

OPEN SOURCE DEVELOPMENT, ADOPTION
AND INNOVATION

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

OPEN SOURCE DEVELOPMENT, ADOPTION
AND INNOVATION

IFIP Working Group 2.13 on Open Source
Software, June 11-14, 2007, Limerick, Ireland.

Edited by

Joseph Feller
Business Information Systems, University College Cork, Ireland

Brian Fitzgerald
Lero - the Irish Software Engineering Research Centre, University of Limerick, Ireland

Walt Scacchi
Institute for Software Research, Donald Bren School of Information and Computer Sciences,
University of California, Irvine, USA.

Alberto Sillitti
Free University of Bolzano-Bozen, Italy

Library of Congress Control Number: 2007927182

Open Source Development, Adoption and Innovation

Edited by J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti

 p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
 ISBN: 13: 978-0-387-72485-0
 eISBN: 13: 978-0-387-72486-7
Printed on acid-free paper

Copyright 2007 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1
springer.com

Preface

We are very pleased to introduce Open Source Development, Adoption and

Innovation, the proceedings of the Third International Conference on Open Source

Systems (OSS 2007). Open source software (free software, libre software) has

emerged as a major field of scientific inquiry across a number of disciplines

(software engineering, information systems, business, economics, law, sociology,

just to name a few). In addition to this highly successful conference series, open

source has been the focus of dozens of conference program tracks, workshops,

tutorials and panels, as well as the theme for numerous special issues published by

many of the top journals in the disciplines listed above. A substantial library of

books has been published, targeted at both researchers and practitioners, and the web

is awash with the experiences and perspectives of a large community of open source

developers, observers, advocates (and detractors).

When the concept of open source began to gain mindshare in the global business

community, decision makers faced a challenge: to convert hype and potential into

sustainable profit and viable business models. As a community of researchers, we

face a similar challenge: to convert anecdote and speculation into empirical

description and predictive theory. Over the past several years, a substantial body of

multi-disciplinary (and in some cases truly inter-disciplinary) literature has emerged.

This literature provides us with rich descriptions of the various aspects of open

source, many based on empirical data rigorously gathered and analyzed using both

qualitative and quantitative methods. Our challenge is to continue this work, setting

aside anecdote and insisting on rigor, depth and completeness in our research. We

must also extend the work, so that open source research can move beyond

description to understanding and prediction. Our rhetoric is filled with claims that

open source is a different way to build software, acquire software, use software; that

it challenges development processes, software business models, and intellectual

property frameworks. Such rhetoric calls out for theory, both the careful testing of

existing theory in new (open source) contexts and also the building of new theory

emerging from the phenomenon itself.

We believe that this conference series, and the IFIP working group it represents,

can play an important role in meeting these challenges, and hope that this book will

become a valuable contribution to the open source body of research. Nearly 100

submissions from authors in 23 countries were carefully peer-reviewed; in the end,

15 papers are published here as full papers (Part I) and 25 published in a condensed

form as short papers (Part II). Additionally, 12 paper authors presented their work in

poster form for discussion at the conference (Part VI). Complementing the paper

program, we are pleased to include descriptions of the two panels (Part III), three

tutorials (Part IV) and five workshops (Part V) which were all an important part of

the conference event.

PrefaceVI

About IFIP WG 2.13

This is the first conference since the formal acceptance of this new Working Group

2.13 on Open Source Software by IFIP. Since the formal founding meeting on 10

June 2006 in Como, Italy, we have sought to consolidate the working group. The

Working Group has 27 founding members from Europe, North America, Middle

East, Asia /Pacific and Africa. The main objective of the Working Group is to enable

the diverse community of free, libre and open source software (OSS) researchers and

practitioners to rigorously investigate the technology, work practices, development

processes, community dynamics within OSS systems, complementing appropriately

other IFIP Working Groups where OSS is increasingly relevant. The scope of the

Working Group is detailed on the website which is being maintained by Kevin

Crowston at http://www.ifipwg213.org.

Since the group has been founded, the have been several exciting developments

in which group members have been centrally involved. Firstly, the results of several

EU-funded initiatives are emerging, such as CALIBRE (www.calibre.ie), which

studied the impact of open source software on the European secondary software

sector, COSPA (www.cospa-project.org), which studied the adoption of open source

by public administrations across Europe, and FLOSSIMPACT (www.flossimpact.eu)

which studied the impact of free/libre/open source software on innovation and

competitiveness of the European Union.

Ongoing projects in which the Working Group’s members are central include

COSI (www.itea-cosi.org), which is focusing on transferring the lessons of open

source and agile methods to traditional in-house development (the so-called inner

source phenomenon); OPAALS (www.opaals.org), which is seeking to build a

sustainable interdisciplinary research community in the emerging area of digital

ecosystems; QualiPSo (www.qualipso.org), which studies the quality and trust

aspects of Open Source Software and its adoption in the main stream industrial

process; and Open Code, Content and Commerce (O3C) Business models, a three-

year investigation of open innovation and value-creation strategies.

IFIP WG 2.13 OFFICERS

General Chair: Brian Fitzgerald, Lero, University of Limerick, Ireland

Vice-Chair: Walt Scacchi, University of California - Irvine, US

Vice-Chair: Giancarlo Succi, Free University of Bolzano-Bozen, Italy

Secretary: Ernesto Damiani, Free University of Bolzano-Bozen, Italy

Preface VII

Acknowledgements

We gratefully acknowledge the contributions made by the other OSS 2007

Conference officials: Ernesto Damiani (Tutorial Chair), Scott A. Hissam (Workshop

Chair), Sandra Slaughter (Panel Chair), Barbara Russo (Publicity Chair), and Alberto

Colombo and Fulvio Frati (Webmasters). Special thanks go to Lorraine Morgan for

her instrumental role in preparing this volume. We would like to thank the OSS 2007

sponsors, our international program committee, our board of reviewers and all the

local volunteer organizers and supporters, without whom this conference could not

take place. Finally, we thank all the authors, panelists, tutorial and workshop

organizers who provided this years conference with such an excellent program.

Joseph Feller (Program Co-Chair)1

Brian Fitzgerald (Organizing Chair)2

Walt Scacchi (General Chair) 3

Alberto Sillitti (Program Co-Chair)4

Limerick, Ireland

June 2007

1 Business Information Systems, University College Cork, Ireland
2 Lero - the Irish Software Engineering Research Centre University of Limerick, Ireland
3 Institute for Software Research, Donald Bren School of Information and Computer Sciences,

University of California, Irvine, USA.
4 Free University of Bolzano-Bozen, Italy

Organization

Conference Officials

General Chair: Walt Scacchi University of California, Irvine, US

Program Chair: Joseph Feller University College Cork, Ireland

Alberto Sillitti Libera Università di Bolzano, Italy

Organising Chair: Brian Fitzgerald University of Limerick, Ireland

Tutorial Chair: ErnestoDamiani University of Milan, Italy

Workshop Chair: Scott Hissam Carnegie Mellon University, US

Panel Chair: Sandra Slaughter Carnegie Mellon University, US

Publicity Chair: Barbara Russo Free University of Bolzano-Bozen, Italy

Web Master: Alberto Colombo University of Milan, Italy

Fulvio Frati University of Milan, Italy

OrganizationX

Program Committee

Guenter Boeckle Siemens, Germany

Gerry Coleman Dundalk Institute of Technology, Ireland

Kieran Conboy NUI Galway, Ireland

Kevin Crowston Syracuse University, USA

Jean-Michel Dalle Universite Pierre et Marie Curie, France

Stefano De Panfilis Engineering Ingegneria Informatica, Italy

Francesco Di Cerbo University of Genoa, Italy

Gabriella Dodero University of Bolzano-Bozen, Italy

Mahmoud Elish King Fahd University, Saudi Arabia

Pat Finnegan University College Cork, Ireland

Rishab Aiyer Ghosh University of Maastricht, The Netherlands

Jesus M. Gonzalez-Barahona University Rey Juan Carlos, Spain

Jean-Luc Hardy Eurocontrol, France

Jeremy Hayes University College Cork, Ireland

Joseph Kiniry University College Dublin, Ireland

Stefan Koch University of Economics and BA, Austria

Derrick Kourie University of Pretoria, South Africa

Jean Pierre Laisne ObjectWeb, France

Karim Lakhani Harvard, USA

Gregory Lopez Thales, Frances

Bjorn Lundell University of Skovde, Sweden

Paul Malone Waterford Institute of Technology, Ireland

Martin Miclmayr University of Cambridge, UK

Sandro Morasca Universita degli Studi dell’Insubria, Italy

Bulent Ozel Carnegie Mellon University, USA

Witold Pedrycz University of Alberta, Canada

Paolo Pumilia EST, Italy

Barbara Russo University of Bolzano-Bozen, Italy

Gregory Simmons University of Ballarat, Australia

Marco Scotto University of Bolzano-Bozen, Italy

Barbara Scozi Politecnico di Bari, Italy

Katherine Steward University of Maryland, USA

Malcom Tyrell Dublin City University, Ireland

Tony Wasserman Carnegie Mellon University, USA

Hongbo Xu South China University of Technology,

China

Organization XI

Board of Reviewers

Dave Kelly University College Cork, Ireland

Neil Kiely University College Cork, Ireland

Niamh O'Riordan University College Cork, Ireland

Zhengnan Liang University College Cork, Ireland

Patrick Wall University College Cork, Ireland

Peter Wittek University College Cork, Ireland

List of Contributors

Timo Aaltonen

Tampere University of Technology,

Finland

Timo.Aaltonen@tut.fi

Serge Abiteboul

INRIA Futurs, France

Serge.abiteboul@inria.fr

Jyrki Akkanen

Nokia Research Centre, Finland

Jyrki.akkanen@nokia.com

Eileen Allen

Syracuse University, US

eeallen@syr.edu

L. Angelis

Aristotle University, Greece

lef@csd.auth.gr

Maria Antikainen

VTT Technical Research Centre of

Finland, Finland

Maria.antikainen@vtt.fi

Claudio Agostina Ardagna

University of Milan, Italy

ardagna@dti.unimi.it

Gabriela Avram

University of Limerick, Ireland

Gabriela.avram@ul.ie

Claudia Ayala

Technical University of Catalunya,

Spain

Cayala@lsi.upc.edu

Christian Bac

Groupe des Ecoles de

Telecommunications, France

Christianbac@int-evry.fr

Nassim Belbaly

GSCM, France

Hind Benbya

GSCM, France

Evangelia Berdou

London School of Economics and

Political Science, UK

Olivier Berger

Groupe des Ecoles de

Telecommunications, France

Olivier.Berger@int.evry.fr

Ludger Bischofs

OFFIS, Germany

Ludger.bischofs@offis.de

Patrizia Boccacci

University of Genova, Italy

boccacci@disi.unige.it

Jaap Boender

Universite Paris VII , France

boender@pps.jussieu.fr

Luca Botturi

University of Lugano, Switzerland

botturil@lu.unisi.ch

Ciaran Bryce

University of Geneva, Switzerland

Ciaran.bryce@unige.ch

Michele Cabano

Università di Bologna, Italy

Michele.cabano@unibo.it

Andrea Capiluppi

University of Lincoln, UK

acapiluppi@lincoln.ac.uk

List of ContributorsXVI

Fabio Caparica

fcl@cin.ufpe.br

Veronica Carrega

University of Genova, Italy

Carrega@disi.unige.it

Scott Christley

University of Notre Dame, USA

Megan Conklin

Elon University, US

mconklin@elon.edu

Reidar Conradi

Norwegian University of Science and

Technology, Norway

Conradi@idi.ntnu.no

Grahame S. Cooper

University of Salford, UK

g.s.cooper@salford.ac.uk

Kevin Crowston

Syracuse University, US

Crowston@syr.edu

Jean-Michel Dalle

Université Pierre et Marie Curie,

France

Jean-michel.dalle@upmc.fr

Ernesto Damiani

University of Milan, Itlay

damiani@dti.unimi.it

Vincenzo D’Andrea

University of Trento, Italy

dandrea@dit.unitn.it

Itay Dar

Tel Aviv University, Israel

daritay@post.tau.ac.il

Francois Dechelle

EDGE-IT, France

fdechelle@mandriva.fr

Hunor Demeter

Nokia Research Centre, Hungary

Hunor.Demeter@nokia.com

Matthijs den Besten

University of Oxford, UK

Matthijs.denbesten@oerc.ox.ac.uk

Roberto di Cosmo

Universite Paris VII, France

dicosmo@pps.jussieu.fr

Gabriella Dodero

Free University of Bozen, Italy

Gabriella.dodero@unibz.ie

Santiago Duenas

Universidad Rey Juan Carlos, Spain

sduenas@gsyc.escet.urjc.es

Berke Durak

INFRIA Rocquencourt, France

Berke.durak@inria.fr

Tamás Eppel

Budapest University of Technology

and Economics, Hungary

peletomi@gmail.com

U. Yeliz Eseryel

Syracuse University, US

Uyeserye@syr.edu

Pat Finnegan

University College Cork, Ireland

P.Finnegan@ucc..ie

List of Contributors XVII

Brian Fitzgerald

Queensland University of

Technology, Australia

Bf.Fitzgerald@qut.edu.au

Xavier Franch

Technical University of Catalunya,

Spain

franch@lsi.upc.edu

Fulvio Frati

University of Milan

Frati@dti.unimi.it

G.R. Gangadharan

University of Trento, Italy

gr@dit.unitn.it

Yongqin Gao

University of Notre Dame, US

Ygao1@nd.edu

Mehmet Gencer

Istanbul Bilgi University, Turkey

Mgencer@cs.bilgi.edu.tr

Alex Sandro Gomes

asg@cin.ufpe.br

Jesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos, Spain

jgb@gsyc.escet.urjc.es

Benoît Hamet

PhpGroupWare Project, France

Benoit.hamet@laposte.net

Helen Hasan

University of Wollongong, Australia

hasan@uow.edu.au

Wilhelm Hasselbring

University of Oldenburg, Germany

hasselbring@informatik.uni-

oldenburg.de

Øyvind Hauge

Norwegian University Science and

Technology, Norway

Hans-Ludwig Hausen

Fraunhofer, Germany

Hans-

Lundwig.Hausen@fit.fraunhofer.de

Robert Heckman

Syracuse University, US

rheckman@syr.edu

Scott Hissam

Carnegie Mellon University, US

shissam@sei.cmu.edu

James Howison

Syracuse University, US

jhowison@syracuse.edu

Francis Hunt

University of Cambridge, UK

Zoltán Ivánfi

Nokia Research Centre, Hungary

Zoltan.ivanfi@nokia.com

Ari Jaaksi

Nokia, Finland

Ari.jaaski@nokia.com

Chris Jensen

Universityof California, US

Cjensen@ics.uci.edu

Jyke Jokinen

Tampere University of Technology,

Finland

List of ContributorsXVIII

Uros Jovanvoic

XLAB, Ljubjana, Slovenia

Uros.jovanovic@xlab.si

Stefan Koch

Vienna University of Economics and

Business Administration, Austria

Stefan.koch@wu-wien.ac.at

A. Günes Koru

UMBC, US

gkoru@umbc.edu

Jacob Krivoruchka

Nova Southeastern University, US

Krivoruc@nova.edu

Luigi Lavazza

CEFRIEL, Italy

Luigi.lavazza@uninsubria.it

Xavier Leroy

INRIA Rocquencourt, France

Xavier.Leroy@inria.fr

Jingyue Li

Norwegian University of Science and

Technology, Norway

jingyue@idi.ntnu.no

Qing Li

Syracuse University, US

Qli03@syr.edu

Juho Lindman

Helsinki School of Economics,

Finland

Juho.lindman@hse.fi

Brian Lings

University of Skövde, Sweden

Brian.lings@his.se

Hongfang Liu

Georgetown University Medical

Centre

h1224@georgetown.edu

Gregory Lopez

Thales, France

Gregory.lopez@thalesgroup.com

Björn Lundell

University of Skövde, Sweden

Bjorn.lundell@his.se

Greg Madey

University of Notre Dame, US

gmadey@nd.edu

Fabio Mancinelli

Universite Paris VII, France

Fabio@pps.jussieu.fr

Y. Manolopoulos

Aristotlee University, Greece

manolopo@csd.auth.gr

Pentti Marttiin

Nokia, Finland

Pentti.marttiin@nokia.com

Mari Matinlassi

VTT Technical Research Centre of

Finland

Riccardo Mazza

University of Lugano, Switzerland

mazzar@lu.unisi.ch

Regis Meissonier

GSCM, France

Janne Merilinna

VTT Technical Research Centre of

Finland

List of Contributors XIX

Martin Michlmayr

University of Cambridge, UK

Martin@michlmayr.org

Cesare Monti

Università di Bologna, Italy

Cesare.monti@unibo.it

Sandro Morasca

Universita dell’Insubria, Italy

Sandro.morasca@uninsubria.it

Thiago Moreira

tjml@cin.ufpe.br

Lorraine Morgan

University of Limerick, Ireland

Lorraine.morgan@ul.ie

Rogério Nibon

Rtn2@cin.ufpe.br

John Noll

Santa Clara University, US

jnoll@cse.scu.edu

Jukka K. Nurminen

Nokia Research Centre, Finland

Jukka.k.nurminen@nokia.com

Beyza Oba

Istanbul Bilgi University, Turkey

boba@bilgi.edu.tr

Ville Oksanen

Helsinki University of Technology,

Finland

Stanislaw Osinski

Poznan Supercomputing and

Networking Centre, Poland

Stanislaw.osinski@man.poznan.pl

Bulent Ozel

Carnegie Mellon University, US

bulento@cmu.edu

Michel Pawlak

University of Geneva, Switzerland

pawlak@cui.unige.ch

Mark Perry

University of Western Ontario,

Australia

mperry@uwo.ca

Anna Persson

University of Skövde, Sweden

anna.persson@his.se

Clara Pezuela

Atos Origin, Spain

Clara-pezuela@atosorigin.com

Charmaine C Pfaff

University of Wollongong, Australia

Ccp02@uow.edu.au

Giulio Piancastelli

Università di Bologna, Italy

giulio.piancastelli@unibo.it

Radu Pop

INRIA-Mandriva, France

Radu.pop@inria.fr

David Probert

University of Cambridge, UK

Gregorio Robles

Universidad Rey Juan Carlos, Spain

Grex@gsyc.escet.urjc.es

Andreas Rosdal

Norwegian University Science and

Technology, Norway

List of ContributorsXX

Bruno Rossi

Free University of Bolzano-Bozen,

Italy

Bruno.rossi@unibz.it

Christina Rossi

Politecnico di Milano, Italy

Cristina1.rossi@polimi.it

Francesco Rullani

Copenhagen Business School,

Denmark

Fr.ivs@cbs.dk

Barbara Russo

Free University of Bolzano-Bozen,

Italy

Barbara.russo@unibz.it

Walt Scacchi

University of California, US

wscacchi@ics.uci.edu

Harald Schmidbaueer

Istanbul Bilgi University, Turkey

harald@bilgi.edu.tr

Andrew Schofield

University of Salford, UK

a.j.schofield@pgt.salford.ac.uk

Marko Seppanen

Tampere University of Technology,

Finland

Anne Sheehan

University of Limerick, Ireland

Anne.Sheehan@ul.ie

Anders Sigfridsson

University of Limerick, Ireland

Anders.sigfridsson@ul.ie

Alberto Sillitti

Libera Università di Bolzano, Italy

Alberto.sillitti@unibz.it

Darren Skidmore

Monash University, Australia

Darren.skidmore@infotech.monash.e

du.au

Sandra A. Slaugher

Carnegie Mellon University, US

Sandras@andrew.cmu.edu

Yuping Song

Henan University of Technology

songyup@gmail.com

Carl-Frederik Sorensen

Norwegian University Science and

Technology, Norway

Sulayman K. Sowe

Aristotle University, Greece

sksowe@csd.auth.gr

I. Stamelos

Aristotle University, Greece

stamelos@csd.auth.gr

Petri Stenman

Nokia Ventures Organization,

Finland

Petri.stenman@nokia.com

Matthias Studer

University of Geneva, Switzerland

Matthias.studer@metri.unige.ch

Giancarlo Succi

Free University of Bolzano-Bozen,

Italy

Giancarlo.succi@unibz.lit

List of Contributors XXI

Daniel K. Sullivan

University of Limerick, Ireland

Daniel.Sullivan@ul.ie

Nic Suzor

Queensland University of

Technology, Australia

n.suzor@qut.edu.au

Davide Taibi

Universita dell’Insubria, Italy

Davide.taibi@uninsubria.it

Stefano Tardini

University of Lugano, Switzerland

Tardinis@lu.unisi.ch

Ralf Treinen

LSV, ENS de Cachan, France

treinen@lsv.ens-cachan.fr

Vehbi Sinan Tunalio Lu

Istanbul Bilgi University, Turkey

Vst@cs.bilgi.edu.tr

Tere Vaden

University of Tampere, Finland

Niklas Vainio

University of Tampere, Finland

Jaani Väisänen

Tampere University of Technology,

Finland

Jaani.vaisanen@tut.fi

Frank van der Linden

Philips Medical Systems, The

Netherlands

Frank.van.der.linden@phillips.com

Manon van Leeuwen

FUNDECYT, Spain

manon@fundecyt.es

Gabriel Vasile

INRIA Futurs, France

gabriel.vasile@inria.fr

Dan Vodislav

CEDRIC-CNAM, France

vodislav@cnam.fr

Jérôme Vouillon

Universite Paris VII, France

vouillon@pps.jussieu.fr

Quang Vu Dang

Group des Ecoles de

Telecommunications, France

VuDang-Quang@int.evry.fr

Dawid Weiss

Poznan University of Technology,

Poland

Dawid.weiss@cs.put.poznan.pl

Michael Weiss

Carleton University, Canada

Weiss@scs.carelton.ca

Dongsong Zhang

UMBC, US

zhangd@umbc.edu

Contents

__

Part I Full Papers
__

FOCSE: An OWA-based Evaluation Framework for OS Adoption in Critical

Environments……………………………………………………….…………. 3

Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Open Source Collaboration for Fostering Off-The-Shelf Components

Selection……………………………………………………………………….. 17

Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch,

Jingyue Li

From the Cathedral to the Bazaar: An Empirical Study of the Lifecycle of

Volunteer Community Projects…………………………………………….….. 31

Andrea Capiluppi and Martin Michlmayr

Project Entity Matching across FLOSS Repositories……………………….… 45

Megan Conklin

Can Knowledge Management be Open Source?………………………………. 59

Charmaine C Pfaff and Helen Hasan

Emergent Decision-Making Practices in Free/Libre Open Source Software

(FLOSS) Development Teams………………………………………………… 71

Robert Heckman, Kevin Crowston, U. Yeliz Eseryel , James Howison, Eileen

Allen, Qing Li

Experiences on Product Development with Open Source Software…………... 85

Ari Jaaksi

Exploring the Effects of Coordination and Communication Tools on the

Efficiency of Open Source Projects using Data Envelopment Analysis…….… 97

Stefan Koch

Innovation in Open Source Software Development: A Tale of Two Features... 109

John Noll

Corporate Involvement of Libre Software: Study of Presence in Debian Code

over Time……………………………………………………………………… 121

Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

ContentsXXIV

Sprint-driven development: working, learning and the process of

enculturation in the PyPy community…………………………………………. 133

Anders Sigfridsson, Gabriela Avram, Anne Sheehan and Daniel K. Sullivan

Using Repository of Repositories (RoRs) to Study the Growth of F/OSS

Projects: A Meta-Analysis Research Approach……………………………….. 147

Sulayman K. Sowe, L. Angelis, I.Stamelos and Y. Manolopoulos

Community Structure, Individual Participation and the Social Construction of

Merit…………………………………………………………………………… 161

Matthias Studer

OpenBQR: a framework for the assessment of OSS…………………………... 173

Davide Taibi,Luigi Lavazza and Sandro Morasca

Network Analysis of the SourceForge.net Community……………………….. 187

Yongqin Gao and Greg Madey

__

Part II Short Papers
__

Influence in the Linux Kernel ………………………….……………………... 203

Timo Aaltonen and Jyke Jokinen

EDOS Distribution System: A P2P architecture for open-source content

dissemination…………………………………………………………………... 209

Serge Abiteboul, Itay Dar, Radu Pop, Gabriel Vasile and Dan Vodislav

Reusing an open source application – practical experiences with a mobile

CRM pilot……………………………………………………………………… 217

Jyrki Akkanen, Hunor Demeter, Tamás Eppel, Zoltán Ivánfi, Jukka K.

Nurminen, and Petri Stenman

The role of trust in OSS communities – Case Linux Kernel community……... 223

Maria Antikainen, Timo Aaltonen and Jaani Väisänen

Authenticating from multiple authentication sources in a collaborative

platform………………………………………………………………………... 229

Quang Vu Dang, Olivier Berger, Christian Bac, Benoît Hamet

Learning and the imperative of production in Free/Open Source development. 235

Evangelia Berdou

Contents XXV

Open source technologies for visually impaired people………………………. 241

Patrizia Boccacci, Veronica Carrega and Gabriella Dodero

Diffferent Bug Fixing Regimes? A Preliminary Case for Superbugs…………. 247

Jean-Michel Dalle and Matthijs den Besten

Free/Open Services: Conceptualization, Classification and

Commercialization…………………………………………………………….. 253

G.R. Gangadharan, Vincenzo D’Andrea and Michael Weiss

Surveying Industrial Roles in Open Source Software Development………….. 259

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal

Guiding the Discovery of Open Source Software Processes with a Reference

Model………………………………………………………………………….. 265

Chris Jensen and Walt Scacchi

Effect of Coupling on Defect Proneness in Evolutionary Open-Source

Software Development………………………………………………………… 271

A.Gunes.Koru, Dongsong Zhang,and Hongfang Liu

The Use of Open Source Software in Enterprise Distributed Computing

Environments………………………………………………………………….. 277

Jacob Krivoruchko

Shared Assumption Concerning Technical Determination in Apache Web

Server Developer Community…………………………………………………. 283

Juho Lindman

Learning Through Practical Involvement in the OSS Ecosystem: Experiences

from a Masters Assignment……………………………………………………. 289

Björn Lundell, Anna Persson and Brian Lings

Release Management in Free Software Projects: Practices and Problems…….. 295

Martin Michlmayr, Francis Hunt and David Probert

Context-Dependent Evaluation Methodology for Open Source Software…….. 301

Michele Cabano, Cesare Monti and Giulio Piancastelli

Benefits and Drawbacks of Open Source Software: An Exploratory Study of

Secondary Software Firms…………………………………………………….. 307

Lorraine Morgan and Pat Finnegan

ContentsXXVI

Introducing Usability Practices to OSS: The Insiders’ Experience…………… 313

Stanislaw Osinski and Dawid Weiss

Perceptions on F/OSS Adoption………………………………………………. 319

Bulent Ozel, Uros Jovanovic, Beyza Oba and Manon van Leeuwen

Open Source Software and Open Data Standards as a form of Technology

Adoption: a Case Study………………………………………………………... 325

Bruno Rossi, Barbara Russo and Giancarlo Succi

Free/Open Source Software Adoption, Public Policies and Development

Indicators: An International Comparison……………………………………… 331

Harald Schmidbauer, Mehmet Gencer and Vehbi Sinan Tunalio_Lu

Levels of Formality in FOSS Communities…………………………………… 337

Andrew Schofield and Professor Grahame S. Cooper

Stakeholder value, usage, needs and obligations from different types of

F/LOSS licenses……………………………………………………………….. 343

Darren Skidmore

__

Part III Panels
__

Introduction to Panel Discussions at the Third International Conference on

Open Source Systems – OSS 2007…….……………………………………… 351

Sandra A. Slaughter

Legal issues for free and open source software in government……………….. 353

Nic Suzor, Brian Fitzgerald and Mark Perry

Data and analyses sharing to support research on free/libre open source

software: A Debate……………………………………………………………. 355

Brian Fitzgerald, Evangelia Berdou, Kevin Crowston, Greg Madey, Megan

Conklin, Stefan Koch and Walt Scacchi

__

Part IV Tutorials
__

Introduction to OSS 2007 Tutorial Program ………………………………….. 359

Ernesto Damiani

Contents XXVII

How to Gather FLOSS Metrics………………………………………………... 361

Megan Conklin, Jesus M. Gonzalez-Barahona and Gregorio Robles

EDOS-Tools Tutorial: EDOS Tools for Linux Distributions Dependencies

Management and Quality Assurance…………………………………………... 363

Francois Déchelle and Fabio Mancinelli

Quality Specification, Testing and Certification of Bespoken, Open Source

and Commercial Off-The-Shelf Systems……………………………………… 365

Hans-Ludwig Hausen

__

Part V Workshops
__

Introduction to Workshops at the Third International Conference on Open

Source Software – OSS 2007………………………………………………….. 369

Scott Hissam

1
st
 International Workshop on Trust in Open Source Software ……………... 371

Sandra Morasca and Alberto Sillitti

Open Source Software and Product Lines 2007……………………………... 375

Frank van der Linden and Bjorn Lundell

Towards a New Industrial Organization? OSS in Economic and Managerial

Perspective…………………………………………………………………….. 377

Jean Michel Dalle, Christina Rossi and Francesco Rullani

2
nd

 International Workshop on Public Data about Software Development …... 381

Jesus M. Gonzalez-Barahona, Megan Conklin and Gregorio Robles

Workshop on Free and Open Source Learning Environments and Tools…….. 385

Luca Botturi, Riccardo Mazza and Stefano Tardini

__

Part VI Posters
__

Heterogeneous collaborative development involving open and inner source:

Challenges for the European Software Intensive Industry…………………….. 391

Frank van der Linden, Bjorn Lundell and Pentti Mart inti

ContentsXXVIII

Taking advantage of Open Source benefits for boosting growth in industry….. 391

Clara Pezuela and Gregory Lopez

Sound tools for package dependency management in Free and Open Source

Software distributions…………………...…………………………………….. 391

Fabio Mancinelli, Roberto di Cosmo, Jerôme Vouillon, Jaap Boender, Berke

Durak, Xavier Leroy and Ralf Treinen

Openware Integration Technique for In-house Software and Open Source

Components………………...………………………………………………….. 391

Janne Merilinna and Mari Matinlassi

Generating and Visualising Organisational Structures of Free/Libre and Open

Source Software Projects……………………………………………………… 392

Ludger Bischofs and Wilhelm Hasselbring

OSS design science and its influence on OSS effectiveness…………………... 392

Nassim Belbaly, Hind Benbya and Regis Meissonier

FLOSS as Democratic Principle………………………………………………. 392

Mark Berry, Brian Fitzgerald and Nic Suzor

Elements of Open Source Community Sustainability…………………………. 392

Niklas Vainio, Ville Oksanen, Tere Vaden and Marko Seppänen

Global and Temporal Analysis of Social Positions at SourceForge.net………. 392

Scott Christley and Greg Madey

The user involvement process on open source e-learning tools……………….. 392

Thiago Moreira, Alex Sandro Gomes, Fabio Caparica and Rogerio Nibon

Will Open Source Software Promise China a New Future of Domestic

Software Industry……………………………………………………………… 392

Yuping Song

A Reference Model for F/OSS Process Management…………………………. 392

Michel Pawlak and Ciaran Bryce

Part I

Full Papers

FOCSE: An OWA-based Evaluation
Framework for OS Adoption in Critical

Environments

Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati
University of Milan - via Bramante 65, Crema (CR), Italy

{ardagna,damiani,frati}@dti.unimi.it

Abstract. While the vast majority of European and US companies increasingly
use open source software for non-key applications, a much smaller number of
companies have deployed it in critical areas such as security and access
control. This is partly due to residual difficulties in performing and
documenting the selection process of open source solutions. In this paper we
describe the FOCSE metrics framework, supporting a specific selection
process for security-related open source code. FOCSE is based on a set of
general purpose metrics suitable for evaluating open source frameworks in
general; however, it includes some specific metrics expressing security
solutions' capability of responding to continuous change in threats. We show
FOCSE at work in two use cases about selecting two different types of
security-related open source solutions, i.e. Single Sign-On and Secure Shell
applications.

1 Introduction

In the last decade, open source operating systems and middleware platforms have
been widely deployed [4]. In the security area, the adoption of open source solutions
has been much slower, since most users do not completely trust the open source
community and consider open source middleware a potential “backdoor” for
attackers, potentially affecting overall system security. However, proprietary security
solutions have their own drawbacks such as vendor lock-in, interoperability
limitations, and lack of flexibility. Recent research suggests that the open source
approach can overcome these limitations [3, 21]. According to some researchers,
open source solutions may even in the end improve security, as they give greater
visibility of software vulnerabilities [11], giving the possibility to fix them as soon as
a threat is described. In our opinion, what is still missing to boost open source
adoption in security is a selection framework allowing the users to evaluate the level
of suitability of different open source security solutions. In itself, comparative
evaluation of OSS is a time-honored subject, and several researchers [8, 12] have
proposed complex methodologies dealing with the evaluation of open source

4 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

products from different perspectives, such as code quality, development flow and
community composition and participation. General-purpose open source evaluation
models, such as Bernard Golden's Open Source Maturity Model (OSMM) [14] do
not address some specific requirements of security software selection. However,
these models assess open source products based on their maturity, i.e. their present
production-readiness, while evaluating security solutions also involves trying to
predict how fast (and how well) a security component will keep abreast of new
attacks and threats. A security-oriented software evaluation framework should
provide potential adopters with a way to compare open source solutions identifying
the one which i) best suits their current non-functional requirements and ii) is likely
to evolve fast enough to counter emerging threats.

In this paper, we develop on our previous work [5] to obtain a specific technique
for evaluating open source security software, including access control and
authentication systems. Namely, we describe a Framework for OS Critical Systems
Evaluation (FOCSE) based on a set of metrics aimed at supporting open source
evaluation, through a formal process of adoption. FOCSE evaluates an open source
project in its entirety, assessing the community composition, responsiveness to
change, software quality, user support, and so forth.

The remainder of this paper is organized as follows. After a brief introduction of
the basic concepts of comparative software evaluation (Section 2) we present our set
of evaluation metrics (Section 3). Then, Section 4 presents the aggregator used to
integrate different metrics in a single estimation, allowing for ranking analyzed
solutions. Finally, Section 5 provides two use cases where the defined framework
evaluates open source Single Sign-On (SSO) and Secure Shell (SSH) solutions.
Section 6 gives our conclusions.

2 Basic Concepts

In this section, we provide a review of the technologies used in the context of
FOCSE evaluation. In particular, we describe the FLOSSmole project [13] used to
gather and store data about the open source solutions to be evaluated. An essential
prerequisite of FOCSE is the availability of the raw data necessary to compute the
metrics defined in Section 3. The availability of a database can greatly improve the
reliability and the effectiveness of FOCSE. FLOSSmole (formerly OSSmole) [10,13]
is a platform designed to gather, share and store data supporting comparative
analysis of open source software. FLOSSmole is aimed at: i) collecting raw data
about open source projects; ii) providing summary reports about open source
projects; iii) integrate data from other research teams; iv) provide tools to gather the

FOCSE: An OWA-based Evaluation Framework for OS Adoption 5

data of interest. In the following analysis, we relied on FLOSSmole for collecting
information about the projects subject to our analysis.1

3 FOCSE: a Framework for OS Critical Systems Evaluation

Generally speaking, few organizations rely on internal guidelines for the
selection of open source products. Our experience has shown that in most cases
project leaders select an open source solution based on its being readily available and
fulfilling their functional requirements [5, 6]. FOCSE evaluation criteria are aimed at
evaluating each open source project in its entirety, highlighting the promptness of
reacting against newly discovered vulnerabilities or incidents. Applications success,
in fact, depends on the above principle because a low reaction rate to new
vulnerabilities or incidents implies higher risk for users that adopt the software,
potentially causing loss of information and money.

3.1 Evaluation principles

FOCSE evaluation is based on six macro-areas [5]:

Generic Aspects (GA). i.e. all quantitative attributes expressing the solution's
non-functional features, i.e. those not related to its purpose or scope (for a
complete list, see [8]).

Developers Community (DC). i.e. quantitative attributes expressing the
composition and diversity of the developers community. A high number of
developers from different countries allows sharing of diverse backgrounds
and skills, giving vitality and freshness to the community and helping in
solving problems, including bugs definition and fixing.

Users Community (UC). The success of an open source application can be
measured in terms of number and profile of the users that adopt it and rely
on it. Obviously, measuring and evaluating the users community is less
simple than doing so for developers because users interacting with an open
source project are often anonymous. The users community, however, can be
quantitatively estimated by means of parameters like the number of
downloads, the number of requests, the number of posts inside the forum,
and the number of users subscribed to the mailing list. A qualitative measure
of this macro-area can also be given by the profile of the users adopting the
project: if users belong to well-known companies or organizations and report
positive results, the solution's UC indicators can be enhanced.

1 Of course, FOCSE does not mandate the use of FLOSSmole, as data can be gathered
manually by the evaluator. However, companies interested in comparative evaluation of
OSS solutions should rely on a certified and repeatable data collection technique.

6 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Software Quality (SQ). This area include metrics of quality built into the
software by the requirements, design, code and verification processes to
ensure that reliability, maintainability, and other quality factors are met.2

Documentation and Interaction support (DIS). This macro area is composed of
two major sub-areas: traditional documentation, that explains the
characteristics, functionalities and peculiarities of the software and support,
in terms of time allotted by developers to give feedback via forums, mailing
lists, white papers, and presentations.

Integration and Adaptability with new and existing technologies (IA). A
fundamental tenet of OS projects is full integration with existing
technologies at project startup and a high level of adaptability to new
technologies presented during project life. Another fundamental aspect is the
ability of the developers’ community to solve and fix bugs and react to new
vulnerabilities.

3.2 Evaluation parameters

We now provide the detailed description of some metrics (see Table 1 and 2) and
their distribution in the six macro-areas described above. These metrics are then
used (Section 5) to evaluate and compare open source security applications.
Regardless of the macro-area they belong to, our quantitative metrics are
orthogonally divided in: i) Core Metrics (CM), and ii) Advanced Metrics (AM).

Core Metrics
Core Metrics include all metrics that can be readily computed from current
information on the projects. These metrics are based on data that can be usually
found in the projects web sites; however structured data sources like FLOSSmole
[13] can make the evaluation process stronger and more trustworthy.

Age, that represents the age in days of the project, calculated from the date of
the first stable release.

Last Update Age, that represents the age in days of the last stable project
update. It is calculated as the difference between the date of the last update
and the current date. Differently from Age metric, Last Update Age measures
the level of freshness of the last application update, and it allows the
identification of dead projects.

Project Core Group, a boolean value that evaluates the existence of a stable
core group of developers who have been working on the project from its
inception (or for at least three-quarters of its Age). Core developers are

2 Open source security solutions lend themselves to quality assurance and evaluation based on
shared testing and code walk-through as outlined in [1]. However, comparing reference
implementations of security solutions based on code walk-through is outside the scope of
this paper.

FOCSE: An OWA-based Evaluation Framework for OS Adoption 7

defined as the ones that contribute both to project management and code
implementation.

Number of Core Developers, strictly related to the above Project Core Group
metric, measures the number of core developers.

Number of Releases, that measures the number of releases from the project
start up. A high number of releases could indicate the vitality of the
community and its promptness on reacting against new threats and
vulnerabilities.

Table 1. Evaluation Metrics Definition: Core Metrics

Core Metrics
Name Definition Values Area

Age Age of the project. Days GA
Last Update Age Age of the last project update. Days GA

Project Core Group
Evaluate the existence of a group of core
developers.

Boolean GA,DC

Number of Core
Developers

Number of core developers contributing the
project.

Integer DC

Number of Releases Number of releases since project start up. Integer SQ,IA
Bug Fixing Rate Rate of bugs fixed. Real SQ,IA

Update Average
Time

Vitality of developers group, i.e. mean number
of days to wait for a new update (release or
patch).

Days SQ,IA

Forum and Mailing
List Support

Check forum and mailing list availability. Boolean GA,DIS

RSS Support Check RSS availability. Days GA,DIS
Number of Users Number of users adopting the application. Integer UC
Documentation
Level

Level of project documentation, in terms of
API, user manuals, whitepapers.

Mbyte DIS

Code Quality Qualitative measure of code quality. SQ,IA

Community Vitality
Vitality of the community in terms of number
of forum threads and replies.

Real DC,UC

Bug Fixing Rate, which measures the rate of bugs fixed looking at bugs and
fixings reports of each product. To prevent young projects with few bugs
fixed from outperforming old and stable projects with hundreds of bugs
fixed, the bug fixing rate is weighted over the total number of bugs detected.
This rate is computed as:

1 # 1 1 ofBugsDetectedofBugsFixed ofBugsDetected e .

We stress the fact that this metrics is available from well known security-
related sources, such as the Computer Emergency Response Team (CERT)
[9], providing detailed information about discovered bugs.

8 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Update Average Time, measuring the vitality of an open source community. It
indicates the average number of days between releases of major and minor
versions (patches) of the product. This metric is calculated as:
age/(#ofPatches + #ofReleases).

Forum and Mailing List Support, a boolean value expressing availability of
forum and mailing lists at the products' web sites. This is an important
feature of open source products since it hints at a strict collaboration
between users and developers communities.

RSS Support, a boolean value expressing availability of RSS (Really Simple
Syndication), i.e., a family of web feed formats, used to publish frequently
updated digital content. This is an important feature of open source products
since it allows users who download and rely on a particular project to be
fully informed of the project news.

Number of Users, expressing the number of users adopting the product; this
value can be roughly approximated as: #ofDownloads/#ofReleases.
This parameter is also an indicator of the product's popularity.

Documentation Level, expressing the documentation level (in Mbyte) in terms
of APIs documentation, user manuals, whitepapers, and so on.

Code Quality, that measures the intrinsic quality of the software product.3

Community Vitality, that measures the vitality of the community in term of
answers given in the forum in response to specific users questions.
This value is computed as: #ofForumReplies/#ofForumThreads.

The core metrics set is summarized in Table 1.

Advanced Metrics
Advanced Metrics include evaluation parameters requiring privileged access to
the developers’ community [5]. Otherwise, they can be estimated basing on raw
data.

Group/Developers Stability, that measures the degree of stability of developers
group and, consequently, the stability of the product itself. Each developer is
classified as stable or transient, where stable is a developer that continuously
contributes to code, transient in the other cases. The exact number of
contributions to make a developer stable is project-dependent. This value is
computed as: #ofStableDevelopers/#ofDevelopers*100.

Project Reputation, which estimates the reputation of the project by
aggregating the evaluations provided by the project developers and users.
Several algorithms for assessing reputation are available [16].

Repository Quality, that provides an estimation of the repository where project
is hosted.4 It can be computed in several different ways; we chose to

3 This metric is included for completeness, but its measurement is out of the scope of this
paper (see Section 3.1).

4 For self-hosted projects this metrics is set to 0.

FOCSE: An OWA-based Evaluation Framework for OS Adoption 9

measure it as the number of active projects hosted by the repository (an
active project is defined as one that has released at least an update within a
year), over the total number of hosted projects:
#ofActiveProjects/#ofProjects.

Reaction Rate, that estimates the average time the developers community takes
to find solutions to newly discovered vulnerabilities. This parameter
measures the community's promptness in terms of reaction against
discovered software vulnerabilities.
Given V as the set of vulnerabilities, this metric is defined as:

1

*
n

i i
i

n UpdateAverageTime FixingDate V DiscoveringDate V

where andiV V n V .

Incident Frequency, that measures the robustness of the application with
respect to newly discovered vulnerabilities. This parameter is computed as
#ofIncidents/|V| where V is the set of vulnerabilities.

Table 2. Evaluation Metrics Definition: Advanced Metrics
Advanced Metrics

Name Definition Values Area
Group/Developers
Stability

Measures the degree of stability of a
developers group.

[0..100%] DC

Reaction Rate

Average time needed by the developers’
community to find solutions for newly
discovered vulnerabilities. More specifically, it
represents the project developers’ ability in
reacting to the set of vulnerabilities.

IA

Repository Quality Estimator of the project repository quality. GA

Incident Frequency
Measures the number of incidents due to
vulnerabilities.

IA

Project Reputation
Measure the project reputation by aggregating
the evaluation provided by project developers
and users.

GA

The first metrics, Groups/Developers Stability, is not easy to estimate from
outside the developers’ community. It may be however available to insiders, e.g.
to companies that adopt an open source product and actively contribute to its
community. Finally, regarding the computation of the last two parameters, we
stress the fact that various security-related Web portals provide databases that
contain information about vulnerabilities and related incidents summaries. In
particular, three main portals stand out: Secunia (http://secunia.com/) that offers
monitoring of vulnerabilities in more than 12,000 products, Open Source

10 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Vulnerability Database (OSVDB) (http://www.osvdb.org/) an independent
database that provides technical information about vulnerabilities and, finally,
CERT, which provides a database containing information about vulnerabilities,
incidents and fixes.
In summary, most of the information required to compute FOCSE advanced
metrics is already available on the Net. Unfortunately, this information being in
raw format makes it difficult to automate the computation, as substantial pre-
processing is needed to compute these metrics.

4 Aggregating Heterogeneous Results

To generate a single estimation, it is necessary to aggregate the metrics values.
This way, two or more projects, each one described by its set of attributes, can be
ranked by looking at their FOCSE estimations. Below, the Ordered Weighted
Average (OWA) operator, used to aggregate the defined metrics, is introduced.

4.1 OWA Operator

Ordered Weighted Averaging (OWA) operators, originally introduced by Ronald
Yager [24, 26], provide a parameterized family of mean-type aggregation operators.
An important feature of these operators is the reordering step, which makes OWA a
nonlinear operator. OWA operator is different from the classical weighted average in
that coefficients are not associated directly with a particular attribute but rather to an
ordered position. The structure of these operators is aimed at combining the criteria
under the guidance of a quantifier.

Definition 1 (OWA Operator) Let 1 2, , , nw a weight vector of

dimension n, such that 0,1i and 1ii
. A mapping : n

OWAf R R

is an OWA operator of dimension n if

1 2, , ,OWA n i i
i

f a a a a

where 1 , , n is a permutation of {1,...,n} such that for

i=2,…,n.

1i ia a

We adopt the monotonic quantifiers Qmean [26]. The pure averaging quantifier has
wj=1/n for all j=1,…,n having Qmean(K)=K/n as its linear quantifier.

The previous quantifier represents the set of weights used in our experimentation
(i.e., [1/n, 2/n,…,(n-1)/n, 1]). All decision process involving multiple criteria like

FOCSE: An OWA-based Evaluation Framework for OS Adoption 11

software selection involve some compensatory trade-offs. Trade-offs occurs in the
presence of conflicting goals, when compensation between the corresponding
compatibilities is allowed. OWA operators can realize trade-offs between objectives,
by allowing a positive compensation between ratings, i.e. a higher degree of
satisfaction of one of the criteria can compensate for a lower degree of satisfaction of
other criteria to a certain extent. OWA operators provide for any level of
compensation lying between logical conjunction and disjunction. An interesting
feature of OWAs is their adaptability. To any specific software selection problem we
can tailor an appropriate OWA aggregation operator from some rules and/or samples
determined by the decision makers.

5 Applying FOCSE to Existing Critical Application

We introduce two categories of open source security solutions: SSO systems and
SSH clients. Then, we show how selection can be made by first evaluating the
FOCSE metrics, and then by aggregating them by means of OWA operator.

5.1 Single Sign-On Frameworks

The SSO [15] approach is aimed at co-ordinating and integrating user log-on
mechanisms of different domains. In particular, SSO provides a technique where a
primary domain is responsible for managing all user credentials and information
used during the authentication process, both to the primary domain itself and to each
of the secondary domains that the user may potentially require to interact with. SSO
also provides the users with a transparent authentication to the secondary domains. In
this scenario, the following subset of SSO frameworks has been evaluated by
FOCSE metrics (for more details, see [2]).

Central Authentication Service. Central Authentication Service (CAS) [7] is an
open source authentication system originally developed at Yale University.
It implements a SSO mechanism aimed at providing a Centralized
Authentication to a single server through HTTP redirections.

SourceID. SourceID [22], first released in 2001 by Ping Identity Corporation,
is an open source multi-protocol project for enabling identity federation and
cross-boundary security. SourceID also implements Liberty Alliance SSO
specifications.

Java Open Single Sign-On (JOSSO). Java Open Single Sign-On (JOSSO) is an
open source SSO infrastructure based on J2EE specifications. In detail,
JOSSO provides a solution for centralized platform-neutral user
authentication [17], combining several authentication schemes (e.g.,
username/password or certificate-based) and credential stores.

Open Source Web SSO. The Open Source Web SSO (Open SSO) [18] project
relies on the consolidated Web SSO framework developed by Sun

12 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Microsystems, that was opened to the open source community in July 2005.
It provides services and functionalities for implementing transparent SSO as
an infrastructure security component.

5.2 SSH Clients

SSH is a communication protocol widely adopted in the Internet environment
that provides important services like secure login connections, file transfers and
secure forwarding of X11 connections [27]. SSH protocol allows also a
communication approach named Tunneling as a way to encapsulate a generic
communication flow in SSH packets, implementing a port forwarding mechanism
and securing data that use untrusted communication protocols, exploiting SSH
encryption features. The FOCSE framework has been applied for evaluating the
following SSH clients.

Putty. Putty [20] is a popular open source SSH client for Microsoft Windows
platforms. It supports versions 1 and 2 of SSH protocol, terminal emulation,
and provides a complete and essential user interface.

WinSCP. WinSCP [25] allows safe copying of files between remote internet
machines through the SSH protocol. It also offers basic remote management
operations, such as file duplication, renaming and deleting, and supports all
the encryption features of SSH protocol.

ClusterSSH. ClusterSSH [23] allows users to open and manage several
terminal windows with connections to specified hosts and an administration
console. The tool is also intended for cluster administration.

5.3 SSO Comparison

Table 3 gives a comparison of SSO implementations based on FOCSE metrics.5

Focusing on evaluation, as shown by Table 3, all systems are quite stable due to the
fact that their start-up happened more than a year ago. Even Open SSO, i.e. the most
recent one, can be considered as a stable implementation since it represents an open
source extension of a well-established proprietary implementation, named Sun Java
System Access Manager. A common characteristic shared by all analyzed solutions is
that they are managed by a consolidated core group providing stability to the project
and coordination to open source community. By contrast, these solutions have
different documentation levels. Specifically, whereas CAS provides a good amount
of documentation, i.e. 28.55 MB, SourceID presents on its Web sites only a limited
amount of information, i.e. 8.96 MB. Although at the first sight the number of
releases could seem a good estimation of projects vitality, this is not entirely true.
Often, in fact, the number of releases is highly dependent on the project age. To the

5 Due to the fact that only JOSSO and Open SSO data have been gathered by FLOSSmole, our
evaluation is sensitive to errors due to obsolete information.

FOCSE: An OWA-based Evaluation Framework for OS Adoption 13

purpose of clearly evaluating the liveness of a project, the number of releases should
be coupled with the Update Average Time. In particular, Table 3 seems to suggest
that Open SSO is the liveliest project. However, its low update average time is due to
the fixing of youth problems that hints to keep Open SSO out of this metric
comparison. We argue, then, that the more active and viable implementation is
JOSSO, because it provides a new release every 44 days. Also, the Bug Fixing
Rate metric suggests that JOSSO is the most reactive project between the analyzed
solutions. Concerning Last Update Time, CAS implementation achieves the best
results, i.e. 18 days. Also, CAS is the only project providing a certified list of
users. Here we do not consider the Number of Users, Repository Quality, and
Community Vitality parameters for all solutions, because relatively few solutions
provide enough information to clearly and unambiguously compute them. In
particular, CAS provides a certified list of the CAS' deployers, and JOSSO and Open
SSO make possible to easily compute the community vitality.

Table 3. Comparison of proposed SSO implementations at 31 December 2006.
Metrics CAS SourceID JOSSO Open SSO

Age (GA) 1865 days 1177 days 854 days 570 days
Last Update Age (GA) 18 days 236 days 217 days 21 days
Project Core Group (GA,DC) Yes Yes Yes Yes
Number of Core Developers (DC) 5 N/A 2 N/A

Number of Releases (SQ,IA) 28 7 7
1 (since code
opening)

Bug Fixing Rate (SQ,IA) N/A N/A 0.78 0.53
Update Average Time (SQ,IA) 67 days 168 days 44 days 27 days
Forum and Mailing List Support
(GA,DIS)

Mailing
List Only

Mailing List
Only

Yes Yes

RSS Support (GA,DIS) Yes Yes No Yes

Number of Users (UC)
48
(certified)

N/A
7072
(approx.)

N/A

Documentation Level (DIS) 28.55 MB 8.96 MB 16.96 MB 14.3 MB
Community Vitality (DC,UC) N/A N/A 1.87 3.56

5.4 SSH Comparison

Table 4 gives a comparison of SSH client implementations. Differently from
SSO systems, all the analyzed SSH frameworks lie in FLOSSmole database.

Table 4. Comparison of proposed SSH implementations at 31 December 2006.
Metrics Putty SourceID JOSSO

Age (GA) 2911 days 1470 days 1582 days
Last Update Age (GA) 636 days 238 days 159 days
Project Core Group (GA,DC) Yes Yes Yes

14 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Number of Core Developers (DC) 4 2 2
Number of Releases (SQ,IA) 15 32 15
Bug Fixing Rate (SQ,IA) 0.67 N/A 0.85
Update Average Time (SQ,IA) 194 days 46 days 105 days
Forum and Mailing List Support (GA,DIS) N/A Forum Only Yes
RSS Support (GA,DIS) No Yes Yes
Number of Users (UC) N/A 344k 927
Documentation Level (DIS) 1.39 MB 10 MB N/A
Community Vitality (DC,UC) N/A 3.73 5.72

Focusing on the evaluation, it is clear that all the projects are stable since their
startup happens more than four years ago. This results in stable and consolidated
project core groups of at least two core developers, and in a good number of releases.
Concerning the Bug Fixing Rate metric, whereas for WinSCP no data are available,
Putty and ClusterSSH provide a good bug fixing rate, 0.67 and 0.85 respectively.

To conclude, the number of users adopting WinSCP (i.e., 344K of users) is
impressive, suggesting that it is very attractive for users to take advantage of open
source SSH solutions.

5.5 Applying OWA Operator to FOCSE Critical Application Comparison

We now apply OWA operator to provide a single estimation of each evaluated
solution. For the sake of conciseness, we shall only show the details of OWA
application to CAS solution. All other solutions can be processed in the same vein.

First, the adoption of OWA operator together with the Qmean quantifier results in
the following set of weights:

3 5 6 7 8 9 101 2 4 11
12 12 12 12 12 12 12 12 12 12 12 =[, , , , , , , , , , ,1]w

 In particular, the Qmean identifier is used to mitigate the impact of too high and
too low values on the overall aggregation process.6 Then, after normalizing the
vector of weights:

78 5 7 3 51 1 1 2 1 4 11 2
12 78 39 26 39 78 13 78 39 26 39 78 13= / =[, , , , , , , , , , ,]nw w

we normalized the vector of CAS attributes as attrValuek/maxAttrValue, where
attrValuek is the value of the k-th attribute and maxAttrValue is the maximum
attribute value among all the analyzed solutions. It is important to underline that
attributes such as Last Update Age, where low values mean better evaluations, are
normalized as 1- attrValuek/maxAttrValue. The normalization process results in the
ordered vector a=[1, 1, 1, 1, 1, 1, 0.93, 0.5, 0.4, 0.01, 0, 0].

Now, we calculate the final value of CAS system as: 12

1
0.45OWA i ii

f a w a .

6 Different quantifiers could be adopted depending on the scenario.

FOCSE: An OWA-based Evaluation Framework for OS Adoption 15

When the same process is applied to all solutions, one obtains the two tables
depicted in Table 5. To conclude, from Table 5 is clear that whereas among SSO
systems the best solution is CAS, followed by JOSSO implementation, concerning
SSH clients, the solution more likely to be adopted is WinSCP.

Table 5. OWA-based Comparison.
(a) SSO Comparison

CAS SourceID JOSSO Open SSO
fOWA 0.45 0.19 0.36 0.34

Putty SourceID JOSSO
fOWA 0.23 0.51 0.47

(b) SSH Comparison

6 Conclusions and Future Work

We presented our FOCSE framework aimed at the definition of a quantitative
approach to the comparative evaluation of security-related open source systems. A
structured set of metrics used in the evaluation process and specifically designed for
such systems, a formal aggregation is introduced to deal with the heterogeneity of
such metrics. This aggregation allows the FOCSE evaluation to be expressed by
means of a single value and to be more user-friendly. Then as case-studies, we
compared some well-known implementations of SSO and SSH applications. Future
work will study the integration of FLOSSmole-like databases in FOCSE, allowing
the definition of an infrastructure able to gather the requested data by itself and then
provide the evaluation in a transparent way to the user. Also the definition of a
validation system of open source projects based on community inputs [19], as well as
the definition of an extended version of the framework able to evaluate whatever
open source solution will be subject of future research.

Acknowledgements

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591, and by the by
the Italian Ministry of Research under FIRB contracts n. RBNE05FKZ2_004
TEKNE and n. RBNE01JRK8_003 MAPS.

References

1. S. Abiteboul, X. Leroy, B. Vrdoljak, R. Di Cosmo, S. Fermigier, S. Lauriere, F. Lepied, R.
Pop, F. Villard, J.P. Smets, C. Bryce, K.R. Dittrich, T. Milo, A. Sagi, Y. Shtossel, and E.

16 Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati

Panto. Edos: Environment for the development and distribution of open source software. In
Proc of The First International Conference on Open Source Systems, pages 66–70, Genova
(Italy), July 2005.

2. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, F. Frati, and P. Samarati. CAS++: an
open source single sign-on solution for secure e-services. In Proc. of the 21st IFIP
International Information Security Conference “Security and Privacy in Dynamic
Environments”, May 2006.

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to secure e-
government services. Encyclopedia of Digital Government, 2006.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middleware for
securing e-gov applications. In Proc. of The First International Conference on Open Source
Systems, pages 172–178, Genova (Italy), July 2005.

5. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Adopting open source for mission-critical
applications: A case study on single sign-on. In Proc. of IFIP Working Group 2.13 Foundation
on Open Source Software, volume 203/2006, pages 209–220, Como, Italy, 2006.

6. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Secure authentication process for high
sensitive data e-services: A roadmap. Journal of Cases on Information Technology, 9(1):20–
35, 2007.

7. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-on with cas
(central authentication service). In Proc. of EUNIS04 – IT Innovation in a Changing World,
pages 172–178, Bled (Slovenia), 2005.

8. A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source projects. In CSMR, page
317, 2003.

9. CERT-CC. Cert coordination center. Available: www.cert.org/.
10. M. Conklin. Beyond low-hanging fruit: Seeking the next generation in floss data mining. In

Proc. of IFIP Working Group 2.13 Foundation on Open Source Software, volume 203/2006,
Como, Italy, 2006.

11. C. Cowan. Software security for open-source systems. IEEE-SEC-PRIV, 1(1):38–45,
January/February 2003.

12. J. Feller and B. Fitzgerald. A framework analysis of the open source software development
paradigm. In ICIS, pages 58–69, 2000.

13. FLOSSmole. Collaborative collection and analysis of free/libre/open source project data.
Available: ossmole.sourceforge.net/.

14. B. Golden. Succeeding with Open Source. Addison-Wesley Professional, 2004.
15. The Open Group. Single sign-on. Available: www.opengroup.org/security/sso/.
16. A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service

provision. In Decision Support Systems, 2005.
17. JOSSO. Java open single sign-on. Available: sourceforge.net/projects/josso.
18. OpenSSO. Open web SSO. Available: opensso.dev.java.net/.
19. E. Damiani P. Ceravolo and M. Viviani. Bottom-up extraction and trust-based refinement of

ontology metadata. IEEE Transaction on Knowledge and Data Engineering, 19(2):149–163,
February 2007.

20. PuTTY. A free telnet/ssh client. Available:
 www.chiark.greenend.org.uk/~sgtatham/putty/.

21. E.S. Raymond. The cathedral and the bazaar. Available:
www.openresources.com/documents/cathedral-bazaar/, August 1998.

22. SourceID. Open source federated identity management. Available: www.sourceid.org/.
23. Cluster SSH. Cluster admin via ssh. Available: sourceforge.net/projects/clusterssh.
24. V. Torra. The weighted OWA operator. International Journal of Intelligent Systems,

12(2):153–166, 1997.
25. WinSCP. Free sftp and scp client for windows. Available: winscp.net/eng/index.php.
26. R.R. Yager. On ordered weighted averaging aggregation operators in multi-criteria decision

making. IEEE Transaction Systems, Man, Cybernetics, 18(1):183–190, January/February 1988.
27. T. Ylonen. Ssh - secure login connections over the internet. In Proc. of Sixth USENIX Security

Symposium, page 3742, San Jose, California, USA, 1996.

Open Source Collaboration for Fostering
Off-The-Shelf Components Selection

Claudia Ayala1, Carl-Fredrik Sørensen2, Reidar Conradi2, Xavier Franch1,

Jingyue Li2

1 Technical University Of Catalunya (UPC), Software Department

Campus Nord- Omega Building. Barcelona, Spain

 {cayala,franch}@lsi.upc.edu

WWW home page: http://www.lsi.upc.es/~webgessi/index.html

2 Norwegian University of Science and Technology (NTNU)

Department of Computer and Information Science

NO-7491, Trondheim, Norway

{carlfrs,conradi,jingyue}@idi.ntnu.no

WWW home page: http://www.idi.ntnu.no/grupper/su/

Abstract. The use of Off-The-Shelf software components in Component-

Based Development implies many challenges. One of them is the lack of

available and well-suited data to support selection of suitable OTS

components. This paper proposes a feasible and incremental way to federate

and reuse the different efforts for finding, selecting, and maintaining OTS

components in a structured way. This is done not only for supporting OTS

components selection, but also to overcome reported problems with the

integration and maintenance of component repositories. It is based on the

“open source collaboration” idea to incrementally build an OTS components

reuse infrastructure, enabling automatic support for OTS selection processes.

Keywords: Off-the-Shelf components (OTS), Commercial-Off-The-Shelf (COTS), Open

Source Software (OSS), open source collaboration, component selection, reuse.

1. Introduction

The use of Off-The-Shelf software components –hereafter OTS- as part of large

software systems have grown steadily [1]. Consequently, a huge amount of OTS has

become accessible in the market. OTS mainly come in two major kinds: COTS

(Commercial-Off-The-Shelf) owned by commercial vendors that often provide

specific support [1]; and OSS (Open-Source-Software) provided by open source

communities with freely accessible source code, but with no promise of specific

18 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

support [2]. Especially in the latter case, software engineering researchers and

practitioners have become increasingly aware of the contribution that open source

development is offering to the software industry, business, and society in general [3].

An OTS is defined as: “a software product that is publicly available at some cost
or with some licensing obligations and other software projects can reuse and
integrate it into their own products” [4]. The selection of OTS has been recognized

as a critical process in the OTS-based development risk mitigation [5]. Regardless

the specific properties of OSS and COTS components, we may consider that the

high-level selection process (i.e. the practice of locating candidates, evaluating them

with respect to the system requirements, and making the final choice) is essentially

similar.

From our empirical studies aimed to investigate the state-of-the-practice in

industrial OTS selection projects, we realized that their success is highly dependent

on the quality and completeness of the data available concerning these components.

Currently, these data are highly heterogeneous, since it comes from different sources,

and sometimes its trustworthiness is unclear. Also, in those contexts (consultant

companies, some IT departments, etc.) that select OTS periodically, the reuse of

these data would improve the effectiveness of the selection processes. Heterogeneity

and lack of reuse have a negative effect on the perceived risks of using OTS for

integrating large industrial systems [6]. In fact, it is considered a major challenge for

fostering the adoption of OTS in industrial frameworks, especially for OSS

components [7]. This problem is even more evident for OSS components given their

free and collaborative development nature that lacks of a structured documentation

and a marketing channel behind. In this paper, we describe a feasible and

incremental way to federate and reuse the actual efforts for selecting, and

maintaining OTS in a structured way. We propose a Wiki-based portal based on a

flexible metamodel that enables people (e.g., research groups, individuals or

organizations) to work collectively in an open-source-like environment for obtaining,

sharing, managing, storing, retrieving, and reusing OTS information for supporting

the (re)use of OTS.

2. State-of-the-Art and State-of-the-Practice

2.1 Industrial Practice

Some empirical studies in companies using OTS show several relevant results about

how they select and use such components [8]. Such studies reveal that they do not

normally use any formal process for selecting components. Instead, most of them are

using an experience-based and/or hands-on trial-based selection processes. In the

first case, developers already have experience with some specific components or

technology, and this experience is important in deciding which components to

choose. In the second case, the World Wide Web is used to find executable

components and a few of them are then downloaded and further evaluated.

Additionally, such studies also demonstrated that OSS components are rarely

modified, but used and integrated as is. Based on these empirical studies, we

highlight in Table 1 the high-level activities directly related to the OTS selection

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 19

processes once the decision to acquire OTS is made. These activities are not intended

to fully describe OTS selection processes; but provide a general description with the

goal of identifying the most relevant required roles. These roles are informal and

implicit played by the respondents (i.e. they were not explicitly established in the

actual practice). We also observe that in the case of organizations that continuously

perform OTS selection processes, it is important to reuse their knowledge about the

components and decisions taken. Thus, we envisage the Knowledge Keeper role,

even when an explicit documentation is not formally written, but existing as tacit

knowledge in the head of the involved people [8].

Table 1. Activities and Roles in OTS Selection

Activity OTS Users Role

Finding Candidates
OTS

Market Watcher (MW) explores the marketplace segments to find
components that may match the established requirements.

Evaluating OTS
Candidates

Quality Engineer (QE) measures the factors that are related to the
requirements in the candidate components.

Deciding OTS
Component

Selector (S) takes the final decision based on the evaluation of the
candidates and also taking into account other relevant information
(mainly organizational).

Documenting the
Decision

Knowledge Keeper (KK) stores and documents the produced
information and the decisions taken in the process for their future
use in forthcoming selection processes.

2.2 Existing Resources for Supporting OTS Selection

From the state-of-the-art review, we found that researchers and practitioners have

been dealing with COTS components selection for a quite time and several selection

methods and tools have been proposed, for instance: CARE, OTSO, PECA, PORE,

etc., see [9] for a survey. Moreover, in the last years the use of OSS components has

brought out extraordinary research interest and specific selecting approaches have

been put forward [2],[10],[11]. However, almost all of these proposals focus their

efforts on the evaluation of OTS, instead of locating components in a huge and

changing marketplace.

Component location is usually supported by component repository systems.

However, although reusable component repositories have been an active research

area for more than a decade, they have not yet received wide success in practice,

mainly because of too heavy upstart and maintainance cost; and undercritical

information relevance later on [12],[13]. Moreover, a similar challenge to deal with

OTS repositories have also been recognized [14].

To further investigate the problems that small and medium companies face when

selecting OTS, we have recently performed an explorative survey in some

Norwegian companies [15]. Our results draw that the components identification

com lexity in industrial settings is actually twofold: p

How to know which kind of components are available and which of them could
be useful to solve a specific problem? There is an increasing need for organizing

the OTS information available to achieve more efficient and reliable selection

20 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

processes [16]. However, the effort is considerable due to the size and variability

of the software market and the difficulty to collect and update information. It is

thus a hard task for enterprises, particularly for small and medium ones, which

can not invest enough time, money, and effort into component management to

gain qualified information.

How to find and process the information referred to those components to
perform an effective evaluation? Even when COTS and OSS components

information are supported by their specific vendors and open source community

projects respectively, the kind of information they contain is often not detailed

enough, and usually unstructured, presented in many different forms (e.g.,

forums, documents, etc.), very difficult to be processed for an objective

evaluation [6],[7],[17].

Furthermore, from the answers of our respondents we figure out that the World
Wide Web is the most used means to find candidate components (i.e., search on

available catalogues or specialized search engines) followed by colleague

recommendations. We also asked about the resources they usually use to locate

components and information about them, as well as the perceived utility of such

information for performing the different OTS selection activities.

Summarizing the answers, in Table 2, we provide an excerpt of the most

mentioned resources, their key characteristics as well as the utility of their

information to the roles tasks.

Table 2. Some Available Web Resources for Supporting OTS Selection

Support to the Roles
Name Scope Components

Information MW QE S KK
COTS Vendors COTS Non-Structured (NS) * * * -

OSS Project OSS NS * * * -

SourceForge.net OSS NS - - -

ComponentSource.com Mainly COTS NS - - -

Tigris.org
OSS-Soft.

Engineering related
NS * * -

OpenCores.org OSS-IP NS * - -

KnowledgeStorm.com Mainly COTS NS * - -

CMSmatrix.org OTS-CMS Semi-Structured (SS) * * - -

Messangingmatrix.com OTS-Messaging SS * * - -

TheServerSide.com Java NS - - -

Freshmeat.net Mainly OSS SS * * - -

Forrester.com Broad IT Solutions NS * - - -

Gartner.com Broad ITSolutions NS * - - -

() supports the task (*) deals with some issues (-) does not deal with the task

In Table 3, we sum up our assessment of role-related current practices, their

problems and implied challenges. The challenges can be summarized as the need of

combining: Understandable Taxonomies, a Common Component Description

Metamodel embracing all the informational dimensions for evaluating OTS, and a

Reuse Infrastructure Support also feasible to small and medium organizations that

can not invest enough time and money to manage it. We realize that though many

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 21

efforts have been paid to deal with some of these challenges (e.g., the different web

resources cited in Table 2, and methods and tools mentioned at the beginning of this

section) there is no consensus of their utility. Therefore, there is a gap between such

efforts and their realistic application [3],[6],[7],[18],[19],[20]. This drawback

generates a barrier on adoption of OTS components in large industrial projects, since

they make the selection process highly risky and expensive when applying complex

evaluation criteria.

Table 3. Assessment of the role-related challenges for supporting OTS Selection

Role Current Practice Problem Challenge

MW

Proliferation of cataloguing
initiatives from profit and non-
profit organizations.
Catalogues containing brief and
unstructured descriptions of
some inventoried components.
Most catalogues do not have a
clear rationale behind.

Understanding and
using the categoriza-
tions may be difficult.

Several descriptions
of the same component.

Understandable Ta-
xonomies [18]

Common Compo-
nent Description Meta-
model [6]

QE

OTS providers do not provide
structured and enough in-
formation for supporting eval-
uation and product quality
assessment.

Complex discove-
ring and structuring of
critical information.

Component Descrip-
tion Metamodel embra-
cing quality character-
ristics [17]

S
Non-Technical information a-
bout the component is even
more difficult to be located.

Hard requirements
negotiation.

Complex decision-
making process.

Component Descrip-
tion Metamodel embra-
cing non-technical fac-
tors [19]

KK

No support for organizations
(mainly small & medium) that
continuously select OTS to
reuse their knowledge about
them.

Reuse of knowledge
is usually tacit, leading
to be lost if people are
replaced.

Reuse Infrastructure
Support [20]

3. Proposed Approach

To deal with the mentioned challenges as a whole, we propose the GOThIC (Goal-

Oriented Taxonomy and reuse Infrastructure Construction) method [20]. It relies on

several industrial experiences undertaken under action-research premises and

grounded theory. The method is intended to guide the construction of an OTS reuse

infrastructure (repository) that provides well-founded and understandable

taxonomies to organize all information related to them. OTS information is

structured in a Component Description Metamodel (CDM) based on the ISO/IEC

9126-1 quality standard. This has been extended to support all the informational

dimensions for selecting OTS and reusing the information about them [14]. In

addition, some research tools have been developed for supporting the method, i.e.,

the DesCOTS system (Description, evaluation, and selection of COTS components)

[21].

22 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

From the industrial evaluation of GOThIC we found some concerns regarding its

practical use: heavy upstart cost (i.e., small and medium enterprises will not be able

in the general case to adopt it), and difficulty to maintain complete and up-to-date

information due to the highly changing nature of the OTS components marketplace.

To overcome such issues, we propose to combine the GOThIC method with the

creative and productive potential of “open-source collaboration”. In this way, the

OTS technology users (i.e., individuals, organizations, academic researchers,

industrials) can be harnessed to work as a community dedicated to incrementally

build and maintain an open OTS information repository. This will ensure smooth

start-up and maintenance cost, as well as highly reliable information. Details of this

strategy are described in next section.

4. Our Solution: An Open Wiki-Based portal for Sharing and
Reusing OTS information

We use the potential offered by a Wiki-based portal to put forward our strategy. A

Wiki (from the Hawaiian Wikiwiki meaning “fast”) is a collaboratively created and

iteratively improved set of web pages [22]. It is considered a powerful knowledge

management tool that enables the creation of an incrementally growing system

containing the shared knowledge of multiple sources in a centralized

infrastructure/repository (i.e. a database server, an application server that runs the

Wiki software, and a web server that serves the pages and facilitates the web-based

interaction). Thus, exploiting some particular Wiki characteristics (based on the

principles described by Wagner [22]) we have designed an OTS-Wiki portal. Its main

igh-level goals are summarized below: h

Fostering an OTS Community and Incremental Population of Content. The

OTS-Wiki provides the web-based infrastructure for enabling OTS technology

users to collaborate as a community in an open-source-like environment, see

Fig. 1. Thus, OTS Community users are able, and even encouraged to share

knowledge (e.g., experiences, components information, and vendor comments).

Therefore, the incremental population of content in the portal based on the OTS

Community participation is expected. We have designed proper templates and

guidelines for editing and use in order to share the information in a structured

way (as demonstrated in the Wikipedia, an on-line encyclopedia implemented as

a Wiki).

Federating Actual Efforts for Locating and Selecting OTS Components. In
this collaborative environment, OTS Community users are encouraged to add (as

hyperlinks) and comment the helpfulness of existing web-resources for locating

OTS components (as those cited in Table 2, called OTS Web-Resources in Fig.

1). This is a way of having an up-to date federated list of actual web-resources

that the OTS Community users can exploit. Besides the obvious advantage of

using hyperlinks for allowing users to make connections and to drill down into

detailed knowledge, hyperlinks are also a potential quality assurance mechanism

and relevance indicator. Pages with many links to them indicate a highly useful

page. This factor fosters the OTS-Wiki portal to act as a meta-portal for

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 23

promoting the progressive homogenization (complying with CDM) of the

information contained in different OTS web resources. This is because such

resources have an interest of being perceived as highly useful by the OTS

Community users.

Enabling Systematic Support for Selecting and Evaluating OTS
Components. Having structured OTS information enables systematic support

for evaluating and choosing components. We are integrating the DesCOTS

system into the OTS-Wiki [21], as stated in Fig.1. It includes a set of tools that

interoperate to support the whole OTS selection process: the Quality Model Tool
allows defining quality models; the OTS Evaluation Tool allows evaluating

components; the OTS Selection Tool allows defining requirements that drive the

OTS component selection; and the Taxonomy Tool allows organizing OTS

domains as a taxonomy supporting reuse of quality models. Nevertheless, some

other existing or new tools can be developed or designed for using the structured

OTS component information from the OTS-Wiki portal.

OTS-Wiki Portal

DesCOTS System

OTS-Community

OTS Knowledge

OTS Resources
Hyperlinks

OTS-Wiki

Repository

S
ub

m
is

si
on

T
em

pl
at

es

…
Portal 1 Portal 2 Portal 3 Portal n

…
Portal 1 Portal 2 Portal 3 Portal n

Structured
Information

Federated Resources
List (Hyperlinks)

OTS Web-Resources

Fig. 1 OTS-Wiki Portal Main Interactions

In this scenario, any OTS Community user can use the OTS-Wiki portal as a

meta-portal for providing support to: a) Locating OTS and information about them;

b) Recording component information in a structured way; c) Maintaining and reusing

such information; d) Getting tool support for performing selection processes. The

structure of the information in the repository showed in Fig. 1 is detailed in next

subsection.

4.1 Conceptual Model of the OTS-Wiki Portal Repository

Following the GOThIC method approach, the OTS-Wiki portal information is

arranged as a goal-oriented taxonomy (composed of Market Segments and

Categories) into the OTS-Wiki repository, as shown in Fig. 2. Taxonomy nodes

have a generic CDM. The CDM is used as a template that can be instantiated with

component information. For simplification purposes, we are not distinguishing at the

moment versions of components; two different versions are treated as two different

24 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

products. For each component, the DesCOTS system provides systematic support for

OTS selection. This structure allows browsing the taxonomy and finding specific

information [20].

Fig. 2 Conceptual model for OTS-Wiki Portal Repository

4.1.1 Component Description Metamodel
The Component Description Metamodel (CDM) is based on the ISO-IEC 9126-1

software quality standard, and extended for covering all the informational

dimensions needed for evaluating OTS components (functionality, quality of service,

interoperability, non-technical factors and concepts definition) [14]. This structure

has demonstrated to be useful for reusing information and helping the elicitation and

(re)negotiation of requirements, making easier the identification of mismatches

among components characteristics and the requirements in specific OTS selection

processes [19]. Fig. 3 shows an excerpt of the structure of the CDM.

Characteristics Subcharacteristics

Suitability
Suitability of Services

Suitability of Data

Accuracy

Interoperability
Security

Functionality

F. Compliance

Reliability …
Understandability

Semantic Understandability Usability

Lexical Understandability

Efficiency …
Maintainability …

Q
u

al
it

y
o

f
S

er
vi

ce

Portability …
Extended
Characteristics

Organizational Structure

Positioning and Strength Supplier

…
Licensing Schema

Licensing Costs Cost

…N
o

n
-T

ec
h

n
ic

al

Platform Cost
Implementation Cost Product

…

 Fig. 3 Excerpt of the Component Description Metamodel

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 25

5. OTS-Wiki Portal Functionality Overview

In this section, we will provide some goal-based scenario excerpts of the OTS-Wiki

prototype we have implemented in order to make explicit diverse mechanisms for

reaching the high-level goals stated in section 4.

Fig. 4 associates the main scenarios to reach the OTS-Wiki portal high-level

goals. From scenario 4a we realize that the OTS-Wiki portal has been designed as

open and freely accessible in order to enable the OTS Community in an open source-

like environment. Scenarios 4b, 4c and 4d show the refinement of the high-level

goals explained in section 4 into other specific sub-goals or functionalities.

Goal: Fostering OTS Community

D
O
te
an

escription
TS Technology users are encouraged to work as a high performance
am for reusing and sharing OTS Components Information in an Open
d Freely accessible OTS-Wiki Portal.

Re
1.

3.
…

lated goal(s) 2.
-Incremental Population of Content
-Federation of OTS Resources
-Enabled Systematic Support for OTS Selection

Po rstCondition(s) P ogressive Foundation of OTS Community

4a)
Goal: Incremental Population of Content

D U
to

escription sers are encouraged to publish and share content they considered helpful
 the OTS Community.

Re

1.
2.

.
4.
5.
…

lated goal(s) 3

-Submit OTS Component Information
-Enabled Active Communication
-New Functionality Requested to the Community
-Enabled a Glossary Construction
-User Profiles to Personalize the Information

PostCondition(s) Incremental growth of the OTS-Wiki portal content

4b)
Goal: Federation of OTS Resources in OTS-Wiki

D U
to

escription sers are encouraged to publish content that they consider may be helpful
 the Community.

1.

1.

 - User Introduces a new OTS-Web Resource Hyperlink to the Federated
 OTS Resources List by means of a template.

1. - System Records the hyperlink in the OTS-Wiki Repository.

2. – User Introduces a File
2.1. – Resource is uploaded to the OTS-Wiki Respository.

Re

3.
3.

lated goal(s)

 - User Provides a non-web reference
1. - Reference is Recorded in the OTS-Wiki Repository

PostCondition(s) Incremental growth of the federated resources.

4c)
Goal: Enabled Systematic Support for Selection Process

D
T
us
D

escription
ools are provided to support the OTS selection activities automatically,
ing the standardized data from the repository. It is actually based on the
esCOTS functionality.

Re
1.

…

lated goal(s) 2.
- User Requests automatic support for stating requirements
- User Requests automatic support for matching requirements with
 components.

Po
re

stCondition(s)
U
Sy

ser is Supported to perform and document his or her selection process.
stem Learns from each selection case (i.e. non-chosen components are

corded for being shown –by analogy- to later searches)

4d)

Fig. 4 Goal-based Scenarios designed to reach the OTS-Wiki High-Level goals

26 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

Fig. 5 shows some of the specific scenarios sub-goals:

Goal: Enabled Active Communication

D U
am

escription sers are encouraged to maintain an active and fruitful communication
ong them.

R

1-
-
-

4-
…

elated goal(s)
2
3

User Creates a Discussion Board
User Participates in an existing Discussion Board
User Creates a chatting discussion
User Participates in an existing Chat

PostCondition(s) Incremental growth of information from the active communication.

5a)
Goal: Enabled Assisted Search

D U
in

escription sers are provided with searching facilities to locate OTS components
formation.

1.
1.

 - Searching similar terms in the OTS-Wiki Repository.
1. - Searching by Keywords

1.2. - Searching by Browsing R
2.

elated goal(s)
- Showing Federated OTS Resources List were to find OTS component
 information

P

T
o

re

ostCondition(s) c
in

he system shows all the related information found (e.g. actual users of the
mponent, lessons learned, FAQs, forums, related experiences,
tegration cost, vendor helpfulness). Let non-found components serve as
quirements for future/non-registered components.

5b)
Goal: New Functionality Requested to the Community

D

U
in
O
fu

escription

sers are provided with a Requesting Board area for requesting
formation of components functionality that do not already exist in the
TS-Wiki portal (but maybe in other portals) or new component
nctionalities to the Community.

R
1.

.
3.

elated goal(s) 2
 - User Makes a Functionality Request
 - User Answers a Functionality Request
 - System generates a Request (from scenario 5b)

PostCondition(s) The system manages the status of the requests.

5c)
Goal: Enabled A Glossary Construction

D U
te

escription sers are encouraged to detail the meaning of unknown or confusing
rms.

R .
.

elated goal(s) 1
2

 - User Adds a term to the Glossary
 - User Associates terms related

PostCondition(s) Incremental growth of the Glossary.

5d)

Fig. 5 Scenario excerpts to enable functionalities addressed to reach High-level OTS-Wiki

Portal goals

Fig. 5a. Enabled Active Communication: diverse mechanisms (e.g. discussion

boards, chat, distribution list, etc.) are provided to enable active communication

among community users.

Fig 5b. Enabled Assisted Search: searching in the OTS-Wiki portal may be

performed by keyword or by taxonomy navigation. The taxonomy navigation

we propose (already implemented in the DesCOTS system [21]) helps users to

analyze their OTS selection problem and finding their suitable market segment

by navigating through a hierarchical search tree, ruling out irrelevant nodes

through a question-and-answer dialog. If the information requested does not

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 27

already exist in the OTS-Wiki repository, the system shows the Federated OTS
Resources List providing hyperlinks to different resources where the information

could be found; and generates a Functionality Request (Scenario 5c).

Fig. 5c. New Functionality Requested to the Community: users are able to

request and discuss component functionality not found in the OTS-Wiki portal,

or with no actual implementation (those for which information was found

neither in the OTS-Wiki nor in any other portal). This could result in a

competition among OSS communities and COTS providers to make such

components, or even encouraging the creation of new OSS communities for

supporting such functionality.

Fig. 5d Enabled Glossary Construction: detailing the meaning of unknown or

confusing terms is important because it is common in the OTS context that the

same concept may be denoted by different names in different products or even

worse, the same term may denote different concepts in different products.

Therefore, main concepts should be clarified via explanation pages that

comprise a Glossary. This glossary also serves to provide semantic relationships

among concepts via hyperlinks.

Finally, in Fig. 6 we provide a snapshot of the actual OTS-Wiki prototype and

relate its functionality with the scenarios described above. Some others

functionalities to be incorporated are: to provide user profiles to personalize the

information to the different roles needs, and case-base reasoning support for

improving the searching processes and selection of multiple components.

Submit Information
Federated Resources
Forum
Chat
Glossary

Requesting BoardThis is a research Project supported by the Norwegian University of

Science and Technology (NTNU) and the Technical University of

Catalunya (UPC), aimed to promote an open Community of Off-

The-Shelf (OTS) technology users.

OTS-Wiki Project
Documents

The main objectives are:

•Helping OTS users to manage the risk by reusing OTS
Components

•Sharing efforts to document and structure OTS Components
Information

Welcome to the OTS-Wiki Portal

Search
DesCOTS System

 Fig. 6 OTS-Wiki Portal functionalities related with described Scenarios

28 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

6. Ongoing Work

So far, we have an OTS-Wiki portal prototype combining Web-portal and Wiki

technologies. It is expected to be fully operational before May 2007. Our next short-

term goal is to populate the OTS-wiki repository with some broadly used OTS

components as a way to give momentum to our approach. Thus, we are taking as a

base the semi-structured components information from CMSmatrix (cited in Table

2), that comprises components related with the Content Management System market

segment, in order to be transformed into our proposed CDM.

On the other hand, some informational quality concerns have being discussed as

user control and information ownership to provide high-quality information.

7. Future Work

Our intended main goal is to empirically study how the GOThIC method addresses

the different issues related to OTS component selection and evaluation, as well as the

effects and results of this kind of open-source-like collaboration concept for dealing

with OTS selection challenges, and the problems reported with the use of

repositories [12],[13]. Some metrics intended to be used are: support perceived by

users, ability to enable the OTS Community, ability to promote homogenization,

promotion of OSS communities, information reuse, etc. Moreover, given the social

computing nature of our proposal, its functionality is going to be incrementally

improved depending on the OTS Community trends and needs.

8. Conclusion

The proposal presented here is a feasible and incremental way of dealing with the

drawbacks of OTS selection processes as well as the problems reported with the use

of repositories. It is done combining the GOThIC method and the “open-source

ollaboration” approach in a social computing environment: c

It represents a feasible support to improve OTS selection, integration and

maintenance processes as well as knowledge reuse, mainly in small and medium

companies that are not able to invest enough money and time to manage a

repository themselves (smooth start up and maintenance cost).

The combination of ease and speed of publishing contents, together with the

ability of engaging the potential OTS Community into the structured knowledge

creation process, enables OTS-Wiki to become a quality platform for very large

and up-to-date OTS knowledge repositories that acts as a Meta-portal for

structuring the OTS unstructured information contained in other portals (this is

best illustrated by the Wikipedia).

It allows the incremental growth of a component base, where each component is

linked to a community of interested users.

Open Source Collaboration for Fostering Off-The-Shelf Components Selection 29

It fosters the (re)use of OTS components and promotes communities to address

requirements with no actual implementation.

The OTS Community interaction may address not only the challenges mentioned

in section 3, but also the actual research efforts into the real needs and trends of

the OTS Community.

9. Acknowledgements

This work has been partially supported by the Spanish MEC TIN2004-07461-C02-

01 project and the Norwegian COSI (Co-development and using inner & Open

source in Software Intensive products) project. C. Ayala´s work has been partially

supported by the Mexican Council of Science and Technology (CONACyT) and the

Agència de Gestió d’Ajuts Universitaris i de Recerca (European Social Fund).

10. References

1. Brownsword, L., Oberndorf, T., Sledge C.A. “Developing New Processes for COTS-

Based Systems” IEEE Software, Vol. 17, No. 4; July-August 2000. pp.48-55.

2. Madanmohan, T.R., De, R. “Open Source Reuse in Commercial Firms” IEEE Software
21(6). 62-69.

3. Ankolekar, A., Herbsleb, J., Sycara, K. “Addressing Challenges to Open Source

Collaboration with Semantic Web”. In proceedings of 3rd Workshop on Open Source

Software Engineering, the 25th International Conference on Software Engineering

(ICSE). 2003. Portland, Oregon, USA, pp 9-14.

4. Torchiano, M., Morisio, M. Overlooked Aspects of COTS-Based Development. IEEE
Software, March/April 2004, pp 88-93.

5. Vitharana, P., Zahedi, F., Jain, H. “Knowledge-Based Repository Scheme for Storing and

Retrieving Business Components: A Theoretical Design and Empirical Analysis”. IEEE
Transactions on Software Engineering. Vol. 29(7), 2003, pp 649-664.

6. Réquilé-Romanczuk, A., Cechich, A., Dourgnon-Hanoune, A., Mielnik, J.C., “Towards a

Knowledge-based Framework for COTS components Identification” ICSE-MPEC05,

ACM Press, 2005; pp 1-4.

7. Simmons, G.L., Dillon, T.S. Towards an Ontology for Open Source Software

Development. In IFIP International Federation for Information Processing, Volume 203,

Open Source Systems, eds. Damiani, E., Fitzgeralg, B., Scacchi, W., Scotto, M., Succi,

G., (Boston:Springer), pp 65-75.

8. Li, J. Process improvement and risk management in Off-the-Shelf Component-based

development. PhD Thesis 2006. Norwegian University of Science and Technology

(NTNU). ISBN 82-471-7920-2. 289. http://www.idi.ntnu.no/grupper/su/publ/phd/li-

phdthesis-22jun06.pdf

9. Ruhe, G. “Intelligent Support for Selection of COTS Products” Proceedings Web

Databases and Web Services 2002. LNCS 2593, pp. 34-45.

10. Wheeler, D.A.: How to Evaluate Open Source Software / Free Software (OSS/FS)

programs. URL http://www.dwheeler.com/oss_fs_eval.html.

11. van der Berg, K. ”Finding Open Options”. Master Degree Thesis. Tilburg University.

2005.

12. Morisio, M., Ezran, M., and C. Tully, “Success and Failure Factors in Software Reuse,”

IEEE Trans. Software Eng., vol. 28, no. 4, 2002. pp. 340-357.

30 Claudia Ayala, Carl-Fredrik Sørensen, Reidar Conradi, Xavier Franch, Jingyue Li

13. Poulin, J. S. Populating Software Repositories: Incentives and Domain Specific

Software. J Systems and Software 1995. Elsevier, pp 187-199.

14. Ayala, C., Franch, X. “Domain Analysis for Supporting Commercial Off-The-Shelf

Components Selection” 25th International Conference on Conceptual Modeling (ER

2006). Tucson, Arizona, USA. November 2006. LNCS 4215, pp 354-370.

15. Gerea, M. “Selection and Evaluation of Open Source Components” Department of

Computer and Information Science. Norwegian University of Science and Technology

(NTNU). http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2006/gerea-

fordyp06.pdf

16. Ayala, C., Franch, X. “Transforming Software Package Classification Hierarchies into

Goal-Based Taxonomies”. In Proceedings of the 16th Database and Expert Systems

Applications Conference (DEXA), LNCS 3588, 2005. pp 665-675.

17. Bertoa, M.F., Troya, J.M., Vallecillo, A. “A Survey on the Quality Information Provided

by Software Component Vendors”. In Proceedings of the 7th ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE), 2003, pp

25-30.

18. Cechich, A., Réquilé-Romanczuk, A., Aguirre, J., Luzuriaga, J.M. “Trends on COTS

Component Identification and Retrieval” In Proceedings of 5th International Conference

on COTS-Based Software Systems (ICCBSS), IEEE Computer Society, 2006, pp 90-99.

19. Carvallo, J.P., Franch, X. "Extending the ISO/IEC 9126-1 Quality Model with Non-

Technical Factors for COTS Components Selection" In Proceedings on the Workshop on

Software Quality (WOSQ'06). IEEE Computer Society. 2006, pp. 9-14

20. Ayala, C., Franch, X. “A Goal-Oriented Strategy for Supporting Commercial Off-The-

Shelf Components Selection” 9th International Conference on Software Reuse (ICSR).

June 2006. LNCS 4039, pp 13-24.

21. Grau, G., Carvallo, J.P., Franch, X., Quer, C., “DesCOTS: A Software System for

Selecting COTS Components” In Proceedings of the 30th EUROMICRO Conference

(EUROMICRO’04). IEEE Computer Society, pp 118-126.

22. Wagner, C. “Wiki: A Technology for Conversational Knowledge Management and

Group Collaboration”. Communications of the Association for Information Systems

Vol.13, 2004. 265-289.

From the Cathedral to the Bazaar: An
Empirical Study of the Lifecycle of Volunteer

Community Projects

Andrea Capiluppi1, and Martin Michlmayr2

1 University of Lincoln, UK, acapiluppi@lincoln.ac.uk

2 University of Cambridge, UK, martin@michlmayr.org

Abstract. Some free software and open source projects have been extremely

successful in the past. The success of a project is often related to the number of

developers it can attract: a larger community of developers (the `bazaar')

identifies and corrects more software defects and adds more features via a

peer-review process. In this paper two free software projects (Wine and Arla)

are empirically explored in order to characterize their software lifecycle,

development processes and communities. Both the projects show a phase

where the number of active developers and the actual work performed on the

system is constant, or does not grow: we argued that this phase corresponds to

the one termed 'cathedral' in the literature. One of the two projects (Wine)

shows also a second phase: a sudden growing amount of developers

corresponds to a similar growing output produced: we termed this as the

`bazaar' phase, and we also argued that this phase was not achieved for the

other system. A further analysis revealed that the transition between `cathedral'

and `bazaar' was a phase by itself in Wine, achieved by creating a growing

amount of new modules, which attracted new developers.

1 Introduction

Prominent free software (or open source software, OSS) projects such as Linux

[32], Apache [27] and FreeBSD [18] have been extremely successful. Anecdotal

evidence has been used in the past to characterize successful OSS projects:

users/developers acting as "more eyeballs" in the correction of bugs, developers

implementing new features independently, skillful project managers dealing with a

mostly flat organization, and the resulting coordination costs [28].

Previous studies have provided empirical evidence on the process of successful

OSS projects: the definition of various types of developers has been discussed for the

Mozilla and the Apache projects, justifying different levels of effort [27], and

claiming that the first type (core developers) contribute to the success of a system.

Andrea Capiluppi1, and Martin Michlmayr2

Also, social network analyses have shown communication and coordination costs in

successful OSS projects [21].

In all these cases, successful projects are studied and characterized, but an

analysis in their earlier inception is not given. Therefore, empirical studies on

whether the project always benefited of a large number of developers, or built instead

its bazaar through several years, are still missing. In order to tackle this missing link,

this paper explores the evolution and development processes of two OSS systems, the

Wine (a free implementation of Windows on Unix) project and the Arla file system.

The first system has been widely adopted and developed by many developers. Arla,

on the other hand, is still in a `cathedral' phase when compared Wine: fewer

developers are currently collaborating towards its development.

The aim of this paper is to empirically detect and characterize the phases

achieved by these two systems, to illustrate whether one phase consequently follow

the other, and to establish one of these phases as a `success' for an OSS project. If

this is the case, sharing the empirical guidelines on how to achieve this transition

could help developers to work on the benefits of the bazaar phase.

