebook[
6 hasPrice−>1500.0,
7 hasName−>’Mac Book 13”’,
8 hasProc−> #:proc[hasType−>intelCoreDuo,
9 hasCapacityMHz−>2024],

10 hasMemory−> #:memory[hasDimensionMB−>1024],
11 hasHDD−> #:hdd[hasCapacityMB−>100000],
12 hasColor−>’white’
13]
14 }
15]
16]
17].� �

Listing 14.1. A goal instance of the class for the purchase scenario.

14.4 Goals and Web services alignment

Mediating between goals and Web services potentially requires two tasks. On the one hand,
the supply (as expressed by the available offers) has to be compared with the demand (as spec-
ified in the goal) in terms of provided and requested functionality. This is usually referred to as
matchmaking and will be covered in the following section. On the other hand, goals and Web
services are specified by different entities and might thus be expressed using different ontolo-
gies. In this case, a schema alignment or ontology matching has to be performed additionally
to the functional matching.

Glue covers both aspects combined. As described in [DCC05], at set-up-time a devel-
oper (different from both users and providers) creates wg-mediators, which are responsible
for connecting specific goal classes to specific Web service classes and thus represent the
core of the matchmaking. In this setting, goals and Web services can be very different and
may refer to different ontologies. The heterogeneity of goals and Web services is solved by
writing appropriate rules into the mediators. These rules perform the functional matchmaking
(details below) but can be written in a way to also cover necessary ontology alignment (e.g.
by comparing an attribute named “hddsize” in the goal instance with an attribute named
“disc capacity” in the Web service instance).

DIANE assumes that providers and requesters use the same ontology. Depending on the
scenario, that may be an unrealistic assumption but ontology mediation is viewed as a problem
orthogonal to the problem of functional matchmaking between service offers and requesters.
The ontology mediation problem could be solved in a preprocessing step by writing translators
which map a description expressed in one ontology to one expressed in another ontology
analogously to the oo-mediators in the WSMO framework.

14 Service Discovery with SWE-ET and DIANE 241

Handling functional matchmaking and ontology alignment combined as in the Glue ap-
proach eases the necessary ontology alignment, since only those aspects of an ontology need
to be translated which are known to be needed during the functional matchmaking. Further-
more, if the translation is a lossy process, an integrated approach will be less likely to combine
critical flaws. On the other hand, seperating concerns generally promotes reuse. If ontology
mediation is treated seperately from the functional matchmaking, it is easier to change one
aspect but reuse a solution for the other one. Thus, the advantageous approach to the problem
depends on the use case.

14.5 The Process of Functional Matchmaking

14.5.1 Reasoning

DSD defines a special custom reasoning operation subset that solves the problem of service
matchmaking. For a list of given DSD offer descriptions O and a given DSD request r, a
matchmaker has to answer two questions for each o ∈ O: What is the subset value of o’s
effect sets in r’s fuzzy effect sets (how well is o contained in what r requests) and which
configuration of o yields the best such value? The DIANE matchmaker answers this question
by traversing the request and recursively comparing the request sets with the corresponding
sets from the offer. During the traversal the offer is optimally configured with respect to the
request. Thus subset(O, r) returns a list of altered offers O′, sorted by the fuzzy subset value
of each o′i ∈ O′ wrt. r (called match value) and each o′i ∈ O′ corresponds to exactly one oj ∈
O where o′i differs from oj exactly by the fact that all input variables in oj have been filled with
a concrete instance value. Therefore, in the DIANE approach the DSD matcher does not only
passively select the most appropriate offer but also actively configures and optimizes each offer
where possible. The expressivity of DSD has been tailored with the goal to support efficient
computability of subset. For further information on matchmaking of DSD descriptions please
refer to Chapter 12).

In contrast to DSD, which defines a custom reasoning operation, Glue can exploit stan-
dard reasoning tools available for F-logic. Flora-28 – a plug-in of the XSB inference engine9

based on Prolog – was chosen as inference engine. The language of Flora-2 is a dialect of
F-logic with numerous extensions, including HiLog and Transaction Logic. In Glue, discov-
ery returns all the Web service descriptions that match the request at predefined levels. The
level is computed by evaluating a wg-mediator (a WSMO entity that is in charge of mediating
between Web service and goal), that basically specifies a set of F-logic rules specific to match
instances of particular Web services classes with an instance of a particular goal class. Given
a goal instance, in order to identify all instances of the Web service classes that match it, each
rule is applied on a Web service description at a time, resulting in a value that states whether
the rule is satisfied or not. Depending on what rules are satisfied, a discrete value stating the
level of match is returned.

14.5.2 Specification of Matchmaking Rules

The DIANE matchmaker uses a set of high-level generic matchmaking rules that specify how
to compute the subset value of two fuzzy DSD sets. It distinguishes between sets of com-
plex and primitive types. Sets describing instances of a complex type (like Product or
8 http://flora.sourceforge.net/
9 http://xsb.sourceforge.net/

242 Ulrich Küster, Andrea Turati et al.

Notebook in Figure 14.1) are matched by comparing the type of the set with respect to a
subtype relationship (e.g. Computer versus Notebook) and combining this value with the
ones retrieved from recursively comparing the sets describing the attributes of the complex
instances (e.g. color, producer, display, memory, . . . for notebooks). Sets describing
primitive types (like Double or DateTime) are matched by checking type compatibility and
comparing any direct conditions (like “>= 1000”) specified on those sets in the request and
the offer.

The general matchmaking rules how to compare service descriptions by recursively com-
paring DSD sets are thus generic and domain independent. Domain-specific knowledge and
matchmaking rules are encoded in the definitions of the fuzzy request sets. An example for
such domain specific knowledge in the hardware purchasing scenario would be that the price
of a computer should be low while its memory size should be large. Given a requested price,
lower values are acceptable, but higher ones are not. Given a requested memory size, the op-
posite is the case. In DSD, this is expressed in corresponding direct conditions posed in the
request on the primitive sets for the price value set (e.g. “<= 1500”) and the memory size
value attribute (e.g. “>= 1000”). Thus, DIANE uses a combination of fixed generic match-
making rules which can be customized by specifying conditions on request sets using a set of
available operators.

As mentioned before, matchmaking in Glue is performed via wg-mediators. Basically a
wg-mediator contains a set of rules and there is complete flexibility in implementing a wg-
mediator: the number of rules as well as their extent depend on the developer’s preferences.
Usually there is an entry rule that is the one that has to be invoked in order to get the references
to all Web services matching the goal. That rule calls the others in turn. Usually, each of the
other rules is responsible to check if a single aspect of the goal is satisfied by the current Web
service.� �

1 matchProcessor(Req proc,Pro proc,ProcessorPower) :−
2 Req proc:proc , Pro proc:proc ,
3 (// MATCH THE TYPE:
4 // No processor type specified in the goal
5 Req proc[tnot hasType−>]
6 ;
7 (// No processor type specified in the service description
8 Pro proc[tnot hasType−>]
9 ;

10 (
11 // Otherwise (processor type specified in both goal and service description)
12 Req proc[hasType−>T],
13 Pro proc[hasType−>T]
14)
15)
16),
17 (// MATCH THE CAPACITY:
18 (// No processor capacity specified in the goal
19 Req proc[tnot hasCapacityMHz−>],
20 ProcessorPower is 0
21)
22 ;
23 (
24 (// No processor capacity specified in the service description
25 Pro proc[tnot hasCapacityMHz−>],
26 ProcessorPower is 0
27)
28 ;
29 (// Otherwise (processor capacity specified in both goal and service description)
30 Req proc[hasCapacityMHz−>Req capacity],
31 Pro proc[hasCapacityMHz−>Pro capacity],
32 Pro capacity >= Req capacity,

14 Service Discovery with SWE-ET and DIANE 243

33 ProcessorPower is Pro capacity
34)
35)
36)
37 .� �

Listing 14.2. The rule to check the processor of a notebook.

The rules can be divided in generic rules and domain-specific rules. The generic rules
are very frequent and apply to general concepts (for example, the rule that calculates the
intersection between two time intervals). Such rules are related to generic concepts, so they
can be moved into the ontologies in which the generic concepts are defined (in the example,
the temporal ontology). In this way, if a wg-mediator imports such ontologies it can use the
previously defined generic rules. All other rules that are domain-specific and consider specific
aspects of a goal have to be included into the wg-mediator. For example, Listing 14.2 shows a
domain-specific rule that compares the processor of the required notebook with the processor
of an available notebook. In particular, it compares both the type and the power (if such data
are available).

14.5.3 Matchmaking Conclusions

Both, the flexible Glue approach and the more rigid DIANE approach have use-case dependent
advantages and disadvantages. Glue supports arbitrarily complex rules in the wg-mediators.
This flexibility allows to support pretty much any matchmaking use-case. The flip side of this
flexibility is, that for every attribute to be compared in a scenario, a specific rule needs to
be specified in the wg-mediator. Glue’s wg-mediators can thus become very lengthy when
a use case involves comparing objects with many attributes like in the hardware purchasing
scenario. Furthermore, whenever the structure of an attribute changes, the wg-mediator rules
have to be adapted.

DIANE, on the other hand, allows expression of conditions in a very intuitive and compact
way as long as they fit into the structure of the DSD descriptions and can be expressed using the
available operators. Describing the hardware purchasing scenario in DSD therefore involved
less effort than in Glue. The downside of the DIANE approach is that those aspects which
cannot be expressed directly using the available DSD operators generally cannot be added as
easily as in the Glue approach. In such cases one has to either use a workaround or extend the
DSD language and matchmaking algorithm. In the shipping scenario, for instance, the rule-
based computation of the shipping prices based on the weight and destination of the parcel
had to be delegated to external Web services created only for this purpose.

An imaginary extension of the hardware purchasing scenario may further illustrate the
issue. Currently all prices in that scenario are specified in US dollars. Assume now, that dif-
ferent vendors specify their prices in different currencies. In Glue one would adapt the wg-
mediator and change the rule that compares the prices to check the currency and convert the
amounts properly before comparing them. In DSD, prices are complex objects with properties
currency and amount. The amount and the currency property are matched independently
during the recursive matching of the attributes of the price sets. Thus, regardless of the amounts
given, a price stated in Euro will never match a price stated in US dollars because the currency
attribute will not match. To deal with this, one could create different request descriptions, one
specifying a price condition in Euros and another one specifying the same condition in US dol-
lars. Unfortunately this is not a good option if many currencies are involved. To really solve
the problem, one would have to change the matchmaking algorithm’s behaviour for measures,

244 Ulrich Küster, Andrea Turati et al.

times or prices which can be specified in different unit systems. Afterwards, DIANE would
natively support the desired behaviour, but this change would require to change the code of
the matchmaker’s implementation. For a general case like this one this is a suitable option, but
for cases which are more specific to a single use-case, this is not desireable.

14.6 Preferences and Ranking
Regarding selection the views taken by SWE-ET and DIANE are quite different. In the SWE-
ET framework, discovery and selection are viewed as separate tasks. Glue as a discovery
engine is able to discover a set of Web services that satisfy a request as represented by a goal.
Selection is viewed as an additional step that follows the discovery and is responsible for
choosing a single Web service to be invoked, starting from the set of Web services returned
by discovery. In the philosophy of SWE-ET, selection should be left in charge of the user,
which is the only entity that can take such a decision. For this reason, only limited support
for preferences and ranking was implemented in Glue so far. Glue only supports the user’s
decision by applying ranking of the results corresponding to the above mentioned match levels.
In a wg-mediator it is possible to define several levels of matching on the basis of the rules
that a Web service satisfies with respect to the goal. For example, if a Web service matches
all the rules (each of them checking a specific aspect of the goal) then we assign the ranking
level 1 to it, otherwise if it satisfies a subset of such rules we assign it the ranking level 2, if it
satisfies a smaller subset of rules we assign it the ranking level 3, and so on. In particular, into
the wg-mediator we declare which are the rules that have to be satisfied in order to assign a
specific ranking level to a Web service instance, so that we can assign a different importance to
different rules. In this way we obtain discrete levels of ranking. Listing 14.3 shows that in the
purchase scenario we defined two levels of ranking in which the first one checks all product
features as well as the price while the second one checks only the product features and sets
price to a standard value.� �

1 discovery Rank1 Purchase(GoalInstance,WSDInstance, ...) :−
2 ...
3 matchProductFeatures(RequestedProduct,ProvidedProduct,ProcessorPower),
4 checkContainmentOfPrice(RequestedProduct,ProvidedProduct,Price).
5

6 discovery Rank2 Purchase(GoalInstance,WSDInstance, ...) :−
7 ...
8 matchProductFeatures(RequestedProduct,ProvidedProduct,ProcessorPower),
9 //checkContainmentOfPrice(RequestedProduct,ProvidedProduct,Price)

10 Price is 0.� �
Listing 14.3. The two ranking levels for the purchase scenario.

In contrast DIANE is aiming at completely automating the whole process of service usage.
This is only possible if selection is performed by the matchmaking process, too. This in turn is
feasible only if it is possible to precisely capture user preferences within service requests and
efficiently use that additional information during matchmaking. The first is achieved through
DSD’s fuzzy elements, the latter through the application of the specifically tailored subset
operation used for matchmaking (see Chapter 16). Thus DSD is able to provide a more fine-
grained matching compared to Glue at the price of restricted expressivity and limited compat-
ibility to other semantic service frameworks.

Furthermore, in Glue the preferences are coded into wg-mediators directly. For example,
the fact that a user who wants to buy a notebook usually prefers to have a larger hard disk at a
lower price is coded into the rules of the wg-mediator (see listing 14.4).

