
Chapter 4 

The Development of Encapsulation Dehydration  

The application of cryopreservation to plants is relatively recent as the first 
report of successful cryopreservation was published by Sakai in 1960 with 
silver birch twigs, and in-vitro cultured flax cells were frozen by Quatrano 
in 1968.  The first protocols developed in the 1980s included pre-treatment 
with cryoprotectants followed by controlled rate cooling. These protocols 
were based on freeze-induced dehydration (Sakai 1985; Kartha and 
Engelmann 1994; Engelmann 1997). Such protocols were applied to 
numerous species, especially from temperate origin; however, there were 
cases, particularly for plants of tropical origin, where such controlled cool-
ing protocols did not produce good results (Bagniol et al. 1992; Haskins 
and Kartha 1980). Further research was thus carried out and at the begin-
ning of the 1990s a set of new, vitrification-based protocols became avail-
able (Engelmann 2000, 2003). Vitrification can be defined as the transition 
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of water directly from the liquid phase into an amorphous phase or glass, 
while avoiding the formation of crystalline ice (Fahy et al. 1984).  Among 
these vitrification techniques a new technique termed encapsulation dehy-
dration was developed for cryopreservation of pear and potato shoot-tips 
(Dereuddre et al. 1990; Fabre and Dereuddre 1990). This method is based 
on the technology developed for producing synthetic seeds, i.e. the encap-
sulation of explants in calcium alginate beads (Redenbaugh et al. 1986). 
Encapsulated explants are then precultured in liquid medium with a high 
sucrose concentration and partially desiccated before exposure to liquid 
nitrogen (LN). Encapsulating the explants allows exposure to extreme 
treatments including preculture with high sucrose concentrations and des-
iccation to low moisture contents (MCs) that would be highly damaging or 
lethal to non-encapsulated samples. Due to the extreme desiccation of 
explants, most or all freezable water is removed from cells, and vitrifica-
tion of internal solutes takes place during rapid exposure to LN, thus 
avoiding lethal intracellular ice crystallization (Engelmann 1997). As a con-
sequence, the whole or a large part of the frozen explant is kept intact after 
rewarming, which results in high survival, rapid and direct regrowth and 
reproducible results after cryopreservation (Engelmann 2000). 

The encapsulation–dehydration technique was applied to other species 
from temperate climates including shoot tips of eucalyptus (Poissonnier 
et al. 1991) and grape (Plessis et al. 1991) and carrot somatic embryos 
(Dereuddre et al. 1991). Later, it was experimented with plants from 
tropical origin, notably apices of cassava (Benson et al. 1992), sugarcane 
(Gonzalez-Arnao et al. 1993a, b; Paulet et al. 1993) and coffee (Mari et al. 
1995). The technique was successfully extended to over 70 different plant 
species (Table 4.1). In this chapter we present and discuss the optimal 
conditions of the successive steps of an encapsulation–dehydration proto-
col and make a brief overview of the current application of the technique. 

Table 4.1 Plant species whose shoot tips (or other explants – specified in the col-
umn Plant species) were cryopreserved using the encapsulation–dehydration tech-
nique 

Acacia mangium Sudarmonowati and 
Rosmithayani 1997 

Actinidia chinensis Wu et al. 2001 
Actinidia chinensis  Suzuki et al. 1996 
Actinidia spp. Bachiri et al. 2001 
Amygdalus communis L. Al-Ababneh et al. 2003 
Anacamptis morio seeds + fungal symbiont Wood et al. 2000 
Anthirrinium microphyllum Gonzalez-Benito et al. 1998 
Armoracia rusticana hairy root cultures Hirata et al. 1995 