Structure of the paper: in Section 2, a theoretical background will be given, as

well as two research questions, based on OSS communities. Also, a description of the

approach used to acquire and analyses the data employed will be presented. The data

will be used to test the presented questions. Section 3 will describe the phases

observed in the two systems from the point of view of the activities of developers.

This section will also give a detailed description of the activities that underpin the

success of a OSS system, as observed in the proposed case studies. Section 4 will

deal with related work in this (and other) areas, identifying the main contributions of

this paper, and will discuss a number of questions raised in this paper that need

further empirical exploration. Finally, Section 5 will give conclusions on the overall

process and lifecycle of OSS systems, as well as possible future research directions.

2 Background Research

One of the authors, in a previous work [29], presented a theoretical framework for

the activities and phases of the lifecycle of OSS projects. The objective was to

provide a more systematic approach for the development of OSS projects, to increase

the likelihood of success in new projects. In this paper, the objective is to empirically

evaluate the theory contained in that work through two case studies, and to report on

best practices of actually successful OSS projects. Since previous studies have shown

that many OSS projects must be considered failures [3, 7], it is argued that the latter

ones lack some of the characteristics as described in [29], notably the transition

between the closed (or `cathedral') and the open (or `bazaar') styles. In his popular

essay “The Cathedral and the Bazaar", Eric S. Raymond [28] investigates

development structures in OSS projects in light of the success of Linux. The

terminology of the `cathedral' and the `bazaar' introduces both a closed approach,

found in most commercial entities, where decisions on large software projects are

taken by a central management; and an open one, where an entire community is in

charge of the whole system.

32

From the Cathedral to the Bazaar 33

Instead of viewing these approaches as diametrically opposed, as originally

proposed by Raymond, this paper considers these as complimentary events within

the same OSS software project. Figure 1 illustrates three basic phases, which this

research argues a successful OSS project undergoes. The initial phase of a OSS

project does not operate in the context of a community of volunteers. All the

characteristics of cathedral style development (like requirements gath- ering, design,

implementation and testing) are present, and they are carried out in the typical style

of building a cathedral, that is, the work is done by an individual or a small team

working in isolation from the community [5]. This development process shows tight

control and planning from the central project author, and is referred to as `closed

prototyping' by Johnson [17].

In order to become a high

quality and useful product, [29]

argued that an OSS project has to

make a transition from the

cathedral phase to the bazaar

phase (as depicted by the arrow

in Figure 1). In this phase, users

and developers continuously join

the project writing code,

submitting patches and

correcting bugs. This transition is associated with many complications: it is argued

that the majority of free software projects never leave the cathedral phase and there-

fore do not access the vast resources of manpower and skills the free software

community offers [7].

2.1 Research questions

In this paper, historical data on code modifications and additions of large (sub-

systems) or small scale (modules) sections of a software system are analyzed in order

to track how the studied systems evolved over time. Two research questions are

presented here: the historical data will be then tested against them, and the results

will be evaluated in the next section. The first is based on out- put obtained from

input provided, the second on what new developers tend to work on when joining a

OSS project. The research questions can be formulated as follows (metrics used to

asses each question are also provided):

i) research question 1: the `bazaar' phase involves a growing amount of

developers, who join in a self-sustaining cycle. The output obtained in a bazaar phase

follows a similar growing trend. OSS projects, while still in the `cathedral' phase, do

not benefit from a growing trend in input provided and output achieved.

ii) research question 2: new developers, when joining a software project, tend to

work on newest modules first, either by creating the modules themselves, or by

contributing to a new module. This can be rationalized saying that new developers

might not need insights on all the preexisting functionalities of a system, thus

preferring to develop something new. This research question will be used to gather

further insights on how Wine could achieve a bazaar phase.

Fig. 1. OSS development lifecycle

Andrea Capiluppi1, and Martin Michlmayr2

2.2 Empirical approach

The empirical approach involves the extraction of all changes embedded in

sources of information of both input (effort provided by developers) and output (that

is, additions or changes of subsystems and modules). In the following analysis, the

ChangeLog file, recording the whole change history of a project, has been used

rather than an analysis of the projects' CVS repositories. From previous research it is

known [10, 22] that different development practices have an influence on the best

data source, and the ChangeLog file offers more reliable information in the selected

case projects [6, 12, 30].

The steps to produce the final data can be summarized in: parse of raw data, and

extraction of metrics. As part of the first step, automated Perl scripts are written to

parse the raw data contained in the ChangeLog and to extract pre-defined data fields.

The data fields which will be considered in this study are: name of the system, name

of the module, name of the subsystem containing that module, date of creation or

change and unique ID (name and email) of the developer responsible for the change.

2.2.1 Raw data extraction
The analyzed ChangeLog files follow very regular an- notating patterns, thereby

allowing a straightforward analysis of the history of changes in a project in a semi-

automated way. The following steps have been performed during the extraction of the

raw data:

1 – Identification of dates: it was observed in the studied cases that each touch

was delimited by a date, using the following or a similar pattern: for example,

YYYY-MM-DD, as in “2000-12-31”. Each touch can be associated with one or more

than one developers; also, each touch can be associated with one or more than one

modules. For each touch there is one and only one date.

2 – Affected modules and subsystems: each touch affects at least one file, and is

recorded with a plain-text description. In some cases the same touch affects many

files: these modifications are referred to the same date. Subsystems are extracted as

the folder containing the affected file.

3 – Details of developers: All touches concern at least one developer, displayed in

various forms inside of the description of the touch. If more than one developers are

responsible for a touch, they are recorded together within the touch.

4 – Derivation of metrics: Counts were derived of both effort provided by

developers and work produced creating new modules and amending existing ones.

2.2.2 Metrics choice and description
The analysis of the two OSS systems involved three types of metrics, used

differently to discuss the research questions. A list is proposed in the following:

i - Input metrics: the effort of developers was evaluated by counting the

number of unique (or distinct, in a SQL-like terminology) developers during a

specific interval of time. The chosen granularity of time was based on months:

different approaches may be used, as on a weekly or on a daily basis, but it is

believed that the month represented a larger grained unit of time to gather the

number of active developers. This metrics was used to evaluate the first research

34

From the Cathedral to the Bazaar

question. For instance, in February 2006 it was found that the Wine system had 73

distinct developers who wrote code for this system in that month.

ii - Output metrics: the work produced was evaluated by counting the touches

to modules or subsystems during the same interval of time. Smaller- grained metrics,

like lines of code, were not considered in this study: evaluating how many lines of

code are produced by OSS developers could be subject to strong limitations1. In the

following section this metric will be used also as an indicator of parallel development

work performed in successful projects. This metrics was also used to evaluate the

first research question. As above, in February 2006 it was detected that the Wine

system had 820 distinct modules which were touched in that month.

iii - New Input and Output metrics: the newly-added effort was evaluated

counting the new developers joining the project. The work produced by these new

developers was also isolated: the objective is to determine how much of this work has

been focused on existing parts of the system, and how much goes to new parts. This

metrics served to evaluate the second research question, i.e. to explore if new

developers tend to work either on old or new parts of the system. As above, in

February 2006 it was detected that the Wine system had 73 new developers (i.e. not

detected in any of the previous touches). It was also empirically detected that these

new developers worked in part on old modules, and in part on new modules, i.e.

added in the same month. It was observed that 75% of their work concerned newer

modules, and 25% on existing modules.

2.3 Case studies

The choice of the case studies was based on the recognized, objective success of

one of the systems (Wine), while the second analyzed system (Arla) seems to have

suffered from an inability of recruiting new developers, and achieved a much smaller

overall size. Both of them have been used in the past for other empirical case studies,

and their development style and growth pattern have been extensively studied.

The authors recognize that the two systems have two very different application

domains: Wine is a tool to run Windows applications on Linux and other operating

systems, while Arla is a networked file system. The main objective of the present

study was not to evaluate the exogenous reasons behind successfully recruiting

projects (like the presence of recognized “gurus” in a project, the good reputation of

the existing community, etc [9]). On the contrary, this study focuses on evaluating the

presence of three different stages in successful projects. The research presented here

proposes a theoretical framework for OSS projects, independently from their domain,

and empirically evaluates the

mechanisms of forming a

community around OSS projects.

The choice of the information

sources was restricted to two

classes of items, the CVS

commits and the ChangeLog

1 Lines of code produced are biased by the skills of the developer, the programming

language and, in general, the context of the modifications.

Table 1: summary of information in the two systems.

35

Andrea Capiluppi1, and Martin Michlmayr2

records. The CVS repository of Arla was found to be incomplete, since it does not

contain the complete evolution history of the project. This is probably due to the fact

that the CVS has been adopted at some point after the project's first inception. It was

also observed that the CVS server of Wine is inaccurate: a query for active

developers shows only 2 committers, against a much larger number of developers

found in the ChangeLog records. That probably means a restriction in the write

access to the Wine CVS. ChangeLogs were therefore preferred over CVS logs.

As a means to characterize the two systems, Table 1 displays some basic

information about their ChangeLog files, the time span, and the amount of distinct

developers which were found actively contributing to the project.

3 Results and discussion of the phases

In the following section, the two research questions are discussed, and the three

phases (cathedral and bazaar, separated by a transition phase) as presented in [29] are

evaluated, based on the empirical data from the case studies. Apart from this

evaluation, it is also planned to identify some practical actions that OSS developers

should consider in order to enhance the evolutionary success of their projects, and to

ease the transition between the cathedral and the bazaar phases.

3.1 The cathedral phase

One of the main differences between closed, traditional software and OSS

development is the ownership of the code. In the first environment, the development

is typically driven by a team of individuals, while users do not contribute to, nor

access the source code. In the latter, potentially everyone has the right to access and

modify the source code underlying an application. It is argued that a typical OSS

system will follow a cathedral approach in its first evolution history.

Arla system – input: Figure 2 (left) shows the distribution of distinct

developers per month in the Arla system. Even though a sum of over 80 developers

have contributed code, patches and fixes to the project (see Table 1), the number of

distinct developers working on the development each month is much lower: on

average only about five distinct developers work on the code base each month. As

stated above, the first research question is not confirmed by the empirical findings: in

the Arla project, the evolution of distinct, active developers in a month shows a

regular, constant pattern.

Arla system – output: Figure 2 (right), on the contrary, shows the amount of

distinct modules and subsystems that Arla developers have worked on since its

inception: the distribution is fairly regular, and that could mean that new developers,

when joining the project, are not expanding it into new areas, but that they rather

work on existing functionality, together with the core developers. This will be tested

in the section dedicated to the transition phase. These output findings, i.e. a constant,

not growing pattern in output produced, confirm that the first research question does

not apply for the Arla system.

36

From the Cathedral to the Bazaar

While these findings do not necessarily imply that Arla is a failure compared to

Wine (as in the overall amount of developers from Table 1), it raises some interesting

questions: for instance, it should be studied why only a small, but constant, number

of developers is contributing code. As a possible explanation of its (reduced) success

in recruiting new developers, one could argue that the system could be perceived as

mature already [8], and that little further work was needed. Similar problems have

been observed in the past for the OpenOffice.org and Mozilla systems: they represent

two extremely complex applications and required a huge investment in the study,

before developers could actually contribute directly.

In the next sections, practical guidelines will be evaluated on how an OSS system

could tackle the issues faced by the Arla project, and in order to benefit of the efforts

of a larger pool of developers.

3.2 Bazaar phase

The aim of many OSS projects is to reach a stage where a community of users

can actively contribute to its further development. Some of the key characteristics of

the bazaar phase are visualized in Figure 3, and can be summarized as follows:

• Contributions: the bazaar style makes source code publicly available and

contributions are actively encouraged, particularly from people using the software.

Contributions can come in many different forms and at any time. Non-technical

users can suggest new requirements, write user documentation and tutorials, or

Figure 2: Development input (left) and output produced (right) in Arla

Figure 3: Detailed bazaar phase

37

Andrea Capiluppi1, and Martin Michlmayr2

point out usability problems (represented as low-level "itches" in Figure 3);

technical users can implement features, fix defects and even extend the design of

the software (the high-level "itches" of Figure 3).

• Software quality: increased levels of quality comes from thorough, parallel

inspections of the software, carried out by a large community of users and

developers. These benefits are consistent with software engineering principles: the

`debugging process' of a OSS project is synonymous with the maintenance phase

of a traditional software lifecycle.

• Community: a network of users and developers review and modify the code

associated with a software system. The old adage “many hands make light work”

is appropriate in describing the reasons for the success of some OSS projects [27].

Wine system – input: From the empirical standpoint, Figure 4 (left) shows the

distribution of distinct developers per month in the Wine system. In total, over 800

developers have contributed code, patches and fixes (Table 1). Even though this

project has a longer time span, which could have facilitated the growth of a

developers basis, a clear distinction between a first phase (cathedral) and a later

phase (bazaar) can be identified in the number of developers. Around July 1998, the

Wine system has undergone a massive evolution in the number of distinct developers

involved in the project. The sustainability of this new bazaar phase is demonstrated

by the further, continual increasing number of new distinct developers in the Wine

system. The first research question finds an empirical evidence analyzing the Wine

system, a growing pattern of active developers signals the presence of the bazaar

phase. The sustainability of the input process is visible in the ever-changing amount

of distinct developers which participate in the evolution of the system.

Wine system – output: The bazaar phase is characterized by an open process

in which input from volunteers defines the direction of the project, including the

requirements. The initial implementation is mainly based on the requirements of the

project author. In the bazaar phase, projects benefit from the involvement of a diverse

range of users (with different requirements) who work together to increase the

functionality and appeal of the software.

This parallel development behavior is achieved successfully in the Wine project.

During the investigation of this system, the evolving scope of the project became

apparent through the amount of distinct modules which developers work on each

month. Figure 3 (right) shows the amount of distinct modules and subsystems that

developers have worked on since its inception: the distribution is growing abruptly

Figure 3: Development input (left) and output produced (right) in Wine

38

From the Cathedral to the Bazaar

around the same time when an increase of distinct authors is observed Figure 3,

right). This means that the project, with new developers joining constantly, is actively

expanding it into new areas. The growing pattern of active developers sustains a

growing pattern of output produced: as above, the first research question helps

signaling the presence of the bazaar phase when such a growing pattern occurs.

3.3 Transition phase – defining new avenues of development

The theoretical framework represented in Figure 1 assigns a fundamental role to

the transition phase, since it requires a drastic restructuring of the project, especially

in the way the project is managed. One important aspect is commencing the

transition at the right time. This is a crucial step and a hurdle many projects fail to

overcome [11]. Since volunteers have to be attracted during the transition, the

prototype needs to be functional but still in need of improvement [17, 28, 2].

If the prototype does not have sufficient functionality or stability, potential

volunteers may not get involved. On the other hand, if the prototype is too advanced,

new volunteers have little incentive to join the project because the code base is

complex or the features they require have already been implemented. In both cases,

adding future directions to the system could provide potential new developers further

avenues for the development.

Based on the second research question, new developers, when joining a software

project, tend to work on new modules, rather than old ones. As a consequence, the

core developers should expand the original system into new directions and provide

new code to work on: this would foster the recruitment of new developers and

facilitate the transition phase.

To evaluate this question, an

experiment was designed: at first, the

newly added modules were extracted in

every month. In parallel, the amount of

new developers was also extracted.

Finally, what new developers worked on

was defined as the percentage of new

modules they handled: Figure 4

graphically summaries this process.

The empirical results were extracted

for the two systems Arla and Wine and are

displayed in a box-plot, spanning all the

releases for the two systems. Figure 8 is a description, on a percentile basis, of the

modules as handled by newest developers.

Transition achieved – Wine: this system reveals that new developers, when

joining the project, tend to work more easily on new modules than on older ones. In

fact, more than 50% (on average) of what they work on is newly added in the same

month, either by themselves or the core developers (right boxplot of Figure 5). Also,

the average value of the boxplot was found to be larger when considering only the

`bazaar' phase of Wine.

Figure 4: Design of research question 2.

39

Andrea Capiluppi1, and Martin Michlmayr2

This first result is confirmed by plotting the amount of new modules created by

the developers (Figure 5, right). A growing pattern is detected, similar to the one

observed in the global evolution of the system (Figure 3): new developers join in,

working on newest parts of the code, while core developers sustain the community of

the project by continuously adding

new modules.

Transition not achieved –
Arla: this second system provides a

much more interesting box-plot: the

tendency of new developers is clearly

towards working on something new,

rather than on old modules (left

boxplot of Figure 5). The main

difference with the Wine project is

that, for most of the periods, there are

no new developers joining in the Arla

development. Based on the

assumptions of the second research question, new developers still prefer to start

something new, or work on newly added code: still, this project could not ease the

transition phase by not recruiting new developers. Therefore, it is possible to

conclude that the original developers in Arla failed in providing new directions for

the system, by creating new modules or subsystems. This conclusion is backed by the

amount of new modules created by the developers (Figure 6, left): a decreasing

pattern is detected, which confirms that new developers (and the community around

the project), albeit willing to work on the system, were not adequately stimulated by

the core developers.

In summary, considering the second research question stated above, we found

similar evidences for both the systems: when joining the development of an OSS

system, new developers tend to work on (i.e., add or modify) new modules rather

than old ones. As a proposed corollary to these results, the transition to a bazaar

phase should be actively sought by the core developers: potential new developers

should be actively fostered adding new ideas or directions to the project.

Figure 5: Description of effort for new developers

Figure 6: Creation of new modules in the Arla and Wine systems

09
/9

7

05
/9

8

01
/9

9

09
/9

9

05
/0

0

02
/0

1

10
/0

1

06
/0

2

02
/0

3

10
/0

3

07
/0

4

03
/0

5

11
/0

5

07
/0

6

0

5

10

15

20

25

30

35

40

45

50

55

Arla - insertion of new modules

Month

06
/9

3

10
/9

4

02
/9

6

07
/9

7

11
/9

8

04
/0

0

08
/0

1

12
/0

2

05
/0

4

09
/0

5

0

20

40

60

80

100

120

140

160

Wine - insertion of new modules

Month

40

From the Cathedral to the Bazaar

4 Related work

In this section the present work is related to various fields, specifically empirical

studies on software systems and effort evaluation. Since this work is in a larger

research context, related to the study of the evolution of OSS systems, empirical

studies of OSS are also relevant to this research.

The earliest studies of the evolution of software systems were achieved through

the proprietary operating system OS/360 [4]. The initial studied observed some 20

releases of OS/360, and the results that emerged from this investigation, and

subsequent studies of other proprietary commercial software [20], included the SPE

program classification and a set of laws of software evolution.

The present research has been conducted similarly, but evaluating both the input

(as effort) provided, and the output (as changes made to the code base) achieved. The

research questions which this paper is based upon derives from [29], and is based on

the presence of two distinct phases in the software lifecycle of OSS systems, namely

the cathedral phase and the bazaar phase [28]. This in contrast with Raymond's

suggestion that the bazaar is the typical style of open source projects [15, 28]: an

empirical evaluation was achieved by studying the lifecycle of two large free software

projects, of which only one has made the transition to the bazaar phase and attracted

a large community of developers. It is believed by the authors that too much

emphasis has been put on highly popular projects in the past which are not

necessarily representative of the OSS community as a whole [13, 15, 16, 26]. Few

projects make a transition to the bazaar, attracting a large and active developer

community along the way.

Having a large bazaar surrounding a project has several advantages, such as the

ability to incorporate feedback from a diverse base of users and developers.

Nevertheless, this is not to say that projects which are not in the bazaar phase are

necessarily failures – they neither have to be unsuccessful nor of low quality.

Interestingly enough, in contrast to Raymond's model, there are a number of

applications, such as GNU coreutils and tar, which form a core part of every Linux

system and which clearly follow the cathedral. Similarly, there are many projects

entirely developed by a single, extremely competent developer which show high

levels of quality. Due to the lack of better theories and empirical research, quality in

OSS projects is explained through the bazaar with its peer review [1, 26, 28].

However, not every project with high quality actually exhibits a large bazaar and

significant peer review.

A project in the cathedral phase can be highly successful and of high quality [31].

However, there are some restrictions a project in the cathedral phase faces as well as

a number of potential problems which are less severe if the project had a large

developer community. For example, while it is possible for a single developer to

write an application with a limited scope (such as a boot loader), only a full

community can complete a project with a larger scope (such as a full desktop

environment). Furthermore, a project written by one developer may be of high

quality but it also faces a high risk of failure due to the reliance on one person who is

a volunteer [23, 25]. Having a large community around a project makes the project

more sustainable.

41

Andrea Capiluppi1, and Martin Michlmayr2

This discussion shows the lack of research in a number of areas related to OSS

projects. While a uniformed model for all OSS projects has been assumed in the past,

it is increasingly becoming clear that there is a great variety in terms of development

processes [9, 19, 14]. Better theories about success and quality in OSS projects are

needed [24], as are further comparisons between projects with different levels of

success and quality. Finally, it should not be assumed that the bazaar is necessarily

the optimal phase for every project, or that it is not associated with any problems.

There is a general assumption that it is beneficial for a OSS project to be open, but

too much openness can also be harmful when it leads to incompetent developers or

people who demotivate important contributors getting involved [9].

5 Conclusions and future work

Successful OSS projects have been studied and characterized in the past, but an

empirical demonstration on how they achieved their status has not been proven yet. In

order to tackle this missing link, this paper has presented an empirical exploration of

two OSS projects, Arla and Wine, to illustrate different phases in their lifecycle, their

development processes and the communities which formed around them. Their

ChangeLog records were analyzed and all the changes and additions, performed by

the developers over the years, were recorded.

The assumption underpinning this paper is that the `cathedral' and `bazaar'

phases, as initially proposed and depicted by Raymond in [28], are not mutually

exclusive: OSS projects start out in the cathedral phase, and potentially move to a

bazaar later. The cathedral phase is characterized by closed development performed

by a small group or developer, with much in common with traditional software

development. The bazaar phase exploits a larger number of volunteers who

contribute to the development of the software through defect reports, additional

requirements, bug fixes and features. The transition between the two phases was

argued to be by itself a phase too, which has to be accommodated by specific, active

actions of the core developers or project author. It was also argued that this transition

is a necessary factor for truly successful and popular projects.

A first research question has proposed the study of the difference between the

cathedral and the bazaar phases: the first system (Arla) has remained, through its

lifecycle, an effort of a limited number of developers, or in a cathedral phase. It was

also argued that this should not be interpreted as a sign of the overall failure of an

OSS project, but as a potentially missed opportunity to establish a thriving

community around a project. On the contrary, the second system (Wine) only shows

an initial phase that is similar to what observed in the Arla system: a second, longer

phase (bazaar) has a growing amount of active developers and a continuous

expansion of the system.

Through a second research question, the focus was moved to the preferences of

new developers joining an OSS project: results on both the systems show that new

developers prefer to work on newly added modules, rather than older ones. In the

Wine system, existing developers eased the transition phase by adding many new

modules which new developers could work on. On the other hand, new developers in

42

From the Cathedral to the Bazaar

Arla, although eager to work on new code, were not yet given enough new directions

of the project, and an overall poor ability in recruiting new developers was resulting.

The future work has been identified in a replication of the study with other OSS

projects, especially those belonging to the same application domain: the results as

obtained in this study have analyzed the creation of a community from a neutral point

of view, that is, without considering exogenous drivers. Our next step is to introduce

these drivers into the research, and analyze large projects which currently compete

with each other for the scarce resource of developers.

References

[1] A. Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka, B. Reeves, A. Takashima, and

Y. Yamamoto. A case study of the evolution of jun: an object-oriented open-source 3d

multimedia library. In Proceedings of the 23rd International Conference on Software

Engineering, pages 524-533, Toronto, Canada, 2001.

[2] B. Arief, C. Gacek, and T. Lawrie. Software architectures and open source software –

where can research leverage the most? In Proceedings of the 1st Workshop on Open Source

Software Engineering, Toronto, Canada, 2001.

[3] R. Austen and G. Stephen. Evaluating the quality and quantity of data on open source

software projects. In Proceedings of 1st International Conference on Open Source Systems,

Genova, Italy, June 2005.

[4] L. A. Belady and M. M. Lehman. A model of large program development. IBM Systems

Journal, 15(3):225-252, 1976.

[5] M. Bergquist and J. Ljungberg. The power of gifts: Organising social relationships in open

source communities. Information Systems Journal, 11(4):305-320, 2001.

[6] A. Capiluppi. Models for the evolution of OS projects. In Proceedings of International

Conference on Software Maintenance, pages65-74, Amsterdam, Netherlands, 2003.

[7] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the evolution of OS projects through

changelog analyses. In Proceedings of the 3rd Workshop on Open Source Software

Engineering, Portland, OR, USA, 2003.

[8] A. Capiluppi, M. Morisio, and J. F. Ramil. Structural evolution of an open source system:

A case study. In Proceedings of the 12th International Workshop on Program

Comprehension (IWPC), pages 172-182, Bari, Italy, 2004.

[9] K. Crowston and J. Howison. The social structure of free and open source software

development. First Monday, 10(2), 2005.

[10] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version

control and bug tracking systems. In Proceedings of International Conference on Software

Maintenance, pages 23-32, Amsterdam, Netherlands, 2003.

[11] K. F. Fogel. Open Source Development with CVS. The Coriolis Group, Scottsdale,

Arizona, 1st edition, 1999.

[12] D. M. German. An empirical study of fine-grained software modifications. pages 316-

325, Chicago, IL, USA, 2004.

[13] D. M. German. Using software trails to reconstruct the evolution of software. Journal of

Software Maintenance and Evolution:Research and Practice, 16(6):367-384, 2004.

[14] D. M. German and A. Mockus. Automating the measurement of open source projects. In

Proceedings of the 3rd Workshop on Open Source Software Engineering, Portland, OR,

USA, 2003.

43

Andrea Capiluppi1, and Martin Michlmayr2

[15] M. W. Godfrey and Q. Tu. Evolution in open source software: A case study. In

Proceedings of the International Conference on Software Maintenance, pages 131-142, San

Jose, CA, USA, 2000.

[16] J. Howison and K. Crowston. The perils and pitfalls of mining SourceForge. In

Proceedings of the International Workshop on Mining Software Repositories (MSR 2004),

pages 7-11, Edinburgh, UK, 2004.

[17] K. Johnson. A descriptive process model for open-source software development. Master's

thesis, Department of Computer Science,University of Calgary, 2001.

http://sern.ucalgary.ca/students/theses/KimJohnson/thesis.htm

[18]N. J�rgensen. Putting it all in the trunk: Incremental software engineering in the FreeBSD

open source project. Information Systems Journal, 11(4):321-336, 2001.

[19] S. Koch and G. Schneider. Effort, cooperation and coordination in an open source

software project: GNOME. Information Systems Journal, 12(1):27-42, 2002.

[20] M. M. Lehman and L. A. Belady, editors. Program evolution: Processes of software

change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[21] L. Lopez, J. G. Barahona, I. Herraiz, and G. Robles. Applying social network analysis

techniques to community-driven libre software projects. International Journal of

Information Technology and Web Engineering, 11(4):321-336, 2006.

[22] T. Mens, J. F. Ramil, and M. W. Godfrey. Analyzing the evolution of large-scale software:

Guest editorial. Journal of Software Maintenance and Evolution, 16(6):363-365, 2004.

[23] M. Michlmayr. Managing volunteer activity in free software projects. In Proceedings of

the 2004 USENIX Annual Technical Conference, FREENIX Track, pages 93-102, Boston,

USA, 2004.

[24] M. Michlmayr. Software process maturity and the success of free software projects. In K.

Zielinski and T. Szmuc, editors, Software Engineering: Evolution and Emerging

Technologies, pages 3-14, Krakow, Poland, 2005. IOS Press.

[25] M. Michlmayr and B. M. Hill. Quality and the reliance on individuals in free software

projects. In Proceedings of the 3rd Workshop on Open Source Software Engineering, pages

105-109, Portland, OR, USA, 2003.

[26] M. Michlmayr, F. Hunt, and D. Probert. Quality practices and problems in free software

projects. In M. Scotto and G. Succi, editors,Proceedings of the First International

Conference on Open Source Systems, pages 24-28, Genova, Italy, 2005.

[27] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology, 11(3):309-346, 2002.

[28] E. S. Raymond. The Cathedral and the Bazaar. O'Reilly & Associates, Sebastopol, CA,

USA, 1999.

[29] A. Senyard and M. Michlmayr. How to have a successful free software project. In

Proceedings of the 11th Asia-Pacific Software Engineering Conference, pages 84-91,

Busan, Korea, 2004. IEEE Computer Society.

[30] N. Smith, A. Capiluppi, and J. F. Ramil. Agent-based simulation of open source

evolution. Software Process: Improvement and Practice, 11(4):423-434, 2006.

[31] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality analysis in open-

source software development. Information Systems Journal, 12(1):43-60, 2002.

[32] L. Torvalds. The Linux edge. In C. DiBona, S. Ockman, and M. Stone, editors, Open

Sources: Voices from the Open Source Revolution, pages 101-111. O'Reilly & Associates,

Sebastapol, CA, USA, 1999.

44

Project Entity Matching across FLOSS
Repositories

Megan Conklin
Elon University Campus Box 2126, Elon, NC, 27244 USA

mconklin@elon.edu
WWW home page: http://facstaff.elon.edu/mconklin

Abstract. Much of the data about free, libre, and open source (FLOSS)
software development comes from studies of code repositories used for
managing projects. This paper presents a method for integrating data about
open source projects by way of matching projects (entities) and deleting
duplicates across multiple code repositories. After a review of the relevant
literature, a few of the methods are chosen and applied to the FLOSS domain,
including a simple scoring system for confidence in pairwise project matches.
Finally, the paper describes limitations of this approach and recommendations
for future work.

1 Introduction

Free, libre or open source software (FLOSS) development teams often use
centralized code repositories to help manage their project code, to provide a place for
users to find the product, and to organize the development team. Although many
FLOSS projects host their own code repository and tools, many projects use the tools
hosted at a third-party web site (such as Sourceforge1, ObjectWeb2, or Rubyforge3).
These code forges provide basic project/team management tools, as well as hosted
space for the source code downloads, a version control system, bug tracking
software, and email mailing lists. There are also directories of FLOSS software (such
as Freshmeat4 and the Free Software Foundation5 directory) that try to gather into
one convenient place material about projects interesting to a particular community.

Much software development research has been focused on gathering metrics from
code repositories. Many aspects of the repository-based software development

1 http://www.sf.net
2 http://forge.objectweb.org
3 http://www.rubyforge.org
4 http://www.freshmeat.net
5 http://directory.fsf.org

46 Megan Conklin

process have been studied in depth, and repository data collection is important for
these studies (see [2] for background). The FLOSSmole project [5] was created to
consolidate metadata and analyses from some of these repositories and directories
into a centralized collaboratory for use by researchers in industry and academia. As
of this writing, FLOSSmole includes data and analyses from Sourceforge,
Freshmeat, Rubyforge, ObjectWeb, and the Free Software Foundation (FSF)
directory of free software. One of the challenges mentioned in [2] in creating this
kind of collaboratory is in integrating the data from these various sources. When
integrating project data from multiple sources, we must first identify which project
pairs are matches; in other words, we want to find out which projects are listed on
multiple forges. For example, is the octopus project on ObjectWeb the same as the
octopus project on Sourceforge or the project also called octopus on Freshmeat? If
we can determine a heuristic for determining whether a project pair is a match, then
can we automate the matching process?

The focus of this paper is entity matching (and duplicate identification) as applied
to the domain of FLOSS projects. Section 2 outlines some terminology from the
study of data integration problems and gives a background of entity matching
algorithms. Section 3 describes the FLOSS domain in terms of entities and
duplicates. Section 4 gives an example of applying some of the algorithms for entity
matching to this domain. Section 5 outlines limitations of this work and gives
recommendations for future study.

2 Entity Matching Background

The act of integrating multiple data sets and finding the resulting duplicate records
("matches") is nearly as old as database processing itself. In practice and in the
literature, this set of processes is known by many names: merge/purge, object
identification, object matching, object consolidation, record linkage, entity matching,
entity resolution, reference reconciliation, deduplication, duplicate identification, and
name disambiguation. The terms entity matching and duplicate identification will be
used throughout this paper.

Within the larger activity of data integration, the act of matching entities or
identifying duplicates is not to be confused with the act of schema reconciliation.
Schema reconciliation refers to the act of matching up columns or views in different
data sources, and using data or metadata to make the match. For a trivial example,
suppose a field in Table A is called url but it is called home_page in Table B. To
resolve these schemas, the analyst could create a global schema or view that
encapsulates both underlying schemas. This task can be done manually, or can be
automated through various machine learning techniques [1,4,8]. Schema
reconciliation and entity matching are related, but not identical, tasks of data

Project Entity Matching across FLOSS Repositories 47

integration. Most often the schema reconciliation will happen first, followed by the
"merge" task, and finally by the eventual "purge" of duplicate data.

2.1 Agree/Disagree and Frequency-Based Matching

The simplest and oldest form of entity matching is the simple agree/disagree method:
take two data sets A and B and compare them pairwise for matches based on one or
more attributes. The pairs will either agree or disagree on zero or more of the
attributes, and thus a weight for the match can be determined.

To improve agree/disagree entity matching, early research relied on frequencies
of values to determine the probability of a match (see [10] and [7] for brief
explanations of this work). Frequency matching asserts an important premise: that
two rare values are more easily and accurately matched than two common values.
The example given in [10] is for two records listing the name Zbigniew Zabrinsky,
two records listing the name James Smith, and any two records with first and last
names. The two records for Zbigniew Zabrinsky are likely to be more easily and
accurately matched than James Smith due to the rarity of the field values.

2.2 Disjoint Sets

In [4], the authors consider the problem of how to match 'person' records using
disjoint attributes and a 'typical person' profile. For instance, the example given in
the paper is that the two records {Mike Smith, age 9} and {Mike Smith, salary
$200,000} are not likely to be the same person based on a profile indicating that a
typical person with an annual salary of $200k is older than 9 years. The authors
compare their system to a traditional agree/disagree system of matching, and show
that disjoint attributes can be effective if paired with shared attributes.

2.3 Confidences

Numerous authors, including recently [6], consider how to merge records when a
confidence measure has been added to the results of a prior merge process. In their
description, confidences (also called weights or scores) usually measure either (a) the
level of user-defined "belief" in the data, or (b) the amount of "accuracy" the user
thinks is present in that particular merged record. In their paper, the authors ask:
what is the best (most efficient, least work) way to match and merge records, given a
confidence measure on each record? These authors do not discuss in [6] how to
actually calculate a confidence value, but this is one of our concerns in Section 4.

48 Megan Conklin

3 Entity Matching Methods for FLOSS Data

This portion of the paper describes the way each of these entity matching methods
can be applied to integrate disparate sets of projects from the FLOSSmole project.

First, by way of introduction to the FLOSSmole data, Table 1 shows a partial list
of the project attributes available for each of the repositories/forges in FLOSSmole at
the time of this writing. These project attributes are the most likely candidates for the
job of matching projects. (There are dozens of other attributes about each project in
FLOSSmole, such as registration date or project status or number of downloads, but
these are not likely to be helpful in matching projects across repositories.)

Forge
Sourceforge, Freshmeat, Rubyforge,
Objectweb, Free Software Foundation

Attribute

SF FM RF OW FSF
Short Name (unixname) X X X X X
Long Name X X X X X
Description X X X X X
URL X X X X X
License Type(s) X X X X X
Programming Language(s) X X X X X
Operating System(s) X X X X
Topic(s) X X X X
Intended Audience(s) X X X X
User Interface(s) X X X
Environment(s) X X
Developer(s) X X X X X

Table 1. Project metadata: relevant attributes for matching projects, (FLOSSmole, Dec, 2006)

Most of these attributes shown in Table 1 are self-explanatory. However, some
confusion can arise when differentiating between the short name and the long name
for a project. The short name is usually an internal-to-the-repository name that is
given to the project at the time of its creation. Some repositories use this as a sort of
primary key for the project in its database. The long name of a project is the more
descriptive name for a project. It can change over time, it can include spaces and
special formatting characters, and it typically more descriptive than the short name.
Values for all of the attributes shown in the list in Table 1 are chosen by the project
administrators, and except for short name and long name, they can all be NULL.
License type, operating system, topic, audience, interface, and environment can have
multiple values.

Project Entity Matching across FLOSS Repositories 49

The next three sections describe a few of the obvious choices for attributes from
this list that can be used to establish matches between projects. One choice from
Table 1 that may initially look promising is "List of Developers". Since this attribute
is actually a list of developers who work on each project, what better way to
differentiate or match two projects? (If the list of developers is the same for the two
projects, then the two are a match.) The problem with this is that developers are
entities themselves, and matching developers between repositories requires an
entirely separate list of attributes (developer name, developer email, developer skills,
role on project, etc). Section 5 discusses broadening project entity matching to
include developers, but the remainder of this paper will exclude developers as
entities and will retain the focus on project matching only.

3.1 Matching by URLs

The diagram shown in Figure 1 depicts each forge/directory in FLOSSmole and how
many of its projects list another forge as the actual hosting home page. For example,
in the diagram, the topmost arrow shows 11 projects on the FSF that actually have
Rubyforge listed as the home page. The arrow notation is used to show a direction of
the relationship (e.g. 10,044 Freshmeat projects show a home page on Sourceforge,
but only 4 Sourceforge projects list a Freshmeat home page). Pairs of forges with no
URLs in common are not shown. (No Rubyforge projects list ObjectWeb URLs, and
vice versa. Also, as is befitting its status as a directory and not a repository, the FSF
directory is not listed as the home page of any projects from the other repositories, so
these empty relationships are not shown in the diagram.)

50 Megan Conklin

Fig. 1. Number of projects at each repository that list a home page at another repository

3.2 Matching by Project Names

Figure 2 shows the number of short project names shared in common between each
pair of projects. For instance, starfish is a project listed on both Sourceforge and
Rubyforge. On Rubyforge, it is described as a "tool to make programming
ridiculously easy", but on Sourceforge the starfish project is described as a password
management application. There are 470 projects with shared names on Rubyforge
and Sourceforge. A similar problem exists between the project names on
Sourceforge and ObjectWeb. For example, the project called octopus exists on both
these forges and appears to be a completely different application: on Sourceforge this
is an Eclipse plug-in, but on ObjectWeb octopus is an ETL data warehousing tool.
Of the 125 applications (total) listed on ObjectWeb, 41 have names that are shared
with a Sourceforge project. The Sourceforge project may (as in the case of
lemonldap) or may not (as in the case of octopus) be the same project. On Freshmeat,
there also is a project called octopus, but this one is a financial trading application.

Project Entity Matching across FLOSS Repositories 51

Fig. 2. Number of projects at each repository that share an identical short project name

Most forges require projects to have a unique name (sometimes called the
"unixname") within that forge. For example, once a project called starfish has been
added to Sourceforge, another one cannot be added with the same short unixname.
However, multiple projects can have the same "display name"; Sourceforge projects
starfish and xstarfish both have the display name of "starfish". On Sourceforge,
44,112 (39%) of projects have unixnames that are different from their display names
(December 2006 FLOSSmole data). Note that the FSF directory has only a
requirement for case-sensitive uniqueness in project names. The FSF lists project
pages for both ANT (telephony application) and ant (build tool). There are 54 such
(ambiguously) named projects listed on FSF.

3.3 Matching by Other Attributes

It may be possible to determine the accuracy of each matched pair further by
attempting to match the project owner or developer names, emails, or usernames as
in [11]. Or, it may be possible to find a matched pair through the textual description
of the project, or through the project license type, the programming language(s),
operating system(s), or other metadata about the project. Each of these possible
match fields requires that the project administrator has accurately filled in the
metadata for his/her project. If the administrator never bothered to fill in the
programming language for the project on one or both of the sites where the project is
listed, then it will not be possible to disambiguate by finding a match on this item.

Project Attribute Projects listing at least one Projects listing none
Programming Language 82,969 (73%) 29,946 (27%)
License Type 84,102 (74%) 28,813 (26%)
Operating System 78,334 (69%) 34,581 (31%)

52 Megan Conklin

Table 2. Numbers of Sourceforge projects with and withoug certain attribute data,
(FLOSSmole, Dec, 2006)

Table 2 summarizes a few of the most common attribute statistics for Sourceforge
projects. It is also interesting to discover that of those 74% of projects that list a
license type, over half use the GPL.

3.4 Advanced Methods

In our attempt to match FLOSSmole projects by URL, name, or any other
combination of attributes, we are still performing basic agree/disagree entity
matching. Our brief review of the database literature on entity matching indicates
that these methods do work for some cases, but can be optimized and improved.

3.4.1 Frequency-Based Matching

The first improvement made to the agree/disagree entity matching was to consider
how to apply a form of frequency matching on the name field. Recall that [10]
explains that rare names (Zbigniew Zabrinsky) are more easily matched than
common names (James Smith). "Rare" and "common" are determined by an already-
existing set of names and their general frequency rankings in the population. In the
case of FLOSS projects, there is no such ranking for software project names, but a
corollary might be that projects with dictionary words for names (e.g. the octopus
and starfish examples) are more likely to be non-matches than projects with unusual,
non-dictionary names (e.g. sqlite-ruby or lemonldap). Because there is also a
difference between the unique unixname and the non-unique display name for each
project, we ask: which of these fields should be used to consider the frequency
match? In Section 4, we answer with "both", but we score the matches differently.

3.4.2 Disjoint Sets

The next improvement was to use the notion of a disjoint set, as in 2.2. by listing
which attribute values would likely never coexist. Initial ideas included the following
possible disjoint sets: {op_sys=linux, prog_lang=asp}, {date_registered<2001,
prog_lang=C#}. Not only are these rules fairly weak insofar as there are plenty of
examples of projects that would violate them for various reasons, but unlike the
age/salary information in the example case in 2.2, the number of records in
FLOSSmole which match these disjoint sets is likely to be quite small. We conclude
that in the FLOSS domain, it is more likely to be the case that duplicates can be
found through simpler methods than disjoint sets. This is due to three factors: the low
number of valid disjoint set rules we would be able to construct, the difficulty of
applying disjoint set rules to our data when so many of the pairs are missing
metadata on which these disjoint sets would be based (recall section 3.3), and the
low number of duplicates that would not be identified by other, simpler methods.

Project Entity Matching across FLOSS Repositories 53

3.4.3 Confidences or Scoring

One final serious consideration in advanced methods of entity matching and
duplicate identification was the use of confidences to describe numerically the
analyst's degree of belief in the accuracy of the merge/match. How should scoring be
done? We worked backwards from our initial assumption that the end goal of this
exercise is be able to point from one project to another based on likelihood that they
are a match. Thus, we planned to consider each pair in turn, then apply a
confidence/match score (based on the heuristics used) to the record to indicate how
good the match was. The scoring and results are given in the next section.

4 Application

To apply entity matching methods to project data in FLOSSmole, we assume a set of
heuristics and associated weights for calculating whether the items in a pair are a
match (Table 3). Match modifiers were determined through trial and error, and based
on an intuitive sense of which matching criteria were important.

Match Modifier
Home Page URLs match +3.00
Short names match +2.00
--if yes, is short name in the dictionary (i.e. is it common?) -1.00
--if not, does Partial Name match? +0.50
 -- if partial name matches, is partial name in dictionary? -0.25
Textual descriptions tokens match, per token match +0.10
Long (display) names match +0.50
Programming language matches, per token match +0.50
License matches, per token match +0.50
Other project metadata matches, per token match +0.50

Table 3. Scoring table for matching pairs of projects

A short example of a table designed to hold the FLOSSmole pairs with their
matching scores across multiple repositories might look like Table 4. Higher scores
mean the pair is more likely to be a match, but it will be up to an individual analyst
to decide where to "draw the line" for what score indicates a match. The highest
score is around 8; the lowest score is 0. As shown in the table, the highest score
could be higher if more attributes were added. Attributes included are programming
language, operating system, and license because these are the fields whose values
were most available and easiest to standardize over a variety of repositories.
(Compare with attributes like "environment", "interface", or "topic" that are hard to
standardize.)

54 Megan Conklin

Table 4. Scoring table for matching pairs of projects

Pair ID Project Name Source A Project Name Source B Score
1 phpmyadmin SF 8001 (phpmyadmin) FM 6.9
2 octopus SF octopus OW 1.0
3 octopus-ge SF octopus OW 2.6
4 16120 (octopus) FM octopus OW 1.5
5 13902 (ant) FM 152 (ant) FSF 4.1
6 sqlite-ruby SF sqlite-ruby RF 6.9

Pair 1 shows Sourceforge project phpmyadmin matching an identically-named
Freshmeat project. These projects share a short name (with low frequency count
when compared to a dictionary word: +2), long name (+.5), URL (+3), and license
type (+.5). Several key tokens are the same in each description (+.9: MySQL, PHP,
Web, administration, alter, drop, database, delete, SQL).

Pair 2 shows Sourceforge project octopus with ObjectWeb project octopus. The
short project names match (+2), but urls are different. The long project names are
also different ('Octopus' and 'Enhydra Octopus'). Additionally, because the
Sourceforge project octopus does not list any project metadata, it can't be matched
very well with the ObjectWeb project of the same name using these additional
attributes. Finally, these two entities share the dictionary name 'octopus' (-1).

Pair 3 shows the project octopus-ge on Sourceforge and project octopus on
ObjectWeb. These projects share a beginning partial string match, octopus* (+1) but
it is a dictionary word (-.5). They share one programming languages (+.5), a license
type (+.5), and one operating system (+.5). The textual description of the projects
increases the score, since both use the strings 'Enhydra Octopus', 'extraction',
'transformation', 'load*', 'ETL', and 'XML' (+.6). However, a closer read of the
textual description field by a human being reveals that the Sourceforge project is
actually a graphical editor for the ObjectWeb project. They are related projects, but
not the same project. The combination of no ULR score and low scores for the
textual matches has (accurately) kept this project from a high score.

Pair 4 shows the attempted match between that same octopus project at
ObjectWeb but now paired with the octopus project at Freshmeat. The projects have
the same short name (+2 for similarity, -1 for dictionary), but different URLs, totally
different textual descriptions, and share only the license type in common (GPL, +.5).
Indeed, manual checking of this result shows that these two projects are not related.

Pair 5 shows the Freshmeat project ant matching with the Free Software
Foundation project ant as follows: short name (+2), url (+3). However, the display
names for this project are different ('ant' on FSF and 'apache ant' on FM). In addition,
the common dictionary name 'ant' lowers the score somewhat (-1). Note that while
there is only one significant matching token in the textual description (the word

Project Entity Matching across FLOSS Repositories 55

"Java", +.1), the entire first sentence of the two projects is identical. This indicates a
strong need to refactor the scoring algorithm for textual descriptions.

Pair 6 shows that SQLite-ruby project listed nearly identical information on both
Sourceforge and Rubyforge. They share: the project home page (+3), short name
(+2), the display name (+.5), one programming language (+.5), the operating system
(+.5), and 4 significant text tokens (+.4), yielding a total score of 6.9.

5 Limitations, Recommendations, and Future Work

Based on the application shown in Section 4, entity matching is an interesting
exercise, but is certainly problematic. One of the most obvious problems is the
scoring modifiers given in Table 2; there is a distinct possibility that a pair of
projects could achieve a score of 4.0 by having a partial non-dictionary name match
(+.5), five attributes in common (+2.5), and a handful of well-chosen tokens in the
textual description (+.5), and yet these projects could be completely unrelated. Yet, it
is not enough to simply require a score higher than 5.0 for a match; according to the
table, the ant project pair on Freshmeat and FSF also received a score of 4.1, and it is
a legitimate match.

This leads to a discussion of how to set scoring thresholds. Perhaps there could
be a "yes" category for projects scoring above a certain value, a "no" category for
projects scoring below a certain value, and a middle category for questionable
scores. These questionable scores may take human intervention to resolve. It will be
necessary to constantly tweak the scoring system and thresholds so that there are not
too many false positives, false negatives, or values needing human intervention.

There are also numerous ways to improve the definitions of token matches within
textual descriptions. For instance, in the case of ant, there were very few singularly
meaningful tokens in the textual descriptions, but the description as a whole matched
perfectly. The use of dictionary word definitions for frequency matching may need to
be refactored also. The ant match lost points because of this. Also, should non-
dictionary strings that are also common in software development ("lib", "db", "php")
be added to the dictionary? Partial matches were also problematic. How should the
word be broken: by leading strings, ending strings, or middle-of-word strings? Also,
if a project name matches by 14 letters, should that get a higher score than a pair that
only matches by three letters? Is it possible that those three letters could be highly
significant?

Next, what about multi-way matches? We have given little attention to the
problem (as presented in [6]) of how to merge multiple confidence scores after
they've been created. Consider a project such as sqlite-ruby that appears on
Sourceforge, Rubyforge, Freshmeat, and the FSF directory. What is the appropriate

56 Megan Conklin

way to integrate its multiple scores? Sqlite-ruby is likely to have high scores on all 6
pair combinations, so a simple average might work, but what about a project like ant
whose scores may vary more?

Section 3 mentioned the possibility of matching projects based on the lists of
developers on each project. Before doing this, it would be necessary to use similar
entity matching methods to actually match developer entities as well. As is so well-
described in [9], matching developers also leads to a few additional complexities:
"real" emails are most often not available for public lists of developers on code
repositories, name matching with developers could be even more complex than
matching on names for projects because of similarities in names and spellings, and of
course, developer privacy is always a concern when integrating disparate personal
data. It is instructive that the authors in [9] do also rely on heuristics to make their
matches, and that they limit their matches to a single group of actors in the GNOME
project, albeit over numerous data sources within that project (mailing lists, CVS
repositories, etc.)

One final recommendation for future work is to remember some of the work
being done on sites like Krugle6, Swik7, and the Galactic Project Registry8 to
standardize the notion of a project name. Krugle is a source code search engine that
actually uses some FLOSSmole data to populate its list of projects. Swik is a wiki of
information about individual open source projects; it gets some of its initial
information from FLOSSmole as well. The Galactic Project Registry is attempting to
put together a plan for being "the One True Known Up-To-Date Source" for project
names and DOAP (description of a project) information on each project. Each of
these projects probably would benefit from this work in entity matching and
duplicate identification across repositories, and perhaps they can contribute to the
conversation about the best way to achieve this goal.

6 Acknowledgements

The author would like to acknowledge Charles Irons and Wayne Conley for their
important work on the Other Souths project at Elon University. Their work
implementing Other Souths directly influenced the methods designed for this paper.

7 References

1. Batini, C., Lenzerini, M., Navathe, S. (1986). A comparative analysis of
methodologies for database schema integration. ACM Comp. Surveys, 18:4. 323-364.

6 http://www.krugle.com
7 http://www.swik.net
8 http://gpr.wikiwall.org

Project Entity Matching across FLOSS Repositories 57

2. Conklin, M. (2005). Beyond low-hanging fruit: Seeking the next generation of
FLOSS data mining. In Proc. 2nd Intl. Conf. on Open Source Sys. Como, Italy. 47-56.

3. Doan, A., Domingos, P., Halevy, A. (2001). Reconciling schemas of disparate
data sources: A machine learning approach. In Proc. of the ACM SIGMOD. Santa
Barbara, CA, USA. 509-520.

4. Doan, A., Lu, Y., Lee, Y., Han, J. (2003). Object matching for information
integration: A profiler-based approach. In Proc. of the IJCAI Workshop on
Information Integration on the Web. Acapulco, Mexico. 53-58.

5. Howison, J., Conklin, M., Crowston, K. (2005). OSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses. In Proc. of the 1st Intl. Conf. on
Open Source Sys. Genova, Italy. 54-59.

6. Menestrina, D., Benejelloun, O., Garcia-Molina, H. (2006). Generic entity
resolution with data confidences. In Proc. of 1st Int. VLDB Workshop on Clean
Databases. Seoul, Korea.

7. On, B-W., Lee, D., Kang, J., Mitra, P. (2005). Comparative study of name
disambiguation problem using a scalable blocking-based framework. In Proc. of the
5th ACM/IEEE-CS Joint Conf. on Digital Libraries. Denver, CO, USA. 344-353.

8. Rahm, E. and Bernstein, P. (2001). A survey of approaches to automatic schema
matching. VLDB Journal, 10. 334-350.

9. Robles, G. and Gonzalez-Barahona, J. (2005). Developer identification methods
for integrated data from various sources. In Proc. of the Mining Software
Repositories Workshop (MSR2005). 1-5.

10. Winkler, W. (1999). The State of Record Linkage and Current Research
Problems. Technical Report, Statistical Research Division, US Bureau of the Census.

Can Knowledge Management be Open
Source?

Charmaine C Pfaff1 and Helen Hasan2

1 University of Wollongong, Faculty of Commerce, Information Systems,
Wollongong 2522, Australia

hasan@uow.edu.au
WWW home page: http://www.uow.edu.au/commerce/infosys/hasanh.html
2 University of Wollongong, Faculty of Commerce, Information Systems,

Wollongong 2522, Australia
ccp02@uow.edu.au

Abstract. As we move further into a knowledge economy where collaboration
and innovation are increasingly central to organisational effectiveness,
enterprises need to pay more attention to the informal networks that exist
within the organisation. Wikis may provide a more appropriate knowledge
management capability and environment to capture tacit knowledge. Where
traditional organisational cultures see that knowledge management must be
tightly protected, Wikis opt for an open source approach where knowledge is
shared and distributed for innovation to continue. This paper aims to explicate
more participatory organisational processes of creation, accumulation and
maintenance of knowledge. It uses Activity Theory as a framework to describe
the components of an activity system where a Wiki is a tool mediating
employee-based knowledge management activities and thereby democratising
organisational knowledge.

1 Introduction

As organisations aim at moving knowledge from the realm of the individual into
the hands of the organisation, they often resort to expensive Knowledge
Management Systems (KMS) with data mining and search engines to organize and
access large volumes of documents. Although traditional business logic dictates that
there must be organisational controls to ensure conformity so that tasks can be
defined and measured, they stifle creativity and initiative, constraining the design of
the next generation KMS. In practice, the new business environment requires a KMS
that performs better on fewer rules, some specific information and greater freedom.
The goals of this paper are to analyse the essential elements of organisational

60 Charmaine C Pfaff and Helen Hasan

knowledge, KM and knowledge workers in creating a more cooperative and
democratic KM and the potential of using corporate Wikis as new generation KMS.

2 Managing Knowledge and Knowledge Workers

2.1 The nature of knowledge

The current corporate interest in knowledge is based on a realisation that
emerging economic imperatives, coupled with social and industrial restructuring,
demand a more rigorous approach to the exploitation of knowledge as an
organisational resource. Organisational knowledge can be about what employees
understand about historical knowledge inherent in the organisation such as the
knowledge about customers, products, processes, errors, and successes. Various
streams of KM research have emerged. However, the differences in interpretation
and definition have become a matter of contention.

It is challenging to scan the human mind for tacit knowledge (knowledge that is
embedded in a person’s mind and cannot be expressed easily and explicitly) because
most individuals may know more than they think they know. The sense meaning
making capacity of the human mind may evoke tacit knowledge as a response to new
and unfamiliar stimuli or situations that may not fit previously recognised scenarios.
In addition, it ignores the possibility that additional knowledge resides in the
relationships between employees and in the legacy of previous employees embedded
in organisational memory and culture.

From an IS perspective, knowledge is the top of the data-information-knowledge
hierarchy where information is meaningful, processed data and knowledge is
actionable information, separating knowledge from information or data (Handzic &
Hasan 2003). This view of knowledge reinforces the value of using CHAT for
research on KM because it can extract actionable meaning from unstructured or ill-
structured information, social interaction patterns, and deep rooted motives of
knowledge workers.

2.2 Problems with managing knowledge

Many KMS have not met their original business objectives because there is an
assumption that all relevant knowledge, including tacit knowledge should be
extracted from knowledge workers and stored through well-established institutional
processes in well-designed knowledge repositories (AS5037[Int] 2003). The process
of building these repositories has been criticised as being time-consuming, laborious,
and costly. The process of building these repositories has been criticised as being
time-consuming, laborious, and costly. Viewed by many as a superficial implement
of management, they are often not kept up-to-date and are rarely accessed when real
knowledge is sought (Klint & Verhoef 2002).

Hart & Warne (2005) have stressed that it is detrimental to manage
organisational knowledge because knowledge by its very nature cannot be managed
in the traditional sense. KM cannot be fostered in settings where people feel

Can Knowledge Management be Open Source? 61

pressured as it makes them less motivated to engage in dialogue. Often, employees
hoard their knowledge because their contributions do not benefit their careers and
becomes an additional burden to their already heavy workloads (Lam & Chua 2005).
Hence, the authors support the Australian Standard (AS 5037—2005) definition of
KM: “KM is concerned with innovation and sharing behaviours, managing
complexity and ambiguity through knowledge networks and connections, exploring
smart processes, and deploying people-centric technologies.”

The focus on work practices reveals how community members conceptualise the
work they perform and the synergistic roles of the community and its members in the
processes of knowledge production. ‘Knowledge work’ is not restricted to the work
practices of individuals and teams that create and exploit knowledge (Burstein &
Linger 2003), knowing ‘how’ and ‘who’ you know are as important as what you
know. Understanding how knowledge workers work and their needs will help them
become more productive.

3 The Wiki Way

3.1 Open source revolution

The notion of creative collaborative work is not new. Its best known propagator
is the open source software development. The open source movement (OSM) began
as experiments in software democracy that crossed institutional and geographical
boundaries. It has achieved a momentum in motivating people to work together in
self organised groups on common projects and making them available on the Internet
for use or modification. The OSM is fulfilling the original promise of the Internet
and promoting the Internet culture where people can work together in an
environment that supports access to information. Already, it has inspired the
emergence of an ecosystem of other projects such as Creative Commons sharing
media resources and Wikipedia. KMS can learn some lessons from its success such
as simplicity in design, frequent reviewing and testing, a skilled and devoted group
of volunteers and developers, and simple but effective rules to govern the
community (Wagner 2006). It is our contention that new ICT tools such as the
corporate Wiki can be the enabler to effect changes for the better in organisations.
For example, organisations that adopt a rigorous 'best practices' approach find it
extremely challenging not to be caught in the death spiral (Nadler and Shaw 1995) of
doing more of the same better and better with diminishing marginal returns (Drucker
1994). The corporate Wiki provides an environment to ensure that such practices
remain open to critique, adaptation, and replacement.

3.2 Conversational Technology

New conversational technologies such as email, discussion forums, chatrooms, Weblogs
and Wikis are now connecting and supporting liberated knowledge exchanges much as
transportation systems and cities on the ground have always done. Interconnected networked
structures of social interaction and creative activity are emerging as a part of the civil digital

62 Charmaine C Pfaff and Helen Hasan

culture and, less rapidly, in the knowledge work of organisations. Conversational
technologies are seen as tools to support work units and the individual knowledge worker. It is
the corporate Wiki that is of most interest to the field of KM because it can be developed by
end users through collaboration (Hasan & Pfaff 2006a, Wagner 2006).

A Wiki is a web-based application that allows many participants to write collaboratively,
where anyone can start a new page or edit an existing one. Such documents can be supported
by the web with hyperlinks to anywhere on the World Wide Web including text, image and
video. 'Wiki Wiki' in Hawaiian means 'quick' or 'fast' which refers to the quick editing
processes (Leuf & Cunningham 2005). A Wiki is a collection of interlinked HTML web
pages. Changes are logged and viewed online instantly and can be reverted to its original state.
A Wiki can be accessed from any web browser and no other special tools are needed to create
and edit existing pages. A Wiki is an evolving knowledge repository where users are
encouraged to make additions to this repository by adding new documents or working on
existing ones (Pfaff & Hasan 2006). The most well known example of a Wiki is Wikipedia ,
an online encyclopaedia exemplifying the open source ideal.

3.3 Factors contributing to the rise of Wikipedia

The openness of Wikipedia as a publicly editable website is a phenomenal
motivating factor for people to work together and share their knowledge to teach the
world. Emigh and Herring (2005) compared traditional printed sources with
Wikipedia articles and found them stylistically indistinguishable and citing
Wikipedia articles in news and other media have become common (Lih 2004). Wiki
users feel a sense of ownership when they see their work online and want to
"collaborate radically", a feature of the OSM where anyone can edit another person's
work. Collaboration avoids bottleneck complications if there is an individual author
and the constant editing refines the article (Sanger 2005). The neutral policy of a
Wiki allows everyone to air their views while at the same time respecting divergent
views.

Nupedia is the predecessor to Wikipedia which began in 2000. Its founders
wanted volunteers to write, edit and review articles as they would for a printed, for
profit published encyclopaedia. Nupedia was terminated in 2003 because of its
server problems, intolerance to writers who are not experts and mainly, its
complicated review process. (Rosenzweig 2006, Sanger 2005). The founders of
Wikipedia reduced the turnaround time to edit and review Wikipedia articles, to
overcome the participatory problem.

3.4 Wikipedia criticisms

The main allegation about Wikipedia is that the information varies in quality. To
investigate this claim, Rosenzweig (2006) compared 25 Wikipedia biographies
against comparable entries in Encarta and American National Biography Online.
Although both publications have multimillion-dollar budgets, it was found that

http ://en. Wikipedia. org

Can Knowledge Management be Open Source? 63

Wikipedia articles were favourably written. Wikipedia is also accurate in reporting
names, dates, and events in U.S. history. Wikipedia surpasses Encarta but not
American National Biography Online in coverage and matches Encarta in accuracy.
In another study, a German computing magazine engaged experts to compare
Wikipedia articles in 22 different fields in the three leading German-language digital
encyclopaedias. It rated Wikipedia first with a 3.6 on a 5-point scale, Brockhaus
Premium scored 3.3 and Encarta 3.1. (Kurzidim 2004). A British scientific
magazine, Nature, asked academic scientists to do a blind review of 42 science
entries in Wikipedia and Encyclopaedia Britannica. Wikipedia contained around four
inaccuracies and Britannica, had three (Giles 2005).

3.5 Adapting the Wiki in a corporate setting

Looking back at other technologies e.g. personal computers, email and instant
messaging that enjoyed widespread popularity; management needs to think of how to
adapt already popular social tools for corporate use because the impact of grassroots
marketing should not be overlooked. Nevertheless, some of the problems facing
Wikipedia are reflected in corporate Wikis. (Hasan & Pfaff 2006b, Wei et. al 2005).
The principal dilemma of a Wiki is that, while its anarchic nature is desirable for
fostering open debate without censorship, it raises questions whether the information
is authoritative and credible, thus inhibiting its usefulness. Yet a critical factor to
bear in mind is that Wikipedia is a public online Wiki. Employees who make
contributions to the corporate Wiki are employed by the organisation as specialists
whose opinions will be highly regarded by their organisations as trusted and
authoritative.

The informal network approach that is currently favoured in a Wiki, may make
some companies believe that their data quality will be affected and that system errors
will occur. Their centralised and highly structured environment will make it difficult
to adopt a ‘community approach’ towards knowledge acquisition. The problems of
irresponsible behaviour and accountability issues for fraudulent data can be avoided
because employees using a corporate Wiki will not be using “handles” but their real
names to login to edit the Wiki. This means that every post or edit could be
attributed to an individual employee. A footnote can be included to remind
employees that usage could be traced back to them to deter intentional misuse. Wikis
have a rollback feature which could be used by administrators to repair deletions or
misuse. Daily backups can preserve the Wiki database against loss of data in case of
system failures (Auger et. al. 2004).

Employees should not see the corporate Wiki as merely an online shared space
and owned by a gatekeeper. The corporate Wiki should instead be seen as an open
community process that encourages multiple iterations in the creation of a
knowledge repository (Wei et al 2005).

64 Charmaine C Pfaff and Helen Hasan

4 Cultural Historical Activity Theory (CHAT)

4.1 Theoretical basis

 Although CHAT was proposed long before the advent of computers and the
Internet, a growing band of researchers recognise that CHAT provides a rich holistic
understanding of how people collaborate with the assistance of sophisticated tools in
the complex dynamic environments of modern organisations (Thomas & Torstein
2005, Waycott et. al 2005, Hasan 1999).

The notion of activity is interpreted from the theory of Leontiev (1981) which is
based on Vygotsky’s psychology. Vygotsky (1978) proposed that all human activity
is purposeful, carried out through the use of 'tools' and socially mediated. Tools can
manipulate and transform objects but also restrict what can be done within the
limitation of the tool, which, in turn, often stimulates improvements to the tool
(Verenikina & Gould 1998), especially in the context of analysing the dialectic
interactions between people and technologies, and how they are shaped by human
activity.

4.2 Assumptions of the Activity System

The analysis begins with the identification and explication of the central activity
and then looks at those activities that are linked to it (Hasan 2003a). As described in
Hasan (2003b), Engeström (1987), Kuutti and Virkunnen (1995), an activity system
normally has one central activity, which is the focal point of holistic investigation,
surrounded by other activities with some link to the central activity.

Figure 1 shows the activity as the engagement of a subject toward a certain goal
or objective where the project team is a collective subject composed of individuals
who bring different skills and understandings to bear on a common object, the
corporate Wiki. The purpose of the Wiki activity is to create, share and manage
knowledge in the form of an encyclopaedia, which will persist over time while the
participants may change. The core activity (object), for which a corporate Wiki is
used, is not KM per se but knowledge work. There is a dialectic relationship between
knowledge and work, expressed by the continuous cycle of co-creating work-related
knowledge in a form that is meaningful for knowledge workers to access as needed,
through which learning occurs, resulting in more knowledgeable doing and so on.

The tools are the Wiki technology together with social and learning processes
within the organisation. Each participant subject brings different personal
characteristics that may change over time, including individual motivations, goals,
and self perceptions affecting the transformation of goals. Contributions can come
from users’ personal knowledge, which is related to fields where they feel
comfortable and competent such as work projects or knowledge specialisations.

Can Knowledge Management be Open Source? 65

Fig. 1. The core activity of knowledge work mediated by a corporate Wiki

In trying to address the limitations of prior KMS, a corporate Wiki overcomes
the barrier of KMS created from the static accumulation of dynamic knowledge. The
activities of the knowledge worker are mediated not only by the functions of the
corporate Wiki itself, but also by the attitudes and customs of the organisations in
giving workers the resources and authority to do so. As knowledge workers operate
at the grass roots level, they are in the best position to act as sense makers in a
rapidly changing dynamic environment. Knowledge workers can participate as
writers and peer reviewers, giving them opportunities to define problems and
generate their own solutions, evaluate and revise their solution-generating processes.

Managers can embrace change by building up individuals, and reducing the
dependence on strengthening institutions, which in turn has led to the creation of a
highly protective culture of the status quo.

66 Charmaine C Pfaff and Helen Hasan

Can Knowledge Management be Open Source? 67

fields who can come to a consensus on what the encyclopaedia should look like and
“seed” the corporate Wiki. Wiki scribes can help those who are not comfortable with
technology or are not fluent writers. The adoption of an incremental principle points
out to the non existence of pages which tempts users to create new pages of content
e.g. produce an annual report or submit ideas for a group project, as part of the
workload. As employees grow more confident, the corporate Wiki can harvest
contributions about declarative knowledge (know-what) e.g. ‘best practices',
business procedures and rules; procedural knowledge (know how) e.g. stories,
conversations and other context-rich knowledge, and conceptual knowledge (know
why) e.g. principles and laws (Agarwal et al. 1997). If this is made easier using the
corporate Wiki than without it, employees may take on board the benefits and readily
move to other tasks.

A democratic culture of knowledge sharing reinforces the notion that knowledge
workers’ reputations are enhanced by participation in collaborative projects, acquire
marketable job skills and knowledge; and increasing social recognition and prestige,
just as people are rewarded for collaborative professional work. Traditionally, very
few powerful people dominate the channels of information. The creation of the
Internet has had a democratising effect on the availability and use of information.
Things that seem to matter in the real world, such as age, social status, and level of
education, are often dismissed as unimportant online. The same democratising effect
will be true with Wikis. As it is not easy to transfer the cumulative experience and
skills of employees to the organisation, a corporate Wiki can address this problem by
being a ‘peer production information commons’ (Benkler, 2006). A corporate Wiki
that is based on an open source model promoting a participatory and bottom up
approach, can be common spaces where people share experiences and have
unanticipated, un-chosen exposures to the ideas of other people.

Successful collaborations from the OSM such as Linux were created outside the
business environment and have become mainstream. Wikipedia’s popularity is due to
its open, free and collaborative nature that helps meet the challenges of a connected
world. If corporate Wikis can borrow elements that contribute to Linux and
Wikipedia’s success, while at the same time addressing their limitations, corporate
Wikis will get an opportunity to prove how mainstream this new generation KMS
can become.

References

Agarwal, R., Krudys, G. and Tanniru, M. 1997, Infusing Learning into the IS

Organization. European Journal of Information Systems, 6(1):25-40.

AS5037 [Int] 2003, Interim Australian Standard Knowledge Management. Standards

Australia

AS5037 2005, Australian Standard Knowledge Management. Standards Australia.

Benkler, Y. 2006, The Wealth of Networks. (February 20, 2007)

http://www.benkler.org/wealth_of_networks/

68 Charmaine C Pfaff and Helen Hasan

Burstein, F. and Linger, H. 2003, Supporting post-Fordist work practices: A KM

framework for dynamic intelligent decision support, Journal of IT&P special

issue on KM, 16(3): 289-305.

Drucker, P. 1994, The Theory of Business. Harvard Business Review, September-

October, pp. 95-104.

Emigh, W. and Herring, S. 2005, Collaborative authoring on the web: A genre

analysis of online encyclopedias. Proceedings of the Hawaii International

Conference on System Sciences.

Engeström Y. 1987, Learning by expanding: An activity-theoretical approach to

developmental research. Helsinki: Orienta-Konsultit.

Giles, J. 2005, Internet encyclopaedias go head to head, Nature, Dec. 15,

http://www.nature.com/nature/journal/v438/n7070/full/438900a.html.

Hart D. and Warne L. 2005, Comparing cultural and political perspectives of data,

information and knowledge sharing in organizations, Journal of Knowledge

Management

Handzic, M. and Hasan, H. 2003, The search for an integrated KM framework. In

Hasan, H. & Handzic, M. (Eds). Australian Studies in Knowledge Management,

UOW Press, pp. 3-34.

Hasan, H. 1999, Integrating IS and HCI using AT as a Philosophical and Theoretical

Basis, Australian Journal of Information Systems, 6(2):44-55.

Hasan, H. 2003a, An Activity-based Model of Collective Knowledge. In Proceedings

of the 36th Hawaii International Conference on System Sciences, Big Island,

Hawaii, USA.

Hasan, H. 2003b, Communities as Activity Systems and other such Frameworks. In Hasan,

H., Verenikina, I. and Gould, E.(Eds) Information Systems and AT, Expanding the

Horizon, UOW Press, 3, pp.74-95.

Hasan, H. and Pfaff C.C. 2006, The Wiki: a tool to support the activities of the

knowledge worker. In Proceedings at the Transformational Tools for 21st

Century (TT21) 2006 Conference. Central Queensland University, Rockhampton,

Queensland.

Hasan, H. and Pfaff C.C. 2006, Emergent Conversational Technologies that are

Democratising Information Systems in Organisations: the case of the corporate

Can Knowledge Management be Open Source? 69

Wiki. Proceedings at the ISF: Theory, Representation and Reality conference,

ANU, Canberra.

Klint, P. and Verhoef, C. 2002, Enabling the creation of knowledge about software

assets. Data and Knowledge Engineering, 41:2-3, 141-158.

Kurzidim, M. 2004, Wissenswettstreit. Die kostenlose Wikipedia tritt gegen die

Marktführer Encarta und Brockhaus an. (Knowledge competition: Free Wikipedia

goes head to head with market leaders Encarta and Brockhaus). Oct. 4, pp.132–

39.

Lam, W. and Chua, A. 2005, Knowledge management project abandonment: an

exploratory examination of root causes, Communications of the Association of

Information Systems, 16: 723-743.

Leontiev, A.N. 1981, Problems of the Development of Mind. Moscow, Progress.

Leuf, B. and Cunningham, W. 2001, The Wiki Way, Quick Collaboration of the

Web. Addison-Wesley.

Lih, A. 2004, Wikipedia as Participatory journalism: reliable sources? Metrics for

evaluating collaborative media as a news resource. Proceedings of the Fifth

International Symposium on Online Journalism, April 16-17, Austin, Texas.

Nadler, D.A. and Shaw, R.B. 1995, Change leadership: core competency for the 21st

Century. In Nadler, D.A., Shaw, R.B. and Walton, A.E. (Eds.), Discontinuous

Change: Leading Organizational Transformation. San Franscisco, CA: Jossey-

Bass.

Nonaka, I. 1991, The knowledge-creating company. Harvard Business Review,

Nov/Dec, pp.96-104.

Pfaff, C.C. and Hasan, H. 2006, Overcoming organisational resistance to using Wiki

technology for Knowledge Management. In Proceedings of the 10th Pacific Asia

Conference on Information Systems, Kuala Lumpur, Malaysia.

Rosenzweig, R. 2006, Can history be Open Source? Wikipedia and the future of the

past. The Journal of American History, 93(1):117-46.

Sanger, L. 2005, The early history of Nupedia and Wikipedia: a memoir. In DiBona,

C., Stone, M. and Cooper, D., editors, Open Sources 2.0, O'Reilly Press:

Sebastopol, CA.

70 Charmaine C Pfaff and Helen Hasan

Thomas, H. and Torsten, P. 2005, Supporting knowledge work with Knowledge

Stance-Oriented Integrative Portals, Proceedings of the European Conference on

IS, Regensburg, Germany.

Wagner, C. 2006, Breaking the knowledge acquisition bottleneck through

conversational knowledge management. Information Resources Management

Journal, 19(1):70-83.

Waycott, J., Jones, A. and Scanlon, E. 2005, PDAs as lifelong learning tools: An AT

based Analysis. Learning, Media and Technology, 30(2):107-130.

Wei, C., Maust, B., Barrick, J., Cuddihy, E. and Spyridakis, J. H. 2005, Wikis for

supporting Distributed Collaborative Writing. In Proceedings at the Society for

Technical Communication, Seattle, pp. 204-209.

EMERGENT DECISION-MAKING PRACTICES
IN FREE/LIBRE OPEN SOURCE SOFTWARE
(FLOSS) DEVELOPMENT TEAMS

ROBERT HECKMAN, KEVIN CROWSTON, U. YELIZ ESERYEL,
JAMES HOWISON, EILEEN ALLEN, QING LI

School of Information Studies,

Syracuse University 344 Hinds Hall Syracuse, NY 13244-4100 USA

WWW home page: http://floss.syr.edu

{rheckman, crowston, uyeserye, jhowison, eeallen, qli03}@syr.edu

Abstract: We seek to identify work practices that make Free/Libre Open Source Software

(FLOSS) development teams effective. Particularly important to team effectiveness is decision

making. In this paper, we report on an inductive qualitative analysis of 360 decision episodes

of six FLOSS development teams. Our analysis revealed diversity in decision-making

practices that seem to be related to differences in overall team characteristics and

effectiveness.

Key words: Decision making practices; free/libre open source software development teams;
team effectiveness; FLOSS; OSS

1. INTRODUCTION

In Free/Libre Open Source Software (FLOSS) teams, decision-making
practices emerge from the interactions of the team members rather than from
organizational context. Discontinuities among team members make such
emergence and indeed any kind of consistent decision process harder to
attain, yet effective teams seem to have developed productive ways of
making decisions. Developers contribute from around the world, meet face-

72 Heckman, Crowston, Eseryel, Howison, Allen and Li

to-face infrequently (some not at all), and coordinate their activity primarily
by means of information communication technologies (ICT) (Raymond,
1998a; Wayner, 2000). Since FLOSS teams are representative of self-
organizing teams, because they have shared goals and a user base and
members to satisfy, and are interdependent in terms of tasks and roles, our
findings will have broader implications for understanding other technology
supported self-organizing teams.

Our objectives for this paper are two-fold: First, to present a descriptive
analysis of the range and evolution of decision-making practices of FLOSS
teams based on longitudinal observation of 120 decision episodes that took
place in 6 naturally occurring teams. We chose projects that are similar in
market size potential and software development stage, that use similar tools,
and belong to one of two software categories: Instant Messaging (IM) Clients
and Enterprise Resource Planning (ERP) Systems. We present this
description in the form of multiple case studies that compare and contrast
decision-making practices between teams.

A second objective is to relate differences in team work practices to team
effectiveness. Because we compare teams that differ in effectiveness but are
similar in other ways, we provide suggestions for future research on the
relationship between decision-making practices and team effectiveness. This
comparison, between teams in two different software categories, also enables
us to understand how software properties such as software complexity, target
market, and team nature can affect the decision making process.

2. LITERATURE REVIEW

In this section, we briefly review literature relevant to our study of
decision-making practices in FLOSS teams.

Dean and Sharfman (1996) suggest a close link between decision making
processes and decision effectiveness. Guzzo and Salas (1995) suggest a close
tie between effective decision making and overall team effectiveness and the
importance of understanding the practices by which decisions are actually
made in teams. In the information systems (IS) literature more particularly,
there have been numerous studies of ICT support for group decision making
(e.g., DeSanctis & Gallupe, 1987a; Fjermestad & Hiltz, 1998/1999; Turoff,
Hiltz, Bahgat, & Rana, 1993). Huber et al. (1986) suggest that decisions that
groups need to make are becoming increasingly more complex, and requires
greater participations and a faster decision making process. DeSanctis and
Gallupe (1987b) expect greater and more even participation to yield desirable
effects for the group. High participation from a group allows pooling of more

Emergent Decision-Making Practices in FLOSS Teams 73

resources and promotes error checking, thus enabling better decisions
(DeSanctis & Gallupe, 1987b; Hackman & Kaplan, 1974; Holloman &
Hendrick, 1972). Small group research suggests that higher participation in
group decisions increases the acceptance of these decisions and members’
increased sense of responsibility for those decisions (Bedau, 1984; DeSanctis
& Gallupe, 1987b; Hackman & Kaplan, 1974). The small group research
literature also identifies that higher participation in group decisions increases
the level of group cohesion and individuals’ satisfaction with the group (e.g.,
Hare, 1976).

High participation in group decisions may potentially slow down the
decision making process, resulting in dissatisfaction with the decision
making process. Yet, slowing processes in the FLOSS environment may be
less problematic given that FLOSS projects are protected from the type of
competition that their for-profit counterparts face.

Many of the studies on decision making in the IS field have been design
focused, offering important suggestions to improve the process and quality of
team decisions. Studies of groups in action have tended to adopt
experimental methods and focus on single episodes of decision making rather
than on practices over the life of an intact team (though there are exceptions,
such as (Eden & Ackermann, 2001)). Broadly speaking, there are few studies
that examine the kinds of decision processes that emerge in intact self-
organizing teams, how these practices evolve over time, and how they
contribute to overall team effectiveness. These decision processes include,
but aren’t limited to, how the decision process gets initiated and concluded,
the types and roles of participants, and the frequency and quality of
participation.

One common concern in several studies of FLOSS teams’ decision
making, has been the style of participation. At one extreme is a style where
decisions are primarily made by a few central participants, even a single
individual, as in Linux, where Linus Torvalds originally made most of the
decisions for the team (Moon & Sproull, 2000). Such a decision style has
been characterized as a “benevolent dictatorship” (Raymond, 1998b). On the
other extreme are teams with a decentralized communications structure and
more consultative decision-making style. Some teams even settle decisions
by voting (Fielding, 1999). Although participation in decision making by a
few key people at the core versus the people at all levels has been described
in these studies, the connection between participation style and team
effectiveness isn’t clear. In addition, the participation in decision making
might evolve over time as the project evolves. Fitzgerald (2006) suggests that
a small group will control decision making early in the life of a project, but
as the project grows, more developers will be involved. German (2003)

74 Heckman, Crowston, Eseryel, Howison, Allen and Li

documents such a transition in the case of the Gnome project. Thus, not only
the extent and frequency of participation, but also the evolution of decision
participation over time may influence the relationship between decision
making practices and team effectiveness.

3. METHOD

To analyze decision-making practices in open-source projects, our
research employs a multiple case study methodology, focused primarily on
content analysis of decision-making discussions. To find these discussions,
we analyzed the email discourse between administrators, developers, and
users that takes place on the developers’ e-mail lists or forums, which are the
primary communication venue for the teams. Archives of these lists are
available on project websites and from repositories such as SourceForge.net1.

3.1 Case selection

We chose six FLOSS projects by considering several dimensions to
balance maximization of variability and control of unwanted systematic
variance. First, we controlled for topic. Projects within a single topic
category are potential competitors, making comparisons of outcomes such as
downloads between these projects valid. On the other hand, we wanted to
have projects at different levels of complexity to provide for variability.
Accordingly we picked three projects that develop Enterprise Resource
Planning (ERP) systems (Compiere, WebERP and Apache OFBiz) and three
teams that develop Instant Messenger (IM) clients (Gaim, aMSN and Fire).
ERP projects are more complex than IM projects since they have high
software code interdependencies, and many external constraints such as
accounting rules and legal reporting requirements. One, Compiere, originated
as a closed-source project, offering an opportunity to examine the
consequences of that history.

Second, to minimize unwanted variance, we chose projects that are
roughly similar in age and status (production/stable.) Projects at this stage
have relatively developed membership and sufficient team history, yet the
software code still has room for improvement, which enables us to observe
rich team interaction processes. Third, the projects we chose varied in

1 Because postings to lists are intended to be publicly accessible, our human subjects review
board considers them public behavior, and so does not require formal consent to study
them.

Emergent Decision-Making Practices in FLOSS Teams 75

effectiveness. Project effectiveness is a multi-dimensional construct,
including success of the project’s outputs, team member satisfaction and
continued project activities (Hackman, 1987). We therefore applied the
multivariate approach to effectiveness in the FLOSS context suggested by
Crowston et al. (2006) aiming to discover a rank order within the IM and

Fig. 1. Comparison of Effectiveness Measures for IM Projects

ERP categories. Project outputs were measured by downloads and page
views, developer satisfaction was measured through development numbers
and participation on the developer mailing lists. The array of measures
presented in Figures 1 and 2 use data collected by the FLOSSmole project
(Howison, Conclin, & Crowston, 2006) from the project establishment in
SourceForge until around March 2006. According to analyses shown in
Figures 1 and 2, the most effective IM project is Gaim, followed by aMSN
then Fire, and the most effective ERP project is Compiere followed by
OFBiz then WebERP.

Figure 2. Comparison of Effectiveness Measures for ERP Projects

76 Heckman, Crowston, Eseryel, Howison, Allen and Li

3.2 Unit of Analysis: Decision Episodes

We selected the decision episode as our primary unit of analysis. We
define a decision episode as a sequence of e-mail messages that begins with a
triggering message presenting an opportunity for choice (such as a feature
request or a report of a software bug), includes discussion related to the issue,
and an announcement of a decision about the opportunity.

We differentiated between decision episodes that focus on software code-
related day-to-day decisions and those that focus on long-term strategic
decisions (such as membership, infrastructure and marketing decisions). In
keeping with our desire to focus on likely similarities to other forms of
distributed teams, this paper focuses on the software code-related episodes.

In order to observe potential changes in decision-making processes and
norms over time, we sampled 20 decision episodes from three comparable
time periods in each project’s life. For each project, the beginning and the
ending periods are the first and last 20 decision episodes observable on the
developer mailing list by May 2006. The middle period for each project
consisted of 20 episodes surrounding a major software release approximately
halfway between the beginning and ending periods. Figure 3 shows the
specific time periods sampled for each project. Note that the sample periods
differ in length due to different rates of development in the projects.

Fig. 3. Sampling Periods of IM and ERP Projects

3.3 Analysis and Coding of Episodes

We began analysis of decision episodes by coding observable, manifest
elements of content that are directly related to the decision-making
typologies described in the literature above. We coded: number of messages

Emergent Decision-Making Practices in FLOSS Teams 77

per episode, duration of the episode (in days), total number of participants in
the episode, and the role of each message’s sender: project administrator,
developer (if listed developer according to the project webpage on
SourceForge) or non-developer (if not listed on SourceForge). We
considered administrators and developers “core” members of the team, and
non-developers “peripheral” members.

Subsequent coding was inductive, with three independent analysts
reading the episodes in order to understand the salient features of the
decision process. Through several iterations, at least two independent coders
identified and agreed upon four additional latent variables that were
important to the decision process. Each episode was then formally coded by
at least two analysts, with all disagreements discussed and reconciled to
achieve essentially complete agreement. The latent variables identified and
coded are decision trigger type, decision process complexity, decision
announcement, and decision type.

3.3.1 Decision Trigger Type

One goal of our inductive content analysis was to understand the types of
triggers that presented decision opportunities for the group. Thus, we
developed a typology of triggers. Decision episodes about code are triggered
by: (1) bug reports, (2) feature requests, (3) problem reports, which are
different from bug reports since they may also include problems that end-
users may be facing due to hardware, software or process reasons, (4) patch
submissions (5) to-do lists and (6) mixed triggers that include one or more
different trigger types.

3.3.2 Decision Process Complexity

Inductive analysis also indicated that some episodes required more
complex decision paths than others. For example, some episodes involve a
single choice that responds to a single straightforward trigger. These were
coded as “Single.” Others responded in a linear, straightforward fashion to a
trigger that contained multiple opportunities for choice (e.g., a release to-do
list). These were coded as “Multiple-Simple.” The most complex episodes
were not straightforward or linear in nature. Regardless of the nature of the
initial trigger, in these episodes new, sometimes unrelated triggers created
additional opportunities for choice. The initial problem(s) might be solved or
not, and the new problems introduced might also remain unsolved. These
episodes, coded “Multiple-Complex,” closely resemble the garbage can
decision opportunities described by Cohen et al. (1972) in that a

78 Heckman, Crowston, Eseryel, Howison, Allen and Li

straightforward, sequential “problem-resolution” decision process was not
observed.

3.3.3 Decision Announcement

In order to reliably determine that a decision had truly been reached, our
independent coders coded the statement(s) that confirmed that a decision had
been reached.

3.3.4 Decision Type

Our analysis also coded when the main decision announcements reflected
either acceptance or rejection of a need for code change, acceptance or
rejection of the suggested code change, or both.

This initial typology of latent variables provides the ability to concisely
describe multiple characteristics of the decision making process, and allows
us to measure the participation of various members in decision making, thus
contributing to our first objective, providing a rich description of the
evolution of decision-making practices over time and the connection between
decision making and FLOSS effectiveness.

4. FINDINGS

Our research objectives were to present a descriptive analysis of the range
and evolution of decision-making participation in FLOSS teams, and to relate
differences in these work practices to team effectiveness. In order to do that
we present below differences in decision episode participation between more
and less effective teams. We begin by first discussing overall participation in
decision episodes. We then discuss relative participation by core and
peripheral members, and finally, present an analysis of who triggers decision
episodes and who announces decisions.

4.1 Participation in Decision Episodes

The overall number of participants in episodes increases from the first to
last period for effective projects such as Gaim, aMSN and OFBiz (see Figure
4). Fire, the least-effective IM project, did not see an increase in the average
number of participants per episode. Similarly, WebERP, the least effective of
the 3 ERP projects, increased its average number of participants in the
middle period, but did not maintain the participation. Compiere, despite its

Emergent Decision-Making Practices in FLOSS Teams 79

apparently high effectiveness, exhibits a different participation behavior than
the other projects, perhaps due to a project management style that remains
from its closed-source days.

80 Heckman, Crowston, Eseryel, Howison, Allen and Li

When participation is analyzed in detail, we see that in most projects
administrators were highly involved in the initial phase, perhaps to set up the
project, communicate to the community and attract project team members
(Figure 5). In later periods, the administrators’ involvement diminished,
allowing the development of a self-governing community. Because of a
leadership change, Gaim is an exception to this pattern . In the beginning
period, an administrator who was phasing himself out of the project remained
relatively silent, allowing developers to actively participate in decision
making. Between the middle and end period an active developer became the
administrator and remained an active participant in the discussions.

As the administrators became less involved in discussions, the periphery
became more involved. However, we see a difference in involvement across
project types. In IM projects the developers show a clear pattern of taking
more charge in discussions, especially for more effective projects (except for
the dip in the middle period for Gaim due to the leadership change). Also, all
IM projects show an increase in the non-developer involvement between the
first and last periods. The least effective IM project Fire shows an increase in
both developer and non-developer involvement for the middle period, but
does not sustain this trend towards the end. In the ERP projects, patterns in
developer involvement are less clear, however, non-developers are
increasingly involved in decisions over time, at an even faster rate than in the
IM projects.

These comparisons suggest that although there are similarities across IM
and ERP projects, there are some differences in how decision participation
evolved over the sampling intervals. Over time, non-developer participation
in decision episodes increased for effective projects and administration
participation decreased for almost all projects, yet the non-developer and
developer participation showed different patterns based on the project type.

4.2 Who Triggers Decision Episodes and Announces
Decisions?

In order to better understand the role played by core and peripheral
members of the projects in creating decision opportunities for the group, we
examined who sent the e-mail message that triggered decision episodes, and
who sent the message(s) that announced decisions. Figure 9 shows that both
core (administrators plus developers) and periphery played a role in
triggering decision opportunities. Figure 6 shows both the IM and the ERP
projects from the most effective to the least effective within their software
categories. In more effective ERP projects, decision episodes are triggered by
the periphery, whereas IM projects show no specific trend. Across all

Emergent Decision-Making Practices in FLOSS Teams 81

D if f erence across p ro ject s in t r iggering person

0%

20%

40%

60%

80%

100%

gaim amsn f ire compiere ofbiz weberp

core periphery

Change over time in triggering person

0%

20%

40%

60%

80%

100%

beginning middle end

projects, core members initially create opportunities for decision (i.e.,
triggers) and in time, this activity moves to the periphery.

EERRPPIIMM

Fig. 6. Comparison of the involvement of the core and periphery in triggering decisions

Figure 7 shows that both core and periphery played a role in announcing
decisions. Although across all projects, the members from the core project
team announced more decisions, the most effective projects within their
categories, i.e., Gaim and Compiere, exhibited higher peripheral involvement
in decision announcement than the others. This difference between projects
was statistically significant (2X =22.038; df=5; p<.01). Across all projects,
although most of the decisions were announced by the core, over time,
peripheral involvement increased. This difference in peripheral involvement
over time was also significant (2X =16.204; df=2; p<.01) .

IIMM
EERRPP

Difference across projects in decision announcer

0%

20%

40%

60%

80%

100%

gaim amsn fire compiere ofbiz w eberp

Change over time in decision announcer

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

beginning middle end

core periphery

Fig. 7. Comparison of the involvement of the core (administrators and developers) and
periphery (users) in announcing decisions

82 Heckman, Crowston, Eseryel, Howison, Allen and Li

5. DISCUSSION AND CONCLUSION

We presented findings from a long-term research project that seeks to
identify work practices that make FLOSS teams effective. This paper
described participation in code-related decision-making practices in six open
source project teams. In general we found evidence to support the
expectation of the literature that greater participation in decision making
would be associated with more effective projects.

Generally, among the more effective projects, the number of participants
in decision making episodes increased over time, whereas less effective
projects either showed a reducing trend or did not sustain initially increasing
participation. Similarly, effective projects showed high administrator
involvement in decision episodes at the beginning phase of the projects,
followed by declining administrator participation coupled with increasing
developer and non-developer participation in later periods. (Gaim, although
the most effective project in its category, appears to be an exception to this
pattern, with low administrator involvement in the first two periods. Gaims
pattern is understandable, however, when we recognize that there was a
change in administrators during this period. Gaim has very high developer
involvement in period 1 may show developers attempting to fill this
vacuum.) High administrator involvement in decision making in early phases
of these projects may indicate an attempt to establish decision-making
standards and norms, while declining involvement may signify increasingly
empowered developers and non-developers. Interestingly, less effective
projects (Fire, WebERP) show a similar decline in administrator participation
in decision making over time, but without a corresponding increase in non-
developer involvement.

We also observed higher decision-making participation by the periphery
(non-developers) in more effective projects. With one exception (aMSN), a
higher percentage of decision opportunities were triggered by non-developers
in more effective projects (Figure 9). Similarly, the more effective projects
had a higher percentage of non-developers making decision announcements,
(Figure 6) even though the core made a higher percentage of decision
announcements overall. These two findings–higher overall participation and
higher participation by the periphery in more effective projects–supports the
notion that increased participation and diversity in decision-making practices
is related to improved team performance.

Our findings also suggest that while there are common trends, there are
interesting differences between projects in decision-making practices. For
example, Compiere showed differences from other projects almost on all
measures. This may be because previously it was a closed-source proprietary

Emergent Decision-Making Practices in FLOSS Teams 83

company and that the project was not originally self-organizing or emergent.
Another such difference can be observed between IM and ERP project
categories in the evolution of developer and non-developer participation over
time. In IM projects developer participation in decisions grew rapidly, while
in ERP projects, this did not occur (Figure 5). Non-developer participation
grew more rapidly in ERP projects than in IM projects. This may be
explainable by differences in the software type, which in turn affects the type
of end-users. IM clients are typically used by individuals, who seek solutions
to the issues they face or enhancements to the software for their own needs.
On the other hand, the end-users of ERP software are companies, whose own
in-house developers play the role of end-users in the FLOSS projects. These
end-users are likely to have a high professional interest in the software, and
thus high and sustained involvement throughout the project.

By presenting this comparative analysis of the range and evolution of
decision-making practices we have begun the process of relating differences
in work practices to team effectiveness. These findings suggest that more
participative and diverse decision making practices are positively related to
team effectiveness in technology supported self organizing teams. The
findings also reinforce the idea that all open source teams are not alike.
Differences in contextual attributes such as software type and function, as
exemplified by the comparison of IM and ERP projects, have an influence on
the emergence of work practices. We believe that the variables and
relationships we have identified provide the foundation for deeper
exploration and potentially richer explanations of the relationships we have
described. Future studies should replicate and extend this analysis to
additional FLOSS projects, and to other technology supported self organizing
teams. A useful future study would be to analyze the decision making
process to identify various decision styles by various teams and the
relationship between decision styles and team effectiveness.

6. REFERENCES

Bedau, H. (1984). Ethical aspects of group decision making. In W. C. S. a. Associates (Ed.),
Group Decision Making (pp. 15-150). Beverly Hills: Sage Publications.

Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A garbage can model of organizational
choice. Administrative Science Quarterly, 17, 1–25.

Dean Jr, J. W., & Sharfman, M. P. (1996). Does decision process matter? A study of strategic
decision-making effectiveness (Vol. 39, pp. 368-396): JSTOR.