14 Service Discovery with SWE-ET and DIANE 245

� �
1 // Matching rules for Price
2 checkContainmentOfPrice(RequestedProduct,ProvidedProduct,Cost) :−
3 RequestedProduct[hasPrice−>MaxPrice],
4 ProvidedProduct[hasPrice−>Cost],
5 Cost =< MaxPrice.
6

7 // Matching rules for Hard disk
8 matchHDD(Req hdd, Pro hdd) :−
9 Req hdd:hdd , Pro hdd:hdd ,

10 Req hdd[hasCapacityMB−>Req capacity],
11 Pro hdd[hasCapacityMB−>Pro capacity],
12 Pro capacity >= Req capacity.� �

Listing 14.4. Glue rules that compare prizes and hdd sizes of a request and an offer.

In contrast, in DIANE such preferences are expressed in the requests, which are written
by the requesters (see Figure 14.1). This is advantageous in cases where the user preferences
are not as stable and obvious as with prices and hard disk sizes. Most users, for instance, will
prefer a more powerful processor. Thus, a corresponding preference has been coded into the
corresponding wg-mediator in the Glue solution. However, more powerful processory typi-
cally consume more energy. Users which are more concerned about battery runtime than com-
puting power do not necessarily accept stronger processors. In such cases, DIANE is more
flexible than Glue since it allows users to specify the preferences in the request while in Glue
users cannot modify the preferences written in the wg-mediators.

14.7 Dynamic Aspects of Service Descriptions

Some services required to collect dynamic information from the service endpoint to perform
the matchmaking. One of the shipping services for instance, Muller, required to inquire the
price of a shipping operation dynamically by calling a particular Web service endpoint.

Such requirements have been directly built into the DSD description language. For ser-
vice consumption, DSD supports a simple choreography to interact with services where an
arbitrary number of estimation operations is followed by a single execution operation. Es-
timation operations must not have effects on the real world and can thus be used to gather
dynamic information from a service provider. Service providers can tag certain concepts in
their descriptions to declare that further information about those parts of the description are
available through particular estimation operations. If necessary the DSD matcher will initiate
a call of the associated operation and then dynamically complement the description at hand
with the retrieved information. This procedure was flexible enough to support all dynamic
aspects contained in the scenarios (see Chapter 12).

Originally, Glue was not able to deal with dynamic aspects. In order to overcome this
limitation, Glue has been extended. This extension has had a minimal impact on the SWE-ET
infrastructure. It has been sufficient to add new features to the execution semantics at the end
of the entire discovery process, in order to perform the negotiation.

Before publishing a Web service into Glue, in the case that the service includes special
parameters that need to be negotiated (e.g. shipping price), its description has to be annotated
with special tags, which point out what parameters are “dynamic” (see Chapter 11).

At the first step of the discovery, Glue deals only with the static descriptions of services,
ignoring the parameters that have been tagged as “dynamic”. Into the result set of the services
returned after the first step of the discovery, Glue identifies those services whose description

246 Ulrich Küster, Andrea Turati et al.

contains some dynamic parameters. For each of those identified services, Glue starts a negoti-
ation by delegating it to WebRatio10. In other words, Glue is responsible for handling service
descriptions and starting the negotiation process whenever is necessary to get the value of
a parameter dynamically; while WebRatio is responsible for handling the actual invocation
(including the grounding toward SOAP messages). After negotiation, WebRatio returns the
actual value for the parameter, so that Glue can temporarily update the service description by
adding that value and, finally, evaluates whether the updated instance of service satisfies the
goal (by applying the appropriate rules and accepts or rejects the service correspondingly).

14.8 Invocation

Automated invocation of offers is directly supported by DIANE. In case of the before men-
tioned estimation steps the corresponding invocations can be initiated by the matcher directly
and can be performed interweaved with the matchmaking process. Regarding the final execu-
tion of the service, the matcher – as outlined in Section 14.5 – outputs a list of readily con-
figured offers, i.e. offers where all necessary input values have been set. The remaining task
performed by the invocation agent is to perform the necessary lowering to create an appro-
priate XML message to send to the offer implementation and perform lifting on the returned
response message. This is done using simple declarative mapping rules that map between DSD
concepts and XML data [KKR06].

In the SWE-ET approach matchmaking and invocation are performed using different tech-
nologies. Invocation of a Web service is not directly executed by Glue, but is left to the ap-
plication in which Glue is integrated – in the case of phase-III of the SWS-Challenge an
external invocation component implemented within the WebRatio framework. This approach
is described in [ZVM+07].

14.9 Conclusions

Overall, we found that the discovery performed by SWE-ET and DIANE is not as different
as it looks at the first glance. The main difference between SWE-ET and DIANE is how and
where the matchmaking rules are specified and how the approaches deal with the fact that
matchmaking needs to support a certain flexibility beyond identifying perfect matches.

DIANE uses a set of generic matchmaking rules that are completely domain-independent.
The set of acceptable offers are described by the requester within the request. Preferences and
flexibility are integrated in the request, a request could state for instance, that the display size
of an acceptable notebook display must be precisely 13 inch, but that for the hard disc size
any size above 100 GB is ok. Many scenarios can be formalized in DIANE very easily since
only the preferences in the request need to be specified, but no domain-specific matchmaking
rules are necessary beyond these preferences. On the other hand it can be very difficult to
accommodate matchmaking requirements that do not fit well into the structure of the DIANE
matchmaking rules.

Glue, in contrast, uses domain specific wg-mediators that contain the rules that determine
whether a goal matches a request. Glue’s wg-mediator support great flexibility and can - un-
like DIANE - accommodate arbitrary matchmaking rules and requirements. On the other hand

10 Negotiation denotes the action of contacting a service in order to get the actual value of a
parameter. However, recently we prefer to use the more appropriate term of “data fetching”.

14 Service Discovery with SWE-ET and DIANE 247

a new wg-mediator needs to be written, when switching to a new scenario. Also, since prefer-
ences are encoded in the wg-mediator and not in the request, the mediator has to be changed
if the user’s preferences change.

Overall, DIANE presupposes the structure of the descriptions and the matchmaking to a
larger extent than Glue. This results in a reduced effort to describe a new scenario but also
reduces the flexibility to express arbitrary requirements. In contrast, Glue does not presuppose
any structure of the descriptions which results in a higher description effort for some scenarios,
but also in greater flexibility to express arbitrary requirements.

In general we found, that it really depends on the specific use case at hand which of these
contrary approaches to service matchmaking is advantageous. For the SWS-Challenge sce-
narios, it seems that Glue would be the preferred choice for the shipping discovery scenario.
This scenario involves rule-based price and shipping time restrictions which can be modelled
much easier in Glue than in DSD and it does not involve to check many attributes, thus lead-
ing to simple and short wg-mediators. For the hardware purchasing scenario it seems that
DSD would be the preferred choice. This scenario deals with a high number of attributes and
benefits from the better support for user preferences in DIANE.

References

dBBD+05. Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel, Martin Hepp,
Uwe Keller, Michael Kifer, Birgitta König-Ries, Jacek Kopecky, Ruben Lara,
Holger Lausen, Eyal Oren, Axel Polleres, Dumitru Roman, James Scicluna, and
Michael Stollberg. Web service modeling ontology (wsmo). W3C Member Sub-
mission 3 June 2005, 2005.

DCC05. Emanuele Della Valle, Dario Cerizza, and Irene Celino. The mediators centric
approach to automatic web service discovery of glue. In MEDIATE2005, volume
168 of CEUR Workshop Proceedings, pages 35–50. CEUR-WS.org, 2005.

KKR06. Ulrich Küster and Birgitta König-Ries. Dynamic binding for BPEL processes
- a lightweight approach fo integrate semantics into web services. In Second
International Workshop on Engineering Service-Oriented Applications: Design
and Composition (WESOA06) at ICSOC06, Chicago, Illinois, USA, December
2006.

KKRM05. Michael Klein, Birgitta König-Ries, and Michael Müssig. What is needed for
semantic service descriptions - a proposal for suitable language constructs. Inter-
national Journal on Web and Grid Services (IJWGS), 1(3/4):328–364, 2005.

KL89. M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about
objects, inheritance, and scheme. In Proc. ACM SIGMOD Conf., page 134, Port-
land, OR, May-June 1989.

KLW95. Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. J. ACM, 42(4):741–843, 1995.

ZVM+07. Maciej Zaremba, Tomas Vitvar, Matthew Moran, Marco Brambilla, Stefano
Ceri, Dario Cerizza, Emanuele Della Valle, Federico M. Facca, and Christina
Tziviskou. Towards semantic interoperabilty: In-depth comparison of two ap-
proaches to solve mediation tasks. In Comparative Evaluation of Semantic Web
Service Frameworks Special Session at ICEIS 2007, 2007.

15

Comparison: Discovery on WSMOLX and
miAamics/jABC

Christian Kubczak1, Tomas Vitvar4, Christian Winkler2, Raluca Zaharia3, and Maciej
Zaremba3

1 Chair of Software Engineering, Technical University of Dortmund, Germany,
christian.kubczak@cs.uni-dortmund.de

2 Chair of Service and Software Engineering, University of Potsdam, Germany,
winkler@cs.uni-potsdam.de

3 Digital Enterprise Research Institute, National University of Ireland, Galway, Ireland,
firstname.lastname@deri.org

4 The Semantics Technology Institute Innsbruck, University of Innsbruck, Austria,
tomas.vitvar@sti2.at

15.1 Introduction

This chapter compares the solutions to the SWS-Challenge discovery problems provided by
DERI Galway and the joint solution from the Technical University of Dortmund and Uni-
versity of Postdam. The two approaches are described in depth in Chapters 10 and 13. The
discovery scenario raises problems associated with making service discovery an automated
process. It requires fine-grained specifications of search requests and service functionality in-
cluding support for fetching dynamic information during the discovery process (e.g., shipment
price). Both teams utilize semantics to describe services, service requests and data models in
order to enable search at the required fine-grained level of detail.

The DERI solution is based on the Semantic Web services framework described in Chap-
ter 10, including a conceptual model for Semantic Web services (Web Service Modeling
Ontology, WSMO[1]), a language for service modeling (Web Service Modeling Language,
WSML[2]), a middleware system (Web Service Execution Environment, WSMX[3]) and a
modelling framework (Web Service Modelling Toolkit, WSMT5). In order to model the sce-
nario, WSMO has been used for modeling of goals, services (i.e. required and offered ca-
pabilities) and ontologies (i.e. information models on which services and goals are defined),
all expressed in the WSML ontology language. WSMO Mediators were not utilized since a
common domain shipment ontology was used in both the goal and service descriptions.

The Dortmund-Postdam solution combines a model-driven design approach using the
jABC platform [4], also used for the Mediation approach and described in depth in Chapter 5,
extended with miAamics for the matchmaking involved in the service discovery scenario, as
described in Chapter 13. miAamics was originally developed to personalize web applications.
jABC is used here for the orchestration surrounding the pure discovery problem. Workflow for
the discovery application is modelled graphically what provides the user interface to specify a

5 http://sourceforge.net/projects/wsmt

250 C. Kubczak, T. Vitvar, C. Winkler et al.

shipment request, enquires and calculates some data for the shipment offers, necessary before
miAamics’ matching algorithm is invoked, and it finally invokes the selected shipper service.
To match the shipment request with the best offer, miAamics acts as an embedded a rule-based
matching service: it determines the best matching offers for the given request, based on a con-
figuration reflecting the request, the situation (in this scenario, this is void) and the collection
of available shipment offers.

In this chapter we compare the similarities and differences of the provided solutions
along several structural dimensions, including data modeling, execution environments, ser-
vice matching, service selection and tool support. We also look at the changes required in the
solutions once the discovery requirements change.

15.2 WSMOLX – miAamics/jABC Comparison

Both technologies have successfully addressed the SWS-Challenge discovery scenarios. This
section describes the similarities and differences of the two approaches, WSMOLX and mi-
Aamics/jABC, with respect to the discovery scenario.

Underlying technologies criteria will focus on the properties (e.g. language, expressive-
ness, runtime environment) of underlying technologies utilized by each solution. Service de-
scription will concentrate on the elements and conceptual model of service description. Goal
description will refer to the elements and conceptual model of service discovery and execu-
tion request. Data model will cover the design and development of the ontologies capturing
the domain of interests which is referred by service descriptions and requests. Matchmaking
will look at the process of matching between semantic descriptions of services to a given re-
quest. Selection will focus on the problem of selecting a best service to execute out of several
candidate services that can satisfy the client’s functional requirements. Web service invocation
will describe the service invocation techniques. Execution monitoring will focus on monitor-
ing during the runtime phase (discovery, selection, invocation, etc.). Finally, tool support will
investigate the level of maturity of each of solutions’ tools. The essence of the comparison is
summarized in Table 15.1.

Table 15.1: Comparison of the presented solutions.

