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Abstract. The use of languages based on positive or negative expres­
siveness is very common for the deployment of security policies (i.e., 
deployment of permissions and prohibitions on firewalls through single-
handed positive or negative condition attributes). Although these lan­
guages may allow us to specify any policy, the single use of positive 
or negative statements alone leads to complex configurations when ex­
cluding some specific cases of general rules that should always apply. In 
this paper we survey such a management and study existing solutions, 
such as ordering of rules and segmentation of condition attributes, in 
order to settle this lack of expressiveness. We then point out to the ne­
cessity of full expressiveness for combining both negative and positive 
conditions on firewall languages in order to improve this management 
of exceptions on access control policies. This strategy offers us a more 
efficient deployment of policies, even using fewer rules. 

1 Introduction 

Current firewalls are still being configured by security officers in a manual fashion. 
Each firewall usually provides, moreover, its own configuration language that, most 
of the times, present a lack of expressiveness and semantics. For instance, most fire­
wall languages are based on rules in the form Ri : [conditioni] -^ decisioui, 
where i is the relative position of the rule within the set of rules, decisiorii is a 
boolean expression in {accept, deny}, and {conditiorii} is a conjunctive set of con­
dition attributes, such dis protocol (p), source (s), destination (d), source port (sport), 
destination port (dport), and so on. This conjunctive set of conditions attributes, i.e., 
{conditiorii}, is mainly composed of either positive (e.g., A) or negative (e.g., ^A) 
statements for each attribute, but does not allow us to combine both positive and neg­
ative statements (e.g., A A -^B) for a single attribute, as many other languages with 
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full expressive power, such as SQL-like languages [8], do. The use of more general 
access control languages, such as the extensible Access Control Markup Language 
(XACML) [10], also present such a lack of expressiveness. This fact leads to complex 
administration tasks when dealing with exclusion issues on access control scenarios, 
i.e., when some cases must be excluded of general rules that should always apply. 

Let us suppose, for instance, the policy of a hospital where, in general, all doctors 
are allowed to consult patient's medical records. Later, the policy changes and doc­
tors going on strike are not allowed to consult medical records; but, as an exception 
to the previous one, and for emergencies purposes, doctors going on strike are still 
allowed to consult the records. Regarding the use of a language with expressiveness 
enough to combine both positive and negative statements, one may deploy the pre­
vious example as follows. We first assume the following definitions: (A) ''Doctors''; 
(B) "Doctors going on strike''; (C) ''Doctors working on emergencies". We then de­
ploy the hospital's policy goals, i.e., (1) "In Hospital, doctors can access patient's 
medical records."; (2) "In Hospital, and only for emergency purposes, doctors going 
on strike can access patient's medical records."; through the following statement: 
"In Hospital, (A A {-^B V C)) can access patient's medical records". 

The use of languages based on partial expressiveness may lead us to very compli­
cated situations when managing this kind of configurations on firewalls and filtering 
routers. In this paper, we focus on this problem and survey current solutions, such 
as first and last matching strategies, segmentation of condition attributes, and partial 
ordering of rules. We then discuss how the combination of both negative and positive 
expressiveness on configuration languages may help us to improve those solutions. 
This strategy allows to perform a more efficient deployment of network access con­
trol policies, even using fewer rules, and properly manage exceptions and exclusion 
of attributes on firewall and filtering router configurations. 

The rest of this paper is organized as follows. Section 2 recalls our motivation 
problem, by showing some representative examples, surveying related solutions, and 
overviewing their advantages and drawbacks. Section 3 then discusses our approach. 
Section 4 overviews some related work, and, finally, Section 5 closes the paper. 