DeSanctis, G., & Gallupe, B. (1987a). A foundation for the study of group decision support
systems. 33(5), 589–609.

84 Heckman, Crowston, Eseryel, Howison, Allen and Li

DeSanctis, G., & Gallupe, R. B. (1987b). A Foundation for the Study of Group Decision
Support Systems. Management Science, 33(5), 589-609.

Eden, C., & Ackermann, F. (2001). Group decision and negotiation in strategy making. Group
Decision and Negotiation, 10(2), 119-140.

Fielding, R. T. (1999). Shared leadership in the Apache project. Communications of the ACM,
42(4), 42–43.

Fitzgerald, B. (2006). The transformation of Open Source Software. MIS Quarterly, 30(4).
Fjermestad, J., & Hiltz, S. R. (1998/1999). An assessment of group support systems

experiment research: Methodology and results. Journal of Management Information
Systems, 15(3), 7–149.

German, D. M. (2003). The GNOME project: A case study of open source, global software
development. Software Process: Improvement and Practice, 8(4), 201–215.

Guzzo, R. A., & Salas, E. (1995). Team Effectiveness and Decision Making in Organizations.
San Francisco: Jossey-Bass.

Hackman, J. R., & Kaplan, R. E. (1974). Interventions into group process: An approach to
improving the effectiveness of groups. Management Science, 5(3), 459-480.

Hare, A. P. (1976). Handbook of small group research (2nd ed.). New York: Free Press
Holloman, C. R., & Hendrick, H. W. (1972). Adequacy of Group Decisions as a Function of

the Decision-Making Process. The Academy of Management Journal, 15(2), 175-
184.

Howison, J., Conclin, M., & Crowston, K. (2006). FLOSSmole: A collaborative repository for
FLOSS research data and analysis. International Journal of Information Technology
and Web Engineering, 1(3), 17-26.

Huber, G. P., & McDaniel, R. R. (1986). The Decision-Making Paradigm of Organizational
Design. Management Science, 32(5), 572-589.

Moon, J. Y., & Sproull, L. (2000). Essence of distributed work: The case of Linux kernel.
First Monday, 5(11).

Raymond, E. S. (1998a). The cathedral and the bazaar. First Monday, 3(3).
Raymond, E. S. (1998b). Homesteading the noosphere. First Monday, 3(10).
Turoff, M., Hiltz, S. R., Bahgat, A. N. F., & Rana, A. R. (1993). Distributed group support

systems. MIS Quarterly, 17(4), 399–417.
Wayner, P. (2000). Free For All:How Linux and the Free Software Movement Undercut the

High-Tech Titans. New York: HarperCollins.

Experiences on Product Development with
Open Source Software

Ari Jaaksi
Nokia

P.O Box 779
33101 Tampere, Finland

ari.jaaksi@nokia.com

Abstract. This article discusses Nokia’s experiences of using open source in
commercial product development. It presents the development model used in
the creation of mobile consumer devices and highlights the opportunities and
challenges experienced. This article concludes that the main benefits come
from the utilization of already available open source components, and from
their quality and flexibility. It illustrates the challenges and solutions faced
when mixing open and closed development models at Nokia.

1 Introduction

The Nokia 770 and N800 Internet Tablets are mobile consumer devices. They
provide wireless internet access and enable internet use cases such as voice and
video calls, web browsing, messaging, and media consumption in a pocketable
mobile device. Nokia has built these products on Linux and other open source
components in a close collaboration with open source communities. In addition,
Nokia runs the www.maemo.org web site that supports community development on
internet tablets.

Nokia uses open source extensively in the creation of the internet tablets. We
favor components that are developed by active communities and used by many users.
This ensures that the selected components are developed and maintained properly
both now and also in the future. For this reason we prefer to use mainstream desktop
components whenever possible. Desktop and PC related projects are typically more
active and mature than the projects targeting embedded devices. Therefore, we
actually run a Linux based desktop configuration on a mobile device.

2 Software Architecture

Figure 1 illustrates our software architecture [1]. We integrate unmodified open
source components into our platform. We also sponsor the enhancements of many
existing open source components to make them fit for our use. We then integrate

86 Ari Jaaksi

these modified open source components into our platform. Some components we
develop from scratch, many of which we then open source. Finally, we integrate
closed components from various sources, such as from commercial software
vendors.

Figure 1: The Nokia open source software architecture

We have 428 source code packets in our platform. 25% of the packages are taken
from open source projects without any modifications. Examples of such components
include the gnuchess chess game engine, bzip2 data compressor, and id3lib for
manipulating ID3v1 and ID3v2 tags in digital audio files.

About 50% of the packages originate form open source projects, but Nokia has
made modifications to the components. In such cases, we actively push our
modification upstream to the originating projects. The additional modification work
is needed especially in the areas of UI and usability, power management,
performance, and memory management. Our engineers work directly with
communities participating development projects to ensure that our modifications are
accepted upstream. In addition to making modifications ourselves, we also hire and
ask developers within the communities to enhance components based on our needs.
Examples of such components are the Linux kernel, D-BUS, GNOME-VFS, GTK+,
GStreamer, and OBEX. We also reuse and improve entire subsystems and subsystem
architectures, such as GNOME [2] and Debian [3]. Instead of separate components,
we then reuse architectural blocks that already integrate several independent
components.

Finally, some 25% of the packages are proprietary closed source components,
either belonging to Nokia or licensed from commercial vendors such as Real
Networks or Adobe. Some of the Nokia proprietary components that are kept closed
are closely related to the hardware. Examples of such components are the boot loader
and battery charging implementations. In addition, the majority of the user interface
applications are also closed.

Experiences on Product Development with Open Source Software 87

A European Union report by Ghosh [4] studied the software running on the
Nokia 770. They concluded that the device runs 15 million lines of open source
code, 200.000 of which where created by Nokia. This demonstrates that it is possible
to use open source code and modify it to meet your own specific needs with minimal
effort. In fact, Nokia manages to modify and use open source components for
desktop environments in its mobile internet devices with less than 1.5% additional
investment.

3 Community collaboration

We source our open source components directly from community projects. We
do not use any embedded distros as the starting point of our architecture. Instead, we
want to utilize mainstream desktop oriented open source components to get the
maximum community benefits.

3.1 Selecting the core components

We analyze the technical suitability of all components and subsystems. All
selected components must fulfill our functional requirements and meet our hardware
specifications. The components also need to be of good quality and mature enough
for consumer products.

We actively participate in the communities from which we source our
components to ensure that the selected subsystems develop further over time. We
also ensure that the goals of the development communities match our goals. This all
happens through active community discussions, conferences, and workshops.

It is important that the open source components we use are licensed under proper
licenses and have clear copyright and licensing information attached to them. We
also choose to select components that do not lock us into one vendor through
requirements such as mandatory copyright donations or dual licensing models. It is
also important that our components be licensed under an open source license, such as
LGPL, that allows us to integrate proprietary components into our platform as well.

For the key components and subsystems, we did not have too many options to
choose from. For example, the only true graphical environment alternatives were Qt
and Gtk+ [5][6]. We selected Gtk+ because it is developed by a vibrant multi-polar
community with no single company dominance. It is therefore easy to contribute our
changes to Gtk+ on the basis of general usefulness and technical merit only. Also,
Gtk+ is licensed under LGPL, and that allows us to mix proprietary UI elements
without a dual commercial license.

3.2 Creating software as a part of communities

Our strategy is to find a suitable community and then take part of the community
work. We do not want to control the project or branch the work. Instead, working as

88 Ari Jaaksi

an integral part of a community provides us with access to code and engineers
outside of our own development team.

As an example, we sponsored the development of the D-BUS [7] message bus
system. We hired some key developers from the D-BUS community into our project
but asked them to continue working within the project in open source. They then
contributed code and participated in the development of D-BUS, and we performed
a lot of testing that helped in reaching the needed product quality.

We open source new components and subsystems we have developed, such as
our Hildon application framework. We have also opened the development of selected
middleware components at the Maemo Sardine distro [8]. Open middleware
development enables application developers to follow the latest changes in our code
so they can test their applications against the latest changes, update them as a result
of any API changes, and pilot the latest additions to our software. This open
development allows anybody to participate in the development of the middleware
code and see where it’s heading. This is all available before a stable release of the
software for the end-users. As an example, several parts of the code running on N800
Internet Tablet were already available before Nokia even announced the product in
early January, 2007.

Figure 2: Working with communities

We work closely within communities to develop software, as illustrated in Figure
2. We collaborate with many individuals and companies in upstream projects (1) and
Nokia engineers take part of the community work. We take selected components
from those upstream projects (1), develop some code of our own (4), source
components from commercial vendors (2) and create a Nokia internal distro called

Experiences on Product Development with Open Source Software 89

Nokia’s Open Source Software Platform (5). We then actively push our changes and
modifications back upstream to minimize Nokia specific code.

We integrate the final software for our products within Nokia (4). We integrate
both the product software for internet tablets (6), and the www.maemo.org tools and
software for an external www.maemo.org software distro (7). While open source and
communities help us in implementing software components and subsystems
upstream (1)(3), we believe that the final product and product integration is better
done within Nokia by Nokia (4). After all, we are responsible for meeting our
quality, schedule, and monetary goals.

Finally, we offer www.maemo.org and Maemo garage for external developers
(3). They use these facilities in their projects that develop software for Nokia’s
internet tablets. We are fortunate to have many volunteers and community people
developing applications and submitting their work, such as documents, bug reports,
and enhancements to www.maemo.org.

While Nokia provides the basic www.maemo.org infrastructure, the actual distro,
and various development and community tools, it is the community members
themselves who enhance them and provide support for each other. This greatly
improves the developer experience on www.maemo.org. In the end of 2006, the
www.maemo.org developer site hosted almost two hundred open source projects
dedicated to the internet tablets, and had almost 60 000 unique visitors per month.

4 Benefits of open source

We have created two devices, provided software upgrades to these devices, and
created an open source community around the www.maemo.org community site. Our
development experiences include all the phases starting from initial requirements
analysis to selling the devices, working together with many other companies and
open source projects, and offering upgrade software for end users. We thus believe
that we can draw some conclusions about developing consumer products with open
source. The benefits are clear.

 4.1 Efficiency

The biggest efficiency gains came from the utilization of already available
components, such as the Linux kernel and the GTK+ toolkit. It was cheaper and
more efficient for Nokia to build the internet tablets using the open source model
than it would have been using a proprietary one. This conclusion can be drawn by
studying other similar product development activities at Nokia.

In reality, developing an own operating system and middleware was never even
an option for us. We needed to either use an existing commercial and closed
operating system and middleware, or then use an existing open source operating
system and middleware. We used the open approach in order to benefit from the
cheaper or non-existent licensing costs, in order to have better strategical control,

90 Ari Jaaksi

and to have the ability to freely enhance the code according to product and market
needs.

Productive software developers can enhance development efficiency
significantly. With proprietary and closed software systems, we typically train and
educate developers for a long period of time. It takes several projects for the
developers to become productive with the closed and proprietary systems and
technologies we use at Nokia. This is not the case with our open source based
software platform, because we use widely known tools, components and
architectures. The Linux operating system and Debian packages, for example, are
commonly taught in universities and other companies. That makes new developers
productive faster than with other software platforms used at Nokia.

4.2 Quality

The code that we obtain from open source projects is of better quality and has
fewer errors than code we developed by ourselves. This is because open source code
has already been used by others before we take it into use, and they have already
fixed the most severe errors.

However, if we compare the open source code to the commercial components
used in our platform, the quality difference is not that obvious. The commercial
components have typically been used by others, too. That has improved their quality.

An additional benefit to open source is that the quality of the code and the skills
of developers can be verified in advance. We can study the component code, build
prototypes, and run performance tests freely with open source components. This
helps us to select good quality components and subsystems. Also, when a developer
or a subcontractor submits code to an open source project, the quality is easy to
verify. This allows us to assess the quality of our developers and subcontractors
before hiring them.

4.3 Flexibility

Open source provides flexibility when we need to fix problems or change
functionality. We often request bug fixes or modifications for the commercial closed
components on our platform. However, if the vendor of that particular component
does not have the capacity or willingness to fix the problem on time, we can be left
few options. Typically we cannot fix problems ourselves in these scenarios, because
the companies from whom we license our closed components don’t want us to access
their source code. With open source components, however, we fixed bugs ourselves,
hire somebody else to fix them, or work with the communities in order to obtain the
modifications. With so many options available, we are able to fix the problems we
have in most cases.

Experiences on Product Development with Open Source Software 91

4.4 Software licensing

Software in-licensing requires a lot of negotiations between a licenser and a
licensee. Based on our experiences, an average in-licensing process for a software
component takes 6 – 12 months. Problems and delays in software licensing are one
of the most common reasons for missing features or delayed projects.

In contrast, licensing with open source is simple. The licensor already has the
license terms in place. She may offer some additional options, such as support or
training, but the actual licensing terms are already established. In addition, all the
source code is available for the licensee to study and evaluate. The licensee can also
assess the community, companies, and available hackers supporting the technology
in question prior to taking it into use. And, they are able to talk to others about the
technology without worrying about trade secrets. Because of these factors, open
source projects are never delayed because of complicated in-licensing negotiations.

Open source simplifies and accelerates software licensing, and reduces
technology and quality risks. Instead of negotiation for months, the technical work
can start immediately.

4.5 Future and roadmaps

The future direction and plans for open sourced components and subsystems are
typically discussed openly, and are open for contributions. We can, therefore,
monitor and influence the development of relevant technologies through the
community work.

The choices are more limited with closed source commercial components.
Companies developing closed source components typically decide themselves about
the future of their technology. They may choose to reveal parts of they plans, and
they may choose to take external input into account. But, unlike in the open source,
you cannot participate yourself and contribute in an open fashion.

4.6 Open source and confidentiality

An open source approach requires openness and information sharing during
development. However, you do not want to reveal the products to the public before
the actual product announcement. There is thus a potential conflict between the open
source openness and product launch secrecy.

Nevertheless, we worked intensively with communities already before we
announced the Nokia 770 Internet Tablet. Also, we opened parts of the firmware
development before launching the Nokia N800; we worked with several
communities to develop code for it. Many community developers had very detailed
information about our forthcoming products due to their involvement in this process.
Despite this, however, we had no information leakage from developers prior to the
commercial product announcements. Based on our experiences, therefore, it is
possible to develop software openly, while maintaining product confidentiality.

92 Ari Jaaksi

5 Issues and challenges

The open source development model is different than the closed one. The open
source model shares code and work with other people and companies. They have
their own schedules and targets that may not coincide with ours. However, that
doesn’t necessarily matter as long as we work upstream on non-differentiating
aspects of the software.

At the end of the day, however, we must ensure that we get our products done in
time with proper quality. Thus, at some point we need to drive the project to the
conclusion that benefits us the most. This typically requires a more closed and single
company controlled way of working. This mixture of open and closed development,
illustrated in Figure 2, is important to master and we already can draw some
conclusions from our experiences.

5.1 Hacking vs. stabilizing

In the early stages of a product development project, we work closely with
communities, individual hackers, and hacker companies. We develop code in a true
hacking mode. Later, we freeze our requirements to get things focused and to get
software ready for shipment.

We have an internal milestone when we all software functionality must be
implemented. We predict the shipment date to synchronize marketing activities, and
reserve a factory production line. At this milestone, System Testing can run all test
cases. All features are implemented at this point, but the system is still unstable and
buggy. From this point on, all effort is put into bug fixing and stabilization.

At this milestone, the whole development team switches modes, from hacking
and new development, to integration and stabilizing. Hacking and new development
happens around independent components within teams. Integration and stabilizing,
on the other hand, happens around the entire software stack and between teams. This
requires a shift from a component view to a system view of software development.

This is a radical change of mode. The open source culture is very much for trials,
hacking, innovation and other creative aspects of software development. Meeting
deadlines, not developing new features, and focusing on stability are not what many
open source communities or developers naturally do. In addition to us, the Linux
project, Debian, and others seem to have difficulties making a final good quality
release on time [9], [10].

In recent projects we have made the move from the hacking to stabilizing more
apparent and strict. We now make the change very explicit in our process, and
enforce it even more than in some conventional product development projects.
Accordingly, we managed to get N800 ready right on time with no delays. This
proves that we have managed to improve our stabilization phase.

Experiences on Product Development with Open Source Software 93

5.2 Architecture management

Open source requires us to manage our architecture not only form the
conventional 4+1 point of view [11] but also from the legal and IPR point of view.
Some components, such as players and codecs, are available only as closed source
components. We need to, therefore, mix open source and proprietary code and
manage different licensing rules within the product code.

We manage the legal and IPR status of each software component. It is not
enough to manage the architecture in terms of the development time API
compatibility or run time performance, but we also need to manage the mix of
various open source and closed source licensing rules. This is an additional job that
we need to do when developing products based on open source.

5.3 Community alignment versus backwards compatibility

Internet tablets provide a platform on top of which applications and services can
be developed. It is important that the platform provides application compatibility
over product generations.

A binary compatibility is an ultimate goal for such backwards compatibility. That
would allow the same application to run on various platform and product generations
without recompilation. This is typically achieved by selecting development APIs and
components that remain unchanged over platform generations. If a company
developing product generations also develops all the software, such API freezing can
be achieved by not introducing new features and changes to the relevant code.

However, open source components develop constantly. They get new features,
their architecture change, and bugs are fixed. This development happens and it
cannot be stopped. Our current strategy is to stay close to the latest development. We
want to avoid a big difference between the component developed in the community
and the component version used by us. For example, we are eager to move to the
latest Linux kernel version as soon as it is possible for two reasons. We want to get
the latest development into use, and we want to minimize the delta we need to
maintain our selves.

These two concepts, product backwards compatibility and staying current with
open source development are somewhat contradictory. In several cases, it would
have been easier for us to provide backwards compatibility simply by not changing
the underlying code. However, communities move on. If we decided to use an old
version of a component we would need to do all backporting and new development
ourselves to that component. Communities would not help us for they are already
working on new versions. That would eventually put us on a different development
branch and increase the amount of code we need to develop and maintain ourselves.

We do not have a final answer to this contradiction. So far we have not managed
to maintain true backwards compatibility as we had hoped. Going forward, this is
one of the things we need to better understand and manage. To do so, we are
implementing more strict architecture management and compatibility layers between
of the open source originated platform components and applications.

94 Ari Jaaksi

5.4 Community participation in product integration

We work closely within communities in the upstream projects to develop various
software components. This work happens in a community mode. Then, when we
decide on the product features and integrate the final software, we do it ourselves in
Nokia internal product development projects, illustrated in Figure 2. The closed way
of integrating the software causes frustration among some external open source
developers. They’d like to find a way to be part of the Nokia’s product development,
not only in developing components and technologies in upstream projects but
actually deciding on features, and integrating the final product together with Nokia.

We launched the Sardine distro [8] partially to address this problem. We now
allow external developers to participate more in the actual development and
integration process within Nokia. This is this is one of those areas where we still
need to collect experiences and learn. There may be room for more community
collaboration even in the most crucial steps of the product development. But in all
cases, we expect that the product companies, such as Nokia, must have the final
control over the product features and quality. It cannot be given to communities.

5.5 Investing in community work

Using open source code effectively requires community participation. It is
sometimes possible to use an open source component without further development.
Such participation is almost free of charge. In many cases, though, we work with
communities to enhance components and develop them further. Such participation
requires extra resources.

When open sourcing our own code and patches, we must ensure that our
developers can work with the open sourced components. We must continue support
the code in open source so that the code will meet our future needs, too. Just
releasing code with no plans to develop it further won’t benefit us.

We have open sourced individual components and participated some
development with no clear benefit for us. We have either been left alone to develop
the component, or our needs have not been taken into account when developing a
component further. In these cases the joint open source development didn’t happen
or it didn’t benefit us. Therefore, we now observe individual projects and try to
identify when the open source investment pays off and when it doesn’t.

6 Summary

We have created two consumer devices, the Nokia 770 and the Nokia N800
Internet Tablets, utilizing open source software. In addition, we have made software
updates to those devices and initiated community work around the www.maemo.org
web site. Our experiences demonstrate that an open source technology and

Experiences on Product Development with Open Source Software 95

development model is well suited for consumer devices. We have created products in
a shorter time and with fewer resources with open source than we have managed to
create using proprietary software alone. In essence, open source offers time and cost
savings in a form of readily available components and subsystems, available
developers, and an effective development model.

Open source doesn’t make software development free or easy. It provides
effective tools for product creation. Combining these new tools, such as community
involvement, and utilization of open components, with more traditional software and
product engineering practices is a good mix.

As a device manufacturer, we alone are responsible for the quality of the end
product. We must therefore utilize all quality and software engineering mechanisms
to achieve the needed quality. We cannot skip such development aspects such as
specifications, integration, testing, and documentation, for example. In addition,
open source introduces certain new requirements, such as community interaction and
legal and IPR management. These hard requirements seem to contradict with open
community work in certain cases. We have not managed to successfully solve all
these conflicts. However, we are working on improving community participation in
the stabilization process as well as allowing community members to participate
firmware development. The results are not yet known, though.

Acknowledgements

Thanks to Bradley Mitchell for his assistance in writing this article.

References

[1] Jaaksi 2006: Building consumer products with open source
http://www.linuxdevices.com/articles/AT7621761066.html

[2] http://www.gnome.org/

[3] http://www.debian.org/

[4] Ghosh, R A (ed.), ‘Study on the:Economic impact of open source software on
innovation and the competitiveness of the Information and Communication
Technologies (ICT) sector in the EU, Final report, November 20, 2006, Merit

[5] http://www.trolltech.com/

[6] http://www.gtk.org/

[7] http://www.freedesktop.org/wiki/Software/dbus

[8] http://sardine.garage.maemo.org/

[9] Glance, David, G : Release criteria for the Linux kernel, 2004:
http://www.firstmonday.org/issues/issue9_4/glance/index.html

96 Ari Jaaksi

[10] Brockmeier, Joe, The 2005 Debian Project Leader election, 2005
http://lwn.net/Articles/127031/

[11] Kruchten, P.B. The 4+1 View Model of Architecture. In IEEE Software,
November, 1995: 42-50

Exploring the Effects of Coordination and
Communication Tools on the Efficiency of

Open Source Projects using Data
Envelopment Analysis

Stefan Koch
Vienna University of Economics and Business Administration, Institute for

Information Business
Augasse 2-6, A-1090 Vienna, Austria

stefan.koch@wu-wien.ac.at
WWW home page: http://wwwai.wu-wien.ac.at/~koch/

Abstract. In this paper, we propose to explore possible benefits of
communication and coordination tools in open source projects using data
envelopment analysis (DEA), a general method for efficiency comparisons.
DEA offers several advantages: It is a non-parametric optimization method
without any need for the user to define any relations between different factors
or a production function, can account for economies or diseconwhile omies of
scale, and is able to deal with multi-input, multi-output systems in which the
factors have different scales. Using a data set of 30 open source project
retrieved from SourceForge.net, we demonstrate the application of DEA,
showing that the efficiency of the projects is in general relatively high.
Regarding the effects of tool employment on the efficiency of projects, the
results were surprising: Most of the possible tools, and overall usage, showed a
negative relationship to efficiency.

Keywords. Open Source Software Development, Efficiency, Data
Envelopment Analysis, Software Repositories

1 Introduction

Considerable uncertainty has for a long time surrounded the topic of the efficiency of
open source software development, and the factors influencing this efficiency.
Currently, any comparison of open source software projects is very difficult. There is
increased discussion on how the success of open source projects can be defined
[21,22,9,10], using for example search engine results as proxies [23]. In addition, the
process applied in these projects can differ significantly, and several elements of

98 Stefan Koch

both process and infrastructure could have an impact. For example, [19] has used a
sample of projects from SourceForge.net to uncover whether the process maturity
has had any on success of open source projects. In this analysis, the notion of success
was based on the downloads achieved, and a relationship to version control, mailing
lists and testing strategies was found.
In this paper, we apply the method of Data Envelopment Analysis (DEA) to compare
open source projects according to their efficiency in transforming inputs into outputs.
For any production process, this efficiency and productivity is a key indicator in
comparison to other processes. DEA is a non-parametric optimization method for
efficiency comparisons without any need for the user to define any relations between
different factors or a production function. In addition, DEA can account for
economies or diseconomies of scale, and is able to deal with multi-input, multi-
output systems in which the factors have different scales.
Efficiency and productivity in software development is most often denoted by the
relation of an effort measure to an output measure, using either lines-of-code or,
preferably due to independence from programming language, function points [1].
This approach can be problematic even in an environment of commercial software
development due to missing components especially of the output, for example also
[15] agree that productivity measures need to be based on multiple size measures. In
open source development, there are additional problems which point towards DEA
as an appropriate method.

In open source projects, normally the effort invested is unknown, and therefore
might need to be estimated [2,16,17], and is also more diverse than in commercial
projects, as it includes core team member, committers, bug reporters and several
other groups with varying intensity of participation. Besides that, also the outputs
can be more diverse. In the general case, the inputs of an open source project can
encompass a set of metrics, especially concerned with the participants. So, in the
most simple case, the number of programmers and other participants can be used.
The output of a project can be measured using several software metrics, most easily
the number of LOC, files, or others. This range of metrics both for inputs and
outputs, and their different scales necessitates application of an appropriate method
like DEA.

The main result of applying DEA for a set of projects is an efficiency score for
each project. This score can serve different purposes: First, single projects can be
compared accordingly, but also groups of projects, for example those following
similar process models, located in different application domains or simply of
different scale can be compared to determine whether any of these characteristics
lead to higher efficiency.

In a prior paper, DEA has been explored in this context, but with a different
dataset mostly relying on in-depth CVS analysis [18]. This has demonstrated that
DEA can indeed be applied in this context, and has also shown that neither
inequality in contributions, nor licensing scheme nor intended audience have a
significant impact on efficiency. In this paper, we will employ the results of a DEA
to investigate whether the adoption of communication and coordination tools like
mailing lists or particular source code control systems have any impact on efficiency.

Exploring the Effects of Coordination and Communication Tools using DEA 99

2 Data Envelopment Analysis

The principle of the border production function was introduced by Farell for
measuring the technical efficiency [12] and enhanced by Charnes, Cooper and
Rhodes [6] into the first Data Envelopment Analysis model (the CCR model). The
object of analysis the DEA considers is very generally termed Decision Making Unit
(DMU). This term includes relatively flexibly each unit which is responsible for the
transformation of inputs into outputs, for example hospitals, supermarkets, schools,
bank branches and others.

The basic principle of DEA can be understood as a generalization of the normal
efficiency evaluation by means of the relationship from an output to an input into the
general case of a multi-output, multi-input system without any given conversion
rates or same units for all factors. In contrast to other approaches, which require the
parametric specification of a production function, DEA measures production
behavior directly and uses this data for the evaluation of all DMUs. The DEA
derives a production function from mean relations between inputs and outputs
(whereby it is only assumed that the relation is monotonous and concave), by
determining the outside cover of all production relations (see also Figure 1), while
for example a regression analysis estimates a straight line through the center of all
production relations. The DEA identifies "best practicing" DMUs, which lie on the
production border. A DMU is understood as being efficient if none of the outputs
can be increased, without either or several of the inputs increasing or other outputs
being reduced, as well as vice versa.

100 Stefan Koch

Fig. 1. Data Envelopment Analysis for the case of one input and two outputs with 7 DMUs (A
– G), out of which C – F are efficient, and depicting inefficiency of A for which D and E form
the reference set

For each DMU an individual weighting procedure is used over all inputs and outputs.
These form a weighted positive linear combination, whereby the weights are
specified in such a way that they maximize the production relationship of the
examined unit, in order to let these become as efficient as possible. The efficiency of
an examined unit is limited with 1. That means that no a-priori weightings are made
by the user, and that the weights between the DMUs can be different. For each
evaluation object the DEA supplies a solution vector of weighting factors and a DEA
efficiency score. If this score is equal to 1, then the DMU is DEA efficient. In this
context, DEA efficiency means that no weighting vector could be found which
would have led to a higher efficiency value. DEA efficient are thus all those DMUs
which are not clearly DEA inefficient compared with the others. Any inefficiency
can therefore not be ruled out completely. For each inefficient DMU the DEA
returns a set of efficient DMUs which exhibit a similar input/output structure and lie
on the production border near to the inefficient DMU (reference set, see also Figure
1). Using this information, an idea in which direction an increase in efficiency is
possible can be gained.

The first model of the DEA was introduced by Charnes, Cooper and Rhodes [7]
and is therefore designated as CCR model. They pose four assumptions for the
production possibility set, which are convexity, possibility for inefficient production,
constant returns to scale and minimum extrapolation. The different basic models of

Exploring the Effects of Coordination and Communication Tools using DEA 101

the DEA can be divided on the basis of two criteria: This is on the one hand the
orientation of the model, on the other hand the underlying assumption regarding the
returns to scale of the production process. With input-oriented models the reduction
of the input vector maximally possible with the given manufacturing technology is
determined, whereas with output-oriented models the maximally possible
proportional increase of the output vector is determined. The returns to scale can be
assumed either as being constant or variable. With constant returns to scale size-
induced productivity differences are considered into the efficiency evaluation, with
variable returns to scale the differences are neutralized by the model. The most
common example of a model with variable returns to scale is an advancement to the
CCR model by Banker, Charnes and Cooper, the BCC model [3]. This model
includes an additional measuring variable in the fundamental equation to capture
rising, falling or constant returns to scale.
In the area of software development, DEA was so far only rarely applied. Banker and
Kemerer use this approach in order to prove the existence of both rising and falling
returns to scale [4]. Banker and Slaughter use the DEA in the area of maintenance
and enhancement projects [5]. It can be proven that rising returns to scale are
present, which would have made a cost reduction of around 36 per cent possible
when utilized. An investigation of Enterprise Resource Planning (ERP) projects was
done by [20], using 30 SAP R/3-projects of a consulting firm for the application of
the DEA. [14] gives an in-depth discussion on the application of DEA in software
development.

3 Data Selection and Set

Based on the date January 8th 2007, we selected the thirty most often downloaded
projects from SourceForge.net, as presented by the website based on the past 7 days.
This statistic is updated daily, the current standings can be seen anytime from the
respective web page1. This was done in order to arrive at a relatively homogeneous
set of projects. Potential problems and pitfalls in using this approach are described in
the following.

For each of these projects, a number of variables was retrieved from the
respective homepage. We define and use the following variables in this study, with
binary variables later on employed for distinguishing between groups of projects:

Project: This simply gives the project's name.
Donations: This binary variable shows whether the project has activated the
donations feature.
GNU-style licence: This binary variable codes whether a project is under a
GNU GPL licence (true) or not (false), to give an impression of whether a
strict copyleft-scheme is followed by the project.

1http://sourceforge.net/top/toplist.php?type=downloads_week

102 Stefan Koch

Audience: Again, the intended audience of a project is coded as a binary
variable, depending on whether the intended audience is developers or
system administrators (true) or not (false).
Age: The age of the project in years, which is computed based on the year
in which the project was registered on SourceForge.net (using 2007 minus
registration year).
Developers: This is the number of developers as reported by the project's
page on SourceForge.net.
Downloads: This is the number of downloads of the project within the last 7
days, as given by the respective statistics page described above.
Status: The development status from the web page. This is assigned by the
project's administration, and has seven possible values, reaching from
planning, pre-alpha, alpha, beta to production/stable and mature, and to
inactive.
Translations: The number of different translations available, from the
project's page, with all languages counted equally as one.
Operating Systems: As translations, but with the respective operating
systems (or families thereof, e.g. all Windows versions are counted as one).
Tracker: This binary variable codes whether the project employs the tracker
service of SourceForge.net (true in that case).
Tracker total: This is the total number of entries summed over all different
active trackers of a project.
Mailing list: This binary variable codes whether the project employs the
mailing list service of SourceForge.net (true in that case).
Mailing list total: This is the total number of postings summed over all
mailing lists of a project.
Forum: This binary variable codes whether the project employs the forum
service of SourceForge.net (true in that case).
Forum total: This is the total number of messages summed over all different
active forums of a project.
Tasks: This binary variable codes whether the project employs the task
service of SourceForge.net (true in that case).
Tasks total: This is the total number of tasks (in any status like open or
closed) summed over all different subprojects of a project.
CVS: This binary variable codes whether the project employs a CVS
repository (true in that case).
CVS commits: The total number of commits to the CVS repository as given
on the project's page.
SVN: This binary variable codes whether the project employs an SVN
repository (true in that case).
SVN commits: The total number of commits to the SVN repository as given
on the project's page.
Size: The size in byte of software offered, summing over all packages of the
project in the latest release.

Exploring the Effects of Coordination and Communication Tools using DEA 103

The first, and a major source of possible threats is construct validity. Several
measures used for conceptualizing different aspects for the following analyses might
be problematic and need to be discussed in this context. First is the notion of
developer, which is taken directly from the web page. In some projects, people could
be contributing code without relevant account, which sometimes is only granted to
long-time participants, by sending it to one of those persons who then does the actual
commit. Therefore, the number of developers might actually be higher than the
number reported here. This fact is very problematic to check. In a case study of the
OpenACS project under participation of project insiders and using the strict
standards for CVS comments, [11] have found that only 1.6% of revisions pertained
to code committed for someone without CVS privilege. Other metrics suffer from
similar possible problems, for example a project might have existed before it was
registered on SourceForge.net, and also the size might be affected by several factors
like different compression algorithms employed. In addition, several parts of the
coordination and communication tools might be in use, but not opened to the public,
and thus disregarded in this context, or tools completely distinct from the platform
might be employed. This is for example true for the source code versioning systems
in our dataset. Also [13] give an overview of problems associated with mining data
from Sourceforge.net. Lastly, the external validity of the results depends on the
selection of an appropriate dataset. In our case, the approach is still mostly
exploratory, but using the definition above, a coherent dataset was aimed at. For,
example, this shows in the intended audience, which in no case is developers or
system administration alone, or the fact that all projects save one use a GPL-licence.
Table 1 gives descriptive statistics for some relevant metrics.

Table 1. Descriptive Statistics of Dataset (N=30)

Median Mean Std.Dev. Min. Max.
Downloads 97,682.00 285,507.53 538,548.91 63,122 2,457,185
Developers 9.00 10.23 9.53 1 39
Status 5.00 n/a n/a 4 6
Age 5.00 4.87 1.76 2 8
Translations 1.50 7.90 11.19 1 35
Size 21,220K 106,780K 232,072K 2,832K 998,118K
Tracker total 175.00 1,313.73 4,095.57 0 22,527
Mailing list
total

29.00 10,070.13 31,792.62 0 169,574

Forum total 0.00 3,659.40 9,520.53 0 44,272
Tasks total 0.00 2.33 9.83 0 52

4 Analysis and Results

Based on the data set and variables as described above, we set up an DEA with the
following parameters, using the program accompanying [8]: The first choices to be

104 Stefan Koch

taken concern the definition of input and output factors, as well as the model to be
applied. Based on the literature on DEA in the context of IT-projects [4,5,14,20],
variable returns to scale are selected. Regarding the orientation of the model, an
output-orientation might seem more appropriate. Given a certain input which can be
acquired, i.e. participants attracted, the output is to be maximized. According to this
reasoning, the BCC-O model is applied.

Regarding the definition which factors are to be used as inputs and outputs, it is
to be considered that with an increase in the number of factors more DMUs are
estimated to be efficient. Also the availability of factors in the data set limits the
possibilities. In this case, we selected to use the number of developers and years of
existence as inputs, downloads, size, status and translations as outputs. Naturally,
this selection is based on the available data, and could be changed.

For an overview of the results, see Table 1. In this table, statistics on the
efficiency scores in the total population are given. Overall, 11 different projects have
been classified as DEA efficient, the mean efficiency score with 0.922 seems
relatively high. For each efficient project, the number of times it appears in the
reference sets of non-efficient projects is also given. This can be used as an indicator
of the relative importance of this project in determining efficiency scores.

Table 2. Results of Applying DEA to the dataset

No. of DMUs 30
Average 0.922
Std. Dev. 0.096
Median 0.953
Minimum 0.706
Maximum 1.000
Number of DEA-efficient DMUs 11
Frequency in Reference Set
Peer set Frequency
eMule 8
Ares Galaxy 0
Azureus 3
GTK+ and The GIMP installers for Windows 10
eMule Plus 0
emule Xtreme Mod 15
Portable Apps 6
CDex 16
Gaim 2
MediaCoder 0
WinSCP 0

As one of the results is an efficiency score for each project, we can now use this
score for analysing potential effects on this efficiency. As explanatory variables,
information concerning the communication and coordination tools employed by the

Exploring the Effects of Coordination and Communication Tools using DEA 105

projects is used. As a start, correlations between the efficiency scores and these
metrics are explored to uncover any relationships. All of the following analyses were
performed using R (version 2.4.0), a free software environment for statistical
computing and graphics. Specifically, tracker, mailing lists, forums, tasks and both
CVS and SVN were explored as possible influences. In addition, a new metric was
computed summing up the binary variables depicting whether or not a tool was
employed, to give an indication of the overall diversity of a project in this context.
This shows out of a maximum of 6 a mean of 2.53 with median 3 and 1.48 standard
deviation.

The results are not conclusive: Regarding correlation coefficients, these are
mostly small (below 0.3) and for all tools except forums negative. Also the
correlation to the overall number of tools employed is with -0.257 negative. Using
non-parametric Mann-Whithney U-tests, these results were tested for statistical
significance: The negative relationships with overall tool usage (p<0.01), CVS
(p<0.05), tasks (p<0.01), and the positive relationship with forum employment
(p<0.01) are statistically proven. The results from [18] regarding licensing scheme
and audience could not be checked due to minimal respectively no variance in these
attributes, the inequality in contributions was not available in this data set.
These results seem rather surprising, given that [19] found a relationship between
process maturity and success, but there are two different explanations: First, the tools
as provided by SourceForge.net are not giving relevant help to the projects
employing them, so projects using other tools, or even none at all for a given task
perform better. The second explanation would be that all the tools for
communicating with users and potential co-developers are more of a hindrance to
efficient software development, detracting attention and time from the developers,
which might be better spent on actual development work. Naturally, the view on this
might also depend on the output factors included: Employing mechanisms like bug
tracking might help to achieve higher quality in the released software, and it is
unclear whether this effect is currently incorporated. Naturally, it could be assumed
to higher quality projects achieve a higher number of downloads, but including
quality aspects in the list of output factors might give additional insights.

5 Conclusion and Future Research

In this paper, we have used a method to compare the efficiency of open source
projects to analyse potential impacts of different communication and coordination
tools. The method used is the DEA, which is well-established in other fields and
offers several advantages in this context as well: It is a non-parametric optimization
method without any need for the user to define any relations between different
factors or a production function, can account for economies or diseconomies of
scale, and is able to deal with multi-input, multi-output systems in which the factors
have different scales. Using a data set of 30 open source project retrieved from
SourceForge.net, we have demonstrated the application of DEA. Results show that

106 Stefan Koch

the efficiency of the projects is in general relatively high with low variance.
Regarding the effects of tool employment on the efficiency of projects, the results
were surprising: Most of the possible tools, and overall usage, showed a negative
relationship to efficiency. This could be either due to more efficient tools being
available elsewhere, or a negative influence of all activities except software
development per se.

In future research, additional work has to be done on arriving at a common
understanding of input and output factors and their definitions. For example, using
the size in bytes instead of lines-of-code might be problematic, but on the other hand
captures other output aspects like audio or others as well. Also the selection of
projects to be included might be worked on, to preclude projects without real
development work, which only serve as assemblers of others. Further, additional
analyses based on the results using other project characteristics would be of high
interest. For example, the definition of different process models would be of high
interest for efficiency comparisons. These could also include comparisons within
application areas, different project scales, and comparisons to commercial or mixed-
mode development projects.

References

[1] Albrecht, A.J., & Gaffney, J.E. (1983). Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering, 9(6), 639-648.

[2] Amor, J.J., Robles, G., & Gonzalez-Barahona, J.M. (2006). Effort
Estimation by Characterizing Developer Activity. In Proceedings 8th

International Workshop on Economics-Driven Software Engineering
Research (ICSE 2006), Shanghai, China.

[3] Banker, R.D., Charnes, A., & Cooper, W. (1984). Some Models for
Estimating Technical and Scale Inefficiencies in Data Envelopment
Analysis. Management Science, 30, 1078-1092.

[4] Banker, R.D., & Kemerer, C. (1989). Scale Economies in New Software
Development. IEEE Transactions on Software Engineering, 15(10), 416-
429.

[5] Banker, R.D., & Slaughter, S.A. (1997). A Field Study of Scale Economies
in Software Maintenance. Management Science, 43(12), 1709-1725.

[6] Charnes, A., Cooper, W., & Rhodes, E. (1978a). A Data Envelopment
Analysis Approach to Evaluation of the Program Follow Through
Experiments in U.S. Public School Education (Management Science
Research Report No. 432). Carnegie-Mellon University, Pittsburgh, PA.

[7] Charnes, A., Cooper, W., & Rhodes, E. (1978b). Measuring the Efficiency
of Decision Making Units. European Journal of Operational Research, 2,
429-444.

Exploring the Effects of Coordination and Communication Tools using DEA 107

[8] Cooper, W., Seiford, L., & Tone, K. (2000). Data Envelopment Analysis: A
Comprehensive Text with Models, Applications, References and DEA-
Solver Software, Boston, MA: Kluwer Academic Publishers.

[9] Crowston, K., Annabi, H., & Howison, J. (2003). Defining Open Source
Software Project Success. In Proceedings of ICIS 2003, Seattle, WA.

[10] Crowston, K., Annabi, H., Howison, J., & Masango, C. (2004). Towards A
Portfolio of FLOSS Project Success Measures. In Collaboration, Conflict
and Control: The 4th Workshop on Open Source Software Engineering
(ICSE 2004), Edinburgh, Scotland.

[11] Demetriou, N., Koch, S. & Neumann, G. (2006). The Development of the
OpenACS Community. In Lytras, M. & Naeve, A. (eds.) Open Source for
Knowledge and Learning Management: Strategies Beyond Tools, Hershey,
PA: Idea Group.

[12] Farell, M.J. (1957). The Measurement of Productive Efficiency. Journal of
the Royal Statistical Society, Series A 120(3), 250-290.

[13] Howison, J. & Crowston, K. (2004). The perils and pitfalls of mining
SourceForge. In Proceedings of the International Workshop on Mining
Software Repositories, pp. 7-11, Edingburgh, Scotland, UK.

[14] Kitchenham, B. (2002). The question of scale economies in software - why
cannot researchers agree? Information & Software Technology, 44(1), 13-
24.

[15] Kitchenham, B., & Mendes, E. (2004). Software Productivity Measurement
Using Multiple Size Measures. IEEE Transactions on Software
Engineering, 30(12), 1023-1035.

[16] Koch, S. (2004). Profiling an open source project ecology and its
programmers. Electronic Markets, 14(2), 77-88.

[17] Koch, S. (2005). Effort Modeling and Programmer Participation in Open
Source Software Projects (Arbeitspapiere zum Tätigkeitsfeld
Informationsverarbeitung, Informationswirtschaft und Prozessmanagement,
Nr. 03/2005). Wirtschaftsuniversität Wien, Vienna, Austria.

[18] Koch, S. (to appear). Measuring the Efficiency of Free and Open Source
Software Projects Using Data Envelopment Analysis. In Sowe, S.K.,
Stamelos, I. and Samoladas, I. (eds.): Emerging Free and Open Source
Software Practices.

[19] Michlmayr, M. (2005). Software Process Maturity and the Success of Free
Software Projects. In Zielinski, K. and Szmuc, T. (eds.): Software
Engineering: Evolution and Emerging Technologies, pp. 3-14, IOS Press,
Amsterdam, The Netherlands.

[20] Myrtveit, I., & Stensrud, E. (1999). Benchmarking COTS Projects Using
Data Envelopment Analysis. In Proceedings of 6th International Software-
Metrics-Symposium, pp. 269-278, Boca-Raton.

[21] Stewart, K.J. (2004). OSS Project Success: From Internal Dynamics to
External Impact. In Collaboration, Conflict and Control: The 4th

108 Stefan Koch

Workshop on Open Source Software Engineering (ICSE 2004), Edinburgh,
Scotland.

[22] Stewart, K.J., & Ammeter, T.A. (2002). An Exploratory Study of Factors
Affecting the Popularity and Vitality of Open Source Projects. In
Proceedings of ICIS 2002, Barcelona, Spain.

[23] Weiss, D. (2005). Measuring Success of Open Source Projects Using Web
Search Engines. In Proceedings of the 1st International Conference on
Open Source Systems, pp. 93-99, Genoa, Italy.

Innovation in Open Source Software Development:
A Tale of Two Features

John Noll

Santa Clara University

Computer Engineering Department

500 El Camino Real, Santa Clara, CA USA

jnoll@cse.scu.edu

Abstract. Open Source Software Development appears to depart radically from

conventional notions of software engineering. In particular, requirements for

Open Source projects seem to be asserted rather than elicited.

This paper examines two features of selected open source products: “tabbed

browsing” as realized in the Firefox web browser, and “edge magnetism” found

in the Gnome desktop environment’s Metacity window manager. Using archives

of mailing lists and issue tracking databases, these features were traced from first

mention to release, in attempt to discover the process by which requirements are

proposed, adopted, and implemented in their respective Open Source projects.

The results confirm the importance of user participation in Open Source projects.

1 Introduction

A common view states that open source projects begin as the need for “scratching
a developer’s personal itch [20],” in other words, to fill a need that is not addressed
by a current commercial or free product. This lead developer then becomes the shep-
herd of a growing community of volunteers who contribute programming labor to the
project until it evolves into a useful product. But once started, how do open source
projects continue to innovate? How do they stay competitive with, and even dominate,
their commercial competition? Empirical studies of open source software development
suggest that open source projects follow different processes than traditional textbook
approaches [24].

This paper examines the history of two features of two open source software prod-
ucts — “tabbed browsing” in the Mozilla project’s Firefox web browser, and the “edge
magnetism” behavior of the Gnome desktop environment’s Metacity window manager
— to see how new features are proposed, debated, and finally adopted for release. This
examination shows that innovation occurs in a variety of ways, sometimes following a
conventional software engineering approach, other times resembling Raymond’s itch
scratching. Perhaps most interestingly, these differing processes can coexist in a single
project, providing multiple sources for innovation.

Krishnamurthy’s study of projects hosted by Sourceforge.net supports Raymond’s
idea of project initiation: of the 100 most active projects marked mature in the Source-
forge coding scheme, the median number of developers on a project was four [12],

John Noll

confirming that many projects start small, but also suggesting that many projects never
grow beyond a handful of developers.

But the itch scratching explanation does not fit all open source projects, nor does
it explain how at least some open source software grows and evolves past the initial
release into feature-rich products; many open source projects continue to evolve into
comprehensive products that have capabilities far beyond their original conception.
They have excellent quality and sometimes dominate their markets.

For example, the Apache web server has grown to include numerous innovative
features including a built-in Java virtual machine, Perl interpreter, and database ac-
cess, that extend Apache’s functionality far beyond its original purpose as an HTTP
server of HTML home pages. The Apache server is reported to host the majority of the
world’s web sites [29, 15]. The Apache foundation now includes projects far beyond
the Apache web server product, encompassing such diverse elements as XML process-
ing libraries and parsers, software build tools, and email processing software [5].

Open source projects based on formerly proprietary products also continue to inno-
vate. The Firefox web browser is considered to be one to the most secure web browsers
available and is actually gaining market share compared to its chief commercial com-
petitor (Internet Explorer) [10, 22]. Firefox evolved from the Mozilla codebase, which
in turn is a descendant of the Netscape Navigator code that was released as open source
by Netscape Communications, Inc. [6]

Similarly, OpenOffice was created as an open source version of Sun Microsystem’s
StarOffice commercial office automation product [18]; it now has many innovative
features including an XML-based storage format and plug-in “channels” for importing
other file formats. In both cases, these products have evolved into feature-rich products
that take them far beyond mere copies of their commercial competitors.

The goal of this paper is to discover how mature Open Source Software projects
develop new features. Toward this end, the history of Firefox’s tabbed browsing and
Metacity’s edge magnetism was traced by examining discussions of each feature in
project mailing lists, web logs, issue tracking systems, and other on-line forums. The
results provide a snapshot of how new ideas are incorporated into products, providing
further insight into Open Source development processes.

The next section describes the projects and features studied. Following that is a dis-
cussion of observations and their implications. The last sections present related work
and conclusions.

2 Background

Two open source software products were chosen to study: the Firefox web browser, and
the Metacity window manager for the Gnome desktop environment. These projects
represent different types of open source projects: Firefox has roots in a proprietary
product (Netscape Navigator), while the Gnome project was open source from its in-
ception. Firefox has at least one serious proprietary competitor, while Gnome is target-
ted for Unix and Linux platforms, and thus its chief competitor is another open source

110

Innovation in Open Source Software Development: A Tale of Two Features

product (KDE). The Firefox architecture incorporates extension mechanisms that al-
low programmers to add new functionality without modifying the core source code.
Gnome, being an environment for managing multiple applications on a user’s desktop,
provides services and libraries that programmers use to create applets and applications
that may cooperate with other Gnome programs. Metacity is one such program, created
with simplicity as a goal and thus providing minimal customization options.

These two projects also have significantly different organization and management
structure. The Mozilla development organization has a substantial co-located work-
force that can hold traditional face-to-face meetings; these are used for release plan-
ning. Gnome is a “pure” open source project with a governing board and foundation
to accept contributions from commercial firms. The project management and labor re-
main completely distributed. Open Office falls in between these extremes: it receives
significant support from Sun microsystems, including funds and labor, but the project
management and programming effort are widely distributed.

In order to understand how each project develops new functionality, a single feature
of each product was chosen from a current release:

1. “Tabbed browsing” in the Firefox web browser, which allows users to open and
manage multiple web pages within a single browser window.

2. “Window magnetism” (also called “edge resistance” and “window snapping”) in
Gnome’s Metacity window manager, which helps users place windows on the
desktop in a “tiled” arrangement.

Archives of project discussion forums were then examined to determine when the
feature was first proposed, how it was debated, and when it was ultimately adopted
to be delivered in a specific release. Because a typical open source project involves
widely distributed programmers, testers, and users, management and technical discus-
sions are conducted using digital communication technology such as email lists, news
groups, issue tracking systems, and increasingly “chat” channels and web logs. With
the exception of chat channels, these discussions are archived and made available to
the general public, as a way of preserving the history of design decisions and to provide
a means for newcomers to understand how a given project conducts its business. Dis-
cussions conducted via chat channels are sometimes archived as well, but this practice
does not seem to be as common as archiving other media.

The details of each feature are explained in the following sections.

2.1 Firefox Tabbed Browsing

Firefox is a web browser developed by the Mozilla foundation. The Mozilla foundation
was created to oversee the continued evolution of Netscape Navigator and Communi-
cator when Netscape Communications, Inc. decided to transition development of their
web browser and related software to an open source model. The Mozilla foundation’s
orginal product, Mozilla, is an integrated web browser, email client, and web page
composer; while it is still being distributed and maintained, the Mozilla foundation’s
long term strategy is to replace the monolithic Mozilla product with separate, single-
purpose programs: the Firefox web browser, and the Thunderbird email client [1].

111

John Noll

Firefox has been highly successful, earning praise for its innovative features as well as
robustness [10, 22].

Fig. 1: Tabbed Browsing in Firefox

Tabbed browsing is a feature available in several comtemporary web browsers that
allows the presentation of multiple web pages in a single window (Figure 1). Each page
is identified by a “tab” resembling the label tab of a paper file folder; users can switch
the window’s display from one page to another by clicking on the page’s associated
tab. In the current version of Firefox (version 1.5 as of this writing), the pages can be
re-ordered by dragging the tabs to the right or left; new pages can be opened in an
existing tab, a new tab, or a completely new browser window.

2.2 Metacity Edge Magnetism

Metacity is the default window manager for the Gnome desktop environment. Unlike
Microsoft windows and other window-based user interfaces that are part of the operat-
ing system, the X Window System — the windowing platform on which Gnome runs
— is a set of user-space programs that work together to create the windowing environ-
ment. A window manager for the X window system is the program that is responsi-
ble for creating windows and decorating them with borders and buttons to minimize,
maximize, and close windows; the window manager is also responsible for moving
windows in response to mouse or keyboard events, and to provide keyboard shortcuts.
As such, the window manager has a significant effect on the appearance and operation
of a user’s desktop.

Because a window manager is separate from the operating system, users are free
to choose any window manager that suits their needs and taste; a variety of window
managers for the X window system have been created to satisfy different user require-
ments.

112

Innovation in Open Source Software Development: A Tale of Two Features

Metacity was created as a replacement for Sawfish, the previous default window
manager for the Gnome desktop environment. Metacity could be seen as a reaction to
Sawfish’s complexity and lack of stability; Sawfish was highly configurable, having a
built-in Scheme interpreter, but had a high fault rate which many considered to be a side
effect of its rich functionality. This excerpt from a posting to the Gnome support forum
illustrates [3]: “... people praise Sawfish features yet they hate the massive amount of
bugs. These two things go hand in hand. There is a reason Sawfish is practically not
maintained anymore.” Metacity was designed to include the minimum set of useful
features, with minimal configurability; the emphasis was on robustness rather than
richness.

(a) Initial layout. (b) Tiled left to right edges.

(c) Tiled corners. (d) “Snapping” to Gnome toolbar.

Fig. 2: Window edge magnetism in Metacity.

Window edge magnetism, also called edge resistance or snapping, makes position-
ing a window on the desktop easier by changing the behavior of a window when it is
moved near another window: the moving window will resist overlap of another win-
dow, and will try to align its edges with that window (Figure 2). The windows behave
as if they were magnetized; like real magnets, they resist certain arrangements and
“snap” to a tiled arrangement where window sides (Figure 2b) and corners (Figure 2c)

113

John Noll

are aligned, and windows do not overlap other windows. This makes organizing the
desktop for maximum window visibility easier.

3 Observations

3.1 Tabbed Browsing

The first reference to tabbed browsing on a Mozilla-oriented newsgroup appears to
be June 23, 1999, when a Mozilla user posted a note to netscape.public.
mozilla.wishlist requesting the ability to download a new web page while
viewing another page [16]:

One thing that I would really want to see is the ability to open a link in the new
window in background (i.e. the focus should remain in my current window,
and new window should load silently, without bothering me until it is ready
and I am ready to read it).

This spawned a discussion of the merits of tabbed browsing; the following poster is
referring to the Opera web browser’s tabbed browsing feature: [7]

Have you tried tabbed browsing? Now that I’ve tried it, I won’t go back to
windows everywhere. The idea is that pages have their own tabbed windows.
Instead of juggling windows, you just click their tabs. The beauty part is new
pages open in the background, just as you requested. The tab tells you when
the page is done loading. Then you just click over. Shweet!

H.J. van Rantwijk claims to have proposed addition of tabbed browsing to Mozilla
on the Mozilla developer’s chat forum (#mozilla at irc.mozilla.org), but got
no positive response. The Mozilla foundation does not make public its archives of
chat channels, so this claim is difficult to verify. Regardless, using Mozilla’s extension
mechanism, he was able to implement and distribute this functionality anyway. The
result, an extension called MultiZilla, implemented the first tabbed browsing function-
ality for the Mozilla browser. This project began in April 2000 [28].

Subsequently, David Hyatt implemented tabbed browsing for Mozilla (version
0.97, released in December, 2001) directly, influenced by MultiZilla. But this imple-
mentation was done from scratch without using any code from MultiZilla [27]. Hyatt
went on to create the Firefox browser (with Blake Ross); the first implementation of
Firefox (then called “Phoenix”) to feature tabbed browsing was the 0.3 milestone of
October, 2002, which led to the first official Firefox product release (1.0) in November
of 2004 [9].

What this suggests is that new features can follow several paths from suggestion
to release. Tabbed browsing first appeared in Mozilla as an extension written by a
volunteer who was unsuccessful getting acceptance from the core Mozilla developer
community. The extension proved to be useful enough that one of the core developers
incorporated it into the main Mozilla code base, which eventually led to its inclusion
in Firefox.

114

Innovation in Open Source Software Development: A Tale of Two Features 115

An important aspect of this path is that it is enabled by the Firefox architecture:
because Firefox’s user interface implementation allows user interface behavior to be
defined using a specification language called XUL [2], writers of extensions to the
user interface don’t have to change any of the core code; rather, they write a new XUL
specification.

3.2 Edge Resistance

Edge resistance was available in other window managers, including the existing
Gnome window manager (Sawfish), when Metacity was released. Many users missed
this feature in Metacity; the following quote1 from a posting to the gnomesupport.
org forum illustrates [13]

Recently, I updated my box to Redhat 9.0 and dropped Sawfish in favour of
Metacity. However, there are two things I used to use in Sawfish I am not able
to use in Metacity:
- Configure keys to move the cursor.
- Switch on windows ”magnetism” to help a easy windows placement.
I didn’t find any option, does anybody here know where to touch?

This comment sparked a debate on the GNOME support forum (gnomesup-
port.org) centered on the tension between feature richness and maintainability. Another
poster echoed the above sentiments [30]:

Fly has a point about the usability of Metacity. I understand the complaints
about the ”bloat” in Sawfish, but as far as memory footprint is concerned,
there is very little difference between Sawfish and Metacity. To claim that
including sensible features is adding bloat is just feeding us a line of bullshit.
I’ve been using Metacity since Gnome 2.0, mainly because it is now incon-
venient to manage themes properly with Sawfish in the picture, but it would
be very nice if Metacity would remember window sizes and placement. As
far as I’m concerned, that is a window manager’s job, and Metacity is clearly
shirking that job.
If it wasn’t for those apps that remember their own window geometry, I would
be getting quite fed up with Metacity by now.

Then, “Fly” followed his earlier posting with some general comments

... I understand that many features in Sawfish [are] excessive or unrelated to
WM, but 80% of Sawfish features very useful and I need it - you not?

In response, “Dbrody” (a ‘guru’ on this forum) said

But if only > 5% of people need > 80% of those features then you have just
proved that it is bloat. Bloat dosn’t mean memory foot print. That is NOT what
anybody cares about the extra 1k of ram. Bloat means the maintainer needs
to start maintaining more features. More bug reports. More tweaking of those

1 Original spelling and proper name capitalization in quoted excerpts has been corrected.

John Noll

advanced features. etc... etc... Metacity is not even 1.0 yet. There are many
changes that are planned to go into Metacity but haven’t yet because things
go a little slowly, or because it will make Metacity incompatible with themes
and so forth.
Also, many of these feature can be done with external programs, like devil-
spy. Certainly things like edge flipping, advanced focus management, etc...
are easily done using libwnck and a little hacking.

This debate is interesting because it takes place in a public forum where anyone -
users, developers, interested third parties - can participate. The discussion of require-
ments is therefore completely transparent, and also recorded in significant detail, so
that the rationale behind any decision can be discovered later if necessary.

The creator of Metacity agreed on the usefulness of edge magnetism almost a year
earlier; he filed the following Request for Enhancement (RFE) in the Gnome project’s
issue tracking system in May 2002 [19]:

Add some kind of mild ”attraction” to window/screen edges, perhaps only
after a timeout. Need to experiment.

This entry stimulated a lengthy discussion of exactly how this behavior should work,
which continued for over three years until the feature was incorporated into the release
code-base in November of 2005.

Again, the discussion takes place in a public forum (the Gnome issue tracking
database is readable by anyone, and anyone who registers can post issue reports or
comments), and is recorded for future reference.

The history of edge magnetism in Metacity represents a combination of two phe-
nomena that appear to be characteristics of Open Source development projects. First,
the significant, lively participation by users of Metacity in the discussion about the
merits of and desire for edge magnetism are an example of the essential role that users
play in Open Source projects [4]. Second, Havoc Pennington’s RFE is an example of
an asserted requirement: the developer of a product has stated the need for a particular
feature; this is consistent with observations made by other researchers [8, 23].

3.3 Discussion

Gnome and Metacity closely resemble the common notion of open source develop-
ment, where features are proposed in an on-line forum (newsgroup, mailing list, issue
database), debated by users and programmers, and ultimately adopted or rejected. A
feature may be adopted by virtue of having a working implementation, regardless of
its merits.

In contrast, Firefox follows an almost traditional process involving regular face-
to-face release planning meetings. But Firefox’s extension mechanism allows features
that are initially rejected to “prove” their worth by demonstrating adoption by real
users.

The openness of various communication channels employed by open source projects
enables and encourages enthusiastic participation by users of the product, as well as

116

Innovation in Open Source Software Development: A Tale of Two Features

developers. This provides early feedback about a product’s functionality and short-
comings, as well as a way to capture users’ ideas and needs.

Likewise, open issue tracking mechanisms provide a way for end users to voice
their concerns about product functionality, and participate in the discussion about res-
olutions and enhancements. This has advantages for both the developers and users:
the developers can potentially seek clarification through the discussion feature of issue
tracking systems like Bugzilla, while users seem to develop a sense of ownership as
they see their concerns actively considered and their participation encouraged.

4 Related Work

Studies of open source software projects address a wide range of topics from eco-
nomics [29] to maintainability [25].

A number of case studies have examined open source development processes, in-
cluding those employed by Apache and Mozilla [14, 21, 24]. In particular, Reis and de
Mattos Fortes, in their study of Mozilla development processes, report that high level
requirements are specified by the mozilla.org management, but all development
on the Mozilla code base originates with a “bug” report, which might be submitted by
another developer, tester, or end user [21]. These reports may document some product
failure, or a request for enhancement.

Feller and Fitzgerald note that users are a “critical feature” [4, 10] of OSSD
projects, as the source of new requirements. Scacchi has made several studies of re-
quirements acquisition in open source software development; he observes that require-
ments “emerge” from on-line discussions which are usually open forums, rather than
through traditional requirements elicitation processes, but that this emergent process,
though less formal, is also effective [24, 23]. He also notes that requirements are “as-
serted” after the fact; other researchers have echoed this observation. In particular,
German reports a similar situation in the Gnome project [8]. This seems to contradict
conventional understanding that cites failure to understand requirements as a major
source of software project failure.

But Trudelle notes, in his discussion of lessons learned from experience working
on Mozilla, that this approach led to rework of some of the Mozilla implementation in
response to user-submitted bug reports; his view is that this rework could have been
avoided with traditional up-front requirements analysis and design activities [26]. Hen-
derson echoes this view, claiming that open source projects do not employ “require-
ments elicitation,” but that this could (and should) be easily added to open source pro-
cesses [11]. Further, Nichols and Twidale observe that usability requirements are not
captured well by OSSD projects, due to the mismatch between developers and users;
their view is that the OSSD approach of “coding as early as possible” violates “good
interface design.” [17]

These observations run counter to the prevailing OSSD view that de-emphasizes
formal design and requirements gathering. Trudelle’s view — that OSSD projects
need an overarching UI design and design function — seems to contradict the cur-
rent success of Firefox, which is widely recognized as among the most innovative web

117

118 John Noll

browsers. In particular, Nichols and Twidale’s assertion that “commercial software es-
tablishes the state of the art” [17] seems to be contradicted by Opera and Firefox, both
of which included UI features (tabbed browsing, for example) well before Internet
Explorer.

5 Conclusions

Much has been made of the advantages open source development might give to com-
mercial for-profit enterprises, including high quality, free labor, and quick response
to critical failures. But the observations presented above reveal some practices that
could be useful to any software development effort, including traditional closed source
products:

1. Open communication channels between users and developers. This gives users
a greater stake in the future of the product, and provides feedback without the
overhead of conducting surveys or convening focus groups.

2. Extension mechanisms that allow users with programming skills to demonstrate
ideas by contributing working functionality.

3. Alternate paths for ideas to become released features.

Open source projects are far from uniform in their process for conceiving and real-
izing new features. But they seem to share a common aspect — close involvement of
end users in the development process — that is less common in conventional develop-
ment environments.

Acknowledgments

This work was supported in part by a grant from the School of Engineering at Santa
Clara University. No endorsement is implied.

References

1. Alex Bishop. Major roadmap update centers around Phoenix, Thunderbird; 1.4 branch to

replace 1.0; changes planned for module ownership model. MozillaZine (online), April 2

2003. http://www.mozillazine.org/articles/article3042.html.

2. Peter Bojanic. The joy of XUL. Web page, cited september 6, 2006., Mozilla Foundation,

June 2006. http://developer.mozilla.org/en/docs/The_Joy_of_XUL.

3. Dbrody. no title. http://gnomesupport.org/forums/viewtopic.php?t=
3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb, Septem-

ber 2003. Posting to the Gnome desktop user support forum.

4. Joseph Feller and Brian Fitzgerald. A framework analysis of the open source software

development paradigm. pages 58–69, 2000.

5. The Apache Software Foundation. About the Apache HTTP server project. http://
httpd.apache.org/ABOUT_APACHE.html. Web page, cited January 16, 2007.

Innovation in Open Source Software Development: A Tale of Two Features 119

6. The Mozilla Foundation. About the Mozilla foundation. http://www.mozilla.org/
foundation/, November 2006. Web page cited January 16, 2007.

7. Gboone. Open new window in background (tabbed browsing). http:
//groups.google.com/group/netscape.public.mozilla.wishlist/
tree/br%owse_frm/thread/ef62c3307e2a7a32/4ec071eae14082ff?
rnum=1&hl=en&_done=%2Fgroup%%2Fnetscape.public.mozilla.
wishlist%2Fbrowse_frm%2Fthread%2Fef62c3307e2a7a32%2F%
4ec071eae14082ff%3Ftvc%3D1%26hl%3Den%26#doc_4b33ef52c30564cf.

8. Daniel M. German. GNOME, a case of open source global software development. In

Proceedings of the 6th International Workshop on Global Software Development, Portland,

OR USA, May 2003.
9. Ben Goodger. Firefox 1.0 roadmap. http://www.mozilla.org/projects/

firefox/roadmap-1.0.html, 2004. Web page describing release history of Fire-

fox, cited March 1, 2007.
10. Steve Hamm. A Firefox in IE’s henhouse. Business Week, September 17 2004.
11. Lisa G. R. Henderson. Requirements elicitation in open-source programs. CrossTalk - The

Journal of Defense Software Engineering, 13(7):28–30, July 2000. http://www.stsc.
hill.af.mil/crosstalk/2000/07/henderson.html.

12. Sandeep Krishnamurthy. Cave or community?: An empirical examination of 100 mature

open source projects. First Monday, 7(6), June 2002.
13. Lou. Metacity configuration. http://gnomesupport.org/forums/viewtopic.

php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb,

August 4 2003. Posting to the Gnome desktop user support forum.
14. Audris Mockus, Roy T. Fielding, and James Herbsleb. A case study of open source software

development: The Apache server. In Proceedings of the 22nd International Conference on
Software Engineering, pages 263–272, Limerick, Ireland, May 2000.

15. Netcraft, Ltd. September 2006 web server survey. http://news.netcraft.com/
archives/2006/09/05/september_2006_web_server_%survey.html,

September 2006.
16. Vladimir Neyman. Open new window in background. http://groups.google.

com/group/netscape.public.mozilla.wishlist/tree/br%owse_frm/
thread/ef62c3307e2a7a32/4ec071eae14082ff?rnum=1&hl=en&_done=
%2Fgroup%%2Fnetscape.public.mozilla.wishlist%2Fbrowse_frm%
2Fthread%2Fef62c3307e2a7a32%2F%4ec071eae14082ff%3Ftvc%3D1%
26hl%3Den%26#doc_4ec071eae14082ff, June 23 1999. Message posted to

netscape.public.mozilla.wishlist mailing list.
17. David M. Nichols and Michael B. Twidale. The usability of open source software. First

Monday, 8(1), January 2003.
18. OpenOffice.org. About us: OpenOffice.org. http://about.openoffice.org/

index.html, January 2007. Web page, cited January 19, 2007.
19. Havoc Pennington. Bug 81704 - Edge magnetism/resistance/snapping/etc. http://

bugzilla.gnome.org/show_bug.cgi?id=81704, May 2002. Request for en-

hancement (RFE) entered into the Gnome project’s issue tracking system.
20. Eric S. Raymond. The cathedral and the bazaar. In The Cathedral and the Bazaar. O’Reilly

and Associates, October 1999.
21. Christian Robottom Reis and Renata Pontin de Mattos Fortes. An overview of the software

engineering process in the Mozilla project. In Proceedings of the Open Source Software
Development Workshop, Newcastle upon Tyne, UK, February 2002.

22. Rachel Rosmarin. Mozilla Firefox gaining ground on Microsoft IE. Forbes.com, August 1

2006.

120 John Noll

23. Walt Scacchi. Understanding the requirements for developing open source software sys-

tems. IEE Proceedings – Software, 149(1):24–39, February 2002.

24. Walt Scacchi. Free and open source development practices in the game community. IEEE
Software, pages 59–66, January 2004.

25. Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Jefferson Offut.

Maintainability of the Linux kernel. IEE Proceedings – Software, 149(1), February 2002.

26. Peter Trudelle. Shall we dance? Ten lessons learned from Netscape’s flirtation with open

source UI development. Technical report, Mozilla.org, 2002. Presented at the Open Source

Meets Usability Workshop, Conference on Human Factors in Computer Systems (CHI

2002), Minneapolis, MN. Accessed December 28, 2006.

27. unknown. A guide to Mozilla 1.0. http://www.mozilla.org/start/1.0/
guide/, 2002. Web page describing release 1.0 of Mozilla.

28. H.J. van Rantwijk. MultiZilla’s home page. http://multizilla.mozdev.org,

February 24 2006. Home page for the MultiZilla project, cited September 6, 2006.

29. David A. Wheeler. Why open source software / free software (OSS/FS, FLOSS, or FOSS)?

Look at the numbers! Technical report, dwheeler.com, 2005.

30. WonkoTheSane. Untitled. http://gnomesupport.org/forums/viewtopic.
php?t=3603&highlight=&sid=c5f4%e5ae34765db22bac227d7f8b17cb,

September 22 2003. Posting to the Gnome desktop user support forum.

Corporate Involvement of Libre Software:

Study of Presence in Debian Code over Time∗

Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)
{grex,sduenas,jgb}@gsyc.escet.urjc.es

Abstract. Although much of the research on the libre (free, open
source) phenomenon has been focused on the involvement of volunteers,
the role of companies is also important in many projects. In fact, during
the last years, the involvement of companies in the libre software world
seems to be raising. In this paper we present an study that shows, quan-
titatively, how important this involvement is in the production of the
largest collection of code available for Linux: the Debian GNU/Linux
distribution. By studying copyright attributions in source code, we have
identified those companies with more attributed code, and the trend of
corporate presence in Debian from 1998 to 2004.
Keywords: open source, libre software, involvement of companies, em-
pirical study, software business

1 Introduction

For companies producing computer programs, libre software2 is not yet another

competitor playing with the same rules. The production of libre software dif-

fers from traditional software development in many fundamental aspects, rang-

ing from ethical and psychological motivation to new economic and marketing

premises, to new practices and procedures in the development process itself.

One of the key differences is the different role of users. While in the clas-

sical software development environment the development team can be clearly

distinguished from the users, most of the libre software projects develop around

themselves a community [7]. This community is usually formed by people with

many different involvements, from pure users to core developers, including many

mixed roles, such as that of users contributing with patches (small modifica-

tions) to the code. Therefore, in most libre software projects we may observe

a continuum of commitment to the project which includes a wide range of

occasional contributors.

∗ This work has been funded in part by the European Commission, under the FLOSS-
METRICS (FP6-IST-5-033547) and FLOSSWORLD (FP6-IST-015722) projects.

2 Through this paper the term “libre software” will be used to refer to code that
conforms either to the definition of “free software” (according to the Free Software
Foundation) or of “open source software” (according to the Open Source Initiative).

Some software companies have realized this fact, sponsoring and promoting

projects with the aim of benefitting from the development of a strong commu-

nity around them. Some of the most known cases in this realm are Sun Microsys-

tems (OpenOffice.org, OpenSolaris, GNOME, among others), IBM (Apache,

Eclipse, etc.) or Apple (Darwin, the kernel of Mac OS X). Be it for this reason

or for any other, the involvement of companies in libre software development is

strong, and increasing with time.

While there has been some empirical research on self-organized software

development in libre software (among others, see [6, 19]) and especially on ac-

tivities performed by volunteers [12, 17], including their integration process [20],

the involvement of software companies in the phenomenon has been rarely at-

tended and if it has been mainly from the point of view of business models,

business case studies, and the motivations behind companies [4, 5, 2, 3]. Hence,

the focus of these papers can be understood from the perspective of companies

wanting to understand, invest or to guide them to successfully get integrated

into the libre software phenomenon.

Many of the companies that work with libre software just take already writ-

ten code and adapt it without providing feedback to the community, but some

others actively participate in libre software projects. In general, what these

companies are looking for in libre software is to obtain a surrounding user com-

munity which serves both as a basic and fast feedback mechanism, but also as a

marketing strategy, with the aim of getting software of better quality by letting

external brainware access the project’s source code, to lower the cost by letting

volunteers enhance or fix the software, among others.

The target of this paper is to measure the involvement of libre software

companies in libre software, specifically of those that deliver the code to the

community. For this, we will analyze the source code available in the Debian

GNU/Linux stable distributions, which contain in its latest version more than

10,000 source code packages (usually applications, but also libraries and other

components). As the sources of several Debian stable releases are available, we

will apply our methodology to five of them, spawning from 1998 to 2005, there-

fore tracking the evolution of the participation of companies during a period of

7 years.

The rest of this paper is structured as follows: next, the methodology for

our empirical study will be presented. In this section, we will present the data

sources and the procedures we have used to extract and analyze them. We will

discuss why the use of copyright statements is significant for our approach and

will include some refinements in our methodology to avoid double counting files.

In the following section, we will present the results of applying the methodology

to Debian, the largest libre software GNU/Linux distribution. We will provide

results over time to compare the evolution of the involvement. Finally, conclu-

sions, limitations and future research opportunities are presented.

122 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 123

2 Methodology

Contrary to popular belief, libre software authors rely on copyright law to en-

force their licenses, and therefore include copyright marks in their programs.

This is especially true for companies interested in maintaining ownership on

the code their (hired) developers have produced. Even when the software is

licensed under libre software licenses, the copyright owner has some privileges

(such as relicensing under other licenses) which are usually appealing to com-

panies. Companies also tend to have strict policies about copyright notices in

source code files.

But it is not only in the interest of companies to retain copyright. For

instance, non-profit organizations such as the FSF or the GNOME Foundation

actively ask developers to assign the copyright to them. The reason for this

is that these bodies may have stronger legal bodies to defend themselves from

license infringement.

Therefore, it is very likely that if a source code file is owned by a company

or one of these organizations, its copyright notice will appear in it. Usually,

individual authors also include their copyright attribution, but they may be

not that strict about that. In any case, the methodology of the study described

in this paper is based on the assumption of the existence of those notices.

As the rest of the software industry does, copyright notices are included

(among other places) at the beginning of each file with source code [18]. That

means that information about the copyright holder can be extracted from source

code files. For instance, the notice in the apps/units.c file of the GIMP project

(see figure 1) clearly states that the copyright holders are Spencer Kimball and

Peter Mattis, and that the license in use is the GNU General Public License. In

any case, it should be noted that the way of stating the copyright is not unique

and may change from project to project, even from file to file.

/* The GIMP -- an image manipulation program

* Copyright (C) 1995 Spencer Kimball and Peter Mattis

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

[...]

Fig. 1. First lines of file apps/units.c, of the GIMP project

To identify those copyright notices, and extract from them information

about the copyright owner, we designed the methodology described in the fol-

lowing subsections, and implemented it by producing pyTernity3. The structure

3 The most current version of pyTernity can be found at https://forge.

morfeo-project.org/projects/libresoft-tools/

File
selection Ownergrep Cleaning Merging

Multiple
Entries

Double
Counting

Fig. 2. Block diagram with the various components of pyTernity

of the methodology, which corresponds to the architecture of pyTernity, is shown

in figure 2. The result is a list of files (avoiding similar files), with their size (in

SLOC, lines, and characters) and the copyright holders identified in them.

2.1 File selection and counting

First step in the methodology is the identification of source code files. This is

usually performed by using some ad-hoc heuristics, which may vary in their ac-

curacy as well as in the granularity of their results. We use two sets of heuristics

in our discrimination process: the extension in the file name, and the content.

Detailed information about the process can be obtained from [13]. With these

heuristics, almost all source code files are identified [15].

Every file identified as source code is then counted using SLOCCount4, a tool

authored by David Wheeler that calculates the number of SLOC (source lines

of code). SLOCCount has been used in many studies about the size of software

collections [21, 10, 1, 11, 14]. It calculates the number of physical source lines

of code (SLOC) of a software program. The Unix wc command is also used to

estimate the number of characters and lines of the file. All this information is

stored in a database, linked to the file name.

2.2 Ownergrep

The second step is to search for copyright notices in source code files. For that,

the ownergrep expression is compared with every line in the file. Since there

is no standard or widely-used way of stating copyright in files, the pattern

requires flexibility, which is achieved by the use of regular expressions that allow

matching multiple, slightly different ways of expressing the copyright notice.

The ownergrep expression is a modification of the original one by Prakash

and Ghosh (cite) and looks like this:

[1] .*copyright (?:\(c\))?[\d\,\-\s\:]+(?:by\s+)?([^\d]*)

Figure 3 presents some copyright entries that can be identified by the own-

ergrep expression. Identities found are stored in a database, linked to the files

in which they were present (and therefore, also to their size).

4 http://www.dwheeler.com/sloccount/

124 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 125

Copyright (c) 1998, 1999 by Sun Microsystems, Inc. All Rights Reserved.

Copyright (c) 2001-2, Vipul Ved Prakash. All rights reserved.

Copyright (c) 2006 IBM Corporation and others.

Fig. 3. Some copyright entries that can be matched by the ownergrep expression.

2.3 Cleaning

Identities stored in the database have to be cleaned. This means removing

all non-relevant information to convert identified identities to their canonical

format. This ranges from removing additional white-spaces to the deletion of

dots. Some ad-hoc heuristics are used, along with the complement of a database

of common transformations. Cleaning also includes splitting up an entry when

it corresponds to two or more authors. So, the entry “Spencer Kimball and

Peter Mattis” will result in two, one for Spencer Kimball and another one for

Peter Mattis. If this is the case, both names appear as authors of the file and

get attributed half of its length.

2.4 Multiple entries

After cleaning found identities, those corresponding to the same real entity are

identified. Developers and companies may appear in several forms while corre-

sponding to one single entity. The first idea in this line resulted in the construc-

tion of a large database where the various entries identified for a given developer

were noted (manually). This method proved to enhance results considerably.

However, the consideration of other methods, and the rising in complexity and

size of the database have finally lead to the construction of a different tool, Seal,

that returns a unique identifier for any given identity [16]. It is responsibility

of this external tool to track all developers and to manage them properly.

2.5 Merging

Once cleaning has been performed and multiple entries have been identified,

pyTernity merges the identities in the database so that authors appear only

once in a file. This procedure also includes adding the size of all the files corre-

sponding to each real identity.

2.6 Avoiding double-counting

In a large collection of software, some files may appear in several packages. That

means that the copyright owner of one such file will be attributed the same code

several times, which leads to inconsistencies. Therefore, similar files have to be

identifies and removed from the count. For this, we use Nilsimsa5, a hashing

5 The Nilsimsa code can be retrieved from http://ixazon.dynip.com/\%7ecmeclax/
nilsimsa.html

algorithm that produces similar hashes (according to a certain metric, based on

Hamming distance) for similar texts. For our methodology, 32 bits of Hamming

distance are used as the threshold for considering two files too similar to count

them twice.

Unfortunately, comparing proximity of Nilsimsa hashes is meaningfully

slower than comparing for equality. Therefore, comparing Nilsimsa hashes for

every pair of files is not practical for large quantities of software. To avoid this

situation, we propose a simplified use of Nilsimsa by (1) identifying files with

the same Nilsimsa and similar amount of code in order to avoid false positives

and (2) comparing by pairs all those files with the same filename. Table 1 shows

the number of files with the same name and a similar nilsimsa hash that have

been discovered for all versions of Debian.

Version Total files Same filename, similar Nilsimsa Percentage

Debian 2.0 243,057 45,850 18.86%
Debian 2.1 367,463 80,551 21.92%
Debian 2.2 838,834 238,601 28.44%
Debian 3.0 1,340,081 292,367 21.82%
Debian 3.1 2,497,636 420,885 16.85%

Table 1. Total number of files and files that have the same file name and a similar
Nilsimsa hash for every version under study.

2.7 Previous work

CODD, a tool designed by Rishab A. Ghosh and Vipul Prakash [8], was the

first tool to extract authorship information from source code by tracking copy-

right notices. Its main aim is to assign the length (in bytes) of each file to the

corresponding authors. It was successfully used in the Orbiten Survey [8], the

source code survey in the FLOSS study [9], and some other research projects.

CODD is a very powerful tool which implements a methodology similar

(in part) to pyTernity, but shows also some weaknesses. The most important

one is that it lacks a way of merging the various ways in which an author

may appear. So, authors may appear several times with different names or e-

mail addresses. For instance, we have found that some developers have up to

15 different identities which may appear in copyright notices. In the case of

companies and organizations, the same may happen: IBM or the MIT appear

in several ways (up to twenty!) with slightly different wordings.

CODD also includes some heuristics for cleaning the extracted data. Al-

though they have proven to be very powerful, these heuristics can not deal

with enough accuracy with the fact that developers use different conventions to

assign copyright.

126 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 127

Both limitations are important, and were the main reasons to create py-

Ternity. The ownergrep expression used in pyTernity is a modification of the

original one in CODD.

3 Results on Debian

The methodology presented in the previous section has been applied to several

releases of the Debian GNU/Linux distribution. In the next subsections an

introduction to the Debian project and the results of our study are shown.

3.1 Introduction to Debian and global results

Debian is a libre operating system that, at present time, uses the Linux kernel

to carry out its distribution (although there are some efforts to make that

future Debian distributions could be based on other kernels). The distribution

has a categorization of software packages according to their license and their

distribution requirements. The main part of the Debian distribution (the section

called main, which contains a large variety of packages) is compound only of

libre software in agreement with the Debian Free Software Guidelines. It is

available for download from the Internet and many resellers supply it on CDs

or by other means.

The Debian distribution is created by over a thousand volunteers (generally

computer professionals). The work of these volunteers consists on taking the

source programs -in most of the cases from their original author(s)-, to config-

ure them, to compile them and to pack them, so that a typical user of a Debian

distribution only has to select the package to be installed/updated/removed.

Hence, being a software included in Debian depends only on a volunteer per-

forming the aforementioned tasks.

Codename Release Packages Total SLOC Companies SLOC % # Companies

2.0 Hamm Jul 1998 1,096 28,750,853 4,259,164 6.75% 249
2.1 Slink Mar 1999 1,551 44,352,088 6,477,981 6.85% 312
2.2 Potato Aug 2000 2,611 95,738,163 14,934,951 6.41% 482
3.0 Woody Jul 2002 4,579 151,023,303 23,271,027 6.49% 782
3.1 Sarge Jun 2005 8,560 239,580,490 40,421,751 5.93% 1455

Fig. 4. Some information about the Debian distributions under study: version num-
ber, Toy Story codename, release date, number of source code packages, total number
of SLOC, SLOC attributed to companies, share of code by companies and number of
different companies identified.

Table 4 gives further details about the various releases that have been stud-

ied in this paper and about the involvement of firms in them. As it is already

known from previous studies [14] the size of Debian seems to double almost ev-

ery two years. It is noteworthy that the amount of code that can be attributed

to companies stays almost constant over time with values that lie around 6%-

7%, throwing that the number of lines of code contributed by companies grows

at the same pace than the distribution. The number of companies that could be

identified has also increased significantly from over 200 in 1998 to almost 1500

in the most recent stable version. In any case, from our empirical analysis we

can conclude that the involvement of industry in the libre software phenomenon

has grown substantially in the last 8 years, although its relative importance has

remained constant. It should be noted that this may not mean that the partic-

ipation of the software industry has not been raising in the last years as other

activities different from development such as support, consultancy and deploy-

ment without providing feedback to the community are not considered with our

methodology.

3.2 Top companies by non-double-counted SLOC

Tables 5, 6 and 7 give the contribution of companies found in the various Debian

releases under study. Contributions are measured in SLOC, avoiding double

counting as explained in the methodology. These stats may give an idea of the

effort spent by the company in the development of libre software.

Company name SLOC Files

sun microsystems inc. 801,632 2644
digital equipment corp. 434,152 1119
silicon graphics corp. 277,992 1274
xerox corp. 207,623 736
aladdin enterprises 92,172 475
age logic inc. 79,458 217
nec corp. 78,538 135
e.i. du pont de nemours 76,458 45
hewlett packard corp. 71,201 283
evans & sutherland 66,840 95

Company name SLOC Files

netscape comm. corp. 1,129,302 3934
sun microsystems inc. 810,437 2716
digital equipment corp. 428,176 1100
silicon graphics corp. 277,409 1207
aladdin enterprises 141,652 656
xerox corp. 98,071 342
lucent technologies inc. 85,586 139
at&t 80,140 223
age logic inc. 79,458 217
nec corp. 78,538 135

Fig. 5. Top-contributing companies for Debian 2.0 and Debian 2.1 (non-double-
counted SLOC).

SUN Microsystems has historically been among the most contributing firms

in terms of lines of code. For the first four Debian versions considered, its con-

tribution was slightly less than one million lines of code, but with the inclusion

of OpenOffice.org in Debian 3.1 its share has increased notably with over 5

MSLOC. IBM is another software giant present in this list, although its ap-

pearance is more recent (it enters the top 10 only in Debian 2.2). Interestingly

enough, we find that the third place in Debian 3.1 is occupied by a company

which is the main driver of a competing distribution to Debian, Red Hat Corp.

128 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 129

Company name SLOC Files

netscape comm. corp. 2,651,592 10423
sun microsystems inc. 1,086,765 4418
digital equipment corp. 975,178 5355
silicon graphics corp. 310,640 1308
aladdin enterprises 296,933 1403
ibm corp. 226,386 479
trolltech as 147,154 587
lucent technologies inc. 146,014 208
e.i. du pont de nemours 140,351 136
xerox corp. 128,922 444

Company name SLOC Files

ibm corp. 1,258,263 4832
sun microsystems inc. 955,462 3276
digital equipment corp. 784,279 4810
trolltech as 587,784 1836
silicon graphics corp. 575,810 2818
red hat corp. 376,099 878
static free software 292,448 242
aladdin enterprises 284,422 1422
abisource inc. 232,795 1530
hewlett packard corp. 208,903 707

Fig. 6. Top-contributing companies for Debian 2.2 and Debian 3.0 (non-double-
counted SLOC).

Company name SLOC Files

sun microsystems inc. 6,025,680 22,720
ibm corp. 1,991,300 6,953
red hat corp. 1,366,298 4,807
silicon graphics corp. 1,111,431 4,422
sap ag 1,080,246 4548
mysql ab 852,394 2,425
netscape communications corp. 786,070 2,780
ximian inc. 750,761 2,924
realnetworks inc 673,167 2453
at&t 656,045 2,620

Fig. 7. Top-contributing companies for Debian 3.1 (non-double-counted SLOC).

This is due to its participation in projects such as GNOME or the GCC compiler

collection6.

4 Conclusions

In this paper we have described a methodology (and pyTernity, a tool imple-

menting it) which can be used to scan source code files and find their copy-

right owners. This methodology is used to estimate (over time) the quantity of

code owned by companies in the largest libre software collection: the Debian

GNU/Linux.

The information resulting from this estimation is a first try with the aim of

answering several questions about the presence of companies in libre software

development. For instance, the share of code owned by companies has been

calculated (being around 6%-7% for all the studied releases of Debian, with

some tendency to lower), and the list of the companies contributing with more

6 Cygnus Solutions Inc. was acquired by Red Hat in 1999.

code - which is leaded by giants like Sun Microsystems, IBM, SAP, Silicon

Graphics or AT&T, but also includes more small, focused on libre software

companies like Red Hat, Ximian (now owned by Novell) or MySQL.

The described methodology can provide this landscape of company involve-

ment, but has to be considered with some care, since several sources of potential

errors do exist. To begin with, it is completely based on the accurate identifica-

tion of copyright notices, and correct extraction of identities from them. This

is based in heuristics which, even having been validated in several ways, may

not completely identify some copyright owners, or could wrongly assign code to

others. In addition, the identification of multiple identities for a single identity,

or the presence of several copies of some source code files could lead to miscal-

culations, which are dealt with by the methodology, but again using heuristics

with a certain chance of error.

However, manual validation of a random set of results seem to lead to the

conclusion that the results are good enough for using them to better understand

how much code from companies can be found.

Several lines of research are still open in this area. First of all, further de-

velopments in heuristics to better identify companies and other institutions

from copyright notices would improve the accuracy of results. In addition, im-

provements in the merging of different identifications corresponding to the same

entity would also help.

Correlation of these data, and comparison with performance parameters

of both the products and the companies with different levels of involvement

in libre software development are also promising lines for interesting results.

Methodologies to automatically assess companies and other entities about errors

in copyright attributions, and about ownership of the code corresponding to

software they use could also be of great interest to industry.

5 Acknowledgments

We would like to thank Diego Barceló and the rest of the GSyC/LibreSoft

research group at the URJC for their invaluable help with the implementation

and testing of the software used in this study. We are also very grateful to Rishab

A. Ghosh, Rüdiger Glott and Kirsten Haaland from UNU-MERIT/University

of Maastricht.

References

1. Juan José Amor, Jesús M. González-Barahona, Gregorio Robles, and Israel Her-
raiz. Measuring libre software using Debian 3.1 (sarge) as a case study: preliminary
results. Upgrade Magazine, August 2005.

2. Andrea Bonaccorsi and Cristina Rossi. Comparing motivations of individual pro-
grammers and firms to take part in the open source movement. from community

130 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 131

to business. Technical report, University of Pisa; Sant’Anna School of Advanced
Studies, Italy, 2003.

3. Andrea Bonaccorsi and Cristina Rossi. Altruistic individuals, selfish firms? the
structure of motivation in open source software. First Monday, 1(9), January
2004.

4. Andrea Bonaccorsi and Cristina Rossi. Open source software, intrinsic motivations
and profit-oriented firms. do not firms practise what they preach? In Proceedings
of the 1st International Conference on Open Source Systems, Genoa, Italy, July
2005.

5. Andrea Bonaccorsi, Cristina Rossi, and Silvia Giannangeli. Adaptive entry strate-
gies under dominant standards: Hybrid business models in the open source soft-
ware industry. Technical report, University of Pisa; Sant’Anna School of Advanced
Studies, Italy, 2003.

6. Kevin Crowston and James Howison. The social structure of open source software
development teams. In Proceedings of the International Conference on Informa-
tion Systems, Seattle, WA, USA, 2003.

7. Kevin Crowston and James Howison. The social structure of free and open source
software development. First Monday, 10(2), February 2005.

8. Rishab A. Ghosh and Vipul Ved Prakash. The orbiten free software survey. First
Monday, 5(7), May 2000.

9. Rishab Aiyer Ghosh, Gregorio Robles, and Ruediger Glott. Software source code
survey (free/libre and open source software: Survey and study). Technical report,
International Institute of Infonomics. University of Maastricht, The Netherlands,
June 2002.

10. Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las Heras Quiros,
José Centeno González, and Vicente Matellán Olivera. Counting potatoes: the
size of Debian 2.2. Upgrade Magazine, II(6):60–66, December 2001.

11. Jesús M. González-Barahona, Gregorio Robles, Miguel Ortuño Pérez, Luis
Rodero-Merino, José Centeno González, Vicente Matellan-Olivera, Eva Castro-
Barbero, and Pedro de-las Heras-Quirós. Analyzing the anatomy of GNU/Linux
distributions: methodology and case studies (Red Hat and Debian). In Stefan
Koch, editor, Free/Open Source Software Development, pages 27–58. Idea Group
Publishing, Hershey, Pennsylvania, USA, 2004.

12. Martin Michlmayr. Managing volunteer activity in free software projects. In
Proceedings of the USENIX 2004 Annual Technical Conference, FREENIX Track,
pages 93–102, Boston, USA, 2004.

13. Gregorio Robles. Empirical Software Engineering Research on Libre Software:
Data Sources, Methodologies and Results. PhD thesis, Escuela Superior de Cien-
cias Experimentales y Tecnoloǵıa, Universidad Rey Juan Carlos, 2006.

14. Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr, and Juan Jose
Amor. Mining large software compilations over time: Another perspective of
software evolution. In Proceedings of the Third International Workshop on Mining
Software Repositories, pages 3–9, Shanghai, China, May 2006.

15. Gregorio Robles, Jesus M. González-Barahona, and Juan-Julián Merelo. Beyond
executable source code: The importance of other source artifacts in software de-
velopment (a case study). Journal of Systems and Software, 80(9):1233–1248,
September 2006.

16. Gregorio Robles and Jesús M. González-Barahona. Developer identification meth-
ods for integrated data from various sources. In Proceedings of the International

1 2 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Workshop on Mining Software Repositories, pages 106–110, St. Louis, Missouri,
USA, May 2005.

17. Gregorio Robles, Jesús M. González-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proceedings of the 1st International Conference on Open Source Systems, pages
100–107, Genoa, Italy, July 2005.

18. Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison Wesley
Professional, 2003.

19. Ilkka Tuomi. Evolution of the Linux Credits file: Methodological challenges and
reference data for Open Source research. First Monday, 9(6), June 2004.

20. Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, joining,
and specialization in Open Source Software innovation: A case study. MIT Sloan
Working Paper No. 4413-03, 2003.

21. David A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size, June
2001.

3

Sprint-driven development: working,
learning and the process of enculturation in

the PyPy community

Anders Sigfridsson, Gabriela Avram, Anne Sheehan and Daniel K. Sullivan
Interaction Design Centre, Dept. of Computer Science & IS

Engineering Research Building, ER1002, University of Limerick, Ireland.
{anders.sigfridsson, gabriela.avram, anne.sheehan, daniel.sullivan} @ul.ie

WWW home page: http://www.idc.ul.ie

Abstract. In this paper we examine sprint-driven software development as it
occurs in a specific Open Source community, PyPy. Applying a situated
learning perspective, we report the findings from a study focused on the
activities leading up to, taking place during, and following after sprints. The
study included analyses of sprint reports, email archives and other documents
available on the community website, as well as a one-week period of direct
observation of a specific sprint. The objective of the study was to elaborate on
how the practices of sprint-driven development in the PyPy community
facilitate learning, the dissemination of knowledge among its members and the
expansion of the Open Source community. This paper aims to assess how
sprint-driven development can facilitate situated learning in distributed
software development by describing the practices applied in PyPy.