Feature miAamics/jABC WSMOLX
Underlying technolo-
gies

jABC modeling framework,
miAamics rule based matcher

WSMO - conceptual frame-
work, WSML - ontology lan-
guage, WSMX - execution en-
vironment

Service descriptions SLG: preprocessing (for arith-
metic calculations), match-
making, invocation, boolean
rules, discretization of contin-
uous values into rules

Service capability (pre- and
postconditions), execution
and data-fetching interfaces,
support for rules returning
numerical values; arithmetical
(e.g., +,−, /, ∗) and custom-
made (e.g. ceil, floor) built-in
support in service description

continued on next page

15 Comparison: Discovery on WSMOLX and miAamics/jABC 251

continued from previous page
Feature miAamics/jABC WSMOLX

Goal description Boolean rules and strategies
with priorities, rules specified
on intervals of continues nu-
merical data

Postconditions (hard con-
strains) - references to
boolean rules and arithmetic
rules (e.g., calculating price),
non-functional properties
(NFP) - preferences

Data model Attributes and categories de-
signed using web UI and au-
tomatic importers/generators

Ontologies created both from
analyzing messages and in-
ternal data requirements of
shippers services

Matchmaking Rule evaluation; addition of
weights attached to rules;
profile-oriented; global evalu-
ation of all rules; rules cover
single aspects/criteria; pre-
matchmaking step for arith-
metic operations

Rule evaluation - IRIS (Dat-
alog reasoner, Logic Pro-
gramming); hard constraints
- “must have” requirements
and constraints over service
functionality; preferences re-
fer to variables bound in post-
condition evaluation

Selection Best from ordered set of suit-
able offers - highest sum of
executed weighted rules

Based on ranking (Lower-
Better, HigherBetter) follow-
ing preferences modelled in
NFP of the WSMO Goal,
ranking applied on the con-
crete offerings of the candi-
date services.

Web service invoca-
tion

Implicitly in generated SIBs,
SIBs are also used in match-
making pre-processing step
for calculating arithmetic val-
ues, Web service invocation
- arithmetic services, price
quotation and package ship-
ping ordering

Invoker handling all communi-
cation with external services
using grounding information
provided in SWS descrip-
tions, direct support for arith-
metic operations and built-ins
in IRIS reasoner; Web ser-
vice invocation - price quota-
tion and package shipping or-
dering

Execution monitoring jABC tracer for orchestration,
miAamics’ results profiler for
the pure matchmaking;

WSMX execution presented
as components’ events flow
on Java SWING-based panel

Tool support jABC framework, extensible
by plug-ins; miAamics evalu-
ation engine and web-UI; im-
porters

Ontology, goals, services
and mediators, WSMT and
WSMO Studio as modeling
tools

252 C. Kubczak, T. Vitvar, C. Winkler et al.

15.2.1 Underlying technologies

The Web Services Modeling Ontology (WSMO) framework consists of four top elements,
namely WSMO Goals, Web services, Ontologies and Mediators. Discovery for the SWS-
Challenge shipment scenario is accomplished by Instance-level Discovery Engine [5], a
WSMX component that performs fine-grained service instance discovery determining dy-
namic parameters of service offerings by employing input-dependent rules and undertaking
communication with the safe methods of the service during the discovery process. Other
WSMX components include Choreography, Data and Process Mediator, Selection, Commu-
nication Manager and others [3]).

The realization of the discovery service in miAamics/jABC is modeled as a service logic
graph described in detail in Chapter 13. It is organized in three sections: preprocessing , match-
making and invocation.
• In case some values have to be calculated or queried in advance of each request, the

preprocessing section provides the miAamics configuration database with these data. It
also provides a user interface that asks for the specification of the current request.

• In the matchmaking section, the miAamics personalization framework is used as an em-
bedded reasoning engine for selecting an appropriate shipping service for the specified
request. miAamics is a rule based and situation aware matcher that in the given scenario
matches abstract profiles of shipping requests to profiles of shipment offers.

• As final step, in the invocation section, depending on miAamics’ evaluation result, the
workflow invokes the selected Web service and initiates the shipment. For service invo-
cation, which plays a role in all three sections, jABC is extended by the jETI frame-
work [6, 7, 8] also described in Chapter 5. jETI provides access to remote services and
supports the modeling process in jABC by providing generated SIBs for remote service
invocation.
Both solutions employ rules and ontologies for modelling service functionality and goals.
The WSMOLX approach describes its elements (ontologies, goals, services) in WSML-

Flight, a language which provides Datalog expressivity extended with inequality and strati-
fied negation. Datalog falls under the Logic Programming (LP) paradigm, assuming a closed
world, contrary to the open world assumption in Description Logics. It can give different rea-
soning results as LP facts that cannot be proven are considered to be false.

miAamics, as described in Chapter 13 is based on selective filtering of the current collec-
tion of offers according to rules. There are therefore no unproven facts, nor unknown ones,
hence there are no issues of reasoning with unknowns, which make the difference between a
closed or an open world assumption.

The closed world assumption of LP did not influence the matchmaking process in the
WSMOLX shipment discovery approach, as all the information required during the evaluation
was either available in service descriptions or was dynamically fetched from the services and
there was no unknown information about service advertised functionality.

15.2.2 Service descriptions

A WSMO Web service is described using ontology elements and in principle consists of two
main parts, namely: capability (preconditions, postconditions, assumptions and effects) and
interface (choreography describing a public process and orchestration representing an internal
process). Inside the WSMX framework, WSMO elements expressed in WSML are handled
using wsmo4j6, a Java model which provides a unified parsing mechanism, supports various
6 http://wsmo4j.sourceforge.net

15 Comparison: Discovery on WSMOLX and miAamics/jABC 253

serializations and deserializations of the WSML variants and, most importantly, facilitates the
manipulation of such elements by the components (e.g., reasoner) and other involved appli-
cations. Logical rules have been used quite extensively in order to explicitly describe various
criteria of different shippers (e.g., isShipped rule in 15.1).

Listing 15.1 shows a snippet of Muller shipment service description modelled in WSML.
‘?’ followed by an identifier represents a variable, which at runtime will be bound to instances
that satisfy some condition. The memberOf keyword indicates that a variable or an instance
belongs to an ontology concept, while hasV alue specifies the value that an attribute has (if
inside a condition) or will be assigned (in the actions part of a rule). Axiom isShippedDef ,
referred by the Goal (line 12 in Listing 15.4, checks whether a service can be used for the
given shipment request. At the execution phase an internal ontology will be created and it
will contain initially the data provided with the Goal, i.e the instances from Listing 15.4. This
ontology is further referred as the knowledge base (KB) and service capability reasoning is
performed against this ontology. The execution model requires that on a set of instances all
rules and axioms are evaluated in parallel and the updates are executed in parallel as well,
with the resulting instances added to the KB. The condition (lines 6-10) is evaluated by IRIS
reasoner, meaning that binding instances for the variables are retrieved from the KB. The
shipment order details are provided with the Goal (e.g. the ?weight of the ?package – line
27 on Listing 15.4). Considering provided goal C3 (Listing 15.4), the condition on the weight
(line 10 in Listing 15.1) will evaluate to true and the relation isShippedContinents (line 9)
will also evaluate to true for specified target shipment city (Bristol – line 42 on Listing 15.4).
For the example shipment order specified in goal C3, the overall result of the isShipped rule
will evaluate to true.

1 /∗ general abstract definition of the axiom in the common ontology ∗/
2 relation isShipped(ofType sop#ShipmentOrderReq)
3

4 /∗ specification of the axiom in the Mueller ontology ∗/
5 axiom isShippedDef definedBy
6 ?sOrder[sop#to hasValue ?temp, sop#package hasValue ?p]
7 memberOf sop#ShipmentOrderReq and
8 ?temp[so#address hasValue ?to] and ?to[so#city hasValue ?city] and
9 isShippedContinents(?city, so#Europe, so#Asia, so#NorthAmerica, so#Africa) and

10 ((?p [so#weight hasValue ?weight] memberOf so#Package) and (?weight =< 50))
11 implies
12 sop#isShipped(?sOrder).

Listing 15.1. isShipped Rule in Service Description

In miAamics, a service like the Muller shipper is just a record in the underlying database. It
is seen at the miAamics modelling level as a collection of boolean predicates (called attributes
in miAmics terminology) that abstract the concrete values in the database to logical properties
for the miAamics evaluation engine.

The available services and their representations are stored in the miAamics configuration
database for matchmaking. The available information that describes the services (i.e. SWSC
Wiki and provided WSDL files) is analyzed to extract domain knowledge that is then ex-
pressed in terms of miAamics’ (shipment-) offers. Offers are characterized by attributes that
are defined following the challenge’s requirements. The user can decide to group attributes
into categories to alleviate definition of rules based on multiple attributes. The result is a col-
lection of attributes (and categories respectively) describing an abstract set of services that
fulfill certain criteria (e.g. “cheap service”). Each attribute comprises a criterion that is used to
evaluate whether or not an attribute corresponds to a concrete offer (see Tab. 15.3 for exam-
ples). This way, a real service specification is characterized as the set of attributes it fulfills.

254 C. Kubczak, T. Vitvar, C. Winkler et al.

The granularity of the defined attributes (on quantitative fields) determines the discrimination
power of the matchmaking algorithm for arithmetical purposes. Hence attributes have to be
selected carefully.

The grounding of the concrete services in miAamics happens by means of the information
objects: they specify for the service instances (here, the different shippers) the values that are
used to determine the service profile in terms of the set of satisfied attributes (e.g. shipping to
a specific country). Some of those values are calculated in the preprocessing step and auto-
matically provided to the database, while others are entered manually using miAamics’ web
UI or importers that automatically generate the configuration from existing ontologies.

Type Information object properties

Request Data field Src country Dst country Price limit Weight ...
Value USA UK 120$ 20 lbs ...

Offer Data field Shipper name Ships to Price Weight limit ...
Value Muller USA,UK,... 100$ 50 lbs ...

Table 15.2. miAamics’ Information Objects for Requests and Offers

Tables 15.2, 15.3 and 15.4 show a concise example of miAamics’ configuration. Tab. 15.2
shows the information objects for the instantiation of a concrete request (for a shipment from
the USA to UK, up to 120$ and a package weight of 20 lbs and an example for the offering
services’ grounding. It shows that Muller ships to USA and UK. Details of package dimen-
sion are omitted in the table for limited space. Requests are usually not stored in miAamics’
configuration but passed to the evaluation engine on invocation.

Type Attribute name Rule holds?

Request Destination is UK Dst country == ’UK’ yes
Ship for lessThan 120$ Price limit ≤ 120$ yes
Ship for lessThan 50$ Price limit ≤ 50$ no
Weight moreThan 50 Weight ≥ 50 lbs no

Offer Ships to UK Ships to contains ’UK’ yes
Price lessThan 120$ Price ≤ 120$ yes
Price lessThan 50$ Price ≤ 50$ no
Weight limit moreThan 50 Weight limit ≥ 50 lbs no

Table 15.3. miAamics’ Attribute Definition and Evaluation

Table 15.3 shows examples of the attribute’s definition for both requests and offers. The
last column in this table shows the evaluation of each attribute for the corresponding instances
in the example of Table 15.2.

Finally, Table 15.4 shows a very simple example of rule definition for miAamics. In this
case, rules evaluate single attributes. In Chapter 13 a general case is discussed, which uses
here taxonomies of attributes and categories, which are logical expressions over attributes and
other categories. Rule’s premises refer to requests (and situations, which are not used in the
Discovery scenario) and rule’s conclusions specify offer’s attributes. Again the last column

15 Comparison: Discovery on WSMOLX and miAamics/jABC 255

shows whether or not each rule is fulfilled for the given example. The third rule is not fulfilled,
as the corresponding conclusion attribute does not hold for the example shipper. If a strategy
for selection is based on destination only, it will comprise the first rule only and other rules
will be ignored. Hence shipper ’Muller’ would be returned as a valid shipper with a weight
of 100. However, a strategy that considers destination and prices and would comprise all rules
would return ’Muller’ as a valid result with a weight of 120 (the sum of weights of all the
applicable rules).

The example configuration in Tables 15.2-15.4 also considers package weights. Hence,
the rule base is strong enough to select a shipper based on the destination, shipping costs and
weight limits. However the package weight given in the example request is that small, that the
rules related weight do not have any effect on the result.

Rule name Premise (Request at-
tribute)

Conclusion (Offer at-
tribute)

Rule
weight

fulfilled?

USA delivery Destination is UK Ships To UK 100 yes
Cost limit 120$ Ship for lessThan 120$ Price lessThan 120$ 20 yes
Cost limit 50$ Ship for lessThan 50$ Price lessThan 50$ 20 no
Weight limit 50 Weight moreThan 50 Weight limit

moreThan 50
20 no

Table 15.4. miAamics’ Rule Definition, and Evaluation for Muller

Input dependent price calculation

The input dependent price calculation approach in WSMO is presented in Listing 15.2. If
the service provider can offer information of its pricing strategy then suitable rules reflecting
this information (e.g., calculating price) but also depending on the user input data can be
specified in the service description like in case of shippingEuropeDef of the Walker service.
If the location condition (cityIsOnContinent(?city, so#Europe)) in line 13 is satisfied, then the
price can be generated following the rate for Europe, i.e. a flat fee of 41 plus 5.5 per each
lb (line 15). Such policies are specified as WSML arithmetic rules that calculate the price of
the shipping package. builtin#ceil() is a custom made built-in in IRIS that rounds down the
package weight to the nearest integral value. Once the ?price is calculated, it is added as an
attribute value to a new instance priceQuoteEurope in line 8. This instance is added to the KB
during the reasoning process and is helpful in the evaluation of Goal hard constraints on price
and in service ranking.

1 /∗Walker service − example of user input dependent rule generating price
2 for target country in Europe following provided service description:
3 Rates(flat fee/each lb): Europe(41/5.5), ...
4 ∗/
5

6 axiom shippingEuropeDef
7 definedBy
8 priceQuoteEurope[sop#price hasValue ?price] memberOf sop#PriceQuoteResp
9 :−

10 ?shipmentOrderReq[sop#to hasValue ?temp] memberOf sop#ShipmentOrderReq and
11 ?temp[so#address hasValue ?to] and
12 ?to[so#city hasValue ?city] and
13 so#cityIsOnContinent(?city, so#Europe) and
14 ?package [so#weight hasValue ?weight] memberOf so#Package and

256 C. Kubczak, T. Vitvar, C. Winkler et al.

15 builtin#ceil(?weight, ?c) and (?price = ((?c ∗ 5.5) + 41)).

