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Preface

Picture 1. Logo for the 9" International Symposium on Yersinia. Logo design by Cesar
Ibanez, Web Designer, American Society for Microbiology.

The 9™ International Symposium on Yersinia was held in Lexington, Kentucky, USA
on October 10-14, 2006. Over 250 Yersinia researchers from 18 countries gathered
to present and discuss their research. In addition to 37 oral presentations, there were
150 poster presentations. This Symposium volume is based on selected presenta-
tions from the meeting and contains both reviews and research articles. It is divided
into six topic areas: 1) genomics; 2) structure and metabolism; 3) regulatory mecha-
nisms; 4) pathogenesis and host interactions; 5) molecular epidemiology and detec-
tion; and 6) vaccine and antimicrobial therapy development. Consequently, this
volume covers a wide range of current research areas in the Yersinia field.

Robert D. Perry

Jacqueline D. Fetherston

Department of Microbiology, Immunology,
and Molecular Genetics

University of Kentucky

Lexington, KY

USA
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Abstract. This chapter represents a summary of the findings from the Yersinia enterocolitica
strain 8081 whole genome sequence and the associated microarray analysis. Section 1 & 2
provide an introduction to the species and an overview of the general features of the genome.
Section 3 identifies important regions within the genome which highlight important differ-
ences in gene function that separate the three pathogenic Yersinias. Section 4 describes ge-
nomic loci conferring important, species-specific, metabolic and virulence traits. Section 5
details extensive microarray data to provide an overview of species-specific core Y. enteroco-
litica gene functions and important insights into the intra-species differences between the high,

low and non-pathogenic Y. enterocolitica biotypes.

1.1 Introduction

Yersinia enterocolitica represents a key link in our understanding of how the patho-
genic members of the Yersinia genus have evolved to produce diverse clinical mani-
festations. The disease potential of the human pathogenic Yersinia ranges from
gastroenteritis for Y. enterocolitica and Yersinia pseudotuberculosis, which are pri-
marily enteropathogens, to bubonic plague caused by Yersinia pestis (Perry and
Fetherston 1997). It is estimated that Y. enterocolitica and Y. pseudotuberculosis
diverged within the last 200 million years and that Y. pestis is a clone of Y. pseudo-
tuberculosis that has emerged within the last 1,500-20,000 years (Achtman et al.
2004; Achtman et al. 1999; Wren 2003).

Since splitting from Y. pseudotuberculosis, Y. enterocolitica has evolved into a
genetically and biochemically heterogeneous collection of organisms that has been
divided into six biotypes differentiated by biochemical tests (1A, 1B, 2, 3, 4 and 5)
(Wauters et al. 1987). These in vitro biotypes can be placed into three distinct line-
ages based on pathogenic potential: a mostly non-pathogenic group (biogroup 1A); a
weakly pathogenic group that is unable to kill mice (biogroups 2 to 5); and a highly
pathogenic, mouse-lethal group (biogroup 1B) (Mcnally et al. 2004; Prentice et al.
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Non-pathogenic environmental Yersinia

\{
Predecessor of pathogenic Yersinia 47-184 Mvyrs
A
Y. enterocolitica Y. pseudotuberculosis
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>90% DNA ID
\d
Y. pestis
] A A pe
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Fig. 1. A basic model describing the evolution of the pathogenic Yersinia (adapted from
(Wren 2003)).

1991; Van Noyen et al. 1981; Wauters et al. 1987). These biogroups also form geo-
graphically distinct groups with biotypelB being most frequently isolated in North
America (termed the ‘New-World’ strains), whereas biogroups 2-5 predominate in
Europe and Japan (termed the ‘Old-World’ strains) (Schubert et al. 2004) (Fig. 1).

Representatives of the two other human pathogenic Yersinia species, Y. pseudo-
tuberculosis strain 1P32953 (referred to as Y. pseudotuberculosis), and Y. pestis
(strains CO92 [biovar Orientalis], KIM10+ [biovar Mediaevalis], and 91001 [biovar
Microtis]), have been sequenced (Chain et al. 2004; Deng et al. 2002; Parkhill et al.
2001; Song et al. 2004). Consequently, the three pathogenic Yersinia represent an
ideal genus to study bacterial pathogenesis and the evolution of virulence (Wren
2003).

