
C H A P T E R III

Martingales and Stopping Times

The notion of “martingale” has proven to be among the most powerful ideas to emerge
in probability in the last century. In this section some basic foundations are presented.
A more comprehensive treatment of the theory and its applications is provided in
our text on stochastic processes.1 For the prototypical illustration of the martingale
property, let Z1, Z2, . . . be an i.i.d. sequence of integrable random variables and let
Xn = Z1 + · · ·+ Zn, n ≥ 1. If EZ1 = 0 then one clearly has

E(Xn+1|Fn) = Xn, n ≥ 1,

where Fn := σ(X1, . . . , Xn).

Definition 3.1 (First Definition of Martingale). A sequence of integrable random
variables {Xn : n ≥ 1} on a probability space (Ω,F , P ) is said to be a martingale
if, writing Fn := σ(X1,X2, . . . , Xn),

E(Xn+1|Fn) = Xn a.s. (n ≥ 1). (3.1)

This definition extends to any (finite or infinite) family of integrable random variables
{Xt : t ∈ T}, where T is a linearly ordered set: Let Ft = σ(Xs : s ≤ t). Then

1Bhattacharya, R., and E. Waymire (2007): Theory and Applications of Stochastic
Processes, Springer Graduate Texts in Mathematics.
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{Xt : t ∈ T} is a martingale if

E(Xt|Fs) = Xs a.s ∀ s < t (s, t ∈ T ). (3.2)

In the previous case of a sequence {Xn : n ≥ 1}, as one can see by taking successive
conditional expectations E(Xn|Fm) = E[E(Xn|Fn+1)|Fm] = E(Xn+1|Fm) = · · · =
E(Xm+1|Fm) = Xm, (3.1) is equivalent to

E(Xn|Fm) = Xm a.s. ∀ m < n. (3.3)

Thus, (3.1) is a special case of (3.2). Most commonly, T = N or Z
+, or T = [0,∞).

Note that if {Xt : t ∈ T} is a martingale, one has the constant expectations property:
EXt = EXs ∀ s, t ∈ T.

Remark 3.1. Let {Xn : n ≥ 1} be a martingale sequence. Define its associated
martingale difference sequence by Z1 := X1, Zn+1 := Xn+1 −Xn (n ≥ 1). Note
that for Xn ∈ L2(Ω,F , P ), n ≥ 1, the martingale differences are uncorrelated. In fact,
for Xn ∈ L1(Ω,F , P ), n ≥ 1, one has

EZn+1f(X1,X2, . . . , Xn) = E[E(Zn+1f(X1, . . . , Xn)|Fn)]

= E[f(X1, . . . , Xn)E(Zn+1|Fn)] = 0 (3.4)

for all bounded Fn measurable functions f(X1, . . . , Xn). If Xn ∈ L2(Ω,F , P ) ∀ n ≥ 1,
then (3.1) implies, and is equivalent to, the fact that Zn+1 ≡ Xn+1 − Xn is or-
thogonal to L2(Ω,Fn, P ). It is interesting to compare this orthogonality to that
of independence of Zn+1 and {Zm : m ≤ n}. Recall that Zn+1 is independent of
{Zm : 1 ≤ m ≤ n} or, equivalently, of Fn = σ(X1, . . . , Xn) if and only if g(Zn+1)
is orthogonal to L2(Ω,Fn, P ) for all bounded measurable g such that Eg(Zn+1) = 0.
Thus independence translates as 0 = E{[g(Zn+1) − Eg(Zn+1)] · f(X1, . . . , Xn)} =
E{g(Zn+1) ·f(X1, . . . , Xn)}−Eg(Zn+1) ·Ef(X1, . . . , Xn), for all bounded measurable
g on R and for all bounded measurable f on R

n.

Example 1 (Independent Increment Process). Let {Zn : n ≥ 1} be an independent
sequence having zero means, and X0 an integrable random variable independent of
{Zn : n ≥ 1}. Then

X0, Xn := X0 + Z1 + · · ·+ Zn ≡ Xn−1 + Zn (n ≥ 1) (3.5)

is a martingale sequence.

Definition 3.2. If with Fn = σ(X1, . . . , Xn) one has inequality in place of (3.1),
namely,

E(Xn+1|Fn) ≥ Xn a.s. ∀n ≥ 1, (3.6)
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then {Xn : n ≥ 1} is said to be a submartingale. More generally, if the index set T is
as in (3.2), then {Xt : t ∈ T} is a submartingale if, with Ft as in Definition 3.2,

E(Xt|Fs) ≥ Xs ∀ s < t (s, t ∈ T ). (3.7)

If instead of ≥, one has ≤ in (3.7) ((3.8)), the process {Xn : n ≥ 1} ({Xt : t ∈ T}) is
said to be a supermartingale.