Listing 15.2. Walker Input Dependent Price Generating Rule

As shown in Chapter 13, part of the orchestration around the pure service discovery takes
care of all the computations and invocations. Decision procedures were not embedded in mi-
Aamics in order to keep it simple and extremely efficient. Any computation is performed
outside of the matchmaker, in this case before the matchmaking, in an orchestration modelled
in jABC that makes use of external services invoked via SIBs. This way, it is possible to re-
sort to any available decision procedure, instead of being bound to the capability of the single
reasoner.

Price by enquiry

Another situation presented in Listing 15.3 is when the service provider cannot or does not
want to offer its pricing strategy and price can be provided on request only. In this case a
data fetching interface is utilized as in case of the Muller shipment service. The condition of
the transition rule selects shipment order request instances from the KB (line 13) and also
checks whether the price can be provided for the given request (the isShipped relation in
line 14). If the condition evaluates to true, the shipment request instance will be lowered and
sent to a WSDL service where its concept, ShipmentOrderReq, is grounded as input (line
7). The data fetching operation will be invoked only if the service is able to handle given
request (i.e. it covers the source and target country, the package weight is within the limits
handled by the service, etc.). As a result of data-fetching interface invocation, an instance of
PriceQuoteResp is received from the service and a further reasoning can be performed on
the price, similar to the Walker case.

The data fetching interface, shown in Listing 15.3, is used for specifying the interaction
with the service for dynamically obtaining the shipping price for the given request. In general,
the interface can be concretely defined by a WSMO choreography expressed in ontologized
Abstract State Machines (ASM) [9] (lines 4-18). The data-fetching choreography specifies
access to auxiliary information that has to be dynamically obtained during discovery process
in order to provide up-to-date information on service functionality. In the ASM, an ontology
constitutes the underlying knowledge representation and transition rules are specified in terms
of logic formulas. Again, in general a WSMO choreography is specified as a set of transition
rules and KB changes (add, delete, update on incoming, outgoing and internal data). Addi-
tionally, grounding information specifies a link to the WSDL of utilized Web services. If an
instance belonging to a grounded concept can be bound to a variable in the condition of a
transition rule, it results in firing of the rule what entails communication with the service (in
– incoming service to the WSDL, out – outgoing messages from the WSDL). For more com-
plex choreographies controlled state ASMs can be used to ensure ordered transitions between
available states and to avoid multiple executions of the same states. The results of execut-
ing the data-fetching choreography (i.e. determining the shipment price) are integrated into
the reasoning context. Once the service has been selected for the execution phase there is a
separate choreography which will consume the service functionality.

In this case, as shown in the following listing, the situation is very simple: there is exactly
one partner (no choreography), the partner performs exactly one action, therefor the ASM has
exactly one transition, and the transition is expressed very concretely as add the price quote
to the knowledge base.

1 /∗ Muller Service interface − dynamic fetching of shipment price ∗/

15 Comparison: Discovery on WSMOLX and miAamics/jABC 257

Fig. 15.1. Price Calculation in miAamics/jABC

2

3 interface datafetching#WSMullerGetPriceInterface
4 choreography WSMullerGetPriceChoreography
5 stateSignature WSMullerGetPriceStateSignature
6

7 in sop#ShipmentOrderReq withGrounding { wsdl grounding...} //input message
8 out sop#PriceQuoteResp //dynamically obtained price quotation
9

10 transitionRules WSMullerGetPriceTransitionRules
11

12 forall{?shipmentOrderReq} with
13 (?shipmentOrderReq memberOf sop#ShipmentOrderReq
14 and sop#isShipped(?shipmentOrderReq)
15) do
16 add(#1 memberOf sop#PriceQuoteResp)
17

18 endForall

Listing 15.3. Muller Shipment Price Data Fetching Interface

A nice correspondence can be drawn with the jABC solution as shown in Fig. 15.1 (see
also Chapter 13 Sect. 3.4 for a more comprehensive explanation), for the first shipper (row 1)
(Muller) a Web service that returns the shipping price for a single request is invoked. This is
then written to the Context (and thus communicated to miAamics): it is exactly one transition
in the Kripke Transition System that underlies the Service Logic Graph, and it has the same
abstraction as the little one-transition ASM of the WSMO solution.

In the miAamics case, a corresponding Web service SIB was generated using the jETI
framework in the same fashion as for the services in the mediation scenario and (Chap. 5).
In the case of any anomaly occurring during service invocation, that makes this shipper de
facto unavailable, the price for this shipper is set so high that this shipper is excluded from the
further selection process.

258 C. Kubczak, T. Vitvar, C. Winkler et al.

15.2.3 Goal descriptions

The same example of shipment scenario goal is used for comparing our two approaches. We
use Goal C3 that reads as a following:

For all shipping requests, the packages are always sent from the Moon company
in the US. The destination of the example shipment is a client in Bristol (UK). A
single package of the dimension 10/2/3 (l/w/h in inch) and a weight of 20 lbs shall
be shipped for less than 120$.

WSMO Goal C3 is shown in Listing 15.4. Similar to a WSMO Service, WSMO Goals also
contain the capability and interface parts, however a Goal’s capability specifies some requested
functionality and the interface will define how the Goal can interact with a potential service
that can provide the requested functionality. WSMO Goal C3 specifies the hard constraints
over the service to be discovered in its postcondition. An example of hard constraint is that
the service must cost less than 120$. This is specified by ?price < 120 in line 12. ?price
here is a price quote that is either dynamically fetched from the service during the discovery
process (Listing 15.3) or is generated by input-dependent rules (Listing 15.2). Another hard
constraint is expressed by isShipped(request#shipmentOrderReq). This imposes a hard
requirement on the service that it must be able to handle the package shipment to the specified
location.

Additionally, preferences on service ranking are specified in the Goal’s non-functional
properties (line 3). Such preferences are used for ranking and selecting the most suitable ser-
vice out of several services that satisfied the hard constraints. Preferences are specified in
terms of the variables which appear in post-conditions (e.g. ?price, ?deliveryTime) and are
bound to real data / values during the reasoning process. Following the preferences with ac-
tual variable bindings, the candidate services can be appropriately ordered. For the prefer-
ence ?price − LowerBetter in the WSMO Goal, the returned services will be sorted by
their shipping price from lowest to highest. The ordering direction can be LowerBetter or
HigherBetter.

1 capability GoalC3Capability
2 nfp
3 ”rankingcriteria” hasValue ”?price−LowerBetter”
4 endnfp
5

6 /∗ Goal C3 − goal based on destination, weight and price
7 with preference on lowest price ∗/
8

9 postcondition
10 definedBy
11 ?x[sop#price hasValue ?price] memberOf sop#PriceQuoteResp and
12 sop#isShipped(request#shipmentOrderReq) and ?price < 120.
13

14 ontology goalRequestOnto
15

16 instance request#shipmentOrderReq memberOf sop#ShipmentOrderReq
17 sop#from hasValue MoonContactInfo
18 sop#shipmentDate hasValue shipmentDate1
19 sop#package hasValue package
20 sop#to hasValue SmithersContactInfo
21

22 instance package memberOf so#Package
23 so#quantity hasValue 1
24 so#length hasValue 10.0
25 so#width hasValue 2.0
26 so#height hasValue 3.0

15 Comparison: Discovery on WSMOLX and miAamics/jABC 259

27 so#weight hasValue 20.0
28

29 instance shipmentDate1 memberOf so#ShipmentDate
30 so#earliest hasValue ”2008−07−11T15:00:00.046Z”
31 so#latest hasValue ”2008−07−15T15:00:00.046Z”
32

33 instance MoonContactInfo memberOf so#ContactInfo
34 so#company hasValue ”Moon Company”
35 so#lastname hasValue ”Moon”
36 so#city hasValue so#MoonCity
37 ...
38

39 instance SmithersContactInfo memberOf so#ContactInfo
40 so#company hasValue ”Computer Systems and Co”
41 so#lastname hasValue ”Smithers”
42 so#city hasValue so#Bristol
43 ..

Listing 15.4. WSMO Goal C3 with Hard Constraints, Preferences and Input Ontology

To discover candidate shipping services, miAamics needs a set of rules that define the
requests. Such rules are defined on attributes and categories respectively. Attributes are used
to build an abstract description of the concrete instances of requests, situations and offers
and might be grouped into categories. The evaluation is solely executed on attributes (and
categories) and hence is not affected by concrete instances (or their number, respectively).
In fact it can be executed without knowing the concrete service instances, and only on the
abstract profiles - one could say, on the ontological level.

Rules define a matchmaking on premises (here the shipping requests defined by corre-
sponding attributes) and conclusions (the candidate shipping services, defined by attributes
respectively) and are rated with a weight that expresses their importance. Rules express as-
pects of the decision space, therefore it is usual that multiple rules apply to a single request.
In this case, weights for the matching services are added and define a cumulative rating for
the quality of the offer. Heavier rules “count” more in the evaluation. Strategies define sets
of rules that are considered together for the given request. As has been described in detail in
Chapter 13, with the same set of rules it is possible to define different strategies, that differ in
the criteria considered (roughly, each rule expresses a selection criterion) and in their impor-
tance, which is expressed in miAamics through the weights. E.g. a strategy for discovery based
on “destination only” would yield different results than a strategy for “destination and price”,
that combines location based rules with those that consider shipping prizes. Tables 15.2-15.4
in Sect. 15.2.2 show a small example configuration for the aforementioned goal C3 that is
sufficient for discovery based on destination, price and package weight.

A goal description in WSMO does not have a notion of a priority, instead it contains
preferences which allow to order and then choose the best offer from the services that satisfy
the hard constrains.

On the other hand, miAamics allows modelling priorities of rules in term of their weights,
that express how relevant the rules are for the goal. There is no explicit notion of hard con-
straints. Since miAamics was designed as a personalization matchmaker, it is tailored to return
the “best” option available. Application domains like personalization have inherently no hard
constraints, because it is a key feature to be able to find the “niche” match, due to a sum of
small indicators that overcomes obvious, flat rules like “Dortmund males are Borussia fans”.
The niche discovery feature allows for high precision, but it requires attention when designing
strategies in case real hard constraints are present. Hard constraints must be given sufficiently
high weights, so that their overruling by a collection of soft ones becomes unlikely. This can

260 C. Kubczak, T. Vitvar, C. Winkler et al.

be proven in advance, by simple arithmetics. Alternatively, hard constraints can also be con-
junctively added to every rule, so that only offers that satisfy them are returned.

Lack of hard constraints may also lead to cases where no offer is suitable, but some satisfy
some (soft) constraints and are thus returned. This can be detected in the surrounding work-
flow, or by having a two-stage selection, where hard constraints are checked first (for this,
weights are not checked), and only the fitting services are forwarded to a second stage for
preference-based selection.

15.2.4 Data model

Both teams provided expressive data models reflecting domain specific knowledge and ex-
changed messages on the data schema and instance level. Both teams modelled the concepts,
their attributes and relationships between concepts in rule-based languages. In both cases, ma-
ture tools exist to edit underlying data models. DERI uses the WSML-Flight variant in the
shipment scenario, a fully-fledged ontology language with rule support. WSMT or WSMO
Studio can be used to model the required WSMO elements.

miAamics uses a taxonomy that characterizes profiles of individuals (requests, situations
and offers). This taxonomy comprises attributes and categories. Attributes define sets of in-
dividuals via properties (evaluable predicates) on single data fields of an individual while
categories are used to combine multiple attributes to more specialized subsets of individuals.
To set up the data model, miAamics’ web configuration interface as well as importers that
generate the configuration from existing ontologies or other sources were used.

Both teams modelled their ontologies following a bottom-up approach, creating the on-
tologies based on the XML Schema definitions of shipment Web services and the shipment do-
main. In miAamics a number of higher granularity rules have been modelled (e.g. cheap-price,
high-price, fast-shipment) which are defined in terms of conditions over concept attributes. In
WSMOLX the isShipped relation has been modelled and specified in the service description,
but also referred by the Goal. Evaluation of isShipped during the discovery process allows to
determine whether a service can be used for the given shipment request input data (shipment
source and target addresses, package weight, etc.).

15.2.5 Matchmaking

The DERI submission directly supports a data-fetching service which was necessary in case of
Muller service where the shipping price has to be dynamically obtained as shown on Listing
15.3. IRIS7 interfaced via the WSML2Reasoner8 framework is used for the reasoning over
the semantic description of service functionality. IRIS is a Datalog reasoner with support for
arithmetic expressions and custom built-ins. WSMX Discovery component did not have to
resort to the external arithmetic services as the required calculations were carried out internally
within the context of reasoning.

miAamics is a purely logical matchmaker. Hence prices for shipment offers are calculated
in advance and provided to the miAamics configuration database as concrete values. This
step is done in the surrounding discovery workflow that invokes miAamics for matchmaking.
The same way, the problem of invoking a shipper’s Web service to retrieve the actual price is
handled. A generated SIB invokes the service and the result is updated in miAamics’ database.

7 http://iris-reasoner.org
8 http://tools.deri.org/wsml2reasoner

15 Comparison: Discovery on WSMOLX and miAamics/jABC 261

These database updates are limited to the concrete offer instances and do not affect the attribute
definitions that classify the offers and are the basis of the matchmaking algorithm. Hence it is
not necessary to recalculate the rule evaluation structures after manipulating an offer.