2 Management of Exceptions via Partial Expressiveness 

Before going further in this section, let us start with an example to illustrate our mo­
tivation problem. We first consider the network setup shown in Figure 1(a), together 
with the following general premise: "In Private, all hosts can access web resources 
on the Internet". We assume, moreover, that firewall FWi implements a closed de­
fault policy, specified in its set of rules at the last entry, in the form R^ : deny. Then, 
we deploy the premise over firewall FWi with the following rule: 

i?i : (s G Private Ad G any/\p = tcp A dport = 80) —> accept 

Regarding the exclusion issues pointed out above, and according to the extended 
setup shown in Figure 1(b), let us assume that we must now apply the following three 
exceptions over the general security policy: 
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1. The interfaces offirewall FWi (i.e.. Interffw = {111.222.1.1. 111.222.100.1}) 
are not allowed to access web resources on the Internet. 

2. The hosts in Admin are not allowed to access web resources. 
3. The hosts in Corporate do not belong to the zone Internet. 

Fig. 1. Sample access control policy setups. 

According to the first exception, we should exclude the IP address 111.222.1.1 
from the hosts oi Private. Similarly, wc must exclude the whole set of hosts in zone 
Admin from the zone Private, and the whole set of hosts in zone Corporate, i.e., the 
range 111.222. * .*, from Internet. The use of a language with expressiveness enough 
to combine both positive and negative statements may allow us to deploy the previous 
policy goal, i.e., '"All the hosts in (Private A -^Admin A -^Interf-fw) are allowed to 
access web resources on (Internet A -^Corporate)", as the following single rule: 

: (,s f (Private A ^Admin A ^Interl- tw) A f/ E (any A —Corporate) A p -- tc.p A dport = 80) —> Qccept 

However, the lack of semantics and expressiveness of current firewall configura­
tion languages (specially the impossibility for combining both positive and negative 
statements on single condition attributes) forces us to use different strategies to make 
up for this lack of expressiveness. We overview in the following sections some pos­
sible solutions for applying the previous example by means of such languages. 
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2.1 First Matching Strategy 

Most firewalls solve the managing of exceptions by an ordering of rules. For in­
stance, the configuration language for IPTables, the administration software used to 
configure GNU/Linux-based firewalls through the Netfilter framework, is based on a 
first matching strategy, i.e., the firewall is parsing the rules until a rule applies. When 
no rule applies, the decision depends on the default policy: in the case of an open 
policy, the packet is accepted whereas if the policy is closed, the packet is rejected. 
Other languages, like the configuration language of IPFilter, the administration soft­
ware for configuring FreeBSD-, NetBSD- and Solaris 10-based firewalls, apply the 
opposite strategy, called last matching. Similar approaches have also been proposed 
in other security domains, such as the formal access control proposed in [9] to spec­
ify protection policies on XML databases. Through a first matching strategy, one 
may specify the handling of exceptions in the form Ri \ {s ^ {A/\-^ B)) ^ accept 
by means of the following ordering of rules: 

Ri \ {s ^ B) -^ deny 
R2 : {s ^ A) -^ accept 

Regarding the access control setup shown in Figure 1 (b), together with the set of 
policy goals and exceptions defined above, i.e., "All the hosts in (Private A ^Admin 
A ^Interf-fw) are allowed to access web resources on (Internet A -^Corporate)'', a 
possible solution for such a motivation example through a first matching strategy 
shall be the following set of rules: 

I /^i : (s e 111.222.1.0/24 ^d^ 111.222.0.0/16 Ap = tcpA dport = 80) -^ deny I 
\ R2 : {s e [111.222.1.13,111.222.1.25] Ad G any A p = top A dport = 80) -^ deny 
L R S : (5 G 111.222.1.1 Ade any A p = tcp A dport = 80) -^ deny 
L R 4 : (5 G 111.222.1.0/24 A d G any A p = top A dport = 80) -^ accept 

R3 : deny 

Although this strategy offers a proper solution for the handling of exceptions, it is 
well known that it may introduce many other configuration errors, such as shadowing 
of rules and redundancy [1,2], as well as important drawbacks when managing rule 
updates, specially when adding or removing new general rules and/or exceptions. For 
example, if we consider now the extended access control policy shown in Figure 1(c), 
together with the insertion of the following general rule: "In Private, all hosts can 
access web resources on the zone DMT'\ and the insertion of the following exception 
to the previous rule: "The interfaces of fireball FW\ (i.e., Interf-fw = {111.222.1.1, 
111.222.2.1, 111.222.100.1}) are not allowed to access web resources on the zone 
DMZ''\ we shall agree that the resulting rules according with these two new premises 
are the following ones: R^ : {s e 111.222.1.1 A d G 111.222.2.0/24 A p = tcp A 
dport = 80) ^ deny;Rj : {s G 111.222.1.0/24 A d G 111.222.2.0/24 A p = 
tcp A dport = 80) ^ accept. Such new rules must be inserted in the previous set of 
rules as shown in Figure 2. 