Keywords: Distributed software development, Open Source communities,
sprints, situated learning.

1 Introduction

Software development is a complex task. It is an activity which not only requires
people with highly specialized technical skills, who are capable of working with
highly abstract constructs and keeping up to date in an uncertain and rapidly
developing area, but it also requires a high degree of collaboration. A software
development project is often characterised by large scale, uncertainties, and complex
interdependencies [14]. Further adding to these difficulties is the fact that software
development is increasingly carried out in a distributed manner, fuelled by the
complexity and large scale of modern software systems, by the trend toward
globalization and the search for an educated yet inexpensive work force.

134 Sigfridsson, Avram, Sheehan and Sullivan

While the challenges facing globally distributed software development are not
unique, certain difficulties – technical and managerial, as well as social and cultural -
are further exacerbated by geographical and temporal distance. Three often
mentioned issues are cultural differences, trust, and communication [e.g. 10, 19, 22].
But these are by no means the only difficulties, as more traditional concerns such as
coordination, control and software processes are also affected by the distribution
[e.g. 4, 11]. Currently there is significant interest in both academia and industry to
gain a better understanding of these key issues and, above all, to discover ways of
addressing the difficulties and thus improving practice [9].

A number of the most complex and successful software products nowadays –
Linux, Apache, Firefox, OpenOffice and Eclipse, to mention but a few – have been
developed or enhanced by Open Source Communities. The growing success of Open
Source Software has resulted in it becoming a focus for research into issues relating
to distributed software development. What is interesting about this phenomenon is
how these loosely organized and often ad-hoc communities, using mostly simple
communication and development tools such as email lists, version control systems
and simple text editors [e.g. 8], can manage to develop high quality software [e.g. 17,
13].

Whilst we must recognize that the practices of Open Source communities are by
no means the “silver bullet” for developing software and that many of them may not
be adaptable to the more rigid requirements of the corporate world, they still provide
a valuable resource in terms of understanding the key issues relating to distributed
software development thus potentially providing guidance in the improvement of
practice. Within the Open Source arena it is quite common that novel development
methods and ways of working in cooperative projects are tried out. Some projects
not only aim at producing an operational end product, but also actively investigate
and improve software development techniques and attempt to find improved ways of
running software development projects. One such Open Source project is PyPy.

The PyPy project1 evolved from within the Python Open Source community and
is focused on re-implementing the Python programming language using Python
itself. The end-product will be an open run-time environment for the Python
language, but this is not the only goal. It also focuses on investigating novel
techniques for implementing practical dynamic programming languages and aims to
showcase a software development method called “sprint-driven development”. In
this paper, we are focusing on this latter aspect.

We have conducted a study of the activities in PyPy consisting of document
analysis of mailing lists, archives, sprint reports and other documents available on
the community website2 as well as a direct observation of one PyPy sprint, which
took place in August 2006 in Limerick, Ireland. The objective of the study was to
examine the actual activities leading up to, taking place during and following after
sprints and to elaborate on how sprint-driven development facilitates learning, the
dissemination of knowledge among its members and the expansion of the Open
Source community. This paper will present a brief introduction to the PyPy project
and the principles of sprint-driven development, and will then provide some specific

1 http://pypy.org/
2 http://codespeak.net/

Sprint-driven development 135

accounts of the collaborative practices that occur in this community. We will apply a
situated learning perspective to explain what we have observed and will draw
conclusions about what lessons can be learned from PyPy regarding how sprint-
driven development facilitates situated learning in distributed software development.

1.1 The socGSD project

At the University of Limerick, Ireland, a group at the Interaction Design Centre
has received national funding as part of a software engineering research consortium
to study the social, organisational, and cultural aspects of global software
development (socGSD). The socGSD project aims to explore through case studies,
how organizations attempt to manage the coordination of engineering work via a
variety of mechanisms, from the formation of closely-knit, though distributed, teams
in multinational companies through to Open Source communities, who act as self-
organising bodies and manage to produce notable results without having formal
management structures and too many well-defined rules. Our research is based on
the findings of earlier studies on articulation and coordination work, information
sharing, knowledge management and informal learning practices in distributed work.
Our work is exploring the diversity of ways in which distributed teams shape their
work practices and come to a joint understanding of their objectives. Our research
also considers the various ways in which developers acquire new skills through their
day-to-day practice and continuously improve their practice through learning and
innovation.

Our research methods mainly rely on an interpretive, naturalistic approach to
data collection and analysis. This means that we study the phenomenon in the actual
settings where the work activity takes place, attempting to make sense of the work
through the eyes of those actually doing it.

The study of an Open Source community for the duration of a sprint provided us
with an excellent opportunity to observe the actual work practices of a team of
developers who were collocated for one week, but also to consider these practices
from the perspective of the context offered by the community’s web presence and
accounts of similar events.

1.2 Situated learning

Various theories of learning exist, each emphasizing different aspects of learning
and embracing different fundamental assumptions regarding the nature of
knowledge, learning and the role of the individual learner [15, 3, 23]. According to
Lave&Wenger [15], situated learning can be considered as a bridge between a view
according to which cognitive processes are primary and a view according to which
social practice is the primary, generative phenomenon and learning is one of its
characteristics. From this latter perspective, learning is viewed as an integral and
inseparable aspect of social practice. Our study adopts a social practice theory of
learning. In particular we are influenced by the concepts of situated learning,

136 Sigfridsson, Avram, Sheehan and Sullivan

specifically legitimate peripheral participation, an analytical perspective introduced
by Lave & Wenger [15] as a way of understanding learning.

According to Lave & Wenger [15] knowledge is learned by becoming a
legitimate peripheral participant in a community of practice and by gradually
acquiring “mastery”, or knowledge and reputation, through a process of social
interaction. Learning is thus not the result of direct and intentional teaching; rather it
is enabled by participation in practice and access to the learning resources available
in the community [24]. Active participation of newcomers allows them to interact
with more knowleageable peers and provides access to the expertise available within
the community. Learners acquire not just formal knowledge and skill, but also the
ability to behave as members of a particular community of practice. In the words of
Brown & Duguid [3] it involves becoming an “insider” or “becoming a practitioner
not learning about practice.” This situates learning squarely in the practices and
communities in which the knowledge takes on meaning and significance.

Both Orr’s [18] and Lave & Wenger’s [15] research emphasizes that to
understand working and learning, it is necessary to focus on the formation and
change of the communities in which work takes place. Based on his ethnographic
research on photocopier repair technicians, Orr posits that “not only is learning in
this case inseparable from working, but also individual learning is inseparable from
collective learning.” The implication is that knowledge and learning are not simply
the property of the individual, but are socially constructed and distributed. Hence
what is learned is connected to the context in which it is learned and so learning can
be fostered by fostering access to and membership of a particular community of
practice.

The application of a situated learning perspective to distributed teams and Open
Source Communities is not new [e.g. 24, 8, 21]. According to Ye & Kishida [24], an
Open Source community requires a high degree of openness in terms of both process
and product, as it offers more learning resources to encourage participation. In
addition, the manner in which a software system is partitioned also has an impact on
knowledge acquisition. By allowing newcomers to work on relatively independent
tasks, each with progressive difficulty, it fosters the possibility of legitimate
peripheral participation. In other words, it allows newcomers to participate
peripherally by contributing to tasks at their current skill level and to gradually move
on to take charge of more difficult tasks as mastery evolves. Furthermore, research
by Gutwin et al. [8] on awareness in distributed software development highlights the
importance of facilitating peripheral participation through email and chat. The
mechanism of “overhearing” inherent in these text-based communication tools
allows developers to become peripheral participants in each others conversations,
thus providing valuable awareness and enabling “expertise” to gradually become
visible.

2 The PyPy project and sprint-driven development

2.1 The PyPy project

Sprint-driven development 137

PyPy is part of the large Open Source community behind Python. Python is a
programming language, published under an OSI approved Open Source License. The
Python language was originally developed in 1990 by Guido van Rossum. Today,
the de facto standard implementation of the language is the CPython implementation,
which is also being developed as an Open Source project

The PyPy project also aims at producing an implementation of Python. But
unlike CPython, which is developed and written in C, the PyPy project is developing
an interpreter for the Python language in Python itself (hence the project name).3

However, creating a run-time environment for Python is not the only purpose of
this project. The PyPy project came into being as an Open Source project in 2003
and in December 2004 the project received partial funding from the European Union
(EU). As a result, the project objectives expanded to include a methodological goal,
namely to demonstrate that the Open Source way of working in general, and the
development methodology of choice in particular, are successful ways of
undertaking distributed, collaborative work and hence can be of use in future EU
projects as well as in large-scale development projects in general. The methodology
adopted by the PyPy community is what has been called “sprint driven
development”.

2.2 Sprint-driven development

A “sprint” is a focused development session – developers gather in one place for
a short period of time and work in pairs (or small groups) on specific parts of the
software system. This type of event has become popular within some Open Source
communities – for example, the OpenBSD and Linux communities - and has many
names, such as “hackathon”, “codefest”, “sprintathon”, “sprint”, and so on. The
primary purpose of these on-site meetings, which last from a few days up to one
week, is to write and test code in a collaborative way. To facilitate access, these
events are often collocated with conferences of relevance to the community’s
members, but they may also be hosted separately in various locations, usually
organized by community members or hosted by sponsors.

The practice of using sprints for pivotal development was initiated by the Zope
Corporation in the early days of the Zope 3 project4. In order to maintain focus, the
traditional sprint is supposed to last for only three to four days and to involve no
more than 10 people. A sprint generally incorporates aspects of eXtreme
Programming such as pair-programming and test-driven development. In addition, it
is usually led by a “coach”, who sets the goals, organizes the event, coordinates the
work, tracks the results and follows up.

The underlying concept is that a sprint is a good way to give a project “a boost
by focusing the efforts of a group on specific development issues” [12].
Furthermore, sprints also offer valuable opportunities to maintain developer
involvement, and to enable newcomers to get acquainted with the code base as well
as the specifics of a project.

3 For technical specifications, http://codespeak.net/pypy/dist/pypy/doc/architecture.html
4 http://www.zopemag.com/Guides/miniGuide_ZopeSprinting.html

138 Sigfridsson, Avram, Sheehan and Sullivan

2.3 Sprint-driven development in practice in PyPy

The PyPy community describe themselves as a hybrid project, combining
different aspects of Agile and Distributed Development within the context of an
Open Source community [5]. In PyPy the developers are not just distributed but also
dispersed, with no more than a few developers being located in the same place. The
main strategy in PyPy to handle this challenge to the development process is to
“sprint” systematically, using sprints not only for software iteration purposes but also
to provide an accelerated and collaborative physical practice that enables community
building as well as the dissemination of knowledge and learning within the team. In
fact the PyPy project itself originated from a one-week sprint held in February 2003.

The sprint methodology used with the PyPy community differs in a number of
ways from the original Zope3 format described earlier. The focus of Zope3 sprints
was to produce code and as such they tended to be rather closed events where only
experienced Zope developers participated and they were usually arranged close to
larger releases [5]. In addition, an appointed “coach” was used to coordinate the
event and its outcome. However, within the PyPy community a sprint is an open
event where newcomers are welcomed – indeed a sprint is seen as an opportunity to
initiate newcomers into the project and clearly has a “tutorial” component. In
addition, PyPy sprints are developer-driven and no formal role such as a “coach”
exists. Instead, they have introduced a mechanism of initial and daily status
meetings where the whole group makes decisions. A local contact will help to
organize the logistics for the event based on the sprint location.

A PyPy sprint is usually 7 days long, with one free day in the middle normally
dedicated to social events. The sprint is initiated with a start-up meeting. Tutorials
will be arranged during the sprint if there are new participants present or if a new
tool or feature has been implemented. For the remainder of the week, each day
begins with a status meeting. During the status meetings, progress is discussed, tasks
are drafted, the direction of the sprint is set or altered, and developers pair up
according to needs, skills and wishes. During sprints pair-programming is used
systematically – not only between core developers sharing an interest in a specific
task but also for mentoring newcomers by pairing them with core developers [5].
The pairs may change each day, or may continue to work together for several days.
Apart from the actual code, the outcome of a sprint is also a sprint report. The sprint
report summarizes the activities and the initial goals and results. It also serves as an
orientation for focusing the work of the community until the next sprint.

In PyPy, there is a rough plan detailing future sprints for the coming months,
enough to maintain a general awareness of the dates and sites of upcoming sprints
and allowing people to plan for attendance. About a month before a particular sprint,
its content and goals are discussed on the mailing list (pypy-dev) and on the PyPy
IRC channel, mostly by the core developers, although the discussions are transparent
and anyone can, in principle, participate.5 Information is also distributed on the
general pypy-sprint mailing list and through the project webpage. As the sprint
approaches, a more detailed sprint announcement is sent out. People can announce
their intention to attend either by checking in the information in Subversion (the

5 http://codespeak.net/pypy/dist/pypy/doc/dev_method

Sprint-driven development 139

PyPy code repository and version control system), or by posting on the sprint
mailing list. Lately, the PyPy project introduced “pypy-sync meetings” (on IRC) and
this has also become a major forum for discussing the content and goals of upcoming
sprints where any member can participate.

3 Research Method

In our study of collaborative work practices, the preferred methods are inspired
by ethnography. We try, whenever possible, to observe people in their normal work
environment as they engage with their work practice. Furthermore, we interview the
participants (individually or in groups) and bring into discussion events we observed,
complementing what we saw with the addition of their perspectives. An
ethnographic approach typically includes field work done in natural settings, the
study of the larger picture to provide a more complete context of activity, an
objective perspective with rich descriptions of people, environments and interactions,
and an aim toward understanding activities from the informants’ perspective [1].
More recent studies [16] claim that by narrowing the focus of field research before
entering the field, using key informants and multiple interactive observation
techniques and collaborative iterative data analysis methods, one can obtain reliable
data in a shorter period of time than was traditionally considered.

The study we conducted was mainly centred on the sprint that took place in
Limerick, Ireland, between the 21st and 28th of August, 2006. The sprint was hosted
at the University of Limerick, with the assistance of local contacts. Three researchers
where involved in this observational study, but none participated actively in the
coding efforts. For the most part, there were 7 participants in this sprint, mostly core
developers. A local developer joined the sprint for the last three days, and two
newcomers also visited and attended a tutorial that was arranged for them. Since
there were mostly core developers present, the sprint was considered an opportunity
to work on some of the more crucial technical matters, e.g. the JIT module, core
optimization and distributed testing.6

We studied this sprint mostly through direct observation, complemented by
informal discussion and a dedicated Q&A session. We observed and recorded (video
and audio) the start-up meeting and the daily status meetings, as well as observed
some of the actual work sessions. Because of the interest expressed by two different
groups of researchers at the University of Limerick in the PyPy way of working, the
project manager organized a workshop on the first day of the sprint where the PyPy
project and the sprint-driven methodology was presented. One of the most senior
members of the project joined the last half of the workshop and there was a Q&A
session.

6 http://codespeak.net/svn/pypy/extradoc/sprintinfo/ireland-2006/limerick_sprint-report.txt

140 Sigfridsson, Avram, Sheehan and Sullivan

Prior to the sprint, we reviewed a number of sources referring to Open Source
communities in general and sprints, the Python language and the PyPy project in
particular, including papers and talks, as well as mailing lists, web pages, bios, sprint
reports, blog posts referring to PyPy, and so on. In order to get an insight into the
activities of the project and the dynamics of the community, since it’s inception, we
studied the PyPy community’s extensive online documentation (such as project
descriptions and both sprint and EU reports), as well as mailing list archives and chat
transcripts that are available on the website. After the sprint, we continued to
observe the community for an additional four months, mostly through continued
document analysis of email lists, sprint reports and other documents.

4 Sprints as a way of working, learning and innovating

Several authors speak about the various roles assumed by the members of Open
Source communities [20, 24, 7]. The traditional evolution based on perceived levels
of expertise, is from the periphery of the community to the centre: the majority of
people start as users, get involved by discovering and later fixing some bugs, make
occasional contributions to the source code, and only after gaining a reputation as an
“expert” can they be accepted as core members of the community. The apprentice
often has a long (and sometimes lonely) way to go before becoming actively
involved in development. The PyPy community is, in this respect, quite different.
There is no single leader or visionary – just a core group of passionate Python
developers. Anyone who has the skills and motivation can rapidly become an active
contributor, because within the PyPy community there is a welcoming attitude
toward new participants which originates in the strong belief of the community
members regarding the benefits of collaborative work. There is a strong culture of
openness and transparency, or as described in [8] a culture of “keeping it public”.
Access to the PyPy online mailing lists and IRC is freely available. Core developers
are accessible to answer questions or act as mentors both virtually via mailing lists
and IRC and in person during sprints. The fact that the PyPy development process
incorporates an automated framework for testing and version control allows for a
more relaxed attitude regarding distribution of commit rights to new developers [5].

Several studies on Free and Open Source Software mention learning as one of
the core motivations for participation [24, 7, 13], but in many cases, this simply
means “lurking” and using the available code. While “lurking” - or in effect being a
peripheral participant in the community - can provide valuable awareness
information [8], in PyPy newcomers are encouraged to become directly involved in
development from the very beginning. The PyPy community has developed a
comprehensive and detailed repository of documentation, guides for beginners, talks,
sprint reports, mail and chat archives in addition to its main code repository. While
an important part of the PyPy community’s body of knowledge is freely available on
the web, becoming a member of the community is made quicker and easier by
participation in collocated events such as sprints. Newcomers can make a decision
about staying or leaving after being offered an immersion in the practices, social
events and personal contacts that usually arise in a sprint.

Sprint-driven development 141

Before deciding to join their first sprint, newcomers are encouraged to get
accustomed to the work being done in PyPy. The architecture of the interpreter, the
code itself, extensive coding guidelines, the available documentation, the tools used,
configuration and various tutorials are all available on the PyPy website.
Furthermore, newcomers are also encouraged to start socializing with the others by
participating in email and IRC conversations and accessing the mail and chat
archives. For example, the following excerpts from the PyPy mailing lists show how
the community greets newcomers:

“Cool! Contributions are of course very welcome! I guess the most immediate step
would be to read through the documentation and ask any question you might have
(here – on the mailing list- or on the IRC channel). It certainly won't be a problem
finding work for you :-)”

“In addition, note that this sprint is […] a coding sprint, and we specifically
welcome newcomers. If possible and interesting for you, feel invited :-) That's the
best way to grasp the basics of PyPy and discuss. Also feel free to say hello in the
#pypy IRC channel (irc.freenode.net) and discuss your interests.”

Subsequently, during the actual sprint, newcomers are given tutorials and then
“taken by the hand” usually by pairing up with an experienced developer, working
together on a chosen topic and getting detailed feedback.

The participants in the Limerick sprint in August 2006 were in the majority part
of the core PyPy group, with one exception: a young and enthusiastic developer who
was funded through the “Summer of PyPy” initiative7 (although it was not his first
PyPy sprint). Pairs were formed and topics were chosen in an extremely flexible
way. The start-up meeting highlighted the list of topics that needed attention
resulting from previous sprints and discussions, the participants announced their
intentions to the group, paired up according to these, and simply started working on
them. Although the project manager (who has an administrative role and is not
involved in coding) and one of the core developers chaired the meeting, their role
was more one of facilitating the sprint, and not imposing anything on the group. At
the end of the week, this role was taken over by another member of the core group.
Every decision was taken collectively, and the initial program changed several times
to accommodate people and events. Usually, there’s a day dedicated to social
activities in the middle of the sprint week, but this time the group decided to
continue working through the dedicated break day because of a slow start on
Monday morning, and to have a night out on Friday instead, when the local
developers were planning to join.

This is one illustration of how flexible the working style of PyPy sprints are and
it shows that agility and the ability to incorporate continuous change and adaptation
are highly valued by the PyPy community. They innovate continuously, looking for
both solutions to make their software more efficient, and for practices that would
allow them to enhance or improve the form but keep the spirit of their activities.

7 http://codespeak.net/pypy/dist/pypy/doc/summer-of-pypy.html

142 Sigfridsson, Avram, Sheehan and Sullivan

The lack of formality and the relaxed atmosphere are probably the first striking
aspect when observing a sprint. During the Limerick sprint, participants spoke to
each other, moved around asking questions, joked and had fun. They were all located
in the same room and maintained a certain awareness of what was happening in the
other coding groups. They made the decision to take a break – or continue an hour
more than planned – by consulting each other. Peers were invited to have a look
when unexpected errors occurred or a new solution was tried out. Priorities were
permanently shuffled, concepts re-invented, new routes adopted, tried out and
sometimes abandoned.

In the Limerick sprint, different working styles could be observed in the pairs. In
the first pair, one of the participants distributed his attention, switching between
multiple windows, reading through his emails or keeping an eye on the chat channel
while listening to a new solution proposed by his team-mate. His (more experienced)
companion explained every step he was taking, made his reasoning transparent and
asked a lot of provoking questions. A dialogue went on throughout the session: when
the first developer had an idea he preferred to try it out instead of explaining it, while
his colleague watched the screen, waiting to see the result. The second pair did not
display as much interaction, perhaps because the tasks were divided more clearly
between them. They seemed to work independently each on his own laptop, showing
each other errors or successes and exchanging ideas only once in a while. The third
pair was sharing a laptop. Most of the time, the laptop’s owner was the one using it,
but his actions seemed to result from their joint discussion. The conversation was
vivid and emotional, accompanied by a lot of gestures.

The participants in a PyPy sprint benefit not only from their mutual knowledge
sharing, but there’s also a recognisable flow of enthusiasm. When speaking about the
core group of developers during the methodology workshop, the project manager
described them as “soulmates”, who have much stronger bonds than the current EU
project framework and want to continue working together after the end of this
project. Sprints provide the opportunity for a process of learning and enculturation,
where new participants get the chance to become directly involved not only in
problem solving, innovation and planning, but also in the social life of the
community.

5 Discussion

5.1 Learning facilitated by sprint-driven development

A major issue in distributed software development projects is how to facilitate
learning about programming techniques, technology and project specific matters
among project participants when direct interaction is limited due to geographical and
temporal distance and, often, affected by national, social and organisational cultural
differences. A sprint offers a good opportunity for the dissemination of knowledge,
both among senior members of the community and to new members. However, being
able to contribute to a software development project does not just require technical
skills.

Sprint-driven development 143

From a situated learning perspective, learning cannot be seen as an isolated
activity, separated from the practice it is meant to enable [3]. Instead, learning
involves becoming an “insider”, not just absorbing a discreet body of individual
knowledge, but learning to function within the community of practice. So learning
the necessary skills needed to participate in a project like PyPy also involves learning
about the dynamics of the community, what norms and interpretive schemes are
dominating, and what range of behaviour is acceptable, as well as developing an
identity in the community.

PyPy sprints are a perfect illustration of situated learning, as conceptualized by
Lave & Wenger [15]: newcomers begin by reading the information online and
joining mailing lists and IRC channels and then eventually join their first sprint and
get more and more involved in the general development effort, learning happens in a
community of practice, by participation (a peripheral one in the beginning), and by
gradually acquiring knowledge and reputation through social interaction. Brown &
Duguid write that the “central issue in learning is becoming a practitioner not
learning about practice” [3]. From what we have seen during this study, this is
precisely what the PyPy people are supporting when welcoming new participants to
sprints, arranging tutorials for them, and pairing them up with more experienced
developers to do the work. This mechanism is further enhanced because the new
participants are encouraged to participate in the mailing lists and IRC channels and
to get acquainted with the system architecture and the code base prior to their first
sprint, and thus have already started to form an identity within the community when
arriving at the sprint.

Learning the concepts of the Python programming language does not mean one
knows how to program in that language. Applying those concepts to a specific
project and actually writing code is when learning happens. Sprints accelerate this
process for distributed teams, recognising the important situated aspects of learning
and supporting them.

5.2 Sprints as a way of sustaining and renewing the community

Previous research on Open Source software development has shown that learning
is, in fact, a major motivational force for participants [24, 13]. It has also been
argued that for Open Source projects to sustain themselves, the community must co-
evolve with the system developed [24]. The community must be able to regenerate
itself through both concrete contributions of code and the emergence of new
members who can carry on the work. The sprints in PyPy, through conscious
mentoring efforts, attract new members and enable them to both achieve the
necessary technical skill and to create an identity within the community, thus
ensuring the sustainability of the community.

However, regarding the formation of the community, there are also possible
hazards with driving development through sprints. During the sprint, the centre-
periphery relationship, usually based on experience and contributions resulting in a
hierarchy in most Open Source communities, is altered: the collocated participants
become the centre, while all the others move, in a way, to the periphery because they
are missing from that specific location. The danger is that this leads to the formation

144 Sigfridsson, Avram, Sheehan and Sullivan

of in-groups. The active PyPy coding effort is a subgroup within the wider Python
community and those who participate in sprints are again a further subgroup
(although temporary) of the overall coding effort. This situation can lend itself to the
formation of in-groups and the exclusion of others and the eventually fragmentation
of the group.

A previous experimental effort [2] to consider the in-group/out-group effect was
concerned with the mixed media working environment whereby access to resources
is not equally distributed. In part this is a consequence of having a substantial
component of the development team collocated. The hypothesis which they
examined was that individuals collocated together will interact more and form an in-
group. We heard this concern voiced by the project manager herself. Since the
progress is so rapid and so much happens during a sprint, they are aware that there is
a risk that the non-participants can't keep up and can become passive. For example,
this is acknowledged in one of the EU reports8 where it is stated that, “due to the
projects fast pace and its many developments, it requires substantial effort for the
average community member to contribute to the project.” However, in the PyPy
project, there is conscious effort to ensure the community doesn’t fragment and so
“the mentoring and supporting activities from the EU project members have
increased accordingly.”

The strategy has been to host sprints at different locations to encourage and
facilitate participation from as wide a group as possible. During the period 2003-
2004 6 sprints were arranged in various European cities (since then there has been a
more systematic structuring of sprinting every 6th week) [6]. Sprints have also been
organized on other continents whenever possible. For example, there was a post-
PyCon PyPy sprint in February 2006 in Dallas, USA, and another one in Tokyo,
Japan in April 2006. Also, during the recent Leysin sprint, in January 2007, a remote
participant worked constantly with two others participating in the sprint to
accomplish a specific task. Non-European developers whose participation in sprints
is more difficult to organise have raised the possibility of doing a “virtual sprint” that
would enable them to get involved as well.

6 Conclusions

Our study has focused on the actual activities leading up to, taking place during
and following after sprints and the purpose has been to elaborate on how sprint
driven development facilitates learning, the dissemination of knowledge among its
members and the expansion of the Open Source community. The aim of this paper
has been to illustrate how sprint-driven development can facilitate situated learning
in distributed software development by describing the practices applied in PyPy.

The observations indicate that the sprint-driven development methodology as it
occurs in PyPy is interesting because, while it is a way to accelerate the development
in terms of written code, it also serves as a mechanism to expand the community and

8 http://codespeak.net/pypy/extradoc/eu-report/D14.3_Report_about_Milestone_Phase_2-
final-2006-08-03.pdf

Sprint-driven development 145

facilitate the enculturation of its members. In PyPy, we have seen how new
participants are welcomed to sprints and how a real effort is made to include them in
the community by encouraging participation in the online activities prior to their first
sprint and arranging tutorials and pairing them up with experienced developers to
work during the sprint. This attracts new members and enables them to both achieve
the necessary technical skill and to create an identity within the community, thus
enabling them to contribute. It also contributes to sustaining and renewing the PyPy
community through the inclusion of new participants and the emergence of new core
members and active developers.

7 Acknowledgements

The authors would like to extend thanks to the PyPy community and to the
participants of the Limerick sprint for allowing us access and for being so
accommodating. This work is part of the socGSD project at the University of
Limerick. socGSD is one of the LERO (the Irish Software Engineering Research
Institute) cluster projects funded under PI grant 03/IN3/1408C by the Science
Foundation of Ireland (SFI).

8 References

1. Blomberg J. et al. (1993) Ethnographic field methods and the relation to design. In D.
Schuler and A. Namioka, (Eds.) Participatory Design, Lawrence Erlbaum, pp. 123-155.

2. Bos N., N. S. Shami, et al. (2004). In groups/Out Group Effect in Distributed Teams: An
Experimental Simulation. Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, Chicago, Illinois, USA, pp. 429-436.

3. Brown J. S. & Duguid P. (1991) Organizational learning and communities-of-practice:
towards a unified view of working, learning and innovation. Organization Science, vol. 2,
no. 1, Special Issue: Organizational Learning: Papers in Honour of (and by) James G.
March (1991), pp. 40-57.

4. Carmel E. & P. Tjia (2005) Offshoring Information Technology: Sourcing and
Outsourcing to a Global Workforce. Cambridge University Press, Cambridge, MA.

5. Düring B. (2006A) Sprint Driven Development: Agile Methodologies in a Distributed
Open Source Project (PyPy). The 7th International Conference on eXtreme Programming
and Agile Processes in Software Engineering, Oulu, Finland.

6. Düring, B. (2006B). Trouble in Paradise: the Open Source Project PyPy, EU-Funding
and Agile Practices. AGILE 2006 Minneapolis, Minnesota, USA IEEE Computer
Society's Digital Library.

7. Ghosh, R. A. & R. Glott (2002). Free/Libre and Open Source Software: Survey and
Study- summary report. Workshop on Advancing the Research Agenda on Free/Open
Source Software. Maastricht, Int'l Institute of Infonomics, Univ. of Maastricht.

146 Sigfridsson, Avram, Sheehan and Sullivan

8. Gutwin C., Penner R. & Schneider K. (2004) Group awareness in distributed software
development. In Proceedings of the 2004 ACM conference on Computer supported
cooperative work, pp. 72 – 81, 2004.

9. Hargreaves E., Damian D., Lanubile F. & Chisan J. (2004) Global Software
Development: Building a Research Community. In ACM SIGSOFT Software Engineering
Notes, vol. 29, no. 5, September 2004, pp. 1-5.

10. Herbsleb J. D. & Moitra D. (2001) Global Software Development. IEEE SOFTWARE,
March/April 2001, pp. 16-20.

11. Herbsleb J. D. & Grinter R. E. (1999 A) Architectures, Coordination, and Distance:
Conway's Law and Beyond. IEEE Software, 16(5): 63-70

12. Holden H. (2006) Running a Sprint. ONLamp.com, Python Development Center.
Available:

http://www.onlamp.com/pub/a/python/2006/10/19/running-a-sprint.html (15/01/07).

13. Kim E. E. (2003) An Introduction to Open-Source communities. Blue Oxen Associates.
Available: www.blueoxen.com/research/00007/BOA-00007.pdf (19/01/07).

14. Kraut R. E. & Streeter L. A. (1995) Coordination in Software Development. In
Communications of the ACM, vol. 38, no. 3, March 1995, pp. 69-81.

15. Lave J. & Wenger E. (1991) Situated Learning: Legitimate Peripheral Participation.
New York: Cambridge University Press.

16. Millen D. R. (2000) Rapid ethnography: time deepening strategies for HCI field research.
Conference on Designing interactive systems: processes, practices, methods, and
technique, New York, ACM Press.

17. Mockus A., Fielding R. T. & Herbsleb J. D. (2002) Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11, Issue 3 (July 2002) , pp. 309 – 346.

18. Orr J. (1996) Talking about machines: An Ethnography of a Modern Job, Ithaca, New
York, IRL Press.

19. Prikladnicki R. et al. (2003) Global software development in practice: lessons learned.
Software process improvement and practice, vol. 8, 267-281, 2003.

20. Rahtz, S. (2004) Building Open Source Communities, OSS Watch, University of Oxford,
Available: http://www.oss-watch.ac.uk/talks/2004-11-19-bodington/ (20/12/06).

21. Robey D, Huoy Min Khoo & Powers, C. (2000) Situated Learning in Cross-functional
Virtual Teams. IEEE Transactions on Professional Communication, Vol. 43, Issue 1, pp
51-66.

22. Sahay S., Nicholson B. & Krischna S. (2003) Global IT Outsourcing: Software
Development Across Borders. Cambridge, UK: Cambridge University Press.

23. Wenger E. (1998) Communitites of Practice: Learning, Meaning, and Identity,
Cambridge University Press.

24. Ye, Y. and K. Kishida (2003). Toward an Understanding of the Motivation of Open
Source Software Developers. International Conference on Software Engineering -
ICSE2003, Portland, OR.

Using Repository of Repositories (RoRs) to
Study the Growth of F/OSS Projects: A

Meta-Analysis Research Approach

Sulayman K. Sowe, L. Angelis, I. Stamelos, and Y. Manolopoulos

Department of Informatics, Aristotle University, 54124 Thessaloniki, Greece.
Tel: +30-2310-991927 Fax: +30-2310-998419

∗ sksowe,lef,stamelos,manolopo{@csd.auth.gr}

Abstract. Free/Open Source Software (F/OSS) repositories contain
valuable data and their usefulness in studying software development
and community activities continues to attract a lot of research atten-
tion. A trend in F/OSS studies is the use of metadata stored in a repos-
itory of repositories or RoRs. This paper utilizes data obtained from
such RoRs -FLOSSmole- to study the types of projects being devel-
oped by the F/OSS community. We downloaded projects by topics data
in five areas (Database, Internet, Software Development, Communica-
tions, and Games/Entertainment) from Flossmole’s raw and summary
data of the sourceforge repository. Time series analysis show the num-
bers of projects in the five topics are growing linearly. Further analysis
supports our hypothesis that F/OSS development is moving ”up the
stack” from developer tools and infrastructure support to end-user ap-
plications such as Databases. The findings have implications for the
interpretation of the F/OSS landscape, the utilization and adoption of
open source databases, and problems researchers might face in obtaining
and using data from RoRs.

Key words: Open Source Software Repositories, Metadata, Time Series Anal-

ysis, Missing Values Estimation, Projects Growth, Linear Trend, Open Source

Databases.

1 Introduction

The user of Free and Open Source Software (F/OSS), having access to the source

code, is free to study what the program does, modify it to suit his/her needs, dis-

tribute copies to other people and publish improved versions so that the whole

F/OSS community can benefit. The licenses agreement (e.g. the General Pub-

lic License or GPL) under which the source code is distributed defines exactly

the rights the user has over the product. The Bazaar model [19] of developing

F/OSS represents a significant shift in the way we develop and maintain tradi-

tional or closed-source software (CSS). As [27] pointed out, F/OSS development

∗ Correspondence author: Sulayman K Sowe; Email: sksowe@csd.auth.gr

differs in many ways from that of CSS, where it is common to assume centralized

software development and administrative authority that controls and manages

the resources and schedules for software development and maintenance. The

model has produced a number of successful applications in the area of oper-

ating systems (Linux), emailing and web services (Gmail, Apache), databases

(MySQL, PostgreSQL), to mention a few. Participants in F/OSS project rely on

extensive peer collaboration through the Internet, using project’s mailing lists,

de facto versioning systems such as Concurrent Versions System (CVS) or Sub-

version (SVN), bug-tracking systems (BTS) and bug databases (e.g. Bugzilla),

Internet Relay Chats (IRC), discussion forums, etc. These tools not only enable

participants to collaborate in the software development process but also act as

repositories to store the communication activities of the participants.

With the coming of F/OSS, sprang various portals to provide hosting ser-

vices for projects of all kinds and flaviours. Among the largest and most pop-

ular is sourceforge. Freshmeat and Savannah also continue to attract a lot of

attention. These portals are hosts to small and large, successful [7] and unsuc-

cessful projects. Yet, many portals are also graveyards strewed with abandoned

projects. The plethora of projects or applications available throughout the In-

ternet is an indication of a growing interest in F/OSS and the fact that an

increasing number of skilled programmers are willing to transform their [tacit]

knowledge and skills into tangible products [24]. While corporations posting

projects to sourceforge view their strategies as important in accelerating adop-

tion and migration of their products and services [3], the F/OSS landscape is

biased towards certain kinds of projects and software. What is more interest-

ing about the landscape is that applications developed by the community are

not uniformly distributed across all domains. Projects cover wide ranging top-

ics, with development being dominated by infrastructure support or Internet

based projects [22]. These products may fall under operating systems (Linux,

FreeBSD), server and Internet applications (Apache, Sendmail, BIND), and

software development tools (GCC, Perl, Python). Many of these projects re-

sulted from an individual (usually a skilled programmer) scratching his own

itch [19]. Ideally, if the required software is not freely available, one can either

develop it on his own or contribute the initial code-base and release it to the

F/OSS community for collaboration. Bezroukov, [4] noted that F/OSS projects

are more successful in areas that are directly or indirectly interesting to develop-

ers themselves. However, itch-based F/OSS may not succeed in improving ease

of use for those users, such as novices, whose background differs from profes-

sional developers [16]. Even though there are a growing number of applications

targeting end-users (the KDE and GNOME desktops, Firefox, Thunderbird),

our aim in this study is to discuss trends in F/OSS research and provide a

quantitative analysis of the F/OSS landscape to test one hypothesis:

Hypothesis: Is there evidence to support that F/OSS development is mov-
ing from focusing only on developer tools and infrastructure support to end-user
applications such as Databases?

148 Sowe, Angelis, Stamelos, and Manolopoulos

Using RoRs to Study the Growth of F/OSS Projects 149

Many researchers (e.g. [5, 28]) obtain data directly from repositories such

as sourceforge. Despite having firsthand access to the data source, harvesting

or crawling sourceforge could be a daunting task [12]. Alternatively, researchers

may utilize subsidiary meta-data provided in a repository of repositories or

RoRs such as FLOSSmole [11, 12]. FLOSSmole [18] may be described as

RoRs or meta-repository of projects hosted at Freshmeat, sourceforge, http:

//rubyforge.org/, and http://www.objectweb.org/. From the FLOSSmole

repository, we extracted projects by topic in five different topics- Database, In-

ternet, Software Development, Communications, and Games/Entertainment-

and developed time series analysis to study how projects in these topics grew

from January 1st, 2005 to August 31st, 2006. We then compared the growth of

open source database projects with projects in the other four topics. The rest of

the paper is organized as follows. Section 2 presents trends in the use of RoRs in

F/OSS research. In section 3 we present our research methodology and discuss

our data collection and extraction. In Section 4 we present the results, discuss

our findings, and list the validity threats to our research. Our conclusion and

future work is presented in section 5.

2 Trends in F/OSS Research

Compared to traditional research practices under proprietary software, F/OSS

development provides researchers with an unprecedented abundance of easily

accessible data for research and analysis. A huge amount of data is available to

study community participation in F/OSS projects [2, 10, 1, 9, 13] and developer

and user involvement in projects mailing list [21, 25, 14, 15]. Web sites which

host F/OSS projects also provide each project with repositories or tools to en-

able the collaborative software development process to proceed. The largest site

which has generated a lot of research interest is sourceforge. Data from this site

has been used to study many aspects of F/OSS. For instance, the geograph-

ical location of developers [20], topological analysis of developer communities

[28], Knowledge collaboration across projects [17], patterns of software develop-

ment [26, 8], percentage distribution of projects [22], etc. The traditional way

of obtaining data for most of these kinds of research is spidering or crawling of

sourceforge using Perl or Python scripts. However, instead of direct access to

the sourceforge repository, researchers may also benefit from reusing data other

researchers obtained from sourceforge. The University of Notre Dame main-

tains a data dump from sourceforge [5, 8] and other researchers may request

and reuse the data in their studies [20]. In another study, [29] reused data from

[12] to study the self-organizing patterns in wasp and F/OSS communities.

It is becoming increasingly evident that collecting and analyzing F/OSS

data has become a problem of abundance and reliability in terms of storage,

sharing, aggregation, and filtering [6]. Some of the problems researchers may

face in obtaining and using data in their research can be summarized thus:

– Convergence of data: There is no standardized way of defining or a nam-

ing convention for variables in a repository. This may pose problems for re-

searchers when it comes to harmonizing data across different repositories.

– Without Notice!: The data structure of a repository is held in a back-tier

(database). And because many researchers just interact with the front-end of

the repository, researchers can face a daunting task when a site or a repository

maintainer changes the structure of the data or schema. [12].

– Confidentiality: Due to the sensitive nature of some aspects of the data

(e.g. private emails), some projects might be reluctant to release some of

their data at a time when the researcher actually needs it.

– A friend of a friend (FOAF): A researcher not having direct access to

the data he needs for his research may send a request to the project, either

through mailing lists or to the repository maintainer. Experience shows that

sometimes processing such a request is like waiting for rain in the desert. In

this case, knowing someone who has obtained the data the research wants or

knowing some members of the core team helps.

These difficulties significantly impede F/OSS research. As a result, many

researchers see the need for the establishment and use of Repositories of

Repositories or RoRs. The whole concept of RoRs is an attempt to pull data

from many and varied repositories and bring the data under one umbrella so

that researchers can have easy access to data, reports, tools, and scripts used in

F/OSS research. As [12] noted in their schematic analysis, current F/OSS re-

search is ”one-way traffic”; non-cyclical and non-collaborative. Once researchers

obtain, analyze and publish their data, the product of their research is never put

back to the community from which they obtained their data. Existing struc-

tures of software repositories do little to ameliorate this situation. The aim

of RoRs should be to close this loop by encouraging researchers to contribute

their data and any scripts and tools they used in their research to the RoRs

from which they obtained the original data. Our view of how the RoRs concept

should work is illustrated in Figure 1. From the diagram, note that there is a

continuous feedback between the research community and the RoRs.

The first kind of RoRs available to researchers is FLOSSmole. For a de-

tailed description of the purpose, design, and requirements of Flossmole, see

[12]. Another RoRs in progress is the EU funded FLOSSMetrics (http://www.

flossmetrics.org/) project. The FLOSSMetrics or Free/Libre Open Source

Software Metrics project aims to construct, publish and analyze a large scale

database with information and metrics about F/OSS development. Using ex-

isting methodologies and tools already developed the project will house data

coming from several thousands of software projects. The project will also pro-

vide a public platform for validation and industrial exploitation of results. Some

of the targets of the project are summarized:

– Identify, evaluate sources of data, and develop a database structure.

– Build and maintain an updated empirical database.

– Disseminate the results, including data, methods and software.

150 Sowe, Angelis, Stamelos, and Manolopoulos

Using RoRs to Study the Growth of F/OSS Projects 151

Fig. 1. Conceptual Framework of RoRs

The project will work with other projects such as FLOSSmole, the Software

Quality Observatory for Open Source Software or SQO-OSS (http://www.

sqo-oss.eu/) and QUALity of Open Source Software or QUALOSS (http:

//www.qualoss.org/). Thus, it is becoming increasing feasible to use data from

RoRs for quality F/OSS research.

3 Methodology

The research methodology employed in this paper is schematically shown in

Figure 2. Where a similar methodology may be applicable is shown in dotted

cones. The ”Donate” arrows show a researcher contributing his Python script

and the results of his analysis to the RoRs - FLOSSmole.

Data: The FLOSSmole repository has data dumps collected from repositories

in text and excel files format. For our study, we downloaded raw and sum-

mary data of FLOSSmole’s archives of sourceforge data during twenty months

period, from January 1st, 2005 to August 31st, 2006. We chose five major

projects by topic; Database, Internet, Software Development, Communications,

and Games/Entertainment. We selected these five topics because, first, the last

four show a dominant position in the sourceforge’s ”software Map” (Table 1)

and will be quite representative of the types of projects being developed by the

F/OSS community. Second, all the five topics or categories have been used in a

previous study [22], and it will be interesting to compare and contrast our results

with that study. Third, to validate our hypothesis whether there is evidence to

support that F/OSS development is moving ”up the stack” from developer tools

and infrastructure support to end-user applications such as Databases, we will

Fig. 2. Methodological outline to extract data from FLOSSmole.

investigate how projects in the database topic scale against other projects in

the other four topics.

Table 1. Number of projects in descending order in 9 out of 19 topics. Extracted from
sourceforge’s ”software map” on 17/01/2007. Asterisks beside topics in our study.

Topic Total Projects Example

Internet* 26505 FileZilla

Software Development* 25840 Gaim

System 21524 phpMyAdmin

Communications* 17115 Gaim

Games/Entertainment* 15894 FreeCol

Multimedia 14426 MediaPortal

Scientific/Engineering 13542 K-3D

Office/Business 8802 Openbravo ERP

Database* 6509 phpMyAdmin

.............

The FLOSSmole files we used include raw ”Project Topic” data for each

project. However, not every project in sourceforge lists this information [6]. We

codified the ”project topic” schema obtained from the text files into a Python

script and implemented it as fields in our MySql database containing nine tables,

152 Sowe, Angelis, Stamelos, and Manolopoulos

Using RoRs to Study the Growth of F/OSS Projects 153

one for each available data. A text file of each month’s data was parsed into

the database for subsequent analysis. The database was queried for projects

belonging to a given topic and the dates they were hosted at sourceforge.

Extracted data and Missing Values Estimation: Our original raw data had un-

equal time gaps. We had gaps of two months for the first year (2005) and gaps

of one month for the second year (2006). For example, Figure 3 shows the

dates and total numbers of projects extracted form the Database and Software

Development topics.

(a) Database Topic (b) Software Devel. Topic

Fig. 3. Scatter plots showing gaps in the original data.

We exploited the linear trend in our data to fill the gaps with estimations.

The ”linear trend at point” method [23] was used to replace the missing data

with the linear trend for that point. First, a linear regression line is fitted to

the existing observations with respect to an index variable scaled from 1 to n
(total number of observations) and then the missing values are replaced with

their predicted values. The new data shown in Tables 2 have real or estimated

values, in parentheses, for every month.

4 Results and Discussions

4.1 Overview of F/OSS Projects’ Landscape

The representation of our data as time series with observations taken (or esti-

mated) in equally spaced time intervals, gives us the opportunity to use time

series analysis in order to construct predictive models or to study the behavior of

our data in time. Time series plots for the Database and Software Development

topics in figure 4 show that the number of projects in the F/OSS landscape

is not at all stationary. Instead, projects in all the five topics exhibit a linear

growth. Thus, we can use this behaviour to model and forecast the growth of

the projects in all the topics.

Table 2. Number of F/OSS Projects by Topics.

Month Database Internet Software Devel. Communications Games/Entert.

Jan. 05 1989 2465 6034 1990 2435

Feb. 05 (2001) (2500) (6076) (2019) (2444)

Mar. 05 (2027) (2530) (6104) (2045) (2479)

Apr. 05 2044 2546 6128 2064 2505

May 05 (2080) (2590) (6162) (2097) (2548)

Jun. 05 (2106) (2621) (6191) (2123) (2583)

Jul. 05 2119 2643 6207 2139 2602

Aug. 05 (2159) (2681) (6248) (2176) (2652)

Sep. 05 (2186) (2711) (6277) (2202) (2687)

Oct. 05 2188 2738 6319 2211 2700

Nov. 05 (2239) (2772) (6334) (2254) (2756)

Dec. 05 2280 2817 6396 2290 2778

Jan. 06 (2291) (2832) (6392) (2306) (2826)

Feb. 06 2346 2928 6486 2398 2887

Mar. 06 (2344) (2893) (6449) (2359) (2895)

Apr. 06 2394 2942 6438 2412 2961

May 06 (2397) (2953) (6507) (2411) (2965)

Jun. 06 2379 2916 6466 2377 2939

Jul. 06 (2450) (3014) (6564) (2463) (3034)

Aug. 06 2487 3043 6621 2483 3104

(a) Database Topic (b) Software Devel. Topic

Fig. 4. Linear growth of Projects by Topic.

Forecasting Growth: We applied exponential smoothers to model the behav-

ior of our data and provide forecasts for the next three months, until the end

of the year, 2006.future months. The smoothing curves in Figure 5 are almost

straight lines due to the strong linear trend.

4.2 Are Database Projects Popular with the F/OSS Community?

End-user applications such as databases are not a panacea or unknown quanti-

ties amongst the F/OSS community. Software developers, vendors, and database

154 Sowe, Angelis, Stamelos, and Manolopoulos

Using RoRs to Study the Growth of F/OSS Projects 155

(a) Database Topic (b) Software Devel. Topic

Fig. 5. Sequence plots showing smoothing curves with forecasts until the end of 2006.

users are already familiar with major players. MySQL, PostgreSQL, Berkeley

DB, Firebird, and many others, continue to attract attention and their user

base is growing. Projects in the database topic are doing well in the F/OSS

landscape. Figure 6 shows that there is a significant linear correlation in the

growth of Database projects and Internet (R2=0.996) and Software Develop-

ment projects (R2=0.984). The growth trend is similar in the other topics.

(a) Database vs Internet (b) Database vs Software Development

Fig. 6. Trend in the growth of Database projects versus Internet and Software De-
velopment projects.

The Pearson correlation coefficients given in Table 3 shows that the linear

correlation among all topics is highly significant as all are very close to 1. The

corresponding hypothesis tests show that these correlations are significant at

the 0.01 level.

In order to compare projects in the Database topic with projects in other

topics, it is interesting to investigate the ratios obtained by dividing the num-

ber of database projects at each time period by the corresponding numbers of

projects in other topics. Some of the sequence plots obtained by plotting these

rations are shown in Figure 7.

For a better understanding of the comparison, we added in each plot a

smoothing curve showing more clearly the overall behavior. Plot (a) shows

156 Sowe, Angelis, Stamelos, and Manolopoulos

Table 3. Correlation between projects in topics.

Internet Software devel. Communications Games Entert.

Databases .998 .992 .997 .999

Internet .995 .999 .996

Software devel. .993 .990

Communications .995

(a) (b)

(c) (d)

Fig. 7. Sequence plots showing ratios of database projects by each of the other topics.

that the number of database projects is approximately 81% of the internet

projects but there seems to be a growing trend for this ratio from November

2005. Plot (b) shows that the database projects are around 35% of the software

development projects but this ratio has a clear linear growth. Plot (c) shows that

the number of database projects is almost the same as that of communications,

since their ratio is very close to one. There is initially a descending trend but

later the trend is ascending. Finally, plot (d) shows that database projects vary

by, approximately, 81% of Games/Entertainment projects, but this ratio has an

almost linear descending trend.

Using RoRs to Study the Growth of F/OSS Projects 157

4.3 Hypothesis Validation

Hypothesis: Is there evidence to support that F/OSS development is moving
from focusing only on developer tools and infrastructure support to end-user
applications such as Databases?

It follows from the discussion presented in section 4.2 that F/OSS develop-

ment is moving ”up the stack” from developer tools and infrastructure support

to end-user applications such as open source databases. The analysis shows a

steady growth of not only end-user projects such as database but also growth

in major areas such as Internet, Software Development, Communications, and

Games and Entertainments. Thus, our hypothesis is supported within the limit

of our analysis.

4.4 Validity Threats and Considerations

Any claim to map the ecology of the types of projects in the F/OSS landscape

should be treated with caution for the reason that:

– Ex-ante analysis of our data shows that some projects belong to more than

one topic (see Table 1). For example, phpMyAdmin is classified under the

Database as well as Systems topic. Each topic also contains ’sub-topics’,

for example the Database topic also contained ’database Engines/Servers’

and ’Front-Ends’ as sub-topics. Thus, there is the inevitable consequence of

counting some projects more than once, thus inflating the numbers.

– Even though sourceforge is the largest repository of F/OSS projects, there

are other repositories (e.g. Freshmeat, Savannah.gnu) which are equally im-

portant.

– Not all F/OSS projects are hosted at sourceforge. In fact most of the ’suc-

cessful’ F/OSS projects are hosted outside sourceforge. Others only maintain

a link with the portal.

– The quality of projects in sourceforge vary tremendously. A more plausible

option would have been to define criteria for the types of projects to study. For

instance projects by topic for projects with a certain number of programmers,

downloads, sourceforge rating, etc)

– Small dataset. We based our discussion on a dataset obtained during 20

months. Perhaps 2-5 years data would have revealed a different and clearer

trend than the one we reported.

The research methodology we employed in this paper may serve as an impetus

for researchers faced with the inevitable consequence of missing data. We have

also highlighted the importance and benefits of using RoRs in F/OSS empirical

studies. However, important questions about RoRs need addressing:

Infrastructural/Technical: What are the requirements for implementing the ba-

sic infrastructure required to setup and link the repositories? What are the

major problem associated with integrating the schemata of individual and/or

158 Sowe, Angelis, Stamelos, and Manolopoulos

heterogeneous databases [30]? What are the required communication protocols

(OAI?)? How to deal with the issue of missing data? What are the lessons learnt

from the technical challenges from the FLOSSMole?

Data Quality: How will obtaining data from many and different repositories

(employing different schemas) affect the quality of the data? How to deal with

issues of missing data?

Motivational/Social: Are researchers prepared to ’give back’ their fine-tuned

data, scripts and research tools to RoRs? How to create a partnership between

RoRs and their parent repositories so that RoRs maintainers will be well in-

formed should the structure of the parent repository change.

Economical: Many F/OSS projects are voluntary in nature and depend on

benevolent donations from individuals to function. The establishment and main-

tenance of RoRs need financial funding. How will RoRs be funded? One initia-

tive in this regard is the EU funded FLOSSMetrics project.

5 Conclusion

In this paper metadata from FLOSSmole, which is a repository of repositories

(RoRs), was used to discuss the F/OSS landscape in terms of the projects be-

ing developed by the F/OSS community. We encountered gaps in our data and

used the ’linear trend at point’ method to fill the gaps with estimations. Various

statistical methods were employed to investigate the F/OSS projects’ landscape

and we found out that projects in all the topics studied are growing linearly.

Exponential smoothing curves produced almost straight lines due to the strong

linear trend. Three months forecast showed that the number of projects in these

topics continued to grow beyond our study. Comparing the trend in the growth

of the number of projects in the database topic against the other four, revealed

a high correlation between databases and all the other four projects’ topics.

These findings show that applications developed by the F/OSS community are

not limited to infrastructural or Internet based components only, but also to

end-user products such as Databases. The ration of database to Internet, soft-

ware development, and Games/Entertainment projects showed a linear growth.

Furthermore, projects in the database topic are growing almost at the same

rate as those in the communications topic.

Future Work: We are spidering sourceforge to obtain data spanning many

years so that we can build better prediction models to study the F/OSS land-

scape. We are also collecting data on researchers who are using the same dataset.

We intend to develop social networks where researchers form nodes on a net-

work/graph and two or more nodes are linked if they share the same dataset.

Collaborative networks of this nature can reveal a great deal about the social

structure of the F/OSS research community , such as the presence knowledge

brokers [25].

Using RoRs to Study the Growth of F/OSS Projects 159

Acknowledgement. This work is partially supported by the Free/Libre/Open Source
Software Metrics and Benchmarking Study (FLOSSMetrics), Project No: 033982,
(http://flossmetrics.org). Sincere thanks to the maintainers and participants of Floss-
mole. Script, data, and analysis used in this paper can be found at: http://ossmole.
sourceforge.net/

References

1. Hahsler M, Koch S., Discussion of a Large-Scale Open Source Data Collection
Methodology, Proceedings of the 38th Hawaii International Conference on System
Sciences (IEEE, HICSS ’05-Track 7), Jan 03-06, Big Island, Hawaii, 2005, page
197b.

2. Barahona, J. et al., Analysing the Anatomy of GNU/Linux Distributions: Method-
ology and Case Studies (Red Hat and Debian), In Koch, S. (Ed.), Free/Open
Source Software Development, Idea Group Inc., 2005, pp: 27-58.

3. govtech.net, SourceForge.net Surpasses 100,000 Open Source Projects, http://
www.govtech.net/news/news.php?id=94043, May, 2005.

4. Nikolai Bezroukov, Open Source Software Development as a Special Type of Aca-
demic Research (Critique of Vulgar Raymondism), Firstmonday, 1999, vol. 4(10).

5. Scott Christley and Greg Madey, Collection of Activity Data for SourceForge
Projects, Technical Report: TR-2005-15, University of Notre Dame, 2005.

6. Megan S Conklin, Beyond Low-Hanging Fruit: Seeking the Next Generation in
FLOSS Data Mining, In Damiani, E., Fitzerald, B., Scacchi, W., Scott, M., Succi,
G (Eds.),IFIP International Federation for Information Processing, Open Source
Systems, Boston: Springer, Vol. 203, 2006, pp: 261-266.

7. Kevin Crowston, Hala Annabi, and James Howison, Defining Open Source Soft-
ware Project Success, Proc. of International Conference on Information Systems,
ICIS 2003, 2003.

8. G. Madey, V. Freeh, and R. Tynan, The open source software development phe-
nomenon: An analysis based on social network theory, In Americas conf. on In-
formation Systems (AMCIS2002), 2002, pp: 18061813.

9. German, D. and Mockus, A., Automating the Measurement of Open Source
Projects, ICSE ’03 Workshop on Open Source Software Engineering, Portland,
Oregon, May 3-10, 2003.

10. Ghosh, A.R., Clustering and dependencies in free/open source software develop-
ment: Methodology and tools, Firstmonday, Vol. 8(4), 2004.

11. Howison, J., Conklin, M., and Crowston, K., FLOSSmole: A collaborative reposi-
tory for FLOSS research data and analyses, International Journal of Information
Technology and Web Engineering, Vol. 1(3), 2006, pp: 17-26.

12. J. Howison, and K. Crowston, The Perils and pitfalls of mining SourceForge, 26th
International Conference on Software Engineering, Edinburgh, Scotland, 2004.

13. Koch S, Schneider G., Effort, cooperation and coordination in an open source
software project: Gnome., Information Systems Journal, Vol. 12(1), 2002, pp: 27-
42.

14. Krogh G, Spaeth S, and Lakhani, K., Community, joining, and specialisation in
open source software innovation: a case study, Research Policy, Vol. 32, 2003, pp:
1217-1241.

160 Sowe, Angelis, Stamelos, and Manolopoulos

15. Lakhani K, Hippel von E., How open source software works: ”free” user-to-user
assistance, Research Policy, Vol. 32, 2003, pp: 923-943.

16. David M. Nichols and Michael B. Twidale, Usability processes in open source
projects, Software Process: Improvement and Practice, Vol. 11(2), 2006, pp: 149-
162.

17. Masao Ohira, Naoki Ohsugi, Tetsuya Ohoka, and Ken-ichi Matsumoto, Accelerat-
ing cross-project knowledge collaboration using collaborative filtering and social
networks, MSR ’05: Proceedings of the 2005 international workshop on Mining
software repositories, ACM Press, 2005, pp: 1-5.

18. FLOSSmole Project, FLOSSmole Project (2004-2006) Sourceforge, http://

ossmole.Sourceforge.net.
19. Raymond, E.S., The Cathedral and the Bazaar. Musings on Linux and Open

Source by an Accidental Revolutionary, OReilly, Sebastopol, USA., 1999.
20. Gregorio Robles and Jesus M. Gonzalez-Barahona, Geographic location of devel-

opers at SourceForge, In MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, ACM Press, 2006, pp: 144–150.

21. Sulayman K. Sowe and Ioannis. Stamelos, Identification of Knowledge Brokers
in F/OSS Projects through Social and Collaborative Networks, In Proc. of 10th
Panhellenic Conference on Informatics, Volos, Greece, 2005, pp.285-303.

22. Sulayman K. Sowe, Ioannis Samoladas, and Ioannis Stamelos, Trends in Open
Source Database Management Systems. In Laura C. Rivero, Jorge H. Doorn,
and Viviana E. Ferraggine (Eds.) Encyclopedia of Database Technologies and
Applications, Idea Group, Inc., 2005, pp: 457-462.

23. David J. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-
dures, Chapman and Halucrc, 2004.

24. Sulayman K. Sowe, Ioannis Stamelos, and Karoulis, Anastesiou, A construc-
tivist View on Knowledge Management in Open Source Virtual Communities. In
Figueiredo, D. A, and Paula, A. (Eds.), Managing Learning in Virtual Settings:
The Role of Context, Idea Group, Inc., 2005, pp: 290-308.

25. Sulayman K. Sowe, Ioannis Stamelos, Lefteris Angelis, Identifying knowledge bro-
kers that yield software engineering knowledge in OSS projects, Information and
Software Technology, 2006, vol. 48, pp: 1025-1033.

26. Katherine J. Stewart, David P. Darcy, and Sherae L. Daniel, Observations on
patterns of development in open source software projects, 5-WOSSE: Proceedings
of the fifth workshop on Open source software engineering, St. Louis, Missouri,
ACM Press, 2005, pp: 1-5.

27. Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim
Lakhani, Understanding Free/Open Source Software Development Processes,
Software Process: Improvement and Practice, 2006, vol. 11(2), pp: 95-105.

28. Xu J, Gao Y, Christley, S, Madey S., A topological Analysis of the Open Source
Software Development Community, IEEE Proceedings of the 38th Hawaii Inter-
national Conference on System Sciences, (IEEE, HICSS ’05-Track 7), Jan 03-06,
Big Island,Hawaii., 2005, page 198a.

29. Valverde, S., Theraulaz, G., Gautrais, J., Fourcassie, V., and Sole, R. V. Self-
Organization Patterns in Wasp and Open Source Communities. IEEE Intelligent
Systems, 2006; 21(2): 36-40.

30. N. Bassiliades, I. Vlahavas, A. Elmagarmid, E. Houstis, Interbase-KB: A
Knowledge-based Multidatabase Sustem for Data Warehousing, IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 15, No. 5, pp. 1188-1205, 2003.

Community Structure, Individual
Participation and the Social Construction of

Merit

Matthias Studer

University of Geneva, department of econometrics, 40 Bd du Pont d'Arve,

1211 Geneva 4, Switzerland, matthias.studer@metri.unige.ch

Abstract. FLOSS communities are often described as meritocracies. We

consider merit as a social construction that structures the community as a

whole by allocating prestige to its participants on the basis of what they do. It

implies a hierarchy of the different activities (web maintenance, writing code,

bug report...) within the project. We present a study based on the merging of

two datasets. We analyze the archive of KDE mailing lists using a social

network. We also use responses to a questionnaire of KDE participants.

Results bring empirical evidences showing that this hierarchy structures the

community of KDE by allocating more central position to participants with

more prestigious activities. We also show that this hierarchy structures

individuals participation by giving greater "membership esteem" to members

involved in more prestigious activities.

Key words: Collective Self-esteem, Community of Practice, Meritocracy,

Open Source, Social Network Analysis, Social Structure.

Introduction

It is often proposed that the distinctive social structure of FLOSS communities

could be one of the key reasons of its success [1]. This organisation is often

described as meritocratic [2] or at least, as having “an ideological commitment to

meritocracy” [3]. In this article, we propose to discuss the concept of meritocracy

and to describe how it structures the community. We intend to bring empirical

162 Matthias Studer

evidences to support our matter by taking KDE1 as a case study. Our study is based

on two data sources: e-mails archives and a questionnaire of KDE participants.

Meritocracies are social systems in which the social position is determined by

merit. In other words, the social position is determined by the social valorisation of

the activities done in the community. Thus, some activities lead to more influential

position than others according to the merit linked to each activity. This distribution

of the merit between different activities structures the community as a whole.

According to our point of view, the definition of the merit is not objective, but

results from a social construction that we need to understand better. Indeed, it seems

to form the base of power relationships in FLOSS communities.

According to the theory of communities of practice [4], this allocation of power

is described using the concept of mutual engagement. What a person does allows to

“categorize him as”, i.e. to assign him to a peculiar social position. This

classification (which can be either positive or negative) is carried out by the other

members of the community in an unconscious way through the returns (comments)

made on each contribution. But what we do also makes it possible to “categorize us

ourselves as” through the returns carried out by the other members of the

community. Thus, the process of “power allocation” is done at the community level

by the allocation of power to people who deserve it. It is also an individual process

since each one “categorize himself as” compared to other members of the

community.

The socially constructed definition of merit structures community on two levels.

Firstly, it structures the community as a whole by allocating more influential

positions to members carrying out more valorised activities. Secondly, it structures

individual participation by giving a conscience of oneself position in the community.

Thus, the centre of our analysis is the “person-in-the-social-world” [5], i.e. we seek

to clarify the relationships between socials norms and individual participation.

According to the theory of communities of practice [4], we should look at the

relationships between these two levels in order to better understand the social

structure. The social structure acts through its internalization by contributors.

Following these two points of view, we selected two data sources. The first one

is the archive of all e-mails archived by MARC since the beginning of KDE. This

data source will enable us to approach the social structure as a whole through a

social network analysis. The second data source comes from a questionnaire of KDE

participants. It will enable us to approach the meaning given to each activity and

some more subjective elements of our assumptions like membership esteem of

contributors.

This article is organized in the following way. We present the data sources and

the methods we used to extract relevant information from it. Then, we will analyze

the hierarchical organization of activities. After that, we will look at the

internalisation done by KDE contributors before concluding our article.

1 See http://www.kde.org

Community Structure, Individual Participation and the Social Construction of Merit 163

Presentation of data sources

As we said, we have two data sources: e-mails archive and a questionnaire of

KDE contributors. We used e-mails sent to KDE mailing-lists and archived by

MARC2. We used the data from beginning of January 2006 until end of June 2006

covering a six month period. These e-mails come from the lists of discussions within

each project and sub-project. We also used information from the “kde-bug-dists”

mailing-list, a list gathering automatic notifications for all changes made to Bugzilla.

The use of e-mails archive enables us to bring all these sources together on the basis

of names and e-mail addresses. We used this information to build a social network

analysis of all participants to KDE mailing-lists using Pajek [6]. In this kind of

analyses, two definitions are essential: inclusion and relationship.

Regarding inclusion, two problems quickly arise: neither the e-mails addresses

nor the names can be considered unique. Consequently, we used an in-depth search

algorithm to put together the couples of “name-email”. This algorithm was used to

propose possible merges to a human. Since all regroupings were human-supervised,

we were forced to use a selection criterion. We thus regrouped and selected all

person having sent at least ten messages over a period exceeding one month. One

can argue that we introduced a systematic bias in our analysis by using this selection

criterion. However, we think that this bias will not be very influential. We are

interested in relationships with people who are important for the community. It is not

abusive to think that these peoples sent at least ten e-mails.

One usually defines the relation using “point-to-point” information such as the

“In-Reply-To” header of emails. However, this information was not available in

KDE archives. Thus, we used the definition of “thread” from MARC to constitute

our network. We have then defined the relationship between two persons as:

The relationship between a person A and B is equal to the sum of all messages

sent by A in “threads” where B also sent at least one message.

The relationship has a direction (from A to B) and the value is different

according to this direction. However, and this rises from the given definition, if A

has a relationship with B, then B has a relationship with A. It will not be

automatically the same value. The graph obtained is directed and valued. Our

measurement also contains a scale about the “force” of the relationship. Thus, taking

part in a discussion with a lot of different participants implies more “relations” than

taking part in a small discussion. In other words, each message is not equal in our

construction of the network. This corresponds to some logic. By taking part in a

large discussion (which has more chance to be considered as important), one

acquires a greater visibility than in a small discussion implying only two people.

Consequently, how to interpret the values of relationships? We suggest thinking

in term of contacts. One “unit of relation” corresponds to one contact initiated if one

thinks in terms of outgoing relationships, or with one contact received in the case of

incoming relationship. The construction of our network makes difficult to compare

values of incoming and outgoing relationships since the same message does not have

2 Mailing list ARChives (http://lists.kde.org)

164 Matthias Studer

the same weight according to the direction: a message received corresponds to a

contact whereas a message sent can correspond to several contacts. Being given that

most messages are “functional”, we think that we should interpret our network as

some kind of cooperation network. In our sense, it would be abusive to speak of

friendly networks. In fact, the use of IRC discussions archive would be probably

closer to such an interpretation of the network.

We computed several indicators from the social network analysis in order to test

our hypothesis, namely the degree, the sum of incoming lines, the sum of outgoing

lines and the maximum value of all arcs. The degree is simply the number of arcs

connected to a given vertex (contributor) in our social network. According to our

definition of the network, the sum of incoming lines corresponds to the number of

messages received. The sum of outgoing lines can be interpreted as an indicator of

influence in our network. Finally, the maximum values of all arcs (incoming or

outgoing) should reflect the strength of the connection with other members.

All these indicators are local. So, we also computed “proximity prestige” [8].

This indicator is equal to the number of vertex that a given vertex can reach

according to the arcs present in the network divided by the mean length of path to

reach all these vertices. It is an indicator of the position in the global network.

We also used a questionnaire of KDE participants. The answers were collected

online. Thus, the answerers were voluntary. KDE contributors were informed about

the existence of the questionnaire through several messages sent on KDE mailing-

lists. We took care to include all kind of mailing-lists such as users-oriented,

translators and developers mailing-lists. We also took care to address our

questionnaire to all kind of KDE contributors (including bug-reporter, translators,

developers, etc.). However, we did not send the advertisement to all mailing-lists –

we did not want to be considered as a “spammer” by KDE contributors.

We collected 131 answers. This low number of answers leads us to think that

generalization of our results should be done with caution. Because we are here

within a framework of observation and not of experimentation, the variations could

be caused by factors for which we do not control. Answering the questionnaire was

not especially long (approximately 15 minutes). However, 25 peoples did not answer

the whole of the ten pages presented. The first question made it possible to establish

the link between the questionnaire and the e-mails archives. This question was

optional since some answerers may prefer to remain anonymous on Internet. Only 95

people gave an answer to this question.

The questionnaire was made up of questions about involvement in KDE,

collective identity, demographic information and individual motivations. In this

article, we will use the answers to three questions which were related to:

The activities carried out within the community on a 6 item scale of frequency

ranging from “Never or almost never” to “Every day or almost every day”.

The prestige granted to each activity on a scale ranging from 1 (No prestige) to

10 (very prestigious).

Two questions related to the importance that one think one have in a given social

group. These questions were “I am a worthy member of my KDE group(s)”

(positive formulation) and “I feel I don't have much to offer to my KDE

group(s)” (negative formulation) on 7 item scale ranging from “Strongly

disagree” to “Strongly agree”. These questions were taken from the “membership

Community Structure, Individual Participation and the Social Construction of Merit 165

esteem” subscale of the collective self-esteem scale proposed by Luhtanen and

Crocker [7]. We transformed the formulation of the scale by replacing references

to “social groups” with “KDE groups”. The “membership esteem” subscale is

equal to 8 plus answer to the first question minus answer to the second one.

We can use the data from the social network analysis to get an idea of the

representativeness of our answerers. Unsurprisingly, our population is not

representative but far more involved in the community. The mean degree of all

network members is 10.49 against 54.64 for our answerers. This difference is

statically significant and independent of the network indicator used. To get a better

idea of the involvement of our answerers, we present on the figure below the

maximum frequency between all activities carried out in KDE. As we can see,

almost 75% of our respondents contribute at least “once or twice a week”. Hence,

most of our respondents can be considered as frequent contributors.

Fig. 1. Maximum frequency of involvement of answerers

In this article, we are interested in the social structure of the community.

According to our point of view, the social structure comprises frequent as well as

infrequent contributors. Thus, in following analysis, we included all answerers3.

After having presented our data source, we will look at the social valorisation of

activities and how these valorisation' schemes structure the community.

Hierarchical classification of activities

We argued that the social construction of merit organize the activities into a

hierarchy. We propose to describe this organization before showing how it organizes

the community as a whole. After that, we’ll show how this social construction

structures the individual participation of contributors.

3 However, interpretations (and main results) do not change if we include only respondents

contributing at least “once or twice a week”.

166 Matthias Studer

The table below presents the mean prestige accorded to each activity by the

answerers on a one (no prestige) to ten (very prestigious) scale. Seven answerers

refused to answer this question by giving ten to all activities. The classification does

not fundamentally change if we use a transformation such as rank. Changes in the

hierarchy may appear if prestige averages are close4. The third column shows a rank

for each activity. A difference of rank indicates a statically significant difference in

the prestige distributions5. On the contrary, if the ranks are the same, we can not

assume that one of the distributions is significantly higher.

Table 1. Hierarchical classification of the activities according to prestige scale

Activity Average Prestige Rank

Code 8.46 1

Coordination 7.44 2

Discussion about future

development
6.98 3

Art 6.11 4

Bug Management 5.43 5

Help 5.42 5

Documentation 5.19 5

Translation 5.10 5

Packaging 5.03 5

Web 4.55 6

Bug Reports 4.29 6

According to our hypothesis, this ranking of activities is a social construction. It

does not mean that some activities are less valuable or less important than others, but

that the social interpretation and meaning given to these activities are different. This

construction is not arbitrary but corresponds to some logic that we seek to

understand.

The activities turned towards technology seem to be the most prestigious. Thus,

the writing of code occupies the first position and the discussion of future

developments the third. The presence of the activity “Art” in fourth position shows

us that the creative and productive activities are largely valorised. Finally, let us note

that the coordination of the community is seen as a prestigious activity. This is not

surprising since our societies (as a general rule) tend to valorise this kind of

activities.

The activities which come after are more difficult to distinguish, because the

averages are close and the ranks are the same. It shows us that we can not assume a

clear hierarchy between these activities. In this group, we find other form of

contribution to the community such as bug management, user assistance,

documentation, translation and packaging. It will be noticed that the user assistance

appears relatively valorised for an activity which is not productive (or whose result is

4 We always check all possible transformation in the reasoning presented below.
5 We computed the Wilcoxon signed ranks test for all pair of activity scales. We then set the

activity ranks according to statically significant (at the 5% level) difference in scale’s

distribution.

Community Structure, Individual Participation and the Social Construction of Merit 167

not visible in the final product). It seems to occupy a similar position to much more

productive activities such as translation or documentation.

Finally, we find a last group with much less valuated activities with an average

below five which would correspond to the mathematical average: website

maintenance and bug reports. In our sense, the rank of website maintenance is quite

surprising since it’s a productive activity quite important for the community. Finally

bug reporting occupies the lowest position in the hierarchy.

Translation is not classified in a uniform way between the answerers. Translators

(N=54) tend to classify this activity significantly higher (Fisher’s test: F=10.59;

df=1; p=0.002) by giving an average of prestige of 5.85 whereas the “non-

translators” (N=55) gives an average of 4.38. The translation passes thus from the

fourth place (for translators) to the bottom of the hierarchy (for other contributors).

This difference is even more significant if one takes into account the people making

translation at least “one or twice a week” (N=32). The average of prestige is then 6.5

for translators against 4.52 for the others. The differences in distributions (Wilcoxon

test) are statistically significant (Z=-3.291; p=0.001) in the first case and the second

(Z=-3.841; p<0.0001).

This difference is important. It means that non-translators will evaluate less

prestigious “translation” than translators. Thus, translators will gain much more

prestige inside their own sub-community than in the community as whole. It shows

us that translators seem to form a sub-community with their own definition of merit.

However, this definition is not totally different. The top of the hierarchy is not

disputed. Translation does not imply what translators consider as the most

prestigious activities such as coding. Thus, translators are in a dynamic where their

own activity (and their sub-communities) remains necessarily peripheral. We can

also give a second interpretation of this difference. There is a social necessity for

translators to valorise their own activities in order to maintain a regular involvement.

Indeed, translation seems to be less valuated by the community as whole.

The activities performed inside KDE are not evaluated in a uniform way. Some

activities are more prestigious than others. Therefore, there is a social construction of

merit. In this social construction, technical and creative activities seem to be the

most prestigious alongside with coordination. After having presented the

valorisation’s scheme of the activities, we will show how these differences of

prestige structure the community as whole.

Activity Prestige and Community structure

According to our hypothesis, the social construction of merit should structure the

community as a whole. So, we computed the correlation between the frequency of

each activity and indicators computed from the network analysis. The correlations

presented in the table below are Kendall’s -b correlations6 and are all significant at

1% level. In the table below, non-significant correlations are ignored.

6 We always computed the Kendall’s -b correlation rather than Pearson or Spearman

correlation. Kendall’s -b correlation is known to better handle ties values (which are

typically frequent with ordinal measure) and make no assumption on the distribution of

variable or on the form of the relationship between both variable (such as linear

168 Matthias Studer

Table 2. Correlation (Kendall’s -b) between network indices and frequencies of activities

Degree Sum of

incoming

lines

Sum of

outgoing

lines

Maximum

values of all

arcs

Proximity

prestige

Help 0.228 0.233 0.217 0.223 0.207

Code 0.400 0.421 0.416 0.428 0.377

Discussion 0.436 0.473 0.456 0.484 0.422

Translation

Doc. 0.238 0.237 0.224 0.227 0.231

Art

Web 0.337 0.332 0.324 0.304 0.318

Coordination 0.255 0.275 0.262 0.285 0.245

Bug

Management
0.404 0.414 0.414 0.439 0.390

Bug reports 0.244 0.220 0.249 0.226 0.261

Packaging

We expect all correlations to be significant and positive. Whatever we do, if we

do it more frequently, we should have more relationships in the network and our

relationships should be stronger7. By looking at the table below, we can distinguish

three groups of activities:

Code, discussion and bug management show strong correlations. We should

notice that the first two correspond to the most prestigious activities.

Coordination, Help, Documentation, web and bug reports show correlations

around 0.25. This set of activities is in the middle of our hierarchy. The only

exception is coordination but we had only few answerers who stated doing it.

Art and Packaging activities show no significant correlation. But this is mostly

because of the small number of answerers who stated doing it. This is not the

case of translation which does not show any significant correlation.

The correlations seem, generally speaking, to follow the prestige accorded to

each activity. However, “bug management” and “web” show much stronger

correlations than expected. One possible explanation is that these activities come

alongside with influential position. In other words, it is possible that influential

positions imply responsibilities and activities that are not necessarily prestigious or

“fun”. In these cases, the influential positions would not be the result of such

activities, but from the others performed alongside. Hence, “bug management” is

highly correlated to “code” (-b =0.47) and “web” is mostly performed by long time

contributors.

relationship for instance). This coefficient is known to be more conservative than the other

and values are typically lower than for Pearson correlation. See Arndt et al. [9] for a full

discussion.
7 Some network indicators show stronger correlations with the frequency of each activity

than others. The “sum of incoming lines” and the “maximum values of all arcs” show the

strongest correlations. These indicators take into account the values of the arcs. Hence, it’s

not only the number of relations (degree) but also the values of the arcs that are important.

Correlation between activities and proximity prestige are weaker than with other

indicators.

Community Structure, Individual Participation and the Social Construction of Merit 169

The absence of correlation between network indicators and “translation” is

interesting. Translation had a peculiar position in the hierarchy of the activities: non-

translators were evaluating this activity as less prestigious than translators. This

absence of correlation means that performing more often translation does not lead to

more connections in the community. In other words, translation seems to be a

peripheral activity. One can argue that social power is poorly linked with social

network indicators. In our sense, we should interpret these indicators as a necessary

condition. It is necessary to have different and strong link in order to exercise some

sort of social power.

The socially constructed definition of merit seems to structure the community by

allocating more central position to people performing more prestigious activities.

According to our hypothesis, this construction of merit should also be internalized by

contributors. This is what we will try to show now.

Activity Prestige and Individual Participation

For recall, membership esteem refers to the importance that one thinks one has

within social groups to which one is identified. Membership esteem is strongly

correlated with the indicators from the network (-b = 0.38 with the sum of incoming

line; p<0.0001). Hence, members more strongly involved have more chance to feel

important for the community. It is not necessarily the number of relations which

counts more, but also the force of these bonds. Thus, one observes a positive

correlation with the value of the strongest relation (-b=0.40; p<0.0001).

Table 3. Correlation (Kendall's t-b) between activities and membership esteem

Membership esteem Positive formulation Negative formulation

Help 0.18* -0.19 *

Code 0.38 ** 0.27 ** -0.38 **

Discussion 0.39 ** 0.35 ** -0.31 **

Translation

Doc. 0.21 * -0.19 *

Art

Web 0.19 * -0.23 **

Coordination 0.22 ** -0.26 **

Bug Management 0.23 ** 0.17 * -0.23 **

Bug reports

Packaging

** Significant at 1% level; * significant at 5% level.

Membership esteem is not only linked to network indicators but also with the

activities done by contributors. Indeed, if we look at correlations on the table above,

one can identify three groups of activities:

The activities “codes” and “discussions” show the most important correlations

with a value around 0.4.

The other activities come then with correlations of about 0.2. These correlations

are mainly the fact of the rejection of the negative formulation rather than of

strongest acceptance of the positive formulation. Thus, we should conclude that

170 Matthias Studer

this is the expected correlation between frequencies and membership esteem. The

only exception is “coordination”. Indeed, we had only few answerers that state

doing it.

Finally, “translation” and “bug report” do not show any significant correlations;

the same applies to “packaging” and “art”. But these last ones do not have

enough answerers to enable us to deduce something from it.

The first group of correlation shows us that the most prestigious activity comes

together with stronger membership esteem. The second group of activities shows the

expected relationships between activity and membership esteem. The presence of the

last group is interesting. According to our assumptions, we should expect positive

correlations. More one makes, in a given activity, better the membership esteem

should be. This absence of correlation indicates us that this hypothesis is not verified

regarding “translation” and “bug report”. In other words, doing these activities more

frequently does not lead to greater membership esteem. These activities were also

less valuated in the global classification. Therefore, we can conclude that

membership esteem is linked to valorisation’s scheme of the activity.

We should clarify some points. Our results do not show that “translation” or

other activities are devaluated within FLOSS communities. In fact, membership

esteem was usually high and we should remember that the frequency of interaction

(maximum frequency found between all activities) is highly correlated with

membership esteem (-b=0.39). Therefore, all activities lead to greater membership

esteem. Hence, our conclusion is that doing less prestigious activities contributes less

to membership esteem than very prestigious activities.

We showed that the social construction of merit structures individual

participation. Doing more prestigious activities contributes more to membership

esteem than doing less valuated activities. The social construction of merit does not

only structure the community as a whole. It is also internalised by contributors.

Conclusion

By using two distinctive sources of information, namely a social network

analysis and a questionnaire of KDE contributors, we brought a new insight of

FLOSS communities’ structuration since we were able to locate answerers inside the

social structure. These two sources allowed us to think on two levels: the individual

participation and the community. It also enabled us to think the relationship between

these two levels of analysis which are usually measured separately.

We showed that there is a social construction of merit that implies a hierarchy of

the activities performed in the community. This construction valorises the activities

turned toward technological development such as coding and discussion about future

development. Creative and coordination activities are also valorised. This does not

mean, by any way, that some activities are less valuable or less time-consuming. We

presented the social interpretation of activities not an evaluation.

We showed that the whole community is structured according to the activities

performed and their social valorisations. The most prestigious activities seem to lead

to more central position in the social network whereas we did not find such link for

Community Structure, Individual Participation and the Social Construction of Merit 171

less prestigious activities. We noticed that some less prestigious activities (bug

management and web maintenance) seem to come alongside influential position. We

showed that different activities relate to different social positions as measured with

social network indicators. Therefore, we can conclude that the social power also

comes from the activity performed and not only from the frequency of interaction

with the community. In other words, aside from frequency, the kind of activity

performed is also a key dimension of social position.

This structuration dynamics is not only observable at the community level. We

showed that it seems to be internalized by contributors. Esteem of its own

importance within the community is linked with the kind of activity performed.

Specifically, some activities seem to be more linked with membership esteem than

others. The classification of the activities is internalized and not only an external

factor of individual participation.

We showed that the social construction of merit structures the community as

whole as well as individual participation of contributors. The KDE community can

be described as meritocratic. However, we did not explain the process in detail. A

more in depth or ethnological analysis is needed in order to precisely describe the

social construction of merit. More precisely, we need to understand how the different

contributions (within a given activity) are evaluated. Our analysis showed us that the

social construction of merit defines which activities are linked with more influential

social positions.

Beyond the structuration of KDE according to the social definition of merit, our

analysis showed us that individual participation to a FLOSS project should be

understood in relation with the social structure of the community. Contributors

internalise the social structure of the community and the social structure influences

their own participation. From a theoretical and methodological perspective, we

should think the relationships between individual participation and social structure.

Activities done inside a FLOSS community are not individualistic but a form of

participation.

References

1. K. Crowston and J. Howison, The social structure of free and open source software

development, First Monday 10(2), (2005).

2. E. S. Raymond, Homesteading the noosphere, First Monday 3(10), (1998).

3. J. Howison, K. Inoue and K. Crowston, Social dynamics of free and open source team

communications, in proceedings The Second International Conference on Open Source

Systems (2006).

4. E. Wenger, Communities of Practices: Learning, Meaning, and Identity (Cambridge

University Press, Cambridge, 1998).

5. J. Lave and E. Wenger, Situated learning: legitimate peripheral participation (Cambridge

University Press, Cambridge, 1991).

6. V. Batagelj and A. Mrvar, Pajek 1.14 – Program for Large Network Analysis'

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

7. R. Luhtanen and J. Crocker, A Collective Self-Esteem Scale: Self-Evaluation of One’s

Social Identity, Personality and Social Psychology Bulletin 18(3), 302-318 (1992).

172 Matthias Studer

8. W. de Nooy, V. Batagelj and A. Mrvar, Exploratory Social Network Analysis with Pajek

(Cambridge University Press, Cambridge, 2005).

9. S. Arndt, C. Turvey and N. C. Andreasen, Correlating and predicting psychiatric symptom

ratings: Spearmans r versus Kendalls tau correlation, Journal of psychiatric research 33(2),

97-104 (1999).

OpenBQR: a framework for the assessment
of OSS

Davide Taibi1, Luigi Lavazza12, and Sandro Morasca1

1 Università dell’Insubria
luigi.lavazza@uninsubria.it, sandro.morasca@uninsubria.it,

davide.taibi@uninsubria.it, WWW home page: http://www.uninsubria.it
2 CEFRIEL

WWW home page: http://www.cefriel.it

Abstract. People and organizations that are considering the adoption of OSS,
or that need to choose among different OS products face the problem of
evaluating OSS in a systematic, sound and complete way. While several
proposals concerning the evaluation of costs and benefits exist, little attention
has been given to the evaluation of technical qualities and, in general, to the
“usage-oriented” issues. In this paper the existing proposals are examined, the
different types of qualities and issues that are relevant to potential users are
described, and a coherent and innovative method for the evaluation of OSS is
proposed. The proposed method is expected to support the potential user in the
evaluation and choice of OSS in a flexible way, taking into account all the
aspects that are relevant to the user.

1 Introduction

Open Source Software is a continuously growing movement. In order to give an idea
of the size of the phenomenon, note that at the end of 2006 there were over 100,000
ongoing OSS project based on the best known repositories (such as SourceForge,
CodeHaus, Tigris, Java.net and Open Symphony). OSS can also boast of several
success stories: programs like the Apache projects, Netscape/Firefox, Eclipse, Linux,
MySQL, and several others are well known and used by a huge number of people
worldwide. Nevertheless, there are several areas where OSS was not adopted, at least
not as widely as it could be expected. An example is given by the so called desktop
environments and office applications. In fact, even in the areas where OSS has been
successful, there are several potential users that did not adopt OSS.

Understanding why the adoption of OSS is limited is quite complex. A first
reason is that the very concept of Open Source is hardly understood [1] [2] .
People tend to confuse OSS with free software (i.e., software that can be used
without paying any fee) and open standards with proprietary disclosed software (like
PDF) [1]. Another reason is that it is not obvious how to carry out the cost/benefit

174 Davide Taibi, Luigi Lavazza, and Sandro Morasca

analysis, given that the acquisition cost of OSS is usually null. Recently, the concept
of Total Cost of Ownership (TCO) has been proposed as a mean to evaluate the cost
of adapting, managing and maintaining OSS; nevertheless, the concept of TCO is not
widely used, partly because it is not well understood (there are several, often not
coherent, definitions) and partly because there is the suspect that most published
TCO evaluations are driven by software vendors who want to convince customers
that the commercial option is economically profitable. Finally, deciding the adoption
of OSS requires the evaluation of the qualities of candidate OS programs, and their
comparison with commercial programs. However, assessing the qualities of OSS is
still a practice not well consolidated. Organizations facing the problem of deciding
about the adoption of OSS have hardly any guide for carrying out a well structured
comprehensive evaluation.

On the other hand, the producers of Open Source software cannot rely on clear
indication concerning the factors that could determine the success of their products.

In this paper we discuss the qualities of OSS that determine its success and the
features of OSS that should evaluated by potential users and adopters. Based on
these considerations, a framework for the assessment of OSS is proposed. The goal is
that such framework explicitly describes the qualities and properties of OSS that are
considered important by both users and producers. In this way the framework can be
employed by potential users for evaluating OSS. On the contrary, producers will get
indications of what users value more, thus understanding what needs to be improved
in their proposals.

The paper is structured as follows: Section 2 presents the current situation and
the most recent proposals concerning OSS evaluation. Section 3 describes the
features of OSS that –according to our analysis and understanding– are deemed
important by organizations and professional users. Based on these considerations,
our proposal for an OSS evaluation framework –named OpenBQR– is described in
Section 4. In Section 5 we describe the validation activities that we carried out in
order to confirm the capability of OpenBQR to represent the important features of
OSS. Section 6 describes a web-based tool for carrying out the evaluations according
to the criteria defined by the OpenBQR. Finally, Section 7 draws some conclusions.

2 State of the art and related work

The economic perspective

The first and most obvious problem with OSS is to assess its cost. Often OSS is free,
i.e., there is no fee to pay in order to use the software; however, even in these cases it
is clear that using OSS requires some investment. TCO (Total Cost of Ownership)
addresses the evaluation of the cost of adopting and using a software program,
including all the expenses, and spanning the whole lifecycle of the system [8].
Therefore, TCO involves the evaluation costs due to acquisition, adaptation,
deployment, training, operation, maintenance, etc.

OpenBQR: a framework for the assessment of OSS 175

TCO applies to both OS and commercial software, thus allowing the comparison
of costs. In fact, TCO became popular also because it was used to support both the
thesis that OSS is more convenient than commercial software, and the vice versa.

Although TCO had the merit of providing a sound and comprehensive basis for
the evaluation of SW costs, it is limited with respect to two important issues:

TCO does not address the costs that are connected with the evolution of the
user’s business process, which could require updating the software or even
changing it, thus calling for additional investments.

TCO does not include the evaluation of benefits, thus providing an incomplete
view of the financial consequences of adopting the considered software.

Other proposals have addressed these limitations of TCO. In order to take into
consideration the future evolution of the users’ needs, Cosenza proposed the Total
Account Ownership (TAO) index, which aims at representing the degree of freedom
of the user with respect to the technology provider [7]. The TAO considers issues
like contracts and licenses, software adaptability, openness of formats and interfaces,
documentation, training and assistance providers, etc., and indicates to what extent
adopting a given piece of software is a commitment for the future.

The Full Business Value (FBV) aims at representing the whole value of the
investment and includes the assessment of: system efficiency; system effectiveness;
business efficiency; business effectiveness. The TCO can therefore be seen as a
means to prove part of the information required by the FBV.

However, none of the TCO, TAO and FBV indexes address the issue of software
quality. Since the adequacy of the software –from both the functional and quality
point of view– is of fundamental importance, it is clearly necessary to assess them.

Next section discusses the evaluation of technical qualities as well as the
assessment of the software adequacy with respect to the business process it is
supposed to support.

The quality perspective

Recently, the problem of evaluating OSS became evident, so that a few organizations
invested some effort in the creation of models for the quality and evaluation of OSS.
The variety of models proposed witnesses the attention for the problem, but also
demonstrates the difficulty of defining a fully satisfactory model.

The Open Source Maturity Model (OSMM) [3] is an open standard that aims at
facilitating the evaluation and adoption of OSS. The evaluation is based on the
assumption that the overall quality of the software is proportional to its maturity.

The evaluation is performed in three steps:

1. Evaluation of the maturity of each aspect. The considered aspects are: the
software product, the documentation, the support and training provided, the
integration, the availability of professional services.

2. Every aspect is weighted for importance. The default is: 4 for software, 2 for the
documentation, 1 for the other factors.

176 Davide Taibi, Luigi Lavazza, and Sandro Morasca

3. The overall maturity index is computed as the weighted sum of the aspects’
maturity.

The OSMM has the advantage of being quite simple. It allows fast (subjective)
evaluations. However, the simplicity of the approach is also a limit: several
potentially interesting characteristics of the products are not considered. For
instance, one could be interested in the availability of professional services and
training, in details of the license, etc. All these factors have to be ‘squeezed’ into the
five aspects defined in the model.

In general we doubt that using ‘maturity’ as a proxy of the overall OSS quality is
a good idea. Since we are interested in the evaluation of the OSS quality, it is much
more effective to go straight for the definition of metrics that represent directly the
aspects of the SW product that determine the quality for the user, i.e., what the users
consider important in order to make OSS suitable for usage.

The Open Business Readiness Rating (OpenBRR) [5] is an OSS evaluation
method aiming at providing software professionals with an index applicable to all the
current OSS development initiatives, reflecting the points of view of large
organizations, SMEs, universities, private users, etc. On the official Open BRR site
several evaluations are available. They can be examined and easily adapted: you just
need to input the parameters that suit best your needs in the spreadsheet containing
the evaluation. The proponents of the method plan to apply it to all SourceForge and
Java.net projects, so that potential users can find a ready to use evaluation of the
software they are interested into.

In the first step of the evaluation, the list of programs to be evaluated is
compiled. Then every component is evaluated with respect to a set of indicator
selected according to the target usage and including: the type of license, the
compliance with standards, the existence of a user base, the availability of reliable
support, the implementation language, internationalization, etc. Then the
functionality of products is evaluated. The features of a “reference application” are
identified and their importance is graded with respect to “standard usage”. Then
every product is evaluated with respect to how well it implements every feature.
Finally, the grades are normalized and the final evaluation (a grade in the 1..5 range)
is computed.

The Open BRR is a relevant step forward with respect to the OSMM, since it
includes more indicators, the idea of the target usage, and the possibility to
customize evaluations performed by other, just by providing personalized weights.
With respect to the latter characteristics, the Open BRR as however some limits: one
is that for many products it is difficult to choose a “reference application” that
reflects the needs of all the users; another is that there are lots of possible target
usages, each with its own requirements; finally, every subjective evaluation
performed by a user could be not applicable to other users. In any case, the final
score is probably a too synthetic indicator to represent the complex set of qualities of
a software product.

OpenBQR: a framework for the assessment of OSS 177

Qualification and Selection of Open Source Software (QSOS) is a model for the
selection and comparison of OS and free software [4]. The evaluation process is
carried out in four independent iterative phases. The definition phase aims at
identifying the factors to be considered in the following phases. Phase 2 aims at
collecting from the OS community the relevant information concerning the products.
The goal is to create for every product an identity card (IC) reporting general
information (name of the product, release date, type of application, description, type
of license, project URL, compatible OS, …), available services, functional and
technical specifications, … The quality aspects of the selected products are
evaluated, and a grade (in the 0..2 range) is assigned according to the evaluation
guidelines provided by QSOS. Phase 3 is dedicated to the definition of the selection
criteria. The user’s needs and constraints are described. Phase 4 consists in the
comparison of the products’ evaluation forms with the selection criteria, and in the
identification of the product that matches betters with the user’s needs and
constraints.

