
C H A P T E R VIII

Laplace Transforms and Tauberian
Theorem

Like the Fourier transform, the Laplace transform of a measure µ has a number
of useful operational properties pertaining to moment generation, convolutions, and
vague convergence. However, the main point of this chapter is to show that if µ is
concentrated on a half-line, say [0,∞), then its Laplace transform can also be useful
for obtaining the asymptotic behavior of µ[0, x] as x→∞.

Definition 8.1. Let µ be a measure on [0,∞). The Laplace transform µ̂(λ) of µ
is the real-valued function defined for λ ≥ c by

µ̂(λ) :=
∫ ∞

0

e−λxµ(dx), λ > c, (8.1)

where c = inf{λ :
∫∞
0

e−λxµ(dx) <∞}.

Notice that by monotonicity of e−λx, x ≥ 0, as a function of λ, the finiteness of the
integral defining µ̂(a) implies finiteness of

∫∞
0

e−λxµ(dx) for all λ ≥ a. If µ is a finite
measure, then µ̂(λ) is defined at least for all λ ≥ 0. On the other hand, one may also
wish to view µ̂(λ) as an extended real-valued, i.e., possibly infinite-valued, function
defined for all λ ∈ R, which is easy to do since the integrand is nonnegative. However,
in general, the statement that the Laplace transform µ̂(λ) exists is intended to mean
that the defining integral is finite on some half-line.

Remark 8.1 (Special Cases and Terminology). In the case that µ is absolutely
continuous, say µ(dx) = g(x)dx, then ĝ(λ) := µ̂(λ) is also referred to as the Laplace
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transform of the (Radon–Nikodym derivative) function g. Also, if µ = P ◦ X−1 is
the distribution of a nonnegative random variable X defined on a probability space
(Ω,F , P ), then µ̂(λ) is also referred to as the Laplace transform of X,

µ̂(λ) = Ee−λX .

In the case that µ is a probability, the function µ̂(−λ) is the moment-generating
function.

Although the Laplace transform is an analytic tool, the theory to be developed is
largely based on the probabilistic ideas already introduced in previous sections. This
is made possible by the exponential size-bias transformation introduced in the
treatment of large deviations, although in terms of the moment-generating function
of a probability. Specifically, if µ is a measure on [0,∞) such that µ̂(c) < ∞ for some
c, then one obtains a probability µc on [0,∞) by

µc(dx) =
1

µ̂(c)
e−cxµ(dx). (8.2)

Observe also that

µ̂c(λ) =
µ̂(c + λ)

µ̂(c)
. (8.3)

Just as with the Fourier transform one has the following basic operational calculus.

Proposition 8.1 (Moment Generation). If µ̂ exists on (0,∞), then µ̂(λ) has
derivatives of all orders m = 1, 2, . . . given by

dm

dλm
µ̂(λ) = (−1)m

∫ ∞

0

xme−λxµ(dx), λ > 0.

In particular, µ has an mth order finite moment if and only if dm

dλm µ̂(0+) exists and
is finite.

Proof. For the first derivative one has for arbitrary λ > 0,

lim
h→0

µ̂(λ + h)− µ̂(λ)
h

= lim
h→0

∫ ∞

0

(
e−hx − 1

h

)

e−λxµ(dx).

Since |(e−hx−1)/h| ≤ c(δ)eδx for some constant c(δ) if |h| ≤ δ/2, where λ−δ > 0, the
limit may be passed under the integral sign by the dominated convergence theorem.
The remainder of the proof of the first assertion follows by induction. For the final
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assertion, by the monotone convergence theorem,

lim
λ↓0

∫ ∞

0

xme−λxµ(dx) =
∫ ∞

0

xmµ(dx). �

The proof of the following property is obvious, but its statement is important enough
to record.

Proposition 8.2 (Scale Change). Let µ be a measure on [0,∞) with Laplace trans-
form µ̂(λ) for λ > 0. Define α : [0,∞) → [0,∞) by α(x) = ax, for an a > 0. Then one
has µ̂ ◦ α−1(λ) = µ̂(aλ).