In Example 1, if EZk ≥ 0 ∀ k, then the sequence {Xn : n ≥ 1} of partial sums of
independent random variables is a submartingale. If EZk ≤ 0 for all k, then {Xn :
n ≥ 1} is a supermartingale. In Example 3, it follows from ±Xn+1 ≤ |Xn+1| taking
conditional expectations, that the sequence {Yn ≡ |Xn| : n ≥ 1} is a submartingale.
The following proposition provides an important generalization of this latter example.

Proposition 3.1. (a) If {Xn : n ≥ 1} is a martingale and ϕ(Xn) is a convex and
integrable function of Xn, then {ϕ(Xn) : n ≥ 1} is a submartingale. (b) If {Xn} is a
submartingale, and ϕ(Xn) is a convex and nondecreasing integrable function of Xn,
then {ϕ(Xn) : n ≥ 1} is a submartingale.

Proof. The proof is obtained by an application of the conditional Jensen’s inequality
given in Theorem 2.7. In particular, for (a) one has

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn). (3.8)

Now take the conditional expectation of both sides with respect to Gn ≡
σ(ϕ(X1), . . . , ϕ(Xn)) ⊆ Fn, to get the martingale property of {ϕ(Xn) : n ≥ 1}. Sim-
ilarly, for (b), for convex and nondecreasing ϕ one has in the case of a submartingale
that

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn), (3.9)

and taking conditional expectation in (3.9), given Gn, the desired submartingale
property follows. �

Proposition 3.1 immediately extends to martingales and submartingales indexed by
an arbitrary linearly ordered set T .

Example 2. (a) If {Xt : t ∈ T} is a martingale, E|Xt|p <∞ (t ∈ T ) for some p ≥ 1,
then {|Xt|p : t ∈ T} is a submartingale. (b) If {Xt : t ∈ T} is a submartingale, then for
every real c, {Yt := max(Xt, c)} is a submartingale. In particular, {X+

t := max(Xt, 0)}
is a submartingale.

Remark 3.2. It may be noted that in (3.8), (3.9), the σ-field Fn is σ(X1, . . . , Xn),
and not σ(ϕ(X1), . . . , ϕ(Xn)), as seems to be required by the first definitions in (3.1),
(3.6). It is, however, more convenient to give the definition of a martingale (or
a submartingale) with respect to a filtration {Fn} for which (3.1) holds (or
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respectively, (3.6) holds) assuming at the outset that Xn is Fn-measurable (n ≥
1) (or, as one often says, {Xn} is {Fn}-adapted). One refers to this sequence as
an {Fn}-martingale (respectively {Fn}-submartingale). An important example
of Fn larger than σ(X1, . . . , Xn) is given by “adding independent information” via
Fn = σ(X1, . . . , Xn)∨G, where G is a σ-field independent of σ(X1,X2, . . .), and G1∨G2

denotes the smallest σ-field containing G1 ∪ G2. We formalize this with the following
definition; also see Exercise 10.

Definition 3.3. (Second General Definition) Let T be an arbitrary linearly ordered
set and suppose {Xt : t ∈ T} is a stochastic process with (integrable) values in R

and defined on a probability space (Ω,F , P ). Let {Ft : t ∈ T} be a nondecreasing
collection of sub-σ-fields of F , referred to as a filtration i.e., Fs ⊆ Ft if s ≤ t. Assume
that for each t ∈ T , Xt is adapted to Ft in the sense that Xt is Ft measurable. We say
that {Xt : t ∈ T} is a martingale, respectively submartingale, supermartingale,
with respect to the filtration {Ft} if E[Xt|Fs] = Xs, ∀s, t ∈ T, s ≤ t, respectively
≥ Xs,∀s, t ∈ T, s ≤ t, or≤ Xs ∀s, t ∈ T, s ≤ t.

Example 3. Let X be an integrable random variable on (Ω,F , P ) and let {Fn : n ≥
1} be a filtration of F . One may check that the stochastic process defined by

Xn := E(X|Fn) (n ≥ 1) (3.10)

is an {Fn}-martingale.