Although in principle the method is effectively applicable to most OSS, the
QSOS approach does not represent a relevant step forward with respect to other
evaluation methods. Its main contribution is probably the explicitation of the set of
characteristics that compose the IC, and the provision of a guideline for the
consistent evaluation of these characteristics. Nevertheless, the evaluation procedure
is too rigid and a bit cumbersome. For instance, it is required to define the IC of
products that could be filtered away in phase 4 because they do not match the
requirements. Such a procedure is justified when the ICs of products are available
from the OS community before a user begins the evaluation. However even in this
case it may happen that the user needs to consider aspects not included in the IC: this
greatly decreases the utility of ready-to-use ICs. The strict guidelines for the
evaluation of the IC, necessary to make other users’ scoring reusable, can be ill
suited for a specific product or user. Finally, even though in the selection criteria it is
possible to classify requirements as needed or optional, there is no proper weighting
of features with respect to the intended usage of the software.

3 Features of OSS that determine its acceptance by professional
users

Assessing Open Source Software can require a complex process. In this Section, we
describe the characteristics that are taken into account by people in order to assess
the overall quality of OSS when choosing and adopting an OSS.

After a complete analysis of requirements, a set of parameters should be
assessed, which favour a complete comprehension of the OSS being evaluated. We
have identified several straightforward indicators that clearly show the quality of a
software package to be adopted, divided into five different areas: functional
requirement analysis, target usage assessment, internal quality, external quality, and
likelihood of support in the future.

178 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Target usage assessment

License: Not all open licenses are equal. Some licenses are more restrictive than
others. If you need to extend the software, copy left properties are important because
they allow modification of the code base and the redistribution of the modified
version as long as the new product stays open.
Compliance with standards: for several application domains compliance with
standards is important. For instance, in a website implementation, valid W3C-HTML
code is a first step toward more compatibility with browsers and better rendering of
pages. Using only strict HTML (that is, the Strict HTML DTD) makes the site easier
to maintain and evolve.
Implementation language: if customization work and internal support are required, it
is important to choose a product written in a programming language that is
sufficiently mastered by the organization’s programmers.
Internationalization Support: useful for applications that need to be translated into
different languages.
Books: the availability of books about the software is a strong indicator of the
software’s level of maturity and popularity.
Interest by well known industry and market analysts and consultants: the availability
of research reports on the software by analysts from leading market research firms
(like Gartner or IDC) usually witnesses the relevance and diffusion of products.

Internal quality

With OSS it is possible to examine the internal quality of software, which is
generally not disclosed for commercial software. For the purpose of evaluating the
internal qualities you can choose among the many metrics proposed in literature and
effectively supported by tools, like McCabe Cyclomatic Complexity, Chidamber and
Kemerer’s object-oriented metrics suite, Halstead complexity metrics, etc.

External quality

The main indication for the external quality of a software product is the defect
density. It is therefore interesting to evaluate the number and severity of bugs over
time, as well as defect removal speed. The latter is also a good indicator of the
quality of support for the product.

In some cases it is also relevant to evaluate the defect removal process. In some
cases, the removal of specific defect can be sped up by “donations” (in practice, you
pay the organization maintaining the software for solving the problem that is relevant
for you). If you are considering a product with a high donation/bugs ratio, you must
consider this cost of maintenance in your cost/benefit analysis.

Probability of support in the feature

General it is needed that a software product is supported as long as it is in use. We
can estimate if the OSS being evaluated will be supported in the future through an in-
depth analysis of the community of OSS developers, assessing:

The “vitality” of the product, indicated by its age and the number and frequency
of releases.

OpenBQR: a framework for the assessment of OSS 179

The number of companies involved in the development. A large number of
companies is a good index of probability for a continuative support.
The number of developers per company is useful to understand how important –
or even “strategic”– each company considers the OSS product.
The number of independent developers is also relevant, since a large community
of developers guarantees a continuous development and maintenance effort.

4 Open BQR: a framework for the evaluation of OSS
We defined Open BQR as an extension and integration of Open BRR and QSOS to
address some of the problems of the current OSS evaluation methods, which are still
immature, due to the relative novelty of the field. Here, we list some problems that
Open BQR helps addressing.

Existing methods usually focus on specific aspects of OSS.
Some methods proceed to evaluating indicators before they are weighted, so
some factors may be measured or assessed even if they are later given a very
low weight or even a null one. This results in unnecessary waste of time and
effort.
No OSS evaluation method adequately deals with internal and external product
qualities, even though the source code is available.
The dependence of the users of OSS is not adequately assessed, especially the
availability of support over time and the cost of proprietary modules developed
by third parties.

During the definition of Open BQR, we tried to build a complete, simple, repeatable,
adaptable and open OSS evaluation method with the following characteristics. As
such, Open BQR can be used by several types of users, including ICT experts who
need to evaluate and select OSS products, OSS developers, software quality
assurance and measurement professionals. The main features of Open BQR concern
the investigation of a number of relevant aspects of an OSS product, including:

Functional adequacy to requirements;

Quality, in terms of absence of defects or time-to-fix;

Availability of maintenance support;

Cost of non OSS modules or necessary development tools;

Other issues like license type, programming language ...
The evaluation process is composed of three phases, in the same line of thought as
Open BRR, as we detail in the following subsections. These phases and their sub-
phases consider the OSS product features outlined in Section 3.

Quick Assessment Filter

Like in the Open BRR a list of topics is identified, along with their characteristics.
Unlike in the Open BRR, the characteristics are measured only after a weight has
been assigned to them. The idea is to avoid data collection for characteristics that
may be deemed of no or little importance, and reduce the effort and time for defining

180 Davide Taibi, Luigi Lavazza, and Sandro Morasca

a measurement plan and collecting the data. This phase is divided into five steps,
each of which addresses a different area, as follows.

1. Selection of indicators based on scope and target use: First, the application
target is selected (Mission-critical, Regular, Development, Experimentation, …).
Second, the license type is assessed, to check if the license type allows the
development of the product as required by the specifications. Third, standard
compliance, implementation language, internationalization support, books, and
interests by major analysts are taken into account.

2. Analysis of external qualities: mainly, this step addresses the defects uncovered,
the percentage of those that were fixed, and the distribution and average of the
time it took to fix them.

3. Analysis of internal qualities: internal sub-characteristics qualities from the
ISO9126 standard have been selected, along with other common indicators, such
as McCabe’s cyclomatic complexity.

4. Product support over time: this can be quantified based on the number of
programmers that provide solutions to the incoming requests.

5. Existence of required functionalities: based on the user requirements, the
functionalities of the OSS product are weighted on a 0 - 9 scale, to assess their
relative importance. The required functionalities are then assessed on a 0 – 100
scale (the value ‘0’ meaning “not implemented” and the value ‘100’ meaning
“fully implemented”).

Data Collection & Processing

The outcome of the previous phase is a list of all the necessary indicators, along with
their assigned weights. This phase is organized as follows:

1. Pruning: All of the indicators with a zero weight or a weight below a user-
specified threshold are eliminated.

2. Measurement: The remaining characteristics are measured.

3. Normalization: The weights for each of the five areas described in the steps of
Phase 1 are normalized to a total of 100. This allows for a fair comparison
across different areas, i.e., each area will receive a score between 0 and 100.

4. Assessment: The final score for each area is obtained, and a single score is
computed for the entire product as a weighted sum of the results obtained for the
single areas, if needed. This can be useful for a first assessment, for instance for
filtering out products whose total overall score is too low. An in-depth
comparison among OSS products requires the knowledge of the values obtained
in the single areas, along with the evaluation of costs.

Data Translation

This last phase consists in visualizing the results of the evaluation of the various
products for comparison purposes. An example of a polar plot for immediate
visualization is given in Fig. 1.

OpenBQR: a framework for the assessment of OSS 181

5 Validation
In order to validate the approach three well known Content Management Systems
have been evaluated by means of Open BQR. The results have been compared with
the informal evaluations of the same tools expressed (via forums etc.) by the
community of users. For space reasons we cannot provide the entire evaluation, so
we report here a few details to show how one should proceed with OpenBQR. The
three products we analyzed are Mambo (http://www.mamboserver.com), Drupal
(http://www.drupal.org) and WebGUI (http://www.webgui.it). We started by setting
a number of requirements for the application, and we ranked them in order of
importance. We envisioned a personal web application with a user-defined layout
(weight 10), with user-operated functionalities for creating, reading, updating,
deleting web pages (weight 10) and files (weight 5), image gallery (weight 7), and
support for the Italian language (weight 4). We then carried out the other activities of
the Quick Assessment Filter.

target indicators

external qualities

internal qualities

support

cost

functionality

Product A

Product B

Product C

Fig. 1. Open BQR evaluation: visualization of the comparison of three products.

Some details of the evaluation are reported in Appendix A. The following
comparison table reports the synthesis of the results for the three products.

Product Mambo Drupal Web GUI

Target usage assessment 30,69 20,31 28,45

Analysis of external qualities 11,72 9,66 14,14

Availability of support in the future 35,68 29,14 13,10

Satisfaction of functional requirements 100 100 100

Overall evaluation 78,10% 68,10 55,69

Rating

According to our analysis, the best product is Mambo, although from the point of
view of the external quality WebGUI is better.

6 A web-based tool implementing OpenBQR
A web based tool is being developed to help users apply the method in a coherent
way. The tool is designed to be able to easily manage a complete assessment, from

182 Davide Taibi, Luigi Lavazza, and Sandro Morasca

the requirements analysis, to the final visualization of the results. The main goal of
the tool is to provide a framework for the comprehension and application of the
Open BQR model, through all its steps, starting from the requirements analysis, to
the assessment of all the indicators and at the end showing a complete report with the
total score and a radar graph.

Through the web-based tool, we also collect data about the usage of Open BQR
(what features the users consider more important, what kind of software they are
interested into, etc.). These data are used to improve the method and the tool. The
users’ privacy is protected by a nondisclosure agreement. Data are published only in
aggregated form and we take care that no information about specific users is ever
made public.

Fig. 2. A screenshot of the Open BQR web-based tool.

7 Conclusions
In this paper, we have introduced a new OSS quality evaluation framework, which
we built by integrating and extending existing approaches, so as to take advantage of
their strengths, alleviate some of their drawbacks, and include some additional
characteristics of interest. OpenBQR is fairly complete, simple, repeatable,
adaptable, and open, so it can be used by different software organizations.

Future work will include using OpenBQR for the evaluation and comparison of
OSS products in several different areas. This may lead to tailored, more specific
versions of OpenBQR for the different application areas. Also, this will allow us to
further validate both the way the approach is used and its usefulness in reflecting
what the software industry expects from an OSS quality evaluation framework. This

OpenBQR: a framework for the assessment of OSS 183

will entail interviews and studies that will involve all the major stakeholders, i.e., the
OSS producers and the OSS users.

184 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Acknowledgments
The research presented in this paper has been partially funded by the IST project

[9], sponsored by the EU in the 6th FP (IST-034763).

The work was also supported by the FIRB project “ARTDECO," sponsored by the
Italian Ministry of Education and University, and the project “La qualità nello
sviluppo software," sponsored by the Università degli Studi dell'Insubria.

8 References
[1] D. Cerri and A. Fuggetta, “Open Standards, Open Formats, and Open Source”,

July 2006, Submitted for publication
[2] A. Fuggetta. “Open source software: an evaluation”. Journal of Systems and

Software, April 2003.
[3] “Making Open Source Ready for the Enterprise: The Open Source Maturity

Model”, from “Succeeding with Open Source” by Bernard Golden, Addison-
Wesley, 2005, available form http://www.navicasoft.com

[4] Atos Origin, “Method for Qualification and Selection of Open Source software
(QSOS), version 1.6”, http://www.qsos.org/download/qsos-1.6-en.pdf

[5] “Business Readiness Rating for Open Source - A Proposed Open Standard to
Facilitate Assessment and Adoption of Open Source Software”, BRR 2005 -
RFC 1, http://www.openbrr.org.

[6] S. H. Kan, “Metrics and Models in Software Quality Engineering, 2nd Edition”,
Addison Wesley Professional, 2003.

[7] G. Cosenza, Liberi di Cambiare, Computer Business Review On-line Italy,
http://www.cbritaly.it/Aree-tematiche/OSS/Liberi-di-cambiare. (In Italian).

[8] J. Smith David, D. Schuff, R. St. Louis, “Managing your total IT cost of
ownership”, Communications of the ACM, Volume 45, n. 1 (January 2002).

[9] http://www.qualipso.eu

OpenBQR: a framework for the assessment of OSS 185

9 Appendix A. Details of the evaluation of CMS

Product Drupal 4.7.4 Mambo 4.5.3 WebGUI 7.0
System requirements Drupal Mambo WebGUI

Application Server PHP 4.3.3+ PHP 4.1.2+ mod_perl

Cost Free Free Free

Database MySQL, Postgres MySQL MySQL

License GNU GPL GNU GPL GNU GPL

Operating System Any Any Any

Programming
Language

PHP PHP Perl

Web Server Apache, IIS Apache, IIS, any
PHP enabled
web server

Apache

Support Drupal Mambo WebGUI

Commercial Manuals Yes Yes Yes

Commercial Support Yes Yes Yes

Commercial Training Yes Yes Yes

Developer Community Yes Yes Yes

Online Help Yes Yes Yes

Public Forum Yes Yes Yes

Third-Party Developers Yes Yes Yes

Ease of Use Drupal Mambo WebGUI

Mass Upload Free Add On No Yes

Prototyping No No Yes

Server Page Language Yes Yes Yes

Spell Checker Free Add On No Limited

Style Wizard No No Yes

Template Language Limited Yes Yes

WYSIWYG Editor Free Add On Yes Yes

Built-in

Applications

Drupal Mambo WebGUI

Blog Yes Yes Yes

Document
Management

Limited Free Add On Limited

File Distribution Free Add On Free Add On Yes

Link Management Free Add On Yes Yes

Mail Form Free Add On Yes Yes

Photo Gallery Free Add On Free Add On Yes

186 Davide Taibi, Luigi Lavazza, and Sandro Morasca

Indicators Assigned
weight

Evaluation Normalized
weight

Weighted
evaluation

Target usage
type of license 9 10 15.52 15.52
standard compliance 5 8 8.62 6.90
implementation language 0 0 0.00 0.00
internationalization support 4 10 6.90 6.90
books 2 4 3.45 1.38
analysts and consultants 0 0 0.00 0.00

External qualities
bug number 6 8 10.34 8.28
average time for defect
removal

4 5 6.90 3.45

effect of donations of defect
removal speed

6 0 10.34 0.00

Internal qualities
complexity 0 0 0.00 0.00
reuse 0 0 0.00 0.00
dependencies 0 0 0.00 0.00
others 0 0 0.00 0.00

Future support
number of releases 9 10 15.52 15.52
number of organizations
supporting the software

5 9 8.62 7.76

number of programmers per
organization

4 9 6.90 6.21

number of independent
programmers

4 9 6.90 6.21

Total 100.00 78.10

Network Analysis of the SourceForge.net Community

Yongqin Gao and GregMadey

Department of Computer Science and Engineering

University of Notre Dame

{ygao1,gmadey}@nd.edu

Abstract. Software is central to the functioning of modern computer-based so-
ciety. The OSS (Open Source Software) phenomenon is a novel, widely grow-

ing approach to develop both applications and infrastructure software. In this

research, we studied the community network of the SourceForge.net, especially

the structure and evolution of the community network, to understand the Open

Source Software movement. We applied three different analyses on the network,

including structure analysis, centrality analysis and path analysis. By applying

these analyses, we are able to gain insights of the network development and its

influence to individual developments.

1 Introduction

In recent research, network characteristics have received more and more attention, es-
pecially in evolving networks like the Internet, social networks and communication
networks [22, 24, 18]. Analyzing these characteristics can reveal interesting informa-
tion. In this study, we used network analysis to investigate the network characteristics
in the evolution of the community network in SourceForge.net.

2 Related Work

Topology analysis is a method that can be used to understand the evolving complex
networks [19, 3, 12]. It can also be used to understand the OSS phenomenon. This
study also tried to understand the OSS phenomenon by studying the community as a
collaboration network where every user and project can be a single node in the net-
work.

Gao et al. [14] analyzed the empirical data they collected from SourceForge to
obtain statistics and topological information of the Open Source Software developer
collaboration network. They extracted the parameters and generated a model that de-
picts the evolution of this collaboration network. They also used these parameters to
characterize the empirical data they collected from SourceForge, while other research
tended to look at the network as a single snapshot in its evolution, which means they
all based their observations on network, without respect to time. They were able to
inspect the network with consideration of time, using the empirical data collected over
more than two years.

Yongqin Gao and Greg Madey

Xu, Madey and Gao [25] presented the results of docking [9] a Repast [17] sim-
ulation and a Java/Swarm [16] simulation of four social network models of the Open
Source Software community. The simulations grew “artificial societies” representing
the SourceForge developer/project community. As a byproduct of the docking exper-
iment, they provided observations on the advantages and disadvantages of the two
toolkits formodeling such systems.

These previous analyses studied the OSS community based on the global topology
of the collaboration network. These methods were not capable of revealing behaviors
of a single object such as a user or a project. Our study extended the understanding
of OSS to the study of individual behaviors and introduced a new measure set in the
study of the OSS community.

3 Our Approach

The analysis we used includes structure analysis, centrality analysis and path analysis.
We conducted the analyses in the followingmanner. First, we conducted the structural
analysis, including the following measures: diameter, clustering coefficient and com-
ponent distribution. Thenwe conducted the centrality analysis, including the following
measures: average degree, degree distribution, average betweenness and average close-
ness. Finally, we conducted the path analysis on most of the previousmeasures.

3.1 Structure Analysis

The first analysis is the structure analysis [20, 10]. Structure analysis is used to inspect
the macro-measures of the network structure. The measures inspected in the structure
analysis describe the network structure in a global view. Study of these measures helps
us understanding the influence of network structure to individual nodes in the network.

The diameter of a network is the maximum distance (number of hops or edges)
between any pair of nodes. The diameter can also be defined as the average length of
the shortest paths between any pair of nodes in the network. In our research, we are
more interested in the measures that can describe the efficiency of information propa-
gation. So the average value is more suitable for our purpose, and we used the second
definition in our research. Strictly speaking, the diameter of a disconnected graph (i.e.,
one containing isolated components) is infinite, but it is normally defined as the max-
imum diameter of its sub-clusters or other approximate values. Random graphs and
other complex networks all tend to have small diameters. This is the phenomenon sci-
entists referred to as the “small world phenomenon” [23]. The smaller the diameter of
a network is, the better the network is connected. The diameter is one of the important
attributes in complex network research, especially since the smallworld phenomenon1

was popularized. We calculated the diameter measures using approximate method,
which can generate fairly accurate results, especially when the network size is huge
(N > 10, 000).More detailed explanation and discussion can be found in [13].

1 “Six degrees of separation” is a famous claim by Ouisa, a popular character in John Guare’s

play (1990)

188

Network Analysis of the SourceForge.net Community

The equation we used to calculate the approximate diameterD is

D =
log(N/z1)

log(z2/z1)
+ 1 (1)

where N is the number of nodes in the network, z1 is the average degree of nodes in
the network, and z2 is the average number of nodes two steps away from a given node
as defined in [13].

The next measure is clustering coefficient. The neighborhood of a node consists
of the set of nodes to which it is connected. The clustering coefficient of a node is
the ratio of the number of links to the total possible number of links among the nodes
in its neighborhood. The clustering coefficient of a graph is the average of the clus-
tering coefficients of all the nodes. Recent research has found that real complex net-
works typically have a high clustering coefficient, which means that they exhibit a
large degree of clustering [5]. Clustering coefficients of some real networks, such as
the network we studied in SourceForge, can be calculated more easily from related bi-
partite graphs [21] by using the generating function method for bipartite graphs.More
detailed explanation of this method can be found in [13].

Using this method, the clustering coefficients of these kinds of bipartite structures
result in a non-vanishing value,

C =
1

1 +
(μ2−μ1)(ν2−ν1)2

μ1ν1(2ν1−3ν2+ν3)

(2)

where μn =
∑

k k
n
Pd(k) and νn =

∑
k k

n
Pp(k). In the developer-project bipar-

tite network, Pd(k) represents the fraction of developers who joined k projects, while
Pp(k) means the fraction of projects that have k developers.

The last measure in the structure analysis is the component distribution. A compo-
nent of a network is defined as the maximal subset of connected nodes. To formalize
the definition of a component, first we define a path in a network as:

– A path v1e1v2...en−1vn is a sequence of nodes such that from each of its nodes vi

there is an edge ei to the next node vi+1 in the sequence. Normally, the first node v1

is called the start node and the last node vn is called the end node.

Then the component C of a network can be defined as:

– Component C is a subset of (V,E) of a network. For any pair of nodes vi and vj ,
where vi, vj ∈ C, there exists a path viei...ej−1vj between these two nodes. And
for any any pair of nodes vk and vl, where vk ∈ C and vl /∈ C, there doesn’t exist a
path vkei...ej−1vl between these two nodes.

3.2 Centrality Analysis

The second analysis is the centrality analysis. Centrality analysis is used to inspect the
micro-measures of the network structure or the relative importance of a node within

189

Yongqin Gao and Greg Madey

a network. Study of these measures helped us understand the influence of individual
nodes to the global network structure.

The first measure is degree. The degree of a node, k, equals the total number of
other nodes to which it is connected, while P (k) is the distribution of the degree k

throughout the network. Degree distribution in real networks was believed to be a
normal distribution (when N → ∞), but recently, Albert and Barabási and others
found it fit a power law distribution in many real networks [7]. The other measure
related to degree is the average degree as

∑
P (k)/N , which is the average of the node

degrees in the network.
The next measure is betweenness. Betweenness is a centrality measure of a node

within a network. Nodes that occur on many shortest paths between other nodes have
higher betweenness than those that do not. For a graph G(V, E) with n nodes, the
betweennessB(v) for node v is

B(v) =
∑

s�=v �=t∈V

σst(v)

σst

(3)

where σst is the number of shortest geodesic paths from s to t, and σst(v) the number
of shortest geodesic paths from s to t that pass through the vertex v. This may be
normalized by dividing through by the number of pairs of vertices not including v,
which is (n − 1)(n − 2).

The last measure is closeness. Closeness is also a centrality measure of a node
within a network. Nodes that are “shallow” to the other nodes (that is, those that tend to
have short geodesic distances to other nodes within the network) have higher closeness.
Closeness is preferred in centrality analysis to mean shortest-path length, as it gives
higher values to more central nodes, and so is usually positively associated with other
measures such as degree.

The closenessC(v) for a vertex v is the reciprocal of the sum of geodesic distances
to all other vertices in the graph:

C(v) =
1∑

t∈V dG(v, t)
. (4)

3.3 Path Analysis

All the previous analyses (structure analysis and centrality analysis) are based on net-
work snapshot topology. They depict the characteristics of a static network at a given
point of time. But these are not the only important analyses in a network, especially an
evolving network.With sequence of network snapshots instead of just single snapshot
of the networks, we are able to inspect not only the measures (diameter, clustering co-
efficient, component, degree, betweenness and closeness) in the previous analysis, but
also the developing trends of these measures.

We conducted the path analysis on the diameter, clustering coefficient, average de-
gree, betweenness and closeness. By inspecting these developing measures, we are
looking forward to understanding more about the life cycle of the network and indi-
vidual nodes in the network.

190

Network Analysis of the SourceForge.net Community

4 Results and Discussion

Before discussing these analyses and measures, we need to explain the collaboration
network that we studied. From SourceForge.net, we got data on two major entities –
developers and projects [2]. In this data, only one relationship existed – the participa-
tion between developer and project. Therewere no direct links between developers and
between projects. So, we looked at this network as a bipartite network, where projects
and developers were the two kinds of nodes, and edges could only connect different
kinds of nodes. There are two transformations from this network – the developer net-
work and the project network. In the developer network, there is only one type of node
representing the developer in the collaboration network, and the edge in the network
represents the relationship of collaboration. For every pair of nodes i and j, there is an
edge connecting i and j only if i and j are collaborating on at least one project.We also
generated the project network, where a node represents a project in the collaboration
network and the edge in the network represents the relationship of sharing the same
developer(s). In the following discussion, we will abbreviate these three networks as
P-NET(project network), D-NET(developer network) and C-NET(collaboration net-
work).

4.1 Structure Analysis

The first analysis we applied is the structure analysis, including measures such as di-
ameter, clustering coefficient and component distribution.As discussed in the previous
section, the diameter is approximate on the whole network by the equation 1. The re-
sulting approximate diameters for the D-NET are between 5 and 7, while the number
of developers in the D-NET ranged from 97,705 to 123,968. Thus, the diameter of the
network is quite small with regard to the overall network size (the number of develop-
ers in the network). On the other hand, the approximate diameters for the P-NET are
between 6 and 8, while the number of projects in the P-NET ranged from 70,089 to
91,713. So the diameter is relatively stable compared to the significant increase of the
network size.

The next measure is the clustering coefficient.We also used the approximate clus-
tering coefficient by applying the equation 2. The resulting approximate clustering
coefficients for the D-NET are between 0.85 and 0.95. On the other hand, the approxi-
mate clustering coefficients for the P-NET are between 0.65 and 0.75. High clustering
coefficients reveal the highly clustered property of both the D-NET and the P-NET,
which is similar to the results we got from our previous study conducted in, although
the networks have been expanded significantly.
Both diameter and clustering coefficient are popular and efficient measures to de-

scribe the structure property of a network, especially the cluster property. Highly clus-
tered networks are normally favored in real evolving complex networks like commu-
nication networks or social networks for better information propagation.
From the previous measures, we understand that both D-NET and P-NET are

highly clustered networks. But these measures do not mean the networks are fully
connected. Actually, most of the real networks are not fully connected. There will be

191

Yongqin Gao and Greg Madey

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2000

4000

6000

8000

10000

12000

14000

Component Size

C
om

po
ne

nt
s

Component Size Distribution

Data
Regression
95% confidence bound

0 5 10 15
0

5

10

15

Component Size (LOG10)

C
om

po
ne

nt
s

(L
O

G
10

)

Data
Regression
95% confidence bound

Isolated Projects

Major Component

Major Component

Fig. 1. Project Network Component Distribution

connected parts in the network, which we called as “component”. The next measure
we inspected is the component distribution. In the SourceForge community, power law
exists in the component distribution of the networks. In Figure 1, the component distri-
bution for the P-NET for June 2006 is shown.There are two figures. In the lower figure,
after applying log transformation on both coordinates, we found that the component
distribution fits a straight line quite well without considering the biggest component
(which will be called the major component in latter discussion). The R

2 [11] of linear
regression with the major component is 0.4023 and the R

2 of linear regression with-
out the major component is 0.9886. Also, in the lower figure, we illustrated the 95%
confident boundary for the linear regression as the dot line. In the upper figure, where
the coordinates are in normal scale, we made another interesting discovery: almost all
the components are quite close to each other, except the two extremes. One extreme
is the major component and the other is the isolated components, which include only
isolated developers.

4.2 Centrality Analysis

The second analysis we conducted is the centrality analysis, which focus on the fol-
lowing measures – degree, betweenness and closeness.
Degree is the simplest measure of the connectivity of a node in the network. We

also used the C-NET, D-NET and P-NET for June 2006 as examples in this section.
There are totally four degrees of developer and project in these three networks:

– Degree of developer in the C-NET is the number of projects in which a developer
participated in the community.

– Degree of developer in the D-NET is the number of developers who have at least
one collaboration with the given developer in the community.

192

Network Analysis of the SourceForge.net Community

0 20 40 60
0

5

10

15
x 10

4

Project count

C
ou

nt

Developer project distribution

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

Project count

C
ou

nt

Developer project distribution

Data
Regression
95% confidence bound

Fig. 2. Developer Size Distribution

– Degree of project in the C-NET is the number of developers who participated in the
given project in the community.

– Degree of project in the P-NET is the number of projects share by at least one
common developer with the given project in the community.

In the June 2006 dataset, the average degree of developer in the C-NET is 1.4525;
the average degree of developer in the D-NET is 12.31; the average degree of project
in the C-NET is 1.7572; the average degree of project in the P-NET is 3.8059, while
the sizes of the C-NET, the D-NET and the P-NET are 215,681, 123,968 and 91,713.
The average degree of developer and project in the C-NET is relatively low since the
isolated developer (developer with single project) and the isolated project (projectwith
only one developer) are big parts of the community.

Then we investigated the degree distributions of the SourceForge.net community.
Degree distribution is proven to have a normal distribution in the ER model when
N → ∞. This was believed to be a good model for the real complex network before
the power law was reported formany real network systems byBarabási et. al [6]. In the
SourceForge community, we found that the degree distributions (distributions for all
four degrees) also followed power law. Figure 2 and Figure 3 show two of the degree
distributions.

These figures are based on the dataset from SourceForge.net for June 2006. The
left figures are the degree distributions in normal coordinates. To verify the existence
of power law in these distributions, we applied log-log transformations on the data
to generate the right figures, which are the degree distributions on log-log coordinates.
The 95% confident boundaries for the linear regression also are provided on the figures
for all the log-log transformed degree distributions. The R

2 of linear regression for the
developer degree distribution in the C-NET is 0.9577. The R

2 of linear regression for

193

Yongqin Gao and Greg Madey

0 100 200 300 400
0

2

4

6

8

10

12
x 10

4

Project count

C
ou

nt

project size distribution

0 2 4 6
0

2

4

6

8

10

12

14

16

Project size

C
ou

nt

Project size distribution

Data
Regression
95% confidence bound

Fig. 3. Project Size Distribution

the project degree distribution in the C-NET is 0.9173. Thus, these distributions fit
power law distributions very well.
Betweenness and closeness are also the common measures for centrality analysis.

Betweenness is a measure to describe the importance of the node in the network ac-
cording to shortest path, and closeness is a measure to describe how close the node is
to other nodes. Betweenness is a normalized value in [0, 1]. The higher the measure is,
the more central the node is to the network. Closeness is also bounded by [0, 1], but it
is not normalized. So closeness tends to decrease when the network size is increasing.
Normally, these measures yield very small value in large networks (N > 10, 000), so
comparison of these measures only makes sense when comparing networks of simi-
lar size. Also, using the dataset from SourceForge.net for June 2006, the average be-
tweenness for the P-NET is 0.2669e-003 and the average closeness for the P-NET is
0.4143e-005, which are relatively large for a network this size.

4.3 Path Analysis

All the measures in the previous sections (diameter, clustering coefficient, component,
degree, betweenness and closeness) are about the topology of the networks. They de-
pict the characteristics of a static network at a given point of time. These are not the
only important attributes in a network, especially an evolving network [15, 4]. Since
we had multiple monthly database dumps from SourceForge.net, we were able to in-
vestigate the development patterns of these measures of the networks. By applying the
path analysis, we can study the life cycle and the evolving patterns of the network and
individuals in the network.

The first path analysis is on the average degrees. Average degree < k >, which
gives the average number of links per node, is a good quantitative measurement for
the connectivity of a graph. Two of the developing pattern of the average degrees are

194

Network Analysis of the SourceForge.net Community

0 2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 P
ro

je
ct

s

Developer Participated Projects Development

Data

0 2 4 6 8 10 12 14 16 18 20
1.2

1.3

1.4

1.5

1.6

Time period

A
ve

ra
ge

 P
ro

je
ct

s

Data
Regression

Fig. 4. Average Developer Degree in the C-NET

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

A
ve

ra
ge

 U
se

rs

Average Project Size Development

Data

0 2 4 6 8 10 12 14 16 18 20
1.2

1.4

1.6

1.8

2

2.2

Time period

A
ve

ra
ge

 U
se

rs

Data
Regression

Fig. 5. Average Project Degree in the C-NET

shown in Figure 4, Figure 5. The X coordinate in the figure is the number of months
that passed after February 2005.
For the average degrees, we show the linear regression in the lower figures with a

95% error bar for every data point. The slope of the regression for developer degree
is -0.0009 and the slope of the regression for project degree is -0.0036. The average
degrees are actually decreasing, which means the average project size and average
number of projects a single developer participated in are decreasing.

195

196 Yongqin Gao and Greg Madey

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

D
ia

m
et

er

D NET Diameter Development

Data

0 2 4 6 8 10 12 14 16 18 20

5.6

5.8

6

6.2

6.4

6.6

Time period

D
ia

m
et

er

Data
Regression

Fig. 6. Developer Network Diameter

Diameter and clustering coefficient is closely related to average degree. We will
conduct path analysis on these two measures next. In this paper, we discuss only the
D-NET, detailed discussion about other networks can be found in [13].

The diameter of the D-NET is a good measure of network communication ability.
A shorter diameter results in fewer average steps needed for one developer to spread
a message to another developer and less time needed for an idea to spread through
the network. The D-NET has a small diameter, which was calculated in a previous
section. Also, we investigated the evolution of the diameter of the D-NET, as shown in
Figure 6.

The figure indicates that D decreases with time, which is different from the previ-
ous research [8] on random networks that reports that diameter increases with network
size. The lower figure shows the linear regression with 95% error bar for the develop-
ing trend of diameter for the D-NET. The slope of the regresion is -0.0072.

Clustering coefficient is another important measures of the topology of real net-
works. So the clustering coefficient, a quantitative measure of clustering, CC, is also
a measure we investigated. The approximate clustering coefficient for the D-NET as a
function of time is shown in Figure 7.
In the figure, we can observe the increasing trend of the clustering coefficient.

The lower figure shows the linear regression with 95% error bar for the developing
trend of clustering coefficient for the D-NET. The slope of the regression is 0.0011.
The clustering coefficient for the D-NET tells us how much a node’s co-developers
are willing to collaborate with each other, and it represents the probability that two of
its developers are collaborating on a project. Thus, with the evolution of the D-NET,
more edges (collaboration relations) are formed. This will lead to an increase in the
connectivity of the developer with the neighboring developers. Furthermore, this leads
to the increase in the clustering coefficient.

Network Analysis of the SourceForge.net Community 197

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

C
C

D NET Clustering Coefficient Development

Data

0 2 4 6 8 10 12 14 16 18 20
0.85

0.9

0.95

Time period

C
C

Data
Regression

Fig. 7. Developer Network Clustering Coefficient

Increases on clustering coefficients in D-NET suggest the network is evolving to
improve its cluster property. The higher the clustering coefficient is, the more con-
nected the network is.
Now we will apply the path analysis on average betweenness and average close-

ness. Figure 8 shows the developing trend of average betweenness in the P-NET. In the
upper figure, we can observe the almost flat developing trend of the betweenness, al-
though the overall size of the network has increased significantly during the same time
period. This can suggest that the network is in a stable topology in its own evolution.
In the lower figure, we magnify the Y coordinate to have a close look at the devel-
oping trend of the average betweenness. The average betweenness has a slightly in-
creasing trend. This observation can be explained by the “rich get richer” phenomenon
discovered in other complex networks such as the Internet. Although the network is
constantly expanding, the hub (the node with most links) will keep gaining more con-
nections than the others. Also, alternative hubs or regional hubs will also emerge from
the network, and these hubs will increase the average betweenness of the network.

Average closeness is another measure of centrality. Figure 9 shows the develop-
ing trend of the average closeness in the P-NET. The upper figure is the developing
trend in normal coordinates and the lower figure is the developing trend in magnified
Y coordinates.We can observe the similar developing behavior of the average close-
ness to the average betweenness. But average closeness is more flat than the average
betweenness. This is because closeness for individual node is not normalized like the
betweenness for individual node. Thus, the significant increase in the overall network
size will have more influence on the closeness than on the betweenness. Therefore the
developing trend of the average closeness will be more flat than the developing trend
of the average betweenness.

198 Yongqin Gao and Greg Madey

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

A
ve

. B
et

w
ee

nn
es

s

P Net Average Betweenness

Average Betweenness

2 4 6 8 10 12 14 16
2.6

2.62

2.64

2.66

2.68

2.7
x 10

4

Time period

A
ve

. B
et

w
ee

nn
es

s

Average Betweenness

Fig. 8. Project Network Betweenness

2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

A
ve

. C
lo

se
ne

ss

P Net Average Closeness

Average Closeness

2 4 6 8 10 12 14 16
4

4.05

4.1

4.15

4.2
x 10

6

Time period

A
ve

. C
lo

se
ne

ss

Average Closeness

Fig. 9. Project Network Closeness

By using path analysis, we are able to look at not only the topology of the network
at a given time, but also at the evolution of the network topology, and the mutual
inferences between a single entity in the network and the whole network.

One of the common discoveries in all the path analyses is life-cycle like behaviors.
Most of the measures have sustained a stable level throughout the inspected period of
time in this study and also have increased/decreased from the previous study carried
out in [13]. This phenomenon suggests that we have witnessed the beginning of the
evolution of the SourceForge.net community and possibly the mature (stable) era of
the SourceForge.net community. By closelywatching the SourceForge.net community,

Network Analysis of the SourceForge.net Community 199

we may have deeper insight into the evolution of the OSS community. Also, similar
analyses can be applied to other evolving complex networks, such as communication
networks or social networks to study the life cycle of those networks.

We also have made another discovery about the network measures.We observed a
strong tie between the networkmeasures and the evolution of the community networks.
This discovery suggests that the network measures can be used not only as a predictor
of the future of an individual entity in the network or the whole network.

5 Conclusion

In this study, we studied multiple networkmeasures of the SourceForge.net community
network and their evolution patterns by applyingmultiple analyses, including structure
analysis, centrality analysis and path analysis. In the structure analysis, we calculated
the diameter, clustering coefficient and component distribution. The two approximate
methods used to calculate the approximate diameter D and approximate clustering
coefficient CC are

D =
log(N/z1)

log(z2/z1)
+ 1

CC =
1

1 +
(μ2−μ1)(ν2−ν1)2

μ1ν1(2ν1−3ν2+ν3)

.

In the centrality analysis, we calculated four different average degrees and four
different degree distributions. Also, we calculated average betweenness and average
closeness. The equations to calculate the betweenness B(v) and closeness C(v) for
individual nodes are

B(v) =
∑

s�=v �=t∈V

σst(v)

σst

C(v) =
1∑

t∈V dG(v, t)
.

In the path analysis, we investigated developments of the multiple measures, in-
cluding average degrees, diameter, clustering coefficient, average betweenness and av-
erage closeness.

Acknowledgment. This work was supported in part by the National Science Founda-
tion, CISE/IIS-Digital Society & Technology, under Grant No. 0222829 [1].

References

1. OSS research (http://www.nd.edu/˜oss). 2006.
2. OSS research portal (http://zerlot.cse.nd.edu). 2006.

Yongqin Gao and Greg Madey

3. L.A. Adamic and B.A. Huberman. Scaling behavior of the world wide web. Science,
287(2115), 2000.

4. J. Ahola. Mining sequential patterns. VTT research report TTE1-2001-10, 2001.
5. R. Albert and A.L. Barabási. Dynamics of complex systems: Scaling laws for the period of
boolean networks. Physics Review, 85(5234), 2000.

6. R. Albert and A.L. Barabási. Statistical mechanics of compex networks. Reviews of Modern
Physics, 74(47), 2002.

7. R. Albert, H. Jeong and A.L. Barabási. Diameter of world-wide web. Nature, 401(130),
1999.

8. B. Bollobás. Random graphs. London:Academic, 1985.
9. R. Burton. Simulating Organizations: Computational Models of Institutions a nd Groups,
chapter Aligning Simulation Models: A Case Study and Results. AAAI/MIT Press, Cam-

bridge, Massachusetts, 1998.

10. J. Camacho, R. Guimerà and L.A.N. Amaral. Preprint cond-mat/0102127. 2001.
11. Online document. Pearson’s r. http : //www.analytics.washington.edu/

rossini/courses/intro − nonpart/text/Pearson s l r l .html.
12. M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-law relationships of the internet
topology. Computer Communication Review, 29(251), 1999.

13. Y. Gao. Topology and evolution of the open source software community. Master Thesis,
2003.

14. Y. Gao, V. Freeh and G. Madey. Analysis and modeling of the open source software
community. NAACSOS, Pittsburgh, 2003.

15. J. Hamilton. Time series analysis. Princeton University Press, Princeton, NJ, 1994.
16. D. Hiebeler. The swarm simulation system and individual-based modeling. Advanced

technology for natural resource management, 1994.
17. Repast Information. http://repast.sourceforge.net/. 2002.

18. F. Liljeros, C. Edling, A. Lan, S. He and Y. Aberg. Hub caps could squash STDs. Na-
ture, 411(907), 2001.

19. A. Border, R. Kumar, F. Maghoul, P. Raghavan, S. Rajalopagan, R. Stata,
A. Tomkins and J.Wiener. Graph structure in the web: experiments and models. Computer

Networks, 33(309), 2000.
20. J.M. Montoya and R.V. Solé. Preprint cond-mat/0011195. 2000.
21. M.E.J. Newman and D.J. Watts. Random graph models of social networks. Physics Review,
64(026118), 2001.

22. S.L. Pimm. The Balance of Nature. University of Chicago Press, Chicago, 1991.
23. D.J. Watts. Small world. Princenton university press, NJ, 1999.
24. R.J. Williams, N.D. Martinez, E.L. Berlow, J.A. Dunne and A.L. Barabási. Two de-
grees of separation in complex food webs. Santa Fe Institute Working Paper Series, (01-
07-036), 2001.

25. J. Xu, Y. Gao, J. Goett, and G. Madey. A multi-model docking experiment of dynamic

social network simulations. Agent conference, Chicago, IL, 2003.

200

Part II

Short Papers

Influence in the Linux Kernel Community

Timo Aaltonen and Jyke Jokinen
Institute of Software Systems, Tampere University of Technology

first.last@tut.fi

Abstract. Several success stories of open source (OS) products have been seen

during last decade. Due to the economical importance of the products, it is

important to know who are the ones who have the largest influence to the

products. Is there a dominant player in developing communities? In this paper1

the aspect is studied with respect to the Linux Kernel community. We show

that the influence is centered to a small number of core people, and corporates

have a large impact to the development. Moreover, we enumerate the most

influential companies.

Key words: data mining, Linux kernel

1 Introduction

Open source (OS) software development has gained much attention lately. During

last decade several success stories, like Apache, Mozilla and Linux, has been seen.

Apache is the market leader of the world’s web servers [2] having over three times

the market share of its next-ranked (proprietary) competitor. Internet Explorer has

been losing market share to OS web browser, especially to Mozilla [3]. Linux [4] is a

free UNIX-type operating system originally created by Linus Torvalds.

Due to the economical importance of open source, it is important to know, who

influences the development. Is it carried out by altruistic individuals and what is the

impact of large organizations? By knowing these facts one is able to predict the

directions how the products evolve in future. This is essential when choosing

between different open source and proprietary alternatives.

This paper studies the influence of the developers and leaders of the Linux

Kernel. The Kernel was chosen because it is the only operating system challenging

Microsoft Windows, the available amount of data is large, and the number of people

working for the project is numerous.

The study of influence is based on counting the signers of Developer’s Certificate
of Origin [5] (DCO) for patches. In short, signing a DCO has two main meanings

1 This paper is a revised version of [1]

Timo Aaltonen and Jyke Jokinen204

1. the original author of a patch certifies that she has the right to submit it under the

open source license indicated in the file; and

2. later code maintainers and Linux lieutenants indicate that they accept the patch

by adding their own signature.

It is obvious that the signers are influential persons in the Linux Kernel community.

The more person signs patches the more influence she has.

We applied a set of measures to the mined data. The most important findings are

1. A large portion of the influence is contributed by a relatively small amount of

people.

2. Based on studies on e-mail addresses, corporations seem to have much influence

in the Linux Kernel community.

3. The most influential companies can be studied by relating the most influential

persons to their employees, and summing up the number of signed DCOs for

each company.

We have mined our data from publicly available sources. The DCO signatures

have been mined from GIT [6] revision control system used by Linux Kernel

developers. Technical details of the GIT data mining are presented in [1]. Personal

data of the signers have been searched with Google and from certain public data

sources. Section 1 introduces the measures, which are applied to individuals in

Section 2 and to companies in Section 3. Section 4 discusses the paper.

2 Measures

We have developed a set of measures to be applied to our data. The measures are

divided into two categories: personal, company-related. The personal measures

attempt to highlight various aspects of people in the Linux Kernel community:

– Influence distribution. Number of signed patches are counted for each person.

Then these (person, amount) pairs are sorted in descending order. The measure

illustrates how the control and development work is distributed in the

community.

– E-Mai l domain distribution. The Linux Kernel development is highly

geographically distributed. This measure shows where and by which kind of

organizations does the decision-making takes place.

– E-Mail taxonomical distribution. Measure attaches a category to e-mails from

taxonomy: corporate, open source project, ISP, e-mail provider, university,

personal domain, and other.

The company-related measures attempt to reflect the role of companies in the

development:

– Impact of Companies. Leaders and developers of the Linux Kernel community

signing the patches are related to companies they work for. Then the influence of

Influence in the Linux Kernel Community 205

employers of each company are summed together. This sum is the influence of

the company.

The measures E-Mail taxonomical distribution and Impact of Companies are the

most interesting (and the most controversial) measures. The interesting piece of

information they reveal is the role of companies in the Linux community. The former

indicates what is the impact of companies together, and the latter shows which

individual companies are the most influential. Both measures are controversial, since

their evaluation is based on opinion and skills of the researcher(s) evaluating them.

Another evaluators might get slightly different values. However, we believe, that the

measures describe interesting aspects of the Kernel community, even if their

accuracy is not ideal.

33 Measures for Individuals

The influence distribution of the Linux Kernel developers is depicted in Figure 1.

The number of signed patches is on the y-axis and individual signers are on the x-
axis sorted with respect to the number of sign-offs.

A notable shape of the curve slanting to the left is quite common in open source

projects. Actually, the y-axis has been truncated to make the shape of the curve more
visible. The curve takes this shape because a small number of core people lead the

whole community. In our previous studies [7] we have noticed that a small group of

developers contribute more than the rest of the group. We call this phenomenon the

flagpole effect.

(a) linear (b) logarithmic

Fig. 1. Influence distributions in linear and logarithmic scales.

To make clearer the strength of the flagpole effect, the influence distribution is

redrawn on a logarithmic scale in Figure 1b. It is somewhat surprising, that even

now, the curve tends to slant to the left so heavily.

Timo Aaltonen and Jyke Jokinen206

E-Mail Domain Distribution shows that the Linux Kernel development is

highly distributed. The measure is based on studying the e-mail addresses of the

persons who sign the patches. Figure 2 illustrates the distribution with respect to

highest level domains. Not surprisingly, com domain is the number one in this

measure. The second place is taken by org, and the third one is occupied byde

domain, implying that many of the Kernel developers are from Germany.

Fig. 2. The e-mail domains of patch

E-Mail Taxonomical Distribution was made by attaching each domain a category

from taxonomy: corporate, open source project, ISP, e-mail provider, university,

personal domain, and other. Google was used manually to attach a category to the

domain. The results are illustrated in Figure 3. The distribution has one unexpected

result: category personal domain taking the second place is somewhat surprising.

Category Number Category Number

corporate
personal domain
other

university

342
207
200
114

ISP

open source project

e-mail provider

110
78
21

Fig. 3. The taxonomy of e-mail addresses

4 Measures for Companies

We took a closer at the top 100 signers according to criterium of most signed

patches, and used Google search engine to study whether the top 100 leaders were

Influence in the Linux Kernel Community 207

employed by some organization. Then we were able to calculate the size of the

impact of the organizations to the Linux Kernel development.

The search techniques we used were various. We had two obvious starting

points: a name and an e-mail address. If a developer had a company-related e-mail

then it is quite obvious that she works for the company. Few developers had their CV

on www , which was easy to find with a simple search. Book publishers and

organizer of open-source-related conferences maintain lists of their contributors with

a small description of people’s careers on www. Often, these people were among the

top 100 leaders to the Linux Kernel. One surprisingly fruitful technique was search

with the name part from an e-mail address. People seem to preserve their original e-

mail names in their e-mail addresses. This way the employer was joined to a set of

contributors. Some people were found from Wikipedia [8]. Moreover, several

creative searches were carried out.

The results of Impact of Companies measure are shown in Figure 4. The

company with the largest impact during our time interval has been SteelEye

Technology. Actually, all 928 signatures related to the company have been signed by

a single person. Obviously SteelEye Technology has been very active during our

time window, and perhaps all patches from the company are signed by the person.

After SteelEye Technology, the next companies should not be a surprise. Google’s

rank has been improved by Andrew Morton’s migration to the company [9].

5 Discussion

We studied the Linux Kernel development by mining data from GIT repository, and

applying four measures to the mined data. The measurements show that relatively

small amount of people control the development. Similar results have been reported

earlier in [7]. E-Mail domain distribution and taxonomical distribution show that the

Linux Kernel is mostly developed in western countries and corporations have half of

the influence. Most of the most influential companies are quite expected. However,

the most influential company being SteelEye Technology was not expected result.

Similar research to ours has been published in [10]. In this study patches between

version 2.6.19 and 2.6.20 of Linux Kernel has been analyzed (our study used a one

year time frame between July 1st 2005 and July 1st 2006). The study contains more

measures than our study, and they are partly the same (Influence distribution).

Similarly to us, the people have been joined to the companies they work for, and this

information has been used to compute measures for companies. However, the joining

method is simpler than ours, since it is based only to the email domains, whereas we

have used more sophisticated searches.

Timo Aaltonen and Jyke Jokinen208

Company impact Company impact

SteelEye Technology

IBM

928

924

Google

Intel

Novell

759

742

665

OSDL

UNKNOWN

Cicso (Topspin)

588

453

421

Oracle

Symantec

Academic (all universities)

MISC

Broadcom Deep Blue

Solutions Limited

Qlogic

CoopTel

MontaVista Software

136

135

135

133

131

121

114

107

105

Debian

Alcatel

Red Hat

Netfilter (a project)

Linutronix

Conectiva

Ameritech

Dunvegan Media

Simtec Electronics

Wise Riddles Software

SGI

Levanta (previously Linuxcare)

376

322

302

293

283

280

260

184

165

164

155

138

Freescale

Hewlett-Packard

Network Appliance

Circle Computer Resources

Mellanox Technologies

Ultra

Toshiba

Motorola

98

94

92

86

85

79

77

74

Fig. 4. Companies and the number of patches signed by the personnel.

Acknowledgements

This work has been partly funded by Academy of Finland, project Managing Open

Source Software as an Integrated Part of Business (OSSI).

References

1. T. Aaltonen and J. Jokinen, “Demography of linux kernel developers,” Tech. Rep. 41,

Tampere University of Technology, Institute of Software Systems, 2006.

2. Netcraft, “Web server survey.” http://news.netcraft.com/archives/web_

server_survey.html/, 2006.

3. R. McMillan, “Mozilla gains on IE,” PC World, 2004.

4. “Linux online.” http://linux.org, 2006.

5. L. Torvalds, “Developer’s certificate of origin 1.1.” http://www.osdl.org/

newsroom/press_releases/2004/2004_05_24_dco.html, 2006.

6. L. Torvalds and J. C. Hamano, “GIT -fast version control system.” http://git. or.cz, 2006.

7. T. Aaltonen, J. J¬arvenp¬a¬a, and T. Mikkonen, “Oss architecture and implications,”

tech. rep., eBRC, 2006.

8. “Wikipedia, the free encyclopedia.” http://en.wikipedia.org/wiki/Main_ Page/, 2006.

9. B. Pro_tt, “Morton gets googled,” Linux Today, 2006.

10. Corbet, “Who wrote 2.6.20?.” http://lwn.net/Articles/222773/, February 2007.

EDOS Distribution System: a P2P

architecture for open-source content

dissemination

Serge Abiteboul
1

, Itay Dar
2

, Radu Pop
3

, Gabriel Vasile
1

 and Dan Vodislav
4

1. INRIA Futurs, France {firstname.lastname}@inria.fr

2. Tel Aviv University, daritay@post.tau.ac.il

3. INRIA-Mandriva, Paris, France radu.pop@inria.fr

4. CEDRIC-CNAM Paris, France vodislav@cnam.fr

Abstract. The open-source software communities currently face an increasing

complexity of managing the software content among theirs developers and

contributors. This is mainly due to the continuously growing size of the

software, the high frequency of the updates, and the heterogeneity of the

participants. We propose a distribution system that tackles two main issues in

the software content management: efficient content dissemination through a

P2P system architecture, and advanced information system capabilities, using

a distributed index for resource location.

1 Introduction

Faced with the increasing need of sharing, retrieving and loading data on the

web, the problem of distributing content to large communities across the web has

acquired a growing importance.

In the particular case of open-source software distribution (e.g. Linux), very large
amounts of data (tens of Gigabytes) must be disseminated to a very large community
of developers and users (up to millions of members). Moreover, content is frequently
updated to new versions of the software modules. For a Linux distribution, content is
generally disseminated either as ISO images of a full Linux release, or as packages
that group binaries or source code for a single software module. The problem with
the first approach is that successive Linux releases have many common parts that
users will uselessly download several times. The finer granularity in the second
approach requires more complex data management, with frequent package updates
and freshness problems.

The main requirements for an open-source software distribution system could be

summarized in four points: (i) avoid excessive charges on the distribution servers

and on the communication lines, that lead to poor global performances; (ii) provide

advanced search of content based on metadata properties; (iii) provide support for

maintaining freshness on content for each user in the distribution network; (iv)

ensure robustness in case of failure of some system components. Current distribution

Serge Abiteboul, Itay Dar, Radu Pop, Gabriel Vasile and Dan Vodislav210

architectures, centralized or based on a set of mirrors, fail to fulfill these

requirements. We believe that peer-to-peer (P2P) architectures, that uniformly share

the effort among participants and provide replication, are a good solution for

software distribution.

We present here the content distribution solution proposed in the context of the

EDOS European project [5]. EDOS stands for Environment for the development and
Distribution of Open Source software and addresses the production, management and

distribution of open source software packages. We only present the EDOS content

distribution system, which proposes a P2P dissemination architecture including all

the participants to the distribution process: publishers, mirrors and clients. The

system was implemented as an application to the distribution of Mandriva Linux

packages.

The main contributions of our system are: (i) aP2P architecture providing

resource sharing, load balancing and robustness; (ii) advanced information system

capabilities, based on distributed indexing of XML content metadata; (iii) efficient

dissemination based on clustering of packages and multicast; (iv) support for

freshness maintaining on updates, by using subscription/notification. Due to space

limitations, the paper only presents an overview of the EDOS distribution system –a

detailed description may be found in [8].

2 Related work

Linux distributions use various dissemination methods (an overview is presented in

[7]), based on sets/hierarchies of mirrors in most cases, on notification channels in

RedHat Network [15], or on versioning repositories in Conary [4].

P2P architectures for content distribution mainly address load balancing and

bandwidth sharing (Coral [13], Codeen [3]). We extend this primary use by adding a

distributed information system based on XML metadata indexing and querying,

together with efficient file sharing and multicast dissemination, such as BitTorrent

[12]. Among the various P2P infrastructures [11], the most appropriate in our context

are structured overlay networks (Chord, Pastry, CAN, ...), that provide better

performances for locating and querying large quantities of data. We use Free Pastry,

an implementation of the Pastry [14] distributed hash table system.

3 System functionalities

The goal of the EDOS distribution system is to efficiently disseminate open source

software (referred at a more general level as data or content) through the Internet.

Published by a main server, data is disseminated in the network to other computers

(mirrors, end users), that get copies of the published content.

EDOS Distribution System: a P2P architecture for open-source content

dissemination

211

EDOS system is articulated around a distributed, P2P information system that

stores and indexes content metadata. This metadata-based information system allows

querying and locating data in the EDOS network.

The choices for the functional architecture are driven by the three main aspects

that define the system: the data model for the content management, the actors and

their roles in the P2P architecture, and the usage scenarios.

3.1 Data model

There are three types of data units employed by the EDOS distribution system:

– Package: the main data unit type, represented by an RPM file;

– Utility: individual file used in the installation process;

– Collection: it groups together packages, utilities or sub-collections, to form a

hierarchical organization of data.

A release is a set of data units that form a complete software solution -it corresponds

to a full Linux distribution. Its content is described by a collection.

Content dissemination is initiated by publishing data units in the system.

Publishing consists in generating metadata for each data unit and indexing it in the

distributed system. Periodically, the main server publishes a new release. Updates to

the current release are realized by publishing new versions of packages or utilities.

At some moment, the main server decides to transform the current status of the

current release into a new release.

Metadata management is a key issue in the distribution process. We aim at

building a global, distributed information system about data to be disseminated in the

network. This system is fed with content metadata. The ability to express complex

queries over metadata and to provide effective distributed query processing is a

major contribution of this project.

In the largest sense, metadata consists in the set of properties that characterize

data units. We classify metadata properties in three main categories:

– identifiers, i.e. properties that uniquely identify a data unit –in our case, the name

and the version number of the data unit.

– static properties, that do not change in time for a content unit, e.g. size, category,

checksum, license, etc.

– changing properties, i.e. properties that may vary in time: locations of replicas in

the network and composition for collections.

The XML structure chosen for EDOS metadata is a compromise between efficiency

needs for both query processing (that requires large XML files, containing all

elements addressed in a query) and metadata updates (that need small files). Our

choice is to create separate XML files for each package (package properties) and for

each release (release composition).

Serge Abiteboul, Itay Dar, Radu Pop, Gabriel Vasile and Dan Vodislav212

3.2 Actors, roles and usage scenarios

Peers of the EDOS P2P distribution system maybe classified in three categories:

1. Publisher: the main distribution server, that introduces new content in the

system. Its roles are to publish the new content in the distributed index, to

manage client subscriptions/notification, and flash-crowd dissemination of data,

as explained below.

Figure 1 presents the actors in the P2P distribution network.

2. Mirrors: secondary servers and trusted peers. Mirrors and end-users have

similar roles: download content from other peers, query the system and subscribe
to new data. The main role is to keep copies of the published content, providing

additional downloading sources in the network. Unlike end-users, Mirrors are

trusted peers, that can participate in index management. Also, they are rarely

unavailable and provide better QoS.

3. Clients: end-user computers, not trusted for index management. They need an

entry point to the indexing network for querying the metadata.

Figure 1 presents the actors in the P2P distribution network. Actors are connected

in two distinct networks:

– The distribution network, composed of all the peers - they store, download and

share EDOS data, i.e. software packages, utilities and collections.

– The indexing network, composed of trusted peers (Publisher and Mirrors) - they

store the index on content metadata. For security reasons, Clients are not allowed

to participate in metadata and index sharing, but can provide content, whose

validity may be verified by using checksums.

There are two main distribution cases: flash-crowd and off-peak.

Flash-crowd distribution corresponds to situations where new, popular and large

size content is published (typically a new release), and many users want to get this

content as soon as possible. Flash-crowd distribution uses efficient dissemination

methods, based on clustering of data units and multicast. Each user asking for the

new release may already have some of its packages -therefore he computes a wish
list containing only the missing data units. Based on the wish lists gathered from

users, the Publisher computes the clusters of data units to be disseminated. Each user

will only download the minimal set of clusters that cover its wish list -download is

realized in parallel for all the users in a common multicast process.

EDOS Distribution System: a P2P architecture for open-source content

dissemination

213

Off-peak distribution corresponds to periods between flash-crowd situations.

During these periods, the Publisher may publish updates to the current release,

Mirrors and Clients may query the system, download query results, subscribe to

distribution channels, receive notifications on such channels and download software

updates.

Fig. 2. Software modules and API structure in the EDOS distribution system

4 Architecture and implementation

The EDOS distribution functionalities have been implemented as a Java API,
based on a set of external software modules:

– ActiveXML [9, 1]: provides an extended XML format for EDOS metadata,

storage for metadata documents published in KadoP, and web services for inter-

peer communication.

– KadoP [10, 6]: distributed index for (Active)XML documents, that allows

publishing, indexing and querying EDOS metadata. Based on the Distributed

Hash Table (DHT) system Pastry [14], KadoP uses the ActiveXML module as a

local repository for metadata documents KadoP decomposes ActiveXML

documents into key-value pairs stored in the DHT, and uses this decomposition

to compute answers at XML query processing.

– IDiP: dissemination platform that implements functionalities for the flash-crowd

usage scenario: content clustering and multicast dissemination.

– BitTorrent [12, 2]: the well-known filesharing/downloading system, that

optimizes the transfer of large files between peers. We use a slightly modified

version of Azureus, a Java implementation of BitTorrent, for multicast in IDiP

and for download from multiple replicas.

The structure of the EDOS distribution API is presented in Figure 2. The API is

organized on three levels:

1. Physical level: lowest level, provides EDOS peer basic functionalities. The

physical level is composed of several modules: a content manager for local

content, an index manager for the distributed index, a channel manager for

subscription, a dissemination manager for flash-crowd distribution, etc.

Serge Abiteboul, Itay Dar, Radu Pop, Gabriel Vasile and Dan Vodislav214

Programming distribution applications at the physical level requires more effort,

but offers the greatest flexibility.

2. Role level: built on top of the physical level, provides a default implementation

for each role in the distribution network, i.e. publishing, downloading,

replicating, querying, and subscribing.

3. Actor level: highest level, provides a default implementation for each actor type

(Publisher, Mirror or Client), by combining several roles.

The first prototype of the EDOS distribution system is implemented as a set of

web applications on top of the EDOS API (seeFigure2). Each peer in the EDOS

network runs a Java/JSP web application -there is an application for each actor type:

Publisher, Mirror or Client. Peer applications use a Tomcat web server for

deployment, with Axis for web services.

The Publisher web application allows publishing new content, managing

subscription channels and driving the flash-crowd dissemination process. Mirrors

and Clients have the same user interface, allowing queries, downloading,

subscriptions to channels and notification handling.

Tests with the first prototype demonstrated the relevance of P2P-based solutions

for large-scale content distribution, the ability of managing very large amounts of

metadata with KadoP and the improvements brought by IDiP for flash-crowd

dissemination. More details are presented in [8].

Next steps will address intensive testing in a real large scale network such

asGrid5000 and improvements in massive publication of metadata, in security (peer

authentication), in firewall/NAT traversal, in the user interface, etc.

References

1. ActiveXML web page. http://activexml.net.

2. BitTorrentprotocolspecification.http://wiki.theory.org/BitTorrentSpecification.

3. Codeen. http://codeen.cs.princeton.edu.

4. Conary software provisioning system. http://wiki.rpath.com/wiki/Conary.

5. EDOS project: Environment for the development and Distribution of OpenSource

software. http://www.edos-project.org.

6. KadoP web page. http://gemo.futurs.inria.fr/projects/KadoP.

7. EDOS deliverable 4.1: Distribution of code and binaries over the Internet, 2005.

http://www.edos-project.org/xwiki/bin/view/Main/D4-1/edos-d4.1.pdf.

8. EDOS deliverable 4.2.2: Report on the p2p dissemination system, 2006. http://www.edos-

project.org/xwiki/bin/view/Main/D4-2-2/edos-d4.2.2.pdf.

9. S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber. Active XML: Peer-to-

Peer Data and Web Services Integration. In VLDB, 2002.

10. S.Abiteboul, I. Manolescu,and N. Preda. Constructing and querying peer-to-peer

warehouses of XML resources. In V.T.ChrisBussler, editor, Second International

Workshop on Semantic Web and Databases (SWDB). Springer-Verlag, 2004.

11. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution

technologies. In ACM Computing Surveys, 2004.

EDOS Distribution System: a P2P architecture for open-source content

dissemination

215

12. B. Cohen. Incentives Build Robustness in BitTorrent. In Proceedings of the Workshop on

Economics of Peer-to-Peer Systems, 2003.

13. M. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content publication with

coral. In 1st USENIX/ACM Symposium on Networked Systems Design and

Implementation, 2004.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In IFIP/ACM Middleware, 2001.

14. S. Witty. Best practices for deploying and managing linux with RH Network.

Reusing an open source application –

practical experiences with a mobile CRM

pilot

Jyrki Akkanen1, Hunor Demeter2, Tamás Eppel3, Zoltán Ivánfi2, Jukka K.

Nurminen1, Petri Stenman4

1 Nokia Research Center, P.O. Box 407, 00045 NOKIA GROUP, Finland

jyrki.akkanen@nokia.com, jukka.k.nurminen@nokia.com

2 Nokia Research Center, P.O.Box 392, H-1461 BUDAPEST, Hungary

hunor.demeter@nokia.com, zoltan.ivanfi@nokia.com

3 Budapest University of Technology and Economics, Budapest Pf. 91,

H-1521 Hungary; peletomi@gmail.com

4 Nokia Ventures Organization, P.O. Box 407, 00045 NOKIA GROUP,

Finland; petri.stenman@nokia.com

Abstract. We discuss experiences in extending an open source CRM

application to develop a new server-based mobile business application.

Combining the application code reuse with incremental development process

allowed successful development of a pilot application in a tight schedule. In

particular, it enabled a quick start for customer-driven development,

diminished risks related to the baseline application itself, and provided the

flexibility needed in experimental pilot development.

1 Introduction

New software is often developed over a platform. In many senses platforms are ideal

for developing new applications: they are usually well-documented and designed for

reuse and easy development. However, in this paper we explore a different approach:

we discuss the benefits and challenges associated to reusing an existing open source

application in order to create a new product. This approach has potential since it

allows a quick start and, when combined to an agile process, also an early user

involvement. Furthermore, using an open source product as the development base

reduces risks due to associated information openness.

Our study grew up from practical experiences. Our vision was to create a

business software solution for small and medium-sized companies, a solution that

could support both multiple business domains and mobility. To begin with we

implemented a pilot system for the Finnish real estate agencies by extending an open

source CRM application to a new business domain and by integrating mobile phones

in it. The solution was a new concept and included a lot of uncertainty both on the

technical and business side. To deal with the uncertainty the venturing literature

suggests testing the underlying assumptions at the lowest possible cost (see e.g. [1]).

So we were not implementing an application fulfilling a fixed specification but in a

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman218

very dynamic fashion exploring for the right combination of business and technology

to create profitable business.

2. Course of the development project

A lot has been written about motivations to participate in open source development;

both from individual and corporate viewpoint [2]. One of the frequently cited

benefits is that reusing open source reduces development cost [3,4]. This was also

our main motivation: using an open source business application as development base

would save development effort and thus allow us to rapidly test our concept and

assumptions with a real case.

On the Internet we found roughly 40 open source CRM and group work suites.

With a set of criteria (e.g. functionality, quality, license, environment) we finally

selected vTiger [5] as our base application. Most solutions were dropped due to

lacking functionality or immaturity, and none of them fully satisfied all the criteria.

With vTiger we were mostly concerned about the product quality and maturity. It is a

web-based business management software written in PHP and running over Apache

web server and mySQL database. The product is developed mainly by an Indian

company vTiger, which is getting revenue from support and subscription services.

Our baseline version was vTiger 4.2.

We used a very light-weight and incremental development process along the

common open source guideline “release early, release often” [3]. Our initially rather

vague understanding of customer requirements grew during the development, and we

also became more and more aware of our abilities to fulfill them. It was only after

two months, in the middle of the project, when we finally were able to estimate how

much functionality we actually can deliver, and were able to even roughly pin down

the final feature set for the deliverable:

1. Basic CRM functionality: contacts, messages, phone calls, notes etc. that

could be cross-linked to each other.

2. Real estate business specific functionality: property management and

search, bidding process, checklists, brochure creation.

3. Mobility support: synchronize CRM data (e.g. contacts) with phone, rich

context to phone calls.

4. PC-phone interoperability: dock the phone to PC, respond to incoming

calls on the PC with proper CRM context, and initiate calls by clicking

special hypertext link in PC browser.

As depicted in Figure 1, all the business functionality was implemented in an

Application Server that provided a web UI for a browser. That consisted mostly of

vTiger CRM augmented with Realtor Extensions, the set of specific modules for real

estate business. The mobile phones connected to the Application Server through a

proprietary Mobility Server that took care of all the mobility-related issues. A small

adaptive module, Mobility Connector, in the Application Server provided a Web

Reusing an open source application – practical experiences with a mobile

CRM pilot

219

Services interface for the Mobility Server. This design made the mobility framework

independent from the Application Server.

Fig. 1. The solution architecture

We managed to deliver the pilot to our customers according to the original

schedule and they were satisfied with the quality of the deliverable. There was no

need to fix bugs during the 2 month pilot testing period. The table 1 below sums up

the code size in the Application Server divided into different functions.

Table 1. Deliverable size: lines of code including empty lines and comments

Base New Modified Release

vTiger CRM 361 487 8 000 7 915 373 838

Realtor Extension 12 080 12 080

Mobility Connector 2 979 2 979

Third-party Libraries 163 020 902 380 164 266

Total 524 507 23 961 8 295 553 163

The Base column shows the size of the original vTiger 4.2. The New column

contains the lines in the files that we created ourselves while the Modified column

tells how many lines in the Base code files were modified. The Release column

contains the final size of the deliverable.

The figures show that reuse was very efficient: only 6% of all the code lines in

the deliverable were written by us. Furthermore, we used only about 15 man-months

to enhance the vTiger CRM into our Application Server, obviously an order of

magnitude less than what would have been required for developing everything.

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman220

Of course a considerable effort would still have been required to finalize our

prototype into a product. In addition, the fact that the vTiger modifications spread

over 236 files complicates future maintenance. For instance, merging the changes to

a newer version of vTiger would be harder.

Despite the successful pilot we eventually decided to discontinue developing the

Application Server. The reasons were mostly related to business: as our revenue

would come from mobility support it might be better to rely on existing business

applications rather than develop new ones. We thus re-focused our resources in

developing the mobility support into such form that creating the necessary Mobility

Connector modules for existing business applications would be as easy as possible.

3. Lessons learned

Compared to mature application platforms complete applications have a harder

learning curve, especially if they are weakly documented and do not have a clean

architecture. Our experience showed that the benefits of complete applications easily

outweigh their weaknesses: we got a lot of complete functionality for free. In our

case the base application already provided most of the necessary software

infrastructure and one third of necessary features. Furthermore, we could develop

new functionality on top of the old one with relatively small effort.

Basing our development on an existing application suited well to incremental

customer-driven process. Customers easily caught a definitive role in the

development process as the lead users could try out working software from the first

day of development. We could also quickly provide new functionality: this kept

customers active and motivated to provide domain knowledge and feedback. Active

weekly customer feedback was crucial to maintain the development speed and right

focus. In the software engineer viewpoint, incremental prototyping felt as well the

best approach to get familiar with the base application: the source code was readily

available, but we did not know it at all and it did not have too much documentation.

Making small modifications was a natural way to learn the software piece by piece.

Maybe we could even state that reusing an existing application is an optimal

approach only when combined to an incremental process. A careful and deep design

phase before implementation requires learning both the existing software and

requirements. This is time-consuming and, as a result, one loses the quick start. In

worst case one ends up re-designing large parts of the base software in such a way

that writing completely new software turns out to be an easier solution.

Incremental prototyping approach is, however, not a silver bullet: it may lead to

architectural problems. The architectural decisions in the base software concern also

the new features but, in practice, deviations from clean architecture easily occur. In

the beginning one simply does not know the software enough to follow its

architecture. It is also difficult to control the overall architecture if new features are

inserted one after another with least possible effort. In the end some architectural

refactoring may need to take place.

Reusing an open source application – practical experiences with a mobile

CRM pilot

221

A further benefit of open source is that not only the source code, but all other

data concerning the software is public and accessible. For us the open information

was useful for the software quality. The open source advocates eagerly remind us

from the elements in open source development model that promote quality [3] and

based on experience with mature top-quality open source products like Linux and

Apache, such claims are valid [6]. On the other hand, during our selection process, it

became clear that all products were not mature enough for real production use. We

encountered security vulnerabilities, weak usability, low performance, lots of dead

code, and poor documentation.

Such weaknesses are also common in commercial non-mature software products.

However, the benefit of open source development is that it is practically impossible

to keep quality problems hidden. To look behind the hype on the front page you can

install and try out the software. An experienced developer can recognize low-quality

code by looking at the implementation. The discussions in various Internet boards

also reveal if users are having problems with the software and indicate what the

developer community attitude towards the possible weaknesses is.

The situation is totally different with commercial software. Information can only

be accessed “in drops” and getting beyond the front page advertisements often

requires commitment. This holds especially if you think about reusing the software

in order to further develop it: commercial software is usually not sold or advertised

for that purpose.

We were bad citizens in that respect that we did not contribute to an open source

community at all. The basic reason for not doing so was that we were unsure about

what to contribute, where and how. The realtor-specific features were very domain-

and country-specific, so we did not expect them to have much generic interest. The

mobility features would surely have been welcomed but the solution depended on

proprietary components that could not be open sourced.

An additional difficulty in joining the community was that our own targets were

changing as our experience with the business and technology grew. As we were not

mature enough to clearly specify our needs we concluded that attempting co-

operation in so early stage would just confuse the base product community.

Open source application reuse causes complicated licensing situation inside

companies building commercial solutions. When you modify open source code, you

end up intermingling your code with the open source code. Depending on the open

source license this may lead to many concerns related to commercial usage of the

software. You may also end up with problems with your IPR: this is very

complicated matter and so difficult to analyze to even understand all the

consequences [7]. In our case this led to situation where we had code without clear

strategy how to use it later on.

Akkanen, Demeter, Eppel, Ivánfi, Nurminen, Stenman222

4. Conclusions

The target of our project was quickly and with small resources to provide a pilot of a

server-based business application, which supports realtors in their daily work and

allows use through a mobile phone. Building on top of an existing open source

application allowed us to successfully release the pilot in a tight schedule.

Reusing an open source application gave us a quick start for the development. As

the base product already contained lots of functionality, we could concentrate on

satisfying the actual needs of the user. Many risks related to the product could be

easily managed since open source software came with open information: all relevant

knowledge of the base product was easily available.

We also noticed the benefits of combining agile, incremental development

process to reusing an existing application. Straight from the beginning of the project

the customers were able to use the weekly releases. Their feedback of the features

and their usability steered the project and allowed flexible prioritization of the

implementation tasks.

On the other hand, for the pilot, we ignored some critical questions concerning

the software licensing and our position in the open source community. These must be

dealt with before basing a commercial product on an open source application.

References

1. McGrath, R.G and MacMillan, I., The Entrepreneurial Mindset (Harvard

Business School Press, 2000).

2. Rossi, M., Decoding the ‘Free/Open Source Software Puzzle’: a survey of

theoretical and empirical contributions (2004), in: The Economics of Open

Source Software Development, edited by J. Bitzer and P.J.H. Schröder (Elsevier

2005); http://opensource.mit.edu/papers/rossi.pdf.

3. Raymond, E., The Cathedral & the Bazaar (O’Reilly, February 2001). See also

http://www.catb.org/~esr/writings/cathedral-bazaar/.

4. Bessen, J.E., Open Source Software: Free Provision of Complex Public Goods

(July 2005). Available at SSRN: http://ssrn.com/abstract=588763 or DOI:

10.2139/ssrn.588763 (http://dx.doi.org/10.2139/ssrn.588763).

5. vTiger CRM; http://www.vtiger.com/.

6. Boulanger, A. Open-source versus proprietary software: Is one more reliable and

secure than the other? IBM Systems Journal 44:2 (June 2005), p.239.

7. Vetter, G.R. “Infectious” Open Source Software: Spreading Incentives or

Promoting Resistance. Rutgers Law Journal 36:1 (Fall 2004), p.53;

http://opensource.mit.edu/papers/vetter2.pdf.

The role of trust in OSS communities

– Case Linux Kernel community

Maria Antikainen1, Timo Aaltonen2, and Jaani Väisänen3

1 VTT Technical Research Centre of Finland , Media and Mobile

Usability, Sinitaival 6, 33101Tampere, Finland

maria.antikainen@vtt.fi

2 Tampere University of Technology, Institute of Software Systems,

Korkeakoulunkatu 1, 33720 Tampere, Finland

timo.aaltonen@tut.fi

3 Tampere University of Technology, Institute of Business Information

Management, Korkeakoulunkatu 8, 33720 Tampere, Finland

jaani.vaisanen@tut.fi

Abstract. Open source software development has been the subject of interest

among businesses as well as in the academic world. OSS enables many

possibilities for companies but also sets new kinds of challenges. Because of

the characteristics of the OSS phenomenon we propose that trust in OSS

communities plays a key role in facilitating their success. Therefore, the aim of

this study is to explore the factors that affect trust in OSS communities. The

data is gathered by a survey aimed to Linux Kernel developers. Among other

results it may be concluded that the most important factors affecting trust seem

to be other developers’ skills, reputation as well as the formal and informal

practices.

Keywords: OSS community, Linux Kernel, trust, case study, survey

1 Introduction

Open source software development has been the subject of interest among businesses

as well as in the academic world. OSS enables many possibilities for companies but

also sets new kinds of challenges. In this study we propose that trust in OSS

communities plays a key role in facilitating their success. Trust is important in this

context because the participants of OSS communities represent different

organizations and different motivations, and therefore, there is constant risk for

opportunistic behavior between participants. Trust is also a central factor when

organizations are making decisions about whether they choose OS software or not.

Maria Antikainen, Timo Aaltonen, and Jaani Väisänen224

Therefore, the aim of this study is to explore the factors that affect trust in OSS

communities. Since the study area is rather unexplored, the study starts with

scrutinizing deeply one case that is the Linux Kernel community. The actual study

consists of two phases, starting with exploring the trust in OSS communities with the

multidisciplinary literature analysis, a phase which is reported in Antikainen and

Aaltonen [1]. As a result of the first phase, the preliminary model of trust in the

Linux Kernel community was built. In this paper we focus on a web-based survey

aimed for the Linux Kernel developers to be able to test our preliminary model of

trust.

In this paper we define trust as “the extent to which a person is confident in and

willing to act on the basis of, the words, actions, and decisions of another” [2]. Trust

occurs in a relationship between a trustor and trust target. Fundamentally, we see that

trust implies a party’s willingness to accept vulnerability but with an expectation or

confidence that it can rely on the other party [3], [4], [5].

2. Linux Kernel community

Nowadays Linux has grown to the largest open source project in the world. [6] Linus

Torvalds is still the benevolent dictator of Linux as he is the final arbiter of all

changes accepted into the Linux kernel. An often-referred model of an open source

community is presented in Nakakoji et al. [7]. The model describes an open source

community as an onion, where the most influential roles are in the center, and each

outer layer consists of less and less influential ones – see the left-hand side of Figure

1. The right-hand side of the figure depicts the onion-like figure instantiated to the

Linux Kernel community.

Fig. 1. The general onion model of open source communities vs. the Linux Kernel onion

model

Developing open-source software is based on making small changes to an existing

code. In Linux a description of such a change is called a patch. Certain conventions

The role of trust in OSS communities – Case Linux Kernel community 225

are followed when a programmer attempts to get her patch “upstream” (to get the

patch to the Linus' kernel).[8].

There is no formal process for developing Linux [9]. The unplanned emergence

of lieutenants and the convention that patches are delivered to them is de facto

behaviour of the community which takes place in mailing lists. Thus, there exists an

implicit “control” for organizing the community. People who are skilled and have a

large impact in the development simply conceive more power.

Developers who become lieutenants are trusted by the programmers who start

submitting their patches to them. Actually there exists a chain of trust in the

community, since programmers trust lieutenants who in turn trust Linus. The chains

of trust are made explicit by adding signoffs to the patches: the programmer signs the

patch she made before delivery, and then if the patch is accepted by maintainer she

also signs of the patch and so on. Each patch includes a chain of trust in an explicit

form [10]. Precise rules for signing patches can be found at Open Source Development

Labs, Inc [11].

3. Methodology

The study uses case study method exploring the Linux Kernel community. The

community was chosen based on the structure and the sufficient size of the

community, which enabled the collection of the needed amount of data. A web-based

survey was created and linked to the Linux Kernel community’s main mailing list.

The research instrument was administered via a web-based survey tool provider,

SurveyMonkey (www.surveymonkey.com). The questions were based on the

preliminary framework created in the phase 1. Yet, the questions are not restricted to

this framework so that exploratory approach to the phenomenon could be applied.

The study resulted with 139 answers during 12 days. However, since the web

questionnaire was divided into several sections, the amount of respondents decreased

towards the end of the questionnaire to 95 respondents. Also open questions got

fewer responses since they were not obligatory; however, the information from open

questions was very valuable.

Analysis of variance was used to gain understanding about the differences

between the different factors of trust. Cronbach’s Alpha (0,759) was measured to

validate the reliability of the questionnaire as well.

4. Factors affecting trust

The survey included questions considering the background of the developers, the

nature of their participation in Linux Kernel community as well as questions

considering trust. The factors of the preliminary model of trust were asked with

multiple questions. In the following the results are briefly discussed and illustrated.

Maria Antikainen, Timo Aaltonen, and Jaani Väisänen226

To be able to test the preliminary model and find out the importance of different

factors we constructed one common index that is comparable throughout all the

factors by calculating the mean results of each factor. The significance of the

differences in means was concluded by analysis of variance. There has been

discussion regarding the use of ANOVA when dealing with ordinal and grouped

variables. Although the formulae behind ANOVA require computations that would

normally need scale variables, there is a predominant conception that has been

reviewed e.g. in Brockett & Golden [12] that states that the error margin from using

interval level methods for ordinal data is very small. Therefore, the authors have

decided that the use of ANOVA is acceptable in this situation. The mean values are

illustrated in Figure 2.

Fig. 2. The means of the factors of trust

Based on the results, ‘skills’ factor seems to be most important one followed by

‘practices’ and ‘reputation’ with almost similar means. Next comes ‘common goals’

and ‘sharing information’. The least important factors seem to be ‘the culture and

values’, ‘the possibility to influence’ and ‘familiarity’. Analysis of variance showed

that differences between sharing information and the common goals were not

significant. Also differences between ‘possibility to influence’ and ‘culture and

values’ can derive from coincidence. Again ‘reputation’ and ‘practices’ do not have

significant differences in their means. Since the values were quite high, based on the

analyses conducted, none of the chosen factors can be removed from the model.

SkillsPracticesReputa-
tion

Common
goals

Sharing
informa-

tion

Culture
and

values

Possibili-
ty to

influence

Familia-
rity

5,00

4,00

3,00

2,00

1,00

0,00

M
e
a
n

4,138
3,827

3,40

4,112

3,378
2,98

3,714

4,592

The role of trust in OSS communities – Case Linux Kernel community 227

The final question considered how the respondents see the role of trust in the

Linux Kernel community. We got altogether 49 answers to this open question of

which 4 were discarded. More than a half of the answers included the statement ‘yes’

(26), especially general yes was popular. Some of the respondents who answered yes

specified their answers adding that they trusted towards the core of the onion (see

Figure 1), or towards outer layers of onion. Trust towards the core of the onion was

considered less important, and trust towards outer layers was mentioned only couple

of answers. In contrast, we got also an amount of plain no answers (3).

Other answers considered the trust issue in general level without commenting

directly if they trust into Linux Kernel community or not. We divided these answers

into three categories: trust in code (11), trust in process (3), and trust based on

reputation (4). However, it can be argued that trust in process and trust in code may

seem to belong to the same category. Then one third of the respondents would have

chosen this compound category. This open question seems to affirm the results

(Fig.2) that skills, practices and reputation have an important role in trust towards

Linux Kernel community.

5. Conclusions

In this paper we studied factors influencing trust in the Linux Kernel community.

Based on the results we propose that eight factors presented in our model seem to

affect trust in the Linux Kernel community. The most significant factors seem to be

trust towards other developers’ skills, their reputation and informal and formal

practices in the community. Also the answers for open question confirmed this

conclusion. Due to the fact that Linux Kernel is one of the most complex open

source products available, skills and reputation of other members of the community

are naturally appreciated. Explanation for the value of practices may be that the

conventional software engineering methods are substituted by informal practices.

Without them the community would not function.

The least significant factors are familiarity, the possibility to influence and the

culture and values. The Linux Kernel community is extremely large, and people are

not very familiar with each other. Therefore, familiarity cannot be ranked high.

Linux – like most open source projects – is based on a benevolent dictatorship. This

fact and the size of the community set limits to possibility to influence. Maybe

people willing to gain much influence do not join this kind of communities. Linus

Torvalds is a very pragmatic person and he makes sure that Linux is not considered

as free software but open source and in such atmosphere the culture and values

cannot be significant factors. Therefore, applying this survey to smaller communities

might lead to different results in this factor.

This study contributes to a clarification of the role of trust in a one type of OSS

community. By testing the preliminary model of trust and measuring the importance

of different factors, this study brings valuable knowledge on the dynamics of OSS

communities. The present study represents an opening for further studies concerning

Maria Antikainen, Timo Aaltonen, and Jaani Väisänen228

the role of trust in different kinds on OSS communities aimed for building a

generalized model of trust in such communities. As mentioned before, surveying

several communities might lead to interesting differences between them.

References

[1] Antikainen, M. and Aaltonen, T. (2007). In Helander, N. & Antikainen, M. (eds.), Essays

on OSS practices and sustainability. e-Business Research Center Research Reports 36.

Tampere University of Technology & University of Technology.

[2] McAllister, D. 1995. Affect- and cognition-based trust as foundations for interpersonal

cooperation in organizations. Academy of Management Journal, 38 (1), 24-59.

[3] Lewicki, R., McAllister, D. and Bies, R. (1998). Trust and distrust: New relationships and

realities. The Academy of Management Review, 23 (3), 438-458.

[4] Moorman, C., Zaltman, G. and Deshpandè, R. (1992). Relationships between providers

and users of market research: The dynamics of trust within and between organizations.

Journal of Marketing Research, 29(3), 314-328.

[5] Morgan R. M. and Hunt S.D. (1994). The commitment-trust theory of relationship

marketing. Journal of Marketing, 58 (July), 20-38.

[6] The Penguin's Window: Corporate Brands From an Open-Source Perspective. Journal of

the Academy of Marketing Science, Vol. 34, No. 2, 115-127 (2006).

[7] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye, Y. (2002). Evolution

patterns of open–source software systems and communities. Proceedings of International

Workshop on Principles of Software Evolution.

[8] Site kernelnewbies.org on the www.

[9] Linus Torvalds' Benevolent Dictatorship. BusinessWeek magazine August 18 2004.

[10] Andrews J. (2004). Linux: Documenting How Patches Reach The Kernel. URL

http://kerneltrap.org/node/3180 on the computing news website Kerneltrap.

[11] Open Source Development Labs, Inc. (2005). Developer's Certificate of Origin 1.1. At

www page http://www.osdl.org/newsroom/press_releases/2004/2004_05_24_dco.html.

[12] Brockett, P. and Golden, L. (1992). A Comment on “Using Rank Values as an Interval

Scale” by Dowling and Midgley. Psychology and Marketing, 9(3), 255-261.

Authenticating from multiple

authentication sources in a collaborative

platform

Quang Vu DANG1, Olivier BERGER1, Christian BAC1, Benoît HAMET2

1 Groupe des Écoles de Télécommunications-Institut National des

Télécommunications,

9 rue Charles Fourier 91070 Évry France

{Vu.Dang-Quang,ChristianBac,Olivier.Berger}@int-evry.fr

WWW home page: http://proget.int-ery.fr/projects/PFTCR/

2 PhpGroupWare Project

Benoit.Hamet@laposte.net,

WWW home page: http://www.phpgroupware.org

Abstract. This paper presents a proposal to address the need for multiple

authentication sources for users of collaborative work platforms. The proposed

approach, developed for the needs of GET and Picolibre, relies on a generic

solution that integrate groupware servers in a Shibboleth infrastructure. We

have developed adapters for this integration, that we contributed to the

phpGroupware project. This document should serve as a basis for discussion in

order to validate the level of generality of the proposed approach. We hope

that this approach can also help maintainers of other collaboration platforms,

who want to integrate a park of deployed platforms with external user

identification and authentication services, get a better view of solutions

available with Shibboleth.

1 Introduction

The Groupe des Écoles des Télécommunications (GET) is composed of several

engineering and business schools together with research centres in Paris (ENST),

Brest (ENST Bretagne) and Évry (INT), in France. The research teams are made up

of more than 600 full-time research equivalents. The range of the researchers'

expertise, from technologies to social sciences, enables the integrated approach so

characteristic of GET research and fosters its adaptability to new application sectors

and new usages in response to current challenges in the field of Information and

Communication.

Starting in order for use as a pedagogical platform, Picolibre [1] is a libre-

software system developed at GET, and released under the GNU GPL license. It

Quang Vu Dang, Olivier Berger, Christian Bac, Benoît Hamet230

provides a Web-based collaborative work platform built on top of phpGroupware1

and other libre software tools. Picolibre provides project hosting facilities for small

teams of software developers, which was mainly oriented to teaching and research

environments2.

Picolibre integrates several libre software Web applications, but lacked some

features in the current stable version, like a wiki engine. However, we have

developed an in-house GET platform, based on Picolibre components, integrating

new services like a Wiki engine, or a Webdav server, called ProGET [2]. We have

integrated these new features in a new generation PicoLibre that is called PicoForge.

This new generation is a more generic and complete solution, and available for all as

libre software. Several platforms have been deployed at GET, and developers or

researchers may be using services of several such platforms, while working on

projects initiated on these different platforms.

At the present time, different accounts may be created on these platforms for the

same person. Here comes the need of Single-Sign-On (SSO) facilities between these

platforms. GET is in the process of deploying soon a federation of authentication

systems and applications, based on Shibboleth, for a better integration of its

Information System, which is at the present time distributed among the different

schools.

Shibboleth is an infrastructure designed to build an identity federation allowing

applications and identity providers to share and exchange attributes concerning user

profiles, in order to facilitate user identification and authentication in the realm of a

deployed identity federation. We investigated the use of that infrastructure, but we

should note that users of our platforms may be either already registered in GET's

“company directories”, or external contributors unknown to these directories. Our

platforms were not interfaced with our company directories to authenticate its users,

and manages its own directory. Here comes the need to develop adapters to integrate

Picolibre platforms in the coming Shibboleth federation. But even if company users

are recognised by Picolibre, through its use of Shibboleth, we still have to support

other users not known of companies directories. Such requirement will also be

described in our proposed solution.

The same issues, which are addressed here for Picolibre users and GET, may be

found also for other networks of collaborative work platforms, for instance among

libre software development communities, for authentication into the various software

development platforms they use (Gforge, Trac, etc.).

1 http://www.phpgroupware.org/
2 The reader will find more details about PicoLibre at picolibre.org/

Authenticating from multiple authentication sources in a collaborative

platform

231

2 Shibboleth and SSO Service

Shibboleth3 is a complete open source platform developed for project "Internet2" 4,

aiming at building the federation of identity for education institutions and their

partners. It is based on the SAML standard (Security Assertion Markup Language),

which defines the assertion of authentication and exchange of attributes of users. It

supports the SSO service and the authorization, allowing the definition of access

control privileges to Web resources, by using user-associated attributes.

The basic architecture of Shibboleth has three components: Identity Providers

(IdP), Service Providers (SP), and a "Where Are You From" service (WAYF).

Identify Providers (IdP) are responsible of user authentication, and to provide the

user attributes for the access control process. Service Provider (SP) is managing

access to the resources. The Apache web server "plugin" mod_shib is a module that

allows Web pages access control, based on the attributes values defined in the IdP.

The service "Where Are You From" (WAYF) helps the user to explicitly choose

his/her IdP “of origin”, selecting the place where he/she may be known as a source

of authentication.

When a user wants to access a SP, it is redirected towards an IdP, or a WAYF

service for choosing the IdP. Then the user authenticates to this IdP. After successful

authentication, the user is directed back to the requested service, but being

authenticated, this time. The SP also requires informations that describes the user,

and filters these informations for the authorization process. These informations are

sent to the service's Web applications in HTTP headers or cookies.

3 Enhanced authentication in Picolibre

At the present time, users authenticate against the phpGroupware application, which

provides the basis for users management in PicoLibre. They log-in when they want

to access the “virtual desktop” homepage of PicoLibre, which contains the list of the

projects to which they collaborate. User may also authenticate directly to one of the

other components integrated in the platform, residing on a same Web server, such as

the Sympa5 mailing list manager or the Twiki6 Wiki manager in PicoForge version.

3 http://shibboleth.internet2.edu/
4 http://www.internet2.edu/
5 http://www.sympa.org/
6 http://www.twiki.org/

Quang Vu Dang, Olivier Berger, Christian Bac, Benoît Hamet232

3.1 Standard authentication Scheme in phpGroupware

In general, phpGroupware handles access-permissions to its applications in an

autonomous way, for locally authenticated users, basing itself on a local "account",

stored in a "directory" operated for instance by a RDBMS like MySQL, or by a

LDAP directory. Access to applications is a three phases process. First, the

authentication verifies that the user is the owner of an account. Second, the user's

profile is determined. Finally, a work session is created and access to modules is

granted.

Depending on the physical implementation of the local accounts directory

(MySQL, LDAP, ...), it is possible to share the user's profile with other applications

deployed on the same networked environment, providing that necessary

administrative policies are adopted, and that custom technical adapters are

developed, or configuration decisions are taken. There's, at the moment, no “elegant”

SSO service facility, that would allow phpGroupWare to grant, to users already

known in other parts of the organisation's information system, a "transparent" access

to its applications.

3.2 Shibboleth+Apache as an integrator and SSO service

We need SSO service with other applications deployed throughout our company,

outside the platform, to which users will have already authenticated. Shibboleth can

come and help solve the needs. Hopefully many Web applications we use, like

Sympa, or Twiki are compatible with Shibboleth. Thus, Apache and Shibboleth will

be able to act as the integrator of their authentications mechanisms (using a

distributed Web service approach). Unfortunately, phpGroupWare's authentication

mechanisms come short in such a situation. We need to develop a new identification

and authentication adapter for the Apache + Shibboleth combination.

3.3 Mixed environment, and legacy

Our platform may be using a Shibboleth federation once adaptors have been added to

all its applications. But, as described above, Shibboleth can't be the exclusive

authentication mechanism used, due to the fact that we mix company and external

users. We then need a way to “bypass” Shibboleth for some of our users. Another

issue has to be solved when Shibboleth is used, the local mapping, in the

applications, between the users that are recognised in Shibboleth, and the internal

reference of the local account in the application. Of course, if Shibboleth is deployed

prior to setting-up the platform such a mapping is trivial. But it gets worse if it is

deployed on an existing environment with many legacy accounts already existing.