Proposition 8.3 (Convolution Products). If µ and ν are measures on [0,∞) such
that µ̂(λ) and ν̂(λ) both exist for λ > 0, then the convolution γ = µ ∗ ν has Laplace
transform γ̂(λ) = µ̂(λ)ν̂(λ) for all λ > 0.

Proof. This is a consequence of the basic formula (Exercise 1)

∫ ∞

0

g(x)µ ∗ ν(dx) =
∫ ∞

0

∫ ∞

0

g(x + y)µ(dx)ν(dy)

for bounded Borel-measurable functions g, using the nonnegativity and multiplicative
property of the exponential function. �

Theorem 8.4 (Uniqueness & Inversion Formula). Let µ, ν be two measures on
[0,∞) such that

∫∞
0

e−cxµ(dx) =
∫∞
0

e−cxν(dx) < ∞ for some c and

µ̂(λ) = ν̂(λ) <∞, ∀ λ ≥ c.

Then one has µ = ν. Moreover if µ[0,∞) <∞, then one also has the inversion formula

µ[0, x] = lim
λ→∞

∑

j≤λx

(−λ)j

j!
dj

dλj
µ̂(λ)

at each continuity point x of the (distribution) function x→ µ([0, x]).

Proof. Assume first that µ and ν are finite measures. In this case a probabilistic
proof is made possible by the asserted inversion formula obtained as follows. Without
loss of generality, assume that µ and ν are normalized to probabilities. For arbitrary
fixed x, z > 0, consider the expression

∑
j≤λz

(−λ)j

j!
dj

dλj µ̂(λ) =
∑

j≤λz
(−1)jλj

j!
dj

dλj µ̂(λ),
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along with the expected value

P (Yλx ≤ z) = Ehz(Yλx) =
∞∑

j=0

hz(
j

λ
)
(λx)j

j!
e−λx,

where Yλx, λ, x > 0, is Poisson distributed on the lattice {0, 1/λ, 2/λ, . . .} with inten-
sity λx, and hz(y) = 1[0,z](y), y ≥ 0. Note that EYλx = x, and Var(Yλx) = x

λ → 0 as
λ → ∞. Notice that in general, if {µt,a : t ≥ 0, a ∈ R} is a collection of probabilities
on R, such that µt,a has mean a and variance σ2(a) → 0 as t → ∞, then µt,a ⇒ δa

as t →∞. In particular,

lim
λ→∞

P (Yλx ≤ z) =

{
0, if z < x,

1 if z > x,
(8.4)

Now, in view of the moment-generation formula (−1)j dj

dλj µ̂(λ) =
∫∞
0

xje−λxµ(dx),
one has

∑

j≤λz

(−λ)j

j!
dj

dλj
µ̂(λ) =

∫ ∞

0

P (Yλx ≤ z)µ(dx).

The inversion formula and hence uniqueness follows in the limit λ →∞ by application
of the dominated convergence theorem. The general uniqueness assertion follows by
the exponential size-bias transformation. Specifically, since µc and νc are probabilities
whose Laplace transforms agree, one has µc = νc. Since µ � µc = νc and νc � ν, it
follows that µ � ν and dµ

dν = dµ
dµc

dνc

dν = µ̂(c)
e−cx

e−cx

ν̂(c) = 1. �

Recall from Chapter V that a sequence of measures µn(n ≥ 1) on [0,∞) is said
to converge vaguely to a measure µ if

∫
[0,∞)

g dµn →
∫
[0,∞)

g dµ for all continuous
functions g vanishing at infinity, i.e., g(x)→ 0 as x→∞.