Plant species Reference 
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Armoracia rusticana hairy root cultures Phunchindawan et al. 1997 
Auricularia Hirata et al. 1996 
Beta vulgaris Vandenbussche and De Proft 1996 
Brassica napus microspore embryos Uragami 1993 
Camellia sinensis L.O. Kuntze Aoshima 1997 
Catharantus roseus cell suspension Bachiri et al. 1995 
Centaurium rigualii Esteve Gonzales-Benito and Perez 1997 
Ceratopetalum gummiferum Shatnawi and Johnson 2004 
Chichorium intybus Vandenbussche et al. 1993 
Chrysanthemum morifolium Sakai et al. 2000 
Citrus aurentium Al-Ababneh et al. 2002 
Citrus madurensis Cho et al. 2002 
Citrus spp. Gonzalez-Arnao et al. 1998 
Citrus spp. Embryonic axes Santos and Stushnoff 2002 
Citrus spp. Ovules and somatic embryos Gonzalez-Arnao et al. 2003 
Cocos nucifera Hornung et al. 2001a 
Coffea racemosa Mari et al. 1995 
Coffea sessiliflora Mari et al. 1995 
Cosmos atrosanguineus Wilkinson et al. 1998 
Cynodon sp Reed et al. 2006 
Dactylorhiza fuchsii seeds + fungal symbiont Wood et al. 2000 
Daucus carota somatic embryos Dereuddre et al. 1991 
Dianthus caryophyllus L. Tannoury et al. 1995 
Dianthus hybridus cv Sakuranadesiko Fukai et al. 1994 
Digitalis obscura Sales et al. 2001 
Dioscorea alata Malaurie et al. 1998 
D. bulbifera Malaurie et al. 1998 
Dioscorea spp. Mandal et al. 1996 
Ekebergia capensis Perán et al. 2006 
Eucalyptus gunnii Poissonnier et al. 1991 
Eucalyptus sp. Pâques et al. 1997 
Eucalyptus grandis x E. camaldulensis Blakesley and Kiernan 2001 
Fragaria x ananassa Clavero-Ramirez et al. 2005 
Holostemma annulare Decruse et al. 1999 
Iopomea batatas Pennycooke and Towill 2001 
Iris nigricans Shibli 2000 
Laminaria digitata L. gametophytes Vigneron et al. 1997 
Lilium Matsumoto and Sakai 1995 
Lolium sp. Chang et al. 2000 
Malus spp. Zhao et al. 1999 
Malus x domestica Borkh. Paul et al. 2000; Wu 1999 
Manihot esculenta Crantz. Manrique 2000; Escobar-Pérez 2005 
Medicago sativa L. cell suspensions Shibli et al. 2001 
Mentha spicata Sakai et al. 2000 
Microalgae Hirata et al. 1996 
Morus bombysis Niino et al. 1992 

Shibli and Al-Juboory 2000 
Oncidium bifolium seeds and protocorms Flachsland et al. 2006 
Paeonia lactiflora Pall. zygotic embryos Kim et al. 2004 
Pelargonium spp. Grapin et al. 2003 
Polygonium aviculare cell suspension Swann et al. 1998 

Olea europaea somatic embryos 
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Poncirus trifoliata (L.) Raf. x Citrus sinensis (L.) Wang et al. 2002a 
Populus tremula x alba Accart et al. 1993 
Primula pubescens Hornung et al. 2001b 
Prunus dulcis Shatnawi et al. 1999 
Pyrus communis Dereuddre et al. 1990 
Pyrus communis cv Beurré Hardy Scottez et al. 1992 
Pyrus syriaca Tahtamouni and Shibli 1999 
Quercus ilex embryonic axes Gonzales-Benito et al. 1999 
Quercus suber embryonic axes Gonzales-Benito et al. 1999 
Ribes spp. Reed and Yu 1995; Reed et al. 2005 
Rhododendron simmsii Planch. Verleysen et al. 2005 
Rubus idaeus L Wang et al. 2005 
Rubus spp. Gupta and Reed 2006 
Saccharum spp. Gonzalez-Arnao et al. 1993a, b 
Saintpaulia ionantha Wendl. Moges et al. 2004 
Salix Blakesley et al. 1996 
Solanum spp. Fabre and Dereuddre 1990 
Solanum tuberosum Grospietch et al. 1999 
Sygysium francissi Shatnawi et al. 2004 
Theobroma cacao L. somatic embryos Fang et al. 2004 
Vaccinium pahalae (Ohelo) cells Shibli et al. 1998 
Vinca minor L. hairy root cultures Hirata et al. 2002 
Vitis spp. Wang et al. 2000 
Vitis vinifera L. Plessis et al. 1991 
Vitis vinifera L. Zhao et al. 2001 
Vitis vinifera L. 
embryogenic cell suspension 

Wang et al. 2002b 

Vitis vinifera L. somatic embryos Miaja et al. 2004 
Wasabia japonica  Matsumoto et al. 1995 
Zoysia sp. Chang et al. 2000 

An encapsulation–dehydration protocol comprises the successive steps 
listed below. Conditions for each step require optimization to achieve 
maximal recovery of explants after cryopreservation.  The basic steps of 
preconditioning, preculture, encapsulation, osmoprotection and dehydra-
tion before exposure to LN apply in all cases. 