Having considered all the constraints above, we propose to integrate our

platforms with Shibboleth using a flexible approach. In particular, we try to facilitate

Authenticating from multiple authentication sources in a collaborative

platform

233

the progressive integration of existing deployed instances, thus diminishing the

migration burden for administrators and users. As a result, the design of the new

authentication system needs to support the following cases. New users, from the

company directories, not yet having a developer account on the platform. These

users will be able to create a new account in the platform. Legacy users with an

account on the platform : when they have an account in Shibboleth, they will be able

to map their legacy account to the new Shibboleth identity. Legacy users not

registered in shibboleth are still be able to use the platform, as before, “bypassing”

the Shibboleth SSO engine. New users external to GET, will still be able to apply for

registration, as before.

The situation should be similar for any other authentication mechanism than

Shibboleth, to which phpGroupWare would authenticate. We then tried to propose a

standard mapping mechanism which would not be too specific to Shibboleth.

5 Conclusion

We have described a method for integrating phpGroupWare with Shibboleth to allow

the use of SSO mechanisms, while supporting several authentication sources. The

integration relies a lot on the use of Apache's authentication modules instead of

proceeding with an internal phpGroupWare auth. mechanism. There are very few

specifics of Shibboleth in this respect, most of the issues being the same if we use

other types of Apache auth. mechanisms.

We introduced several options for configuration and adaptation to other

environments, in order to achieve the most generic solution. This solution adapts to

several situations, like a fully operational Shibboleth environment, or a deployed

platform not in sync with the Shibboleth deployment.

Integration of the new modules developed in phpGroupWare has been

implemented with the current 0.9.16.011 version, and avoids modifications of its

architecture. We have successfully tested a prototype system on two phpGroupWare

and Picolibre platforms, with the Shibboleth infrastructure of GET/INT.

Further tests are needed, but the proof of concept is done. And we have a

migration path to an integration of deployed platforms in the IS, while keeping

legacy accounts.

The SSO facility obtained will help design networks of collaborative platforms

that will offer greater usability and flexibility, for a wider adoption both inside

companies or among creative communities on the Internet.

Quang Vu Dang, Olivier Berger, Christian Bac, Benoît Hamet234

Bibliography

[1] Cousin E., G. Ouvradou, P. Pucci and S. Tardieu, 2002, PicoLibre a free

collaborative platform to improve students skills in software engineering, in: 2002

IEEE International Conference on Systems, Man and Cybernetics, Vol.1, IEEE, p.

564-568.

[2] Berger O., C. Bac, and B. Hamet, 2006, Integration of Libre Software

Applications to Create a Collaborative Work Platform for Researchers at GET,

International Journal of Information Technology and Web Engineering 1 (3), 2006.

Learning and the imperative of production

in Free/Open Source development

Evangelia Berdou

Media and Communications Department, London School of Economics and

Political Science, e.berdou@lse.ac.uk

Abstract. This paper examines the role of learning in structuring access and

participation in F/OS communities. In particular it highlights the challenges and

barriers to access faced by new developers and the expectations of senior developers

regarding the mindsets and capabilities of new contributors. It is argued that learning

in F/OS is inextricably connected with the demand for continuous production. The

evidence presented is drawn from interviews conducted with inexperienced and

experienced contributors from the GNOME and KDE projects. The author challenges

the view of learning as an enculturation process and the paper contributes to the

understanding of power relations among established and peripheral members in

communities of practice.

Learning forms an integral part of the experience of participation in F/OS

projects and underlies many aspects of collaboration. Given their limited resources,

F/OS communities make significant efforts to lower the barriers to entry for new

developers. Nevertheless, new developers face a number of difficulties which are

associated with different aspects of development and participation. The paper draws

on doctoral research [1] to highlight the challenges inherent in the learning process in

F/OS communities from the perspective of new and senior developers. Theoretically,

the paper contributes to a better understanding of power relations in communities of

practice.

2 Background to the study

This section situates the argument within the context of existing contributions related

to learning in F/OS communities and outlines the theoretical and methodological

framework for the study

Learning features as one of the main motives for participation in F/OS, and

learning practices and processes, such as peer-review, are also often regarded as

constitutive elements of the F/OS development model. Studies related to learning in

F/OS fall into two broad groups. The first consists of studies that examine the role of

tools and the technical characteristics of projects in the learning process. The second

group includes studies that focus primarily on issues of socialization and joining.

Examples from the first group include Shaikh and Cornford’s [2] examination of

Version Control or Concurrent Version Tools (VCT or CVS) and Baldwin and

Clark’s [3] examination of the role of code architecture in organizing and inviting

Evangelia Berdou236

participation. A representative example from the second group is von Krogh et al.’s

[4] paper on ‘Community, joining and specialization in open source software

development’ where it is argued that newcomers who eventually received a CVS

account adopted specific joining scripts, and patterns of behaviour involving levels

and types of activity necessary to become a community member. Similarly to other

studies, such as Ducheneaut [5],von Krogh et al. adopt an oversocialized view of

learning, predicated on the idea that communities are built upon consensus, shared

values and continuity.

Theoretically, the research adopted the CoP perspective and employs Foucault’s

notion of relational power to address its deficiencies with regard to understanding the

power relations between central and peripheral members.

The CoP perspective was developed by Lave and Wenger [6] to account for

forms of learning that take place outside the contexts of formal education, such as

learning by doing, and learning-on-the job. CoP are formed mainly through the

pursuit of a shared enterprise. The theory suggests that as new members, termed

legitimate peripheral learners, adopt the ways and practices of the community they

move from its periphery to its centre. The approach has been frequently applied in

the study of F/OS.

In their critical overview of the way the CoP perspective has been appropriated,

Contu and Willmott [7] indicate that most studies conceptualize learning as a process

of enculturation into the shared values and norms of CoP and regard CoP as locales

of knowledge management. Consequently, according to these two researchers, the

more radical elements of Lave and Wenger’s original framework, namely the way

factors such as access to resources can restrict access to positions of initial

peripherality and potential mastery are underdeveloped.

The Foucauldian notion of relational power [8] is useful in providing a

framework for the study of power relations in CoP, because it helps draw attention to

the complex interdependencies that form between members in the course of their

shared pursuit1. This is particularly helpful in the context of F/OS which are

predominantly voluntary. According to the relational view, power is neither a zero-

sum game where different actors compete for resources nor something that is given

or exchanged, but is a force that creates complex dependencies and invites a

diversity of initiations and reactions on the part of the people involved in them.

The use of relational power has methodological implications, since it focuses the

investigation on the concrete practices and tactics employed by CoP members to

establish a distinctive system of differentiation between integrated and potential

members.

The data presented in this paper are drawn from 25 individual, semi-structured

interviews with a wide sample of experienced and new developers involved in the

GNOME and KDE projects. The interviews were thematically and discursively

analysed.

Learning and the imperative of production in Free/Open Source

development

237

3 Empirical Findings

The findings are organized according to challenges and learning requirements from

the points of view of new and experienced developers.

3.1 Learning and contributing: the newbies’ perspective

The stumbling blocks to participation for potential F/OS contributors can be

organized into three broad categories. First, there are difficulties associated with the

technical aspects and tools of F/OS development, such as the use of CVS. Secondly,

there are conceptual difficulties related to understanding the development process

and the architecture of the program, how they are set up, how things fit and how they

are expected to be put together. Thirdly, there are difficulties related to how newbies

situate themselves in the development process, and the selection of tasks that are

appropriate to their level of skills.

Before they can reach the point of fiddling with the code, new developers have to

learn how to download (check-out), build and install the program’s sources. This will

allow them to run the latest, in-production, version of the code, a prerequisite for

participating in the ongoing development process. Installing a development snapshot

is far from straightforward. Once a newbie overcomes this initial hurdle and writes a

patch the question arises of how to submit it in the correct format. A set of rules is

needed that will allow community members to build the submitted code along with

the rest of the resources. Both these processes, checking out code and checking in

code, require not only a degree of familiarity with the CVS, but also a conceptual

understanding of how “things are put together”. Moreover, the incorporation of a

patch into the main development tree depends not only on its technical merit, but

also on its conformance with the maintainer’s view of the appropriate features, and

its compliance with the architecture of the module.

Although the documentation that is provided often gives information on some of

these issues, such as how to use the CVS, it frequently fails to provide answers to the

more conceptual aspects of development. Moreover, even if it exists and is updated,

finding the appropriate documentation is often an arduous task. One of the problems

most frequently indicated by interviewees concerned the fragmented character of the

documentation and other online resources. Neal (19/10/2004), another newbie

contributor, indicated that often the information required was not offered in the form

of a dedicated resource, but was obtainable from developers’ blogs. According to

Neal, blog syndication sites, such as Planet GNOME and Planet KDE, are useful

because they centralize development information, despite the fact that developers’

entries need to be scanned to separate the social, from the technical aspects of

information.

This intertwining of the social with the technical, highlighted by Neal, which is

characteristic of CoP, may account for the frequently employed practice of lurking

on the project’s development mailing lists. The public, archival character of the

mailing list and its use as a repository of knowledge makes the posting of a message

Evangelia Berdou238

a non-trivial affair, especially for new developers. As the next section will show,

experienced developers usually assign considerable importance to how newbies

comport themselves on mailing lists, especially the ones that carry the most

important development traffic.

Most of the interviewees considered finding a task that is appropriate for their

level of skills as one of the major hurdles to participation. Several interviewees had

become involved in the development by first assuming more peripheral tasks, such as

translating, or by concentrating on fairly self-contained development tasks such as

bug triaging2. In certain cases, having tasks or projects explicitly addressed to new

developers appears to greatly facilitate participation, not least because their initiators

will often assume the role of mentor. Although responsiveness is often seen as being

one of the key characteristics of F/OS, getting the right people to pay attention to

suggestions and look at work is not straightforward.

Despite, and in some cases because of, these difficulties, many interviewees

described their experience of participation and collaboration in F/OS as educational

and much more valuable than the formal training that is provided by most computer

science degrees. In fact, in many instances, participation in F/OS was framed in

terms of vocational training. To summarize, therefore, newbies describe integration

as a slow learning process during which they build up their skill sets and their

community knowledge and position themselves in the development through their

choice of tasks.

3.2 Learning and production: the senior developers’ perspective

The discourse of more experienced developers relating to new contributors is

informed by a production-oriented view of the development process. This shapes

their expectations in terms of the behaviour and performance of newbies and guides

their decisions about helping them.

One of the characteristics most valued in new contributors and F/OS developers

in general, is self-reliance. Many interviewees stated that new developers often

expect to ‘have their hands held’ and to be assisted every step along the way. The

rapid release rate of F/OS development and the fact that many developers work on a

voluntary basis makes time a very valuable resource in F/OS. Every minute spent

helping a newbie is a minute less on writing code. Combined with the high turn-over

rate of contributors is the phenomenon of programmers who say that they want to

help but who then disappear, which means that senior developers generally take great

care about choosing who to help. One of the first things senior take note of in

assessing the potential of new contributors is their chosen entry point in the

development and the way they initially present themselves on the mailing lists.

Newbies who demonstrate that they have tried to develop their understanding of the

project’s architecture and have an idea about that tasks that they might be able to

2 Triaging is a Quality Assurance process that involves confirming good and reproducible bug

reports from the projects’ bug tracking tools, in order to identify exactly which actions

generate faults in the program.

Learning and the imperative of production in Free/Open Source

development

239

perform are regarded more positively than those who simply ask for general help and

guidance.

Senior developers’ rules of thumb for assessing the potential of new contributors

indicates how very much intertwined are the values of self-reliance, commitment and

productivity. Putting in the time and the effort to find things for oneself is an

indication of commitment and, at the same time, a prerequisite for sustained

participation. Successful information seekers and dedicated learners do not impose

on the time and attention of senior developers and the incremental self-relying

development of their knowledge, a common characteristic of experienced

developers, attests to their potential as productive contributors. Furthermore,

seasoned developers usually judge the potential of new contributors very quickly,

sometimes even from their first few postings. The way potential contributors

introduce themselves to the community is not just a matter of successful ‘face-work’,

a sign of whether or not they have successfully assimilated the behavioural ‘scripts’

of F/OS development. A newbie’s initial postings seem to indicate the extent to

which they have already committed themselves to the development process.

4 Discussion & Conclusions

The research indicates that although the importance of helping out new developers is

generally recognized and attempts to organize and facilitate their integration are

reflected in the existence of mailing lists specifically set up for this purpose and the

provision of tutorials and documentation, it is also understood that peripheral

participation is something that needs to take place in the background and not at the

forefront of development. New developers are generally expected to orient

themselves by making do with whatever learning resources are available and gaining

a working understanding of the project before seeking the help of experienced

developers. New developers who seek help on specific issues having demonstrated

an active engagement with the project are generally considered more promising than

newbies who ask for general help and guidance. The investigation of the dynamics of

cooperation between senior and new developers suggests that the role of learning in

F/OS communities goes beyond that of establishing a common framework of shared

values, practices and networks of contacts between peripheral and central members.

The analysis of the interviews indicates that learning processes are integral to the

exercise of power and control. The significant barriers to entry, are viewed by senior

developers as necessary elements of a process that ensures the level of commitment

and capabilities required of new contributors. These barriers indicate that even

access to positions of initial peripherality is structured.

A possible explanation for these two seemingly inconsistent strategies,

community efforts on one hand to lower the barriers to participation and experienced

developers’ strategies for attracting the ‘right type’ of contributors on the other, can

perhaps be found in the inherent tension that exists between the need to attract and

integrate capable volunteers and the demands of continuous production. F/OS are not

Evangelia Berdou240

simply communities set up as knowledge management locales; they are primarily

communities organized around the production of a complex good, software. A

significant differentiating factor compared to traditional apprenticeship contexts

concerns the minimum degree of commitment demanded in order to be recognized as

a legitimate peripheral learner. In F/OS individuals can contribute as much as they

want, to any level they went and when they want. However, the ease of signing up

combined with the appeal of being known as a F/OS developer means that there will

always be more potential candidates, as indicated by the high degree of turn-over of

contributors, than legitimate peripheral members. As a consequence, it seems that

the criteria for being recognized as a potentially valuable contributor in F/OS differ

substantially from those for offline professional networks and communities of

practice where institutional frameworks, formal employment relations, formal

accreditation schemes and tighter social networks ensure a certain level of skill and

some degree of continuity and commitment.

This paper provides a basis for understanding the role of learning in structuring

access and participation in F/OS communities. One of its major limitations is that it

does not examine failed cases of legitimate peripheral participation, but focuses only

on successful ones. In addition, the study did not take account of the contextual

factors of learning and participation, i.e. how the issues of culture, language and the

existence of a supportive network might affect legitimate peripheral participation.

The research was funded by the Greek State Scholarships Foundation (IKY). In its later stages

the study was supported by the EU funded OPAALS project (contract no: 034824). The

views expressed in this paper are those of the author.

References

1. Berdou, E., Managing the Bazaar: commercialization and peripheral participation in mature,

community-led Free/Open Source Projects, in Media and Communications Department.

Forthcoming 2007, London School of Economics and Political Science: London.

2. Shaikh, M. and T. Cornford, Version Control Tools: a Collaborative vehicle for learning in

F/OS. 6th International Conference on Software Engineering proceedings - Collaboration,

Conflict and Control: The 4th Workshop on Open Source Software Engineering, Edinburgh,

Scotland, May 25th, 2004.

3. Baldwin, C. and K. Clark, The Architecture of Participation: Does Code Architecture Mitigates

Free Riding in the Open Source Development Model? Harvard Business School Working Paper,

Final Version, 2005.

4. von Krogh, G., S. Spaeth, and K.R. Lakhami, Community, Joining and Specialization in Open

Source Software Innovation: a Case Study. Research Policy, 2003. 32: pp. 1217-1241.

5. Ducheneaut, N., Socialization in an Open Source Software Community: a Socio-technical

Analysis. Computer Supported Cooperative Work, 2005. 14(4): pp. 323-368.

6. Wenger, E. and J. Lave, Situated learning: Legitimate Peripheral Participation. 1991,

Cambridge: Cambridge University Press.

7. Contu, A. and H. Willmott, Re-embedding Situatedness: The Importance of Power Relations in

Learning Theory. Organization Science, 2003. 14(3): pp. 283-296.

8. Foucault, M., The Subject and Power, in Michel Foucault: Power/ Essential works of Foucault

1954-1984. Vol. 3, J.D. Faubion, Editor. 1982, Penguin Books: London; New York. pp. 326-

348.

Open source technologies for visually

impaired people

Patrizia Boccacci1, Veronica Carrega1, and Gabriella Dodero2

1 DISI, University of Genova, Via Dodecaneso 35, Genova, Italy

boccacci@disi.unige.it

2 Free University of Bozen, Dominikanerplatz 3, Bozen, Italy

gabriella.dodero@unibz.it

Abstract. We describe two open source applications which we have

experienced as very useful aids for the integration of people suffering from

visual impairments, from hypovision to actual blindness. The first application

is based on speech synthesis and has been experienced by disabled university

students. The second experience is oriented to schoolchildren with low

residual vision, and it provides their educators and parents with easy to use

tools for image manipulation, especially designed for exploiting residual visual

abilities.

1 Introduction

The increasing interest in the promotion of education for visually impaired students,

at any level, has correspondingly increased also the number of blind university

students, who successfully graduate in all subjects. At the same time, EU and Italian

legislation are enforcing the adoption of accessible technologies to help disabled

citizen in their studies, work and social life. In the same countries there have been

also many actions in support of open source technology adoption within public

administrations. Yet today most software to be used as computer based aid for

disabled citizens is proprietary, and it is often acquired with public funds, by schools,

universities and by National Health Services.

The possibility to use open source aids for disabled people has been investigated

by the authors, having in mind the specific needs of a blind student, who enrolled in

Fall 2005 as BSc student in Physics. Desktop Linux distributions, which already

integrate speech synthesis tools, could not be installed in student labs because data

acquisition hardware, used for performing physics experiments, was not supported

under such distributions. As a consequence, a thorough study of what OS speech

synthesis software was available was undertaken, and finally a lab workstation was

configured, running open source software, and software available for free to non-

profit organizations[1]. This workstation provides speech synthesis in Italian and in

English under Linux, with easy keyboard commands to switch between the two

languages. No Braille device needed to be installed, only earphones. While speech

synthesis may substitute reading, information conveyed by images cannot be

perceived by blind students. Students with low residual vision may still view images

Patrizia Boccacci, Veronica Carrega, and Gabriella Dodero242

by means of optical devices (magnifiers) enlarging them, but such tools are heavy

and expensive, and a student can seldom use them both at school and at home. For

this reason, we investigated the features of open source image manipulation tools,

and developed an easy to use interface, especially conceived for the educators and

parents of visually impaired children. The image manipulation tool performs contour

extraction and "thickens" the lines so that images can be clearly perceived. In the

rest of the paper we shall describe how we use open source speech synthesis tools,

and then the image processing tools which we have developed. We conclude with

some comments on this experience, and on its relevance for the open source

community.

2 Speech synthesis

Speech synthesis is the process of generating a human voice by means of electronic

devices connected to a computer. It consists on two main steps. The first step is text

analysis, where the input text is transcribed in a phonetic representation. The second

step is the generation of sounds (waves), where audible output is made with a

combination of phonetic and prosody information. The process is sketched in Figure

1. The software module implementing the first phase is often called NLP (Natural

Language Processor), while the second is called DSP (Digital Signal Processor).

Fig. 1 . Organization of a speech synthesis suite

NLP contains translations from letters to sound, and prosody generation, but also a

morphological and syntax analyzer. Extraction of a syntax tree from the sentence is

in fact extremely useful to achieve good phonetical and prosody translations.

Most DSPs use a voice database, that is a collection of registered speech fragments.

Elementary components of such database are sounds (a vowel or a consonant) or

better, diphones, which include the second part of a sound and the first part of the

next sound (for example the transition between a vowel and a consonant). Starting

from phonemes and prosody, the DSP outputs a sequence of segments, which are

adapted to the required prosody, eliminating discontinuities; finally the resulting

flow is synthesized and the voice is output[2]. Several software tools are available

under Linux, but most of them were of no use for us, since they support only

English, or provide marginal support to other languages. The main cause is the

length and cost of creating a database of sounds containing all the relevant diphones

for each language, and the difficulty in expressing and tuning the rules for

transforming texts into phonemes.

One of the most promising speech synthesis systems is MBROLA[3], which has

a database of phonemes for about thirty languages, including Italian[4].

Open source technologies for visually impaired people 243

Unfortunately, the licensing policy of such project is quite restrictive: MBROLA can

be distributed only as a precompiled binary, and only non-military and non-

commercial applications may use its databases of phonemes. In other words, it is not

an open source product, even if it can be available for free, and several open source

tools are compatible with it. The BLINUX website[5] provides many (but not all)

open source resources for visually impaired users. It collects a huge amount of

packages of several kinds, from Braille device drivers to more complex systems like

speech synthesis modules. The selection of suitable packages within BLINUX is not

straightforward, and of course, care must be taken in order to avoid old systems, no

longer compatible with recent kernel versions, or without any more support groups

of active developers and users. For speech synthesis, this problem is especially

important since there is no single tool solving the problem, and we need a suite of

interoperable applications. The next subsections describe our choices.

2.1 Festival

Festival[6] has been developed at Edinburgh University, as a research tool in speech

synthesis. It includes a complete text-to-speech conversion module, which can be

invoked by a shell, by a command interpreter, by Java or by an EMACS interface.

The system is written in C++ and uses the Edinburgh Speech Tools Library for low

level operations. It can be used as a standalone tool, or as a development

environment for further speech synthesis tools. Both Festival and the Speech Tools

are distributed without licensing restrictions, for both commercial and non

commercial use. Festival supports several languages, including Italian, by installing

additional files. Italian phonetics has been developed at the Padua Laboratories of

the National Research Council; such database can be used together with the

MBROLA speech synthesizer (as we did), and provides different voices for the

language, including both male and female voices.

2.2 Speech Dispatcher

Since the lab will be used in various scientific related tasks, it is important to

integrate speech synthesis within an environment like EMACS. A system capable of

connecting Festival to EMACS is Speechd-el and Speechd. The core of the system is

Speech Dispatcher [7] (called also Speechd), which provides a device independent

level for speech synthesis, across a stable and well documented interface. Speech

Dispatcher is implemented as a client-server system: applications invoking speech

synthesis functions are clients, which establish a TCP connection to Speechd through

SSIP (Speech Synthesis Independent Protocol). Libraries for interfacing to many

languages are available (C, Python, Elisp, Common Lisp). Speech Dispatcher

translates requests from client applications into commands to the synthesizer,

handles message priority, keeps trace of requests logs, and provides the so-called

sound icons functionality. Sound icons are sound sequences informing the blind user

about the execution of particular actions, such as opening, saving and closing a file.

Patrizia Boccacci, Veronica Carrega, and Gabriella Dodero244

Once a client application has established a connection, it invokes functions like say(

), stop(), pause(). Speech Dispatcher parses such commands, reads the text to be

pronounced, and queues it in accordance with requests priority. Then it selects when,

by which synthesizer, and with which parameters such a text shall be output. In this

way, applications need not deal with low level details in speech synthesis.

Fig. 2. Speech Dispatcher architecture and interfacing

Figure 2 shows the structure and links between Speech Dispatcher and applications

on one hand, speech synthesis systems on the other hand. In fact, Speech Dispatcher

interfaces with many speech synthesizers, including Festival. Speech Dispatcher

interfaces with EMACS by means of the libraries Festival-freebsoft-utils, and

through the Speechd-el client. The latter is a voice output system for EMACS which

provides an Emacs Lisp library in order to make available a subset of Speech

Dispatcher functions. This makes EMACS totally accessible to blind users.

2.3 Gnopernicus

Gnopernicus[8] is a system especially designed for hypovision; it allows people with

low residual vision, and even blind Braille readers, to use the GNOME desktop and

its applications. It provides Braille output, screen magnification, screen reading; it

may interface to synthesizers like Festival. It provides an Assistive Technology

Support menu, which can be used to configure system startup and activate

Gnopernicus at login, making the blind user totally free from external help.

3 Image Processing

By discussing with therapists, educators and parents of visually impaired children,

we realized that simple magnification of an image contained in a textbook may not

be sufficient to provide relevant information to disabled pupils. In fact, images often

contain details, irrelevant to the intended educational purpose. Such details are

automatically discarded by normal children, while for visually impaired children

their selection wastes much effort. Also the use of many bright colors, intended to

capture the attention of normal children, can be confusing for a disabled pupil, who

would most appreciate a line drawing with contrasting background and no further

details. The most severely impaired people, who cannot perceive an image with color

Open source technologies for visually impaired people 245

or greyscale details, often may see such a simple sketch drawn with a thick line.

There exist already several open source tools, which may perform suitable image

processing and may make digital images better perceivable to hyposeeing people.

However, none of such tools has been designed for being used in such a specific

domain, and the desired functionalities should be sought for within menus and

options, discouraging parents and educators from using them. To help non specialists

to convert, automatically, color or greyscale digital images into sketches visible by

hyposeeing people, we developed a plugin which extends the features of a well

known open source tool, ImageJ. ImageJ is a public domain Java image processing

program that runs, either as an online applet or as a downloadable application[9].

ImageJ has an open architecture that provides extensibility via Java plugins. Custom

acquisition, analysis and processing plugins can be developed using an editor and

Java compiler. Our plugin provides a simplified interface which skips all ImageJ

menus containing unnecessary features. The user, through an accessible menu, can

set her/his personal profile, selecting between three degrees of resolution (low,

medium,high), three thicknesses of line (thick, medium, fine) and color pairs for

background and lines (black/white, yellow/blue etc). The plugin converts color

images into grayscale, and then applies a standard algorithm[10] of edge detection,

using threshold computed from user profile data. Figure 3 shows an original image,

and the resulting image after conversion with our plugin: only essential details are

kept, and the resulting image is visible to seriously hyposeeing people.

Fig. 3. Original and converted image of a glass bottle

4. Conclusions

Aids for disabled people represent an application domain which seems especially

suited for the open source paradigm, since the unavoidable need for adaptation to

actual degree of disability is best satisfied by open source software. In practice, this

has seldom occurred till now, probably for lack of awareness about the existence of

Patrizia Boccacci, Veronica Carrega, and Gabriella Dodero246

viable open source disability aids. Our experience has shown that existing open

source tools may represent good disability aids. Of course, proprietary software aids

exist as well, with comparable or higher quality. However, the quality of open source

solutions is already sufficient for many users. Someone objected to using MBROLA

as a component of our speech synthesis solution, since it cannot be considered open

source software. This however may be a temporary solution, since an open source

alternative, SMS[11], is almost ready for being released. Use of such software

together with Festival shall allow us to rely on open source software only.

The fact that speech synthesis open source software exists does not mean that it

is trivial to run it and that our installation shall represent a solution for all hyposeeing

problems. From users perspective, knowledge of Braille, presence of residual vision

and personal preferences may suggest a completely different approach with respect

to ours. And considering Linux installations, care must be taken to select audio

peripherals that are already supported by recent drivers, under the preferred

distribution. Similar considerations hold for image processing tools: existing

software has to be made available through an accessible and simplified interface, in

order to be really usable for our purposes. In both cases, we experienced the

interaction with developers and users communities, who gave useful feedbacks on

how to solve configuration and interoperability problems, and how to modify or

extend the available code, whenever needed.

Acknowledgement

The authors are indebted to Silvia Dini from Istituto Chiossone, Genova, for fruitful

discussions and feedbacks about possible aids for visually impaired people.

References

[1] V.Carrega, Open Source tools for visually impaired people, Master Theis, Università di Genova

(2006), in Italian.

[2] F. Felletti, Text-to-speech technologies applied to website navigation, Master Thesis, Università

di Ferrara (2004), in Italian.

[3] T.Dutoit, V.Pagel, N.Pierret, F.Bataille, O.Van Der Vrecken The MBROLA Project: Towards a

Set of High-Quality Speech Synthesizers Free of Use for Non-Commercial Purposes, in: Proc.

ICSLP'96, Philadelphia, vol. 3 (1996)pp. 1393-1396.

[4] P.Cosi, R.Gretter and F.Tesser, Festival speaks Italian, in: Proceedings of GFS2000, Padova

(2000), in Italian.

[5] Blind + Linux = BLINUX, (February 23, 2007) http://leb.net/blinux/

[6] R.A.J. Clark, K. Richmond, and S. King, Festival 2 - build your own general purpose unit

selection speech synthesiser, in: Proc. 5th ISCA workshop on speech synthesis (2004).

[7] Speech Dispatcher, (February 23, 2007) http://www.freebsoft.org/ speechd

[8] Introducing Gnopernicus, (February 23, 2007) http://developer.gnome.org/

projects/gap/AT/Gnopernicus/

[9] ImageJ, Image Processing and Analysis in Java, (February 23, 2007) http://rsb.info.nih.gov/ij/

[10] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 8, no. 6 (1986) pp. 679-698.

[11] G.Sommavilla, C.Drioli, P.Cosi, G.Tisato, SMS-FESTIVAL A new framework for open

source speech synthesis, Proc. AISV conference, Trento, (2006).

Different Bug Fixing Regimes?
A Preliminary Case for Superbugs ∗

Jean-Michel Dalle1 and Matthijs den Besten2

1 Université Pierre et Marie Curie, Paris, France; jean-michel.dalle@upmc.fr
2 University of Oxford, Oxford, UK; matthijs.denbesten@oerc.ox.ac.uk

Abstract. The paper investigates the processes by which bugs are fixed
in open-source software projects. Focusing on Mozilla and combining
data from both its bug tracker (Bugzilla) and from its CVS, we suggest
that: a) Some bugs resist beyond the first patch applied to the main
branch of the source code in relation to them, which we denote as su-
perbugs; b) There might exist different bug fixing regimes; c) priority
and severity flags as defined in bug repositories are not optimized for
superbugs and might lead to a involuntary side effects; d) The survival
time of superbugs is influenced by the nature of the discussions within
Bugzilla, by bug dependencies and by the provision of contextual ele-
ments.

There have always been claims according to which open-source software would

be structurally able to implement more efficient development methodologies

along several dimensions, and notably vis-à-vis reliability. “Given many eyeballs,

all bugs are shallow” [4]. In other words, the visibility and accessibility of the

source code, in addition to extended peer review processes associated with the

existence of a community, would be key to a superior reliability.

However, it is probably honest to say that these claims have never received a

true empirical validation, although most data that relate to open-source devel-

opment is archived online and thus freely available to both open-source projects

and academia. Furthermore, a recent study by Coverity2, a Stanford spin-off

company whose technologies allow for the automatic analysis of source code

to identify some of its defects, has stressed that mission- and safety-critical

proprietary applications were able to reach reliability levels above the most re-

liable open-source projects. Beyond the straightforwardness of this finding, it

still contributes to upgrade the general view on the reliability levels that dif-

ferent open-source projects were able to reach, while quality and reliability are

becoming a major concern for open-source software.

Are there indeed general elements in the open-source development method-

ology that would allow for an intrinsic superiority of open-source in terms of

∗ The work presented here has benefited from discussions with Patrick Brézillon, Paul
A. David, Laurent Daudet, Fabrice Galia, Hela Masmoudi and others. The support
of Calibre, an EU FP6 project, and of NSF project NOSTRA in the early phases
of this research are also gratefully acknowledged.

2 http://scan.coverity.com/

248 Jean-Michel Dalle and Matthijs den Besten

reliability and defect density? There is a strong case here for empirical studies,

in a more general context of inquiries about open-source software development

based on mining available online archives. Indeed, bug fixing processes in open-

source software have already received some attention [1, 2, 3, 5]. Following this

literature, we further suggest that more could be learnt by mining data from

both bug trackers and code repositories, i.e. the interactions between what hap-

pens in Bugzilla and what happens in the CVS. We suggest that there might

exists several different fixing regimes, and that, among the bugs that tend to

resists beyond the first attempts to fix them, there exist superbugs — as we

propose to denote them, in a direct analogy with antibiotic-resistant bacterias

— for the fixing of which the exchange of context elements between users and

developers might be key.

Data We focus here on Mozilla, not only as a prominent example of a success-

ful open-source software project that has already been the subject of various

empirical research investigations, but also because it is in the context of Mozilla

that the well-know bug repository Bugzilla originates. We combine Mozilla CVS

data with Bugzilla data. Namely, for each bug number in Bugzilla, we look for

this number in commits to the main branch of Mozilla’s CVS, using a heuristic

script that we have developed to this purpose. We then combine, for each bug

number, some of its characteristics inferred from Bugzilla with other character-

istics inferred from retrieved CVS data.

We limit ourselves to relatively old data to avoid censoring biases: i.e. we

suppose that a sufficiently long time has elapsed so that we can neglect bugs

that would not have been fixed yet. We also did some preliminary cleaning

up of the database, removing the first 1000 smaller bug numbers, so as to

avoid transitory initial conditions and to control the fact that smaller number

have a higher probability to be found in the CVS using our script while not

corresponding to bug numbers. As a result of preliminary univariate analysis,

we removed some outliers, and typically removed from our sample all bugs that

would correspond to either more than 1000 files fixed, that would depend from

more than 25 other bugs, and that would be associated with a bug report open

in Bugzilla for more than 1500 days before the first patch associated with the

corresponding bug number is committed to the CVS. Furthermore, we removed

from most of the analysis presented in this paper all bugs whose severity had

been set to “enhancement” as they would rather correspond to feature requests

properly speaking. Finally, we limited ourselves to all bugs whose resolution had

been set as fixed, compared to others resolution types. Ultimately, our database

includes approximately 17000 bugs.

Superbugs First of all, many bugs tend to “live” for a long time after the

code is first patched in relation to them. There are for instance 650 bugs in our

sample that were patched between 10 and 100 days after the first patch was

applied in relation to them to the main branch of the code base. Compared to

previous studies, these bugs are not simply associated with long discussions in

bug tracking system, but also with patches associated with them appearing for

A Preliminary Case for Superbugs 249

a long period of time in the code main branch. Although a considerable fraction

of the bugs are corrected on the first day in which the code of the main branch

is patched in reference to them, this “long tail” effect is however important.

That is to say, some bugs seem to be resistant to the “treatments” that they

initially receive: in that sense, we suggest to call them superbugs, in an analogy

with other resistant life forms that are now developing in hospitals. Compared

to other unusual software bugs such as Heisenbugs, superbugs belong to a more

general category that might include some of these more peculiar ones.

Moreover, there seem to exist different fixing regimes: The hazard function

that fits to our data (details upon request) has a ‘bathtub’ shape. A shape well-

know in engineering and generally associated with the existence of 3 different

regimes: an initial phase, a flat middle one, and a last so-called ‘wear out’ one

— in our case below 10 days, between 10 and 100 days, and above 100 days.

Within the latter category, it might be that there would even exist another

regime above 1000 days. It is absolutely clear to us that this categorization

is very tentative, being based only on one open-source project, and we very

much hope that future investigations will refine it. However, as a first step to

progress in the exploration of bug fixing regimes, we suggest to denote bugs

fixed in 10 days or less after a first patch has been applied in the main branch

in relation to them simply as resistant bugs, while bugs fixed in more than 10

days could be characterized as superbugs. And since the latter category could

itself include different regimes, we will denote as hyberbugs bugs fixed in more

than 100 days and 1000 days or less, leaving bugs fixed above 1000 days for

future investigations.

Fixing Time: severity and priority flags What factors affect the fixing time

of bugs in all three regimes? Obvious candidates are the two variables that are

set by bug reporters and developers, respectively, to characterize bugs, namely,

severity and priority. severity is set by bug reporters under explicit guidance

not to use the blocker and critical levels (severity = 6 and 5, respectively) out of

purpose, while the variable priority is set by developers. Our analysis of our data

(available upon request) shows that there is no distinguishable pattern, except

for severity = 1 (trivial) and 2 (trivial). trivial would seem to result globally in a

relatively lower survival probability while minor results in a relatively higher one.

These results are confirmed when plotting similar graphs for each of the resistant

bug, superbug, and hyperbug regimes: however, more precisely, the minor effect

is more apparent for superbugs and hyperbugs, and the trivial effect for resistant

bugs. One hypothesis here is that, due also a limited number of bugs associated

with severity 1 and 2 that tends to show that these two categories aren’t used

very often by developers, trivial bugs might be eliminated more rapidly precisely

because of their triviality i.e. easiness to correct , thus in the resistant bug

regime, whereas bugs flagged as minor would on the contrary could tend to be

neglected compared to others of higher severity, an effect that would naturally

be more pronounced as times goes on, i.e. for superbugs and hyperbugs. If

so, it might be worth simplifying the number of severity categories in bugzilla

by typically avoiding minor and flagging bugs as trivial or normal or higher.

Furthermore, the only distinguishable pattern for priority is for priority = 5 (P5):

bugs flagged at a very low priority tend to be patched earlier. This surprising

finding is probably to be related to a different use of priority flags under different

regimes. There are no P5 bugs among hyperbugs. An explanation for this would

be that working on bugs of low priority is abandoned: not that these bugs are

necessarily fixed, but they do would not survive for lack of interest . The fact

that the priority variable is set by developers, compared to the severity variable

by bug reporters, would tend to support this explanation.

Fixing Time: survival analysis It is possible to fit predictive models of the

fixing time of bugs in all 3 regimes. The linearity of the survival function in

loglog vs. log scale suggest that using a Weibull distribution approximation is

reasonable as a first step, although the actual distribution is most probably of

a power-law or similar nature at least for resistant bugs and superbugs Table 1

synthesizes results of survival analysis regressions (detailed results available on

request).

First, both priority and severity appear effective for resistant bugs, and less

so for superbugs and hyperbugs. Some of the priority levels influence survival

time counter-intuitively on the full sample, which we again interpret as resistant

bugs and superbugs with low priorities being abandoned. The highest two levels

of priority (and when priority is missing) tend to reduce the survival time of

superbugs compared to P5. With due cautiousness due to the improper fit of

the model, two levels of severity, minor and major, seem to have an influence in

increasing and decreasing, respectively, the survival time of hyperbugs compared

to blocker level. The minor effect, already presented above, is indeed also present

on the full sample. The interpretation of the negative major effect on hyperbugs

and of the negative critical effect on the entire sample are less clear. More

interestingly perhaps, different levels of severity influence the survival time of

bugs differently: normal has a less pronounced effect than critical, major and

minor, compared again to blocker. Two different effects might be at play here:

a minor effect, again, associated with neglect, and maybe a difficulty effect,

critical and major being just more difficult to fix or implying more cautiousness,

discussions and care.

Second, both resistant bugs and superbugs are affected by dependencies,

again counter-intuitively: bugs that block many other bugs appear to be fixed

less rapidly, while bugs that depend upon many others are fixed more rapidly.

We interpret the first part of this finding as a probable consequence of the

difficulty of fixing bugs that block many others: that is, the fact that a bug

blocks several others indirectly is an evidence of interdependencies that render

its fixing lengthier. The second part of this finding is less clear. It might be,

since bug report networks play an important role in bug fixing processes as has

been recently suggested [5], that bugs inserted in bug report networks would

tend to attract more attention from developers: and dependent bugs would be

fixed relatively rapidly once the bugs that blocked them would have been fixed,

250 Jean-Michel Dalle and Matthijs den Besten

A Preliminary Case for Superbugs 251

Table 1. Significance and impact of variables controlling for bug fixing regimes. The
source of the data is indicated with B for Bugzilla and C for CVS.

Parameter Bugs SuperBugs HyperBugs Full Sample (Parameter Description)

#Bugs 25965 650 290 16924
Intercept (−)*** (+)*** (+)*** (−)***
tpsStartBC (−)** (+)*** (first commit − opening date)

nauthC (+)*** (+)*** (+)*** (+)*** (maintainers mentioning bug)

nfileC (−)*** (−)*** (files touched by bug-commits)

ncomeC (+)*** (+)*** (commit-comments per bug)

ncomiC (+)*** (+)*** (commits per bug)

saddC (−)** (−)** (−)** (added lines of code per bug)

sdelC (−)** (+)** (removed code per bug)

ccszB (−)*** (−)*** (# addresses in cc-list)

attacB (−)** (attachments per bug)

patcB (+)*** (attachments marked “patch”)

depenB (−)*** (−)** (−)*** (bug dependencies)

blocB (+)*** (+)** (+)*** (bug blocks)

commB
(number of comments)

comauB (+)* (+)*** (# commentators)

comliB (# lines of comments)

priorityB 0 (−)*** (−)* (+)***
priorityB 1 (−)*** (−)* (+)***
priorityB 2 (−)*** (−)** (+)**
priorityB 3 (−)*** (+)***
priorityB 4 (−)*** •

priorityB 5 • • n/a •

severityB 1
severityB 2 (+)*** (+)** (+)*
severityB 3 (+)**
severityB 4 (+)*** (−)*
severityB 5 (+)*** (−)**
severityB 6 • • • •

at least compared to all bugs that do not depend upon any other and specially

bugs that are not part of a bug network.

Third, the number of developers (nauth) contributing to the code is pos-

itively related to survival time. Resistant bugs to which more numerous and

different commits are related (ncome, ncomi) also tend to be fixed less rapidly,

and similar effects hold for resistant bugs when more numerous people partic-

ipated in the bugzilla discussion (comau). On the contrary, tpsStart, i.e. the

length of the discussions and experimentations before a first patch is applied

to the main branch, reduces the survival time of resistant bugs. Similarly, ccsz
(number of developers who were copied when updates were made to the bugzilla

system) also reduces the survival time of resistant bugs. Both of these effects

disappear for superbugs. On the full sample, ccsz is also significant, and still

negative, while tpsStart is significant, but positive. Evidence is therefore mixed

here about the effect of “eyeballs” on fixing time. The number of active partic-

ipants in the discussion tends to slow down fixing, but this might just reflect

how complex to fix a bug is. Conversely, longer discussions (tpsStart) and the

number of observers (ccsz) would tend to allow for a solution to be found more

rapidly at least for resistant bugs.

Fourth, the fixing of superbugs is not affected by most of the variables

that influence fixing resistant bugs. On the contrary, they are sensible to the

number of lines deleted — maybe as a consequence of simply removing the part

of the code that created a superbug? — and also to the number of attachments

and to the number of patches sent in the Bugzilla discussion: the higher the

number of patches sent, the longer it takes to fix a superbug; conversely, the

higher the number of attachments, the lower the survival time of a superbug.

A straightforward interpretation for the former finding is that the number of

patches might be a consequence of how difficult it is to fix a given superbug.

About the puzzling latter finding, it should be noted that attachments are often

screen captures and other contextual elements: a superbug would then tend to

be fixed more rapidly as soon more elements of context would be contributed to

the discussion. This would be for instance in line with the fact that intermittent

failures generally tend to be difficult engineering problems, whose intermittence

is often due to missing contextual elements. An open question here is whether

the provision of contextual elements earlier during the bugzilla discussion would

have prevented the transformation of normal bugs into superbugs.

Conclusion We believe that understanding how superbugs could be fixed more

rapidly could be of special relevance vis-à-vis the reliability of open-source soft-

ware. priority and severity variables as currently defined in bug repositories do

not appear optimized yet in this respect. We suggest that analyzing the for-

mation of bug report networks, clarifying the nature of the discussion in bug

repositories between participants assuming different roles, and understanding

how contextual elements are brought into bug repository discussions are also

interesting research avenues.

References

1. K. Crowston, J. Howison, and H. Annabi. Information systems success in free and
open source software development. Software Process, In Press.

2. K. Crowston and B. Scozzi. Coordination practices for bug fixing within FLOSS
development teams. In Proc. CSAC, 2004.

3. A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open source
software development. ACM Trans. Softw. Eng. Methodol., 11:309–346, 2002.

4. E. S. Raymond. The cathedral and the bazaar. First Monday, 3, 1998.
5. R. J. Sandusky, L. Gasser, and G. Ripoche. Bug report networks. In Proc. ICSE

Workshop Mining Software Repositories, 2004.

252 Jean-Michel Dalle and Matthijs den Besten

Free/Open Services: Conceptualization,
Classification, and Commercialization

G.R.Gangadharan1, Vincenzo D’Andrea1 and Michael Weiss2

1 Department of Information and Communication Technology,
University of Trento, Via Sommarive, 14, Trento, 38050 Italy

{gr,dandrea}@dit.unitn.it
2 School of Computer Science, Carleton university,
1125 Colonel By Drive, Ottawa, K1S 5B6, Canada

weiss@scs.carleton.ca

Abstract. The concept of Free/Open Services (F/O-Services) emerges
by bringing together services with Free/Open Source Software (FOSS).
F/O-Services enable the creation of transparent composite services col-
lectively and allow people and other services to access them. This paper
extends the concept of F/O-Services beyond the level of open inter-
faces, analyzing the associated licensing interpretations and exploring
the notion of open service dependencies. Further, the paper overviews
the business models for F/O-Services as a part of this social mechanism
of exchange.

1 Introduction

Software has, traditionally, been perceived as a product, requiring possession

and ownership, in order to receive the desired performance. The common model

for software use is to install and execute on a computer owned by the user or

his/her organization. This model is overridden by Software-as-a-Service [1], a

mechanism for renting software where users subscribe to the software they use.

Service oriented computing (SOC) allows the software-as-a-service concept to

expand to include the delivery of complex business processes and transactions

as a service, allowing applications to be constructed on the fly and services to

be reused everywhere and by anybody [2]. The two important motivations for

opening interfaces through services are as follows:

– The trend toward componentization and commoditization of business func-

tionality [3, 4] means that a component-based business will focus on its value-

added functionality, and outsource non-value-added functionality.

– Opening interfaces leverages external innovation, as amply demonstrated by

the great variety of mash-ups built using the Google Maps interfaces [5].

In general service consumers have no access to the implementation details of

a service, including whether or not a service uses other services, and what are

these other services. An approach similar to Free/Open Source Software (FOSS)

254 G.R.Gangadharan, Vincenzo D’Andrea and Michael Weiss

that opens the availability and accessibility of the source code of services would

significantly enhance the understandability of the service composition process

(including data and control flow) and allow the creation of derivative services.

Free/Open Source Software (FOSS) is an encompassing term for the devel-

opment models, legal terms, and sociological issues associated with this novel

software paradigm [6].The acronym FOSS combines the views of Free Soft-

ware and Open Source Software and implies the commonalities between these

approaches. Inspired by the success of FOSS, we have conceptualized and an-

alyzed the implications of Free/Open Services (F/O-Services) in [7]. In this

paper, we extend our previous work by adding service dependencies to the no-

tion of F/O-Services and elaborate the explicit expression of dependencies in

licenses.

2 Free/Open Services

A service is represented by an interface part defining the externally visible

functionality (and typically some non-functional properties [8]) and a realiza-

tion part implementing the interface [9]. Generally a service would be avail-

able when invoked by another service/entity, but remains idle until the request

arrives. Services provide universal interoperability, manifested by the web-like

network of services created by the composition of lower level services into higher

level services [10]. Composite services could be created dynamically based on

functional and non-functional requirements. Individual services can be replaced

in case of malfunctions or due to the changes of requirements. A truly dynamic

service oriented system can achieve software evolvability. The dynamics and

composability of services are at the core of service orientation1.

The opaque nature of services often hides the details of operations from the

service consumer. The consumer could neither see anything beyond the interface

nor understand about the services being composed in a composite service.

A F/O-Service is inspired from FOSS concepts and is characterized by the

following principles [11]:

– The source code of the interface (WSDL descriptions) as well as of

the implementation should be available.

– The service should be allowed for modification and the modified ser-

vices should be freely distributable.

– The service should allow derivation and should be freely reimple-

mentable and executable.

A F/O-Service allows the access to the source code of interface as well as its

realization, making composite services and derivative services. We extend the

F/O-Service philosophy by introducing the term dependency.

1 In this paper, we do not explore the implications of dynamic nature of service
composition.

Free/Open Services (F/O-Services) 255

We define dependency between services as the description of the interactions

of a service with other services. Interactions do not have a direction per se, but

a dependency does. A dependency link is directed from the service user to the

service provider. Consider a service A, which composes the services B, C, and

D. Further, these services compose E, F , G, and H. Given the service A, we

could not understand what the services are being composed in A. If we make

Fig. 1. Dependencies of a service

the dependencies of services open, we could achieve a service, whose service

internals are completely exposed to the consumer. In Figure 1 circles and arrows

represent services and their dependencies. From the given dependency graph,

we could recognize the complete hierarchy of composed services. This approach

is quite similar to white box description of components [12].

There are at least two notions of openness in the context of dependencies2:

1. The service declares which services it uses, but this does not imply a right

for the consumers to invoke those services directly, if the service provider

wishes to protect the intellectual property inherent in the composition and

2. The service allows others to reuse the relationships with other services it

has. Restrictions imposed by the component services apply, of course.

These notions are not all-encompassing. For instance, there may be intellectual

property rights attached to the selection of services during composition.

3 Free/Open Services Classification

Like software, a service is also an asset transferring an inherent value from

the provider to the recipient. A service is a self-contained implementation of

specific operations with a well-defined interface. However, the nature of services

[7] precludes the direct adoption of software licenses for services.

Copylefting is the process of imposing copyright law to remove limitations

on distribution and modifications, requiring to preserve the same freedoms in

2 Opening dependencies implies only the provision of a list of composed services, and
differs from fully exposing the application logic used to compose them.

the modified versions. From the perspective of service providers and developers,

copylefting of services could be seen as a restriction imposed on the new service,

that allows the value addition solely with the same conditions as the original.

However, from the perspective of the service consumer, copylefting could be

viewed as an ultimate guide for using any value added services inheriting from

a particular copylefted service.

Free/open source software, in general, could be either copylefted or not.

However, in addition to the dimension of source code, F/O-Services have an-

other dimension: execution/usage. Unlike software, services are not resident in

the recipient’s environment. Though FOSS licenses do not discriminate in the

uses of a software, the dynamic binding and execution of services could enforce

certain restrictions for the execution/usage of F/O-Services. These restrictions

could be of several kinds, for example,

– a service should be allowed to be executed for a certain number of times;

– a service should be used for certain purposes (for example, academic use);

– a service should require payment from the consumer for execution.

Now, considering the continuum of execution/usage with respect to copyleft-

ing in association with the openness of source code, we classify the F/O-Service

licenses as follows3:

Unbounded Licenses belong to the most permissive family of F/O-Service

licenses. These licenses allow licensees to use the service (and its source code)

for any purposes without any restrictions. These licenses are wholly unrestricted

for any kind of value addition of services.

Disjoint Licenses require no copylefting on any value addition but im-

posing restrictions on usage/execution of the service. These licenses are disjoint

(unrelated) from the licenses of parent services.

Confined Licenses are the family of licenses where execution/usage may

be restricted and could allow any kind of value addition, provided the value

added services could be licensed under the same family. These licenses enrich

the F/O-Services community.

Accessible Licenses refer to the family of licenses where execution/usage

may be unrestricted and could allow any kind of value addition, with the re-

quirement of copylefting.

The taxonomy of F/O-Service licensesis tabulated as shown (see Table 1):

Table 1. Taxonomy of F/O-Service Licenses

Execution Restricted Execution Unrestricted

Copylefting Confined Licenses Accessible Licenses

Non copylefting Disjoint Licenses Unbounded Licenses

3 We support the rights of a service provider to make use of any license for their ser-
vice, and highly recommend that service providers obtain appropriate legal advice
regarding their selection of a service license.

256 G.R.Gangadharan, Vincenzo D’Andrea and Michael Weiss

Free/Open Services (F/O-Services) 257

4 Free/Open Service Business Strategies

Business strategies are the specifications of complex real world descriptions for

managing a business by an organization in a sustainable way. There exists a

wide range of business models for FOSS [13] as well as for services [14].

A service may be available at no cost. However, it could motivate the con-

sumer to purchase something. Like traditional commercial software, services

could begin their product life cycle as closed and then could become open

when appropriate. Further, F/O-Services could adopt a complementary ser-

vice/product scheme where revenue comes from media distribution, branding,

training, consulting, and custom development. Also, by following the dual li-

censing strategy, a service can be licensed under both an open source inspired

license and a proprietary license.

Service hosting is another business strategy for F/O-Services. A F/O-Service

provider could host the services defined by others, thus making a viable business

opportunity. A service host provides the capacity for executing a F/O-Service.

The intermediary and shared infrastructure models [15] can also be adapted

to F/O-Services. One type of intermediary is a service aggregator. It adds value

by composing other services so that a new functionality arises that was not

available before. Intermediaries may also add value through the pre-selection

of component services and managing their quality. A shared infrastructure ser-

vice is an open service jointly developed by service users or providers for their

common usage. In this case, it is more economic to share the development costs

rather than developing the capabilities provided by the services individually.

5 Concluding Remarks

Though the standards of services are open, the domain of SOC is not enjoying

the freedom of openness till now. As freedom of distribution and freedom of

modification are the core principles of free and open source licensing, we think

an approach inspired by FOSS for conceptualizing the service licenses would be

beneficial to the services community. To the best of our knowledge, [11] is the

first published work heralding the rise of F/O-Services. Following this work,

very recently, there are few informal blogs or writings scattered in the Internet

[16, 17]. However, these works neither conceptualize F/O-Services completely

nor intend to formalize the representation of licenses for F/O-Services. exploring

the concept of dependencies.

Exposing the service dependencies could matter to the service consumer for

a number of reasons, such as the consumers could deny a service that composes a

service from a particular service provider. Service providers fail to get sufficient

guidance for the implementation from the inadequate interfaces (the partial

information conveyed through current service interfaces) [10]. Similarly, service

consumers could make incorrect assumptions about the service implementation

given these inadequate interfaces. The opening of service increases the quality

G.R.Gangadharan, Vincenzo D’Andrea and Michael Weiss

of service integration by reducing the number of composition errors due to

misinterpretation of service interfaces, and failures due to hidden side-effects,

thus reducing the cost of developing and maintaining composite services.

References

1. Elfatatry, A., Layzell, P.: Negotiating in Service Oriented Environments. Com-
munications of the ACM 47(8) (2004) 103–108

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures, and Applications. Springer Verlag (2004)

3. Sanford, L., Taylor, D.: Let Go to Grow: Escaping the Commodity Trap. Prentice
Hall (2005)

4. Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., Rackham, G.: Impact
of Service Orientation at the Business Level. IBM Systems Journal 44(4) (2005)
653–666

5. Mulholland, A., Thomas, C., Kurchina, P.: Mashup Corporations: The End of
Business as Usual. Evolved Technologist Press (2006)

6. Feller, J., Fitzgerald, B.: A Framework Analysis of the Open Source Software
Development Paradigm. In: Proc. of the 21st Annual International Conference on
Information Systems. (2000) 58–69

7. D’Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Pro-
ceedings of the IEEE Web Services Based Systems and Applications (ICIW’06),
Guadeloupe, French Caribbean. (2006) 142–147

8. Wang, G., MacLean, A.: Software Components in Contexts and Service Negotia-
tions. In: CBSE Workshop. (1999)

9. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica-
tions of the ACM 46(10) (2003) 25–28

10. Weiss, M., Esfandiari, B., Luo, Y.: Towards a Classification of Web Service Feature
Interactions. Computer Networks 51 (2007) 359–381

11. D’Andrea, V., Gangadharan, G.R.: Licensing Services: An “Open” Perspective.
In: Open Source Systems (IFIP Working Group 2.13 Foundation Conference on
Open Source Software), Vol. 203, Springer Verlag. (2006) 143–154

12. Szyperski, C.: Component Software: Beyond Object Oriented Programming. ACM
Press, New York (1998)

13. Raymond, E.: The Magic Cauldron. http://www.catb.org/ esr/writings/magic-
cauldron/magic-cauldron.html (1999)

14. Hagel, J.: Out of the Box: Strategies for Achieving Profits Today and Growth
Tomorrow Through Web Services. Harvard Business School Press (2002)

15. Weill, P., Vitale, M.: Place to Space: Migrating to E-business Models. Harvard
Business School Press (2001)

16. Slashdot: Web Services and Open Source at OSCON.
http://developers.slashdot.org/article.pl?sid=06/07/26/1537213 (Posted on
July 26, 2006)

17. log.ometer.com: Log for July, 2006. http://log.ometer.com/2006-07.html (Posted
on July 29, 2006)

258

Surveying Industrial Roles in Open Source

Software Development

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal

Norwegian University of Science and Technology (NTNU), 7491

Trondheim, Norway

Abstract. Industry uses Open Source Software (OSS) to a greater and greater

extent. We have defined four industrial OSS roles; OSS provider, OSS

integrator, OSS participant and Inner Source Software (ISS) participant. Based

on these four roles we have performed a survey in the ITEA COSI project. We

provide initial answers to what motivates companies to undertake these roles,

what are the advantages and challenges of undertaking them, and which

development practices they use while undertaking these roles.

Key words: Open Source, Industry, Roles, Survey, Motivations, Development

Practices

1 Introduction

The cost of producing software from scratch goes hand in hand with the steadily

increasing size and complexity of the software. Reuse of standard components has

been seen as one solution to keep costs down. Reusable components have been

developed in-house or acquired from other vendors.

OSS provides quality software, enables new ways of developing software, and

makes new business strategies possible. OSS can be important in the battle against

constantly larger and more complex software. Several major industrial actors like

Sun Microsystems, Oracle, IBM, and Novell, have already started to benefit from

OSS.

The entry of industry into the OSS field opens up a new research arena. The

ITEA COSI project wants to increase the understanding of how industry can benefit

from OSS. As part of the ongoing work in the ITEA COSI project we have

performed a survey of current OSS development practices in parts of the European

software industry. The survey gave several interesting indications. The availability of

OSS is perhaps the most important reason behind use of OSS. The main advantages

for a company having an OSS product come from, value added by supplementary

products and community innovation. Attracting and supporting an OSS community

requires hard work and there are challenges related to community contributions.

We start by presenting the four industrial OSS roles and the applied research

method before we present our results and sum up with a discussion and conclusions.

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal260

2. Related work and Industrial Roles

Our literature survey did not discover many empirical studies of industrial OSS

involvement. However, examples can be found e.g. [1-5].

We want to highlight the need for more varied and reproducible empirical

research. The majority of the publications we found were case studies or experience

reports which are hard to reproduce. The work is in many cases performed in only

one setting, most often in a non-industrial setting.

Based on literature and conversations with the industrial partners of the ITEA

COSI project we defined four industrial roles: OSS Provider, OSS Integrator, OSS

Participant, and Inner Source Software (ISS) Participant.

An OSS provider is a company which controls the code base of an OSS product.

MySQL, Trolltech, and Sun Microsystems are some examples. The OSS integrator is

a company which, uses OSS components in their products or build their products on

top of OSS infrastructure. The OSS participant is a company actively interacting

with one or more OSS projects. IBM and SUN are for instance participating in the

development of the Apache DB. The ISS participant is a company participating in an

inter department or inter company collaborative development using OSS

development practices.

3. Research Method

In the first phase of the ITEA COSI project, we wish to create a baseline

description of the industrial OSS related development. The following questions were

based on a literature review and in conversations with project partners: Why do

industrial actors undertake the four OSS roles? What are the advantages and

challenges related to undertaking them? Which development practices are used in

these roles?

Based on these questions, we created an interview guide which was used in semi-

structured interviews with Norwegian COSI partners. The interviews were

performed at the offices of the industrial partners and all of them were recorded and

later transcribed.

We interviewed two developers in company A, one developer in company B, and

one developer and one CEO in company C. Company A is a small company which

uses OSS in their development. Company B is a medium sized consulting company

delivering services and products based on OSS. Company C is a medium sized

company which provides an OSS product.

The interview guide and the results from the interviews were used as a basis for a

web-survey. The survey had one part for each OSS role.

The ITEA COSI project consists of big companies from telecom and embedded

software, but also smaller and more traditional software companies. Selection of the

respondents was because of the composition of the project, unfortunately out of our

hands. We distributed the survey to the all of the project partners and encouraged

Surveying Industrial Roles in Open Source Software Development 261

them to respond at least once. The companies selected their respondent(s) themselves

and we received the following number of responses; OSS provider: 3, ISS

participant: 6, OSS participant: 6 and OSS integrator: 9, in total 24 responses.

4. Results

OSS providers are motivated to release their products as OSS of several factors.

The community can perform testing and provide new functionality, bug-fixes, bug-

reports, and translations. This may enhance the functionality and increase the quality

of the product. The community members may contribute to the innovation of the

product in form of new ideas and new requirements. They can also provide

supplementary products and services.

Releasing a product as OSS is a way to make it available to a large user group. If

the community is satisfied with the product, it will most likely share its experiences

with others and thereby give the OSS provider free marketing and increased

publicity.

Increased value, availability and publicity, boost the possibility of attracting new

users. This is important because many industrial OSS providers sell services related

to their OSS products. The more users, the more potentially paying customers and

the more likely it is that someone will contribute to the development of the product.

We believe that the innovation and the supplementary products and services

which increase the value of the product are more important than code contributions.

This is because the Oss provider has to review contributions in form of code,

requests, and opinions.

Maximizing community contributions and reducing the work related to these

contributions is one of the challenges an OSS provider faces. Attracting a community

is another major challenge for an OSS provider and according to our respondents,

hard work.

It is important to offer the community a piece of quality software they need,

infrastructure to support the community, enough documentation and information to

get the community members going and to make them feel involved. However, it is

important not to involve the community too much because involvement will create

overhead and delays.

The OSS integrator is motivated by the low purchase price of the OSS products.

Perhaps even more important is the high availability of OSS. Standard compliance

was also mentioned as a reason why people use OSS.

Many OSS products are available through project web sites containing

documentation, forums and mailing lists, bug and feature trackers, road maps,

developer info and so on. The honesty about the true status of the OSS product and

the availability of information make it easier for the OSS integrator to understand

and evaluate it.

OSS components are primarily selected through informal processes. The OSS

integrator discovers a need for a component. He forms an initial idea of what the

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal262

software should do. Based on these initial requirements he performs an informal

search to create a long-list. This long-list is later reduced to a short-list. The

components on the short-list are tested or evaluated closer before one product is

selected.

The candidate components may be found through many sources; prior

experience, friends or co-workers, request for help on forum or mailing-list, searches

in OSS portals or search engines. Search engines are used to find both single

components and comparisons of several components.

Missing functionality, incompatible licenses, unfamiliar programming languages,

lack of stable releases, no activity in community, bad or no reputation, and absence

of documentation, are easy-to-check evaluation criteria. To evaluate the components

further the developer may subscribe to mailing lists, study documentation, perform

code reviews, and test the software in a small prototype. Plans and roadmaps,

compatibility to other software, standard compliance, reputation of the product and

the provider, the development process used in the community, and support from

community or a commercial provider, were all mentioned as evaluation criteria in

this process. This evaluation was mostly informal but some respondents reported that

they used checklists.

The OSS integrator is faced with some challenges. There are vast numbers of

OSS available out there and finding quality products can be hard.

By changing the source code of the OSS products he uses, the OSS integrator is

left with two choices: He can keep the changes to himself or feed the changes back

into the product. Convincing the OSS project to include these changes can be hard. If

he is unable to make the OSS project include his changes he has to maintain this

code himself. This could be time-consuming and it may lead to problems with new

releases of the OSS.

Most of the OSS participants could not surprisingly be classified as active or

passive users. They provide occasional bug fixes and requirements, subscribe to

mailing-lists, read news, and primarily use the software.

The respondents were overall satisfied with the OSS products, their communities,

information from the community, and their relationship with the community.

However, they acknowledged that they would have been able to influence the

community more through increased participation.

Participation as a company was not surprisingly rooted in the need for the

product. Learning was also mentioned as one important motivation for some

companies. On the individual level learning, idealism, and personal interest in the

product were mentioned as the most important factors.

The participants in ISS development use some development practices often

used in OSS development. The use of e-mail and mailing list was due to the

distributed development quite extensive.

To provide the participating developers a shared view of the code, code

repositories were used. These repositories were controlled by gatekeepers or module

owners. Based on the code base, several pre-releases of the software were made

Surveying Industrial Roles in Open Source Software Development 263

available to give the users an early impression of the product and to allow the users

to provide feedback to the developers.

Some of the respondents reported saved development effort and maintenance

effort due to ISS cooperation.

5. Discussion and conclusions

In the section about related work we requested more and more varied empirical

research related to industrial OSS involvement. We are aware of some of the

limitations of our own work and we will discuss some of these here.

The survey was intended to be a baseline for the companies in the ITEA COSI

project. The selection of respondents was done from this population and we cannot

claim that our results are valid for other populations.

The number of respondents was unfortunately quite low. The selection of

respondents was done by convenience sampling. We were, due to the sampling

method, unable to control mortality rates and drop out rates for the questionnaire.

These factors reduce the internal validity and the statistical validity of the survey.

We have however increased the validity through interviews with some of the

respondents and through expert review. We have presented the results to the ITEA

COSI project and to several of the respondents. None of them gave us any

indications that the results were flawed.

We believe that our work is a step on the way to understand how industry can

benefit from OSS products and development methodologies. The survey has given us

initial ideas of what motivates companies to undertake the four roles OSS provider,

OSS integrator, OSS participant, and ISS participant. Furthermore, we have

described some of the advantages and challenges related to undertaking these roles.

At last we have started to describe some of the processes and practices used by these

roles.

The work of answering the initial questions about motivations, processes,

advantages and challenges are by far not completed. We will continue this work and

a second version of the survey is under development. This survey will be distributed

to a larger European population through ITEA.

Acknowledgement

The Norwegian COSI is sponsored by the Norwegian Research Council’s IKT-

2010 program. The COSI project is part of the ITEA 2 program.

Øyvind Hauge, Carl-Fredrik Sørensen, Andreas Røsdal264

References

1. W-G. Bleek, M. Finck, and B Pape, Towards an Open Source Development Process?

Evaluating the Migration to an Open Source Project by Means of the Capability Maturity

Model, Proceedings of the First International Conference on Open Source Systems,

Genova, Italy, 37–43 (2005)

2. C. Jensen and W. Scacchi, Collaboration, Leadership, Control, and Conflict Negotiation and

the Netbeans.org Open Source Software Development Community, Proceedings of the

38th Annual Hawaii International Conference on System Sciences, 196b-196b, (2005).

3. V. K. Gurbani, A. Garvert, and J.D. Herbsleb, A Case Study of a Corporate Open Source

Development Model, Proceeding of the 28th international Conference on Software

Engineering ICSE '06, Shanghai, China, 472–481 (2006)

4. C. Rossi and A. Bonaccorsi, Why Profit-Oriented Companies Enter the OS Field? Intrinsic

vs. Extrinsic Incentives. Proceedings of the fifth Workshop on Open Source Software

Engineering, 1–5 (2005)

5. L. Dahlander and M. G. Magnusson, Relationships between Open Source Software

Companies and Communities: Observations from Nordic Firms. Research Policy, 34(4),

481–493 (2005)

Guiding the Discovery of Open Source

Software Processes with a Reference Model

Chris Jensen and Walt Scacchi

Institute for Software Research, Bren School of Information and Computer

Sciences, University of California. Irvine, CA 92697-3440 USA

{cjensen, wscacchi}@ics.uci.edu

WWW home page: http://www.ics.uci.edu/~{cjensen, wscacchi}

Abstract. This paper describes a reference model for open source software

(OSS) processes and its application towards discovering such processes from

OSS project artifacts. This reference model is the means to map evidence of

an enacted process to a classification of agents, resources, tools, and activities

that characterize the process.

Keywords. Reference model, open source, process discovery

1 Introduction

OSS community observers and novice members often face the challenge of

determining how the community works and, equally important, how to properly

contribute. Process discovery aims to answer these questions. As researchers and

individuals wishing to understand and/or participate in OSS communities, process

discovery can be a time consuming task as each community has its own way of doing

things. Much of this time is spent collecting and coding evidence, as in any

qualitative data analysis. As with errors committed early in the software

development lifecycle, data miscoded early in the overall research process has a high

cost. We use a reference model based approach for process discovery to assist in

coding process evidence to reduce the risk and the cost associated with such coding

errors, as well as to more completely articulate discovered OSS processes [1, 2, 3].

The discovery and codification of OSS projects is also a prerequisite to continuous

improvement of these processes.

Our reference model serves as a guide to coding process data collected from

project artifacts. However, as our reference model is based on a process meta-

model, [4], the reference model can serve as a guide to help in coding and modeling

OSS processes in forms suitable for automated analyses [9]. Our hypothesis is that a

reference model-based approach provides a systematic approach to the problem,

Term: report

Known Actions: testing, defect reporting, logging

Known Agents: none

Known Resources: whitepapers, test results, web

server logs, defects, feature requests

Known Tools: defect repository, test suite

Figure 1. Example reference model mapping

Guiding the Discovery of Open Source Software Processes with a Reference

Model
267

There are many OSS artifacts that encode process information and their presence

varies by community. Some of the more common artifact include webpages [10],

chat transcripts [7], defect reports, source repositories, development and community

infrastructure tools [8], and development resources, including process fragment

descriptions (e.g., How-To guides, FAQs, etc.) [7]. These artifacts encode data

useful for process discovery in four dimensions: structure (how project-related

software development artifacts are organized), content (types of artifacts and

information they contain), usage patterns (user interaction within the community

web), and update patterns (content updates, including initial creation and deletion).

OSS artifacts vary along these four dimensions over time, and this variance is the

cause or consequence of process events. By observing patterns of patterns of

reference model attributes within a process iteration and how these patterns change

across iterations, we can discover different types of processes and their evolution

over the life of a project. We give some examples of this in the next section where

we discuss our experiences in applying our reference model in the course of process

discovery.

3 Experiences in Reference Model Based OSS Process Discovery

We have applied this technique to discovery of three different types of processes in

and around the NetBeans IDE, Apache HTTPD server, and Mozilla projects for a

total of seven case studies. We have framed our research with the perspective of an

observer or would-be contributor [9] and have, thus, limited ourselves to data that is

publicly available via their respective online project portals. Consequently, we have

found that access to all four artifact dimensions that encode process data has been

limited, especially usage patterns. These limitations have varied across projects, but

also between artifacts within a project. Although our resulting process models may

have been more precise if not for these limitations, each study, nevertheless, yielded

an overwhelming amount of data to examine. In this section, we describe how we

have used our reference model in each of the three types of processes we looked at.

3.1 Development Processes

Surveys of development processes in Apache, Mozilla, and NetBeans seeded our

initial reference model. These studies examined the requirements and release

processes in NetBeans, the Apache server's release process, and the Mozilla testing

cycle, circa 2002. The processes were discovered without an explicit reference

model, but rather drew on our knowledge of the process meta-model [4] and the

projects under study. From these studies we constructed a taxonomy of types of

agents, tools, resources, and actions observed and built our reference model

dictionary using instances of these entities from project data, as discussed above.

Successive process discovery case studies have further enhanced the reference

model's precision and relevance in guiding subsequent OSS process discovery,

Chris Jensen and Walt Scacchi268

3.2 Interorganizational Process Communication

In our second case study, we examined interorganizational process communication

[10] across several projects (including, but not limited to NetBeans, Apache, and

Mozilla) that form a software ecosystem. We said processes that communicate

activities or synchronize resources across OSS projects are “integrative if they

identify compatibilities or potential compatibilities between development projects”

(i.e. enables external stakeholders to continue following their internal process as

normal) or conflictive if “the degree of accommodation or adaptation becomes too

great” [10].

In the course of discovering communicating processes, we examined

relationships that synchronize resources shared between projects. Some of the most

common relationships were integration of tools and libraries produced by one project

and used by another and the participation of individuals on several projects,

sometimes called linchpin developers [11]. The reference model produced in the

course of discovering development processes provided insufficient detail in terms of

proper names of specific tools and resources (especially shared libraries) necessary

to observe the types of interorganizational relationships that precipitated integration

and conflict. Moreover, discovering interorganizational processes requires tracking

project specific vocabularies in order to identify instances of process communication

between projects. Specifically, we had to denote producers and consumers of

specific libraries and development tools, as well as project contributors. As a

complicating factor, process communication often occurs outside project web

portals, in other channels, both public and private. Some of the richest data available

regarding interorganizational process communication between the NetBeans project

and the Eclipse IDE project (see http://www.eclipse.org), for example, came from

interviews and reports regarding private meetings between the governing body of the

Eclipse project and the management of SUN Microsystems, employer of many

developers and project leaders for the NetBeans project. Nevertheless, evidence of

process communication, and more so the extent to which it was integrative or

conflictive, was difficult to observe.

3.3 Role Migration Processes

Our third set of case studies [7] involved observing OSS project participants

changing roles. We observed several different tracks of participation, ranging from

source code development to community governance and how developers change

roles over the course of their participation (or career) within an OSS project.

The key to observing role migration lies in changes in the activity patterns for

individual project participants. Using our original reference model as a basis, we

saw that the types of actions an individual is associated with have shifted to other

branches of the action taxonomy over time. A shift to a closely related branch

indicated a migration along the same participation track while a shift to a distant

branch indicated a shift to a different track. This technique also allowed us to

determine individuals with multiple roles, as well as to detect adoption and

abandonment of such roles over time. Using this logic, if many participants show

Guiding the Discovery of Open Source Software Processes with a Reference 269
Model

the same migration patterns near the same point in time, we may infer a shift in the
participation track-specific process. In this event, we would not be surprised to find
shifts in the resources and tools along that track, though may not always be the case.

4 Discussion and Future Work

Becker-Kornsteadt [12] gives a detailed model of process discovery, used in
conjunction with the Spearmint project. Abstracting the problem to three stages: data
collection, data analysis, and data presentation, the reference model offers only a
partial solution to the data analysis stage. After data is coded, it must be assembled
into a set of actions (composed of sets of participating agents, tools, and resources
required and created by the action, and invocation scripts, as appropriate). Lastly, to
produce a process description, this set of actions must be arranged in a fashion
representing the (partial) ordering in which they took place [13].

We have looked towards automation to reduce the substantial effort required for
process discovery. Automatically coding process evidence is a tantalizing objective,
given the advances in machine learning. The example in Figure 1 demonstrates the
importance of context in precisely mapping process evidence to classification,
suggesting that full automation is either not yet attainable or has a high cost. With
this consideration, we have pursued an interactive direction, based on search
technology. Our strategy is to query project artifacts using terms from our reference
model and, where a term may have multiple mappings, allow the human process
discoverer to make a determination as for which is accurate. This approach
significantly reduces the effort in locating process evidence within project data and
partially reduces the effort associated with data coding. Further, the approach is well
suited for artifact-specific analysis and tracking timestamps associated with each
document. These temporal signatures are necessary for establishing action-task-
subprocess-process composition, as well as partial ordering of events. These efforts
are in progress. Other research efforts [14, 15] have sought automated OSS process
discovery, though these appear to focus on structure, usage patterns, and update
patterns and less on their often semi and unstructured content.

The reference model cannot eliminate process discovery risk altogether, due to
the variance in lexica between projects, however its usefulness as heuristic can be
improved through updates and process (and project) specific tailoring. In this paper,
we discussed using reference modeling in discovering OSS processes. We discussed
the composition of such a reference model. We looked at where to find process data
to apply the model to. We saw how it was used and evolved over the course of
several case studies, and further opportunities for reference modeling to lower the
risks and costs of process discovery.

Acknowledgments

The research described in this paper has been supported by grant #0534771 from the
U.S. National Science Foundation. No endorsement implied. Mark Ackerman at
University of Michigan, Ann Arbor; Les Gasser at University of Illinois, Urbana-
Champaign; John Noll at Santa Clara University; Margaret Elliott and others at the
UCI Institute for Software Research are collaborators on the research described here.

Chris Jensen and Walt Scacchi270

References

1 S. Koch, S. Strecker, and U. Frank, Conceptual Modelling as a New Entry in the

Bazaar: The Open Model Approach. Proc. Second Intern. Conf. on Open Source

Software, 8-10 June, 2006 Como, Italy (Eds) E. Damiana, B. Fitzgerald, W.

Scacchi, and M. Scotto, p. 9-20

2 J. vom Brocke and C. Buddendick, Reusable Conceptual Models - Requirements

Based on the Design Science Research Paradigm, 1st Intl. Conf. on Design

Science Research in Information Systems and Technology, Poster Paper, Eds: A.

Hevner, Claremont, CA, USA, 24-25 Feb, 2006.

3 C. Jensen and W. Scacchi, Applying a Reference Framework to Open Source

Software Process Discovery, in 1st Workshop on Open Source in an Industrial

Context, Anaheim, CA October 2003.

4 P. Mi, and W. Scacchi, A Meta-Model for Formulating Knowledge-Based Models

of Software Development, Decision Support Systems, 17(4), 313-330 (1996).

5 G. Simmons and T. Dillon, Towards an Ontology for Open Source Software

Development. Proc. Second Intern. Conf. Open Source Software, 8 June, 2006

Como, Italy (Ed) E. Damiana, B. Fitzgerald, W. Scacchi, and M. Scotto, p. 65-76

6 G. Rothfuss, A Framework for Open Source Projects. Master Thesis in Computer

Science, Department of Information Technology, University of Zurich, 2002.

7 C. Jensen and W. Scacchi, Process Modeling Across the Web Information

Infrastructure. Software Process: Improvement and Practice, Special Issue on

ProSim 2004, 10(3), 255-272 (2004).

8 T. Halloran and W. Scherlis, High Quality and Open Source Software Practices,

2nd Wrkshp. on Open Source Software Engineering, Orlando, FL, 25 May, 2002.

9 W. Scacchi, Understanding the Requirements for Developing Open Source

Software Systems, IEE Proceedings- Software, 149(1) 25-39 (2002).

10 C. Jensen and W. Scacchi, Process Modeling Across the Web Information

Infrastructure. Software Process: Improvement and Practice, Special Issue on

ProSim 2004, 10(3), 255-272 (2004).

11 G. Madey, V. Freeh, and R. Tynan, Modeling the F/OSS Community: A

Quantitative Investigation, in S. Koch (ed.), Free/Open Source Software

Development, (Idea Group Publishing, Hershey, PA. 2005), pp. 203-221.

12 U. Becker-Kornstaedt, Towards Systematic Knowledge Elicitation for Descriptive

Software Process Modeling, Intl. Conf. on Product Focused Software Process

Improvement, Kaiserslautern, Germany, 10 Sep, 2001 (Ed) S. Bomarius, Lecture

Notes in Computer Science, Springer, 2188, pp. 312-325 (2001)

13 P. Feiler and W. Humphrey, Software Process Development and Enactment:

Concepts and Definitions. 2nd Intl. Conf. on the Software Process: Continuous

Software Process Improvement, 28-40 (1993)

14 R. Sandusky, Software Problem Management as Information Management in a

F/OSS Development Community. Proc. 1st Intl. Conf. on Open Source Systems,

11-15 Jul, 2005, pp. 44-49

15 Y. Liu, E. Stroulia, and H. Erdogmus, Understanding the Open-Source Software

Development Process: A Case Study with CVSChecker. Proc. 1st Intl. Conf. on

Open Source Systems, 11-15 Jul, 2005, 154-161

Effect of Coupling on Defect Proneness in
Evolutionary Open-Source Software

Development

A. Günes. Koru1, Dongsong Zhang2, and Hongfang Liu3

1 Department of Information Systems, UMBC gkoru@umbc.edu
2 Department of Information Systems, UMBC zhangd@umbc.edu

3 Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown
Medical Center hl224@georgetown.edu

Abstract. Previous research on closed-source software found that highly
coupled software modules were more defect prone, which makes it im-
portant to understand the effect of coupling on defect proneness in
open-source software (OSS) projects. For this purpose, we used Cox
proportional hazards modeling with recurrent events. We found that
the effect of coupling was significant, and we quantified this effect on
defect proneness.

Key words: Open-source software, object-oriented software, defect proneness,
coupling, Cox proportional hazards model, recurrent events, Mozilla.

1 Introduction

Coupling is the degree to which a program element is related to or interacts
with other program elements. The higher the average coupling of elements in
software, the more complex and defect prone it is considered to be [7]. The pre-
vious research on closed-source software has shown that highly coupled software
modules are more defect prone compared to less coupled ones [2, 5]. Therefore, it
is important to build statistical models to understand the relationship between
coupling and defect-proneness in OSS.

However, the evolutionary aspects of OSS development processes require
specialized modeling techniques. The structural characteristics of OSS modules
(e.g., coupling) can change in the post-release period. Making the situation
even more complicated, new modules can be added or some modules might
be removed from a system shortly after measurement time. The traditional
approaches to quality modeling, which measure specific system snapshots and
relate them to future defect counts, cannot accommodate these special charac-
teristics of OSS.

The main research contribution of this study is to develop and evaluate a
statistical model in order to understand the effect of coupling on defect prone-
ness while taking the dynamic aspects of OSS development into account. For

272 A. Günes. Koru, Dongsong Zhang, and Hongfang Liu

this purpose, we adopted Cox proportional hazards modeling with recurrent
events.

In the rest of the paper, we first explain our modeling approach and the data
used in the study. Then, we present our modeling results. Finally, we discuss
the implications of this work and conclude the paper.

2 Cox Proportional Hazards Model for Recurrent Events

Cox proportional hazards model [3] (henceforth Cox model) has become the
most common technique used for various time-to-event analysis purposes in
many fields [4, 8]. Cox model is connected to the counting process and Martin-
gale theory [1], which makes it suitable for recurrent events. In recurrent event
modeling, an event of interest is observed for a subject multiple times during a
follow-up period [4].

In our study, each defect fix made to a class was considered an event. Being
more defect prone meant having a higher risk of having events. We had a single
time-dependent covariate, Coupling Between Objects (CBO), denoted by x(t)
below. CBO for a class C is defined as the number of methods and instance
variables of other classes used by C.

We specify the hazard function, which is the instantaneous risk of an event
for class i at time t, as:

λi(t) = λ0(t)eβxi(t). (1)

β is the coefficient for xi(t) and λ0 is an unspecified non-negative function of
time called the baseline hazard function. It is the instantaneous hazard of having
an event without any covariate effect, when β = 0.

Cox model is semi-parametric because it does not explicitly describe a base-
line hazard function. It is proportional because the hazard ratio for two subjects
would only depend on the differences in their covariate values. If one writes the
right side of the Equation 1 for two subjects, say classes j and k, and takes
their ratio, the result should be eβ(xj(t)−xk(t)), which is the instantaneous rela-
tive risk. Note that β should remain constant over time. This is an important
assumption of any Cox model, known as proportional hazards assumption. We
checked this assumption for our model (see Section 4). The details of the Cox
model, such as the estimation of β, can be found in [4, 8].

3 Data for Recurrent Event Modeling

Table 1 presents hypothetical data for demonstration purposes. The subjects are
classes, and the events of interest here are defect fixes. Each new class introduced
to the system during an observation period is followed up until the observation
period ends or until the class is deleted. Modifications made during the follow-
up time are entered as observations, which correspond to the rows in Table 1.

Effect of Coupling on Defect Proneness in Evolutionary OSS Development 273

name start end event CBO state

A 0 10 0 5 0
A 10 30 1 8 0
A 30 50 0 9 1
B 0 20 1 3 0
B 20 80 0 2 1
B 80 120 1 5 1
B 120 150 0 5 1
.
.

Table 1. Data Layout Used in the Study

Each modification creates a new observation with a (start, end] time interval,
where start is a time infinitesimally greater than the modification time; end is
either the time of the next modification, or the end of the observation period,
or the time of deletion, whichever comes first. The open bracket on the left and
the closed bracket on the right mean that at any end time t, the observation
that has t in its end column should be used in the internal computations of the
Cox model. For example, for t = 50, the third row should be used. Open and
closed brackets enable us to model non-overlapping observations. They carry
no meaning about the timings of other data items, which are explained below.

When a class is added to the system, a new observation is entered with
start = 0. The event cell is set to 1 if an event (defect fix) takes place at the
time represented by end, or 0 otherwise. A class deletion is handled easily by
entering a final observation whose event is set to 1 if the class is deleted for
corrective maintenance, or 0 otherwise. CBO is a time-dependent covariate and
its column carries the coupling measurements of the class at start. Its value
may change during successive observations but can remain constant like a fixed
covariate too. The state column in Table 1 is used to create a conditional Cox
model. For any class, state is initially set to 0, and it becomes 1 after the class
experiences an event, and always remains at 1 thereafter.

We developed Perl scripts to extract data from the CVS (Concurrent Ver-
sions System) of the Mozilla project between May 29, 2002 (with the release of
Mozilla 1.0) and Feb 22, 2006, which was the observation period of our study.
We obtained a complete measurement history of every single C++ class intro-
duced to Mozilla during this observation period. The start and end times were
computed in minutes based on the time tags of the CVS commits. The event
data were obtained by automatically parsing the log portions of CVS commits
and searching for the words ’defect’, ’fix’, and ’bug’ in a non–case-sensitive
manner to detect corrective changes. Our manual examination of 100 randomly
collected CVS logs showed that the accuracy of the automated approach was
98%. Once a CVS commit was classified as a corrective change, the effected
classes were determined with their most recent observations. The event field of

274 A. Günes. Koru, Dongsong Zhang, and Hongfang Liu

those observations was set to 1. At the end, we obtained 15,545 observations
that belonged to 4,089 classes.

4 Modeling and Results

The resulting conditional Cox model is shown in Figure 1. The model shows
that CBO is highly significant with a very large z-statistic and a zero p value
when entered using log transformation. This functional form of CBO was de-
termined by inspecting the plots obtained by using the Poisson approximation
[8]. The entire model is also very significant as shown by the Likelihood ratio,
Wald, score, and robust score tests. Both normal and robust estimates show
this significance. The coefficient for the log1p(CBO)1 is 0.661, and its standard
error estimate is 0.0117. The robust sandwich estimate of the standard error,
which takes the intra-subject correlation into account, is 0.0297. Both of these
standard error estimates are small, therefore, we can safely use β̂ = 0.661.

n= 15545

coef exp(coef) se(coef) robust se z p

log1p(CBO) 0.661 1.94 0.0117 0.0297 22.3 0

exp(coef) exp(-coef) lower .95 upper .95

log1p(CBO) 1.94 0.516 1.83 2.05

Likelihood ratio test= 3200 on 1 df, p=0

Wald test = 497 on 1 df, p=0

Score (logrank) test = 3271 on 1 df, p=0, Robust = 148 p=0

Fig. 1. Modeling results using log CBO

There was no interaction between log CBO and time (p = 0.93). Therefore,
the proportional hazards assumption of the Cox model was satisfied. An Arjas
plot between the cumulative expected and cumulative actual number of events
was drawn to see the overall fitness of the model. This plot closely followed the
45o line, which showed good fitness. We also looked at the correlations between
the expected and actual events. The Spearman’s correlation was 0.77 and the
Somer’s Dxy rank correlation was 0.72. As a result, the model shown in Figure
1 has passed all the tests for a good fitting model.

5 Implications

The model in Figure 1 indicates that one unit of increase in the natural log of
coupling caused Mozilla classes to experience a defect fix at a rate 94% higher.
1 To accommodate CBO = 0, the natural log was taken after adding 1.

Effect of Coupling on Defect Proneness in Evolutionary OSS Development 275

Fig. 2. Plot of cumulative sum of actual events versus cumulative sum of expected
events

Our results have important implications considered the recent findings about
the coupling in some OSS products.

Schach and Offutt [6] found that the degree of common coupling in the Linux
kernel posed risks to the first release, and this situation deteriorated during the
successive releases of this kernel. Yu et al. [9] performed a categorization of
common coupling within kernel-based software and applied this categorization
to the Linux kernel. They argued that without preventive actions, the maintain-
ability of the Linux kernel would continue to be problematic. In a comparison
of coupling in different OSS products, Yu et al. [10] found that the Linux kernel
compared unfavorably with respect to three BSD kernels, namely, FreeBSD,
NetBSD, and OpenBSD.

The above findings combined with our results show that OSS developers
can take some preventive actions to improve quality. First, the quality assur-
ance activities, such as inspections and testing, can be focused on highly coupled
modules. Second, restructuring OSS software to reduce coupling can also im-
prove quality in the long run.

276 A. Günes. Koru, Dongsong Zhang, and Hongfang Liu

6 Conclusion

The dynamic nature of OSS development requires a dynamic modeling approach
to understand the relationship between coupling and defect proneness well. The
traditional approaches that measure systems snapshots and count future defects
cannot accommodate changing measures, added modules, deleted modules, etc.

Our modeling results showed that coupling has a significant effect on defect-
proneness. Therefore, coupling should be monitored and managed in OSS
projects to produce reliable and maintainable OSS products. The modeling
approach explained here can be tightly integrated into an evolutionary OSS
development in a seamless manner and can be used at any time while building
models. The capabilities of the existing OSS tools can be easily combined for
this purpose.

As the future work, we plan to collect data from additional OSS products and
projects to generalize the identified relationship between coupling and defect
proneness across a set of different OSS products.

References

1. Per Kragh Andersen, Ornulf Borgan, Richard D. Gill, and Niels Keiding. Statis-
tical Models Based on Counting Processes. Springer-Verlag, 1993.

2. Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter. Exploring the
Relationships between Design Measures and Software Quality in Object-Oriented
Systems. Journal of Systems and Software, 51(3):245–273, 2000.

3. David R. Cox. Regression models and life tables. Journal of the Royal Statistical
Society, 34:187–220, 1972.

4. Jr. David W. Hosmer and Stanley Lemeshow. Applied Survival Analysis :Regres-
sion Modeling of Time to Event Data. John Wiley & Sons, Inc., 1999.

5. Khaled El Emam, Säıda Benlarbi, Nishith Goel, and Shesh N. Rai. The Con-
founding Effect of Class Size on the Validity of Object-Oriented Metrics. IEEE
Trans. on Software Engineering, 27(7):630–650, July 2001.

6. Stephen R. Schach and Jefferson A. Offutt. On the Nonmaintainability of Open-
Source Software. In Meeting Challenges and Surviving Success: The 2nd Workshop
on Open Source Software Engineering, pages 52 – 54, Orlando, Florida, May 2002.

7. Katherine J. Stewart, David P. Darcy, and Sherae L. Daniel. Opportunities and
challenges applying functional data analysis to the study of open source software
evolution. Statistical Science, 21:167–178, 2006.

8. Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending
the Cox Model. Springer-Verlag, 2000.

9. Liguo Yu and Kai Chen. Categorization of common coupling and its application
to the maintainability of the linux kernel. IEEE Trans. on Software Engineering,
30(10):694–706, 2004. Member-Stephen R. Schach and Member-Jeff Offutt.

10. Liguo Yu, Stephen R. Schach, Kai Chen, Gillian Z. Heller, and A. Jefferson Offutt.
Maintainability of the kernels of open-source operating systems: A comparison
of linux with freebsd, netbsd, and openbsd. Journal of Systems and Software,
79(6):807–815, 2006.

The Use of Open Source Software in

Enterprise Distributed Computing

Environments

A decision-making framework for OSS selection

 and planning

Jacob Krivoruchko

Nova Southeastern University, Fort Lauderdale, Florida, USA; University

of Maryland University College, Adelphi, Maryland, USA; Advocate

Health Care, Oak Brook, Illinois, USA. E-mail: krivoruc@nova.edu

Abstract. Firms increasingly rely on open source software for solving
business problems and building mission-critical IT solutions.
However, there are numerous issues associated with OSS, including its
influence on the total cost of ownership (TCO) and supportability and
upgradeability risks. While savings from obtaining a free copy of the
software can be significant, software accounts for an average of 10%
of TCO, while the majority of the costs are associated with project
staffing. OSS requires significant investment into staffing because it
needs to be carefully selected, customized, and installed. In addition,
global communities may gather and dissolve at their will, so
guarantees of support, revision, and bug fixes are minimal. Yet
companies can gain competitive advantage through an ability to
customize software to address specific business issues and exercising
control over development, revision schedules, and modifications. OSS
is not a panacea from the rising software costs. Instead, it is a serious
initiative that has benefits, disadvantages, and risks associated with it.

Key words: Budget, business model, commercial software, distributed systems,

enterprise computing, mission-critical project, open source software,

reliability, risk, software selection, support, total cost of ownership.

1. Introduction

The open source market has evolved into a powerful force that is increasingly

present in many areas of the industry, including web development, e-commerce,

infrastructure management, financial applications, ERP, operations management, and

more. Open source software (OSS) has established a strong presence among

technology solutions that involve building client/server and complex distributed

systems. Open source is not just a way to save money on the upfront software

Jacob Krivoruchko278

acquisition cost. It enables individuals and companies to tailor the base release to

their needs, follow their own upgrade schedules (if needed), and coordinate

development activities without any vendor involvement. While many early releases

of OSS were rather unstable, the latest releases can effectively compete against the

best products sold by giants like Microsoft, Sun, and Oracle, both in terms of

functionality and security.

Many organizations become increasingly dependent on software vendors' release

schedules, prices, support, and business models. Long project planning,

development, and implementation cycles, along with complexity of the systems and

dependency of the entire firm's operations, have made switching vendors a costly

and undesirable process. Businesses struggle to cope with rising costs and products

that do not fully address their needs. Some companies see a real opportunity to

obtain a long-wanted freedom from their vendors' plans and ambitions through OSS,

while others are cautious and prefer to avoid uncertainty of the unsupported

products. Forrester’s survey of 120 large North American companies shows

impressive statistics: 46% of them already use OSS, while 14% have short-term

plans to incorporate it into their existing computing environments. The same

research has also revealed that European companies are not far behind: 31% of the

surveyed 35 large firms use OSS, while only 17% do not have any plans for utilizing

the free software code [3].

Is this a good time for your organization to acquire OSS and enjoy its benefits?

Do not take advantages gained through the use of OSS for granted. In reality, OSS is

not free. For companies it means dependence on the global community for further

upgrades, problem resolution, and support; uncertainty about software stability and

reliability; the need to hire and pay additional talent to modify and maintain

software, along with other caveats [2]. The dilemma is whether OSS represents a real

developer's dream and a panacea against rising software costs or a risky venture for

companies mistakenly thinking OSS can help them save IT dollars.

2. Total Cost of Ownership (TCO) and OSS: Benefits vs. Risks

Many IT project managers consider only hardware, software, and infrastructure

costs when budgeting for new initiatives. However, there are other critical

components involved in the cost consideration. TCO refers to all costs incurred

during system acquisition and full-cycle operation until its retirement. Acquisition

costs include the processes of product selection, system design, purchasing,

installation, deployment, and user training. The cost of system operation includes

system management, maintenance, repair, user support, data center environment, and

other factors that are highly specific to each individual environment [6].