Note that for submartingales the expected values are nondecreasing, while those of
supermartingales are nonincreasing. Of course, martingales continue to have constant
expected values under this more general definition.

Theorem 3.2. (Doob’s Maximal Inequality). Let {X1,X2, . . . , Xn} be an {Fk : 1 ≤
k ≤ n}-martingale, or a nonnegative submartingale, and E|Xn|p <∞ for some p ≥ 1.
Then, for all λ > 0, Mn := max{|X1|, . . . , |Xn|} satisfies

P (Mn ≥ λ) ≤ 1
λp

∫

[Mn≥λ]

|Xn|pdP ≤ 1
λp

E|Xn|p. (3.11)

Proof. Let A1 = [|X1| ≥ λ], Ak = [|X1| < λ, . . . , |Xk−1| < λ, |Xk| ≥ λ] (2 ≤ k ≤ n).
Then Ak ∈ Fk and [Ak : 1 ≤ k ≤ n] is a (disjoint) partition of [Mn ≥ λ]. Therefore,

P (Mn ≥ λ) =
n∑

k=1

P (Ak) ≤
n∑

k=1

1
λp

E(1Ak
|Xk|p) ≤

n∑

k=1

1
λp

E(1Ak
|Xn|p)

=
1
λp

∫

[Mn≥λ]

|Xn|pdP ≤ E|Xn|p
λp

. �

Remark 3.3. By an obvious change in the definition of Ak(k = 1, . . . , n), one obtains
(3.11) with strict inequality Mn > λ on both sides of the asserted inequality.
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Remark 3.4. The classical Kolmogorov maximal inequality for sums of i.i.d. mean
zero, square-integrable random variables is a special case of Doob’s maximal inequality
obtained by taking p = 2 for the martingales of Example 1 having square-integrable
increments.

Corollary 3.3. Let {X1,X2, . . . , Xn} be an {Fk : 1 ≤ k ≤ n}-martingale such that
EX2

n < ∞. Then EM2
n ≤ 4EX2

n.

Proof. A standard application of the Fubini–Tonelli theorem (see (2.5)) provides the
second moment formula

EM2
n = 2

∫ ∞

0

λP (Mn > λ)dλ. (3.12)

Applying the first inequality in (3.11), then another application of the Fubini–Tonelli
theorem, and finally the Cauchy–Schwarz inequality, it follows that

EM2
n ≤ 2

∫ ∞

0

E
(
|Xn|1[Mn≥λ]

)
dλ = 2E (|Xn|Mn)

≤ 2
√

EX2
n

√
EM2

n.

Divide both sides by
√

EM2
n to complete the proof. �

Corollary 3.4. Let {Xt : t ∈ [0, T ]} be a right-continuous nonnegative {Ft}-
submartingale with E|XT |p < ∞ for some p ≥ 1. Then MT := sup{Xs : 0 ≤ s ≤ T}
is FT -measurable and, for all λ > 0,

P (MT > λ) ≤ 1
λp

∫

[MT >λ]

Xp
T dP ≤ 1

λp
EXp

T . (3.13)

Proof. Consider the nonnegative submartingale {X0,XT2−n , . . . , XTi2−n , . . . , XT },
for each n = 1, 2, . . . , and let Mn := max{XiT2−n : 0 ≤ i ≤ 2n}. For λ > 0, [Mn >
λ] ↑ [MT > λ] as n ↑ ∞. In particular, MT is FT -measurable. By Theorem 3.2,

P (Mn > λ) ≤ 1
λp

∫

[Mn>λ]

Xp
T dP ≤ 1

λp
EXp

T .

Letting n ↑ ∞, (3.13) is obtained. �

We finally come to the notion of stopping times, which provide a powerful
probabilistic tool to analyze processes by viewing them at appropriate random times.

Definition 3.4. Let {Ft : t ∈ T} be a filtration on a probability space (Ω,F , P ),
with T a linearly ordered index set to which one may adjoin, if necessary, a point
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‘∞’ as the largest point of T ∪ {∞}. A random variable τ : Ω → T ∪ {∞} is an
{Ft}-stopping time if [τ ≤ t] ∈ Ft ∀ t ∈ T. If [τ < t] ∈ Ft for all t ∈ T then τ is
called an optional time.

Most commonly, T in this definition is N or Z
+, or [0,∞), and τ is related to an

{Ft}-adapted process {Xt : t ∈ T}.
The intuitive idea of τ as a stopping-time strategy is that to “stop by time t, or

not,” according to τ , is determined by the knowledge of the past up to time t, and
does not require “a peek into the future.”