Theorem 8.5 (Continuity). Let µn, n ≥ 1, be a sequence of measures on [0,∞)
with respective Laplace transforms µ̂n, n ≥ 1, defined on a common half-line λ ≥ c.

a. If µn, n ≥ 1, converges vaguely to µ, and if {µ̂n(c) : n ≥ 1} is a bounded sequence
of real numbers, then limn µ̂n(λ) = µ̂(λ) for all λ > c. Conversely, if for a sequence
of measures µn(n ≥ 1), µ̂n(λ) → ϕ(λ) > 0 ∀ λ > c as n → ∞, then ϕ is the
Laplace transform of a measure, µ and µn converges vaguely to µ.

b. Suppose c = 0 in (a), ϕ(0+) = 1, and µn, n ≥ 1, is a sequence of probabilities.
Then µ is a probability and µn ⇒ µ as n →∞.

Proof. We will prove part (b) first. For this we use the Helly selection principle
(Corollary 5.6) to select a weakly convergent subsequence {µnm

: m ≥ 1} to a measure
µ with µ(R) ≤ 1 on [0,∞). Since x �→ e−λx is continuous and vanishes at infinity on
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[0,∞), µ̂nm
(λ) → µ̂(λ) as m → ∞ for each λ > 0. Thus µ is the unique measure on

[0,∞) with Laplace transform ϕ. In particular, there can be only one (vague) limit
point. Since ϕ(0+) = 1 it follows that µ is a probability.

We now turn to part (a). Assume that µn, n ≥ 1, converges vaguely to µ, and
first suppose that limn µ̂n(c) = m exists. Apply exponential size-biasing to obtain for
bounded continuous functions f vanishing at infinity that

lim
n→∞

∫ ∞

0

f(x)
e−cx

µ̂n(c)
µn(dx) =

∫ ∞

0

f(x)
e−cx

m
µ(dx) =

∫ ∞

0

f(x)µc(dx),

for some measure µc. For λ > c, take f(x) = e−(λ−c)x, x ≥ 0, to see that limn µ̂n(λ) =
µ̂(λ), λ > c. Assuming only that {µ̂n(c) : n ≥ 1} is bounded, consider any convergent
subsequence limn′ µ̂n′(c) = m′. Since the limit limn µ̂n′(λ) = µ̂(λ) does not depend
on the subsequence, µ̂n(λ) → µ̂(λ).

For the converse part of (a) suppose that µ̂n(λ) → ϕ(λ) for all λ > c. For
any fixed λ′ > c, note that µ̂n(λ+λ′)

µ̂n(λ′) is the Laplace transform of the exponen-

tially size-biased probability µ′
n(dx) = 1

µ̂n(λ′)e
−λ′xµn(dx). By part (b), µ′

n, n ≥ 1,
converges vaguely to a finite measure µ′, and therefore µn converges vaguely to
µ(dx) = ϕ(c)ecxµ′(dx). �

Definition 8.2. A function ϕ on (0,∞) is said to be completely monotone if it
possesses derivatives of all orders m = 1, 2, . . . on (0,∞) and (−1)m dm

dλm µ̂(λ) ≥ 0 for
each λ > 0.

It follows from the moment generation theorem that µ̂(λ) is completely monotone. In
fact, we will now see that this property characterizes Laplace transforms of measures
on [0,∞). We preface this with two lemmas characterizing the range of generating
functions (combinatorial) originally due to S. Bernstein, while the proofs here are
along the lines of those given in Feller.1

For a given continuous function g on [0, 1], the Bernstein polynomials arise
naturally in the Weierstrass approximation theorem (see Appendix B) and are defined
by

Bn(t) =
n∑

k=0

g(
k

n
)
(

n

k

)

tk(1− t)n−k, 0 ≤ t ≤ 1.

Lemma 1 (Finite Differences and Bernstein Polynomials). The following is an
equivalent representation of the Bernstein polynomials for a given continuous function

1See Feller, W. (1970).
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g on [0, 1] in terms of the difference operator ∆hg(t) = g(t+h)−g(t)
h :

Bn(t) =
n∑

k=0

(
n

k

)

(
t

n
)k∆k

1
n
g(0),

where ∆1
h = ∆h,∆k

h = ∆h(∆k−1
h ), k ≥ 1, and ∆0

h is the identity operator.