In this chapter we have condensed the whole genome sequence analysis of
Y. enterocolitica strain 8081 biotype 1B (serotype 0:8). We provide examples of ances-
tral gene functions which appear to have been lost following the divergence
of the pathogenic Yersinia from their last common ancestor. In addition, we have high-
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lighted regions that appear to have been acquired by Y. enterocolitica strain 8081 and
define it at the species through to the strain level. For a more complete analysis of
the 8081 genome sequence and its comparative analysis to other Y. entrocolitica
strains refer to (Thomson et al. 2006) and (Howard et al. 2006).

1.2 Y. enterocolitica 8081 Chromosome

The characteristics of the Y. enterocolitica chromosome are very similar to those of
Y. pestis and Y. pseudotuberculosis (Table 1). The most notable differences lie in the
numbers of insertion-sequence (IS) elements. Although Y. enterocolitica possesses
fewer in total than the other yersiniae, their diversity is greater with 15 IS families in
Y. enterocolitica compared to 4 and 5 in Y. pseudotuberculosis and Y. pestis (CO92),
respectively.

Y. enterocolitica also possesses far fewer pseudogenes than Y. pestis, which is
thought to have >140 (Parkhill et al. 2001). The recent expansion of a few types of
IS element in Y. pestis and the accumulation of so many pseudogenes is thought to
reflect a marked change in lifestyle (associated with specific plasmid-acquisition
events) (Chain et al. 2004; Parkhill et al. 2001). Conversely, this also implies that
Y. enterocolitica and Y. pseudotuberculosis have been stably maintained in a consis-
tent niche.

Although general characteristics of the Y. enterocolitica genome are similar
to those of Y. pseudotuberculosis and Y. pestis, these figures disguise considerable

Table 1. Properties of all the published Yersinia genomes

Property Y. entero- Y.pestis Y.pestis Y.pestis Y.pseudo-
colitica C092* KIM10+® 91001°¢ tuberculosis
8081 1P32953¢

Size 4,615,899 4,653,726 4,600,755 4,595,065 4,744,671

G+C content 47.27% 47.64% 47.64% 47.65% 47.61%
Number of

CDSs 4,037 4,012 4,198 4037 3,974
Coding density 83.8% 83.8% 86% 81.6% 82.5%
Ave. gene size 968 bp 998 bp 940 bp 966 bp 998 bp
rRNA operons 7 6 7 7 7
tRNA 81 70 73 72 85
Pseudogenes® 67 149 54 141 62

IS elements 60 139 122 109 20
Prophage

regions 4 4 3 ND 5

Parkhill et al. 2001), (Deng et al. 2002), {(Song et al. 2004), %(Chain et al. 2004), °Figures
taken from original publication. ND - not determined. Taken from (Thomson et al. 2006).
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variation in gene repertoire. A comparison of orthologous gene sets shared between
Y. enterocolitica, Y. pestis (strain CO92), and Y. pseudotuberculosis (Fig. 2) showed
a core set of 2,747 CDSs shared by all, as well as a significant number of CDSs
being unique to Y. enterocolitica (~29%), Y. pseudotuberculosis (~9%), or Y. pestis
(~11%).

Perhaps the biggest surprise from the genome was the number of CDS’s shared
exclusively between Y. enterocolitica and either Y. pseudotuberculosis or Y. pestis.

Y.en & Y. psth only

13~

448 /

Fig. 2. Distribution of orthologous CDSs in Y. enterocolitica 8081, Y. pestis CO92, and
Y. pseudotuberculosis 1P32953. The Venn diagram shows the number of genes unique or
shared between two other Yersinia species. The associated pie charts show the breakdown of
the functional groups assigned for CDSs in relevant sections of the Venn diagram. Number
code for the pie charts is as follows: pathogenicity and virulence [1]; general regulation [2];
and miscellaneous function [3]; conserved hypothetical proteins [4]; chemotaxis and motility
[5]; protective responses [6]; transport and binding proteins [7]; adaptations to atypical condi-
tions [8]; synthesis and modification of macromolecules [9]; central intermediary metabolism
[10]; energy metabolism [11]; periplasmic/exported/lipoproteins [12]; laterally acquired (in-
cluding prophage CDSs) [13]. Y. en, Y. enterocolitica strain 8081; Y. pstb, Y. pseudotuberculo-
sis strain IP32953; Y. pestis, Y. pestis strain CO92.
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Close inspection of these CDS’s showed that most were prophage-related (Fig. 2).
Moreover all those shared exclusively between Y. enterocolitica and Y. pestis, which
were not of phage origin were in silico artifacts, accounted for by differences in
annotation. However, this was not the explanation for those shared between Y. pseu-
dotuberculosis and Y. enterocolitica, which fell into a range of functional categories.
These CDSs were interesting because it is highly unlikely that both Y. pseudotuber-
culosis and Y. enterocolitica independently acquired these functions since the
divergence of Y. pseudotuberculosis and Y. pestis. Therefore the most parsimonious
explanation for this was that these functions have probably been lost by Y. pestis
since diverging from Y. pseudotuberculosis.