The physiological status of the plant material is of paramount importance 
for the success of cryopreservation. Samples are generally excised from 
actively growing mother plants, thus ensuring that they are composed of 
actively dividing meristematic cells (Engelmann 1997; Escobar et al. 

4.2

4.2.1 Physiological Status of the Plant Material 

Successive Steps of the Protocol 
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1997). For example, kiwi are excised 14 days and Citrus shoot tips 20 days 
after the last subculture (Bachiri et al. 2001; Gonzalez-Arnao et al. 1998), 
i.e. when in vitro plantlets are in full growth. On the opposite side, apple 
shoot tips were sampled on mother plants that were not subcultured for 70 
days and grape for 3–4 months (Zhao et al. 1999, 2001). The hypothesis of 
the authors, to explain the higher recovery noted after cryopreservation of 
such explants in comparison with those sampled on more frequently subcul-
tured mother plants, is that the moisture content of apices of non-subcultured 
plants is lower. In the case of somatic embryos, they are cryopreserved at a 
given developmental stage to optimize recovery. Torpedo stage carrot somatic 
embryos give the highest recovery (Dereuddre et al. 1991), while with Cit-
rus globular, torpedo and heart stage embryos are the material of choice for 
cryopreservation (Gonzalez-Arnao et al. 2003). 

Preconditioning corresponds to the culture of the mother plants under con-
ditions different from standard ones, which aim at conditioning explants to 
withstand cryopreservation protocols. Preconditioning can involve various 
manipulations of the culture conditions such as culturing mother plants at 
low temperature in the case of cold-tolerant species (Wu et al. 2001; 
Matsumoto and Sakai 1995; Hirata et al. 1996; Zhao et al. 1999; 2001; 
Sakai et al. 2000; Dereuddre et al. 1990), or on medium with high sucrose 
content (Decruse et al. 1999; Grospietch et al. 1999). 

Preculture corresponds to the culture of the explants for several hours or 
days after excision and before encapsulation. Sugarcane and coffee apices 
are cultured overnight on standard solid medium after excision (Paulet 
et al. 1993; Gonzalez-Arnao et al. 1993a; Mari et al. 1995). Kiwi, straw-
berry, chrysanthemum and wasabi shoot tips are cultured from one to sev-
eral days on agar-based medium with a high sucrose concentration 
(Bachiri et al. 2001; Clavero-Ramirez et al. 2005; Sakai et al. 2000). Cit-
rus madurensis shoot tips are first cultured on solid medium with 0.1 M 

cultured for 7 days on 0.75 M sucrose solid medium before encapsulation 
(Reed et al. 2005). 
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4.2.2 Preconditioning  

4.2.3 Preculture 

sucrose, then on medium with 0.3 M sucrose and 0.5 M glycerol (Cho  
et al. 2002). Black currant shoot tips are either cold acclimated for 2 weeks or 
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For preparation of alginate beads the plant material is suspended in cal-
cium-free liquid basal medium with 3% sodium alginate (low viscosity, 
250 cps) (Gonzalez-Arnao and Engelmann 2006). This solution generally 
contains sucrose at the level used in the normal culture medium. In some 
cases, explants may also be encapsulated in a medium with a slightly 
higher sucrose concentration. The mixture is dropped with a pipette into 
liquid culture medium containing a high concentration of calcium chloride 
(usually 100 mM CaCl2). This induces the polymerization of alginate in 
presence of an elevated concentration of calcium, thereby producing beads 
around the explants. These spherical beads are usually 4 or 5 mm in diame-
ter and contain one apex or more. They are held in the calcium solution for 
20–30 min after the last bead is formed to guarantee a good polymerization. 
Bead polymerization can be controlled visually since beads are translucent 
immediately after their formation and become progressively opaque as 
polymerization progresses. Beads should be transferred to the sucrose pre-
culture medium only when they are completely opaque, i.e. when polymeri-
zation seems to be complete. 

Osmoprotection corresponds to the treatment of encapsulated explants in 
medium with sucrose for several hours or days immediately before desic-
cation and cryopreservation. Beads containing the explants are placed in 
Erlenmeyer flasks in agitated liquid medium with between 0.50 and 1.25 
M sucrose. The sucrose concentration most commonly employed is 0.75 
M. Sucrose treatment durations vary from 16 to 18 h as for sugarcane 
(Paulet et al. 1993; Gonzalez-Arnao et al. 1993a) to 7–10 days in the case 
of coffee (Mari et al. 1995) and yam (Malaurie et al. 1998). With some 
plant materials osmoprotection of samples directly in a medium with high 
sucrose concentration is toxic and produces very low regrowth. In such 
cases a progressive increase in sucrose concentration by daily transfers of 
the plant material in medium with higher concentration may result in reduc-
ing the toxic effect of the high osmotic stress and in increasing regrowth. 
Gradual increase of sucrose by 0.25 M incremental steps ensured over 80% 
survival for shoot tips of grape for 1 M final sucrose concentration and 70% 
for 1.5 M (Plessis et al. 1991), whereas direct exposure to these media led to 
very low recovery. Recovery of apple shoot tips was maximal after daily in-
crease of the sugar concentration with the following sequence: 0.1 M/0.3 
M/0.7 M/1.0 M (Zhao et al. 1999). Some plant materials are treated with a 