Notice that, in the previous example, the only possible ordering of rules that guar­
antees the defined assumptions forces us to place the new general rule in the second 
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\ Ri : {s e 111.222.1.1 Ade any A p = tcp A dport = 80) -^ deny 
L R 2 : (s G 111.222.1.0/24Ad G 111.222.2.0/24Ap = tcpAdport = 80) -^ accept 
\ R3 : {s e [111.222.1.13,111.222.1.25] Ac? G any A p = tcp A dport = 80) -^ deny 
L R 4 : (s G 111.222.1.0/24 Ade 111.222.0.0/16 Ap^tcpA dport = 80) -^ deny 
LRS : (5 G 111.222.1.0/24 A ci G any A p = tcpAdport = 80) -^ accept 

RQ : den?/ 

Fig. 2. Set of rules for our second motivation example. 

position ofthe set of rules as i?2 : (s G 111.222.1.0/24 Ad G 111.222.2.0/24 Ap = 
tcp A dport = 80) -^ accept. Let us also notice that the related rule to the local 
exception ''The interfaces of firewall FWi are not allowed to access web resources 
on the Internet'', i.e., the former rule R^ : {s e 111.222.1.1 A d G any A p = 
tcp A dport = 80) —> deny, is now a global exception, and it must be placed in 
the first position of the set, i.e., it must be placed as Ri : {s e 111.222.1.1 A d G 
any A p = tcp A dport = 80) ^ deny. 

As we can observe, the use of this strategy will continously increase the com­
plexity of the firewall's configuration as the combination of rules will also do. Fur­
thermore, we can even propose combinations of rules that will not be possible to 
implement by simply ordering the rules. For instance, let us consider the following 
two condition attributes A and B, such that AnB j^ (/), and the following two rules: 
i?i : (s G (A A -< B)) —> accept; R2 : {s e {B A^ A)) ^ accept. As we have seen 
in this section, the use of a first matching strategy should easily allow us to separately 
implement these two rules as follows: 

Ri^i : {s e B) ^ deny /?2,i : {s e A) ^ deny 
-^1,2 '• (s G A) —* accept R2.2 '• (s € B) —>• accept 

However, the simple ordering of rules for such an example will not allow us to 
find out any appropriate combination of rules Ri and R2. Instead, we should first 
compute An B and then transform the previous rules as follows: 

Ri.i : {s e {An B)) -^ deny ^2,1 : (s G (A H B)) -^ deny 
-R1.2 : (s G A) —> accept ^2,2 : (s G B) ^ accept 

and finally deploy the following set of rules: 

i?i : (s G (A n B) ^ deny 
R2 '• {s G A) ^ accept 
R3 : (s ^ B) —>• accept 

We can thus conclude that through this strategy the handling of exceptions can 
lead to very complex configurations and even require additional computations and 
transformations processes. The administration of the final setup becomes, moreover, 
an error prone difficult task. Other strategies, like the segmentation of condition at­
tributes or the use of a partial order of rules, will allow us to perform similar manage­
ments with better results. We see these other two strategies in the following section. 
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2.2 Segmentation of Condition Attributes 

A second solution when managing exceptions on access control policies is to directly 
exclude the conditions from the set of rules. In [6, 5], for example, we presented a 
rewriting mechanism for such a purpose. Through this rewriting mechanism, one 
may specify the handling of exceptions in the form Ri : (s e {AA-^ B)) -^ accept 
by simply transforming it into the following rule: 