An investigation of the genomic context of CDSs shared exclusively between
Y. pseudotuberculosis and Y. enterocolitica and the corresponding regions in the
other Yersinia revealed that in several instances there were remnants of these regions
in Y. pestis. These CDSs are thought to represent ancestral functions important for an
enteric lifestyle, but which subsequently became redundant for Y. pestis. On the other
hand, the loss of function may have been selectively advantageous, given the in-
creased virulence potential of Y. pestis, that if true would make these further exam-
ples of pathoadaptive mutations (Day et al. 2001). Similar observations were made
for some of the Y. enterocolitica-specific loci except that in this instance deletion
scars (gene remnants) were apparent in both Y. pestis and Y. pseudotuberculosis.
These examples may highlight subtle differences in the disease process between the
two enteric pathogens.

The following sections will present examples of ancestral Yersinia functions lost
from Y. pestis or both Y. pestis and Y. pseudotuberculosis, as well as examples from
the Y. enterocolitica-specific functions.

1.3 Evidence for the Loss of Ancestral Yersinia Gene Functions

1.3.1 The Methionine-Salvage Pathway

One example of an entire metabolic pathway retained by Y. enterocolitica and Y.
pseudotuberculosis, but apparently lost by Y. pestis, is the methionine-salvage path-
way. The methionine-salvage pathway recycles the sulphur-containing compound,
methylthioadenosine (MTA), formed during spermidine and spermine synthesis, and
as a byproduct of N-acylhomoserine lactone production. MTA is recycled back to
methionine, which can be further metabolised to produce S-adenosylmethionine, an
essential reactant in several methylation reactions (Sekowska et al. 2004).

The methionine-salvage pathways appear to be intact and are encoded by seven
CDSs in one locus (mntA-E, mtnK and mtnU) and a single CDS at an unlinked site
(mtnN) in both Y. enterocolitica and Y. pseudotuberculosis. In Y. pestis, all of the
CDSs encoded in the mtnK—mtnU locus are missing (presumably deleted). However,
the mmN gene has been retained in Y. pestis and remains intact and in the same
genetic context as the Y. enterocolitica mtnN gene. It is known that in nutrient-rich
environments and in the presence of low concentrations of dioxygen, facultatively
anaerobic bacteria, such as Escherichia coli, simply convert MTA into methylthiori-
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bose, using MtnN, and excrete it from the cell. This is likely to be the case for
Y. pestis, too, since growth outside of the nutrient-rich environment of the host is
unnecessary for its current lifestyle.

1.3.2 The Cellulose Operon

Evidence for more extensive gene loss is illustrated by the cellulose (cel) biosyn-
thetic operon. The genes encoding this pathway have been apparently lost from both
Y. pseudotuberculosis and Y. pestis, leaving deletion scars. The Y. enterocolitica cel
operon is highly similar in gene content and sequence to that carried by most Salmo-
nella. The only remaining ce/ CDS in Y. pseudotuberculosis and Y. pestis is bcsZ,
encoding endo-1,4-B-glucanase. Although bcsZ appears intact in Y. pseudotuberculo-
sis (YPTB3837), the Y. pestis bcsZ orthologue carries a frameshift mutation (Fig. 3.).
An identical mutation is present in the bcsZ genes in all of the sequenced Y. pestis
isolates.