After the precalculation steps miAamics is invoked for matchmaking. It calculates results
by evaluation of all rules that compose the active strategy. A rule consists of a premise and a
conclusion, and the rule is fulfilled if both the premise holds for a request (or situation) and the
conclusion holds for an offer. The weights for multiple matching rules are added and that way
an order of matching results is formed. Finally the result is the set of offers with the highest
accumulated weight. In case this set contains more than one offer, a randomly chosen one is
returned, since they are all equivalently good for this strategy.

15.2.6 Selection

The Instance-based WSMX Service Discovery [5] component handles the service selection
part. The goal can specify ranking criteria. The price is used in the shipment scenario to se-
lect the best service where multiple matching services which satisfy the Goal capability are
discovered.

Invoking miAamics possibly returns a set of suitable offers that can accomplish the re-
quest. This set is ordered by the cumulated weight the offer received from the evaluation of
all rules in the current strategy. The weight is the sum of weights of all rules that hold for
the given request and the particular offer. Thus the offer with the maximum weight is selected
which directly corresponds to a shipper’s web service. If multiple offers have the same weight,
one of them can be chosen randomly as they fit the request equally well.

15.2.7 Web service invocation

WSMX uses two dedicated components: Communication Manager for handling external com-
munication with service requesters and Invoker for invoking involved services. Invoker man-
ages XML < − > WSML adaptation (performing lifting and lowering). Lifting is required
when moving from syntactic data representation to rich, ontology model, while lowering does
the opposite, namely it maps downwards to non-semantic data models (e.g. XML, EDI, Roset-
taNet).

A single SIB was generated by the jETI extension of jABC for each of the shippers’
services. This is simply done by passing the URL of a service’s WSDL description to the jETI
plug in. The invocation of the corresponding service is an implicit part of the generated SIB
that is used to build the discovery service SLG.

15.2.8 Execution monitoring

WSMX uses a Java SWING9, a simple graphical monitoring facility to display WSMX com-
ponents’ progress of use-case executions. There is also a HTTP monitoring and management
facility available which allows inspecting the state of the components and to access various
statistics related to carried out service executions. A detailed log is kept of all internal opera-
tions performed in WSMX execution.

The execution of the discovery orchestration service can be monitored using jABC’s
Tracer plug in. It is an interpreter of the SLGs that model the orchestrations. It provides access

9 http://java.sun.com/docs/books/tutorial/uiswing

262 C. Kubczak, T. Vitvar, C. Winkler et al.

to the current state of the execution (e.g. parameter values) and holds a history of all executed
steps. The result of miAamics’s evaluation can be analyzed by its result monitor, shown in
Fig. 13.5 of chapter 13. It provides a graphical representation of the evaluation results with
a profile of all offers matching at least one rule, and their total weights. Additionally some
statistical information is available (e.g. the number of considered rules, the execution time of
the evaluation).

15.2.9 Tool support

There is already sufficient support for editing WSMO elements in WSMT and WSMO Studio.
However, there is currently only basic support for editing processes in the form of ontologized
ASMs and no support for simulation and model testing. The tools utilized throughout the
development lifecycle of the WSMOLX submission are being actively developed (WSMO
editor, Data Mediation, WSMX etc.). Modeling aspects involved in the discovery scenario
(e.g. WSMO ontology editing) are already supported by quite advanced and user-friendly
functionality.

As explained in Chap. 5, jABC is an extensible framework that supports graphical mod-
elling for different domains. Up to now many plug-ins already exist, making jABC a flexible,
comfortable and mature tool. Moreover additional plug-ins are permanently developed de-
pending on the user’s needs, further extending the tool’s capabilities. miAamics has proven
its maturity in its original domain, the efficient personalization of web applications. But the
SWS scenario shows that it can also be used for other domains. Therefore it was necessary
to extend miAamics’ configuration facilities to support automatic generation of huge numbers
of attributes and rules. This was easy to achieve as the configuration is stored in a relational
database that can also be accessed by other applications.

15.3 Coping with the scenario changes

The WSMX framework proved to be generic as only modifications of the WSMO Goals were
necessary in order to correctly handle the newly introduced changes to the scenario. Discovery
based on the location was successfully resolved using the common isShipped relation (see
Listing 15.1). Additional criteria imposed on the service such as weight and price have also
been evaluated to level 2 in the SWS-Challenge results. No changes in the WSMX code or in
the service descriptions were required.

Coping with changes in advanced discovery scenarios that introduce more complex selec-
tion constraints needs the formulation of corresponding strategies in miAamics. In addition
to the location based attributes and rules that are used in the simple discovery scenarios, at-
tributes and rules that consider weights, prices, etc. are added and used to create advanced
strategies. In those strategies, the rules already defined for simple strategies are reused. For
example the strategy “Destination and Weight” combines rules defined for the “Destination
only” strategy with rules that consider weight limits. All necessary changes can be done using
miAamics’ Web UI or its import functionality. Changes in the surrounding jABC workflow
that invokes miAamics and the shipping services were not necessary.

15 Comparison: Discovery on WSMOLX and miAamics/jABC 263

15.4 Conclusions

In this chapter we have presented a comparison of the WSMOLX and miAamics/jABC solu-
tions to semantic discovery in context of SWS Challenge. Both approaches were able to cater
to a fine granularity of client requests and service functionality descriptions. Fine granular-
ity of service search request aims to reduce manual work required in determining the actual
functionality of services to a minimum. The combination of semantics with the dynamic data-
fetching mechanism brings significant benefits to the runtime service late-binding, facilitating
the volatile and frequently-changing nature of services in SOA.

For the future work, both teams plan to evaluate their frameworks with a large number of
services from different domains to examine the scalability of the advantages obtained through
using semantic descriptions with the data-fetch mechanism over purely informal and static ser-
vice descriptions. We hope for the future SWS-Challenge scenarios that will allow to evaluate
performance and scalability against large number of services.

References

1. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A.,
Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied Ontologies
1(1) (2005) 77 – 106

2. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Language:
An Overview. In: Proc. of the European Semantic Web Conference. (2006)

3. Vitvar, T., Mocan, A., Kerrigan, M., Zaremba, M., Zaremba, M., Moran, M., Cimpian, E.,
Haselwanter, T., Fensel, D.: Semantically-enabled service oriented architecture: Concepts,
technology and application. In Service Oriented Computing and Applications, Springer
London 1(2) (2007)

4. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-driven development
with the jABC. In: HVC - IBM Haifa Verification Conference. LNCS 4383, Haifa, Israel,
IBM, Springer Verlag (2006)

5. Zaremba, M., Vitvar, T., Moran, M.: Towards Optimized Data Fetching for Service Discov-
ery. In: In Proceedings of the Fifth IEEE European Conference on Web Services (ECOWS),
IEEE Computer Society. (2007)

6. Braun, V., Margaria, T., Weise, C.: Integrating tools in the ETI platform. Int. Journal on
Software Tools for Technology Transfer (STTT) 1(2) (1997) 31–48

7. Steffen, B., Margaria, T., Nagel, R.: Remote Integration and Coordination of Verification
Tools in jETI. In: Proc. ECBS 2005, 12th IEEE Int. Conf. on the Engineering of Computer
Based Systems, Greenbelt (USA), IEEE Computer Soc. Press (2005) 431–436

8. Margaria, T., Kubzcak, C., Steffen, B.: Bio-jETI: a Service Integration, Design, and Pro-
visioning Platform for Orchestrated Bioinformatics Processes. In: Supplement dedicated
to Network Tools and Applications in Biology 2007 Workshop (NETTAB 2007). Number
9 (Suppl 4):S12 in BioMed Central (BMC) Bioinformatics (2008) Published online 2008
April 25.

9. Roman, D., Scicluna, J.: Ontology-based Choreography of WSMO Services. Wsmo final
draft v0.3, DERI (2006) Available at: http://www.wsmo.org/TR/d14/v0.3/.

16

Comparison: Handling Preferences with DIANE and
miAamics

Ulrich Küster1, Birgitta König-Ries1, Tiziana Margaria2, and Bernhard Steffen3

1 Institute for Computer Science, University Jena, Germany,
{ukuester,koenig}@informatik.uni-jena.de

2 Chair of Service and Software Engineering, University of Potsdam, Germany,
margaria@cs.uni-potsdam.de

3 Chair of Programming Systems, Technical University of Dortmund, Germany,
steffen@cs.uni-dortmund.de

Summary. In this chapter we compare the DIANE and miAamics solutions to service discov-
ery along a specific feature supported by those solutions: preferences. Although quite different
in their theoretical and technical background, both techniques have in fact the ability to express
user preferences, that are used internally to rank the evaluation results. These preferences are
used here to incorporate functional aspects as defined by the SWS Challenge tasks, but they
can also be used to express non-functional properties like quality aspects. Here we take a
closer look at how preferences are realized in the two different approaches and we briefly
compare their profiles.

16.1 Realizing Preferences with miAamics

The complete solution of the discovery scenario using as evaluation engine the miAamics
personalization framework is described in detail in Chapter 13. miAamics’ weight mechanism
can be used to define user preferences on the evaluation. This is the particular aspect central
to the comparison with the DIANE solution.

Creating a domain model in miAamics is mainly a matter of creating sets of attributes that
define profiles of customers, situations, and offers. miAamics can be seen as a situation aware
matcher that matches profiles of customers to profiles of offers, taking into account profiles of
situations where required. Evaluation goals are defined by strategies, i.e. sets of rules that use
the aforementioned attributes. The miAamics evaluation engine calculates results concerning
a given strategy by evaluating all the rules pertaining to this strategy and adding up the weights
of the applicable rules.

miAamics’ rules define mappings of the shape

Rulename : f(request,situation)→ {offer}

hence the premises refer to customer and situation attributes while conclusions must refer
only to attributes of offers. Rules are labelled with a name and a kind of numerical rating, in
miAamics’ terms weight. The following rules are examples for rules defined for the discovery

266 U. Küster, B. König-Ries, T. Margaria, B. Steffen

scenario. Once again the premises regard to customer attributes that in the discovery scenario
describe shipping requests, while the conclusions are defined by (shipment-) offer attributes.

1. Shipment to USA: Destination location is in USA→ Ships to USA
2. Cheap shipment: Costs must be < $50→ Ships for less than $50
3. Express delivery: Has to be delivered within 24 hrs→ Guarantees delivery within

24 hrs
4. Normal delivery: Has to be delivered within 48 hrs→ Guarantees delivery within

48 hrs

Given a set of rules, it is now possible to define strategies. Strategies define which rules are
considered for an evaluation and with which weight. If a rule is included in several strategies,
it can be associated in different strategies with different numerical ratings, as shown in Ta-
ble 16.1. The evaluation algorithm rates all offers by adding up the weights of the fulfilled
rules. Thus the results can be ordered by their total weight, that reflects the quality of the
solution for that strategy, as a sort of rank.

Following the scenario description, as a very simple example Strategy A in Table 16.1 only
considers the first rule, Shipment to USA. In this case, the evaluation result for requests that
have a USA destination address will only return shipment services that ship to the requested
country (USA). As Rule 1 is the only rule considered, all the fulfilling offers have weight 100.
Since they all fulfill the strategy’s constraints equally well, but a single offer is at the end
selected, this happens by random choice among them.

Rule No. Strategy A Strategy B Strategy C

1 100 100 100
2 (not used) 40 50
3 (not used) 25 20
4 (not used) 25 20

Table 16.1. Different rules and weights in different strategies

Functional and non-functional preferences using weights

In the more realistic scenarios, a customer specifies several quality criteria in his requests.
(Situated) quality criteria are expressed in miAamics via rules, so more refined strategies in-
clude several rules. The rule base described above considers also criteria as the shipping price
and time for delivery, besides the destination country. Both strategies B and C in Table 16.1
include all four rules, but with different weights. Taking a look at the weights defined for the
rules in a single strategy, it is possible to describe in detail and intuitively how this strategy
sets the user preferences for the request evaluation. In both strategies, the functional aspect is
covered by Rule 1: that is the essential criterion to determine if a shipper is eligible. The other
rules express preference criteria.

Strategy B ensures that a delivery to the requested country is possible because the value
for this Rule (100) cannot be surpassed by the total weight of other rules (90). So, no shipper
is ever going to be selected that does not ship to the USA - the central selection criterion.
Furthermore, Strategy B privileges offers that can guarantee a delivery within 24 hours over

16 Comparison: Handling Preferences with DIANE and miAamics 267

cheap ones. If a shipment within 24 hours is offered (Rule 3), Rule 4 is also fulfilled, since a
shipment within 24 hours is also within 48 hours. Thus a sum of 50 points is achieved in this
case while cheap offers can only gain 40 additional points. Cheap and fast shippers can get the
sum of the points, 90.

For a different customer profile preferences can be set in a different way via a different
strategy, using for example the same rules but with adjusted weights. For example, if it is more
important to chose the cheapest offer than to deliver a package within short time, weights could
be defined as shown in Strategy C. Once again, delivery to the selected country is ensured, but
this time cheap offers are preferred (50). Delivery time is still considered: cheap and quick
shippers will be preferred (become a higher rating) over those that are simply cheap.

This example covers both functional and nonfunctional criteria. The design of the weights
is sensitive, since it determines the relative relevance of the rules (and the criteria they express)
in the overall selection strategy.

16.2 Realizing Preferences with DIANE

DIANE uses a set-based modeling approach for service discovery. Service providers usually
do not offer a single service instance, but are able to provide a family of similar services, e.g.
shipping to a multitude of locations. Thus, they describe their offer as the set of services they
can potentially provide. The shipping services of the SWS-Challenge, for instance, provide
shipping of packages that adhere to certain weight and size restrictions within given sets of
countries.