Example 4. Let {Xt : t ∈ T} be an {Ft}-adapted process with values in a mea-
surable space (S,S), with a linearly ordered index set. (a) If T = N or Z

+, then for
every B ∈ S,

τB := inf{t ≥ 0 : Xt ∈ B} (3.14)

is an {Ft}-stopping time. (b) If T = R+ ≡ [0,∞), S is a metric space S = B(S), and
B is closed, t �→ Xt is continuous, then τB is an {Ft}-stopping time. (c) If T = R+, S
is a topological space, t �→ Xt is right-continuous, and B is open, then [τB < t] ∈ Ft

for all t ≥ 0, and hence τB is an optional time.

We leave the proofs of (a)–(c) as Exercise 2. Note that (b), (c) imply that under
the hypothesis of (b), τB is an optional time if B is open or closed.

Definition 3.5. Let {Ft : t ∈ T} be a filtration on (Ω,F). Suppose that τ is a {Ft}-
stopping time. The pre-τ σ-field Fτ comprises all A ∈ F such that A ∩ [τ ≤ t] ∈ Ft

for all t ∈ T.

Heuristically, Fτ comprises events determined by information available only up to
time τ. For example, if T is discrete with elements t1 < t2 < · · · , and Ft = σ(Xs : 0 ≤
s ≤ t) ⊆ F ,∀t, where {Xt : t ∈ T} is a process with values in some measurable space
(S,S), then Fτ = σ(Xτ∧t : t ≥ 0); (Exercise 8). The stochastic process {Xτ∧t : t ≥ 0}
is referred to as the stopped process.

If τ1, τ2 are two {Ft}-stopping times and τ1 ≤ τ2, then it is simple to check that
(Exercise 1)

Fτ1 ⊆ Fτ2 . (3.15)

Suppose {Xt} is an {Ft}-adapted process with values in a measurable space (S,S),
and τ is an {Ft}-stopping time. For many purposes the following notion of adapted
joint measurability of (t, ω) �→ Xt(ω) is important.

Definition 3.6. Let T = [0,∞) or T = [0, t0] for some t0 < ∞. A stochastic process
{Xt : t ∈ T} with values in a measurable space (S,S) is progressively measurable
with respect to {Ft} if for each t ∈ T, the map (s, ω) �→ Xs(ω), from [0, t]×Ω to S is
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measurable with respect to the σ-fields B[0, t]⊗Ft (on [0, t]×Ω) and S (on S). Here
B[0, t] is the Borel σ-field on [0, t], and B[0, t]⊗Ft is the usual product σ-field.

Proposition 3.5. (a) Suppose {Xt : t ∈ T} is progressively measurable, and τ is
a stopping time. Then Xτ is Fτ -measurable, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ Ft for each
B ∈ S and each t ∈ T . (b) Suppose S is a metric space and S its Borel σ-field. If
{Xt : t ∈ T} is right-continuous, then it is progressively measurable.

Proof. (a) Fix t ∈ T . On the set Ωt := [τ ≤ t], Xτ is the composition of the maps
(i) f(ω) := (τ(ω), ω), from ω ∈ Ωt into [0, t] × Ωt, and (ii) g(s, ω) = Xs(ω) on
[0, t] × Ωt into S. Now f is F̃t-measurable on Ωt, where F̃t := {A ∩ Ωt : A ∈ Ft}
is the trace σ-field on Ωt, and B[0, t] ⊗ F̃t is the σ-field on [0, t] × Ωt. Next the
map g(s, ω) = Xs(ω) on [0, t] × Ω into S is B[0, t] ⊗ Ft-measurable. Therefore, the
restriction of this map to the measurable subset [0, t]×Ωt is measurable on the trace
σ-field {A ∩ ([0, t] × Ωt) : A ∈ B[0, t] ⊗ Ft}. Therefore, the composition Xτ is F̃t-
measurable on Ωt, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ F̃t ⊆ Ft and hence [Xτ ∈ B] ∈ Fτ , for
B ∈ S.

(b) Fix t ∈ T . Define, for each positive integer n, the stochastic process {X(n)
s : 0 ≤

s ≤ t} by

X(n)
s := Xj2−nt for (j − 1)2−nt ≤ s < j2−nt (1 ≤ j ≤ 2n), X

(n)
t = Xt.