Ri : {s e {A- B)) -^ accept 

The deployment of our motivation example, i.e., ''All the hosts in (Private 
A ^Admin A ^Interf-fw) are allowed to access web resources on (Internet A -^Corpo­
rate/', through this new strategy, will be managed as follows. We first obtain the set 
of exclusions, i.e., (Private - Admin - Interf-fw) and {Internet - Corporate): 

I Private = 111.222.1.* I 

Aclmin= [111.222.1.13, 111.222.1.25] 

Interf-/W = {111.222.1.1, 111.222.100.1} 

Private - Admin - Interf-fW -> [111.222.1.2, 111.222.1.12] U [111.222.1.26, 111.222.1.254] 

Internet =*.**.* 

Corporate = 111.222.*.* 

Internet - Corporate -^ [0.0.0.1, 111.222.255.254] U [111.223.1.1, 255.255.255.254] 

Then, we must deploy the following rules: 

\ Ri: {se [111.222.1.2,111.222.1.12] Ade [0.0.0.1,111.222.255.254] \ I 
A p = tcp A dport = 80) ^ accept 

\ R2:{se [111.222.1.26,111.222.1.255] Ade [0.0.0.1,111.222.255.254] \ 
A p = tcp A dport == 80) —̂  accept 

\ Rs'-is e [111.222.1.2,111.222.1.12] Ade [111.223.1.1,255.255.255.254] \ 
A p = tcp A dport = 80) -^ accept 

LR4 : (s G [111.222.1.26,111.222.1.255] Ade [111.223.1.1, 255.255.255.254] \ 
A p = tcp A dport — 80) -^ accept 

R3 : deny 

The main advantage of this approach, apart from offering a solution for the man­
agement of exceptions, is that the ordering of rules is no longer relevant. Hence, 
one can perform a second transformation in a positive or negative manner: posi­
tive, when generating only permissions; and negative, when generating only prohi­
bitions. Positive rewriting can be used in a closed policy whereas negative rewrit­
ing can be used in case of an open policy. After this second rewriting, the secu­
rity officer will have a clear view of the accepted traffic (in the case of positive 
rewriting) or the rejected traffic (in the case of negative rewriting). However, it also 
presents some drawbacks. First, it may lead to very complex configuration setups 
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that may even require a post-process of the different segments. Second, it may in­
volve an important increase of the initial number of rules^. Nevertheless, such an 
increase may only degrade the performance of the firewall whether the associated 
parsing algorithm of the firewall depends on the number of rules. Third, the manag­
ing of rule updates through this strategy may also be very complex, since the addition 
or elimination of new exceptions may require a further segmentation processing of 
the rules. Some firewall implementations, moreover, are not able to directly manage 
ranges (e.g., they can require to transform the range [111.222.1.2,111.222.1.12] into 
{111.222.1.2/31 U 111.222.1.4/29 U 111.222.1.12/32}), and should require the use 
of third party tools. 

2.3 Partial Ordering of Rules 

To our knowledge, the most efficient solution to manage the problem of exceptions 
on access control poHcies would be by means of a strategy based on partial ordering 
of rules. Notice that in both first and last matching approaches (cf. Section 2.1), the 
interpretation of the rules depends on the total order in which the rules are specified, 
i.e., a total order describes the sequence of rules from a global point of view. How­
ever, this ordering of rules can also be implemented in a partial manner, where a set 
of local sequences of rules are defined for a given specific context. 

In the case of NetFilter-based firewalls, for instance, a partial ordering of rules 
may be achieved through the chain mechanism of IPTables. In this way, we can 
group sets of rules into different chains, corresponding each one to a given excep­
tion. These rules are, moreover, executed in the same order they were included into 
the chain, i.e., by means of a first match strategy. When a specific traffic matches 
a rule in the chain, and the decision field of this rule is pointing out to the action 
return, the matching of rules within the given chain stops and the analysis of rules 
returns to the initial chain. Otherwise, the rest of rules in the chain are considered 
until a proper match is found. If no rule applies, the default policy of the chain does. 
Thus, through this new strategy, one may specify the handling of exceptions in the 
form Ri : {s e {A A -^ B)) -^ accept as follows: 