Proof. Insert the binomial expansion of (1− t)n−k =
∑n−k

j=0

(
n−k

j

)
(−1)n−k−jtn−k−j

in the definition of Bn(t), to obtain

Bn(t) =
n∑

j=0

j∑

k=0

g

(
k

n

)(
n

k

)(
n− k

n− j

)

(−1)j−ktj .

For any finite or infinite sequence a0, a1, . . . of real numbers, the difference notation
∆1am := am+1−am is also used. For notational convenience we simply write ∆ := ∆1,
i.e., h = 1. Upon iteration of ∆am = am+1 − am, one inductively arrives at

∆kam =
k∑

j=0

(
k

j

)

(−1)k−jam+j . (8.5)

For another sequence b0, b1, . . ., multiply this by
(
n
k

)
bk and sum over k = 0, . . . , n.

Then making a change in the order of summation, the coefficient of am+j may be
read off as

n∑

k=j

(
n

k

)(
k

j

)

(−1)k−jbk = (−1)n−j

(
n

j

) n−j∑

l=0

(
n− j

l

)

(−1)n−j−lbl+j

=
(

n

j

)

(−1)n−j∆n−jbj .

The first equality is by a change of order of summation and writing (−1)l =
(−1)n−j(−1)n−j−l, and the last equality is by (8.5) applied to the sequence b0, b1, . . ..
Thus one has the so-called general reciprocity formula relating differences ∆kam and
∆kbm for two arbitrary sequences {am : m = 0, 1, . . .} and {bm : m = 0, 1, . . .} in a
“summation by parts” form

n∑

k=0

bk

(
n

k

)

∆kam =
n∑

j=0

am+j

(
n

j

)

(−1)n−j∆n−jbj . (8.6)
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For 0 < t < 1, applying (8.6) to bm = tm using (8.5), one has ∆kbm = tm(1−t)k(−1)k.
Thus, applying (8.6) yields the identity

n∑

m=0

tm
(

n

m

)

∆mak =
n∑

j=0

ak+j

(
n

j

)

tj(1− t)n−j . (8.7)

Now fix h = 1/n and consider the difference ratios ∆m
h ak ≡ h−m∆mak of the sequence

ak = g( k
n ), k = 0, 1, . . . , n. The asserted difference representation of the Bernstein

polynomials for g now follows directly from (8.7). �

The dual representation of Bernstein polynomials can be used to characterize power
series with positive coefficients as follows.

Lemma 2. Let g be a function on [0, 1). Then the following are equivalent: (a)
g(t) =

∑∞
n=0 cntn, 0 ≤ t < 1 with cn ≥ 0, ∀n; (b) g(n)(t) ≡ dn

dtn g(t) exists at
each t ∈ (0, 1) and is nonnegative for every n = 0, 1, 2, . . .; (c) ∆k

1
n

g(0) ≥ 0, for
k = 0, 1, . . . , n− 1, n ≥ 1. Such functions g are said to be absolutely monotone.

Proof. That (a) ⇒ (b) follows from the analyticity of Taylor series expansion and
term by term differentiation (see Exercise 7, Chapter IV). Also (b) ⇒ (c) since mono-
tonicity of g implies ∆ 1

n
g(t) ≥ 0, and monotonicity of g′ then implies monotonicity of

∆ 1
n
g(t), so that ∆2

hg(t) ≥ 0. Iterating this argument, one arrives at (c) from (b). In
fact, ∆n

1
n

g(0) ≥ 0 as well. For (c)⇒ (a), first consider the case that g satisfies (c) for
k = 0, 1, . . . , n and is continuously defined on the closed interval [0, 1] with g(1) = 1.
In view of the Weierstrass approximation theorem, the Bernstein polynomials

Bn(t) =
n∑

k=0

g

(
k

n

)(
n

k

)

tk(1− t)n−k, 0 ≤ t ≤ 1,

converge uniformly to g on [0, 1] as n →∞ (see Appendix B). From (c) one sees using
Lemma 1 that the coefficients pj,n =