Since {(s, ω) ∈ [0, t]×Ω : X
(n)
s (ω) ∈ B} = ∪2n

j=1([j−1)2−nt, j2−nt)×{ω : Xj2−nt(ω) ∈
B}) ∪ ({t} × {ω : Xt(ω) ∈ B}) ∈ B[0, t] ⊗ Ft, and X

(n)
s (ω) → Xs(ω) for all (s, ω)

as n → ∞, in view of the right-continuity of s �→ Xs(ω), it follows that {(s, ω) ∈
[0, t]× Ω : Xs(ω) ∈ B} ∈ B[0, t]⊗Ft. �

Remark 3.5. It is often important to relax the assumption of ‘right-continuity’ of
{Xt : t ∈ T} to “a.s. right-continuity.” To ensure progressive measurability progressive
measurability in this case, it is convenient to take F ,Ft to be P -complete, i.e., if
P (A) = 0 and B ⊆ A then B ∈ F and B ∈ Ft ∀ t. Then modify Xt to equal
X0 ∀ t on the P -null set N = {ω : t → Xt(ω) is not right-continuous}. This modified
{Xt : t ∈ T}, together with {Ft : t ∈ T} satisfy the hypothesis of part (b) of
Proposition 3.5.

Theorem 3.6. (Optional Stopping). Let {Xt : t ∈ T} be a right-continuous {Ft}-
martingale, where T = N or T = [0,∞). (a) If τ1 ≤ τ2 are bounded stopping times,
then

E(Xτ2 |Fτ1) = Xτ1 . (3.16)

(b) (Optional Sampling). If τ is a stopping time (not necessarily finite), then {Xτ∧t :
t ∈ T} is an {Fτ∧t}t∈T -martingale.
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(c) Suppose τ is a stopping time such that (i) P (τ < ∞) = 1, and (ii) Xτ∧t(t ∈ T )
is uniformly integrable. Then

EXτ = EX0. (3.17)

Proof. We will give a proof for the case T = [0,∞). The case T = N is similar
and simpler (Exercise 5). Let τ1 ≤ τ2 ≤ t0 a.s. The idea for the proof is to check
that E[Xt0 |Fτi

] = Xτi
, for each of the stopping times (i = 1, 2) simply by virtue of

their being bounded. Once this is established, the result (a) follows by smoothing of
conditional expectation, since Fτ1 ⊆ Fτ2 . That is, it will then follow that

E[Xτ2 |Fτ1 ] = E[E(Xt0 |Fτ2)|Fτ1 ] = E[Xt0 |Fτ1 ] = Xτ1 . (3.18)

So let τ denote either of τi, i = 1, 2, and consider E[Xt0 |Fτ ]. For each n ≥ 1 consider
the nth dyadic subdivision of [0, t0] and define τ (n) = (k+1)2−nt0 if τ ∈ [k2−nt0, (k+
1)2−nt0)(k = 0, 1, . . . , 2n − 1), and τ (n) = t0 if τ = t0. Then τ (n) is a stopping time
and Fτ ⊆ Fτ(n) (since τ ≤ τ (n)). For G ∈ Fτ , exploiting the martingale property
E[Xt0 |F(k+1)2−nt0 ] = Xt(k+1)2−nt0

, one has

E(1GXt0) =
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]Xt0)

=
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]X(k+1)2−nt0)

=
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]Xτ(n)) = E(1GXτ(n)) → E(1GXτ ). (3.19)

The last convergence is due to the L1-convergence criterion of Theorem 1.8 in view
of the following checks: (1) Xt is right-continuous (and τ (n) ↓ τ), so that Xτ(n) → Xτ

a.s., and (2) Xτ(n) is uniformly integrable, since by the submartingale property of
{|Xt| : t ∈ T},

E(1[|X
τ(n) |>λ]|Xτ(n) |) =

2n−1∑

k=0

E(1[τ(n)=(k+1)2−nt0]∩[|X
τ(n) |>λ]|X(k+1)2−nt0 |)

≤
2n−1∑

k=0

E(1[τ(n)=(k+1)2−nt0]∩[|X
τ(n) |>λ]|Xt0 |)

= E(1[|X
τ(n) |>λ]|Xt0 |) → E(1[|Xτ |>λ]|Xt0 |).

Since the left side of (3.19) does not depend on n, it follows that

E(1GXt0) = E(1GXτ ) ∀ G ∈ Fτ ,
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i.e., E(Xt0 |Fτ ) = Xτ applies to both τ = τ1 and τ = τ2. The result (a) therefore
follows by the smoothing property of conditional expectations noted at the start of
the proof.