i^i : (s G A) —> jumpto chairiA 

i?2 ^^"^ : (s G 5 ) —̂  return 
r-tchain A , 

\ Ri • accept 

Regarding the scenario shown in Figure 2, i.e., ''(1) All the hosts in (Pri­
vate A ^Admin A -^Interf-Jw) are allowed to access web resources on (Internet 
A -^Corporate)', (2) All the hosts in (Private A ^Interf-fw) are allowed to access web 
resources on DMT', we can now implement such premises via two chains, private-
to-internet (or p2i for short) andprivate-to-dmz (orp2d for short), as follows: 

^ This increase is not always a real drawback since the use of a parsing algorithm independent 
of the number of rules is the best solution for the deployment of firewall technologies [14]. 



104 Joaquin Garcia-Alfaro, Frederic Cuppens, and Nora Cuppens-Boulahia 

\RI : {s e 111.222.1.0/24 A d e any A p = tcp A dport = 80) -> jump Jo p2i 

7?2 : {s G 111.222.1.0/24 A d e 111.222.2.0/24 A p = tcp A dport = 80) -^ jumpjo p2d 

Rs : deny 

Rf'' : {s e 111.222.1.1) -^ return 

Rf' : {s e [111.222.1.13, 111.222.1.25]) -^ return 

Rf' : {d G 111.222.0.0/16) -^ return 

R^^ ' : accept 

Rf'^ : (s e 111.222.1.1) -^ return 

i?2 ' • accept 

Let us now consider the same rules specified in the syntax of NetFilter. The first 
two rules create a chain called "private-to-intemet" (or p2i for short) and a chain 
called "private-to-dmz" (or p2d for short). The third rule corresponds to the posi­
tive inclusion condition for the first general case (this way, when a given packet will 
match this rule, the decision is to jump to the chain p2i and check the negative ex­
clusion conditions). Similarly, the fourth rule corresponds to the positive inclusion 
condition for the second general case. We shall observe that in order to deploy this 
example over a firewall based on Netfilter we should first verify whether its version 
of IPTables has been patched to properly manage ranges. We must also correctly 
define in the final IPTables script those variables such as $PRIVATE, $DMZ, etc. 

iptables -Np2i 
iptables -Np2d 

iptables -A FORWARD -s $PRIVATE -p tcp -dport 80 -jp2i 
iptables -A FORWARD -s SPRIVATE -d $DMZ -p tcp -dport 80 -jp2d 
iptables-A FORWARD-j DROP 

iptables -A p2i -s SINTERF_FIREWALL -j RETURN 
iptables-A p2i-s SADMIN-j RETURN 
iptables -A p2i -d $CORPORATE -j RETURN 
iptables-A p2i-j ACCEPT 

iptables -A p2d -s $INTERF_FIREWALL -j DROP 
iptables -A p2d -j ACCEPT 

The main advantages of this strategy (i.e., partial ordering of rules) are threefold. 
First, it allows a complete separation between exceptions and general rules; second, 
the ordering of general rules is no longer relevant; and third, the insertion and elim­
ination of both general rules and exception is very simple. We consider, moreover, 
that a proper reorganization of rules from a total order strategy to a partial order one 
may also help us to improve not only the handling of exception, but also the fire­
wall's performance on high-speed networks [15, II]. In [15], on the one hand, the 
authors propose a refinement process of rules which generates a decision-like tree 
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implemented through the chain mechanism of IPTables. Their approach basically re­
organizes the set of configuration rules into an improved setup, in order to obtain a 
much flatter design, i.e., a new set of configuration rules, where the number of rules 
not only decreases but also leads to a more efficient packet matching process. In [11], 
on the other hand, the authors also propose a reorganization of rules in order to bet­
ter deploy the final configuration. Nevertheless, both authors in [15] and [11] do not 
seem to address the handling of exceptions, neither expressiveness aspects of their 
configuration language - that seems to rely upon partial expressiveness languages. 