4.2.4 Encapsulation 

4.2.5 Osmoprotection 
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mixture of osmoprotectants. Lily shoot tips were protected with a mixture 
of 0.8 M sucrose and 1 M glycerol (Matsumoto and Sakai 1995) and Cit-
rus madurensis apices with 2 M glycerol and 0.6 M sucrose (Cho et al. 
2002). In an alternative treatment for cryopreservation of encapsulated 
explants they are treated with highly concentrated vitrification solutions 
(Sakai 2000) and frozen directly in LN without air dehydration. This tech-
nique, termed encapsulation vitrification, is described in detail by Sakai 
(see Chap 3). 

After osmoprotection beads are rapidly surface dried on sterile filter paper 
to remove any remaining liquid medium and are submitted to physical 
dehydration by evaporation at room temperature. Two desiccation methods 
can be employed: dehydration under the air current of a laminar flow cabi-
net or dehydration in sealed containers with dry silica gel. Desiccation 
under the laminar flow can produce variable desiccation rates depending 
on the airflow rate, air temperature, and relative humidity. By contrast des-
iccation in airtight containers with silica gel provides reproducible condi-
tions from one experiment to the next and is, thus, highly recommended, 
especially in tropical countries where the relative humidity is usually very 
high (Gonzalez-Arnao and Engelmann 2006). In general, the bead water 
content that ensures highest regrowth after cooling in LN is around 20%, 
which corresponds to the amount of unfreezable water in the samples. At 
such water contents, only glass transitions are recorded by differential 
scanning calorimetry when samples are plunged in LN (Sherlock et al. 
2005). This value may vary depending on the species and the type of sam-
ples. For example, bead water content was 27% for pear shoot tips encap-
sulated in larger alginate beads (Scottez et al. 1992), 33% for encapsulated 
meristems of apple and mulberry (Niino and Sakai 1992), and microspore 
embryos of oilseed rape survived best at 18–20% MC (Uragami 1993).  

After dehydration, beads are placed in 1 or 2 ml polypropylene sterile 
cryotubes for cryopreservation. In most cases vitrification is employed by 
direct immersion of the cryotubes in LN. In some cases, including grape 
(Plessis et al. 1991; Zhao et al. 2001), potato (Fabre and Dereuddre 1990) 
and Citrus (Gonzalez-Arnao et al. 1998) shoot tips, controlled rate cooling 
using a programmable freezer followed by immersion of samples in LN 
was required to obtain higher regrowth after cryopreservation. For storage, 
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4.2.6 Dehydration 

4.2.7 Cryopreservation 
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cryotubes are usually immersed in LN or held in LN vapors in storage 
tanks. 

With the encapsulation–dehydration technique, rewarming is usually car-
ried out slowly at room temperature since samples are sufficiently dehy-
drated before freezing and there is no risk of ice recrystallization upon 
warming (Gonzalez-Arnao and Engelmann 2006). Thus regrowth becomes 
independent of the rewarming method. For slow rewarming, beads are 
taken out of the cryotubes and placed in open Petri dishes in the laminar 
air flow cabinet for about 5 min or they are transferred directly onto the 
recovery medium. In cases where rapid warming is performed the cryo-
tubes are stirred in a water bath for 2–3 min at 40°C as in the case of lily 
and wasabi (Matsumoto and Sakai 1995; Matsumoto et al. 1995), 1 min at 
45°C for blackberry (Gupta and Reed 2006) or at 25°C as for mulberry and 
chicory (Niino et al. 1992; Vandenbussche et al. 1993). In some cases the 
beads are rehydrated with the addition of liquid culture medium for 5–10 
minutes (Chang et al 2000; Gupta and Reed 2005; Reed et al. 2006). 