Cellulose operon

e
~ N

bl 1 T 1 T 1 T b
44 e dad (s i Tiim i i Aisi Litae (S 50 &

I.k_luﬂ

endoglucanase besZ /

(AN N ) lIlIII :;IJ\HI Hl*lll‘

' 1|l|| ll | IJ IIHH'I‘ ‘ ‘ll\ | \T'u U'I‘"““ ""U' nili

l‘l.l - Ll ‘II'IIIIII'I‘F‘\'I Ll

Lo 'Mlll:'lllllll L II\IIII“ ', '

.‘ _.I h ) |L"{|‘ | I||| "' | "l

l\||u| Wil IR L "\'H'.luuu ||H',‘l||'f‘

|I|u‘ l||‘| | Ill b O T ""v il §

lﬂJ

H'F"*“f'ﬁ“”ﬁﬁ‘lﬂﬂ?ﬁ.mﬂ TS R T,

Fig. 3. Comparison of the cel locus of Y. enterocolitica strain 8081 (Y. en), Y. pseudotubercu-
losis strain 1P32953 (Y. pstb), Y. pestis strain CO92 (Y. p). ACT comparison of amino-acid
matches between the complete six-frame translations (computed using TBLASTX) of repre-
sentatives of the three sequenced Yersinia species (http://www.sanger.ac.uk/Software/ACT).
The grey shaded bars spanning between the genomes represent individual TBLASTX matches.
CDS are marked as shaded boxes positioned on the grey DNA lines: The scale is marked
in bps.
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Salmonella produce cellulose in concert with thin aggregative fimbriae to form an
inert and highly hydrophobic extracellular matrix. It has been suggested that the
protection afforded by this matrix increases retention time of the bacterium in the gut
(Zogaj et al. 2001). Cellulose production is presumably redundant for Y. pestis in its
new lifestyle. However, why this operon should have been lost by Y. pseudotubercu-
losis is unclear and may reflect niche differences within the enteric environments of
the two enteropathogenic Yersinia species.

1.3.3 Loss of Function in the Yersinia Core Functions

In addition to the loss of complete biochemical pathways, the Y. enterocolitica
sequence revealed more subtle examples of loss of function in Y. pestis. All the
pathogenic yersiniae possess a cluster of 13 CDSs on a genomic island displaying a
lower G + C content denoted Yersinia Genomic Island 1 (YGI-1). YGI-1 is related to
tad loci (tight adherence), present in diverse bacterial and archaeal species, including
Actinobacillus actinomycetemcomitans (Schreiner et al. 2003).

The tad locus of A. actinomycetemcomitans, a human pathogen causing endocar-
ditis and periodontitis, has been shown to be important for virulence by encoding the
biosynthesis and transport of pili involved in tight, nonspecific adherence (Kachlany
et al. 2000; Schreiner et al. 2003). In Y. pestis, it has been speculated that the tad
genes are important for the colonisation of the flea (Kachlany et al. 2000). However,
although the YGI-1 islands are intact in Y. enterocolitica and Y. pseudotuberculosis,
in Y. pestis the essential pilin gene, fIp, has been deleted by the insertion of IS/541
elements and rcpA (pilin secretion protein) carries a frameshift mutation (identical in
all sequenced Y. pestis strains). Moreover, since it is predicted that the Tad pilus
would be exposed on the surface of the cell, like the loss of YadA (Rosqvist et al.
1988), this may be another example of a key mutational event that was selected for
by the change in lifestyle of Y. pestis. Consequently, far from being an adaptation to
life within the flea, this cluster is thought to be important for enteropathogenicity.
The global loss of the pilin gene and the possession of the same mutation in rcpA4 in
Y. pestis suggests that this event occurred soon after speciation.

1.4 Y. enterocolitica Unique Functions

1.4.1 Hydrogenases and Other Metabolic Functions

As expected in addition to the loss of ancestral functions the genome sequence of
Y. enterocolitica also revealed that there had been significant gene accretion since
Y. enterocolitica and Y. pseudotuberculosis diverged. Some of these species-specific
loci significantly broaden the metabolic capability of this bacterium and were shown
by microarray analysis to be characteristic of the species. These include two [NiFe]-
containing hydrogenase complexes Hyd-2 and Hyd-4.

The ability to exploit locally generated hydrogen as a source of energy is known
to be essential for colonisation of the gut, and for the virulence of enteric bacteria
such as Salmonella and Helicobacter (Maier 2005; Maier et al. 2004; Olson and
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Maier 2002). The two Y. enterocolitica hydrogenase gene clusters Ayf and hyb are
extremely compact, encoding all of the CDSs essential for Hyd-4 and Hyd-2 func-
tioning and maturation. In other enteric bacteria these gene functions tend to be dis-
tributed over several different loci dispersed throughout their genome. There is no
evidence of the loci in the Y. pestis and Y. pseudotuberculosis genomes. Coupled
with the loci’s genetic compactness, this may suggest that they have been acquired
by Y. enterocolitica, despite the absence of obvious mobility genes in these clusters.