(b) Follows immediately from (a). For if s < t are given, then τ ∧ s and τ ∧ t are
both bounded by t, and τ ∧ s ≤ τ ∧ t.

(c) Since τ < ∞ a.s., τ ∧ t equals τ for sufficiently large t (depending on ω), outside
a P -null set. Therefore, Xτ∧t → Xτ a.s. as t →∞. By assumption (ii), Xτ∧t (t ≥ 0)
is uniformly integrable. Hence Xτ∧t → Xτ in L1. In particular, E(Xτ∧t) → E(Xτ ) as
t →∞. But EXτ∧t = EX0 ∀ t, by (b). �

Remark 3.6. If {Xt : t ∈ T} in Theorem 3.6 is taken to be a submartingale, then
instead of the equality sign “=” in (3.16), (3.17), one gets “≤.”

The following proposition and its corollary are often useful for verifying the
hypothesis of Theorem 3.6 in examples.

Proposition 3.7. Let {Zn : n ∈ N} be real-valued random variables such that for
some ε > 0, δ > 0, one has

P (Zn+1 > ε | Gn) ≥ δ, a.s. ∀ n = 0, 1, 2, . . .

or

P (Zn+1 < −ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . . , (3.20)

where Gn = σ{Z1, . . . , Zn} (n ≥ 1), G0 = {∅,Ω}. Let Sx
n = x + Z1 + · · ·+ Zn (n ≥ 1),

Sx
0 = x, and let a < x < b. Let τ be the first escape time of {Sx

n} from (a, b), i.e.,
τ = inf{n ≥ 1 : Sx

n ∈ (a, b)c}. Then τ < ∞ a.s. and

sup
{x:a<x<b}

Eeτz <∞ for −∞ < z <
1
n0

(

log
1

1− δ0

)

, (3.21)

where, writing [y] for the integer part of y,

n0 =
[
b− a

ε

]

+ 1, δ0 = δn0 . (3.22)

Proof. Suppose the first relation in (3.20) holds. Clearly, if Zj > ε ∀ j = 1, 2, . . . , n0,
then Sx

n0
> b, so that τ ≤ n0. Therefore, P (τ ≤ n0) ≥ P (Z1 > ε, . . . , Zn0 > ε) ≥ δn0 ,

by taking successive conditional expectations (given Gn0−1,Gn0−2, . . . ,G0, in that or-
der). Hence P (τ > n0) ≤ 1 − δn0 = 1 − δ0. For every integer k ≥ 2, P (τ > kn0) =
P (τ > (k − 1)n0, τ > kn0) = E[1[τ>(k−1)n0]P (τ > kn0|G(k−1)n0)] ≤ (1 − δ0)P (τ >
(k − 1)n0), since, on the set [τ > (k − 1)n0], P (τ ≤ kn0|G(k−1)n0) ≥ P (Z(k−1)n0+1 >

ε, . . . , Zkn0 > ε|G(k−1)n0) ≥ δn0 = δ0. By induction, P (τ > kn0) ≤ (1− δ0)k.



46 MARTINGALES AND STOPPING TIMES

Hence P (τ =∞) = 0, and for all z > 0,

Eezτ =
∞∑

r=1

ezrP (τ = r) ≤
∞∑

k=1

ezkn0

kn0∑

r=(k−1)n0+1

P (τ = r)

≤
∞∑

k=1

ezkn0P (τ > (k − 1)n0) ≤
∞∑

k=1

ezkn0(1− δ0)k−1

= ezn0(1− (1− δ0)ezn0)−1 if ezn0(1− δ0) < 1.

An entirely analogous argument holds if the second relation in (3.20) holds. �

The following corollary immediately follows from Proposition 3.7.

Corollary 3.8. Let {Zn : n = 1, 2, · · ·} be an i.i.d. sequence such that P (Z1 = 0) <
1. Let Sn

n = x + Z1 + · · ·+ Zn (n ≥ 1), Sx
0 = x, and a < x < b. Then the first escape

time τ of the random walk from the interval (a, b) has a finite moment generating
function in a neighborhood of 0.