Requesters with a certain need, on the other hand, may have a perfect service in mind, but
usually accept quite different services based on the available offers. While a fast, reliable, and
cheap shipping offer would obviously be a perfect choice, in reality a fast but expensive ship-
ping offer might be as acceptable as a slower but also less expensive one. Therefore, service
requests in DIANE describe the set of service instances which are acceptable to the requester.
In order to express preferences among services, requesters may use fuzzy instead of crisp sets.
A higher degree of membership in the fuzzy request sets corresponds to a higher preference
for that particular service. For further information about service modeling and how services
are matched in DIANE we refer to Chapter 12. In the following we detail how user prefer-
ences are expressed in the DIANE context by the examples of the SWS-Challenge discovery
scenarios.

16.2.1 Basic Preferences

Within the SWS-Challenge, preferences were mainly used in the hardware purchasing sce-
nario. Goal B1 for instance requires to purchase a notebook with certain properties (e.g. at
least 60 GB harddisc size) and states that price matters most, thus cheaper offers should be
preferred if the other requirements are met. Such basic preferences are captured by direct con-
ditions on request attributes, in this case on the price of the product. A crisp condition like ”<=
2000” on the price attribute of a product requires the price of that product to be less than 2000
but does not encode preference for lower prices. These are expressed using fuzzy conditions
like ”∼==[0, 2000] 0”. This expression requests the price to be zero, but accepts values
from the interval [0, 2000] with linearly decreasing preference. Similarly an expression like
”∼== 2007-11-11T11:11” on the pickup time asks for pickup at the specified time, but
accepts a default deviation of up to three days – again, with linearly decreasing preference.

268 U. Küster, B. König-Ries, T. Margaria, B. Steffen

16.2.2 Advanced Preferences

Fuzzy direct conditions are sufficient to express preferences on single attributes. However,
most realistic scenarios involve preferences on multiple attributes with conflicting optimiza-
tion goals, like preferences for a low price and a high-quality configuration at the same time.
In such cases the different goals have to be balanced according to the user’s preferences.
In DIANE, this is achieved with connecting strategies. During the matchmaking, complex
types are compared by recursively comparing their attributes and combining the retrieved
values. The matchvalue of a particular notebook with respect to a notebook purchasing re-
quest, for instance, is obtained by combining the matchvalues obtained from comparing the
attributes of the notebook (price, HDD size, RAM size, processor type, . . .) with the cor-
responding requirements from the request. The resulting values are normalized to the inter-
val [0, 1] and by default combined by multiplying them. To emphasize particular conditions
compared to others, a requester specifies a custom connection strategy, basically a function
which maps the set of attribute matchvalues to the interval [0, 1]. Available base functions
are product, weighted sum, min and max as well as the exponential function. Goal C4, for
instance, specifies that the processor power of the notebook is most important and that more
RAM is more important than a bigger hard disc. This is captured by the connecting strategy
processor3 ×memory2 × hardDisc which penalizes lower values for the processor power
most, and lower values for the memory size more than those for the hard disc size.

16.2.3 Practicalities

The definition of appropriate preferences is not always trivial (see Section 16.3) and requires
a certain knowledge about DSD. DIANE thus supports the separation of concerns via param-
eterized request templates. Any concept in a DSD request can be replaced by a request input
variable, thus parameterizing the request. This way, trained domain experts can create one or
more DSD request corresponding to different preference profiles. In the shipping example,
for instance, different request templates might correspond to requests prioritizing fast ship-
ment, inexpensive shipment or precisely matching pickup times. End users can then select the
most appropriate request template according to their needs and use them by simply providing
values for the required input variables, i.e. the cargo to be shipped and the locations for the
pickup and the delivery. This way, technical details of DSD can be hidden behind simple user
interfaces, making dealing with DSD directly unnecessary for end users.

16.3 Challenging Example: Goal B2

Balancing preference criteria with different nature is not always easy in both approaches.
Despite the fact that most preferences could be encoded very intuitively, one goal posed diffi-
culties. Goal B2 of the second scenario prefers black notebooks compared to white ones, but
prefers to buy the white one if it is significantly (more than $100) less expensive than the black
one. Such a rule-based preference, combining a constant part (the color) and a variable part
(price difference) does not map well neither to the fuzzy set-based preference mechanism of
DIANE nor to miAamics.

Since the price limit was set to $1800 a price difference of $100 results in a difference
of the matchvalue in DIANE of roughly 0.055 (100/1800). Therefore the preference values
for the color were chosen to reflect exactly this difference: black [1] and white [0,944]. A

16 Comparison: Handling Preferences with DIANE and miAamics 269

weighted sum of 0.5× price+ 0.5× color however does not result in the desired behavior.
The problem is that any black notebook regardless of the price or any product whatsoever
that does not cost much would result in a matchvalue of at least 0.5. Therefore the connecting
strategy was extended tomin(color, price, 0.5×price+0.5×color). However, this way the
matchvalue was soon dominated by the matchvalue for the price and the weighted sum did not
influence the outcome any more. To resolve this issue, the influence of the weighted sum was
strengthened using a polynome yielding: min(color, price, (0.5 × price + 0.5 × color)5).
This way the desired behavior could be successfully achieved.

Using miAamics, just expressing the goal is not a big problem. Defining price rules for
each $100 interval with a weight of e.g. 50 and an additional rule for black devices with a
weight that is less than the 50 points of the price rules would roughly lead to the desired
behavior. But this example also shows the drawbacks of the miAamics solution. Since mi-
Aamics is based on boolean rules, conditions on numerical values, e.g. the price, need to be
discretized. This can lead to a huge amount of rules. Moreover, within a discretization interval
for a criterion (here price), offers are indistinguishable for that criterion. As a consequence,
two black notebooks priced $900 and $999 could not be differentiated in this example, while
the DIANE solution would prefer the cheaper one. Furthermore the behavior is as desired only
if the price of a black notebook is close to the upper bound of a price interval. For example a
white notebook for $899 would beat a black one for $900 though it is not significantly cheaper.
This is due to the fact that the white notebook falls in another price interval than the black one.
This problem can only be reduced by choosing smaller price intervals and thus creating more
rules - which can happen using our automatic rule generation facilities.

16.4 Comparison

The discovery approaches are different in four dimensions:

1. selection mechanism (underlying technology)
2. mode of use (pragmatics)
3. profile of users (who can do what when)
4. performance

16.4.1 Selection mechanism (underlying technology)

DIANE builds on arithmetics. In particular, it allows one to automatically weight and compare
numerical parameters, and to specify a prioritized selection of data/products/offers based on
those comparisons. E.g., price differences may be transformed into preference values, which
may then be put into the context of other preference values, e.g. for timeliness, quality as-
surance, or color in a preference-based fashion. This is typically done by building a product
of powers of the involved preference values: the higher the power of a value the greater its
impact. This method also allows one to indirectly code a priority scheme between preference
values if desired.

In contrast, miAamics is based on predicate logics: simple if-then rules describe single as-
pects of when a certain data/product/offer fits. The overall selection is then based on large sets
of such rules, each weighted according to the relevance/significance of the modeled aspect. If
various rules propose the same data/product/offer, the weights for these data/products/offers
are added, and the data/products/offers with the highest such sums are the winners. This way
of aspect-oriented modeling is highly compositional: to add a new aspect, one simply needs to

270 U. Küster, B. König-Ries, T. Margaria, B. Steffen

add the according rules, weighted reflecting the according relevance/significance. Preference
can be modeled indirectly using the weights, e.g. giving the pricing aspect a higher weight
than the sum of the weights of competing aspects. Numerical values can be treated based on
adequate discretization.

16.4.2 Mode of use (pragmatics)

Both approaches are based on ontologies/taxonomies, but their mode of operation is quite
different:

DIANE is based on complex ad hoc queries, which describe the overall pattern of selec-
tion (see above): a user describes his desires and preferences according to DIANE’s selection
mechanism in a monolithic fashion. The resulting expression needs to be fully evaluated at
runtime according to the current state of the environment (data bases etc.).

In contrast, miAamics’ specification of selection is decomposed in two parts:

• the specification of the set of weighted rules describing the aspect-oriented relevance of
data/products/offers. In our experience, these rules can be dealt with be business experts
without IT knowledge after a short training.

• predicates describing the individual preference of a user for a certain selection process.
These predicates may describe the user’s price, quality, or color sensitivity, which may
occur in the rules’ ’if’ part, thus steering which of the rules defined in in the first part are
fired and which not. Setting these predicates, which means setting the profile of selection,
can easily be done simply by clicking at certain preferences. This is so intuitive that it
does not even require an explanation.

16.4.3 Profile of users (who can do what when?)

The correct conceptualization of a problem domain and the design of strategies or queries
that appropriately capture an end user’s preferences and desires is often a non-trivial task.
Therefore, both approaches allow to distinguish two profiles of users:

• The domain expert conceptualizes the problem domain and develops appropriate parame-
terized query templates (in case of DIANE) respectively an aspect-oriented weighted rule
scheme together with a set of strategies (in case of miAmics).

• The end user only selects and customizes the request by choosing appropriate parameter
values for one of the predefined query templates (DIANE) respectivly by selecting some
predicates for preference (miAmics).

In particular the latter role is open to a very wide public. Almost all internet users will be
able to perform this kind of selection without requiring even an explanation. But also the first
role does not require extensive IT knowledge. Both approaches envision domain experts with
some basic training in the employed technology as the optimal clientele for the task. In some
cases, in particular when the preferences are inherently complex, DSD might require a better
mathematical understanding from the user than miAmics.

16.4.4 Performance

The runtime complexity of evaluating a DIANE request with respect to a single offer is roughly
linear in the size of the request (i.e. the number of attributes). Thus, large requests together

16 Comparison: Handling Preferences with DIANE and miAamics 271

with large numbers of offers may pose a performance problem in a context, where thousands
of users operate in parallel.

In contrast, miAamics technology comes with a compilation process, which transforms
large sets of weighted rules into simple evaluation structures. This guarantees an extremely
fast selection (orders of magnitude faster than the DIANE selection), and therefore scalability.

16.4.5 Summary

Overall, miAamics and DIANE were designed with very different goals: miAamics was de-
signed with a focus on ease of use and scalability whereas DIANE was designed with a focus
on expressivity and precision. This corresponds to the fact that miAamics is based on boolean
rules and DIANE on arithmetics and fuzzy set theory. Consequently, DIANE is more flex-
ible for specification, in particular considering the treatment of continous numerical values,
that needs to be discretized in miAamics. On the other hand, miAamics restricted expressivity
makes the specification of rules very easy and allows to achieve superior runtime performance.
Thus the two technologies have complementary profiles, and therefore their own right of ex-
istence.

Part V

Lessons Learned

17

Status, Perspectives, and Lessons Learned

Charles Petrie1, Ulrich Küster2, Tiziana Margaria3, Michal Zaremba4, Holger Lausen4, and
Srdjan Komazec4

1 Computer Science Dept. University of Stanford, Gates Building, Stanford, CA
94305-9020, USA petrie@stanford.edu

2 Institute for Computer Science, Friedrich-Schiller-University Jena, 07743 Jena, Germany
ulrich.kuester@uni-jena.de

3 Chair of Service and Software Engineering, Institute for Informatics University of
Potsdam, 14482 Potsdam, Germany margaria@cs.uni-potsdam.de

4 Semantic Technology Institute Innsbruck, University of Innsbruck, Technikerstr. 21, 6020
Innsbruck, Austria,
holger.lausen,michal.zaremba,srdjan.komazec@sti2.at

Summary. We describe in this chapter our understanding of the SWS Challenge, and how to
improve it, after approximately the first year of major startup efforts.

17.1 Introduction to Lessons Learned

As described in the Introduction to this book, the “year” covered actually spans a greater length
of calendar time. But the phrase “first year” accurately describes our steep learning curve in
developing and refining this challenge. We briefly summarize here the reflections and lessons
learned over this first year of activity. They concern our methodology, the infrastructure, and
the scenarios. We include some perspectives on the Challenge, some of the outstanding issues
to be addressed, and plans for future developments.

In this chapter, we go into more detail some of the issues that were mentioned in Intro-
duction. We begin with a discussion of one of the most important and difficult aspects of the
SWS Challenge: the evaluation methodology.

17.2 Methodology

For the most part, our experience has validated the methodology though we have learned
much: i.e., Our experience has largely validated the methodology: we refined the methodol-
ogy but slightly over the course of a year, learning much in the course of discussions at the
workshops and within the organizer team 5.

Each team selects one or more scenarios (see the Chapter on scenarios) and attempts to
correctly access and select web services from the testbed. Most scenarios involve actually

5 In 2008, we refined the methodology more. See the Challenge wiki for the latest develop-
ments.

276 Petrie, Küster, Margaria, Zaremba, Lausen, Komazec

invoking the web services, though some discovery scenarios require only selection of the
right services. Where the services are invoked, teams should notify the manager of the testbed
(Srdjan Komazec at the time of publication) that they think they have a scenario solution. The
manager then verifies the correct exchange of messages. When a team has a solution, they
submit a paper on their solution to the next workshop, and upload useful information about
their technology on the Challenge wiki.

Workshop Activities.

At a workshop, each team presents their claims in a paper, and then we evaluate the claims by
having the workshop participants mutually examine the code of the submission. In the case of
a discovery solution, we ask for a demonstration of a correct selection of services. In all cases,
we look at the code sufficiently to be collectively persuaded that the solution actually works
as claimed. In addition, we may examine code changes to solutions to “surprise” problems,
about which we say more below.

Initially, we thought that we would need to divide up into teams to examine the submis-
sions but we found that the whole workshop could collectively examine each submission and
that everyone wanted to do so. We suspect that since the evaluations are developed by the
collective consensus of the whole workshop, they are better than they would have been had
they been reached by smaller groups. In particular, we have found that expertise in under-
standing different technologies varies among the workshop participants and different people
can examine different technologies more critically than others.