3 Use of Full Expressiveness 

Notice that the solutions above overviewed are always based on partial expressive­
ness, i.e., they implement security policies by means of security rules whose condi­
tion attributes are mainly composed of either positive (e.g.. A) or negative (e.g., ^A) 
statements, but they do not allow us to combine both positive and negative statements 
(e.g., A A ^B) for a single attribute at the same time. Although we have seen in the 
previous section that these languages may allow us to specify any possible security 
policy, they can can lead to very complex configurations when dealing with the man­
agement of exceptions. However, the use of both negative and positive statements 
for each condition attribute may allow us to specify filtering rules in a more efficient 
way. The use of a structured SQL-like language [8], for example, will allow us to 
manage the handling of exceptions in the form Ri : (s G {A A -^ B)) -^ accept 
through the use of queries like the following ones: 

select decision select decision from/ireu;o,//where (s G A) 
from firewall minus 
where {s G A) A {s ^ B) select decision from firewall where {s G B) 

However, these kind of languages are not currently being used for the config­
uration of firewalls or similar devices - at least not for managing exceptions on 
access control policies, as defined in this paper. We consider that they will allow 
security officers to deploy the security policies in a more efficient manner, as well 
as to properly manage the handling of exceptions on access control policies. Let us 
for example assume that the configuration language we have been using along the 
examples of this paper allows us the combination of either positive (e.g.. A) and neg­
ative (e.g., ^A) statements for each attribute of a single filtering rule. For the sake 
of simplicity, let us just assume the use of a 2-tuple for specifying both positive and 
negative values of each attribute (e.g., Ri : {s e {A A ^ B)) —> accept becomes 
Ri : {s[-\-] e A A s[-] e B) -^ accept). Let us also assume that both positive 
and negative values are initialized to 0 by default. Let us finally assume that we 
rewrite the matching algorithm implemented in our hypothetical firewall FWi into 
Algorithm 1. In this case, we can easily deploy the first motivation example based 
on Figure l(b)'s setup, i.e., "'All the hosts in (Private A ^Admin A ^Interf-fw) are 
allowed to access web resources on (Internet A ^Corporate)'', as follows: 
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Algorithm 1: Ma tch ingAlgo r i t hm 

input : (1) firewall's filtering rules: 
(2) firewall's default policy: policy, 
(3) packet: p 

output: decision 
1 decision ^- policy; 
2 H ^ G e t P a c k e t H e a d e r s (p); 

/ * Let r, = (A|[+] G V + ) A ( A [ [ - ] e V ' ) • • • (A^J+j E V.+) A (A^fj-] ^ V ' ) ^ d.-^. * / 

/ * where A'^ -n t"'"] ̂"'̂  ^1 v^"^ ATB, respectively, the set of positive and negative * / 

/ * attribute conditions of rule r,,; ; and V-, , and V-, are, respectively, the set * / 

/ * of positive and negative attribute values of rule v.--, * / 

3 for i ^ 1 to n do 
4 I if {Hi n v+ 7̂  0) A {Hi ny- = 0) • • • {H,, n v̂ + 7̂  0) A (//p n V' = 0) then 
5 decision ^- di\ 
6 I break; / * Leave t h e loop */ 

7 return decision; 

I Ri : (s[+] e 111.222.1.0/24 A s[-] G {[111.222.1.13,111.222.1.25] \ I 
U 111.222.1.1} A d[+] G an?/ A ^[-] G 111.222.0.0/16 A p[+l - tcp \ 
A dport[-^] = 80) ^ accept 

R2 : (ien?/; 

Regarding the second motivation example, i.e., " ( 0 ^^^ ^^^ /zô ^̂ - m (Private 
A ^Admin A -^Interf-fw) are allowed to access web resources on (Internet A ^Corpo­
rate); (2) ^// //ze /zo /̂̂  //? (Private A ^Interf-fw) are allowed to access web resources 
on the zone DMZ'\ we can now properly specify the resulting set of rules as follows: 