Example 5. Let Zn(n ≥ 1) be i.i.d. symmetric Bernoulli, P (Zi = +1) = P (Zi =
−1) = 1

2 , and let Sx
n = x + Z1 + · · · + Zn(n ≥ 1), Sx

0 = x, be the simple symmetric
random walk on the state space Z, starting at x. Let a ≤ x ≤ b be integers, τy :=
inf{n ≥ 0 : Sx

n = y}, τ = τa ∧ τb = inf{n ≥ 0 : Sx
n ∈ {a, b}}. Then {Sx

n : n ≥ 0} is a
martingale and τ satisfies the hypothesis of Theorem 3.6 (c) (Exercise 7). Hence

x ≡ ESx
0 = ESx

τ = aP (τa < τb) + bP (τb < τa) = a + (b− a)P (τb < τa),

so that

P (τb < τa) =
x− a

b− a
, P (τa < τb) =

b− x

b− a
, a ≤ x ≤ b. (3.23)

To illustrate the importance of the hypothesis imposed on τ in Theorem 3.6 (c), one
may naively try to apply (3.17) to τb (see Exercise 7) and arrive at the silly conclusion
x = b!

Example 6. One may apply Theorem 3.6 (c) to a simple asymmetric random walk
with P (Zi = 1) = p, P (Zi = −1) = q ≡ 1 − p(0 < p < 1, p �= 1/2), so that
Xx

n := Sx
n − (2p− 1)n (n ≥ 1), Xx

0 ≡ x, is a martingale. Then with τa, τb, τ = τa ∧ τb

as above, one gets

x ≡ EXx
0 = EXx

τ = ESx
τ − (2p− 1)Eτ = a + (b− a)P (τb < τa)− (2p− 1)Eτ. (3.24)

Since we do not know Eτ yet, we can not quite solve (3.24). We therefore use a
second martingale (q/p)Sx

n (n ≥ 0). Note that E[(q/p)Sx
n+1 |σ{Z1, . . . , Zn}] = (q/p)Sx

n ·
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E[(q/p)Zn+1 ] = (q/p)Sx
n [(q/p)p + (q/p)−1q] = (q/p)Sx

n · 1 = (q/p)Sx
n , proving the

martingale property of the “exponential process” Yn := (q/p)Sx
n = exp(cSx

n), c =
ln(q/p), n ≥ 0. Note that (q/p)Sx

τ∧n ≤ max{(q/p)y : a ≤ y ≤ b}, which is a finite
number. Hence the hypothesis of uniform integrability holds. Applying (3.17) we get

(q/p)x = (q/p)a · P (τa < τb) + (q/p)bP (τb < τa),

or

P (τb < τa) =
(q/p)x − (q/p)a

(q/p)b − (q/p)a
≡ ϕ(x) (a ≤ x ≤ b). (3.25)

Using this in (3.24) we get

Eτ ≡ Eτa ∧ τb =
x− a− (b− a)ϕ(x)

1− 2p
, a ≤ x ≤ b. (3.26)

EXERCISES

Exercise Set III

1. Prove (3.15). Also prove that an {Ft}-stopping time is an {Ft}-optional time.

2. (i) Prove that τB defined by (3.14) is an {Ft}-stopping time if B is closed and t �→ Xt

is continuous with values in a metric space (S, ρ). [Hint : For t > 0, B closed, [τB ≤
t] = ∩n∈N ∪r∈Q∩[0,t] [ρ(Xr, B) ≤ 1

n
], where Q is the set of rationals.] (ii) Prove that if

t �→ Xt is right-continuous, τB is an optional time for B open. [Hint : For B open, t > 0,
[τB < t] = ∪r∈Q∩(0,t)[Xr ∈ B].] (iii) If T = N or Z

+, prove that τB is a stopping time
for all B ∈ S.

3. (i) If τ1 and τ2 are {Ft}-stopping times, then show that so are τ1 ∧ τ2 and τ1 ∨ τ2.
(ii) Show that τ + c is an {Ft}-stopping time if τ is an {Ft}-stopping time, c > 0, and

τ + c ∈ T ∪ {∞}. (iii) Show that (ii) is false if c < 0.

4. If τ is a discrete random variable with values t1 < t2 < · · · in a finite or countable set T
in R, then τ is an {Ft}t∈T -stopping time if and only if [τ = t] ∈ Ft ∀ t ∈ T .

5. Let {Xn : n = 0, 1, 2, . . .} be an {Fn}-martingale, and τ an {Fn}-stopping time. Give
simple direct proofs of the following: (i) EXτ = EX0 if τ is bounded. [Hint : Let τ ≤ m
a.s. Then EXτ =

∑m

n=0
EXn1[τ=n] =

∑m

n=0
EXm1[τ=n] = EXm1[τ≤m] = EXm = EX0.]