Regrowth generally takes place on standard semi-solid culture medium. 
Explants are transferred under standard conditions as in the case of citrus, 
apple and almond shoot tips (Gonzalez-Arnao et al. 1998; Zhao et al. 
1999; Shatnawi et al. 1999). The composition of the recovery medium may 
be transitorily modified to eliminate the phenolic compounds produced by 
dead cells either by adding activated charcoal to the medium as in the case 
of sugarcane apices (Paulet et al. 1993; Gonzalez-Arnao 1996) or to stimu-
late proliferation of frozen explants by modifying the growth regulator 
content of the medium as with sugarcane and yam apices (Paulet et al. 
1993; Malaurie et al. 1998). In some cases it is necessary to extract the 
explants from the beads and to place them directly on the recovery medium 
to ensure their regrowth, as in the case of microspore embryos of oilseed 
rape (Uragami 1993), apices of grape (Plessis et al. 1991) and mulberry 
(Niino et al. 1992). A softer medium is used in some cases to facilitate 
shoot regrowth (Gupta and Reed 2005; Reed et al. 2006). The environ-
mental conditions are also important for regrowth. It is beneficial to per-
form the post-warming recovery in the dark for a short period (around 1 
week) for organized structures such as meristems (Gonzalez-Arnao and 

4.2.8 Rewarming 

4.2.9 Recovery 



67 

cryopreserved samples (Benson 1990).  

The ultimate viability assessment after a cryopreservation experiment is the 
direct production of new tissues from the cryopreserved explants. Direct 

grow without the production of callus. 

Dehydration 

Encapsulation dehydration was successful with over 70 plant species 
(Table 4.1). However there are few cases where this technique has been 
tested on a large number of accessions of the same species or species of 
the same genus. Sugarcane apices of 15 commercial varieties representing 
a broad genetic diversity were successfully cryopreserved with recovery 
ranging between 24 and 91% (Gonzalez-Arnao 1996). Apple shoot tips 
from over 20 commercial cultivars were frozen using the encapsulation–
dehydration technique (Wu et al. 1999; Zhao et al. 1999). Shoot tips of 25 
genotypes in nine Rubus species and nine Rubus hybrids representative of 
the diversity in the genus Rubus were successfully cryopreserved with re-
covery of 60–100% using the encapsulation–dehydration protocol (Gupta 
and Reed 2006). A wide range of Ribes germplasm, including 9 species 
and 19 cultivars, was tested with encapsulation dehydration with a mean 
regrowth of 58% (Reed et al. 2005).  More than 35 accessions of Bermu-
dagrass (Cynodon) were successfully stored by encapsulation dehydration 
(Reed et al. 2006).  The most advanced development and application by far 
of encapsulation dehydration is with cassava apices. CIAT (Centro Inter-
nacional de Agricultura Tropical, Cali, Colombia) is responsible for the 
maintenance of the world germplasm collection of cassava (which includes 
5941 accessions). The core collection, which represents 630 clones, was 
cryopreserved using encapsulation dehydration (Manrique 2000; Escobar 
Pérez 2005). Around 75% of these clones display recovery above 30%. 
A safety cryopreserved duplicate of this collection is being established. 

regrowth without intervening callus formation is required to maintain 
genetic stability.  Most plants recovered from encapsulation dehydration 

Engelmann 2006), to prevent or decrease detrimental photo oxidation of 

4 The Development of Encapsulation Dehydration       

4.2.10 Viability Assessment 

4.3 Current Development and Use of Encapsulation 
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The effect of encapsulation–dehydration cryopreservation on the stability 
of plants was assessed after regrowth for several species. No modifications 
were revealed at the morphological, agronomical, chromosomal, bio-
chemical and/or molecular levels for sugarcane (Gonzalez-Arnao 1996), 
apple (Hao et al. 2002), yam (Sangeeta et al. 2002; Sonali-Dixit et al. 
2005), kiwi and grape (Zhai et al. 2003). 

Encapsulation dehydration is a very efficient cryopreservation technique 
which is simple to implement. One of its advantages from a practical point 
of view is its user-friendliness. Encapsulated explants are very easy to 
manipulate throughout the freezing protocol. Encapsulation dehydration 
was successfully implemented with a large number of species, both from 
temperate and tropical origin. It was applied to a broad number of geno-
types within the same species in several cases, thereby demonstrating its 
efficiency and practicality. Cryopreservation represents the only safe, effi-
cient and cost-effective long-term storage option to facilitate the conserva-
tion of genetic resources of plant species.  Encapsulation dehydration is 
one more technique to place in the hands of researchers or genebank cura-
tors to meet germplasm conservation goals. 
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