∑j
k=0 g( k

n )
(
n
k

)(
n−k
n−j

)
(−1)j−k, j = 0, 1 . . . , n, are

nonnegative and
∑n

j=0 pj,n = Bn(1) = 1. Thus Bn(e−λ) is the Laplace transform
of the probability µn defined by {pj,n : j = 0, 1, . . . , n}, i.e., µn =

∑n
j=0 pj,nδ{j}. It

follows from the Weierstrass approximation and the continuity theorem for Laplace
transforms that there is a probability µ such that µn ⇒ µ, and µ has the desired
Laplace transform g(e−λ) = limn→∞ Bn(e−λ). Take λ = log t to complete the proof
of (a) for the case in which g continuously extends to [0, 1]. If g(1−) = ∞, fix an
arbitrary 0 < δ < 1 and define gδ(t) = g(δt)

g(δ) , for 0 ≤ t ≤ 1. Then gδ satisfies (c) and
the above proof applied to gδ yields an expansion (in s = δt)

g(s) = g(δ)
∞∑

n=0

dn(δ)sn, 0 ≤ s < δ.
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By uniqueness of coefficients in a series expansion of g(s) on an interval [0, δ), the
coefficients cn = g(δ)dn(δ) do not depend on δ, and the expansion (a) is therefore
valid on [0, δ) for δ arbitrarily close to 1, i.e., valid on [0, 1). �

Theorem 8.6 (Range of Laplace Transforms). A function ϕ on (0,∞) is
completely monotone if and only if there is a measure µ on [0,∞) such that

ϕ(λ) =
∫ ∞

0

e−λxµ(dx), λ > 0.

In particular, µ is a probability if and only if ϕ(0+) = 1.

Proof. In the case that µ is a finite measure, the necessity of complete monotonicity
follows directly from the previous moment-generation formula. For general measures
µ on [0,∞) for which µ̂(λ) exists for λ > 0, it then follows from exponential size-
biasing that µ̂(λ+c)

µ̂(c) is completely monotone as a function of λ > 0 for any fixed c > 0.
Thus, the necessity is proven.

Suppose that ϕ is a completely monotone function on (0,∞). For arbitrary fixed
h > 0, define a measure µh by

µh =
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)δ{n

h }.

Then by linearity of the Laplace transform and the continuity theorem applied to the
limit of the partial sums,

µ̂h(λ) =
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)e−λ n

h .

Since cn := 1
n!

dn

dλn ϕ(h(1− t))|t=0 = (−h)n

n!
dn

dλn ϕ(h) ≥ 0 for each n, it follows from the
preceding lemma that ϕ(h(1− t)) has the power series expansion

ϕ(h(1− t)) :=
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)tn, 0 ≤ t < 1 (8.8)

(also see Exercise 10). Thus gh(λ) := ϕ(h(1−e−
λ
h )), λ > 0, is the Laplace transform of

µh. Since gh(λ) converges to ϕ(λ) on (0,∞) as h →∞, it follows from the continuity
theorem that there exists a measure µ on [0,∞) having Laplace transform ϕ. �

Already the condition that the Laplace transform µ̂(λ) exists at some λ ≥ 0, readily
implies that for any bounded interval J = (a, b), µ(J) ≤ eλbµ̂(λ) < ∞; finiteness of
µ(J) for all bounded intervals J is referred to as the Radon property. As the
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following theorem illustrates, much more on the asymptotic behavior of µ may be
obtained from that of its Laplace transform near zero, and vice versa. For the proofs
of results it will be convenient to use the distribution function Gµ of a (Radon)
measure µ on [0,∞), defined by

Gµ(x) = µ[0, x], x ≥ 0.

Theorem 8.7 (Karamata Tauberian Theorem). Let µ be a measure on [0,∞)
whose Laplace transform exists for λ > 0. Then for θ ≥ 0,

lim
α↓0

µ̂(αλ)
µ̂(α)

= λ−θ if and only if lim
a→∞

µ[0, ax]
µ[0, a]

= xθ.

In particular, either of these implies for α ↓ 0, a = α−1 →∞, that

µ̂(α) ∼ µ[0, a]Γ(θ + 1),

where Γ(r) =
∫∞
0

xr−1e−xdx, r > 0, is the gamma function.