I Ri : (s[+] G 111.222.1.0/24 A s [ - ] G {[111.222.1.13,111.222.1.25] \ I 

U 111.222.1.1} A rf[+] G any A d [ - ] G 111.222.3.0/24 A p[+] = tcp \ 

A c/port[+] G 80) -^ accept 

i?2 : (s[+] e 111.222.1.0/24 A s [ - ] G 111.222.1.1} A c/[+] G 111.222.2.0/24 \ 

A p[+] = tcp A dport[+] G 80) —> accept 

R'S : deny; 

As we can observe, the use of a language based on both positive and negative 
statements, when specifying the condition attributes of the security rules of a fire­
wall, allows us a more efficient deployment of policies, even using fewer rules. We 
therefore consider that the little modification we must perform to improve the expres­
siveness of current firewall configuration languages may allow us to better afford the 
managing of exceptions on network access control policies. To verify such an as­
sumption, we implemented a proof-of-concept by extending the matching algorithm 
of IPTables through a Neffilter extension. Due to space limitation, we do not cover 
in the paper this first proof-of-concept. However, a report regarding its implementa­
tion and performance is provided at the following address h t t p : / /www. c r i m -
p l a t i n u m . o r g / f e x / r e p o r t . p d f . 
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4 Related Work 

To our knowledge, very little research has been done on the use of full expressiveness 
languages for the management of firewall configuration as we address in this paper. 
In [12], for instance, a SQL-like query language for firewalls, called Structured Fire­
wall Query Language is proposed. The authors do not seem to address, however, 
whether such a language can be used for examining incoming and outgoing traffic, 
neither to accept nor discard such traffic. The language seems to only be used for the 
understanding and analysis of firewall's functionality and behavior, rather than be 
used to perform packet matching or for expressiveness improvement purposes. Sim­
ilarly, the authors in [13] propose a firewall analysis tool for the management and 
testing of global firewall policies through a query-like language. However, the ex­
pressiveness power of such a language is very limited (just four condition attributes 
are allowed), and we doubt it may be useful to address our motivation problem. 

Some other approaches for the use of formal languages to address the design and 
creation of firewall rules have been proposed in [4, 7, 3]. However, those approaches 
aim at specifying and deploying a global security policy through a refinement process 
that automatically generates the configuration rules of a firewall from a high level 
language. Thus, the problem of managing exceptions is handled in those works at a 
high level, rather than a concrete level, and so, the proper configuration once solved 
the managing issues shall be implemented through one of the strategies already dis­
cussed in Section 2. Finally, some proposals for the reorganization of filtering rules 
have been presented in [15, 11]. However, and as we already pointed out in Section 
2, those approaches do not seem to address the handling of exceptions, neither ex­
pressiveness aspects of their configuration languages. Their reordering process aim 
at simply improve the firewall's performance on high speed networks, rather than to 
offer an easier way to manage the exclusion of condition attributes. 

5 Conclusions 

In this paper we have studied current strategies in order to manage and deploy pol­
icy exceptions when configuring network security components, such as firewalls and 
filtering routers. As we have discussed, those components are still being configured 
by security officers in a manual fashion through partial expresssiveness based lan­
guages. We have also discussed how the use of these languages can lead to very com­
plex configurations when dealing with exclusions of general rules that should always 
apply. We finally pointed out to the necessity of full expressiveness for combining 
both negative and positive conditions on firewall languages in order to improve this 
management of exceptions on access control policies. As we have seen, the simple 
modification of a general packet matching algorithm can allow us to perform a more 
efficient deployment of policies by using almost always fewer rules. 

As work in progress, we are actually evaluating the implementation of the strat­
egy presented in this paper over NetFilter-based firewalls. For the moment, we have 
slightly modified its matching process according to the algorithm shown in Section 3, 
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through the rewriting of a new matching process for IPTables. This first proof-of-
concept demonstrates the practicability of our approach. However, we must conduct 
more experiments to study the real impact on the performance of Netfilter through 
real scenarios when using our proposal. We plan to address these evaluations and 
report the results in a forthcoming paper. 
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