Other metabolic capabilities potentially relevant to enteric survival and appar-
ently acquired by a single horizontal transfer event include the capacity for cobala-
min synthesis and propanediol utilisation conferred by the divergent cob-pdu operon.
This closely resembles the cob-pdu operon horizontally acquired by Sa/monella and
lost from E. coli (Lawrence and Roth 1996).

1.4.2 The Plasticity Zone

The PZ is the largest region of species-specific genomic variation found within the
Y. enterocolitica 8081 genome and accounts for ~16% of the Y. enterocolitica unique
CDSs (an ~199 kb locus extending from 3,761,922-3,960,673 bps and encoding 186
CDSs [Fig. 4]). The PZ is unlikely to have been acquired during a single event and is
more likely to have arisen through a series of independent insertions at this site.
Several discrete functional units are identifiable within this region, some of which
are known to be mobile or sporadically distributed in other bacteria, and some of
which are flanked by repeat sequences (Fig. 4).
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Fig. 4. The Y. enterocolitica strain 8081 PZ and YGI-1 genomic loci. An Artemis
(http://www .sanger.ac.uk/Software/Artemis) view showing the genetic composition of the PZ
locus. CDS are marked on their translation line as shaded boxes above and below the forward
and reverse strands of DNA lines (grey): The scale is marked in bps.
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These functional units within the PZ include a region highly similar to the
Y. pseudotuberculosis adhesion pathogenicity island (Collyn et al. 2004) denoted
YAPI.. The Yersinia YAPI islands are members of a broader family of genomic
islands found in a diverse set of bacteria, and include the Salmonella typhi patho-
genicity island, SPI-7 (Pickard et al. 2003; Collyn et al. 2006; Mohd-Zain et al.
2004). YAPI,, carries a type IV pilus operon, characteristic of this family of islands
and shown to be important for virulence in Y. pseudotuberculosis (Collyn et al.
2004). In addition, YAPI,. also encodes a possible hemolysin (YE3454), a
toxin/antitoxin system (YE3480 and YE3481), and an arsenic-resistance operon
(YE3472-YE3475).

Other functions encoded on the PZ include the second Y. enterocolitica type three
secretion system (T3SS) and general secretion pathway (GSP)-like system, Ysa and
Yst, respectively (Foultier et al. 2002; Haller et al. 2000; Iwobi et al. 2003). Both of
these secretion systems are known to be important for pathogenicity. The Y. entero-
colitica PZ also carries several other gene clusters capable of conferring survival
benefits in the gut or wider environment. These include the Hyd-2 biosynthetic
operon (discussed above) and genes encoding products with possible roles in osmo-
protection and osmoregulation, metal uptake and resistance, including the betaine/
proline transporter, ProP and the ferric enterochelin operon fepBDGC fes and fepA
(Schubert et al. 1999).

1.4.3 Additional Genomic Islands

In addition to the PZ, in silico analysis and microarray experiments showed that
there were other potential genomic islands (GI). These included an island, denoted
YGI-2, which encodes 13 CDS highly conserved as a unit in a wide range of the
Enterobacteriaceae including the phytopathogen Erwinia carotovora subsp. atrosep-
tica the pathogenic E. coli: enteroheamorrhagic E. coli 0157:H7 and uropathogenic
E. coli CFT073 as well as the probiotic E. coli strain Nissle. Although, notably this
island is missing from E. coli K12.

YGI-2 has certain characteristics of having been laterally acquired such as low
G+C content (44.62 %) compared to the genome average (Table 1). It is also located
alongside a tRNA gene (tRNA Asp), a common integration site for both lysogenic
phage and mobile genomic islands (Campbell 2003). However, YGI-2 and the
analogous loci in the other Enterobacteriaceae lack obvious mobility functions.

YGI-2 appears to encode biosynthesis, modification and export of an outer mem-
brane anchored glyco-lipo-protein. Functional analysis of the CDS in this cluster
suggest that the lipid moiety has a complex structure with one or more double bonds
and hydroxyl groups and may in fact be O-methylated by the product of YE0894.
The presence of an acyl transferase (YE0897) and a bifunctional glycosyl trans-
ferase/acyl transferase (YE0903) suggests that a sugar group is also acylated and
attached like the lipid moiety. It is possible that YE0905 is responsible for the trans-
port of the lipoprotein and likewise YE906 and YE0900 are involved in the export of
the glycolipid. It is not possible to predict the true function of such a product, but
there are very weak similarities to surfactins encoded by other bacteria.
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Other interesting GI’s also include two proposed integrated plasmid elements
that, like YGI-2, have an atypical G + C content. The first, YGI-3, is inserted along-
side the stable RNA ssr4 gene (located at 1097155—-1116114 bps) and flanked by 14
bp direct repeats and the second element, YGI-4 (located at 1308551-1323148 bps)
is inserted into a gene, leaving an intact copy on one side and a partially duplicated
copy on the other side of the element. Although YGI-3 and YGI-4 carry a small
number of genes associated with conjugation and transfer, their true mode of transfer
and whether they confer any possible selective benefits to the host is unclear.