TCO may also include other unexpected components, such as cost of poor

performance, unexpected capacity considerations, satisfactory functionality, system

availability, ease of user interface, and security. When these critical components fail

The Use of Open Source Software in Enterprise Distributed Computing

Environments

279

or do not adhere to the end-user requirements, the cost of the project increases, thus

having a direct influence on the TCO formula. It is not nearly enough to project all

the costs associated with system acquisition and operation in order to accurately

predict the total cost. The low price of an acquired system does not necessarily lead

to cost savings, unless the system performs as expected, satisfies the users, and is

available in accordance with service level agreements.

The price of software itself is low relative to TCO. It may represent about 10% of

the TCO, with staffing costs adding a huge 50% to 70% portion [8]. This means that

despite a common myth that software significantly reduces the overall available IT

budget, its price has relatively low importance when compared to tasks following

acquisition. This is where OSS may not stack up well against proprietary software.

The myth of huge savings, therefore, loses its importance relative to the full-cycle

development process. Moreover, TCO is difficult to calculate in the situation of

uncertainty associated with lack of support and bug fix guarantee.

It is helpful to know what motivates companies to look for alternative software

and doing away with traditional IT purchasing habits. The Emerald Hill Group - the

company that manages pubs in Singapore - was able to customize its open source

software, tailor it to its needs, and run on a reliable Linux distribution [10]. Gartner's

research concludes that Windows XP costs on average 15% to 20% less to own and

operate compared to Linux. But despite higher operational cost, the firm derived

benefits from customization and running its own software under the company's

control and on the firm's own revision schedule.

The Beaumont Health Care system in Ireland is a practical proof of how serious

companies can be when it comes to OSS. The organization plans to save over 30

million euros over the period of five years by utilizing only OSS for desktop and

front-office applications in addition to traditional infrastructure tools like Linux and

Apache [5]. Considering the criticality of system availability in a clinical

environment, this step signifies tribute to how far OSS has gone since its inception in

terms of reliability and functionality. Beaumont and Emerald Hill Group also

represent a new trend in OSS utilization - moving away from using separate software

tools and modules and toward complete OSS environments that include more than

just basic operating systems and web server applications. In other words, OSS makes

its way into enterprise environments.

Many firms find it easier to build what they want out of OSS instead of living

with unsatisfactory set of features provided by commercial suppliers. For example,

highly individual knowledge management (KM) applications that depend on the

users' needs are good candidates for OSS projects. As KM applications change and

evolve together with an organization, frequent modifications are required in order to

maintain an application up-to-date [4]. Such services may either be unavailable from

a vendor or carry prohibitive costs. Education is another area where OSS is a highly

desirable option. Low upfront acquisition cost, ability to avoid forced upgrades,

flexible platform, and a chance to give students real tools to experiment with make

OSS attractive to school district administrators [1]. However, given schools' usually

Jacob Krivoruchko280

tight IT operating budgets, the long-term costs might be too high, so it is important

to weigh the benefits against ability to maintain the minimum level of staffing

needed to keep the systems up and running.

There is a danger that firms and especially non-profit organizations may get too

excited about low cost opportunities provided by OSS and forget about TCO

considerations. This puts many organizations at risk of successfully implementing

projects they cannot support. Firms considering switching to OSS environments

from more traditional supported systems should also consider the risk of losing key

personnel during critical project phases, expenses associated with migration, and

retraining users and support people on the Linux or similar system, along with

downtime required to accomplish the goals [7]. Smaller businesses lack both project

management expertise needed to accurately calculate TCO and the budget needed to

support their desired systems [9].

3. OSS Selection and Decision-Making Framework

The discussion about benefits and disadvantages of OSS can be summarized in

two categories: TCO and freedom of choice for product development and

maintenance. Some organizations implementing OSS will save money, others will be

able to implement the exact kind of system they need to go about their business, and

the rest of the firms will likely lose money or run into technical supportability issues

[2]. IT managers must understand the savings model when it comes to budgeting

technology projects.

While saving 10% to 15% of TCO on software acquisition is a significant

achievement for any project manager, it is important to consider potentially higher

costs of software selection, development, and maintenance. These costs are

inevitable when it comes to OSS that must be modified, customized, compiled, and

kept up-to-date. Those firms that employ a large number of IT staff and are in need

of heavy customization for their business environments will likely reap the rewards

of OSS, as they can save money on software licensing while going through

customization efforts no matter what kind of software they own.

Many large firms do not want to accept responsibility for unexpected problems

and prefer contracted software to the tools and applications coming from the

community. Certainty may be worth the additional expenses in critical corporate

business environments. This is just one of the reasons why commercial software's

value will not diminish in the near future. It will still mark a sense of relative

reliability, accountability, and certainty, assuming that the software vendor is

financially stable to remain in business. However, we may also observe a rapid

growth of OSS consumption. Some of it is associated with firms' desire to control

their IT destiny - one of the best and better justifiable reasons to use OSS. Other

reasons include savings, and many firms are on their way to disappointment in this

case.

The Use of Open Source Software in Enterprise Distributed Computing

Environments

281

Based on this summary, we may derive the following general decision-making

framework for software selection:

1. Clearly state and understand the project goals.

2. Discuss and fine-tune these goals with your end-users; finalize system

requirements and ensure commitment to the project, including executive

sponsorship.

3. Determine the criticality of the project, system availability and reliability

requirements, and dependency of business operations on this particular software

application.

4. Investigate whether there are any commercial software products offered on the

market that will address the needs of the project. Solicit requests for proposal

(RFP) and determine the initial costs.

5. If your project is long-term, critical, requires high system availability and reliable

support, and its needs can be satisfied by commercial software, you may think

about purchasing the product. OSS should still be considered if commercial

product’s cost is prohibitive, you expect future justified customization needs, or

its features do not address the core project goals. In other words, ensure that all

or any of the common factors pointing to possible OSS application are present.

6. If additional exploration is decided on, team up with senior architects and/or

developers to run a small pilot project of OSS selection.

7. Determine if the selected software addresses the needs of the project, can rival or

exceed commercial software's functionality and security, and represents initial

financial savings.

8. Determine what tasks will be involved in the preparation of the selected OSS for

final rollout and come up with a cost schedule for these tasks.

9. Compare the costs of development, customization, and installation between the

OSS and commercial methods. Plug figures into the overall TCO formula,

assuming you have also collected information about other components of the

system. If these are not available, perform an analysis and make sure all other

major components are present in the TCO calculation.

10. Determine the benefits of ownership and control over OSS relative to

dependency on the vendor. The results will represent the intangible OSS project

benefits.

11. Weigh the cost savings (if any) against the risks and determine the importance of

intangible benefits discovered in the previous step.

12. Consider technical, supportability, operational, and financial risks associated

with your software alternatives.

13. Make an educated final decision regarding software selection and architecture.

Jacob Krivoruchko282

References

1. Alfonsi, B. (2005, June). Open source in the classroom. IEEE Distributed Systems Online,

3.

2. Berger, M. (2002, August 12). Eating the free lunch. InfoWorld, 24(32), 1.

3. Bruce, G.L., Wittgreffe, J.P., Potter, J.M.M., & Robson, P. (2005, July). The potential for

open source software in telecommunications operational support systems. BT Technology

Journal, 23(3), 79.

4. Donnelan. B., Fitzgerald, B., Lake, B., & Sturdy, J. (2005, November). Implementing an

open source knowledge base. IEEE Software, 22(6), 92-95.

5. Fitzgerald, B. & Kenny, T. (2004, January/February). Developing an information systems

infrastructure with open source software. IEEE Software, 21(1), 50-55.

6. Hawkins, M.W. (2001, June 22). Total cost of ownership: The driver for IT infrastructure

management. Prentice Hall PTR; http://www.phptr.com/articles

7. Hutlestad, L. (2004, May 31). Linux TCO: Fact or fiction? VAR Business, 2012, 54.

8. MacCormack, A. (2003, August 18). The true costs of software. Computerworld, 37(33),

44.

9. Prichard, S. (2006, October 4). Why open source stays out of reach small and medium-sized

enterprises. Financial Times, 6.

10. Vallejo-Yeo, G. (2005, May 14). Linux can save money. Asia Computer Weekly, 1.

Shared Assumption Concerning Technical

Determination in Apache Web Server

Developer Community

Juho Lindman

Helsinki School of Economics, Information Systems Science,

Runeberginkatu 22-24, 00101 Helsinki, juho.lindman@hse.fi,

WWW home page: http://www.hse.fi

Abstract. Our main finding is that OSS community seems to coordinate

its activities by relying on technical determination. First, we review

previous literature to understand OSS community coordination

mechanisms. Then we empirically review OSS Apache Web Server

community by using qualitative case study methods. Our data consist of

developer list’s email-discussions. Finally, we speculate that coordination

rests on community’s members’ shared assumption concerning technical

determination.

Keywords: Open Source Software, OSS, Coordination

1 Introduction

The Open Source Software (OSS) is a promising software development and

distribution method. It is agreed that OSS can deliver business benefits [1]. There is,

however, a gap in the previous research concerning on how community coordinates

its efforts. If a company wants to adapt OSS processes, it has to understand what

coordination mechanisms are used. Furthermore, those mechanisms are probably

related to the community's shared understanding concerning OSS.

In this paper we outline mechanisms that are described in literature and pose

question of how these mechanisms function in a software development community.

Then we analyze a case community to find out can we find such mechanisms. Our

research question is: is there a shared assumption concerning technical determination

that enables coordination mechanisms?

2 Previous research

In OSS, there was originally a promoted understanding that if companies and

communities would work together, everyone would be better off [2]. Recently, the

Juho Lindman284

relation between OSS communities and companies has been called into question.

Dahlander&Magnusson [3] describe these kinds of relationships and divide them

into 1) symbiotic, 2) commensalistic, and 3) parasitic depending on who is gaining

from the relationship. If companies want to adapt OSS processes, they first need to

understand how the communities function and how their coordination mechanisms

are rooted in OSS cultural dynamics. That is only the first step in implementation,

but the required organizational and financial changes fall outside of this study [4-5].

Coordination is required in software development to create consistent software

[6]. This is especially true for OSS, since source code is easier to access. Ad hoc

approaches might work for small projects, but more mature projects need ways to

guarantee internal and external consistency of the software [7]. Traditionally

coordination is defined as coordination activities toward common goal [7]. Malone

and Crowston [9] redefine coordination as “managing dependencies between

activities”. The latter seems to suit better for dispersed development activity, since it

requires knowledge of dependencies, not knowledge of the activities [9].

Egyedi et al. [10] propose coordination mechanisms that coordinate the OSS

development processes. They stress the importance of the 1) committee

standardization, but focus more on: 2) bandwagon coordination, 3) regulatory

coordination, 4) operational coordination, and 5) coordination by authority.

Committee standardization means technical specifications for products in response to

technical complexity [11]. Bandwagon mechanism means that popular OSS projects

attract developers and set example. Regulatory mechanism means licenses, contracts

and participatory agreements. Operational coordination mechanism means tools used

in development. Coordination by authority means gatekeepers and controlling

distribution contents.

Coordination mechanisms are built into OSS communities. OSS communities

require high level of technical expertise [2] and build upon technical savvy "geek

culture" [12]. An OSS development community can be viewed from organisation

cultural perspective [13;15]. This culture consists of shared understanding how

things are accomplished inside a certain developer community. OSS communities’

self-understanding is affected by influential writings of Eric Raymond [2] and

Richard Stallman [15].

Raymond [2] described a motivational and coordinative entity of OSS: a plausible

promise. Plausible promise is required to start OSS development. This promise will

then motivate, but also direct the development activity. The promise includes not

only goal, but also a process of how to get there. This correspondence between the

end-product and the organisation, Conway’s law, was originally proposed nearly

forty years ago [16]. The idea is that the software architecture mirrors the structure of

the organisation that created it. Parnas [17] developed the idea further proposing that

software modules should be regarded as job assignments not sub-programs. Ovaska

[9] proposes that software architecture should be viewed as assignment

communication tool used for coordinating interdependencies. This is in line with

previous findings of Mockus [18]: interdependencies are controlled by limiting their

number by using standard interfaces.

Shared Assumption Concerning Technical Determination in Apache Web

Server Developer Community

285

3 Method

We have outlined literature concerning coordination mechanisms and their relation

to a technical subculture. In following sections we select one community and view

how the coordination mechanisms function. Our research method is qualitative case

study [19]. We do not seek statistical, but analytical generalizations. Therefore we

need to focus only on one case community during quite limited time.

4 Data

We chose Case Apache Web Server (httpd) as our case community, because of its

maturity. It has produced OSS code of quality comparable to the commercial actors

of its domain and is currently the most used web server software. Apache has been

researched before [10;18;20] since it is the first OSS "killer application". Originally

the community was launched in 1995 based on the work of NSCA on httpd-program.

Our main data source is the Apache Web Server developer mailing-list

(dev@httpd.apache.org) that can be found archived in the internet at http://mail-

archives.apache.org/mod_mbox/httpd-dev. The data includes all emails (768) sent to

the list between 1.1.2006-28.2.2006. We have also monitored other Apache

foundations relevant email-lists that have something to do with httpd development.

We have monitored the relevant Newsgroups archives and went trough the broad

material offered in the portal web pages. The choice of data assumes that

community's coordination happens on public email-lists. This choice seems justified

as Apache promotes openness in its own action [21].

5 Case

We were interested in coordination mechanisms and their assumptions. We started

out with Egyedi's [10] proposed five coordination mechanisms. Most of the emails

discuss the technical specifications of software. The focus of this study is not about

the functionalities and their quality, but on how coordination takes place. The

discussion in the lists was very technical. Normally someone started a thread by

posing a technical problem or question. Then the people on the list tried to tackle the

issue and usually asked some additional information about the problem. Usually, a

solution was offered after some discussion. Sometimes the question revealed that

some additions needed to be made to the documentation or software. The overall

development process seemed to follow the process proposed by Sharma [22].

From the five mechanisms most common was technical specification. This

activity was not very formal, but followed problem-answer model. This mechanism

was used more than all the other mechanisms combined. We also found signs of

Juho Lindman286

bandwagon mechanism, operational coordination mechanism, regulatory

coordination and coordination by authority to function in case community.

Bandwagon mechanism was quite clear: the community self-image and popularity

was reinforced in the official communication, but also in development email-

discussion. The community was self-conscious and also able to attract interest and

new members. Regulatory coordination was used. Higher involvement members

were required to sign contracts. There were also positions of power, or hats [22] that

could in some circumstances regulate action. We did not find in practice any clear

instances of this kind of exercise of power in our data. The only seemingly accepted

superiority was of technical nature. Operational coordination mechanisms were used.

Concurrent Versioning Systems (CVS) coordinate activity as do status report emails

that were automatically sent to the mailing list. Coordination mechanisms by

authority were used. A release manager is chosen before major releases solve the

open issues or to postpone them to the next version. Another authority coordination

mechanism was that of gatekeepers. It takes a lot of technical skills to contribute to

main modules of httpd. This gives those individuals that are capable authority over

those that are not, based on meritocracy [22]. This authority is tied to individual, not

organization.

We also found coordination mechanisms that do not fit very well to the proposed

research framework. Those were: bug report control, voting and intentional

consensus building. Bug fixing is a control mechanism, because it gives very

important input and sets the agenda question to be answered. Bug reporting was

made quite difficult because it required significant time and know-how even to

submit a bug report. Furthermore, it seemed that given bug reports were not of very

high priority [23]. This combined to the meritocracy will lead to a situation where

outside input is quite low. Voting was another coordination mechanism. Voting can

also be seen as a way to force decisions. In this case, it seemed that it was used rather

as a way to test consensus. In the community, there was a very strong belief that

voting should not be used as a coercive tool, but rather to see who has different

opinion and why [24]. Third coordination mechanism that does not fall under

previous categories was conscious community building. It seems that the active

developer community is quite small. The rules of engagement seem to be written in

the netiquette: rules of not only about form of communication, but also of content. At

the same time, this mechanism enhanced coordination inside the email-dependant

community by limiting the tone and content of messages. Another issue of

community building was that the architecture was made in a way that the core httpd-

module was not altered, but developments were rather redirected to more peripheral

modules of the software. This creates consistency, but also limits the community size

and offers possibility to re-allocate resources.

Shared Assumption Concerning Technical Determination in Apache Web

Server Developer Community

287

6 Results and discussion

Our research question was: Is there a shared assumption concerning technical

determination that enables coordination mechanisms? All the five coordination

mechanisms proposed by Egyedi [10] were used: committee standardisation,

bandwagon coordination, operational coordination, regulatory coordination and

coordination by authority. We also found three other possible coordination

mechanisms: bug report control, voting and intentional consensus building.

All of these mechanisms seem to assume certain technical basis of how OSS

communities function. We call this shared assumption technical determination. It

means a belief that posed problems have technical solution, which will be found

when the best developers focus on the problem - if not in the next version, then later.

This also means that the software is never ready, but always developing.

This assumption enables the coordination mechanisms as follows: standardisation

is required to reduce technical complexity by technical specifications Thus it is a

technical solution. Bandwagon mechanism draws curious users and ambitious

developers to successful communities. It rests on the belief in open source software

is a "geek culture" of meritocratic technicians that are able to show their skills by

developing software. Operational coordination mechanisms are technical solutions to

problems related to learning, joint problem solving and division of work. Regulatory

coordination is an agreement on how and which developer to credit for the

contribution to the community. Coordination based on authority is required to

smooth the releases of the continuously developing software and to make software

available to larger population. Bug report coordination assumes that software is

always developing and perceived difficulty of bug reporting hints that bug reports

should be of high technical quality. Voting coordination tests consensus of the

developers and strengthens the meritocracy by allowing merited programmers to

vote. Community building coordination mechanism also strengthens the meritocracy

and also assumes that the development effort of the software will continue for a long

time.

7 Summary

We have outlined relevant literature of coordination, coordination mechanisms and

organisational culture of a subgroup. Then we have selected a case community

Apache Web Server and identified five mechanisms previously described in the

literature and identified three other possible coordinating mechanisms. We have

speculated that all these mechanisms rest on shared assumption of technical

determination. These findings call for more research in the area of technical problem

solving nature of OSS development.

Juho Lindman288

References

1. B. Fitzgerald, The Transformation of Open Source Software, MIS Quarterly, 30 (4), 587-

598 (2006).

2. E. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary (O’Reilly Sebastopol, 1999).

3. L. Dahlander & M. Magnusson, Relationship between open source software companies and

communities: Observations from Nordic firms, Research Policy, 34, 481-493 (2005).

4. J. Feller& B. Fitzgerald, Understanding Open Source Software Development (Addison

Wesley, Boston, 2002).

5. M. Fink, The Business and Economics of Linux and Open Source (PHPTR, Prentice Hall,

2003).

6. E. Kraut & L. Streeter, Coordination in Software Development, Communications of the

ACM, 38 (3), 69-81 (1995).

7. B. Curtis., H. Krasner, N. Iscoe, A Field Study of the software design process for large

systems, Communications of the ACM, 31 (11), 1286-1287, (1988).

8. T.W. Malone, & K. Crowston, The interdisciplinary study of coordination, Computing

Surveys, 26 (1), 87-119, (1994).

9. P. Ovaska, M. Rossi & P. Marttiin, Architecture as a coordination tool in multi-site software

development, Software Process: Improvement and Practice , 8 (4), 233 – 247, (2003).

10. T. Egyedi & R.W. Van de Joode, Standardization and Other Coordination Mechanisms in

OSS, International Journal of IT Standards & Standardisation research, 2(2), 1-17,

(2004).

11. S.K. Schmidt & R. Werle, Co-ordinating Technology. Studies in the International

Standardization of Telecommunications (MIT Press, Cambridge Mass, 1998).

12. R. Pavlicek, Embracing Insanity: Open Source Software Development (SAMS,

Indianapolis, 2000).

13. J. Martin, Organizational Culture: Mapping the Terrain, (Sage, Thousand Oaks, 2002).

14. H. Schein, Organizational culture and leadership (San Francisco, Jossy-Bass, 1992).

15. S. Williams, Free as in Freedom: Richard Stallman's Crusade for Free Software.

(O'Reilly, Sebastopol, 2002).

16. M.E. Conway, How do committees invent? Datamation, 14 (4), 28-31, (1968).

17. D. L. Parnas, On the criteria to be used in decomposing systems into modules,

Communications of the ACM, 15 (12), 1053-1058, (1972).

18. A. Mockus, R. Fielding, & J. Herbsleb, Two Case Studies on Open Source Software

Development: Apache and Mozilla, ACM Transactions on Software Engineering and

Methodology, 11 (3), 309-346, (2002).

19. R. K. Yin, Case Study Research, Design and Methods 2nd ed., (Sage, Newbury Park,

1994).

20. R. Fielding, Shared leadership in the Apache project. Communications of the ACM. 42 (4),

42-43, (1999).

21. Apache Web Server, (2006a), http://www.apache.org/ foundation/how-it-works.html.

22. S. Sharma, V. Sugumaran, & B. Rajagopalan, A Framework for Creating Hybrid Open

Source Software Communities, Informations Systems Journal, vol. 12 (1), pp. 7-25, (2002).

23. Apache Web Server, (2006b), http://issues.apache.org/bugwritinghelp.html

24. Apache Web Server, (2006c), http://www.apache.org/foundation/voting.html

Learning Through Practical Involvement in

the OSS Ecosystem: Experiences from a

Masters Assignment

Björn Lundell, Anna Persson and Brian Lings

University of Skövde, P.O. Box 408, SE-541 28 SKÖVDE, Sweden

{ bjorn.lundell, anna.persson, brian.lings }@his.se

Abstract. Increased awareness of and interest in Open Source has led to a

number of university teaching initiatives, at both national and European level.

In this paper we present experiences from a practical assignment designed to

give students on an Open Source Masters course an insight into real

involvement in Open Source projects. It discusses the motivations for the

assignment, and how it was set up and executed. It reports on post facto

student feedback, and reflects on a parallel, reduced exercise offered at

undergraduate level. We find that the learning experience was both positive

and valuable in that it gave real insight into Open Source participation, and

also encouraged further participation in Open Source projects by students after

the course had completed.

1 Introduction

This paper relates to a Masters course in Open Source and Distributed Development

models. In particular, it focuses on the practical assignment for the course, which

was specifically on participation in Open Source (OS) development. The course is a

new addition to an existing Masters that has been running since 1990. The course

was a natural outcome of the University’s growing involvement in OS research, and

in particular its partnership in two EU-funded research projects in the area (the FP6

project CALIBRE and the ITEA project COSI).

The course was motivated by the recent growth in interest and activity in OS

nationally, in industry and the public sector. Apart from the recognised business

opportunities offered by OS (Fitzgerald, 2006), there has been a growing awareness

of the opportunities offered for organisational learning and individual skills

development through participation in OS projects. Such awareness has led to a

number of initiatives in teaching, particularly at the Masters level, at both national

and European level (e.g. Fernandes and Machado, 2006; German, 2005; Megías et

al., 2005; Özel et al., 2006).

However, the question naturally arises: can one teach about OS participation in a

meaningful way in a classroom situation? There is a natural tension between the

study of OS as a phenomenon, and OS as a way of contributing practically to

community-driven projects. In designing the course this tension was recognised, and

it was planned to at least partially address it through a practical assignment.

Björn Lundell, Anna Persson and Brian Lings290

The aim of this paper is not to describe the complete course; instead the focus is

on the practical assignment that the students carried out during the course.

2 The Masters Course

The graduate level course “Open Source and Distributed Development Models” (7.5

ECTS points) was offered at the University of Skövde during the autumn of 2006.

The course was an international course, offered in English, and had 12 participants.

To attend the course, a bachelor’s degree in computer science or a closely related

subject was required. The course aims to develop an understanding of open source

software (OSS) systems and distributed development models for software systems

and applications. Students taking the course are exposed to contemporary issues and

industrial practice in OS, and the latest research results related to OS. Key to the

course is student interaction with researchers and practitioners actively involved in

the OS area, and real exposure to the Open Source ecosystem. The motivation for

offering this course came from an observation of a growing student interest in OS

and its relevance to industry, and was made possible by ongoing research activities

in this area at the university.

Since 1990 the University of Skövde has adopted a profile for its advanced

courses which has been strongly influenced by the UK model of postgraduate,

research oriented Masters. It has a fairly conventional format, with class-room

lectures from researchers and practitioners actively involved in the OS area (both

from in-house speakers and invited speakers) and seminars based around research

papers. The course has a number of intended learning outcomes (ILOs) against

which students are assessed. In particular, in planning the course it was felt necessary

that students should learn about the practicalities of what it means to contribute to an

OS project. A practical assignment was seen as an effective way to expose students

to real OSS ecosystems, and thereby contribute to two specific ILOs:

• Demonstrate knowledge of the major sources of information on OS projects and

issues, and an ability to use these sources critically and effectively to report on

OS projects and OS issues.

• Rigorously analyse work practices and development models used in Open Source

and traditional Distributed Development projects.

The aim of the assignment is for students to get a feeling for how major open source

style projects work in action, by contributing. All students had previous experience

of using OSS. However, only one had experience of contributing to an OS project.

The assignment had two parts, both practical, which are described in the

remainder of this section. In preparation for the assignment, two specific readings

had been added to the reading list as a general background on open source projects

and their philosophy. The first was “The Cathedral and the Bazaar” by Eric

Raymond (Raymond, 1999) and the second the GNU Manifesto by Richard Stallman

(Stallman, 2006).

Learning Through Practical Involvement in the OSS Ecosystem:

Experiences from a Masters Assignment

291

Assignment Part 1: Introduction to Open Source Software in Practice

The first part was designed to exercise specific and limited aspects of contributing to

OS projects, namely: (a) selecting an area to which the student felt it possible to

contribute, (b) exposing a contribution to a wide community, and (c) learning

tools/processes of a community.

Wikipedia (http://en.wikipedia.org) – a free, extensive, on-line encyclopedia

entirely edited by its users – was the chosen medium for this exercise. More

specifically, students were asked to make a contribution of content to Wikipedia.

This had the advantage of giving a feel for open contribution without the overhead

necessary to engage meaningfully with a software development community. Other

advantages in choosing Wikipedia for the first part of the assignment include: (a) it is

an OS project that a majority of the students are already familiar with; many of them

use Wikipedia in searching for information on a regular basis, (b) it is easy to make a

contribution as no special permissions or development tools are required, and (c) one

does not need to wait for approval of a contribution, rather it is immediately visible.

Only two requirements were expressed for the contribution: (1) it should include an

English text of 150-200 words, and (2) it should include a picture.

Assignment Part 2: Open Source Development

The aim of the second part of the assignment was for students to gain an

understanding of OSS development by taking part in a currently active OS project.

We argue that a student’s understanding of OS development will be considerably

improved with practical experience of being part of a real project. It is hard to give

insight into what an OS project really means unless it is grounded in experience.

Students were asked to make a contribution to one project (corresponding to about

one week full time), and meanwhile examine the development work within the

project. They could pick any project of their choice (Sourceforge and Tigris were

recommended as starting points for exploration). A contribution could relate to code

(new feature, bug fix, patch, etc), software testing, design specification, manual

content, or web content.

Some interaction with the project was expected, and a genuine effort made by the

student to make the contribution openly visible in the project. Ideally, a contribution

would be accepted by the project and incorporated in the code/documentation base.

However, it was recognised that in some projects this process may take longer than

the course period and so was not a requirement.

In the end of the assignment period, students had to write an essay (2500 words

plus appendices) of their contribution and the general development work within the

chosen project, with a focus on the distributed perspective. In the text, they were

required to position their experience with respect to the research literature. As a

minimum, it was expected that each student would use at least two reviewed

publications when relating their own observations and argument to the existing body

of literature.

Björn Lundell, Anna Persson and Brian Lings292

3 Experiences from the Assignment

This section describes student experience of the practical assignment as expressed in

their final reports and a debriefing seminar which was held after completion of the

assignment.

Assignment Part 1: Introduction to Open Source Software in Practice

All of the students used Wikipedia almost daily. Despite this none of them had made

a contribution to the encyclopaedia before. The students found the material that

Wikipedia provides about how to edit articles straightforward and rather easy to

understand.

The students thought that the hardest part of the assignment was to find an article

that they felt comfortable to contribute to. They perceived that the openness of

Wikipedia encourages a lot of intelligent people to write on most topics, so most of

the articles they looked into already had good coverage.

When finally finding an article, they put a lot of effort into making their text as

good and correct as possible, knowing that many users read the website and that

incorrect or badly written text will very likely be edited or even removed. They

found it demanding to adopt the same style of writing as the rest of the article.

Preparing for image upload held surprises. Firstly, no conflicting licenses can be

incorporated into Wikipedia, so they were required to verify that the license on the

uploaded material was appropriate for Wikipedia. Further, the whole upload section

of Wikipedia has a flat hierarchy; all files are put in the same place in the structure,

and referenced only by the filename entered for it when uploading.

In summary, students felt that contributing to Wikipedia was a positive

experience and all of them claimed that they will make further contributions to

Wikipedia in the future. They really appreciated the openness of the system which

puts editing any content on the whole site only one click away.

Assignment 2: Open Source Development

Initially, some students thought that this assignment seemed very hard to carry out.

The reason was that they assumed “contribute to an OS project” meant “contributing

code”, which is a common misconception. On the contrary, there is actually a great

need for contributions other than code – such as design documents, manual content,

etc. When this was explained to the students they felt relieved as they lacked

confidence in their own programming skills so were unsure of their ability to make a

high-quality code contribution. However, five students did choose to contribute code,

whereas the others decided to submit bug reports, documentation and desktop

themes. One student wanted to concentrate only on submitting feature requests, but

this was not considered appropriate as it lacked real engagement in the project.

Examples of projects attracting student involvement include Premake, Robocode,

KDE and Vim.

Learning Through Practical Involvement in the OSS Ecosystem:

Experiences from a Masters Assignment

293

One thing that surprised some of the students was how well-organised their

selected projects were. Their previous view of OS projects was of more or less

chaotic anarchistic communities. What many students began to realise whilst

undertaking the assignment was that many OS projects actually are quite well-

structured with explicit work processes and clear roles.

The experience of most students was that their commitment to a project was well

received. In the final report, one of the students wrote:

“I don’t know if I should say that I was surprised by the kind treatment I got, but

I was definitely surprised how glad they were to let me join the development

team. The kind of welcome I got definitely made me more interested in joining

open source projects if I find that something needs fixing.”

Wishing to continue involvement in OS projects was a recurring theme. For

example, one student wrote:

“I think all-in-all it was a good experience to make a real contribution to a real

open source project. The open source phenomenon will surely stay for a long

time to come and it is only positive to have gained a more direct understanding of

how these work and function. In the future I think I will be much more inclined

to get my feet wet in various open source projects.”

In a similar vein, another student wrote:

“It is highly probable that I will contribute to other existing open source projects

in the future, and it might also be the case that I will start one of my own to

realize an idea that I have.”

One unanticipated problem occurred related to a student employed by a large

company. The student got into trouble in making his contribution as the company he

works for does not allow employees to make source code or any other contribution to

any open source project without written authorization. Due to bureaucratic processes

he had not received such authorization before the deadline for the assignment.

However, he plans to submit his contribution to the project when such authorisation

is received.

4 Discussion and Conclusions

Without any previous experience of the Open Source community, many students

think that it is very hard to take part in Open Source projects. They think they have

to be a well skilled programmer or technician to do it. It is important to change such

perceptions.

One may speculate over the extent to which an assignment like this, in which

students are forced to make a contribution, genuinely represents a learning

experience with respect to Open Source participation. Might it contrast negatively

with a regular voluntary contribution without any extra agenda? In mitigation,

several points can be made. Firstly, the students chose the course from many options

Björn Lundell, Anna Persson and Brian Lings294

in the Masters programme; in fact it was amongst the most popular courses.

Secondly, there was little restriction on the projects which could be chosen for

making a contribution, and significant calendar time was made available for this.

Thirdly, acceptance of contributions by the Open Source community was not a

requirement for passing the assignment, only that a student must make a serious

effort to contribute, supplemented by reported experiences and documentation of and

reflections on genuine interaction with the project.

As we have experienced in this assignment, it may be a problem for people

employed at a company to participate in a course like this. Some companies have an

organisational policy in order to prevent making the company visible via Open

Source contributions. However, it is clear that many companies value interaction

with Open Source projects, and such courses are likely to attract company-based

students. It is certainly worth our while to attempt to resolve such potential issues. It

should also be noted that Scandinavia has a high degree of contributors to OS

projects and the typically flat hierarchical structures in Scandinavian organisations

may very well be an important background factor which reinforces this.

References

Fernandes, J. M. and Machado, R. J. (2006) A Two-Year Software Engineering M.Sc. Degree

Designed Under the Bologna Declaration Principles, In Proceedings of the International

Conference on Software Engineering Advances (ICSEA’06), IEEE Computer Society, p. 1,

2006.

Fitzgerald, B. (2006) The Transformation of Open Source Software, MISQ, Vol. 30, No. 3, pp.

587-598.

German, D. (2005) Experiences teaching a graduate course in Open Source Software

Engineering, In Scotto, M. and Succi, G. (Eds.) Proceedings of the First International

Conference on Open Source Systems, Genova, Italy, 11-15 July 2005, pp. 326-328,

<oss2005.case.unibz.it/Papers/OES/ES1.pdf>.

Megías, D., Serra, J. and Macau, R. (2005) An International Master Programme in Free

Software in the European Higher Education Space, In Scotto, M. and Succi, G. (Eds.)

Proceedings of the First International Conference on Open Source Systems, Genova, Italy,

11-15 July 2005, pp. 349-352, <oss2005.case.unibz.it/Papers/OES/EK3.pdf>.

Raymond, E.S. (1999) The Cathedral & the Bazaar, O’Reilly. hardcover ISBN 1-56592-724-

9, October 1999.

Stallman, R. (2006) The GNU Manifesto, <www.gnu.org/gnu/manifesto.html> [Accessed 13

December, 2006].

Özel, B., Gencer, M. and Stephenson, C. (2006) An MSc Programme in Open Source

Information Systems, In Özel, B., Burak Çilingir, C., and Erkan, K. (Eds.) Towards Open

Source Adoption: Educational, Public, Legal, and Usability Practices – OSS 2006 tOSSad

workshop proceedings, Como, Italy, June 10, 2006, TÜ_TAK (The Scientific &

Technological Research Council of Turkey), TÜ_TAK MAM MAtbaasi, 41470, Kocaeli,

Turkey.

Release Management in Free Software Projects:
Practices and Problems

Martin Michlmayr, Francis Hunt, and David Probert

Centre for Technology Management
University of Cambridge

Cambridge, CB2 1RX, UK
martin@michlmayr.org

Abstract. Release management plays an important role in every soft-
ware project since it is concerned with the delivery of a high quality
product to end-users. This paper explores release practices employed
by volunteer free software projects and shows problems that occur. A
challenge that has been identified is the difficulty of coordinating a dis-
tributed team of volunteers in order to align their work for a release.

Key words: Release management, coordination, volunteers

1 Introduction

Release management is an important part of quality management since it is
concerned with the delivery of high quality software to users [2]. Free and open
source software (FOSS) is characterized by a highly iterative development model
in which new development releases are typically made available very frequently.
Despite the frequency of development releases in some projects, there are often
problems with stable releases for end-users. The following two examples should
illustrate this problem:

– Debian: in recent years, the project has faced increasingly delayed and unpre-
dictable releases. Most notably, the release process of Debian 3.1 was char-
acterized by major delays. Initially announced for December 1, 2003, the
software was finally released in June 2005 – a delay of one and a half years.
By the time the new version was released, the previous stable release was
largely considered out of date and did not run on modern hardware.

– GNU tools: despite their popularity and importance, development has been
slow in recent years and there is a long interval between releases. Version
1.13 of tar came out in August 1999, followed by version 1.14 at the end
of 2004. The compression utility gzip saw a new version in December 2006,
more than a decade after the last stable release in 1993. As a consequence
of these long delays between stable releases, several vendors started shipping
pre-releases.

296 Michlmayr et al.

These examples show that release management is a real matter of concern.
Despite the importance of this aspect of software production, little attention
has been given to release management in FOSS projects [1].

This paper performs an exploratory study in order to get a better picture
of actual practices and problems associated with release management in FOSS
projects. The topic has been studied from a quality perspective and follows a
similar approach to a previous paper which investigated quality practices and
problems in FOSS projects [3].

2 Study

2.1 Methodology

For this study, interviews with twenty experienced developers from different
FOSS projects were carried out. The interviews were conducted at a confer-
ence over the course of three days. Interviewees were either core developers or
release managers of FOSS projects. The range of FOSS projects in which devel-
opers participated was very wide, ranging from small to very large and complex
projects, and included projects of all types, such as desktop and server software
and development tools. This great variety gives a good coverage of practices
found in the FOSS community.

2.2 Types of Release Management

The study has revealed that the general term ‘release management’ is used to
refer to three different types of releases. These types differ quite significantly re-
garding the audience they address and the effort required to deliver the release.
The three types are:

– Development releases aimed at developers interested in working on the project
or experienced users who need cutting edge technology.

– Major user releases based on a stabilized development tree. These releases
deliver significant new features and functionality as well as bug fixes to end-
users and are generally well tested.

– Minor releases as updates to existing user releases, for example to address
security issues or critical defects.

Since developers are experts, development releases do not have to be polished
and are therefore relatively easy to prepare. Minor updates to stable releases
also require little work since they usually only consist of one or two fixes for
critical or security bugs. On the other hand, a new major user release requires
significant effort: the software needs to be thoroughly tested, documentation
has to be written and the software needs to be packaged up. Since the main
challenges are associated with the preparation of major new user releases, the
focus will therefore be on releases aimed at end-users.

Release Management in Free Software Projects: Practices and Problems 297

In terms of a project’s release strategy, projects can be classified according
to the following two release strategies:

– Feature based strategy: the basic premise of this strategy is to perform a
new release when a specific set of criteria has been fulfilled and certain goals
attained, most typically a number of features which developers perceive as
important. This strategy is in line with traditional software development
which is feature driven.

– Time based strategy: in this strategy a specific date is set for the release well
in advance and a schedule created so people can plan accordingly. Prior to the
release, there is a cut-off date on which all features are evaluated to decide
whether they can be included in the release or have to be postponed.

2.3 Skills of the Release Manager

The role of the release manager is diverse and demanding because they have
to interact with a large number of different people, understand technical issues
but also know how to plan and coordinate. The following important skills have
been identified:

– Community building: showing people that their input is useful. Release man-
agers also need respect in the community in order to perform their work.

– Strong vision: showing developers in which direction the project should be
moving.

– Discipline: saying ‘no’. Release manager have to focus on overall goal and can
not make everyone happy.

– Judgement: gauging the risk and possible impact of a particular change.
– Attention to detail: walking through every line of code that has changed.
– Good communication: writing release notes, asking for feedback, interacting

with users.
– Management skills: talking to people, organizing, planning, making sure that

different tasks are performed.

It is interesting to note that release managers in small and large projects play
a vastly different role even though they essentially have the same responsibility,
namely getting a high quality release out. In a small project, the release manager
usually has an administrative role which involves the preparation of the release
in different formats that can be distributed, the creation of release notes and the
actual distribution of the software. In large projects, on the other hand, there
is a big emphasis on coordination that needs to be performed by the release
manager. They have to make sure that different parts of the software are ready
at the same time and that all developers are aligned towards the common goal
of creating a stable release.

2.4 Tools and Practices

Despite the important role release management plays in the delivery of quality
software to users, there is little knowledge as to how FOSS projects perform
releases. This section covers tools and practices employed during release man-
agement.

The study has revealed that there are few dedicated tools used in release
management. However, many FOSS projects have tightly integrated their devel-
opment tools with their whole development process, including release manage-
ment. In particular, the use of version control and bug tracking systems serves
important functions during release management as they give a good overview
of the status of the project.

In addition to the use of tools, there are specific practices which are related
to release management:

– Freezing: development is locked down in order to focus on the removal of
defects and publication of the release.

– Scheduling: relatively few projects make use of a schedule but it is a vital
component in those projects which employ a time based release strategy.

– Establishing milestones: some projects have loosely defined milestones but
given the volunteer nature of most projects there is no guarantee that they
will actually be achieved.

– Setting deadlines: many projects set deadlines but they are not always effec-
tive because the release manager has no control over volunteer participants.

– Building on different architectures: as part of a project’s testing plan, it is
beneficial to build the software on a number of different hardware platforms
because each of them may exhibit bugs not visible on another platform.

– User testing: one of the main benefits from preparing a release is the feedback
potentially obtained from a wide range of users. Even those projects which
heavily deploy automatic test suites think that the most significant insights
usually come from actual users. It is therefore important to make snapshots
easily available.

– Following a release check list: a number of projects use a check list to make
sure that all steps that are necessary to make a new release are followed.

– Holding a post-release review: surprisingly few projects have a formal post-
release review but there are often informal discussions on the mailing list of
the project, in particular when there were problems with the release.

2.5 Problems

As discussed earlier, the process of preparing a new stable release for end-users
is quite elaborate and complex since the software needs to be sufficiently tested,
documented and packaged for release. The release management process often
faces certain problems, the most common of which are as follows:

298 Michlmayr et al.

Release Management in Free Software Projects: Practices and Problems 299

– Major features not ready: planning in volunteer teams is very hard and it
happens regularly that major features which are on the critical path are not
ready. These blockers need to be resolved so the release process can continue.

– Interdependencies: with the growing complexity of software, there are in-
creasing levels of interdependencies between software. For example, a piece
of software may use libraries developed by another project or incorporate cer-
tain software components created elsewhere. This creates a dependency and
can lead to problems with a project’s release when those other components
are not ready.

– Supporting old releases: there is generally a lack of resources in the FOSS
community and in many projects old releases receive little support. Some
vendors which distribute a given release may step in and offer basic support
but it may still be problematic for other users of the software.

– Little interest in doing user releases: even though this study has emphasized
the importance of user releases, many developers show little interest in making
releases. Since developers by definition generally use the development version
they often do not understand the need for a user release or do not see when
a user release is massively out of date.

– Vendors shipping development releases: when projects do not publish new
releases, some vendors start shipping development releases because they con-
tain features or fixes which their customers need. This situation is problematic
because it can lead to fragmentation and because development releases are
generally not as well tested as user releases.

– Long periods without testing: some projects apply many changes with rel-
atively little testing. At the time of the release, many issues are discovered
and this leads to major delays.

– Problem of coordination: development in FOSS projects is done in a massively
parallel way in which individual developers independently work on features
they are interested in. Towards the release, all of this development needs to
be aligned and these parallel streams have to stabilize at the same time. This
can require substantial amounts of coordination.

3 Discussion

This study has shed light on practices and problems related to release man-
agement in FOSS projects, an important area which has so far been relatively
unexplored. A major observation is that the preparation of user releases is asso-
ciated with considerable problems, in particular in large projects. Small projects
often face human resource problems but large projects deal with a more fun-
damental issue, namely that of coordinating a loosely defined team of virtual
volunteers towards the common goal of making a release. These volunteers typ-
ically work independently in parallel development streams which require little
coordination with other members of the project. However, during the prepa-
ration for the next release, these parallel streams need to be integrated and

that requires coordination. Even more problematic is that each independent
development stream has to be completed at the same time even though there
is usually no schedule which provides guidance. When freezes are announced
out of the blue, everyone wants to get their features and fixes in and the high
number of changes pushes back the release date. Each delay is seen as a further
opportunity to make more changes, thereby causing even more delays.

The present study has identified such problems in a number of projects
but there is also evidence that some projects have found ways to deal with
these problems. There is considerable interest among projects in the time based
release strategy, in which time rather than features is used as orientation for
the release and a schedule is followed. This release strategy is used in a growing
number of projects, such as GNOME, OpenOffice.org and X.org. Time based
releases promise solutions to cope with the complexity that occurs when a large
team of distributed volunteers needs to be coordinated toward a common goal.
However, further work is needed to study this release strategy in detail.

4 Conclusions

This paper has shed light on an important and as yet fairly unexplored area of
FOSS development. The main finding of this study is that projects, in particu-
lar those with many developers, face severe challenges during the preparations
for a release. These challenges are related to the coordination of a team which
is not only large but also geographically dispersed and mainly consists of vol-
unteer participants. While FOSS projects often rely on self-assignment of tasks
with little coordination, all developers need to align their activities towards a
common goal during release preparations. The time based release strategy has
been suggested as a mechanism to coordinate large volunteer teams but further
work is needed to explore this release strategy.

5 Acknowledgements

This work has been funded in part by Google and the EPSRC. Thanks to Field-
wave Ltd covering the expenses to attend the conference where the interviews
for this study were conducted.

References

1. J. R. Erenkrantz. Release management within open source projects. In 3rd Work-
shop on Open Source Software Engineering, pages 51–55. ICSE, 2003.

2. K. D. Levin and O. Yadid. Optimal release time of improved versions of software
packages. Information and Software Technology, 32(1):65–70, 1990.

3. M. Michlmayr, F. Hunt, and D. Probert. Quality practices and problems in free
software projects. In M. Scotto and G. Succi, editors, Proceedings of the First
International Conference on Open Source Systems, pages 24–28, Genova, 2005.

300 Michlmayr et al.

CONTEXT-DEPENDENT EVALUATION
METHODOLOGY FOR OPEN SOURCE
SOFTWARE

Michele Cabano, Cesare Monti, and Giulio Piancastelli
DEIS, Dipartimento di Elettronica, Informatica e Sistemistica
Alma Mater Studiorum — Università di Bologna
via Venezia 52, 47037 Cesena (FC), Italy

[michele.cabano, cesare.monti, giulio.piancastelli]@unibo.it

Abstract Many evaluation methodologies have been proposed to mitigate the risks
of choosing Open Source Software as an effective solution to an enter-
prise’s problem. This work extracts the shared traits from the most
important and widely known evaluation models, and re-applies them to
create a new methodology. This methodology has been designed both
to be used for the creation of a common knowledge base, and to be spe-
cialized for application in the context of the particular breed of small-
and medium-size enterprises found on the Italian ground.

1. Introduction
Selecting an Open Source Software (OSS) application as the appropri-

ate solution to an enterprise’s problem has always been an activity prone
to many risks of different nature [4]. Proposed solutions to this choice
problem have taken the form of evaluation methodologies [3, 1], aimed
at assessing a software package’s maturity for business IT adoption.

Open Source embracement is critical especially for small- and medium-
size enterprises, where the consequences to a wrong decision in the pick-
ing of an Open Source alternative to a commercial product might not
be as well-absorbed as in the context of bigger corporations. For this
reason, the Italian region Emilia-Romagna funded the OITOS project,1

started in 2005 with the goal of creating an Observatory for Innovation
and Technological transfer on Open Source software. The project aims
at strategic evaluations of Open Source solutions, in order to limit and
control the risks for enterprise IT adoption. For that purpose, by re-
applying a common structural pattern shared by the most important

Figure 1. An UML diagram illustrating the evaluation meta-model, where a single
metric can influence more than one category, and weights are used to take into account
the final rating’s dependency from the evaluation context.

and widely known methodologies, we designed a new OSS evaluation
methodology, both to build a knowledge base classifying Open Source
products, and to be applied in the specific business contexts of small-
and medium-size enterprises participating in the OITOS project.

2. Modeling existing evaluation methodologies
We identified three most important works in the area of OSS evalua-

tion methodologies, starting from the first Open Source Maturity Model
[4], created by Bernard Golden at Navica; another Open Source Maturity
Model has been later developed at the CapGemini consulting company
[3]; finally, Intel Corporation, Carnagie Mellon University, and others
are currently proposing a standard and open evaluation methodology
for OSS, named Business Readiness Rating (BRR) [1].

Despite possible dissimilarities among the listed works, we believe each
methodology always consists in the application of an evaluation model
to one or more software packages during the execution of a well-defined
assessment process. Both the process and the model can be reduced to
a common pattern solving the Open Source evaluation problem.

2.1 The evaluation meta-model
As shown in Figure 1, all the examined evaluation models share a

common meta-model subdivided along three layers. Those layers aim at
refining a product’s evaluation by aggregating raw data under ratings of
similar assets, until an overall score is determined.

A metric is defined as a measurable property of an open source soft-
ware project.2 Metrics are organized into categories representing com-
mon areas of interest. The aggregation of categories represents the whole
product under analysis. An evaluation is assigned to each metric, corre-
sponding to the value reached by the software on that specific property.

302 Cabano et al.

Context-Dependent Evaluation Methodology for Open Source Software 303

Figure 2. The three phases in the skeleton of the assessment process.

The evaluations of metrics sharing their category are combined into cate-
gory evaluations, which are then aggregated into the final product rating.
Weights could be assigned to categories and metrics to account for the
context-dependent importance that some aspects of a product may have.

The examined models feature common categories to evaluate quantita-
tive data taken from objective sources, such as the project’s infrastruc-
ture. Differences between models result in the remaining categories,
which try to capture subjective data and normalize qualitative informa-
tion taken from other sources, such as code analysis or product use.

2.2 The assessment process skeleton
As illustrated in Figure 2, the prototypical assessment process for

OSS evaluation methodologies is composed by three phases: (1) Data
Gathering; (2) Data Analysis through predefined metrics grouped by
category; (3) Numerical Synthesis. The process can be refined, as it
happens with the Quick Assessment filter of the BRR [1], or further
detailed, as in the seven steps of CapGemini’s Maturity Model [3]; but
the outlined three phase pattern still maintain its validity.

The Data Gathering phase can be accomplished by collecting infor-
mation indirectly through reuse of third party evaluations, or directly
from primary data sources such as the project’s support infrastructure
and web sites promoting the software product. The Data Analysis and
Numerical Synthesis phases represent the application of the evaluation
model in two steps: first, following a numeric scale, a score is assigned to
each metric, then weighted and aggregated on the basis of metric’s areas
of influence to calculate the rating of each category; second, product’s
evaluation is obtained by applying different weights to category ratings.

The assessment process must be frequently repeated over time for each
software package, due to the responsive nature of Open Source projects.

2.3 Towards a pattern for software evaluation
We believe that the meta-model and process skeleton detailed in Sec-

tion 2.1 and 2.2 form the structure of a pattern3 for the creation of the
two key elements in a software evaluation methodology. Patterns dis-
till and provide a means to reuse the knowledge gained by experienced

practitioners [2]. In fact, the proposed software evaluation methodology
pattern has been extracted from the solutions to the software evaluation
problem proposed throughout the latest years. Besides, the creation of
the BRR methodology shows that this solution pattern to the evaluation
problem, on which the BRR is based, is considered mature enough to be
openly discussed and worth of a standardization attempt.

3. The OITOS methodology
Started in 2005, the OITOS project is the first attempt made by the

local government of an Italian region to spread Information Technology
knowledge on its territory. The project aims at strategic evaluations of
Open Source solutions under the perspective of enterprise IT adoption.
The OITOS project involves a lot of companies which operate in several
sectors. Different organizations have different technical requirements in
the choice of software products: an assessment made for a company can
rarely be totally reused for another. Thus, our primary task was finding
a set of metrics which could always be used in any assessment, in order
to create a knowledge base common to every organization.

3.1 Creating a knowledge base
Since existent evaluation models did not consider some important

metrics the OITOS project’s context demanded (e.g. migration costs or
interoperability) we needed to create a new model to match our own re-
quirements. The OITOS evaluation model was thus developed following
the structure described in Section 2.1 without considering weight fac-
tors. The model was built to evaluate open source projects, rather than
products, around three categories, aimed to measure a set of objective
properties of general interest in a quantitative way: (1) Development;
(2) Community; (3) Transition. The Development category measures the
work made by project developers, and is composed by the Documenta-
tion, Developers, Tools, and Composability4 metrics. The Community
category measures all the resources offered by users, scientific commu-
nities and private companies, and is composed by the Visibility, Success
Stories, Support, and Fundings metrics. The Transition category es-
timates how much the product is adaptable to existent organizational
structures and configurable for its effective use, and is composed by the
Configurability, Set-up, Use, Migration, and Interoperability metrics.

Needing general assessments in order to gain maximum reusability, we
opted for the simplest possible evaluation process: it relied on a single
phase called Preliminary Assessment, which included all the three steps
highlighted in the prototypical process characterized in Section 2.2.

304 Cabano et al.

Context-Dependent Evaluation Methodology for Open Source Software

3.2 Context-dependent software evaluation
Companies participating in the OITOS project also needed evalua-

tions customized to their particular technological context. Willing to
reuse the objective and more general parts of each evaluation, the model
and process described in Section 3.1 were extended piecemeal to produce
a context-dependent methodology: metric weights from the meta-model
in Section 2.1 were introduced, a new Technology category was added,
and the process was extended to comprise three different phases.

Technology category groups all the metrics relative to features which
an enterprise may consider important for its specific context. These met-
rics usually measure facets connected directly with the software product,
never with the open source project’s infrastructure. For this reason,
rating those metrics is a subjective activity, but evaluations are more
customized to their technological context than in other categories.

The assessment process is composed by three phases: (1) Context
Analysis; (2) Preliminary Selection; (3) Filtered Selection. During the
Context Analysis phase, information concerning a company are gathered
in order to define its necessities. Each need is resolved by a software class
which will be estimated by the model. After identification of software
classes, a list containing possible products to introduce is edited, and a
complete set of evaluation metrics is defined. In the Preliminary Selec-
tion phase, a set of most critical metrics is extracted. To each critical
metric is associated a threshold, which must be surpassed to grant a
software product access to the next phase. During the Filtered Selec-
tion step, software products passing Preliminary Selection are estimated
once more, by the complete set of metrics defined in the Context Analy-
sis phase. There are no thresholds assigned to the metrics: instead, each
metric receives a 1 to 10 value which may be modified by a weight factor.

With reference to the process pattern outlined in Section 2.2, the
Data Gathering phase has been split onto all the three phases in the
OITOS methodology. During Context Analysis, data is collected about
the company for which the evaluation is performed.5 In the Preliminary
Selection phase, we refined the process in the fashion of BRR’s Quick
Assessment filter [1]: data is gathered for critical metrics, and a first
Data Analysis activity is performed to rule in or out software packages
from the next step. During Filtered Selection, the complete evaluation
of software is accomplished, featuring all the three phases in the pattern.

4. Open issues and future work
The Data Gathering and Data Analysis processes are driven by two

sets of questions, which let evaluators collect the raw material to be

305

used for assessing a product’s rating, and establish the influence of each
metric on the higher category layer. These two sets are of fundamental
importance, since they comprise the point of view that the methodology
enforces on the software product being evaluated. Unfortunately, even
if those questions are sometimes contained in accompanying documents
such as user’s guides or appendixes, more often they are nowhere to be
publicly found, especially when consultancy agencies are involved.

Despite the endeavor to control subjective information and normal-
ize qualitative data, a certain degree of discretion is still possible while
performing a software evaluation. Subjectivity has not been eliminated:
it has just been transferred to the normalization process, which at most
can be driven by a set of best practices, not a well-defined specification.
If the influence of the evaluator’s point of view and the dependence
from the context cannot be eliminated, they should at least be traceable
during and after the evaluation process. For this reason, every software
evaluation should be accompanied by a document explaining choices and
relating facts to the actual ratings assigned to metrics and categories.

In the context of the OITOS project, not only the results of every
evaluation are public, but the methodology itself is made open to feed-
back from OITOS participants. As a first result, steady interest has
been shown for the introduction of a new category in the model, with
the purpose of evaluating legal issues connected with software, such as
private data management, copyright, and licence responsibilities.

Notes
1. Details and documents for the OITOS project are available at http://www.oitos.it,

including a case study on Groupware applications where our software evaluation methodology
has been tested.

2. We adopted the BRR lexicon to achieve a uniform vocabulary and avoid confusion.

3. A pattern is a general repeatable solution to a commonly occurring problem.

4. Composability aims to estimate how many projects use the product as a component.

5. We extended the meaning of Data Gathering to also include information not related
to software, but still essential to an effective evaluation.

References

[1] BRR Project (2005) Business Readiness Rating for Open Source. BRR-2005-RFC1

[2] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-
Oriented Software Architecture – A System of Patterns. John Wiley & Sons

[3] Duijnhouwer FW, Widdows C (2003) Open Source Maturity Model. CapGemini
Expert Letter

[4] Golden B (2004) Succeeding with Open Source. Addison-Wesley

306 Cabano et al.

Benefits and Drawbacks of Open Source

Software: An Exploratory Study of

Secondary Software Firms

Lorraine Morgan1 and Patrick Finnegan2

1 University of Limerick, Ireland. Lorraine.Morgan@ul.ie

2 University College Cork, Ireland. P.Finnegan@ucc.ie

Abstract. Much of the assessment of OSS benefits and drawbacks has been

based on anecdotal evidence appearing in practitioner publications, white

papers, web articles etc. To a greater extent this research has tended to

concentrate more on the technical benefits and drawbacks of OSS rather than

their business counterparts. Furthermore, public administrations and

companies operating within the primary software sector have traditionally

been the focus for research on OSS benefits and drawbacks. Taking the

viewpoint of IS/IT managers in 13 companies operating in the secondary

software sector in Europe, this paper examines their experiences of the

benefits/drawbacks of OSS.

Keywords: Open Source Software, Secondary Software Sector, Benefits,

Drawbacks

1 Introduction and Research Motivation

The OSS movement has pragmatically shifted towards a more business-friendly and

hybrid concept, and is now rapidly changing into a feasible alternative to proprietary

software. Several innovative business models and new business opportunities have

emerged as a result of the OSS phenomenon and many organisations have begun to

capitalise on these [1]. Indeed, OSS plays a critical role in the business models for

firms in high technology and other industries [2]. However, despite the considerable

interest in OSS, there is a lack of published empirical research that rigorously

examines the benefits and drawbacks of OSS. This is surprising considering there is

an underlying assumption that the perceived benefits and drawbacks off OSS appear

to be an underlying factor in its adoption. Our review identified the following

benefits of OSS: reliability [3, 4]; security [3, 5]; quality [3, 6], performance [3],

flexibility of use [4, 6]; large developer and tester base [6, 7]; low cost [8]; flexibility

allowed by licenses [9]; user support from a community [6], escaping vendor lock-in

[10]; increasing collaboration [1] and encouraging innovation [11, 12]. Our review

also identified the following drawbacks: compatibility [13, 14]; security risks [15,

16]; installation problems [13]; lack of expertise [6]; version proliferation [6], user-

friendliness [7]; lack of user support [17]; lack of ownership [7, 14]; insufficient

marketing [6]; giving away the source code [18] and higher training investment in

OSS [16].

Lorraine Morgan and Patrick Finnegan308

Nevertheless, given the dearth of extant research in this area, the benefits and

drawbacks, particularly the business ones, relevant to OSS adoption are not well

understood, as much of the research has been based on anecdotal evidence appearing

in white papers [3, 4, 5, 16], practitioner papers [7] and web articles [10, 13, 14, 17,

18]. Furthermore, a great deal of this research has tended to focus mainly on public

administrations and software companies operating within the primary software

sector. This is rather surprising as Europe is the world leader in secondary

development, a market that is rapidly taking the place of primary development [19].

Another important incentive for carrying out this research is the fact that this

issue has not been addressed exclusively in the previous two Open Source Systems

conferences held in 2005 and 2006. For instance, while the benefits of OSS were

somewhat covered by Davini et al. [20]), this paper was more concerned with the use

of OSS in the e-government area and did not address the drawbacks of OSS. Ven and

Verelst [21] also presented a paper on organisational adoption of OS server software

by five public administrations. Again, this study reported on five case studies in

Belgian organisations currently using OS server software and focused more on the

factors deemed important in the adoption decision. It is therefore argued that some

rigorous analysis of the benefits and drawbacks of OSS experienced by managers

operating in companies in the European secondary software sector would be timely.

2 Research Design

The objective of this study is to examine the benefits/drawbacks of OSS experienced

by managers in firms in the European secondary software sector. The study was

categorised as exploratory due to the scarcity of empirical work in this area. Thus,

Marshall and Rossman [22] suggest that either a case study or field study research

methodology can be used. The researchers decided that a field study would be

appropriate as it would facilitate the collection of data from a larger number of

organisations and would form the basis for more focused research at a later stage.

Data collection was carried out using semi-structured interviewing in 13 companies

(see Table 1).

Table 1.
Name Informant

BSS Group PLC, UK IT Contracts Manager
Combitech Systems, Lead Engineer
Conecta, Italy Head of R&D
Eircom Group PLC, Ireland Technical Architecture Mgr
Eurocontrol Experimental Centre, France Senior Researcher
Consult. Comp. (pseudonym), Switzerland Consultant
Nokia Research Centre, Finland Head of Software Technology
Phillips Medical Systems, The Netherlands International Project Leader
Siemens AG, Germany Program Manager
Sony Computer Entertainment Europe, UK Linux for Playstation 2 Specialist
St. Galler Tagblatt AG, Switzerland Chief Information Officer
Supertramp, UK Technical Director
Vodafone, Spain R&D Engineer, Head of R&D

Benefits and Drawbacks of Open Source Software: An Exploratory Study of

Secondary Software Firms

309

Each interview lasted between forty-five minutes and two hours. Content

analysis was undertaken using coding techniques proposed by Strauss and Corbin

[23]. This approach seeks to develop theory systematically in an intimate

relationship with the data, and can be utilised in the absence of, or in conjunction

with, existing theory [23].

3 Findings

The ability to access the source code, modify it etc., has resulted in many of the

technical benefits found in Table 2. However, it was found that many of the technical

benefits, e.g. quality and the presence of a large developer and tester base only apply

in some cases to more mature products like Linux, Apache etc. A new finding in the

form of improved harmonization was also identified as another technical benefit. The

business benefits outlined in Table 3 were seen as very significant for the

interviewees, particularly escaping vendor lock-in, increased collaboration, and

innovation. Although many of the benefits are similar to those found in the literature,

some new findings also surfaced such as the extra business functionality experienced

with OSS and establishment of de facto standards. In relation to the technical

drawbacks of OSS, the findings from the study only support two of the technical

drawbacks found in the literature (see Table 4), namely compatibility issues and lack

of expertise. However, it was found that the lack of expertise issue tends to be more

related to a lack of awareness about OSS. New findings in the form of poor

documentation, proliferation of interfaces, less functionality and lack of roadmaps

were considered chiefly to be the real drawbacks.

Table 2. Technical Benefits of OSS
Reliability Reliability cited by majority as one of the main technical benefits in terms

of high availability and dependability of applications
Security Majority believed that OSS provides high security due to the availability of

source code, the reduced threat of viruses and extra awareness of security in
design phase of products. Two companies felt OSS would not be beneficial
in terms of security

Quality Majority of interviewees found quality beneficial in terms of enhanced
quality from peer reviews and the quality of developers and testers. Two
companies felt this could only be applied to top-tier, mature OSS products
(e.g. Linux)

Performance 8 interviewees cited high performance in terms of capacity and speed. 3
have yet to see more evidence of how well OSS performs while 2 were
uncertain if OSS performed any better than proprietary

Flexibility of
Use

Beneficial for majority of interviewees because it facilitates changes,
customisation, experimentations and allows freedom of choice

Developer &
Tester Base

Very beneficial for majority as it ensures that OSS is quality software and is
up-to-date.

Compatibility Several mentioned that OSS is conducive to ensuring compatibility as it has
a great interest in conserving formats for better interoperability. Remaining
had not seen any evidence of this or it was not worth considering

Harmonisation Improved harmonisation in interoperability and practices/operations

Lorraine Morgan and Patrick Finnegan310

Table 3. Business Benefits of OSS
Low Cost Half of the interviewees found this beneficial in terms of reduced licensing

fees, upgrades, virus protection and the cost of the whole package, i.e.
service and software. The other half considered low cost of no benefit

Flexibility by
licenses

Seen by most as having a significant impact on reducing capital expenditure
in company

Escapes
vendor lock-in

Highly beneficial for most as it facilitates freedom of choice, gives sense of
control and provides independence from private vendors. 2 companies felt
vendor lock-in may also be experienced with OSS

Increases
collaboration

Greater collaboration beneficial for majority as OSS facilitates product
development, cooperation and exchange of knowledge, provides new ways
of collaboration and permits sharing of expenses with other companies

Encourages
innovation

Majority found that access to the source code facilitates more innovation; it
produces ideas and encourages technical innovation while also creating
more opportunities for innovation.

Extra business
functionality

Beneficial because it results in ability to keep teams small which in turn
improves productivity and communication

De facto
standards

Not the only company doing something. Developing a standard that allows
the company to focus on core competences would be beneficial

Table 4. Technical Drawbacks of OSS
Compatibility
Issues

Not significantly disadvantageous but some companies experience
compatibility problems with current technology, skills and tasks

Lack of Expertise Some agreed that the average lay employee lacks expertise but this may
be related to a lack of awareness of OSS

Poor
documentation

Documentation outdated or may have died in development

Proliferation of
Interfaces

Different builds often results in confusion in deciding which one to
choose

Less Functionality Level of integration not as good as Microsoft
Lack of Roadmaps Makes it difficult for companies to see any strategic direction for vast

majority of products. Most products don’t have any strategic intent.

It was found that the business drawbacks outlined in Table 5 pose a bigger

challenge for managers than their technical counterparts. For example, lack of

support was considered a real drawback for the majority of the companies. Some of

the companies have teams of technicians that can provide support internally.

However, this is not always an option for many smaller organizations.

Table 5. Business Drawbacks of OSS
Lack of support Majority felt that there was no safety net as there is no support and no

company to back it up
Lack of ownership 11 found this a drawback as there is an inability to hold someone

responsible or accountable for problems
Access to the
source code

Several mentioned that others in the company may be uncomfortable
with releasing source code. Lack of knowledge in relation to this issue

Insufficient
marketing

Majority found this a drawback as no one organisation owns it all
(OSS); there is no one to market it; OSS has no marketing budget which
results in it being driven primarily by word of mouth

Investments for
training

4 companies mentioned that training investments were higher for Linux
than Windows. However, it was found that on e receives better quality
in terms of training on OSS.

Finding the right
staff/competencies

Can be difficult to find staff and develop competencies to work with
OSS applications

Benefits and Drawbacks of Open Source Software: An Exploratory Study of

Secondary Software Firms

311

4 Conclusion

This paper has built on extant practitioner-oriented examinations of OSS benefits and

drawbacks by examining the technical and business benefits/drawbacks experienced

by managers in companies in the European Secondary Software Sector. The ability

to access the source code, modify it etc. has resulted in many of the technical

benefits, e.g. reliability, security, flexibility of use and performance. It was also

found that these benefits compared extremely well with proprietary software. The

business benefits found in the study were just as significant for the interviewees and

of equal value to them as the technical benefits, particular escape from vendor lock-

in, increased collaboration and innovation. However, there was little support for

findings from Krishnamurthy [6] that the user support from a community is quite

beneficial to OSS because anyone using the software has an engaged community

willing to answer questions. Only one of the companies found user support from the

community to be a possible business benefit of OSS adoption. The remaining

companies found user support from third parties, e.g. consultants, professional

software houses more appealing.

The technical drawbacks identified by existing research e.g. version proliferation,

security risks, installation problems, security risks, OSS being less user-friendly and

troubleshooting and upgrading of OSS were not considered major drawbacks by the

interviewees. In addition, there was no support for Kenwood’s [7] assertion that OSS

is less user-friendly, and few companies experienced installation problems. Finally,

the business drawbacks found in the study depict a similar picture to those outlined

in the existing literature. However, these drawbacks appeared to pose a bigger

challenge for OSS than their technical counterparts.

References

1. Agerfalk, P.J., Deverell, A. Fitzgerald, B. and Morgan, L. (2005) Assessing the Role of

Open Source Software in the European Secondary Software Sector: A Voice from

Industry, First International Conference on Open Source Systems, Genova, 11-15 July

2005, 82-87.

2. Overby, E.M., Bharadwaj, A.S., Bharadwaj, S.G. (2006) An Investigation of Firm-Level

Open Source Adoption: Theoretical and Practical Implications. In R.K. Jain (ed.), Open

Source Software in Business - Issues and Perspectives, Hyderabad, India: ICFAI

University Press, 2006.

3. Forge, S. (2006) The rain forest and the rock garden: the economic impacts of open

source software, www.emeraldinsight.com/10.1108/146366906 10664633

4. Varian, H.R. and Shapiro, C. (2003) Linux Adoption in the Public Sector: An Economic

Analysis. Working Paper, University of California, Berkley.

5. Coppola, C. and Neelley, E. (2004) Open source – open learns: Why open source makes

sense for education, http://www.findarticles.com/p/articles/mi_qa4011/is_200401/ai_n9

466456/ pg_5

Lorraine Morgan and Patrick Finnegan312

6. Krishnamurthy, S. (2003) A Managerial Overview of Open Source Software, Business

Horizons, 46(5), September-October, 47-56.

7. Kenwood, C.A. (2001) A Business Case Study of Open Source Software,

(http://www.mitre.org/

support/papers/tech_papers_01/kenwood_software/kenwood_software.pdf)

8. Open Source Initiative (OSI) (2006) The Open Source Definition,

http://www.opensource.org/docs/definition.php

9. IDC Research (2005) Western European End-User Survey: 2005 Spending Priorities,

Outsourcing, Open Source, and Impact of Compliance, http://www.itworldcanada.

com/Pages/Docbase/ViewArticle.aspx?id=idgml-8f87ddb3-bfe 0-4b69&s=90323

10. Stafford, J. 2006: Time to plan your company’s escape from Microsoft.

http://searchopensource.techtarget.com/columnItem/0,294698,sid39_gci1163576,00.html

11. Wheeler, D. (2005) Why Open Source Software/Free Sofware (OSS/FL, FLOSS, or

FOSS)? Look at the Numbers! http://www.dwheeler.com/ oss_fs_why.html.

12. Forrester Report (2000) Open Source Cracks the Code, www.forrester.com/ER/

Research/Report/ 0,1338,9851,00.html

13. Webb, M. (2001) Going with Open Source Software: Is it the Right Choice for

yourOrganisation?http://www.techsoup.org/howto/articles/software/page1124.cfm.

14. Guth, S. (2006) Limiting factors for the adoption of open source software,

http://claweb.cla.unipd. it/home/sguth/pdfs/OSS_gov_cons.pdf

15. Herbsleb, J. (2002) Research Priorities in Open Source Software Development, www.

infonomics.nl/FLOSS/workshop/papers/herbsleb.htm

16. Forrester (2004) The Costs and Risks of Open Source, www.forrester.com/Research/

Document/ 0,7211,34146,00.html

17. Stevenson, J. (2005) Open Source Software: The Drawbacks, www.academon.com/lib/

essay/ open-source-software.html

18. Parsons, A. Case Against Open Source, http://www.builderau.com.au/program/

windows/soa/ Case_against_open_source/0,339024644,320265682,00.htm

19. Information Society Technologies Results (2005) FLOSSing can make EU tech leader

http://istresults.cordis.europa.eu/index.cfm/section/news/tpl/article/BrowsingType/Featur

es/ID/80607

20. Davini, E., Faggioni, E. and Tartari, D. Open Source Software in Public Administration.

A real example OSS for e-government Observatories, First International Conference on

Open Source Systems, Genova, 11-15 July 2005, 119-124.

21. Ven, K. and Verelst, J. (2006) The Organisational Adoption of Open Source Server

Software by Belgian Organisations, Proceedings of IFIP 8.2 Foundation on Open Source

Software Conference, 08-10 June 2006, Como, Italy, 111-122, Springer.

22. Marshall, C. and Rossman, G. (1989) Designing Qualitative Research, Sage Publications,

California.

23. Strauss, A. and Corbin, J. (1990) Basics of Qualitative Research: Grounded Theory

Procedures and Techniques. Sage Publications, Newbury Park, CA.

Acknowledgement

This work is supported by LERO, the Irish Software Engineering Research Centre, University

of Limerick.

Introducing Usability Practices to OSS:
The Insiders’ Experience

Stanis�law Osiński1 and Dawid Weiss2

1 Poznan Supercomputing and Networking Center,
stanislaw.osinski@man.poznan.pl

2 Institute of Computing Science, Poznan University of Technology,
dawid.weiss@cs.put.poznan.pl

Abstract. This paper presents a case study of introducing usability
practices to a small open source project called Carrot2. We describe
our experiences from a point of view of an active Carrot2 developer,
who is at the same time a usability enthusiast and practitioner. We
perform a critical analysis of the system’s original user interface and
describe the steps we took to improve it. We also analyse the success
factors and the impact of the whole redesign process.

1 Introduction

The growing reliability of open source software (OSS) has led to widespread
adoption of OSS server-side packages, such as the Apache web server or MySQL.
At the same time, debates continued on whether OSS can also effectively replace
proprietary end-user applications [1]. One important factor determining the
success of the latter is the quality of their user interfaces (UIs). As opposed
to traditional OSS users, who like taking on technical challenges, typical non-
experts will simply want to complete their tasks quickly, minimising the effort
required to learn and operate the software. Consequently, while the low quality
of UI is unlikely to discourage experts from using OSS, it can potentially prevent
massive adoption among end-users. Thus, problems of usability, i.e. the ease of
learning and efficiency of using, of OSS are becoming increasingly important.

This paper is a case study of introducing usability practices to a small open
source project called Carrot2. We describe our experiences from a point of view
of an active Carrot2 developer, who is at the same time a usability enthusiast
and practitioner.

2 Improving the user interface of Carrot2

The aim of the Carrot2 project is to provide a flexible framework for building
search results clustering engines. Search results clustering is a web mining tech-
nique that simplifies browsing of search results by dynamically organising them
into thematic folders (Fig. 1(d)). In response to the query ‘tiger’, for example,

the user would be presented with search results divided into such topics as ‘Mac
OS’, ‘Tiger Woods’, ‘Security Tool’ or ‘Tiger Attack Helicopter’.

Carrot2 started in 2002 with a primary goal to enable rapid experiments
with novel web mining techniques [2]. But as the project matured, we de-
cided to place greater emphasis on supporting end-users, which required making
Carrot2’s web-based interface easier to learn and use. We divided the process
of redesigning the UI into four major stages: evaluation of the original design,
prototyping of the new design, usability testing, implementation and evaluation
of the redesigned version, all of which we describe below.

2.1 Evaluation of the original design

The original design of the user interface was aligned with the system’s primary
goal at that time – attract text mining researchers – and it perfectly served
its purpose. After shifting the emphasis to end-users, however, some elements
of the UI would not be appropriate anymore. Below we summarise the most
important problems that we planned to address.

Choosing sources of search results. The original UI combined two different
aspects – choosing the source of search results and the clustering algorithm
– into one Process combo-box (Figure 1(a)). One problem with this approach
was that these two choices are independent, and the original UI made it impos-
sible to use certain combinations of search sources and clustering algorithms.
A more serious problem, however, was that many end-users would care less
about changing the clustering algorithm than the search source. Unfortunately,
the original UI would force them to choose e.g. between: ‘GoogleAPI, English
stemmer, Tf Terms weighing, AHC, Dynamic Tree’ and ‘YahooAPI, LINGO,
Dynamic Tree’, both of which are meaningless for a non-expert.

Choosing search results sorting order. The presentation of search results
and thematic folders in the original UI was based on a variant of the two-panel
selector pattern, in which the folders were shown on the left-hand side of the
screen and the corresponding search results appeared on the right (Fig. 1(b)).
One element of this interface that might be confusing to non-expert users was
the choice of results sorting method located above the folder list. Not only was it
put in the inappropriate visual context (sorting order referred to search results
shown on the right and not to the folder list), but also it was not clear what
different sorting orders meant and which of them was currently selected.

Technical jargon. At a few places the original UI used technical and spe-
cialised vocabulary not easily understood by non-experts. One example is la-
beling the combo box for choosing the search results source (Yahoo!, Google,
MSN) as Process1. The combo box itself contained hard to understand items
such as: ‘Carrot2.input.snippet-reader.alltheweb’ (internal identifier of a search
results source) or ‘Rough-KMeans’ (name of a text clustering technique).

1 The internal architecture of Carrot2 is based on pipelines called processes.

314 Stanis�law Osiński and Dawid Weiss

Introducing Usability Practices to OSS: The Insiders’ Experience 315

(a) Startup screen of the original user interface.

(b) Results page of the original user interface.

(c) Startup page of the new design.

(d) Results page of the new design.

Fig. 1. Carrot2 user interface screenshots, available on-line at http://www.carrot2.org.

The good points. Despite the deficiencies highlighted above, the original de-
sign had many elements worth preserving in the improved UI. The most impor-
tant one was the ‘stateless operation’ paradigm – all search results and cluster
folders should be fetched in one request. With this approach the users would
not experience any delays caused by additional communication with the server
while browsing the folder list.

2.2 Prototyping of the new design

To allow ourselves a large degree of flexibility while brainstorming and polishing
the new UI, we decided to use a prototyping technique based on static HTML
files. This approach let us keep the cost of changing the user interface to a
minimum and perform usability testing before writing any code. Over a few
weeks, we worked on the prototype in an iterative fashion, increasing its fidelity
and fixing problems identified by usability tests. In the last step, we ensured that
the prototype displayed correctly on the major web browsers. Below we highlight
the most important changes we introduced to the Carrot2 user interface.

Search results sources as tabs. To address the most important problem with
the previous UI, we decided that different data sources should be represented as
‘tabs’ (Fig. 1(c)), like in conventional search engines. The choice of a clustering
algorithm, previously integrated with the search source, was delegated to a sep-
arate UI component. With this approach users can try all possible combinations
of data sources and clustering algorithms.

Hidden clustering algorithm choice. As the majority of end-users will not
have enough technical knowledge to purposefully select the clustering algorithm,
this choice is only available in the block of ‘advanced options’, shown after
selecting the Show options link placed next to the query field.

Polished startup and results pages. The redesigned user interface offers an
enhanced startup page with a one-sentence description of what Carrot2 will
do with the query typed in by the user. The search results page, apart from
the introduction of search source tabs, has not undergone any major paradigm
changes. We preserved the previous layout (Fig. 1(d)) and stateless behaviour of
the original UI. Minor improvements included: enabling independent scrolling of
search results and folders by putting them in separate internal frames, making
folder selection easier by slightly increasing the font size and spacing, adding
icons to strengthen the ‘foldering’ metaphor. The the choice of search results
sorting method was removed entirely, and the results are always shown in the
order they were received from the search engine.

2.3 Usability testing of the new design

Following the experiences of Jacob Nielsen [3], who showed that testing a UI
even with a handful of people can detect the most important design flaws, we
performed a number of informal usability tests of the new UI. For each test
participant, we briefly introduced the Carrot2 clustering engine and explained

316 Stanis�law Osiński and Dawid Weiss

Introducing Usability Practices to OSS: The Insiders’ Experience

the goal of the tests, emphasizing that it is the UI that is being evaluated and
not the participant’s actions. Then, we asked to perform a number of search
tasks using the UI, e.g. query Google for ‘data mining’ and find results related to
the field of text mining. Throughout the tests, we did not help the participants
to complete their tasks, but only carefully observed their actions and took notes
of their interaction with the system.

The most important observation we made during the usability tests was that
for some specialised data sources the users did not know what type of queries
they could submit. To give such users some guidance, on the startup page we
included example queries for each search tab.

2.4 Implementation and evaluation

An important input for the implementation phase was the static HTML proto-
type of the UI. With a high-fidelity prototype covering all the details of the UI,
the implementation work could concentrate on providing an efficient technical
backbone for the already designed graphics and interaction schemes.

A rather imperfect (but valuable) test of the impact of the new design is
comparing the number of queries the public demonstration of Carrot2 handled
before and after the UI change. Before the first beta release of the improved
user interface, which happened in August 2006, the monthly number of queries
did not exceed 5 000. The query rate soared to over 13 000 in August 2006 and
it further increased in September, when the new release of Carrot2 was officially
announced. Although the numbers at the end of 2006 may still to some extent
be a result of the new release advertising, the popularity of Carrot2 on-line demo
seems to have stabilised at a much higher level. In addition to pure numbers,
we also received quite a few favourable comments from users who liked the
improved concepts and graphical finish of the new UI, which is a very important
motivating factor for future work on the project.

The whole process of user interface redesign took a total of about 200 work-
ing hours spent between March and September of 2006. The two largest work
items involved were building a prototype of the new UI and its actual imple-
mentation. The former took about 80 working hours spent between March and
June of 2006, while the latter required about 120 working hours in the period
between July and September of 2006. Compared to the total effort put into
Carrot2 since 2002, the UI-related work does not seem very costly.

3 The success factors of usability practices in Carrot2

While open source developers declare that usability has a high or very high
priority for them, they rarely apply it in practice with respect to their own
projects [4]. One reason for this is, as explained in [5], that most work on open
source projects is voluntary, developers work on the topics that interest them
and this may well not include features for novice users and usability. Below we

317

summarise the factors that we found important for a successful introduction of
usability practices to Carrot2.

Usability enthusiast among project developers. One of Carrot2’s developers,
in addition to being interested in web and text mining problems, is a usability
enthusiast. This made the voluntary work on user interface aspects both inter-
esting and rewarding. Moreover, by combining the role of a developer knowing
Carrot2’s internals and a usability expert, we could avoid, for example, design-
ing a UI that is impossible to implement due to technical reasons.

Usability work was part of a major system architecture change.The user
interface redesign was carried out as part of a major refactoring of the system
core. As a result of the change, we would have to make a large number of
changes to the implementation of the original UI. This gave us a good reason to
completely abandon the original UI and its implementation and create the new
one from scratch. Unfortunately, throwing away large parts of code is a situation
which many open source projects, especially those with public programming
interfaces (APIs), simply cannot afford.

Very simple user interface. The new Carrot2’s UI we designed contained
only two screens, which made it relatively easy to pay attention to every detail.
For projects with larger UIs or a large number of distributed contributors, it
may not be possible to carry out the usability work in a similar way.

4 Conclusions and future work

In this paper we described the process of introducing usability practices to
a small OS project called Carrot2. A number of favourable factors, such as
having a project member who shared the developer and usability expert roles,
contributed to the success of the UI improvement process. One lesson we learned
during our work on usability is that creating a high-quality user interface does
not necessarily have to cost much and can bring substantial benefits.

References

1. Relevantive: Linux Usability Study Report. On-line: http://www.linux-usability.de/
download/linux usability report en.pdf (2003)

2. Weiss, D.: Carrot2: Design of a Flexible and Efficient Web Information Retrieval
Framework. In: Proceedings of the Third International Atlantic Web Intelligence
Conference, AWIC-2005, �Lódź, Poland. Volume 3528 of Lecture Notes in Computer
Science., Springer (2005) 439–444

3. Nielsen, J.: Why You Only Need to Test With 5 Users. On-line: http://www.useit.
com/alertbox/20000319.html (2003)

4. Andreasen, M.S., Nielsen, H.V., Schroder, S.O., Stage, J.: Usability in Open Source
Software Development: Opinions and Practice. Information Technology and Con-
trol 35A(3) (2006) 303–312

5. Nichols, D.M., Twindale, M.B.: The Usability of Open Source Software. First
Monday, On-line: http://www.firstmonday.org/issues/issue8 1/nichols/ 8(1) (2003)

318 Stanis�law Osiński and Dawid Weiss

Perceptions on F/OSS Adoption

Bulent Ozel1, Uros Jovanovic2,, Beyza Oba3,, and Manon van Leeuwen4

1 Carnegie Mellon University, Pittsburgh, USA, bulento@cmu.edu

2 XLAB, Ljubljana, Slovenia, uros.jovanovic@xlab.si

3 Istanbul Bilgi University, Istanbul, Turkey, boba@bilgi.edu.tr

4 FUNDECYT, Badajoz, Spain, manon@fundecyt.es

Abstract. This paper aims to reveal results of a survey run by the tOSSad1

project. The majority of survey variables devised to capture perception of

public administrators around Europe regarding the importance they attach to

the factors such as F/OSS product quality, availability of support, expertise

and documentation, TCO, vendor lock-in, political influence, administrative

attitudes, productivity, and training costs, all of which intermingle with

financial, technical, legal, and personal issues. The analysis consist of

depiction of respondents' administration profile in terms of their F/OSS usage

and adoption, descriptive summary and analyses of factors mentioned above,

and statistical inferential analyses of survey items. Some valid statistical tests

are conducted to understand, to discuss and to see the extend and significance

of any F/OSS adoption generalizations for Europe based on the findings of this

particular survey.

1 Introduction

Survey respondents are selected from public bodies at middle to high level of

managerial positions. A prior knowledge or experience on F/OSS of administrators

has been an implicit factor in selecting them as respondents for the survey. However,

respondents' F/OSS knowledge depth, their experience level and type, software

acquisition policy of their administration, their administrative or personal attitude

towards F/OSS, etc have been disregarded at the phase of convenience sampling.

The survey covers 13 different countries around Europe with a slightly varying

number of respondents for each of them. hey are Ukraine, Turkey, Sweden, Spain,

Slovenia, Norway, Malta, Italy, Germany, Bulgaria, Austria, France, and

Netherlands. The number and regional diversity of our sampling allows us to run

some key descriptive and inferential statistical methods.

The analyses we have run consist of depiction of respondents' administration profile

in terms of their F/OSS usage and adoption, descriptive summary and analyses of

1 tOSSad is an EU project funded under FP6 IST program, www.tossad.org.

Bulent Ozel, Uros Jovanovic, Beyza Oba and Manon van Leeuwen

factors mentioned above, and statistical inferential analyses of survey items. Some

valid statistical tests are conducted to understand, to discuss and to see the extent and

significance of any F/OSS adoption generalizations for Europe based on the findings

of this particular survey. Most of the survey items are five-point Likert scaled [1, 2].

All figures, statistical summaries and tests are generated or devised manually using R

Project2, a very detailed analysis and discussion of this survey is available at the

tOSSad project Web portal.

The vast majority of the survey respondents are working in public organizations

which have either national or regional level activities. Although a knowledge and

acquaintance on F/OSS has been a loose precondition in our sampling, 9 of them, out

of 69 valid respondents, declared that they do not use any F/OSS product within their

organization or it is not clear to their knowledge. Along with F/OSS usage at any

level, we have asked whether our respondents are actively participating,

collaborating, or supporting any F/OSS related projects. It is seen that about %77 of

the survey respondents have taken part in F/OSS related projects. We have seen that

F/OSS project participation of public administrations parallels its adoption within

their organization which is an inherently expected picture.

With the first group of survey items we have attempted to understand the

importance of quality, support, and documentation in views of the respondents

towards F/OSS adoption at their public institutes. A summary of responses are given

on Figures 3, 4, and 5. Apparently, we can conclude that F/OSS product quality

alone has a direct impact on its adoption. World wide observations elsewhere[3] also

support that fact, for instance, increase of F/OSS usage on desktops entangles with

its progress in becoming more and more end user friendly. Importance attached to

2 http://www.r-project.org/

320

Perceptions on F/OSS Adoption

accessibility of expertise and support, availability of documentation have a rather

bell shape distributions which imply that they are not a significant factor as a F/OSS

adoption barrier. This picture might be an important input to the debate about

documentation and manuals necessary for F/OSS migration in Public

Administrations. Considering the fact that respondents of this survey have an

experience or knowledge on F/OSS and an the fact that a major group

deployed or have been involved in F/OSS deployment within their administration we

can say that our study rather supports the view that availability of books, manuals

and other documentation is not an important barrier factor against F/OSS adoption in

public bodies.

A group of survey items have been placed within the survey to examine effect of

built-in barriers such as political decisions, administrative and personal attitudes

towards F/OSS in general. This finding shows that along with technological, service,

and acquirement costs 'political influence' is also a determinant factor in F/OSS

deployment within public administrations. Furthermore, it is interesting to notice that

even though responses to other technological and financial factors we have examined

so far show a moderate impact on F/OSS adoption, political influence as a factor in

the issue has a relatively sharper implication of being a barrier.

Respondents are asked to rate first their attitudes then attitude of their

administration about F/OSS. We have seen that the positive personal attitude of the

respondents migrate to relatively more negative levels when they are asked to rate

general attitude of their administration about F/OSS. We can interpret about this

discrepancy in several ways. The first explanation might drive upon the fact that

F/OSS advocacy or acceptance is rather more common at personal level than at

institutional level. In fact, diffusion of innovations which is theorized and formalized

by Everett Rogers[4] supports the observation of our survey which is in line with that

fact. When we assume that F/OSS as a whole is an innovative technology, then

according to diffusion of innovations theory educated individuals with multiple info

sources have greater propensity to take risk in evaluating, trying, and adopting new

technologies. A second explanation of such a discrepancy might partially stem from

the unavoidable bias that might occur in a survey study [2]. It is highly probable that

we have been responded by individuals with relatively more affinities to F/OSS, that

321

Bulent Ozel, Uros Jovanovic, Beyza Oba and Manon van Leeuwen

is, by those having higher willingness and ability to adopt F/OSS depending on their

awareness and interest.

The respondents are asked whether they have faced any problem while

introducing F/OSS at their administration. Those with negative answers are further

asked to explain the reason(s) of their bad experience(s). Textual analysis of their

answers reveals four basic sources of bad experience at the introduction phase of

F/OSS deployment in public administrations. The first one, the most common as

well, is the resistance to change. The second one is the lack of visions on F/OSS

business model. Third one is its unsatisfactory compatibility with proprietary file

formats. The last reported source of bad experience is lack of satisfactory GUI

desktop distributions.

Having processed responses to the survey in the form of raw frequency counts, we

have applied Chi-Square nonparametric significance tests to see whether or not there

are any significant relationships in between having signed a F/OSS provision

contract and F/OSS adoption factors/issues such as overall F/OSS introduction

experience, political influence, administrative attitude, employee training,

affordability and TCO. We have observed that public officers who involve in legal

F/OSS provision process face significantly more negative attitudes from their

administration. The summary of that test is given in Table 1.

Table 1: F/OSS provision contracts and administrative attitude

We have combined survey items on access to expertise, support and

documentation to create a single averaged 'accessibility' latent item. Figure 6 (a)

shows that new combined response displays a normal like distribution with slightly

positive kurtosis (std = 0.81) around the mean (_ = 3.33). Then, we have grouped

averaged responses to determine any opinion and experience differences in between

group of respondents who have signed a F/OSS provision contract and those who

have not. The normality check for each test group is performed using the normal Q-

Q plots. Next, we have examined whether we can infer any significant relation in

between the experience or opinion about availability of expertise, support,

documentation on F/OSS and having signed a contract on any F/OSS deployment at

322

Perceptions on F/OSS Adoption

public administrations. We have used a two-sided Welch Two Sample T-test[5]. We

have observed a significant correlation (p-value = 0.00026). In order to examine the

direction of relation we have observed response distribution of each group. It shows

that those who have signed F/OSS in order to install or acquire additional F/OSS

products acknowledge the easy access to expertise, support, and documentation

which is necessary for organizational level F/OSS adoption.

Fig. 6: Accessibility and contract relation

Following the same pattern given above we have generated another latent item

'attitude' which combines items on personal attitude and administrative attitude

about F/OSS. Then, again, we have split the respondents according whether they

have signed F/OSS provision contract or they have not. The t-test suggests that there

is a statistically significant relationship (p-value = 0.006) in between developing

general attitudes about F/OSS adoption and the experience of having signed F/OSS

provision at public organizations. Our further analysis shows that formed attitudes

are based on the particular experience of respondents. Those who have signed a

contract while introducing F/OSS at their administration has apparently declare

existence of more negative attitudes about F/OSS.

We finally have examined whether there is a correlation in between general

F/OSS attitudes and availability of F/OSS expertise, service, and documentation. We

have run nonparametric Spearman's rank correlation test[6, 7]. Our test specifically

checks the availability of a positive correlation in between having easy access to

F/OSS expertise, customer service, and documentation and developing a positive

attitude towards F/OSS introduction. Expectedly, an estimated p = 0.003 « _ = 0.05

indicates that there is a statistically significant positive relation but the correlation is

323

Bulent Ozel, Uros Jovanovic, Beyza Oba and Manon van Leeuwen324

far from perfect. This relatively low correlation rho = 0.32 implies that

administrative F/OSS attitude is not solely based on the service and it suggests that

other factors such as political influence, resistance to change, and initial financial

barriers should be considered.

3 Conclusions

The conclusions we derive hereby are tentative answers to those particular

relationships we have investigated but it indicates that the relationships found in our

survey can be expected to exist in at larger level in Europe. Yet this particular study

reveals the observation that decision takers' and practitioners' perceptions about

F/OSS alone do matter towards a larger F/OSS adoption at Public Organizations.

However, this study urges the necessity of a larger geographical scope and higher

survey responses in number with evenly distributed samplings to derive more

statistically confident observations. We hope that this study will lead further detailed

and specific surveys about perceptional issues at F/OSS technology adoption.

References

[1] Likert, R. (1932). "A Technique for the Measurement of Attitudes" Archives of

Psychology 140, 55.

[2] Ross, K. C. (1996). Air University Sampling and Surveying Handbook. University Press of

the Pacific.

[3] Ghosh, R. et al. (2002) “Free/Libre and Open Source Software: Survey and Study. Part 2B:

Open Source Software in the Public Sector”

[4] Rogers, E. M. (2003). Diffusion of Innovation, Fifth Edition. New York, NY: Free Press.

[6] Best, D. J. and Roberts, D. E. (1975). Algorithm AS 89: The Upper Tail Probabilities of

Spearman's rho. Applied Statistics, 24, 377-379.

[7] Hollander, M. and Wolfe, D. A. (1973). Nonparametric statistical inference. New York:

John Wiley & Sons. Pages 185-194.

Open Source Software and Open Data

Standards as a form of Technology

Adoption: a Case Study

Bruno Rossi, Barbara Russo, and Giancarlo Succi

Free University of Bolzano-Bozen, Faculty of Computer Science,

Domenikanerplatz 3, 39100 Bolzano-Bozen, Italy

{bruno.rossi,barbara.russo,giancarlo.succi}@unibz.it

WWW home page: http://www.case.unibz.it

Abstract. The process of technology adoption has been studied for long time

to give instruments to evaluate the best strategies to ease the introduction of

technology. While the main research on Open Source Software focuses mainly

on the development process, team collaboration and programmers'

motivations, very few studies consider Open Source Software in this context.

In this paper, we provide an overview of literature on technology adoption that

can be useful to relate the concepts. We then provide a case study with

historical data about file generation and usage across time to evaluate the

adoption of Open Source Software and Open Data Standards in the specific

case provided.

Keywords: Open Source Software; Data Standards; Technology Adoption.