(ii) If Eτ < ∞ and E|Xτ∧m − Xτ | → 0 as m → ∞, then EXτ = X0.

6. (Wald’s Identity) Let {Yj : j ≥ 1} be an i.i.d. sequence with finite mean µ, and
take Y0 = 0, a.s. Let τ be an {Fn}-stopping time, where Fn = σ(Yj : j ≤ n). Write
Sn =

∑n

j=0
Yj . If Eτ < ∞ and E|Sτ − Sτ∧m| → 0 as m → ∞, prove that ESτ = µEτ .

[Hint : Apply Theorem 3.6(c) to the martingale {Sn − nµ : n ≥ 0}.]
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7. In Example 5 for τ = τa ∧ τb, show that (i) Eτ < ∞ ∀ a ≤ x ≤ b, and |Sτ∧n| ≤
max{|a|, |b|} ∀ n ≥ 0, is uniformly integrable, (ii) P (τa < ∞) = 1 ∀ x, a, but {Sτa∧n :
n ≥ 0} is not uniformly integrable. (iii) For Example 5 also show that Yn := S2

n−n, n ≥ 0,
is a martingale and {Yτ∧n : n ≥ 0} is uniformly integrable. Use this to calculate Eτ.
[Hint : Use triangle inequality estimates on |Yτ∧n| ≤ |Sτ∧n|2 + τ ∧ n.]

8. Let {Xt : t ∈ T} be a stochastic process on (Ω,F) with values in some measurable space
(S,S), T a discrete set with elements t1 < t2 < · · · . Define Ft = σ(Xs : 0 ≤ s ≤ t) ⊆ F ,
t ∈ T. Assume that τ is an {Ft}-stopping time and show that Fτ = σ(Xτ∧t : t ∈ T );
i.e., Fτ is the σ-field generated by the stopped process {Xτ∧t : t ∈ T}.

9. Prove that if τ is an optional time with respect to a filtration {Ft : 0 ≤ t < ∞}, then τ
is a stopping time with respect to {Ft+ : 0 ≤ t < ∞}, where Ft+ := ∩ε>0Ft+ε. Deduce
that under the hypothesis of Example 4(b), if B is open or closed, then τB is a stopping
time with respect to {Ft+ : 0 ≤ t < ∞}.

10. Let {Ft : t ∈ T} and {Gt : t ∈ T} be two filtrations of (Ω,F), each adapted to {Xt : t ∈
T}, and assume Ft ⊆ Gt, ∀t ∈ T. Show that if {Xt : t ∈ T} is a {Gt}-martingale (or sub
or super) then it is an {Ft}-martingale (or respectively sub or super).

11. Let Z1, Z2, . . . be i.i.d. ±1-valued Bernoulli random variables with P (Zn = 1) =
p, P (Zn = −1) = 1−p, n ≥ 1, where 0 < p < 1/2. Let Sn = Z1 + · · ·+Zn, n ≥ 1, S0 = 0.
(i) Show that P (supn≥0 Sn > y) ≤ ( p

q
)y, y ≥ 0. [Hint : Apply a maximal inequality to

Xn = (q/p)Sn .]
(ii) Show for p < 1/2 that E supn≥0 Sn ≤ p

q−p
. [Hint : Use (2.5).]

12. Suppose that Z1, Z2, . . . is a sequence of independent random variables with EZn = 0
such that

∑
n

EZ2
n < ∞. Show that

∑∞
n=1

Zn := limN

∑N

n=1
Zn exists a.s. [Hint :

Let Sj =
∑j

k=1
Zk and show that {Sj} is a.s. a Cauchy sequence. For this note that

Yn := maxk,j≥n |Sk − Sj | is a.s. a decreasing sequence and hence has a limit a.s. Apply
Kolmogorov’s maximal inequality to maxn≤j≤N |Sj − Sn| to show that the limit in
probability is zero, and hence a.s. zero.]
(i) For what values of θ will

∑∞
n=1

Zn converge a.s. if P (Zn = n−θ) = P (Zn = −n−θ) =
1/2 ?

(ii) (Random Signs) Suppose each Zn is symmetric Bernoulli ±1-valued. Show that the
series

∑∞
n=1

Znan converges with probability one if {an} is any square-summable
sequence of real numbers.

(iii) Show that
∑∞

n=1
Zn sin(nπt)/n converges a.s. for each t if the Zn’s are i.i.d. standard

normal.