1.5 Microarray Analysis of Y. enterocolitica

1.5.1 Phylogenomic Analysis of Y. enterocolitica

Using a 8081 DNA microarray containing all chromosomal 4037 CDSs we applied
comparative phylogenomics (whole genome comparisons of microbes using DNA
microarrays combined with Bayesian phylogenies) to investigate a diverse collection
of Y. enterocolitica strains representing non pathogenic (37 biotype 1A isolates), low
pathogenicity (49 isolates; biotypes 2-4) and highly pathogenic (8 biotypelB iso-
lates) strains. The analysis confirmed three distinct statistically supported clusters
comprising of a non-pathogenic clade, a low pathogenic clade and a highly patho-
genic clade. Surprisingly, a larger than expected number of genetic differences (125
CDSs), were found in all highly pathogenic biotype 1B strains but absent in the other
clades (Howard et al. 2006). These included several previously uncharacterised
CDSs that may encode novel virulence determinants including a hemolysin, metal-
loprotease and type III secretion effector protein. Additionally 27 CDSs were iden-
tified which were present in all low pathogenicity strains but absent from the
non-pathogenic 1A isolates (Howard et al. 20006).

Recently, several effectors proteins secreted by the chromosomally encoded Ysa
T3SS were defined in a strain derived from the sequenced genome Y. enterocolitica
8081 1B serotype O:8 (Matsumoto and Young 2006). To investigate whether genes
encoding the effectors identified in 8081 were unique to this strain or were also pre-
sent in other biotype 1B isolates, we searched DNA microarray data obtained from
eight US Y. enterocolitica biotype 1B strains comprising a range of different
serotypes (Table 2) (Howard et al. 2006). With the exception of yspY and yspP the
remaining suite of Ysa effectors were present in all 1B isolates, indicating that
although these genes are scattered throughout the chromosome of 8081 it is unlikely
that each of these strains has acquired these genes independently.

1.5.2 Variation in Prophage and GIs

Consistent with observations made from many other bacterial genomes the single
largest source of large scale genetic variation between Y. enterocolitica isolates were
prophage, none of which were conserved in the non- (biotype 1A) or mildly patho-
genic (biotypes 2, 3, and 4) Y. enterocolitica. Although, perhaps more surprising was
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Table 2. Distribution of chromosomally encoded effectors secreted by the Ysa T3SS
within eight US Y. enterocolitica biotype 1B strains determined by comparative
DNA microarray analysis

Designated name Gene' Reference Strains containing Ysa effector protein(s) determind by

DNA microarray analysis

YspA YE3534 Foultieret al. (2002) 8/8 strains tested
YspB YE3537 Foultieret al. (2002) 8/8 strains tested
YspL YEO0113 Matsumoto and Young (2006) 8/8 strains tested
YspN YE3543 Matsumoto and Young (2006) 8/8 strains tested
YspC YE3536 Foultier et al. (2002) 8/8 strains tested
YspY YE1357 Matsumoto and Young (2006) 5/8 strains tested
YspF YE1986 Matsumoto and Young (2006) 8/8 strains tested
YspP YE4194 Matsumoto and Young (2006) 4/8 strains tested
YspE YEO0115 Matsumoto and Young (2006) ND

YspD YE3535 Foultieret al. (2002) 8/8 strains tested
Yspl YE2444 Matsumoto and Young (2006) 8/8 strains tested
YspK YE2447 Matsumoto and Young (2006) 8/8 strains tested

2 Y. enterocolitica 8081 systematic gene name. ND no data.

that one of the Y. enterocolitica 8081 prophage, ¢ YE200, was fully or partially rep-
resented in all other biotype 1B isolates. This phage is notable since it appears to be a
degenerate P2-family prophage which carries the restriction/modification enzyme
YenI within a low G+C pocket of its sequence.

In general there was also considerable variation in the complement and struct