Proof. Suppose limα↓0
µ̂(αλ)
µ̂(α) = λ−θ. Observe that the limit on the left side applies

to Laplace transforms of measures µa obtained from µ by scale changes of the form
Gµa

(x) = Gµ(ax)
µ̂(α) , where a = α−1. On the other hand, the right side is the Laplace

transform γ̂(λ) = λ−θ of the measure γ(dx) = 1
Γ(θ)x

θ−1dx on [0,∞). Thus, by the
continuity theorem for Laplace transforms, µa converges vaguely to γ as a → ∞.
Since γ is absolutely continuous with respect to Lebesgue measure, it follows that the
(improper) distribution function converges at all points x ≥ 0. That is,

Gµa
(x)→ Gγ(x) =

1
Γ(θ + 1)

xθ

as a →∞. Take x = 1 to get

µ̂(α) ∼ Gµ(a)Γ(θ + 1) = µ[0, a]Γ(θ + 1).

With this it also follows that

lim
a→∞

µ[0, ax]
µ[0, a]

= xθ.

For the converse, assume that lima→∞
µ[0,ax]
µ[0,a] = xθ. The Laplace transform of the

measure µa with distribution function Gµa
(x) = µ[0,ax]

µ[0,a] is µ̂(αλ)
Gµ(a) , and that of Gγ(x) =
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xθ is Γ(θ+1)λ−θ. Thus, in view of the continuity theorem, if one can show that µ̂(αc)
Gµ(a)

is bounded for some c > 0, then it will follow that

µ̂(αλ)
Gµ(a)

→ Γ(θ + 1)λ−θ

as α → 0, a = α−1. From here the converse assertions follow as above. So it suffices
to prove the boundedness of µ̂(αc)

Gµ(a) for some c > 0. For this, first observe that the

assumption lima→∞
µ[0,ax]
µ[0,a] = xθ implies that there is a c > 1 such that Gµ(2x) ≤

2θ+1Gµ(x) for x > c. Thus, with a = α−1,

µ̂(αc) ≤ µ̂(α) =
∫ a

0

e−αxµ(dx) +
∞∑

n=0

∫ 2n+1a

2na

e−αxµ(dx)

≤ Gµ(a) +
∞∑

n=0

e−2n

Gµ(2n+1a)

≤ Gµ(a)

{

1 +
∞∑

n=0

2(n+1)(θ+1)e−2n

}

,

for all a > c > 1. In particular, this establishes a desired bound to complete the
proof. �

Definition 8.3. A function L on [0,∞) is said to be slowly varying at infinity if
for each fixed x > 0, one has lima→∞

L(ax)
L(a) = 1.

The following corollary is essentially just a reformulation of the statement of the
Tauberian theorem. The proof is left as Exercise 6.

Corollary 8.8. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(λ) ∼ λ−θL

(
1
λ

)

as λ ↓ 0

if and only if

µ[0, x] ∼ 1
Γ(θ + 1)

xθL(x) as x→∞.

Remark 8.2. It is to be noted that asymptotic relations in the Tauberian theorem
are also valid with the roles of α and a reversed, i.e., for α →∞ and a → 0.
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In the case that µ(dx) = g(x)dx has a density f one may obtain a “differentiated
form” of the asymptotic relation under sufficient regularity in g. One such condition2

is the following:

Definition 8.4. A function g on [0,∞) is said to be ultimately monotone if it is
monotone on some [x0,∞) for some x0 ≥ 0.

Lemma 3 (Monotone Density Lemma). Suppose that µ(dx) = g(x)dx has an
ultimately monotone density g. If Gµ(x) ∼ 1

Γ(θ+1)x
θL(x) as x → ∞, then g(x) ∼

xθ−1

Γ(θ) L(x) ∼ θGµ(x)/x as x→∞.