When the workshop participants are convinced that the particular team being evaluated
really has solved a particular scenario problem, then that team receives a check mark on that
problem, which is published on the Challenge public wiki. The team is entitled to claim a
solution to this problem in their papers and to link to the evaluation matrix from their team
web site with the appropriate claims. Since the problems are complex and there are frequently
important caveats about the solution, these are published as footnotes on the evaluation matrix.

Comparison Criteria.

As discussed in the Introduction chapter, an important aspect of the Challenge is to evaluate
what we might call here, for ease of discussion, the malleability of the tested technology: how
easy is it to “bend” the software solution into a somewhat different solution.

This is a very important and difficult issue. While we do not have a good definition for
“semantic” technologies, there is a, as yet largely unstated, hypothesis that such technologies
will prove to be good for software engineering of net-based, distributed, interacting complex
software systems, such as industrial manufacturing order and supply chains, especially those
based upon web services, which can be well-defined6.

Semantic technology in the context of web serices may be minimally described as tech-
nology that enhances the service descriptions by annotations that more precisely describe the
service behavior beyond the signature information[1].

We can speculate here that software technologies called “semantic” are often those that
use some set of terms defined in an “ontology” in such a way that these terms can be re-used
in different applications in a consistent way. An “ontology” is some description of the terms of
discourse that restricts their use. Many semantic technologies use some form of computational
logic in describing and using the fundamental terms so that applications can most generally

6 http : //tinyurl.com/webservdef

17 Status, Perspectives, and Lessons Learned 277

compute with the term definitions for different purposes. However, for a large class of ap-
plication, equivalent expressive power of re-use might be obtained by models less generally
expressive than even Descriptive Logic. Fortunately, these speculations are not critical to the
discussion here: the Semantic Web Services Challenge does not depend upon any particular
definition of “semantic” technology.

The reason is that the Challenge is open to all technologies. We simply evaluate whether
the technologies can solve the problem and provide some indication of their malleability. Our
job is to certify functionality and we can avoid, at least for now, definitions of semantics.

However, the issue of malleability is important: to the extent that any participant team
claims to have a technology that is an improvement over conventional programming technolo-
gies, it should be able to facilitate changes in a given solution. Web services permit various
software components to be composed into different applications. As stated in the Dagstuhl
definition[2], this is done by using a description of those components in presented in some
widely-parsed format (such as XML7) and reachable via some standard Internet protocol
(such as HTTP8). As companies (and in the future, individuals) produce such applications
with distributed services, the resulting applications become more difficult to maintain. Mak-
ing changes in these increasingly complex applications is a fundamental software engineering
challenge. Particularly technologies that claim to provide semantic annotations of web ser-
vices claim to facilitate such maintenance.

The issue of malleability is as difficult to evaluate as it is important.
We initially tried to rank the submissions in difficulty of moving from one problem level or

sub-level to another by trying to determine whether code was changed that would necessitate
a re-compilation and linking, or whether there was only a change to the declaration of objects
upon which the code acted. Further, we wanted to distinguish between whether the current
declarations had to be altered, or whether new declarations were simply added. We found that
these distinctions could not be made objectively. For example, if someone is writing in Lisp,
there is no objective difference between declarations and code. XML schemas and Java present
similar though less extreme problems.

We tried making a collective consensus on simply whether code or declarations have been
changed as a measure of difficulty in moving from one level solution to another. This has been
particularly challenging especially in approaches where solutions are synthesized by arranging
software components in a graph with a GUI. This can be considered as declarative input to
a code synthesis engine, and the code of the engine itself never changes. Deciding whether
this is programming or declaration, perhaps based upon whether the graph is interpreted or
compiled, only hightened the nature of the subjectivity in deciding the difference between
declarations and code. There was no firm ground in this case for reaching consensus.

In trying to determine code changes, we required a code freeze prior to each workshop and
then released problem variations. Then at the workshop, we examined the new solutions to see
how much work was required to go from the original to the new. In order to encourage teams
to finish their original solutions sooner than later, we allowed all teams to freeze their code
and work on the problem variations as soon as they had verified their first solution. However,
in addition to the subjective evaluation of the work required to change a solution, this freeze
made a lot of work for the testbed manager as well as the teams. We also did not have a
mechanism for keeping the problem variations secret from new participants. So each variation
because a public problem to solve next time.

7 http : //www.w3.org/XML/
8 http : //www.w3.org/Protocols/

278 Petrie, Küster, Margaria, Zaremba, Lausen, Komazec

Because of all these issues, at the last Stanford workshop (2007) we introduced a “sur-
prise” problem. We did not require a code freeze but rather asked participants to work
overnight to solve a new problem variation, the details of which would be kept secret from
future new participants. The idea was that the participants either would or would not be able
to successfully modify their solutions. If they were successful, they got a plus mark in addition
to their check mark, indicatiing that their solution was indeed malleable.

We found that this approach also had problems. One operational problem is that people
simply did not look forward to staying up all night to work on a problem.

Our approach in the future will be to require a single code freeze deadline for everyone
who intends to have their malleability evaluated. These participants will then receive the de-
tails of a surprise problem only after they commit to working on it and being evaluated. Then
their solution to the surprise problem will be evaluated at the workshop. We will have to ex-
periment to find the right timeframe at which to release the problem so that everyone has
enough time to work on the problem before traveling to the workshop, but the timeframe is
short enough to differentiate between at least some technologies.

The more serious problem, which we still have to address, is that a good Java program-
mer is capable of solving such a surprise problem by re-writing the application from scratch
even with no particularly sophisticated software engineering approach. At the Stanford 2007
workshop, we gave the participants a surprise problem, related to one of the existing solved
problems. One participant, representing the University of Jena, was able to program it from
scratch in Java and present a verifiable solution in about two hours. Again, we will be experi-
menting with determining the right qualities of the surprise problem.

Our working hypothesis is that it should require a modification of the existing problem
such that it would be much more difficult to re-write it from scratch than to modify the existing
definition. Where possible, we want to have a surprise problem that requires a technology to
only restate the “goal” that the software application should achieve, or the constraints under
which it should do so, so as to test and validate the advantages of technologies that automate
the application synthesis.

Another of our working hypotheses is that we should build up a giant macro scenario out
of our individual scenarios. This is intended to be a complex multiple customer/manufacturer/-
multiple supplier/multiple shipper problems with complex product configuration constraints
and goals. The hypothesis is that a problem change with such a complex scenario will differ-
entiate software technologies and reveal advantages of a subset in modifying such a complex
application.

Open Approach.

One of the major successes of our methodology has been the open approach. First, partic-
ipants are asked to submit new scenarios (including web services) and these are constantly
being evaluated and added to our problem suite. Second, all solutions are documented and
participants are encouraged to “steal” from each other. One of the teams that has solved the
most problems uses one approach to solve the mediation problem and another to solve the
discovery problem. This team is composed of people from two different institutions who have
developed a successful synthesis of technologies.

This is exactly the sort of outcome we hoped for: understanding of which approaches
worked best for what kind of problems and cooperation among researchers at different insti-
tutions.

However, it must be reported that the online documentation of solutions has been difficult
to obtain from the participants in a form that is readily useful to other participants. This is an
issue that we continue to address in the future.

17 Status, Perspectives, and Lessons Learned 279

17.3 Infrastructure and Support

In the beginnning of the Challenge, we agreed on one fundamental principle: ”No Participa-
tion without Invocation”, meaning that we require solution claims to be verified on our testbed
by actual invocation of web services. (We allow workshop participants to simply present rel-
evant non-solution papers without an evaluation.) However this principle brought some well
underestimated effort for both the organizers as well as the participants. On the other hand
the challenge greatly profited by enforcing by having real web services available, documented
and running at all times: it meant that we could not hush up a problem that occurred, but had
to solve it.

Web Service Infrastructure.

We have started with three Web Services simulating a client trying to purchase goods using
the RosettaNet protocol and its counterpart, the Moon legacy system. Taking into account
different versions of services and the mediation systems that have been implemented to test
the system we are operating at present around 20 different Web Services. Over time, five
different developers have been involved for different aspects of the execution platform. All
services have now been migrated to the axis2 engine for Web Services.

The complexity of the messages used has revealed several bugs in the implementation of
the axis2 engine, which caused major resource expense just on the underlying technologies
and not purely on “business” problem. However, we consider it a benefit of the Challenge that
we are able to expose the deficiencies of the current state-of-the-art middleware tools, and
work with the developers to fix them.

In fact it turns out that a variety of skills is required to master such a testbed. First, in-depth
knowledge of WSDL and XML schemas is required to design proper service description utiliz-
ing the maximum of the descriptive power of the standards. Most obviously some knowledge
on a web service engine (such as axis2) and the underlying application server (such as tom-
cat) is required as well as a fair amount of database design and web application programming
skills. It also turned out to be necessary to understand a good deal about the Internet Protocol
and firewalls in order to help participants to manage their invocations. And, last but not least,
such an infrastructure requires some monitoring facilities that guarantee a 24/7 live system,
which is not the usual approach in a university respectively research environment.

Effectively it demonstrated that in spite of the fact that Web Services are an established
technology, current tools are only able to hide a small degree of the underlying complexity. As
soon as we reached some case on the boundary conditions, understanding of underlying pro-
tocols and standards was essential and many problems occurred, especially with propagation
of errors through layers of middleware.

Problem Description.

Besides the technical challenge we realized another important point: We decided to not formal-
ize the problems using a logical formalism, but rather to describe them using natural language
documentation. Having to communicate with developers as well as participants, we conclude
that only having text-based documentation (in addition to the WSDL) as a common model is
difficult. We realized that a fair amount of the solution to the problems is its formal descrip-
tion. In fact, had we had such descriptions from the start we could have saved several iterations
of discussion with developers.

However, it is important that we do not impose a formalism on any of the participants.
And we do not have the resources to provide a formal description of the problems in any

280 Petrie, Küster, Margaria, Zaremba, Lausen, Komazec

case. So for now, we simply try to improve the description of the problems so that they are as
consistent and unambiguous as possible.

Finding some middle ground for problem description between formalism and openness,
as well as finding resources for the problem maintenance (which includes the requisite web
services), is an ongoing issue for the Challenge.

Collaboration Infrastructure.

Having effective means to share information between the organizers and the participants is
another important aspect for a successful challenge. We have started with a set of static web
pages, however it was soon clear that this is suboptimal. A Wiki that enables corrections and
improvements on the documentation in a collaborative fashion turned out to be much more
adequate. While this improved the efficiency of the discussions around the different problems
sets, it turned out not to be enough to share descriptions of the solutions between participants.

Similar to the problems, also the solutions come with a fair amount of complexity. In order
for a team to participate, we required to publish the declarative parts of the teams solution
on the Semantic Web Challenge Portal. A Wiki did not provide sufficient means to share
such complex structures, so in addition we created FTP accounts. However this turned out
to be suboptimal: while it enabled understanding and verification of a particular solution, the
link between a solution’s description in the papers submitted to the workshops, to the related
discussion on the Wiki, and finally to the relevant parts of a solution’s declarative description is
still insufficiently integrated. We assume that this is one of the reasons why so far participants
only share to a very limited amount of their formalizations. We hope to improve this in the
future.

Evaluation and Debug Infrastructure.

Another aspect of involving real Web services is the possibility of automatically verifing a
solution by issuing a set of different messages and monitor the subsequent message exchanges.
This is a useful feature, since it makes the challenge more scalable with respect to the number
of participants - it essentially enables to automatically verify solutions. Moreover it allows for
teams to participate not only during workshops, but also at any other time by just exposing
their Web Services. Other people interested in the claims of a team can just use the online
portal to start a test set against a particular solution and verify its coverage.

Currently, the messages are independently verified by the testbed manager. We are build-
ing (and have prototyped) an automatic verification system based upon a standard and correct
message exchange and comparing that to the exchange performed by a participant team. De-
termining that a team has selected the correct service in the discovery scenarios is rather trivial
but we are considering more rigorous forms of verification for these as well.

Another aspect is to offer some form of debugging support. Already with six teams it
was quite often necessary to examine the application server’s log, be it to determine a typo in
the endpoint addresses used in a mediator implementation, or to identify an invalid message.9

Over time we added different views to the online portal that allows to examine parts of the
message exchange and in particular the status of the systems involved.

9 Making error logs available to the participants proved essential in 2008 and has been done.

17 Status, Perspectives, and Lessons Learned 281

17.4 Use of Industrial Standards

We have tried to make the scenarios industrially relevant by using standards in use in industry,
starting with the WSDL. This effort shows up particularly in the mediation type of scenarios.
As of now there are three levels related to the data and process mediation scenarios. The
first, original scenario involves the mediation between Blue and Moon, within a stable (static)
scenario: the protocols, the messages, and the data formats are known and fixed.

Data and process mediation scenarios have been based completely on the RosettaNet pro-
tocol. RosettaNet Partner Interface Processes (PIPs) allow trading partners to connect elec-
tronically to process transactions and move information within their extended supply chains.
The first impression of the RosettaNet specification is its completeness, but once we started
to work on scenario definition and implementation, we realized that several aspects of the
specification should be improved to allow for automation of the RosettaNet processes.

We can give a couple of examples: The same fields in the schema of one message are
defined differently in the schema of another message (even within the same PIP). There are
various possible interpretation for particular fields in the messages, causing ambiguities: two
teams working on the integration solution might actually use the same field differently. Vari-
ous cases allow for free interpretation, e.g. having an address defined on the order level and on
the line item level caused a confusion about which one should be used. Regarding the practical
problems, potential RosettaNet messages are extremely large (e.g. even to confirm a message,
the whole initial message must be included with it), but the schema requires that at the same
time the whole message with many empty fields is sent. This is a problem with industrial stan-
dards that are essential the union of the interests of many stakeholders. In addition, there are
no formal semantics, so processes defined by UML specification can be interpreted differently
by various teams.