1 Introduction

Open Source Software (OSS) has acquired recently a growing popularity in the

software market. The free availability of source code and the freedom to modify and

redistribute the source code are the main characteristics that are at the basis of its

crescent popularity. Particularly in the governmental setting, these characteristics

have increased the interest towards OSS. The Interoperable Delivery of European e-

Government Services to public Administrations, Businesses and Citizens

organisation (IDABC), identifies five aspects in this context, that can be of interest

for organisations willing to adopt OSS [10]:

• political aspects, concepts related to governmental tasks, goals and

responsibilities like freedom and equality, digital endurance, digital heritage

and stimulation of innovation;

• economical aspects, related to cost reduction and market health;

• social aspects, in particular for education and team work support;

Bruno Rossi, Barbara Russo, and Giancarlo Succi326

• managerial and/or technical aspects, in particular quality of the products in

terms of stability and reliability, transparence, support and security;

• legal aspects, related to licensing and liability.

All these different point of views make the adoption of OSS inside organisations a

very appealing option.

Furthermore, a concept sometimes overlooked, but frequently associated to OSS is

the one of Open Data Standards (ODS). ODS are a subcategory of data standards.

Data standards provide a standardised way to store different typologies of data, and

emerge generally in two different ways, as output of an evolution of the market (so

called de facto standards) or after being recognised by a standardisation committee

(de jure standards). The distinction that is of our interest is between Open and

Proprietary data standards. In this sense, many different definitions of ODS exist, we

would like to propose the definition given by the Danish Board of Technology in

2002 [4]:

• An open standard is accessible to everyone free of charge (i.e. there is no

discrimination between users, and no payment or other considerations are

required as a condition of use of the standard);

• An open standard of necessity remains accessible and free of charge (i.e.

owners renounce their options, if indeed such exist, to limit access to the

standard at a later date, for example, by committing themselves to openness

during the remainder of a possible patent's life);

• An open standard is accessible free of charge and documented in all its

details (i.e. all aspects of the standard are transparent and documented, and

both access to and use of the documentation is free);

As can be noted, the importance of open standards lies, in particular, in the

avoidance of the commitment to a single supplier. In this paper, we review the

adoption process of Open Source Software (OSS) and Open Data Standards (ODS)

in an empirical case, by analysing the file generation and usage process in a single

Public Administration. In this early work, we start to insert the empirical case studied

in the context of technology adoption.

We first introduce two main concepts that have been discussed extensively in

literature: technology adoption and lock-in. While the review we provide is not

strictly related to OSS, it is necessary for the overview of the next section about

technology adoption studies related to OSS. In the final part, we provide the details

of the case study and the main results obtained.

2 Technology adoption

Technology adoption, diffusion and acceptance research bases its foundation on the

early work of Everitt Rogers, in the book titled Diffusion of Innovations [11]. Rogers

interest lies in studying the diffusion process that characterises technology adoption.

In his seminal work, technology adopters are categorised according to the phase in

which they make the adoption decision. The main distinction is among innovators,

Open Source Software and Open Data Standards as a form of Technology

Adoption: a Case Study

327

early adopters, early majority, late majority and laggards. In particular, the author

models the diffusion as an S-shaped curve characterised by an initial adoption speed

and a later growth rate. The claim is that different technologies will lead to different

adoption patterns.

Fichman & Kemerer [8] report two critical factors that influence the technology

assimilation process: knowledge barriers and increasing returns.

The first effect relates to the effort necessary to acquire the necessary knowledge and

skills to properly adopt a certain technology. This effect leads to what are known as

knowledge barriers [2,8].

The second phenomenon, reports that the adoption of certain technologies is subject

not only to supply-side benefits due to economies of scale [12], but also to a

demand-side effect called increasing returns effect [1]. The effect leads to an

increase of the utility in adoption for each successive adopter, based on the number

of previous adopters. Arthur goes further in this analysis, claiming that economy can

become locked-in to a technological path that is not necessarily efficient, not

possible to predict from usual knowledge of supply and demand functions, and not

easy to change by standard tax or subsidy policies [1]. In this sense, it may not be

possible to easily switch from a certain technology once a certain critical level of

adoption has been reached.

Considering OSS, there are not many studies that evaluate OSS from this point of

view. An interesting overview is given in [5], where following the “context for

change methodology” defined in [6], factors that lead adoption process are

categorised in technological, organisational and environmental.

Glynn et al. [9] developed a framework for assimilation based on four categories:

external environment, organisational context, technological context and individual

factors. The framework is then applied to a large-scale survey.

Bitzer and Schroder [3], analyse the innovation performance of Proprietary and Open

Source Software, showing the results of the competition between the two software

typologies in different market settings. The focus is more on innovation that on the

adoption process itself.

Economides [7] studies the incentives that lead to platform innovation. A case

study between Linux and Windows is provided.

3 A case study of OSS migration

To provide some real data about a concrete case of OSS and ODS adoption

process, we consider an experimentation that took place during an experimental

migration from Microsoft Office to OpenOffice.org in one medium-size European

Public Administration. The users involved were 100. Data have been collected by

means of the PRO Metrics (PROM) software [13], software that permits to collect

metrics about software usage, and FLEA (FiLe Extension Analyzer), software that

allows collecting information about the data standards available on the target system.

Bruno Rossi, Barbara Russo, and Giancarlo Succi328

Operations performed were the installation of OpenOffice.org in parallel with the

available version of Microsoft Office, installation of the PROM agent, scan of the

file-system with FLEA, training of users and support.

4 Main results

We report the main result from the analysis of data standards and software usage.

In table 1, we show the total number of all the data standards collected at the

beginning of the experimentation, divided per category.

Table 1.

As we can see, some data standards are largely predominant in their category,

like DOC (Microsoft Word) documents, or XLS documents (Microsoft Excel). The

former accounts for 91,21% of the files in the category, while the latter 99,92%. Also

the ZIP format is largely dominant, with a percentage of 98,16%. If we use the

Shapiro & Varian [12] categorisation of switching costs and consider the information

and databases category, we can evaluate that a complete migration and adoption of

the platform can be costly, due to the effort necessary required by the conversion of a

large amount of documents.

We further studied the evolution of file generation across time, in figure 1 we

show the generation of DOC and XLS documents, from the data collected the more

representative for proprietary formats.

Text Documents Graphic Format Database

DOC 310648BMP 6908 DB 3361

DVI 0 GIF 36259DBF 6865

PDF 12518JPEG 83143MDA 10

PS 656 PNG 2173 MDB 2170

RTF 6185 SVG 0 Music

SXW 160 TGA 0 MP3 967

TEX 1 TIFF 11061RA/RM/RAM 4

TXT 10422 Drawing Movie

Spreadsheets DWG 36051AVI 265

SXC 47 DXF 411 MOV 227

XLS 60267SXD 9 MPEG 77

Presentations Web SWF 232

PPT 2541 CSS 1370

SXI 27 HTML 16057

Compression XHTML 0

ACE 1 Data Exchange

ARJ 37 CSV 64

GZ 19 DTD 6

RAR 43 SDXF 0

TAR 0 XML 483

ZIP 5338

Open Source Software and Open Data Standards as a form of Technology

Adoption: a Case Study

329

Fig. 1. Evolution of DOC and XLS files created by users during years, on x-axis time in days,

on y-axis number of files generated

While the figures are given for representational purposes, we may note an

interesting phenomenon that emerges by analysing data of many data standards. The

creation process of documents is very consistent once a critical level of adoption has

been reached. Once a large set of base documents has been constituted, the creation

process somehow fades, as the activity of users will be constituted in small part also

by the modification of already available documents.

5 Conclusions

While OSS research community is concerned mostly with studying the team and

collaboration dynamics of the development process, OSS and ODS have still to be

well studied as a form technological innovation. We overviewed some of the

technology adoption literature that may be useful in this sense and some recent

works that manage to insert OSS in this context. We further considered ODS as an

important and often overlooked instrument that has to be associated to OSS when

considering its adoption. We studied as a case study, the evolution of a migration to

OSS in the office automation field, considering data standards as a sign of the

presence of possible lock-in phenomena. The data analysed show the commitment of

the organisation under study to proprietary data formats, in particular in the office

automation category.

Acknowledgements

This work has been partially supported by COSPA (Consortium for Open Source

Software in the Public Administration), EU IST FP6 project nr. 2002-2164.

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

xls

doc

Bruno Rossi, Barbara Russo, and Giancarlo Succi330

References

[1] Arthur, W.B. (1989). Competing Technologies, Increasing returns, and lock-in by

historical events. Economic Journal, 99, 116-131.

[2] Attewell, P. (1992). Technology Diffusion and Organizational Learning: The Case of

Business Computing. Organization Science. 3(1), 1-19.

[3] Bitzer, J. and P. J. H. Schroder, (2003). Competition and Innovation in a Technology

Setting Software Duopoly. DIW Discussion Paper No. 363.

[4] Danish Board of Technology. (2002). Definition of open standards. Retrieved, 14th January

2007, from http://www.oio.dk/files/040622_Definition_of_open_standards.pdf

[5] Dedrick, J., West, J., (2004). An Exploratory Study into Open Source Platform Adoption,

HICSS, p. 80265b, Proceedings of the 37th Annual Hawaii International Conference on

System Sciences (HICSS'04) - Track 8, 2004.

[6] Depietro, Rocco, Edith Wiarda and Mitschell Fleischer, (1990). The Context for Change:

Organization, Technology and Environment, in Tornatzky, Louis G. and Mitchell

Fleischer, The processes of technological innovation. Lexington, Mass.: Lexington Books,

1990, pp. 151-175.

[7] Economides, N., Katsamakas, E. (2006). Linux vs. Windows: A comparison of application

and platform innovation incentives for open source and proprietary software platforms, in

Juergen Bitzer and Philipp J.H. Schroeder (eds.) The Economics of Open Source Software

Development, Elsevier Publishers, 2006

[8] Fichman, R. G., & Kemerer, C. F. (1997). The Assimilation of Software Process

Innovations: An Organizational Learning Perspective. Management Science. 43(10), 1345-

1363.

[9] Glynn, G, Fitzgerald, B and Exton, C. (2005) Commercial adoption of open source

software: an empirical study, Proceedings of International Conference on Empirical

Software Engineering, Noosa Heads, Australia, Nov 2005.

[10] IDABC, The Many Aspects of Open Source. Retrieved, 14th January 2007, from

http://ec.europa.eu/idabc/en/document/1744

[11] Rogers, E. (1995). Diffusion of Innovations. N.Y.: The Free Press.

[12] Shapiro, C., & Varian H.R. (1999). Information Rules: A Strategic Guide to the Network

Economy. Harvard Business School Press.

[13] Sillitti A., Janes A., Succi G., Vernazza T. (2003). Collecting, Integrating and Analyzing

Software Metrics and Personal Software Process Data, in proceedings of EUROMICRO

2003, Belek-Antalya, Turkey, 1 – 6 September 2003

Free/Open Source Software Adoption,

Public Policies and Development Indicators:

An International Comparison

Harald Schmidbauer1, Mehmet Gençer2, and Vehbi Sinan Tunalıo_lu2

1 Istanbul Bilgi Üniversity, Department of International Finance,

harald@bilgi.edu.tr

2 Istanbul Bilgi Üniversity, Department of Computer Science,

{mgencer,vst}@cs.bilgi.edu.tr

Abstract. Despite the growing body of research on the inner workings of

FOSS development, there are few studies on its relation with broader

developments in society. In this study we have attempted a preliminary

investigation of (1) how FOSS prevalence is related to economic and human

development indicators of countries, (2) whether public policies regarding

FOSS emerge in a consistent relation with these indicators in several clusters

of countries constructed from the United Nation's human development index,

and (3) the relation of software piracy to development indicators. Our results

point to relative significance of non-economic factors in FOSS adoption, lack

of consistent policies among public agencies, and irrelevance of non-economic

factors on software piracy. In addition, the study demonstrates the possibility

of developing FOSS indices for larger scale diagnosis and strategizing.

1 Introduction

The development of policies towards Free and Open Source Software (FOSS),

whether public or private, requires a better understanding of how FOSS adoption

interacts with various aspects of society. While the growing body of research on

FOSS focuses on community, governance, and coordination of production activity

[6,4], or relations to wider software industry [3,11], studies on relation of FOSS with

broader developments in society and factors which affect its adoption are seldom

[1,2].

In this study we have attempted a preliminary investigation of these relations. We

first address the following empirical questions: (1) how FOSS adoption is related to

economic and human development indicators of countries, and (2) whether public

policies regarding FOSS emerge in a consistent relation with these indicators in

several clusters of countries. In addition, (3) relation of software piracy to

development indicators is considered in order to highlight deficiencies in policies

involving proprietary software. Building on our results and research elsewhere, we

then discuss policy choices accounting for economic reality.

Corresponding methods for our investigation are as follows:

1. For an international comparison of FOSS adoption, we particularly tried to assess

the variability in the occurrence of FOSS across countries on the basis of several

Harald Schmidbauer, Mehmet Gençer, and Vehbi Sinan Tunalıo_lu332

variables related to human development, economics and transparency, and the

Internet infrastructure. Adoption of FOSS in a country is operationalized as the

number of hits in the country-specific Google search of the keyword “open

source”. This variable will obviously be correlated with the size of a country in

terms of its population.

2. To assess the relation of public policies towards using FOSS with development

indicators, we have attempted to relate it to a classification of countries we have

developed on the basis of cluster analysis. FOSS usage in public agencies is

operationalized through the server software type used in several public bodies in

countries.

3. Deficiencies in policies involving proprietary software is examined through an

analysis of piracy data for countries in relation to development indicators. For

this purpose piracy rate data published by BSA was checked for its correlation to

human development, economics and transparency indicators.

Our results point to (1) relative significance of non-economic factors in FOSS

adoption, (2) lack of consistent policies among public agencies towards FOSS,

and (3) strong dominance of economic factors and irrelevance of non-economic

factors on software piracy. The finding that FOSS adoption is correlated to human

development index, which is defined as “a process of enlarging people's choices”

[10], is supportive of the claims that public promotion of FOSS through information

campaigns can indeed be effective [1]. Furthermore, we argue that given the

economic conditions in relatively less developed countries, public intervention in the

software market through promoting open source is not only favorable [2], but

possibly inevitable if sensible conditions in software market (such as reduced piracy)

are desired. On the other hand lack of consistent public policies indicates lack of

awareness among policy makers towards the potential of open source software, in

effect disengaging large communities from enjoying its benefits.

The following three sections lay out quantitative data, models and results for

relating development indices to FOSS adoption, public policies towards FOSS and

software piracy, respectively. A discussion of results in section 5 attempts to

interpret these results, followed by conclusions.

2 FOSS Adoption

Our investigation of the FOSS adoption is based on regression models with Google

counts of “open source” as dependent variable and a selection of independent

variables from the following list: population, gross domestic product (GDP), human

development, index (hdi), transparency index (tri), Internet usage, relative Internet

usage, number of Internet hosts in the country.

In order to account for the impact of economic reality, we use GDP per capita,

the transparency index and Internet usage as proxies to the adoption of FOSS. We

also relate FOSS adoption to human development. We choose the human

FOSS Adoption, Policies : An International Comparison 333

development index (despite ongoing debates, see, for example [5,8]), which is

published by the United Nations Development Program (UNDP) [10].

A full regression model, with all variables included as regressors, and fitted to

116 cases (countries) for which the entire data set was available, has an explanatory

power (i.e., R
2
) of 67%, but leaves many variables insignificant. Using stepwise

procedures to fit a reduced model with fewer, and significant variables, leads to the

following model, fitted to 129 cases (The numbers in parenthesis are the t values of

the estimates):

This model also has an R
2

of about 67%, while retaining only significant

regressors. A comparison of the regressors in this model with the list of variables in

the table above reveals that Internet usage, relative Internet usage, the transparency

index, and GDP per capita are not significant in explaining the variability of Google

counts of “open source” across countries.

It may come as a surprise that GDP per capita has so little explanatory power on

the adoption of FOSS compared to hdi. To reassess this result, another regression

model, with GDP per capita substituted for hdi, can be fitted to the data set. The

explanatory power of such a model is substantially smaller than the model cited

above; its R
2

is reduced to 61%. We can thus conclude that economic well-being can

indeed explain a certain share of variability contained in the dependent variable, but

the explanatory power is further enhanced by considering non-economic factors.

This highlights the importance of non-economic factors in accounting for the

prevalence of FOSS.

3 Public Policies

Is there a pattern in the server software variety used by governmental

organizations across countries? To provide an answer to this question, we have

looked into the server software choice (open source vs proprietary) in several

prominent public bodies of countries; these are the bureau of statistics, the central

bank, the finance regulator, the foreign ministry, and the postal services. In addition

we have clustered countries with respect to the variables discussed earlier. Finally,

we have tested the null hypothesis that cluster membership and the server software

variety are independent.

A cluster number of 5 was found optimal to account for differences between the

countries. The five clusters (based on a k-means cluster analysis with standardized

variables) can be summarized as follows:

Harald Schmidbauer, Mehmet Gençer, and Vehbi Sinan Tunalıo_lu334

• Cluster 1: Low relative Internet usage, mid-range hdi; mid-range open-source

count reflecting the mid-range population of the country.

• Cluster 2: Low relative Internet usage, mid-range hdi; low open-source count

reflecting the smaller size of the country as compared to Cluster 1.

• Cluster 3: Low relative Internet usage, mid-range hdi; higher open-source count

reflecting the larger size of the country as compared to Cluster 1.

• Cluster 4: Highest relative Internet usage, highest hdi; very high open-source

count, almost irrespective of the population size.

• Cluster 5: Very low relative Internet usage, very low hdi.

Figure 1 shows a classification tree. It illustrates how the cluster membership of a

country is determined: if the condition on a fork is fulfilled, the left branch applies,

and vice versa.

Fig. 1: Classification tree for clusters of countries

Table 1 shows the server software counts for public bodies in different clusters,

with countries for which no data were available omitted. Since the main difference

between Clusters 1, 2 and 3 is population size, it is justified to collapse them into a

single cluster and increase the power of the _
2

test. The p-value of the null

hypothesis that “server software choice and cluster membership is independent”, as

shown in the last row of the mentioned table, shows that it is rejected only in the case

of the bureau of statistics.

Table 1:

ce

ntral

burea

u of

finan

ce

fore

ign

post

al

ba

nk

statis

tics

regul

ator

mini

stry

serv

ices

clu

ster
p f p f f p

1,

2, 3 1 9

1

7

1

2

1

6

1

1
9

1

4
2

1

8

1

3

1

1

1

6

1

4 0

5 1 3 2 3 3 2

p-

value

0.

72
0.04 0.63 0.52

0.6

4

FOSS Adoption, Policies : An International Comparison 335

A related question is: Is there evidence that the variety of server software used in

one organization of a country is associated with that used in another one? We found

no case in which the hypothesis of independence of server software variety in

different organizations could be rejected. In this sense, we found no evidence of a

consistent server software policy pattern within countries.

4 Software Piracy

In what way is software piracy connected with the variables listed above, and with

FOSS prevalence in particular? Insight into these matters may have consequences

concerning policies to reduce software piracy supported by a policy to promote

FOSS. The most comprehensive data for software piracy across countries comes

from Business Software Alliance (BSA), despite debates regarding its reliability.

Fitting a regression model with privacy as dependent variable and independent

variables logged GDP per capita and transparency index to the 66 available cases

leads to

This model has an R
2

of 0.787. The fact that the human development index

shows no significance reveals dominance of economic factors on software piracy.

Another far-reaching aspect with regard to policy finding may be the correlation

between piracy and FOSS adoption (operationalized as Google counts of “open

source”) across countries. This correlation is a moderately distinct _0.44. This

correlation may be spurious, however, since both variables are closely linked to

GDP. Indeed, the partial correlation between piracy and FOSS adoption, controlling

for GDP per capita, turns out to be close to 0. A preliminary conclusion is that

promoting FOSS adoption, without accompanying measures, need not be a cure

against software piracy.

5 Discussion

As explained in the previous section, we found no evidence that governments

pursue a server policy. Based on macro-economic models, Comino and Manenti

have recently pointed out that regarding open source software “there may be a

substantial mass of uniformed consumers, leading to market failures that may justify

government intervention” [1]. Results of our empirical comparison also directs in

similar ways that non-economic factors are an important determinant in harvesting of

potential advantages FOSS provides. But more importantly it highlights that

development of “free and open source indices” of better precision can be very

empowering for all parties in the game as they as their interpretation can help in

policy making.

Harald Schmidbauer, Mehmet Gençer, and Vehbi Sinan Tunalıo_lu336

6 Conclusions

In an effort to assess the determinants of the prevalence of Free and Open Source

Software (FOSS), we have tried to account for the variability in Google counts of the

keyword “open source” across countries worldwide using a regression model with

several regressors characterizing human development, the economic situation, and

Internet infrastructure of the countries considered. It turned out that the human

development index, population, and the number of Internet hosts are significant,

while Internet usage is not. A cluster analysis of the country data pointed at the

interplay of human development and FOSS prevalence in public agencies. We found

that the bureau of statistics is the only example among several prominent public

organizations of a country whose server software variety (free or proprietary) is

significantly related to the cluster membership of countries.

We conclude from our models that GDP per capita is less important in

accounting for prevalence of FOSS. It is rather information campaigns and

educational incentives that may be conducive to widespread use of FOSS.We

mentioned earlier that FOSS introduced its own mode of production, in which human

capital plays the most important role. The study by Streeten [12] emphasizes that

“human beings are both ends in themselves and means of production”. With respect

to that, we suggest that FOSS be further discussed under the aspect of its

contribution to human development.

References
1 Comino S, Manenti FM (2005) Government Policies Supporting Open Source Software for the

Mass Market. Review of Industrial Organization 26(2):217-240.

2 Dalle JM, Jullien N (2003) Libre software: turning fads into institutions? Research Policy

32(1):1-11.

3 Garud R, Kumaraswamy A. (1993) Changing competitive dynamics in network industries: an

exploration of Sun Microsystems' open systems strategy. Strategic Management Journal

14(5):351-369.

4 Hippel Ev, Krogh Gv (2003) Open source software and the private-collective innovation model:

Issues for organization science. Organization Science 14(2):209-223.

5 Kelley AC (1991) The Human Development Index: ``Handle with Care''. Population and

Development Review 17(2):315-324.

6 Kogut B, Metiu A (2001) Open source software development and distributed innovation.

Oxford Review of Economic Policy 17(2):248-264.

7 Srinivasan TN (1994) Human Development: A New Paradigm or Reinvention of the Wheel?

The American Economic Review 84(2):238-243.

8 Streeten P (1994) Human Development: Means and Ends. The American Economic Review

84(2):232-237.

9 Transparency International (2004) Annual Report 2004 - The Coalition Against Corruption.

Transparency International

10 UNDP (1990) Human Development Report 1990. Oxford University Press, New York, Oxford.

11 West J (2003) How open is open enough: melding proprietary and open source platform

strategies. Research Policy 32(7):1259-1285.

Levels of Formality in FOSS Communities

Andrew Schofield1, and Professor Grahame S. Cooper2

1 Salford Business School, University of Salford, Salford, M5 4WT, UK,

a.j.schofield@pgt.salford.ac.uk,

WWW Home page: http://www.postgrad.isipartnership.net/~aschofield/

2 School of Computing, Science, and Engineering, University of Salford,

Salford, M5 4WT, UK, g.s.cooper@salford.ac.uk,

WWW Home page:

http://www.cse.salford.ac.uk/profiles/profile.php?profile=G.S.Cooper

Abstract. One of the aspects of Free and Open Source Software (FOSS) which

may act as a significant deterrent to its adoption, is the method used to

collaboratively develop the software and provide support through the use of

communities. It is not until this method is examined more closely that its many

advantages can be realised. The method can, however, seem very disorganised

especially when compared with traditional proprietary development styles. A

key difference between these two development approaches lies in the

management of projects, and perhaps as a consequence, in the level of

formality in the community environment. This paper presents the results of

empirical survey research investigating FOSS community participants' views

on the level of formality in FOSS, and the way in which this affects both

development and support provision activities. The paper then concludes by

analysing what can be learnt from the participant’s views.

1 Introduction

Despite the many success stories and research studies demonstrating the advantages

and capabilities of FOSS, the stereotypical view of ideas and code being thrown

around within disorganised communities, still has the potential to deter individuals

and organisations from using or developing it. In actual fact, these communities are

arguably the most important element of FOSS. Much research has been done on

FOSS communities [1-4, 6-8, 10] demonstrating that there is a general framework

that communities follow [8, 9]. However, differences in working methods and styles

of approaches become very apparent when comparing FOSS communities. These are

also seen as major differences between FOSS and proprietary closed-source

development [5, 7].

This paper contributes to the knowledge in this area by presenting the results of

empirical survey based research, which collected FOSS community participants'

experiences and views on the level of formality within FOSS communities, and its

Andrew Schofield and Grahame S. Cooper338

subsequent effect. As these communities are often quite complex, the research was

split into two sections, one focusing on the support aspects of the communities, and

the other focusing on development activities.

2 Research Method

As its primary data collection tool, the research used an on-line survey consisting of

open questions designed to collect qualitative data. The sample set for the research

consisted of Linux, BSD, and Open Source user and/or interest groups, hereafter

referred to as Linux User Groups or LUGs. The research targeted LUGs within the

UK, US, Italy, Germany and Canada, as these were the countries with the highest

number of LUGs. In total 392 responses were received from the various countries,

48% of which were from developers. It must be pointed out that LUGs cannot be

considered as absolutely representative of FOSS communities. However, the survey

was particularly designed to collect members' perspectives of FOSS communities in

general, and LUG members are also likely to participate in other communities as

well. Additionally it should be noted that the sample consists of FOSS community

members, and although some may have proprietary software experience, it should be

recognized that a bias towards FOSS software will exist. The paper's purpose,

however, is not to specifically compare the formality of FOSS and proprietary

approaches, but rather to examine the effect of formality on FOSS communities.

3 Research Findings

3.1 FOSS Community Formality

The first section of the survey dealt with the general concept of formality in FOSS

communities. Participants were asked their opinions about the level of formality in

the working practices of FOSS communities, when compared to the proprietary

software approach. The responses, grouped by topic, are summarised below:

• Project/Community Dependant: A significant number of respondents wrote

that the formality of a project or a community is very specific, and that a

generalised statement that describes all of them is not possible.

• A Mixture of Elements: Respondents pointed out that communities can be

viewed as informal in terms of them being open for anyone to participate,

however, in terms of the management of the final product, FOSS communities

could be seen as very formal. Others pointed out that how formal a community is

depends on how it is led, and that the formality of the methods used in a

community project are needed only for project management purposes

Levels of Formality in FOSS Communities 339

• Informal Interaction: Many respondents wrote that the interactivity side of

FOSS communities is fairly informal (i.e. discussion forums, etc). Others added

that formality depends on how well one knows the project leader, and

presumably the other community members.

• Depends on the Projects' Complexity: Many respondents stated that the

formality of a community depends on the project's size, scope, complexity, and

maturity. Consequently, a large project requires a high degree of formality to

keeps things under control. However, for each of these large projects, there are

many smaller sub-projects that are far less formal.

• Theory Versus Practice: Many respondents wrote that in both the case of FOSS

and proprietary software, formal rules and guidelines may be set down, but are

seldom followed. Additionally, community based and company based software

development often operate with the same rules, but it is how these rules are

enforced that differentiates the two types.

• The Freedom of FOSS: Some respondents stated that FOSS is more informal

because of its underlying ethos. They stated that those involved in FOSS do not

want to be restricted to a formal and controlled system.

3.2 Effects of Formality on FOSS Support Activities

Survey participants were then asked to comment on how the level of formality in

FOSS communities affects support provision.

• A Deterrent to the use of FOSS: Respondents posted that the unwritten rules

and etiquette used in FOSS forums could make people feel unwelcome. Many

also felt that frequent arrogance among knowledgeable community participants

leads to ‘newbies’ being unwelcome.

• Project Dependant: Some wrote that the effect would depend on the size of the

project. Large projects having good support because of the number of people

involved, and smaller projects having poor support as the fewer members will

have less time free to provide support.

• Formality Improves Support: Several respondents observed that communities

with strict and formal working practices have very good support, particularly

documentation. Likewise, those less formal communities were often found to be

lacking in support.

• Ease of Using Forums: Other respondents felt that the informal nature of FOSS

community forums facilitates interaction. Contrary to the comments left above, it

was suggested that the equality and lack of a hierarchy, would make members

willing to help one another. The importance of interplay between experts and

‘newbies’ was also emphasised as a positive factor.

• Direct Contact with Programmer(s): Several participants wrote that FOSS

communities allow direct communication to the actual writer of the code. This

clearly has advantages as no-one could provide better support, and the questions

asked might also stimulate ideas on further code development.

Andrew Schofield and Grahame S. Cooper340

• Enjoyment of Support Forums: Comments were left stating that the informal

nature of support forums is enjoyable, but that anyone requesting support in an

inappropriate manner is likely to receive an unhelpful reply.

3.3 Effects of Formality on FOSS Development Activities

Finally, respondents were asked to comment on how the level of formality affects

software development within FOSS communities.

• The Big Picture: Without some control or steering group, respondents believed

that programmers would do what they personally think is best, which may not be

what is best for the overall project.

• Very Informal Management: Several respondents stated that projects with an

extremely relaxed approach lead to either unusable products or a forking of the

projects, leading to several very similar products.

• Natural Formality: Some respondents wrote of projects adapting and finding

their own level of formality. One respondent referred to this as a community's

“natural formality”.

• Development Feedback: Several survey respondents pointed out that the

detection of bugs, and even design ideas can originate from questions asked on a

support forum, and how this is supported by an informal environment.

• Higher Formality for Larger Projects: Many respondents stated that they felt

larger projects required a more formal structure to manage all the code

submissions, while others felt that this was not a problem with the use of

versioning software.

• Openness in Development: It was pointed out that the open approach can lead

to arguments and disagreements, especially in very informal and undisciplined

projects.

• Informal Development Rules: Although most respondents felt that at least some

formal structure was required, some felt that the lack of rules was a good thing,

allowing FOSS development to release leading edge software quicker. This was

also facilitated by the unrestricted communication and the lack of red tape.

• Informality Breeds Innovation: Many respondents thought that the freedom of

an informal environment helps developers to be dynamic, innovative, and have

the freedom to experiment, and that a formal environment stifles creativity.

• More control needed: Although it was a minority view, some felt more control

or planning was needed. They felt there was too much discussion about software

functionality and project direction, and that FOSS communities often have

problems related to clashing egos and methods.

• Deterrents to Involvements: A disadvantage pointed out was that informal

environments could deter those who have previously worked in a more structured

environment. Others however, felt that it would encourage participation

Levels of Formality in FOSS Communities 341

• Communication Leads to Results: Several wrote that FOSS communities

facilitate communication and that the informal approach makes it easier for

developers to work together.

• Formal Practices at the Right Time: Some respondents felt that FOSS

development should adopt the most suitable level of formality for the phase of

the development. As a project grows, and more become involved, a “benevolent

dictator” is needed. Some referred to this as a Darwinist approach, because only

the 'fittest' submissions are accepted.

• Disadvantages of Voluntary Work: Some survey respondents felt that more

effort is put into developing software that is fun to write, rather than the more

mundane or boring applications. To quote one respondent “that's why we only

have 3 office suites but about 42,000 music players”.

• Informality is Good for Growth: A few respondents wrote that although

informal approaches are good for recruiting new members, they are often then

less motivated to work than in a formal environment.

4 Conclusions

The results allow us to further define the concept of formality with regards to FOSS.

We can first separate formality into more specific important factors, which we shall

call 'managerial formality' and 'cultural formality'. Managerial formality refers to

aspects of formality which are for the purposes of organisation and structure. These

manifest themselves as rules and regulations concerned with the support and

particularly the development of FOSS. Many respondents wrote of the importance of

formal management, particularly for large projects with many people involved and

during phases of the development cycle where decisions about the direction of the

development are made. Cultural formality refers to the level of formality which

exists between the participants of the community. This is evident from the discussion

boards and mailing lists of a community and is defined by the members themselves,

with a possible influence from the managerial formality. The essential difference is

that the former is imposed, or perhaps suggested, by the community leaders, while

the latter comes into being or develops from the personalities and actions of the

participants.

From the analysis of the responses, it seems that the predominant view is that

managerial formality improves both support and development activities.

Nevertheless, many survey participants warned of the dangers of an environment

which was too formal. Likewise, cultural formality promotes freedom and

innovation, but can be off-putting to 'newbies' or those used to formal practices.

Andrew Schofield and Grahame S. Cooper342

5 References

1 Ghosh, R., A., Glott, R., Krieger, B., Robles, G. (2002), “Survey of Developers”,

Free/Libre and Open Source Software: Study and Survey, International Institute of

Infonomics, University of Maastricht, The Netherlands, Available at:

http://www.infonomics.nl/FLOSS/report/ , (Accessed May 2006)

2 Hann, I. H., (2004) “Why Developers Participate in Open Source Software Projects: And

Empirical Study”, Twenty-Fifth International Conference on Information Systems.

3 Hertel, G., Niedner, S., Herrmann, S. (2003), “Motivation of Software Developers in Open

Source Projects: An Internet-based Survey of Contributors to the Linux Kernel”, Research

Policy, Special Issue on Open Source Software Development, Available at:

http://opensource.mit.edu/papers/hertel.pdf ,(Accessed February 2004)

4 Lakhani, K. R., Wolf, R.G. (2003), “Why Hackers Do What They Do: Understanding

Motivation Effort in Free Open Source Software Projects”, MIT Sloan School of Management

Working paper, Available at: http://freesoftware.mit.edu/papers/lakhaniwolf.pdf, Accessed

(February 2004)

5 Moody, G. (2001), “Rebel Code: How Linus Torvalds, Linux and the Open Source

Movement Are Outmastering Microsoft”, The Penguin Press, England

6 Oh, W., Jeon, S., (2004) “Membership Dynamics and Network Stability in the Open-

Source Community: The Ising Perspective” Twenty-Fifth International Conference on

Information Systems.

7 Pavlicek, R. C. (2000), “Embracing Insanity: Open Source Software Development”, Sams

Publishing, USA

8 Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K., (2005) “Understanding

Free/Open Source Software Development Processes”, Available at:

(http://www.ics.uci.edu/~wscacchi/Papers/New/SPIP-FOSS-Intro-Dec2005.pdf) (Accessed

December 2005)

9 Schofield, A., Mitra, A. (2005), “Free and Open Source Software Communities as a

Support Mechanism”, UK Academy of Information Systems conference 2005, Newcastle, UK

10 Zhang, W. & Storck, J, (2001) “Peripheral Members in Online Communities”, Americas

Conference on Information Systems, Boston, USA

Stakeholder value, usage, needs and

obligations from differnet types of F/LOSS

licenses

Darren Skidmore

Monash University, Melbourne Australia.

darren.skidmore@infotech.monash.edu.au

Abstract. This paper discusses different types of Stakeholders of F/LOSS,

their needs, the value, usage, and obligations that stakeholders have for

different types of F/LOSS licenses. Stakeholders include Developers:

Individuals, Projects, Embedded Systems. Vendors: Dominant, Niche,

F/LOSS. Packagers. End Users. Organisations: Disseminators, Internally,

Externally Used .

Key words: F/LOSS, Licenses, Stakeholder analysis, Obligations, Value,

Usage

1 Introduction

This paper, briefly, explores the perspectives of different stakeholders their

requirements / constraints and usage of types of Free / Libre and Open Source

Software (F/LOSS) licenses. The increase in the number, the reach and range of

F/LOSS applications, as well as the types of stakeholders creates a discussion about

the types of licenses which suit different stakeholders, and their needs. This is not a

paper about specific licenses, but about broad types of licenses and the generalized

aspects of the types, individual licenses still need to be investigated for their specific

terms.

2 F/LOSS licenses

The license of the software determines what rights and obligations govern the usage

of the source code. The most common F/LOSS licenses in use are the GNU GPL,

and GNU LGPL and the BSD licenses1. These match to three main general types of

licenses: reciprocal, linking and non-reciprocal licenses. Reciprocal license requires

1 Using data from FLOSSMole project - http://ossmole.sourceforge.net/ . Because of space

limitation this cannot be shown, the FLOSSMole has SQL queries that generate the data.

Darren Skidmore344

software that uses source code licensed under a reciprocal license must be licensed

under the same license [1]. A linking license allows for an application to link to a

library or application for functionality without requiring the linkee application to be

licensed under the license of the linkor application. A non-reciprocal license does

NOT require an application to be relicensed under the license of the original code.

Other license types exist such as obligation licenses which require specific

conditions or impose limits. Table 1 gives a brief description of a taxonomy of

license types drawn from [2].

Table 1. Different types of F/LOSS licenses from [2]

License Type Brief Explanation Example

Traditional Considered to be the more traditional types of F/LOSS licenses

Reciprocal Require derivatives to follow original license GNU GPL

Non-Reciprocal NOT required to follow original license BSD

Linking Allow other code / applications to link GNU LGPL

Dual Different conditions for different types of Use MySQL

Quasi Open Source These may or may not have other considerations attached to them

Obligation Have an obligation or restriction Squiz.Net

Morality Moral conditions restricting license use HESSLA

Viewable Source Allows viewing of source code, but not usage Ms-RL

Membership Usage of source within a select community. Avalanche Corp

Support Not software licenses but assist and support other aspects of F/LOSS

Content For documentation and support information. Creative Commons

Open Standards For Standards for interoperability

Public Domain Anyone can take and use the work.

Closed Source No access to source code. Microsoft EULA

3 Stakeholders

The stakeholders below are explained, in each section. The incoming licenses

are those that govern the source code and / or applications that the stakeholders use.

The outgoing licenses are the licenses that stakeholders use for governing the source

code / applications they produce for others to use. It is possible that the licenses of

the incoming and outgoing source code are the same, different or available under

multiple types of licenses.

Stakeholder value, usage, needs and obligations from differnet types of

F/LOSS licenses

345

Table 2. List of Stakeholders in F/LOSS

Developers

Individual (developers)

Project (developers)

Embedded Systems (developers)

Vendors

Dominant (vendors)

Niche (vendors)

F/LOSS (vendors)

Packagers

End Users

Organisations

Disseminators (organisations)

Internally Used without Development (organisations)

Internally Used with Development (organisations)

External Shared with Development (organisations)

Due to page limitations, the discussion is brief, which is a limitation of the paper.

Many of the stakeholders will share issues, but raised here are those important to that

stakeholder. Individually a business decision may be made about the license of the

source code against alternatives or a specific philosophical or ideological choice may

decide the license choice.

3.1 Developers

Developers are historically the users and participants in F/LOSS. In this paper,

developers are generally individuals or collections of individuals.

For incoming code developers may want to develop the code on their own, but

may procure code to make their own work easier, solve problems, learn, or to

provide functionality. Developers might prefer using a non reciprocal style license

[3] or Linking licenses.

For outgoing license, the developer might allow anyone to do what they wish,

with a non-reciprocal license, or may ensure others share their modifications, or do

not profit from their work and use a reciprocal license. Depending upon the

incoming licenses used there may be no choice.

Individual (developers)

Individual developers want to use software for their own use or for small number

of people. Since they are smaller, they may have to accept impositions of incoming

licenses, due to lack of resources.

Project (developers)

The Projects are where developers and others have organised themselves into a

project, perhaps large (e.g. KDE, Apache), or small project. The issues for Project

developers especially for incoming licenses are similar to that of the Packagers.

Some problems are in the engineering of the project, which code is being added, and

from whom, or where did the code come. Where all of the code is being developed

Darren Skidmore346

from scratch then the authors of the code, are able to license that code as they wish.

Otherwise where there is a combination there are issues of management of license

mixing.

For outgoing licenses the issues are similar to that of the generic developers. The

project might create their own license, to protect or enable aims of the project, eg

protect trademarks [4], morality / ethical considerations, [5] or commercial control

[6].

Embedded Systems (developers)

Embedded systems are generally specially built to carry out a task, such as

mobile phones, lift controllers. With outgoing licenses, they may use a non-

reciprocal license to increase the adoption, to increase adoption by purchasers of the

embedded system; another option might be dual licenses.

3.2 Vendors

A vendor has a commercial focus with a product or range of products. Vendors

might be dependent on other applications in the software stack, needing to build a

supporting application or rely on third parties products.

Dominant (vendors)

Dominant vendors have control of large sections of a market. F/LOSS can be

used in a mixture of tactical and strategic ways (i.e. participation in the community;

sharing development costs, bug fixing and innovation). Vendors may participate in

F/LOSS activities of software products, to lower their user’s costs, while not

interrupting their own revenue streams.

The general usage by Dominant vendors seems to be of reciprocal licenses, since

this keeps changes and innovation open. There might also be use of some obligation

licenses, but this is generally seen in Niche (vendors).

Niche (vendors)

Niche vendors are generally small to medium vendors, who may do work on

request, and / or may have a niche product in the market.

They may need incoming functionality to fit into their software stack and so

linking licenses might be used. Where they cannot link but must incorporate Non-

Reciprocal licenses are probably the preferred choice.

With outgoing licenses, the use of linking or non-reciprocal licenses, might

encourage others to use their applications, with the Niche vendor being able to

pickup maintenance work, or advertise their expertise. They might also use an

obligation license, to assist their organisational aims.

F/LOSS (vendors)

F/LOSS vendors are those vendors who primarily use F/LOSS, as part of their

offerings to the market, in general they would be similar to Niche (vendors), but

should be more sophisticated in their use of F/LOSS.

Stakeholder value, usage, needs and obligations from differnet types of

F/LOSS licenses

347

3.3 Packagers

Packagers are people or projects which package up FLOSS applications into a

package for others to use, e.g. the Linux distributions. Specific issues are ensuring

that the incoming licenses of component packages are compatible with each when

combined, since some licenses have conditions which are incompatible with other

license conditions.

3.4 End Users

End Users just use the application. The incoming licenses will usually not be of

concern, since F/LOSS licenses are generally for the ongoing use of the code not the

end user. No outgoing licenses should be needed.

3.5 Organisations

Organisations have different needs to end users. F/LOSS is no different from any

software, where a business decision must be made about the benefits and constraints

of any business artefact used, including the adoption of a software application or

suite. A greater issue facing organisations is possibly the ongoing support and

maintenance of their software [7], including the patching and possibly roadmaps of

the software [8].

Dissemination (Organisations)

Some organisations wish to disseminate the source code. A Government might

wish to have an authentication code distributed, and for developers and vendors to

incorporated this into their software packages. One method of distribution would be

to use a Non-Reciprocal type of license, which would allow any open source project

to use the code, but would also allow closed source vendors to incorporate the code

with no ongoing obligation. A Linking license might also be used, for greater

control.

Internally Used without Development (Organisations)

Internal users of F/LOSS using it without development are possibly more

concerned about support costs including training, patching and usability.

Internally Used with Development (Organisations)

For incoming code, with most F/LOSS code, an organisation should be able to

take F/LOSS, use it, modify or adapt the source code to fulfil their own needs. If they

do not distribute the application, they should not need to reveal the changes to the

source code. Although this may differ with some obligation licenses. However there

are valid reasons to reveal the changes, in that especially to get the benefits of the

continual development of the program to obtain some control and certainly over the

ongoing development, maintenance and direction of the codebase [9].

Darren Skidmore348

Externally Shared with Development (Organisations)

Some organisations, might share development, this might be part of the mission

of the organisation, or to lower costs and risks. Where the organisation wishes to use

the application with an external party the choice of incoming license is more

important, depending on the outgoing considerations, or business requirements.

Outgoing licenses will depend on the outcomes desired by the organisation,

perhaps using a reciprocal license to ensure that the code is open to all, or a

membership or obligation license to enable the organisation to keep control over the

software and code base.

4 Conclusion

This paper has described multiple types of stakeholders which now exist in the

F/LOSS domain, and their different requirements of incoming and outgoing F/LOSS

licenses. The purpose has not been to give a prescriptive directive to the matching of

a license or type of license to a particular stakeholder but to try and give some

background and definition as to the different types of stakeholders and what type of

licenses match to their needs. Ultimately the choice of incoming and outgoing

licenses should be a decision to fit with the aims and constraints of the individual

project.

References

[1] L. Rosen, Open Source Licensing Software Freedom and Intellectual Property Law.

Prentice Hall, 2004.

[2] D. Skidmore, "Free / Libre and Open Source Software: Describing Some Legal, and

Software Engineering Terms, and a Taxonomy for Classifying Licenses," in Handbook of

Research on Open Source Software: Technological, Economic, and Social Perspectives, K.

St.Amant and B. Still, Eds. Idea Group, 2007, Chapter 31.

[3] J. Michaelson, "There's no such thing as a Free (software) lunch," ACM Queue, vol. 2,

2004.

[4] Apache Software Foundation, "Apache License, Version 2.0," 2004.

[5] Hacktivismo, "The Hacktivismo Enhanced-Source Software License Agreement," 2005.

[6] Squiz.net, "Squiz.Net Open Source Licence Agreement (Version 1.1),", 2005.

[7] D. L. Parnas, "Software Aging," Proceedings of the 16th international conference on

Software engineering, Italy, 1994.

[8] S. Goode, "Something for nothing: management rejection of open source software in

Australia's top firms," Information & Management, vol. 42, pp. 669-681, 2005.

[9] K. Edwards, "An economic perspective on software licenses—open source, maintainers

and user-developers," Telematics and Informatics, vol. 22, pp. 97-110, 2005.

Part III

Panels

Introduction to Panel Discussions at the

Third International Conference on Open

Source Systems – OSS 2007

Sandra A. Slaughter1

1 David A. Tepper School of Business, Carnegie Mellon University,

Pittsburgh, Pennsylvania, U.S.A. email: sandras@andrew.cmu.edu, web:

http://www.tepper.cmu.edu/andrew/sandras

Summary

Two diverse, stimulating and important panel discussions are included in this

year’s programme on open source systems.

The first panel explores the diverse set of legal issues and risks that arise as

governments increasingly adopt open source systems. Governments are attracted to

open source software systems by the potential cost savings, open standards and

protocols, and the flexibility, adaptability and reliability of the systems. However,

there are serious legal issues and liabilities that can arise when governments adopt

open source systems. This panel identifies and examines potential legal risks and

liabilities from open source systems adoption in the government context. Some of the

important legal concerns discussed by this panel include intellectual property rights,

licensing, and protection of sensitive or confidential information.

The second panel is organized as a debate in which the panelists will consider the

advantages and disadvantages of the sharing of research data and analyses by open

source systems researchers. The area of open source systems has attracted numerous

researchers from many different disciplines. In part, the attraction of research on

open source systems is due to the public information available about open source

communities. Using this information, researchers have been uncovering fascinating

insights about how open source systems are developed and used and how open

source communities function. Unfortunately, as noted by this panel, the work

products of this research are not readily available to the public. This prevents new

researchers from validating, building upon and extending the research already

conducted by others. However, making research work products available to the

others, while potentially valuable, has associated disadvantages. For example, certain

kinds of data collected by a researcher (such as surveys or other confidential

information) may not be released to the public, given human subjects concerns. In

Sandra A. Slaughter352

addition, it can require substantial cost and effort on the part of the researcher to

make research work products understandable and usable by others. This panel

debates the issues surrounding the pros and cons of making open source systems

research work products available to researchers.

 Legal issues for free and open source

software in government

Nic Suzor1, Brian Fitzgerald1 and Mark Perry2

1 School of Law, Queensland University of Technology 2George St.,

Brisbane, Queensland Australia 4000

{n.suzor,bf.fitzgerald}@qut.edu.au,

WWW home page: http://www.oaklaw.qut.edu.au/

2 Faculty of Law, University of Western Ontario,

1151 Richmond, London, Ontario CANADA

mperry@uwo.ca,

WWW home page: http://www.csd.uwo.ca/~markp

As more governments begin to adopt and release free and open source software,

it is important to be able to readily recognise and identify the associated legal risks

and potential liabilities. This panel will examine and discuss the most common of

these associated risks and liabilities. These issues include, but are not limited to:

• indemnities against claims of intellectual property infringement from third

parties

• requirements of consumer protection and antitrust legislation

• obligations to redistribute source, and when they arise

• enforceability of free software licences

• layering and combining of licences

• dual-licensing

• licence incompatibility

• software patent liability

• contemporary developments in software licensing

There are significant advantages to a broad government adoption of free

software. These range from potential cost savings, adoption of open standards and

protocols, and wider use of stronger, more flexible and more secure software, to the

social benefit derived from promoting a contributory commons of free software.

However, governments ought to be aware of the obligations that may be imposed by

the use and redistribution of FOSS, and when exactly these obligations will arise.

Governments must also be mindful of the effect that implied warranties may have

upon the sale or supply of free software, and the limitations inherent in indemnity

clauses in many free software licences.

Where a government is using public funds to develop a software application,

great care must be taken when choosing a licensing strategy. If there is a large

Nic Suzor, Brian Fitzgerald and Mark Perry354

commercial market for the unmodified application, a traditional closed source

licensing approach can be considered to generate income. If the only commercial

market for the software consists of software developers who would heavily modify

or integrate the software, then a dual licensing approach could be taken to provide an

income stream from those developers while still allowing the benefits of publicly-

funded software to flow back to the community. Finally, where there is no

commercial market for the software, or if the commercial market is more concerned

with custom development and support services, there is a strong argument that the

government should release the software under a free licence.

The evaluation of whether a government should use free or open source software

for any given application is a complex matter. However, with the continual increase

in quality and quantity of available solutions, coupled with increased understanding

of the advantages and obligations involved, we can expect to see more widespread

use of FOSS by governments across the world. In this context, the challenge for

lawyers and government officials will be to fully understand the intricacies of this

emerging area of law. This panel is but one step in gaining an appreciation of the

legal landscape involved.

Data and analyses sharing to support

research on free/libre open source software
A Debate

Brian Fitzgerald1, Moderator

Proposition

Evangelia Berdou2

Kevin Crowston3

Greg Madey4

Opposition

Megan Conklin5

Stefan Koch6

Walt Scacchi7

1 University of Limerick, brian.fitzgerald@ul.ie

2 London School of Economics

E.Berdou@lse.ac.uk

3 Syracuse University

crowston@syr.edu

4 University of Notre Dame

oss@nd.edu

5 Elon University

mconklin@elon.edu

6 Wirtschaftsuniversität Wien

stefan.koch@wu-wien.ac.at>

7 University of California, Irvine

wscacchi@ics.uci.edu

Be it resolved, that the FLOSS research community requires that data and

analyses behind FLOSS research publications be made expeditiously available

to other researchers.

Research on FLOSS has relied on several different kinds of scientific evidence,

such as the archives created by the FLOSS developers, versioned code repositories,

mailing list messages and bug and issue tracking repositories [1]. FLOSS teams

retain and make public archives of many of their activities as by-products of their

open technology-supported collaboration. However, the easy availability of primary

data provides a misleading picture of ease of conducting research on FLOSS.

Precisely because these data are by-products, they are generally not in a form that is

useful for researchers. Instead potentially useful data is locked up in HTML pages,

CVS log files, text-only mailing list archives or dumps of website databases. FLOSS

research projects, therefore, expend significant energy collecting and re-structuring

these archives for their research, which is repetitive and wasteful [2]. Furthermore,

different researchers will extract different data at different points in time, take

different approaches to processing and cleaning data and make different decisions

about analyses, but without all of these decisions being visible, auditable or

reproducible. In principle, these latter problems can be addressed by individual

researchers better documenting what they have done. However, research publications

Fitzgerald, Berdou, Conklin, Crowston, Koch, Madey and Scacchi356

typically have restrictions on publication lengths that make complete discussion

impossible. Furthermore, published papers are just the tip of the iceberg, and

knowing what others have done does not necessarily make it any easier to replicate

the results.

In light of these issues, FLOSS research might be greatly facilitated by increased

sharing of primary data as well as various stages of data analysis. Such data archives

have had some success in facilitating research in other fields, e.g., in biomedical

sciences. However, there are numerous problems that must be addressed to make

such data sharing feasible and valuable. One of the most important issues is ensuring

the appropriate rewards and incentives for sharing. The experience in other fields

suggests that if data sharing is an option, it is one that will be exercised by only a few

researchers. On the other hand, it is not clear how sharing might be enforced or what

the effects of such a mandate might be. The issue seems like one that is ready for a

public debate.

Therefore, we will debate the resolution that the F/L/OSS research community

requires that data and analyses behind F/L/OSS research publications be made

expeditiously available to other researchers. If this resolution gains support from

participants at the International OSS Conference, then efforts can be made to

implement this resolution in the research field.

References

1. D. German and A. Mockus, in Proceedings of the ICSE 3rd Workshop on Open
Source. (2003).

2. J. Howison, M. Conklin, and K. Crowston, FLOSSmole: A collaborative
repository for FLOSS research data and analyses, International Journal of
Information Technology and Web Engineering 1(3), 17 (2006).

Part IV

Tutorials

Introduction to OSS 2007 Tutorial Program

Ernesto Damiani

DTI - University of Milan, Italy

damiani@dti.unimi.it

Today, most software researchers and professionals consider Open Source as a

greatly successful paradigm for large-scale production of high-quality software

systems. However, most of them would probably agree that successfully applying

this paradigm requires dealing with a number of important issues. One of the best

reasons to attend OSS conference series is being able to discuss these issues in an

unprecedented gathering of top-notch researchers, developers, and leaders from all

avenues of the open source movement. Attending good tutorials, in particular, is a

great opportunity for getting in touch with new ideas and discussing them in depth

with real experts.

For this reason, I am especially glad to introduce OSS 2007 tutorial program,

which in my opinion does worthily complete the conference's rich program of

research sessions and workshops. The aim of OSS tutorial series is to simply explain

complicated subjects, attracting an audience whose composition will hopefully

mirror the one of most free and open source software communities today, including

absolute beginners as well as experienced open source gurus.

This year's rigorous selection process has selected an extraordinary set of

tutorials which provide straightforward, but never trivial, introductions to a wide

range of topics concerning the emerging role of open source in a number of

application domains.

Namely, Megan Conklin's tutorial "How to Gather Metrics on FLOSS projects",

will introduce the crucial problem of representing and gathering knowledge on

FLOSS as a prerequisite to advanced decision making, e.g. on open source software

adoption issues.

François Déchelle's tutorial "EDOS Tools for Linux Distributions Dependencies

Management and Quality Assurance" will discuss a number of relevant issues related

to testing and quality assurance of heterogeneous open source packages and present

tools developed in the EDOS project for managing Linux distribution testing and

quality assurance processes.

Finally, Hans-Ludwig Hausen's tutorial "Quality Specification, Testing and

Certification of Bespoken, Open Source and Commercial Off-The-Shelf Systems"

addresses some important software quality and metrology methods and procedures

(specification, testing, V&V, reliability, safety, security, measurement, assessment,

Ernesto Damiani360

etc) suitable for dependable information system engineering and acceptance testing

or for software certification.

The tutorial section in OSS 2007 Proceedings includes concise summaries of

these three accepted tutorials, hopefully conveying some of the spirit of the lively

exchange of ideas these tutorials will encourage at OSS 2007.

Putting together an attractive and scientifically sound tutorial program like this

one is always a team effort. I would like to thank all OSS 2007 officials for their

valuable comments and help in the selection process. Special thanks are also due to

Alberto Colombo and Fulvio Frati, OSS 2007 Web masters, for their help in making

the selection process as smooth and efficient as one might desire. Above all, I wish

to thank all the tutorial proposers for choosing OSS 2007 as the preferred venue for

presenting their ideas and techniques, and the tutorial attendees whose participation

and feedback are essential for making OSS 2007 tutorial program a success.

How to Gather FLOSS Metrics

Megan Conklin1, Jesus M. Gonzalez-Barahona2, and Gregorio Robles3

1 Elon University, Department of Computing Sciences, Elon, NC 27244

mconklin@elon.edu,

WWW home page: http://facstaff.elon.edu/mconklin

2 Universidad Rey Juan Carlos, Grupo de Sistemas y Comunicaciones,

c\Tulipan s/n E-28933 Mostoles, Spain

{jgb,grex}@gsyc.escet.urjc.es,

WWW home page: http://libresoft.urjc.es/

Abstract. In this half-day tutorial, participants will gain hands-on exposure to

key technologies for data collection about open source projects.

1 Program and Objectives

The tutorial will begin with reviews of the main source code repositories,

including popular code forges such as Sourceforge, and techniques for collecting

data directly from the forges as well as from aggregation projects such as

FLOSSmole1. The tutorial will then discuss tools designed for analyzing the data

found on forges, such as CVSAnalY2, Pyternity, and SLOCCount, among others.

Most importantly, participants will have a chance to analyze data with the help of the

presenters. Teams of participants will solve open-ended analysis problems

collaboratively and in real-time during the workshop. Finally, participants will have

opportunities to discuss with the presenters what sort of data collection and analysis

tools they would like to see built in the future.

Tutorial program:

o Briefly introduce overall problem of data collection

o Introduce tools: FLOSSmole, CVSAnalY, Pyternity, SLOCCount, etc

o Distribute data sets, pose problems for real-time assessment

o Share results

o Discuss future prospects

1 http://ossmole.sf.net
2 http://cvsanaly.tigris.org/

Megan Conklin, Jesus M. Gonzalez-Barahona, and Gregorio Robles362

2 Background of Presenters

Megan Conklin is an assistant professor in the Department of Computing

Sciences at Elon University. Her primary research focus is on data mining and large

database systems, particularly for software engineering data. She was co-organizer of

the 2006 WoPDaSD workshop at the International Conference on Software

Engineering (along with Gregorio Robles and Jesus Gonzalez-Barahona). She has

published a number of papers on tools for analyzing open source projects, and has

spoken about open source data collection at such diverse events as the Mining

Software Repositories workshop at ICSE and the O'Reilly Open Source Convention.

She has a PhD in computer science from Nova Southeastern University.

Jesus M. Gonzalez-Barahona teaches and researches at Universidad Rey Juan

Carlos, Mostoles (Spain). His research interests include libre software engineering,

and in particular quantitative measures of libre software development and distributed

tools for collaboration in libre software projects. In this area, he has published

several papers, and is participating in some international research projects (more info

at http://libresoft.urjc.es). He is also one of the promoters of the idea of a European

masters program on libre software, and has specific interest in education relating to

that area.

Gregorio Robles is Associate Professor at the Universidad Rey Juan Carlos in

Madrid, Spain. He earned a degree in electrical engineering from the Universidad

Politécnica de Madrid (studying his last year and submitting his master thesis at the

Technical University of Berlin, DE) and obtained his PhD in 2006. His research

work is centered in the study of libre software development from an engineering

point of view, especially with regard to quantitative and empirical issues. Related,

non-technical matters have also been of interest: volunteer-driven software

development and social network analyses of the libre software phenomenon. He has

developed or collaborated in the design of programmes to automate the analysis of

libre software and the tools used to produce them. He was also involved in the

FLOSS study on libre software financed by the European Commission IST

programme, and was involved in other European-funded projects such as CALIBRE

or FLOSSWorld. He has also had the opportunity to attend the following universities

as a research visitor: Wirtschaftsuniversität Wien (AT, 2 months),

MERIT/University of Maastricht (NL, 4 months), the University of Lincoln (UK, 3

months) and the Technical University Munich (DE, 5 months).

EDOS-Tools Tutorial: EDOS Tools for

Linux Distributions Dependencies

Management and Quality Assurance

François Déchelle1, Fabio Mancinelli2

1EDGE-IT, France

fdechelle@mandriva.fr
2PPS - Université Paris VII, France

fabio@pps.jussieu.fr

Abstract. Free and Open Source Software (FOSS) distributions are the results

of the effort of third party actors in collecting independently developed

software products, in a consistent and usable form. The widespread adoption

of these distributions as infrastructural components in many strategic contexts

of the information technology society has drawn the attention on the issues

regarding how to handle the complexity of assembling and managing a huge

number of (packaged) components and how to guarantee their quality. This

tutorial will describe how the EDOS project has tackled these issues. First it

will describe the problems related to the quality assurance of Linux

distributions and will present the tools that have been developed to manage

testing process. It will then introduce the problems that occur when managing

inter-package relations in large package repositories and will showcase tools

that can be used to analyze and manage large package repositories.

Description

The tutorial will be organized in two parts. The first part will introduce the issues

related to testing and quality assurance of heterogeneous Open Source packages and

present tools developed in the EDOS project for managing Linux distribution testing

and quality assurance processes. The second part will introduce the state of the art in

Linux package management systems and problems regarding the management of

inter-package relations (dependencies and conflicts) in large package repositories.

François Déchelle, Fabio Mancinelli364

1.1 Testing and quality assurance

The tutorial will detail the use of the following tools:

• Testrunner: a tool for conducting automatic and manual tests and reporting test

results. Testrunner uses an XML-based test specification and can report test

results using several reporting plug-ins, for instance to report results to the QA

portal using HTTP request.

• TULIP: a tool to test upgrades of Linux installations using virtual machines and

the distribution standard upgrade tools. TULIP can run automatic upgrades of

installed Linux distributions, test the upgraded distributions and reports results to

the QA portal using Testrunner.

• QA Portal: a web portal for test management, that allows testers and distribution

developers to have a real-time and accurate view of the distribution testing

process including available test suites, tests, reports of executed tests...

The tutorial will present how to install the tools, how to setup a complete

distribution testing environment and will feature a hands-on session on a realworld

distribution testing process.

1.2 Large package repositories complexity and dependency management

The second part will introduce the state of the art in Linux package management

systems and problems regarding the management of inter-package relations

(dependencies and conflicts) in large package repositories. A set of tool that can be

used by distribution editors to analyze and manipulate repositories in order to find

potential problems due to incorrect inter-package relation specifications will then be

showcased:

• DEB/RPMCheck: a dependencies correctness checker. DEB/RPMCheck

provides a fast way for analyzing whole package repositories and to spot

problems that can be present in package dependency meta-data.

• History: historical analysis and symbolic manipulation of package repositories.

History is powered by a powerful functional language called DQL that enables

the user to perform sophisticated queries on package repositories and to

manipulate them in a declarative way by using some advanced operators.

Moreover, History supports the analysis of historical data for tracking the

evolution of package repositories over time.

• Anla: a web service for package repository exploration. Anla is the web-oriented

counterpart of History that can be used by distribution editors to provide a direct

feedback on the distribution status to users, testers and developers. Advanced

queries can be performed using this interface and hyperlinked graphical results

are provided as output.

• Tart: an optimized “thinner” for building custom distributions. Tart enables

distribution editors to build custom distributions that met some constraints (e.g.

space or priority). By using Tart it is possible to create package sets that are

closed with respect to dependency relations and that satisfy the optimization

needs defined by the constraints.

Quality Specification, Testing and

Certification of Bespoken, Open Source and

Commercial Off-The-Shelf Systems

Hans-Ludwig Hausen

FRAUNHOFER

Schloss Birlinghoven, D-53754 St. Augustin, Germany

Hans-Ludwig_Hausen @_ fit.fraunhofer.de

Abstract. The seminar will cover the principles as well as the best practices of

software system quality assurance (comprising inspection, verification,

validation, black and white box test, measurement and assessment, and the

normative quality characteristics) for procedural, object-oriented, aspect-

oriented and agent-based dependable software. Attendees will exercise proven

techniques for goal-directed quality specification, testing, measurement,

scaling and assessment for software certification. Assessment of both the

software product as well as the software process will be discussed with respect

to its relevance for such acceptance assessments. A standardized process

model for measurement, assessment and certification of dependable software

will be used to make the attendees familiar with this comprehensive

assessment procedure and to learn how to embed it into today's standardized

or non-standardized software processes..

What is software quality and what is quality specification, evaluation, assessment

and certification? Why do we need it? Well, we ask for software quality

specification, assessment and certification because we want to be sure that the

product we want to apply provides the expected service correctly with respect to both

functional and non-functional requirements. If we are assessing software we check

whether the actual service we can get from the present version of the product is (at

least to some degree) equivalent to the required service. We assume that the actual

service is provided by a program that has been coded under several conditions and

constrains and thus not being a one-to-one translation of the required service.

Complementary we introduce a third layer in our approach called specified service,

where we define what has to be done on the computer. The actual service might be

considered as the layer describing how the service is to be accomplished. Why and

what for the service is needed is already defined in the required service layer.

Hans-Ludwig Hausen366

In such a layered product environment assessment is performed using

assessment methods such as inspection, testing, verification and measurement to

check the actual service against the specified service and the expected service.

These assessment methods have to be supported by appropriate tools. For the

assessment we also need to know which characteristics of the product have to be

considered and what is the threshold for them. In order to be able (i.e. ''to be

allowed'') to certify a product, i.e. to put a quality seal on the product, we have to

evaluate assess all product layers with the required characteristics using appropriate

methods and tools on both product documents and process documents. As a

consequence we have to handle product, process, characteristics, methods and tools

as wells as their interaction in a defined, coherent procedure.

For effective quality specification, testing and certification the product and

process elements have to be identified and evaluated with respect to selected,

required characteristics. Appropriate methods and tools have to be applied to the

product and process documents to check those characteristics. The essential problem

domains are: software product, software process, software characteristics, software

methods and software tools for procedural, object-oriented or agent-based

dependable software systems. Proven techniques for goal-directed quality

specification, measurement, scaling and assessment are mandatory. Obviously one

has also to consider norms, regulations or standards such as the ones for

• Software Quality Specification and Evaluation: ISO9126 and ISO 14598

• Evaluators Guide according ISO9126 and ISO 14598

• COTS Quality Specification and Evaluation: ISO 12119

• COTS Evaluation Guide according ISO 12119

• ISO 25000 series

And finally, a standardized process model for measurement, assessment and

certification of dependable software is required applicable in the context of today's

standardized as well as within non-standardized software processes.

References

1 Software Evaluation for Certification; Andrew Rae, P. Robert, Hans-Ludwig Hausen;

McGraw-Hill, Inc. New York, NY, USA, (new version in progress) c.f.:

http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=561101

2 A method for software evaluation; Dieter Welzel, Hans-Ludwig Hausen; Computer

Standards & Interfaces; Volume 17 , Issue 1, Pages: 121 – 129; c.f.:

 http://portal.acm.org/citation.cfm?id=198664

3 Guides to Software Evaluation for Acceptance Testing; Hans-Ludwig Hausen, Internal

Workbook, (available from the author)

Part V

Workshops

Introduction to Workshops at the Third

International Conference on Open Source

Systems – OSS 2007

Scott A. Hissam1

1 Software Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, U.S.A. email: shissam@sei.cmu.edu, web:

http://www.sei.cmu.edu/staff/shissam

The International Conference on Open Source Systems owes its success to the

increasing desire of researchers and academicians to engage in open conversation

and sharing with the open source community regarding its' motivations, products,

processes and data. This diverse representation of the growing practical and

academic interest in Open Source Systems and its impact on the software

engineering community is represented in the five workshops that accompany this

year's conference. OSS 2007 welcomes these workshops as participants engage, in

an informal setting, driven by fundamental academic interests, or by more applied

industrial or commercial interests to discuss technical issues, exchange research

ideas, and to develop a community in the field of Open Source Software and/or

Systems.

The 1
st

International Workshop on Trust in Open Source Software (TOSS)

explores many issues that effect trust in the use and adoption of open source products

including legal aspects, quality, and business models.

Open Source Software and Product Lines 2007 aims to examine the mechanisms

used in Open Source Software production and software product lines as a means to

develop a greater understanding how each of these communities of developers can be

of mutual benefit.

OSS in Economic and Managerial Perspective wishes to expand economic and

managerial research agendas by engaging researchers in Open Source Software

Engineering and assessing any potential gaps between where those economic and

managerial researchers are in relation to the current state of Open Source Systems.

The 2
nd

Workshop on Public Data about Software Development seeks to foster

the analysis of publicly available regarding Open Software Development and the

exchange of these data and analyzes between different researchers.

The Workshop on Free and Open Source Learning Environments and Tools

provides a discussion forum for researchers and practitioners in the use of free and

Open Source Software and Applications in Web-based Learning Environments in an

aim to identify effective and sustainable solutions, open issues and good practices.

1
st
 International Workshop on Trust in

Open Source Software (TOSS)

Sandro Morasca1, and Alberto Sillitti2

1 Università dell’Insubria, Como, Italy, sandro.morasca@uninsubria.it

2 Libera Università di Bolzano, Bolzano, Italy, alberto.sillitti@unibz.it

Abstract. The 1st International Workshop on Trust in Open Source Software

(TOSS) focuses on one of the major factors in the adoption of software

solutions: the trustworthiness of OSS, which has influenced the widespread

adoption of OSS in industry. Software quality aspects have been investigated

for a long time in the academia but the usage/production of OSS is creating

new challenges and the points of view of the industry and the academia may

differ, especially on the trustworthiness of OSS. The aim of the workshop is to

open a communication channel between the industry and the academia

focusing on this issue and promote a long lasting discussion on it. The

workshop tries to identify the different points of views and the different

approaches that can result in benefits for the software industry.

1 Introduction

Open Source Software (OSS) is supported by the major players in the software

industry. However, software companies are still somewhat reluctant to adopt OSS

massively in their mainstream development, mainly because of lack of trust

regarding OSS. There are several reasons that affect trust, including legal aspects,

quality, and business models.

Trust is not an attribute that can be claimed without backing evidence. It also

relies on perception, on answers to non-technical questions such as “who is behind

Open Source?”, “why be confident in OSS?”, or even “how to be confident in OSS?”

If OSS aims to be considered as good as proprietary software, these questions must

be addressed.

Using OSS is not an easy choice for companies, since the selection process is

affected by several factors related to the quality of the source code and the quality of

the production process.

OSS is often developed not only by individuals, but by communities and

companies that follow a rigorous process and high quality standards which they use

Sandro Morasca and Alberto Sillitti372

in the development of commercial products (e.g., there are several commercial

products that have been released as OSS). However, verifying the quality of OSS

products is complex since there are almost no rules for evaluating and describing it

in a way that different companies/communities can trust. A difficult challenge is the

development of a set of guidelines/tools/processes that companies can follow to

produce and to adopt OSS that also other companies/communities can trust.

Several EU-funded projects address such problems in OSS from different points

of view and in different domain areas. The organizers of this workshop and the

member of the industrial board are partners in QualiPSo, the largest project funded in

this area.

Several EU-funded projects address such problems in OSS from different points

of view and in different domain areas. The organizers of this workshop and the some

members of its Industrial Board are partners in QualiPSo, the largest project funded

by the EU in this area.

2 Organization of the workshop

The workshop will include three main sections:

1. Presentation of the industrial needs

2. Presentation of the research activities in the area

3. Open discussion guided by the Industrial Board

The first section will include presentations from industry identifying the main

challenges and objectives for large, medium, and small companies that use and

produce OSS not only as product but also as part of other products (e.g., embedded

systems).

The second section will include presentation from the academia identifying the

areas and the results reached in the area from the technical/legal/business point of

view.

The third section will be an open discussion guided by the Industrial Board in

which the presentations of the first two sections will be discussed.

3 Duration

The duration of the workshop is one full day.

4 Contributions

Participants are expected to submit a short paper or a position paper (4 pages max.)

to the conference organizers.

1st International Workshop on Trust in Open Source Software (TOSS) 373

5 Aims and objectives

The main objectives of the workshop are the following:

• Group together people from industry and the academia interested in trust

and quality

• Enable knowledge transfer between academia and industry

• Allow people from industry to highlight the main problems in the area

• Discuss the elements of trust in different application domains

6 Participants

The workshop focuses on the industrial aspects of the research in quality applied to

the Open Source Software, therefore the intended participants will include people

from both academia and industry.

7 Program Chairs

Sandro Morasca Università dell’Insubria Italy

Alberto Sillitti Libera Università di Bolzano Italy

8 Industrial Board

Stefano De Panfilis Engineering Ingegneria Informatica Italy

Jean-Pierre Laisne Bull France

Stéphane Laurière Mandriva France

Gregory Lopez Thales France

Clara Pezuela Atos-Origin Spain

Open Source Software and Product Lines

2007
Workshop at Third International Conference on Open

Source Systems

Frank van der Linden, Björn Lundell

Philips Medical Systems, University of Skövde

Workshop Topics

Embedded industries have invested a lot in the introduction of software product lines

in their software development. In addition, using open source software appears to be

a profitable way to obtain good software. This is also applicable for organizations

doing product line engineering. On the other hand, because of the diverse use of

open source software, product line development is an attractive way of working in

open source communities. In fact, the configuration mechanisms used in open source

communities may be applicable within software product lines as well. In addition,

product line organisations are usually involved in distributed development, which

works very efficiently within open source communities. However, at present, there is

limited interaction between the open source and product line development

communities. The aim for the workshop is to explore what the two communities can

learn from each other and to develop a better understanding of how the two

communities can benefit from each other. The workshop deals with the following

issues:

• Community: Ownership, control and management of product line assets in an

open source community

• Visibility of the code: when it is valuable to share proprietary code and how to

take the right decision.

• Architecture Views: Creation of different levels of architecture visibility:

proprietary, among closed consortium, public. Is this possible?

• Product line requirements roadmaps and planning in open source development

• Variability management: Using the open source community to evolve

components and being explicit about variability

• Variability representation: in an open source community

• Deployment: Open source for the platform and in applications

Frank van der Linden, Björn Lundell376

• Heterogeneous processes: Cohabitation of product line management and agile

processes

• Tools: Open source asset management tools in product line development

• Domain and application engineering and their meaning in an open source context

• Recovery and recognition of a product line in an open source asset base

• Legal: Aspects dealing with evolutionary, variability or distribution of

development relating to legal risks involving: liability, warranties, patent

infringements etc.

Previous workshop

A previous workshop OSSPL06 with the same topic was held during the SPLC 2006

conference in Baltimore. Proceedings are at the OSSPL06. The OSSPL06 workshop

resulted in the following topics that need further investigation:

• Human issues: The way that people are recruited and fired, Culture

• Tools: OSS has simple useful tools - they integrate! Especially there are good

OS asset management tools. Within OS, variation is often implicit, embedded in

packages

• Processes & maturity: Are all SPL practices necessary?

• Organisational issues: Ownership, fear of the unknown by commercial

organisations

• Architecture: SPL concentrates on models, OSS on code/configurations. A

further aspect of investigation is the assessment of open and close source quality

• Business: How/when to use OSS in SPL - what about participation?

Program committee:

Frank van der Linden, Philips Medical Systems

Josetxo Vicedo, European Software Institute

Pentti Marttiin, Nokia

Hans Petter Dahle, ICT-Norway

Jesús Bermejo, Telvent

Björn Lundell, University of Skövde

Toward a New Industrial Organization?

OSS in Economic and Managerial

Perspective

Jean Michel Dalle1, Cristina Rossi2, and Francesco Rullani3

1 Universit´e Pierre et Marie Curie, Paris, France; jean-

michel.dalle@upmc.fr,

2 Politecniico di Milano, Department of Management, Economics, and

Industrial Engineering

P.zza Leonardo da Vinci 32, 20133, Milano, Italy

{cristina1.rossi}@polimi.it,

3 Copenhagen Business School (fr.ivs@cbs.dk)

Abstract. At present, an more and more users are running Open Source

software (OSS) on their systems. Major companies, like IBM, Oracle, or Sun

Microsystems, have now started to make significant investments in developing

open communities and creating a portfolio of systems incorporating OSS

applications into their design. Meanwhile, an increasing number of firms are

entering the market by offering OSS-based solutions to their customers, often

supplying a mix of proprietary and open solutions through hybrid business

models. In this context, economists and management scientists are now

moving beyond the state of puzzlement that has driven much of the initial

attention towards OSS. Located in the context of OSS2007 in order to foster

close and fruitful interactions with scholars from various other disciplines, this

workshop aims at contributing to the current evolutions of the economic and

managerial research agendas about OSS, and thus to provide, first, an

assessment of where we - economics and management scholars - are about

OSS, and, second, an analysis of the renewed directions in which we should

consider inquiring further in the near future, focusing notably on business,

production, diffusion and innovation models.

1 Introduction

In December 2006, Apache had a market share of 60.64% against 30.67% for its

immediate competitor. Linux has already been adopted by approximately 29 millions

of users. The market share of the Web browser Firefox is surging despite the pre-

existing dominance of Internet Explorer*. Major companies like Oracle have now

started providing professional support on Linux. IBM, which had been promoting

Linux offerings for years, has strengthened its commitment to openness, making

Jean Michel Dalle, Cristina Rossi, and Francesco Rullani378

significant investments in the development of communities and creating a broad

portfolio of systems adopting open standards and incorporating open-source

applications into their design. Sun's Java is open-source. And meanwhile, an

increasing number of firms are entering the market by offering open-source-based

solutions to their customers, often supplying a mix of proprietary and open solutions

through hybrid business models.

It is time to acknowledge the fact that Open-Source software now belongs to the

mainstream of the software industry, and that it is rapidly modifying major elements

of its industrial organization.

In this context, economists and management scientists are now moving beyond

the state of puzzlement that has driven much of the initial attention towards open-

source software and related systems.

This workshop aims at contributing to the current evolutions of the economic and

managerial research agendas about open-source software providing, first, an

assessment of where we - economics and management scholars - are about OSS, and,

second, an analysis of the renewed directions in which we should consider inquiring

further in the near future, focusing notably on business, production, diffusion and

innovation models.

For this reasons we thought about the OSS2007 conference as a perfect context

to develop a close and fruitful discussion around these topics. If on the one hand the

perspective of the workshop will be able to attract a large number of economists and

managerial scholars, on the other hand the collocation at the OSS2007 conference

will foster the participation of scholars from various other disciplines, and notably

software engineering researchers, creating an interdisciplinary milieu and enriching

the debate.

2 List of topics

The following list of topics displays a non-exhaustive sample of the possible

themes:

1. Business models: OSS strategies of large and small software firms,

sustainability of OSS-based business models, hybridization between commercial and

free/open software, relationships between software firms and OSS communities

(firms' contributions and strategies, role of so-called paid developers, role of

networks, etc.), implications of OSS licensing, and of copyright and patent issues,

etc.

2. Production models: specificities of the OSS production model and their

economic and managerial consequences, allocation and coordination mechanisms,

characteristics of projects and of project ecologies, modularity issues, etc.

3. Diffusion models: empirical evidence on OSS diffusion, typologies of users

and of adoption motives, users' characteristics, role of users' communities, market

dynamics of OSS and proprietary software, integration and competition of open and

closed solutions, etc.

Toward a New Industrial Organization? OSS in Economic and Managerial

Perspective

379

4. Innovation models: open innovation, factors favouring the emergence of

OSS-like innovation regimes, policies dedicated to the software and to other sectors,

open-source technology transfer, etc.

5. Standardization and platform strategies.

3 Organisation and scientific committee

The Organization Committee is formed by

Jean-Michel Dalle, Université Pierre et Marie Curie (jean-michel.dalle@upmc.fr)

Cristina Rossi, Politecnico di Milano (cristina1.rossi@polimi.it)

Francesco Rullani, Copenhagen Business School (fr.ivs@cbs.dk)

The members of the Scientific Committee are:

Cristiano Antonelli, Professor, University of Turin, IT

Stefano Comino, Assistant Professor, University of Trento, IT

Linus Dahlander, Research Fellow, Imperial College London, UK

Jean-Michel Dalle, Professor, Pierre-et-Marie-Curie University, FR

Paul David, Professor, Stanford University, US; Oxford Internet Institute, UK

Lars Frederiksen, Research Associate, Imperial College London, UK

Alfonso Gambardella, Professor, Bocconi University, IT

Marco Giarratana, Assistant Professor, Universidad Carlos III, ES

Lars Bo Jeppesen, Assistant Professor, Copenhagen Business School, DK

Joachim Henkel, Professor, Technical University of Munich, GE

Hely Koski, Professor, Helsinki School of Economics, FI

Yuwei Lin, Research Associate, University of Manchester, UK

Alessandro Nuvolari, Research Fellow, ECIS, Eindhoven University, NL

Margherita Pagani, Adjunct Professor of Management, Bocconi University, IT

Lucia Piscitello, Professor, Polytechnic of Milan, IT

Alessandro Rossi, Assistant Professor, University of Trento, IT

Cristina Rossi, Assistant Professor, Polytechnic of Milan, IT

Francesco Rullani, Post-doc Fellow, Copenhagen Business School, DK

Philipp J.H. Schroeder, Assistant Professor, Aarhus School of Business, DK

Sonali Shah, Assistant Professor, University of Illinois at Urbana-Champaign, US

Dominique Torre, Professor, University Nice Sophia Antipolis, FR

Salvatore Torrisi, Associate Professor, University of Bologna, IT

4 Program

The workshop will be help of June 14
th

2007. The program provides for four

thematic section, in which three papers will be presented. Each paper will be

commented by a discussant.

Professor Paul A. David (Stanford University and Oxford Internet Institute) will

give the introductory talk to the workshop on the topic: "Social Science Research

Approaches to FLOSS".

2nd International Workshop on Public Data

about Software Development (WoPDaSD

2007)

Jesus M. Gonzalez-Barahona, Megan Conklin, Gregorio Robles

http://libresoft.urjc.es/Activities/WoPDaSD2007

Abstract. Exchange of detailed data about software development between

research teams, and specifically about data available from public repositories

of libre (free, open source) software projects is becoming more and more

common. This workshop will explore the benefits and problems of such

exchange, and the steps needed to foster it. As a case example of data

exchange, the workshop organizers suggest two large datasets to be analyzed

by participants.

Introduction

In the latest years, and specially thanks to the huge availability of data about

software development that can be obtained from libre (free, open source) projects,

the research community is starting to produce, use and exchange large data sets of

information. These data sets have to be retrieved, purged, described, and can be

published for public consumption by other groups. Their availability allows for the

decoupling of research activities (some groups can focus on data retrieval and

preliminary analysis, which others can devote to more in-depth analysis without

bothering with data retrieval), the reproducibility of research results, and even the

collaboration (and competition) in the analysis of data.

All this activity is being presented in several workshops and conferences, but a

single place to exchange experiences does not exist yet. We propose this workshop

as such a place, where researchers in the field can discuss specifically about this kind

of data sets, how they are retrieved, how can they be analyzed and mined, how they

can be exchanged and complemented, etc.

Jesus M. Gonzalez-Barahona, Megan Conklin, Gregorio Robles382

Main Goals

The goal of this workshop is to foster the analysis of public available data

sources about software development and the exchange of data between different

research groups.

The workshop is aimed specifically at two different target studies:

• Analysis of some data collections about software development (provided by the

organizers, see below). The analysis should show a methodology for exploring

any of those data sets (or better, to relate both) searching for some specific result

in the area of software development, and its applications to the actual data sets.

The study can be in the field of software engineering, economics, sociology,

human resources, and others.

• Retrieval process and exchange formats of public available data collections

about software development. The data collections presented should be publicly

available, based themselves on public data (so that other groups could reproduce

the data collection process), and be related to the field of software development.

This includes, but is not limited to, data from source control systems, but

tracking systems, mailing lists, websites, source and binary code, quality

assurance systems, etc. Although any kind of data collection can be considered,

those including information about a large amount of projects will be considered

especially appropriate.

The target audience is composed by the research groups interested in empirical

software engineering and quantitative studies of the software development processes

and methods. This includes not only software engineers, but also researchers from

other fields that might use the data for economic, social and other studies.

Detailed Description

Following the goals described above, the workshop will accept papers about two

specific issues:

• Analysis of two data collections about libre software development: FLOSSMole

and CVSAnaly-SF. These collections, already available to any researcher, are

offered for the analysis. The studies submitted should detail how they have been

used, which part of the information has been considered, how they have been

validated or filtered and/or post-processed (if that is the case). The description

should be detailed enough to let any other research group reproduce the study.

• Studies about the data retrieval and preparation for public consumption of data

sets in the same realm, which could be proposed for analysis in future editions

of the workshop.

WoPDaSD 2007 383

FLOSSMole

FLOSSMole (formerly OSSmole) is a set of tools for gathering data (metrics)

about the development of free/libre/open source projects. The FLOSSMole project

also publishes the resulting analysis about FLOSS projects, and accepts data

donations from other research groups. It offers this workshop a complete set of data

gathered from the SourceForge development platform and the Freshmeat

announcement systems. More information can be obtained from

http://ossmole.sourceforge.net.

CVSAnalySF

CVSAnalY is a tool created by the Libre Software Engineering Group at the

Universidad Rey Juan Carlos that extracts statistical information out of CVS (and

recently Subversion) repository logs and transforms it in database SQL formats. It

has been used to retrieve information for all projects that have an active CVS system

at SourceForge. This data set is publicly offered to be analyzed in this workshop.

More information can be obtained from http://libresoft.urjc.es/Data.

Challenge

This edition an specific challenge is proposed to contributors, in addition to

regular papers. The topic of the challenge is “data visualization”, and will consist on

papers about visualization of the data in any of the datasets offered (FLOSSMole,

CVSAnaly-SF, or both). The text in the paper should explain the visualization

technique used, and its possible applications. The images in the paper should be the

visualization images themselves, or snapshots of them. Visualization techniques that

help to answer interesting questions, to better understand the data, or to find

relationships in it (including relating data in both datasets) are encouraged.

FOSLET 07 – Workshop on Free and Open

Source Learning Environments and Tools

Luca Botturi, Riccardo Mazza, Stefano Tardini

University of Lugano, eLab – eLearning Lab

via Buffi 13, 6900 Lugano, Switzerland

{botturil, mazzar, tardinis}@lu.unisi.ch

http://www.elearninglab.org

Introduction

Web-based Learning Environments supported by Course Management Systems

(also known as Learning Management Systems) are nowadays a valid solution for

institutions, companies, schools and universities that deliver eLearning or support

blended-learning activities. Learning Environments are used to distribute

information and content material to learners, prepare and deliver assignments and

tests, engage in discussions, and manage distance classes without time and space

restrictions.

During the last few years, several institutions have moved from

commercial/proprietary solutions to Free and Open Source (FOS) environments. The

increasing popularity FOS solutions for eLearning are enjoying is partly due to the

absence of license costs, and partly to their great adaptability and interoperability,

also in relationship with the development and adoption of Learning Technology

Standards, such as the Shareable Content Object Reference Model (SCORM) and the

IMS Content Packaging and Learning Design specifications.

However, the integration of FOS solutions for e-learning is not free from some

critical issues that demand research.

Why FOS in eLearning?

What are the main reasons that may push institutions, companies, schools and

universities to adopt FOS solutions for their e- and blended learning activities? The

perceived benefits of FOS solutions usually concern three aspects, namely costs,

infrastructure, and tailoring and integration.

Costs. The issue of costs is particularly relevant when dealing with the choice of

an LMS: as a matter of fact, one of the main issues with commercial LMS is funding.

The uncertain benefits of online learning may lead an institution to doubt about the

Luca Botturi, Riccardo Mazza, Stefano Tardini386

real return of a huge investment as the acquisition of the required number of seats in

a commercial LMS. First, instructors and students may not have established practices

in using online tools, so that the actual use of the LMS is unpredictable. Second, the

uncertainties of the market and the rapid and often earthshaking developments of the

eLearning world may make the commitment to a single producer tricky. Finally,

being committed to a commercial LMS risks being a one-shot situation: in the

undesired chance of a failure, costs may make almost impossible to try out another

solution. Choosing an FOS solution mitigates these three issues. Furthermore, the

(almost) complete visibility of the life of an FOS community provides more

information about its hope of survival in the eLearning market than the financial

reports of super-protected commercial players.

Infrastructure (material and human resources). One of the big issues of FOS

software, and one of its major hidden costs, is the need for infrastructure (hardware

and network connection) and of in-house work for setting up the system, for

maintaining the application and for checking, selecting and installing updates. All of

these issues are quite unproblematic in most universities, since they (always) have a

dedicated IT staff able to care after the infrastructure, the installation, maintenance

and update of software applications. Moreover, the hardware demands of OS

software are usually significantly lower than those of commercial software.

Tailoring and integration. An eLearning system potentially impacts the core of

a university’s activity, and has to be integrated with standard procedures for class

scheduling, enrollments, assessment, quality evaluations, network accounting etc.

The main advantage that an FOS solution brings to institutional users is the

possibility to tailor the application to one’s needs, and to integrate it in first person in

existing procedures and IT system [2: 125].

FOSLET 07 – The workshop

In this context, the idea of promoting a workshop on FOS solutions for e- and

blended learning activities arose from the experience gained by the authors in two

labs of the University of Lugano (USI): the NewMinE Lab (New Media in Education

Laboratory: www.newmine.org) and the eLab (eLearning Lab:

www.elearninglab.org). In 2004 an OS LMS was introduced in the University of

Lugano and in the University of Applied Sciences of Southern Switzerland (SUPSI)

in order to support the educational activities and to promote the use of eLearning in

the teaching and learning practices of both institutions [1, 2]. Then, in 2006 an OS

Learning Objects Repository was developed by eLab and integrated into the LMS

(DOOR – Digital Open Objects Repository: http://door.elearninglab.org).

The introduction of e-Courses (this is the name of the platform introduced, based

on the Moodle technology; see http://corsi.elearninglab.org) soon raised interesting

issues concerning the installation of the platform, its integration into the different

existing universities’ systems, its customization according to both institutions’ needs,

the promotion of the new platform among faculty members and students of USI and

SUPSI and its evaluation, which showed high satisfaction levels. Hence the interest

for other similar experiences and the chance of promoting within the Second

FOSLET 07 387

International Conference on Open Source Systems (OSS 2006) the first FOSLET

workshop [3].

FOSLET 07 aims at providing a discussion platform for researchers and

practitioners who want to share research findings and experiences about the use of

FOS applications for eLearning, in order to identify effective and sustainable

solutions, open issues and good practices.

The workshop will focus on solutions, practices, and experience of FOS

Learning Environments that give particular emphasis to three perspectives:

1. Interoperability, including course content migration, metadata, and standards

implementation.

2. Integration, including LMS support to specific teaching and learning activities,

fine-tuning to specific organizational and administrative requirements.

3. Sustainability, including studies about the real cost of software, management

issues, long-term financing and reusability.

Specific topics include: interoperability and implementation of standards among

Learning Environments; FOS Learning Environments architectures, configurations,

and infrastructures; Learning & Content Management Systems, repositories;

metadata models and mapping; interoperability use cases, experience reports of

interoperable educational systems; cost models of commercial/proprietary and FOS

e-learning solutions; good practices of integration of FOS solutions into real

institutional settings.

References

[1] Botturi, L. Functional Assessment of Some Open Source LMS. eLab Report,

Lugano, November 2004.

http://www.elearninglab.org/docs/risorse/report/OS_review_Nov2004.pdf.

[2] Botturi, L., Cantoni, L. and Tardini, S. Introducing a Moodle LMS in Higher

Education: the e-Courses Experience in Ticino (Switzerland). Je-LKS. Journal of e-

Learning and Knowledge Society, Special Issue: C. Giovannella (ed.), Emerging

learning environments and Open source in e-learning, 2 (1), March 2006, 123-130.

[3] Botturi, L., Mazza, R. and Tardini, S. (eds). FOSLET 2006. Proceedings of the

Workshop on Free and Open Source Learning Environments and Tools. University

of Lugano – NewMinE ePaper 6, Lugano 2006.

http://www.elab.usilu.net/foslet06/proceedings/NewMinE_ePaper6.pdf.

Part VI

Posters

List of Posters Displayed at The Third

International Conference on Open Source

Systems

Heterogeneous collaborative development involving open and inner source:

Challenges for the European Software Intensive Industry

• Frank van der Linden (Philips Medical Systems, Best, The Netherlands,

frank.van.der.linden@philips.com)

• Björn Lundell (University of Skövde, P.O. Box 408, SE-541 28 SKÖVDE,

Sweden, bjorn.lundell@his.se)

• Pentti Marttiin (Nokia, Finland, pentti.marttiin@nokia.com)

Taking advantage of Open Source benefits for boosting growth in industry

• Clara Pezuela (Atos Origin, Spain, clara.pezuela@atosorigin.com)

• Gregory Lopez (Thales, France, gregory.lopez@thalesgroup.com)

Sound tools for package dependency management in Free and Open Source

Software distributions

• Fabio Mancinelli (Université Paris VII, fabio@pps.jussieu.fr)

• Roberto di Cosmo (Université Paris VII, dicosmo@pps.jussieu.fr)

• Jérôme Vouillon (Université Paris VII, vouillon@pps.jussieu.fr)

• Jaap Boender (Université Paris VII, boender@pps.jussieu.fr)

• Berke Durak (INRIA Rocquencourt, berke.durak@inria.fr)

• Xavier Leroy (INRIA Rocquencourt, xavier.leroy@inria.fr)

• Ralf Treinen (LSV, ENS de Cachan, CNRS UMR 8643, INRIA Futurs,

treinen@lsv.ens-cachan.fr)

Openware Integration Technique for In-house Software and Open Source

Components

• Janne Merilinna (VTT Technical Research Centre of Finland)

• Mari Matinlassi (VTT Technical Research Centre of Finland)

List of Posters392

Generating and Visualising Organisational Structures of Free/Libre and Open

Source Software Projects

• Ludger Bischofs (OFFIS, Escherweg 2, 26121 Oldenburg, Germany

ludger.bischofs@offis.de)

• Wilhelm Hasselbring (University of Oldenburg, FK-2, Software

Engineering Group, PO Box 2503, 26111 Oldenburg, Germany

hasselbring@informatik.uni-oldenburg.de)

OSS design science and its influence on OSS effectiveness

• Nassim Belbaly (GSCM, France)

• Hind Benbya (GSCM, France)

• Régis Meissonier (GSCM, France)

FLOSS as Democratic Principle

• Mark Perry (Faculty of Law, University of Western Ontario)

• Brian Fitzgerald (School of Law, Queensland University of Technology)

• Nic Suzor (School of Law, Queensland University of Technology)

Elements of Open Source Community Sustainability

• Niklas Vainio (University of Tampere)

• Ville Oksanen (Helsinki University of Technology)

• Tere Vadén (University of Tampere)

• Marko Seppänen (Tampere University of Technology)

Global and Temporal Analysis of Social Positions at SourceForge.net

• Scott Christley (Dept. of Computer Science and Engineering, University of

Notre Dame)

• Greg Madey (Dept. of Computer Science and Engineering, University of

Notre Dame)

The user involvement process on open source e-learning tools

• Thiago Moreira (tjml@cin.ufpe.br)

• Alex Sandro Gomes (asg@cin.ufpe.br)

• Fábio Caparica (fcl@cin.ufpe.br)

• Rogério Nibon (rtn2@cin.ufpe.br)

Will Open Source Software Promise China a New Future of Domestic Software

Industry?

• Yuping Song (Henan University of Technology School of Law, Zhengzhou,

Henan, China 450001, songyup@gmail.com)

A Reference Model for F/OSS Process Management

• Michel Pawlak (University of Geneva, Switzerland, pawlak@cui.unige.ch)

• Ciaran Bryce (University of Geneva, Switzerland, Ciaran.Bryce@unige.ch)

Printed in the United States of America

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