Proof. Assume that g is ultimately nondecreasing. Then, for arbitrary 0 < c < d <

∞, for all x sufficiently large one may bound Gµ(dx)−Gµ(cx)
xθL(x)

=
∫ dx

cx
g(y)dy

xθL(x)
above and

below by

(d− c)xg(cx)
xθL(x)

≤ Gµ(dx)−Gµ(cx)
xθL(x)

≤ (d− c)xg(dx)
xθL(x)

.

Thus,

lim sup
x→∞

g(cx)
xθ−1L(x)

≤ lim sup
x→∞

Gµ(dx)−Gµ(cx)
(d− c)xθL(x)

=lim sup
x→∞

{
Gµ(dx)

(dx)θ(d− c)L(dx)
dθ L(dx)

L(x)
− Gµ(cx)

(cx)θ(d− c)L(cx)
cθ L(cx)

L(x)

}

→ (dθ − cθ)
d− c

.

Take c = 1 and let d ↓ 1 to get the desired upper bound on the limsup. The same
lower bound on the liminf is obtained by the same considerations applied to the other
inequality. Finally, the case in which g is nonincreasing follows by the same argument
but with reversed estimates for the upper and lower bounds. �

The Tauberian theorem together with the monotone density lemma immediately
yields the following consequence.

2A treatment of the problem with less-stringent conditions can be found in the more
comprehensive monograph Bingham, N.H., C.M. Goldie, J.L. Teugels (1987).
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Corollary 8.9. Suppose that µ(dx) = g(x)dx has an ultimately monotone density
g. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(λ) ∼ λ−θL

(
1
λ

)

as λ ↓ 0 if and only if g(x) ∼ 1
Γ(θ)

xθ−1L(x) as x→∞.

Finally, for discrete measures one has the following asymptotic behavior conve-
niently expressed in terms of (combinatorial) generating functions, i.e., with t =
e−λ.

Corollary 8.10. Let µ̃(t) =
∑∞

n=0 µntn, 0 ≤ t < 1, where {µn}∞n=0 is a sequence of
nonnegative numbers. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(t) ∼ (1− t)−θL

(
1

1− t

)

as t ↑ 1

if and only if

n∑

j=0

µj ∼
1

Γ(θ)
nθL(n) as n →∞.

Moreover, if the sequence {µn}∞n=0 is ultimately monotone and 0 < θ < ∞, then
equivalently,

µn ∼
1

Γ(θ)
nθ−1L(n) as n →∞.

Proof. Let µ(dx) =
∑∞

n=0 µn1[n,n+1)(x)dx, with (improper) distribution function
Gµ. Then Gµ(n) =

∑n
j=0 µj . Also

µ̂(λ) =
1− e−λ

λ

∞∑

n=0

µne−nλ =
1− e−λ

λ
µ̃(e−λ).

The assertions now follow immediately from the Tauberian theorem and previous
corollary. �

EXERCISES

Exercise Set VIII

1. Establish the formula
∫ ∞
0

g(x)µ ∗ ν(dx) =
∫ ∞
0

∫ ∞
0

g(x + y)µ(dx)ν(dy) for bounded
Borel-measurable functions g used in the proof of the convolution property of Laplace
transforms.

2. Show that size-biasing a Gaussian distribution corresponds to a shift in the mean.
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3. Show that g(t) = 1
1−t

, 0 ≤ t < 1, is absolutely monotone and ϕ(λ) = eλ

eλ−1
, λ > 0, is

completely monotone. Calculate the measure µ with Laplace transform ϕ(λ).

4. Show that if g is absolutely monotone on [0, 1] with g(1) = 1, then pj,n =∑j

k=0
g
(

k
n

) (
n
k

)(
n−k
n−j

)
(−1)j−k is a probability.

5. Show that (i) | log x|r, x > 0, is slowly varying at infinity and at 0 for any exponent r;
(ii) log log x, x > 1, is slowly varying at ∞; (iii) (1 + x−s)r, x > 0, is slowly varying at
∞ for any exponents r and s > 0.