Within the Mediation type of scenarios is also the set of Payment problems. These aim at
covering yet another aspect of the comprehensive SWS problem landscape: overcoming prob-
lems of web service orchestrations. Positioned as a mediation type of scenario, it very directly
challenges the orchestration problem-solving capability of technologies used by participants.

This is a payment scenario and, again, we wanted to use industrial standards. Unfortu-
nately, RossettaNet used in the mediation type of scenarios doesn’t provide support for com-
munication with financial institutions (e.g. banks) in order to conclude purchase order with a
payment. After some time spent in research it was identified that the gap between RossettaNet-
enabled systems and financial institutions could be bridged with a solution relying on ISO
20022 UNIversal Financial Industry (UNIFI) message scheme standard10. It is supported by
major players in financial market (e.g. SWIFT11 and TWIST12) and it provides a common
development platform for exchanging and processing financial messages encoded in a stan-
dardized XML.

The standard covers a wide range of possible cases found in the respective domains (such
as Cash management, Payments Clearing and Settlement, Securities management, Trade Ser-
vices, etc). Among them, especially interesting for the scenario, was the Payments Initiation13

case describing set of messages used to initiate and manage funds transfer between debtor (or
customer) and creditor (or seller). This scenario uses slightly simplified versions of the orig-
inal message specifications. All message definitions are given as appropriate XML schemas.

10 http://www.iso20022.org
11 http://www.swift.com
12 http://www.twiststandards.org
13 http://www.iso20022.org/index.cfm?item_id=59950

282 Petrie, Küster, Margaria, Zaremba, Lausen, Komazec

We continue to consider the extent to which we can incorporate such industrial standards, and
which ones to use.

17.5 Evolution and Future Plans

The Challenge has been continuous through 2008 and future reports will describe those de-
velopments. The initiative is now going beyond its initial boundaries and at least three new
teams have been added, with one additional technical approach by an existing team in 2008.
The W3C Semantic Web Service Testbed Incubator Group initiated by Challenge organizers
has issued a report on evaluation methodology14.

The Challenge is now quite a growing and still naturally mutating ”organism”. Many
of the initial assumptions about how the challenge should be run and structured have been
verified while some have been modified during its execution. In this last section we would like
to mention just a few new ideas for the future Challenge evolution.

Scenario Development.

The Challenge needs more new interesting scenarios. While the initial scenarios have been
provided by several of the authors of this chapter, this is not scalable, and currently we have
already new scenario problems created by the larger SWS Challenge community. We are open
for new proposals of interesting use cases, which could be hosted by the Challenge testbed
system and against which participants could test their execution engines.

These plans are also related with providing an easier process for submitting new problems.
Currently we maintain a wiki infrastructure where all the scenarios are stored. Together with
the growth of the community, we should have a more formal process of how we incorporate
new use cases, how we make sure that they fit the interests of participants (a formal approval
process), and how to implement and test the web services of the new problems.15

More Automatic Verification.

During previous workshops we used the whole workshop to evaluate solutions of all the teams.
This may not scale as the number of teams participating in the challenge is growing. What is
even more important is the lesson we learned during the Athens meeting, that teams may
have different understanding of passing/not passing the same tests. The Challenge requires an
improved integrated testbed allowing for automation of the verification process. The set of the
automated tests would decide on behalf of organizers if the team accomplished the given level
of problems, as the automated script would be run against proposed solution (e.g. a message
unknown to participants would be send to their mediators to make sure that the solution is
not hardcoded and can actually handle any valid message). This functionality is currently in
development and is limited only by our resources16.

14 W3C SWS Challenge Testbed Incubator Methodology Report 31 March 2008:
http : //www.w3.org/2005/Incubator/swsc/XGR− SWSC − 20080331/

15 A new proposal for an extensive new scenario was presented in the 2008 Tenerife workshop
and is in the process of being evaluated by the organizers.

16 The STI Innsbruck provides most of the computer and staffing resources on a volunteer
basis.

17 Status, Perspectives, and Lessons Learned 283

We need to document the verification procedure better on the wiki for the benefit of new
participants. And we need to evolve a better procedure for testing the discovery scenarios
where the only message that can be tested is a message to the selected service. This could of
course be done manually, and so is no proof of the technology. Currently, the Challenge group
is persuaded by live demos and code inspection.

Mashups and other Extensions.

There has been the idea of integrating different problems to allow ”mashups” - combining
content from more than one source into an integrated experience. Currently the scenarios are
pretty separated and we proved during our past meeting the teams can accomplish one problem
without even touching the other one. Given this independence, it would be interesting, to split
the existing problems into micro-problems (and to host only micro-problems on the Challenge
server), but to allow to mashup them freely to create even new scenarios, not envisioned by
the creators of the mashups. However, so far we have not figured out a method of doing this.

It’s clear that scenario descriptions could be to some extent formally decomposed. Typi-
cally the scenario consists of:

• the set of running, publicly accessible Web services with clear interface definitions pro-
vided in the form of WSDL files,

• the set of XML Schemas that govern message structure and content,
• the set of sample messages that a solution should be capable to deal with, and
• natural language description of the problem that should be solved.

The question is how to further formalize these characteristics so as to permit mashups and
perhaps address some of the Challenge issues identified in this chapter.

Finally, we are looking at ways to import external web services into the testbed so that
we can evaluate the technologies within the scope of a much larger suite of services. This is
also likely to offer a test of various registry technologies, especially if the other participates
are able to select among alternatives. We especially want to identify what parts of industrial
web service issues that are not covered by existing scenarios. The development of any formal
process for accepting and approving new scenarios to be established on the basis of outcomes
of W3C Testbed Incubator should take into account coverage of possible SWS applications.

Cooperation with the S3 Contest.

We are interested in working with the “S3 Contest” (described in the Introduction chapter) in
developing a common suite of test services that can be used in both evaluation workshops.
Our methodology will remain distinct as we evaluate functionality, rather than performance.
This is an important distinction. The S3 Contest assumes that certain semantic technologies
are important and seeks to improve the breed with a contest involving speed and accuracy.

The SWS Challenge makes no such assumption. Rather we seek to understand what tech-
nologies, possibly semantic, are important software engineering technologies, and for what
classes of applications. Semantic Web Service technologies promise to deliver long expected
automation of overall Web service consumption thus minimizing the need for manual inter-
vention during typical lifecycle steps (i.e. discovery, negotiation, selection, mediation, com-
position, choreography, orchestration and invocation). We want to test this promise.

284 Petrie, Küster, Margaria, Zaremba, Lausen, Komazec

17.6 Conclusions

This Challenge has exposed the fact that using web services is still hard, with or without
semantics. We can only hope that the middleware tools will soon be mature. Otherwise, it will
be not only too hard to participate in the Challenge, but web services would prove to be too
difficult an area to which to apply semantic technologies.

A move to less mature alternatives to WSDL- type web services is not likely to help. First,
WSDL is embedded now in industry. Second, as any similar alternative (with XML descrip-
tions of the services) mature, the associated tools will go though similar maturity problems,
unless they take advantage of the current tools, in which case WSDL is just as good. However,
we remain open to the possibilities of other types of web services that fit the Dagstuhl defini-
tion. And we look for new tools and infrastructure that can make using web services easier for
our participants.

This Challenge has exposed the fact that academic claims of being able to solve problems
should be viewed very critically until they are verified by a methodology similar to that of the
Challenge. Every participant has found that solving even the simplest Challenge problem has
been far more difficult than anticipated, no one has solved all of the problems, and at least
one participant worked for an extended period of time without solving a single problem. At
least one semantically-oriented team has not attempted to solve other problems after seeing
the effort required to solve the first “simple” problem.

Certainly a good bit of this difficulty comes from the immaturity of the WSDL stack. But
the Challenge has exposed fundamental problems with some of the approaches. And it is clear
that some of the technologies that have continued to participate have become increasingly
semantic in the technologies deployed at each workshop, which we hope is beneficial.

But it is important that unless technologies are tested and evaluated by an initiative such
as this Challenge, then claims made purely on paper should be taken with a grain of salt.

As discussed above, the Challenge has not yet proven that “semantics” is a superior soft-
ware engineering technology, and indeed it is an open question of the right methodology for
testing the malleability of any software technology. In the end, a “semantic” technology may
only be some very declarative coding methodology that makes changes very easy to manage
and which will allow processes composed of web services to scale, for some large and im-
portant class of industrial problems. Indeed, we may be surprised in the future to find that
some scripting language, say PERL, can be used to compose web services as well as any more
advanced technique. We do not expect that this is the case, only that we will find out whether
it is,

As we move to more complex scenarios intended to reveal the advantages of semantic
approaches, we continue to scientifically validate claims and investigate what technologies
are good for managing services, the data they consume, and the processes that are com-
posed of such services to solve industry-relevant problems. While in this process of discovery,
The Challenge participants will continue to develop a level of understanding for each others
technologies that would not have been possible without the common problem set and come
to much a more precise understanding of the practically relevant tradeoffs between the ap-
proaches.

Index

addLineItem, 91, 104, 116, 162
Axis2, 153, 294
Blue, 15, 20, 21, 27, 44, 45, 58, 77, 83
BPEL, 9, 48, 67, 97, 101, 102, 117, 161
BPMN, 52, 54, 58, 61, 68, 144, 149, 156
choreography, 3, 33, 34, 38, 39, 42, 92,
183, 205, 206, 256, 264, 269, 299
closeOrder, 104, 126, 150, 162
composition, 1, 2, 3, 5, 8, 24, 43, 51, 64,
73, 74, 75, 101, 103, 106, 112, 114, 115,
124, 136, 138, 144, 154, 178, 181, 216,
284
createNewOrder, 46, 91, 104, 150,
Dagstuhl, 4, 291, 299
Description Logic, 33, 106, 109, 111, 230,
231, 264,
DIANE, 9, 67, 96, 185, 205, 207, 218,
219, 220, 221, 223, 228, 248, 249, 251,
254, 255, 257, 258, 282, 283, 285,
ebXML, 14, 185, 192
EDIFACT, 14
F-Logic, 8, 48, 195, 200, 248, 250, 252
Glue, 53, 154, 191, 192, 194, 195, 197,
200, 202, 203, 204, 248, 250, 251, 254,
255
GraphPlan, 102, 103, 115, 117
input message, 34, 41, 103, 104, 106, 115,
116, 117, 174
IRS-III, 48
jABC, 67, 72, 73, 75, 77, 78, 79, 80, 83,
85, 90, 91, 94, 262, 268, 269
jETI, 67, 72, 75, 79, 82, 84, 87, 134, 135,
136, 158, 237, 264
LTL, 8, 9, 73, 96, 131, 134, 136, 158
MEPs, 34, 40
miAamics, 10, 226, 227, 229, 232, 233,
240, 243, 262, 264, 265, 285, 286

Moon, 8, 15, 17, 20, 43, 44, 61, 77, 86, 91,
236, 294, 296
OMG, 54, 66
output message, 32, 34, 46, 102, 103, 106,
113, 115, 173
PIPs, 31, 296
Planning, 96, 102, 114, 126, 137
Precondition, 43, 102, 106, 113, 114, 115,
131, 162, 179, 264
RosettaNet, 6, 9, 14, 15, 16, 19, 44, 48,
60, 67, 87, 89, 120, 143, 147, 157, 160,
274, 294, 296
S3 Contest, 4, 5, 299
searchCustomer, 45, 91, 104, 122
semantic template, 102, 104, 105, 110,
113, 115
Service-Oriented Computing, 1, 4, 205
Service-Oriented Architecture, 5, 31, 53,
101, 145, 168
SIB, 70, 75, 76, 77, 78, 79, 80, 82, 83, 84,
89, 120, 135, 157, 160, 237, 238, 240,
268, 274
SOA, 31, 67, 73, 101, 145, 169, 185, 187,
276
SOAP, 33, 44, 51, 62, 80, 151, 157, 160,
161, 173, 219, 257
Swashup, 9
SWIFT, 19, 297
TWIST, 19, 297
UDDI, 51, 185, 191, 192
UML, 48, 66, 68, 148, 193, 208, 296
W3C, 4, 11, 52, 67, 103, 106, 186, 297,
299
Web services, 1, 3, 4
WebML, 48, 52, 53, 55, 56, 59, 61, 65, 68,
96, 143, 144, 148, 149, 150, 151, 156,
157, 158, 161, 163, 167, 195

Webratio, 53, 57, 68, 96, 143, 144, 148,
151, 157, 192, 195, 202, 247, 257
WS-Policy, 104, 105
WSC, 4, 5, 26
WSMF, 53
WSML-Flight, 54, 55, 148, 264, 273
WSMO, 32, 34, 42, 43, 44, 45, 46, 48, 52,
53, 54, 58, 66, 67, 68, 96, 106, 143, 145,
147, 149, 151, 152, 154, 178, 179, 180,
184, 187, 192, 204, 248, 250, 261, 265,
269, 270, 273, 275, 276
WSMX, 32, 42, 43, 48, 52, 54, 67, 143,
145, 147, 149, 151, 173, 177, 183, 185,
186, 261, 262, 264, 265, 273, 275
XML, 2, 4, 14, 16, 19, 34, 39, 41, 44, 45,
48, 56, 62, 80, 116, 147, 161, 163, 173,
178, 180, 220, 223, 291, 292, 294
XSLT, 31, 46, 56, 62, 63, 116, 151, 157