6. Complete the proofs of the corollaries to the Tauberian theorem. [Hint : Note that
Gµ(ax)

Gµ(a)
∼ xθ as a → ∞ if and only if L(x) =

Gµ(x)

xθ is slowly varying at infinity, and
µ̂(αλ)
µ̂(α)

∼ λ−θ as α → 0 if and only if λθµ̂(λ) varies slowly at 0.]

7. (Renewal Equation Asymptotics) Let µ be a probability on [0,∞) not concentrated at
{0}, and suppose g is a nonnegative measurable function on [0,∞). Show that u(t) =

g ∗µ(t) :=
∫ t

0
g(t− s)µ(ds), t ≥ 0, satisfies the renewal equation u(t) = g(t)+

∫ t

0
u(t−

s)µ(ds), t ≥ 0. Show that if g is integrable on [0,∞) and µ has finite first moment m,
then u(t) ∼ { 1

m

∫ ∞
0

g(s)ds}t as t → ∞. [Hint : Use the Tauberian theorem.]

8. (Branching with Geometric Offspring) Let Yn,1, Yn,2, . . . , Yn,n be a triangular array of
i.i.d. random variables having geometric (offspring) distribution P (Yn,j = k) = qpk, k =

0, 1, 2 . . .. Recursively define Xn+1 =
∑Xn

j=1
Yn,j1[Xn≥1], for n ≥ 0, with X0 = 1. Then

Xn+1 may be viewed as the number of offspring in the (n + 1)st generation produced
by ancestors in the nth generation. The geometric offspring assumption makes vari-
ous explicit calculations possible that are otherwise impossible. Let gn(t) = EtXn , and
g1(t) = g(t) = EtYn,j the generating function of the offspring distribution.
(i) Show that gn+1(t) = g(gn(t)).

(ii) For p 
= q show that gn(t) = q pn−qn−(pn−1−qn−1)pt

pn+1−qn+1−(pn−qn)pt
.

(iii) For p < 1
2
, consider the total progeny defined by N =

∑∞
n=0

Xn. Show that P (N <
∞) = 1. [Hint : Consider P (Xn = 0) = gn(0) and [Xn = 0] ⊆ [Xn+1 = 0].]

(iv) For p < 1
2
, let h(t) = EtN be the generating function for the total progeny. Show

that h(t) = tg(h(t)) = qh(t)
1−ph(t)

, 0 < t < 1. [Hint : Consider the generating functions

hn(t) = Et

∑n

j=0
Xj

, n ≥ 0, in the limit as n → ∞.]

(v) For p < 1
2
, show that h(t) = 1−

√
1−4pqt
2p

, 0 < t < 1. [Hint : Solve the quadratic
equation implied by the preceding calculation.]

(vi) Show that
∑n

k=1
k

(4pq)k P (N = k) ∼ 1
p
√

π
n

1
2 as n → ∞. [Hint : Apply the Taube-

rian theorem to h′( t
4pq

) and use properties of the gamma function: Γ(x + 1) =

xΓ(x), Γ( 1
2
) =

√
π.]

9. Show that under the hypothesis of Theorem 8.5, the sequence of probabilities {µn : n ≥
1} is tight. [Hint : Given ε > 0 there exists λε > 0 such that µ̂n(λε) ≥ 1 − ε

2
for all n.

Now find M = Mε such that e−λεM < ε
2
. Then µn[0, M ] ≥ 1 − ε for all n.]

10. Show that the series (8.8) converges uniformly on [0, a] for all a < 1. [Hint : Check that
the series increases monotonically to ϕ(h(1−t)) and apply Dini’s theorem from advanced
calculus.]

11. (i) Show that under the hypothesis of part (b) of Theorem 8.5 the sequence of probabili-
ties {µn : n ≥ 1} is tight. [Hint : Given ε > 0 there exists λε > 0 such that µ̂n(λε) ≥ 1− ε

2
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for all n. Now find M = Mε such that e−λεM < ε/2. Then µn[0, M ] ≥ 1 − ε for all n.]
(ii) Give an example to show that the boundedness of µ̂n(c) is necessary in part (a).
[Hint : Consider point-mass measures µn at positive integers n.]




