
C H A P T E R XIII

A Historical Note on Brownian
Motion

Historically, the mathematical roots of Brownian motion lie in the central limit the-
orem (CLT). The first CLT seems to have been obtained in 1733 by DeMoivre1 for
the normal approximation to the binomial distribution (i.e., sum of i.i.d. Bernoulli 0
or 1-valued random variables). In his 1812 treatise Laplace2 obtained the far reaching
generalization to sums of arbitrary independent and identically distributed random
variables having finite moments of all orders. Although by the standards of rigor
of present day mathematics Laplace’s derivation would not be considered complete,
the essential ideas behind this remarkable result may be found in his work. The first
rigorous proof3 of the CLT was given by Lyapounov almost 100 years later using char-
acteristic functions under the Lyapounov condition for sums of independent, but not
necessarily identically distributed, random variables having finite (2 + δ)th moments
for some δ > 0. This moment condition was relaxed in 1922 by Lindeberg4 to prove
the more general CLT, and in 1935, Feller5 showed that the conditions are necessary
(as well as sufficient), under uniform asymptotic negligibility of summands. The most

1DeMoivre’s normal approximation to the binomial first appeared in a pamphlet
“Approximatio ad summam terminorum binomii” in 1733. It appeared in book form in
the 1756 edition of the Doctrine of Chance, London.

2Laplace, P.-S. (1812), “Théorie Analytique des Probabilités”, Paris.
3Lyapunov, A.M. (1901). Nouvelle forme du théorème sur la limite de probabilités. Mem.

Acad. Imp. Sci. St.-Petersberg 12 (5), 1–24.
4Lindeberg, J.W. (1922). Eine neue Herleitung des Exponentialgesetzes in der

Wahrscheinlichkeitsrechnung. Math. Zeitschr. 15, 211–225.
5Feller, W. (1935). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung.

Math. Zeitschr. 40, 521–559. Also, ibid (1937), 42, 301–312.
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popular form of the CLT is that for i.i.d. summands with finite second moments due
to Paul Lévy.6

There are not many results in mathematics that have had such a profound impact
as the CLT, not only on probability and statistics but also on many other branches
of mathematics, as well as the natural and physical sciences and engineering as a
whole. The idea of a stochastic process {Bt : t ≥ 0} that has independent Gaus-
sian increments also derives from it. One may consider an infinite i.i.d. sequence
{Xm : m ≥ 1} with finite second moments as in the CLT, and consider sums
Sn, S2n − Sn, S3n − S2n, . . . , over consecutive disjoint blocks of n of these random
variables Xm having mean µ and variance σ2. The block sums are independent, each
approximately Gaussian with mean nµ and variance nσ2. If one scales the sums as
Sn−nµ
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n
. . . , then in the limit one should get a process with independent

Gaussian increments. If time is scaled so that one unit of time in the new macroscopic
scale is equal to n units of time in the old scale, the B1, B2−B1, B3−B2, . . . are inde-
pendent Gaussian Φ0,1. Brownian motion is precisely such a process, but constructed
for all times t ≥ 0 and having continuous sample paths. The conception of such a
process was previously introduced in a1900 PhD thesis by Bachelier7 as a model for
the movements of stock prices.

Brownian motion is named after the nineteenth-century botanist Robert Brown,
who observed under the microscope perpetual irregular motions exhibited by small
grains or particles of the size of colloidal molecules immersed in a fluid. Brown8

himself credited earlier scientists for having made similar observations. After some
initial speculation that the movements are those of living organisms was discounted,
the movements were attributed to inherent molecular motions. Independently of this
debate and unaware of the massive experimental observations that had been made
concerning this matter, Einstein9 published a paper in 1905 in which he derived the
diffusion equation
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, x = (x1, x2, x3), (13.1)

for the concentration C(t, x) of large solute molecules of uniform size and spherical
shape in a stationary liquid at a point x at time t. The argument (at least im-
plicit in the above article) is that a solute molecule is randomly displaced frequently
by collisions with the molecules of the surrounding liquid. Regarding the successive

6Lévy, P. (1925).
7Bachelier, L. (1900). Théorie de las spéculation. Ann. Sci. École Norm. Sup. 17, 21–86.

(In: The Random Character of Stock Market Prices, Paul H. Cootner, ed. MIT Press, 1964).
8Brown, R. (1828). A brief account of microscopical observations made in the months of

June, July, and August, 1827, on the particles contained in the pollen of plants; and on the
general existence of active molecules in organic and inorganic bodies. Philos. Magazine N.S.
14, 161–173.

9Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid
demanded by the molecular–kinetic theory of heat. Ann. der Physik 17, 549.
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displacements as independent (and identically distributed) with mean vector zero and
dispersion matrix Diag(d, d, d), one deduces a Gaussian distribution of the position
of the solute molecule at time t with mean vector zero and a dispersion matrix 2t
Diag(D,D,D), where 2D = fd with f as the average number of collisions, or displace-
ments, per unit time. The law of large numbers (assuming that the different solute
molecules move independently) then provides a Gaussian concentration law that is
easily seen to satisfy the equation (13.1), away from the boundary. It is not clear that
Laplace was aware of the profound fact that the operator ∆ =

∑3
1 ∂2/∂x2

i in (13.1)
bearing his name is intimately related to the central limit theorem he had derived.

Apprised of the experimental evidence concerning the so-called Brownian move-
ment, Einstein titled his next article10 on the subject, “On the theory of the Brownian
movement.” In addition to deriving the form of the equation (13.1), Einstein used
classical thermodynamics, namely the Maxwell–Boltzmann steady-state (Gaussian)
velocity distribution and Stokes’ law of hydrodynamics (for the frictional force on
a spherical particle immersed in a liquid) to express the diffusion coefficient D as
D = kT/3πηa, where a is the radius of the spherical solute molecule, η is the coefficient
of viscosity, T is the temperature, and k is the Boltzmann constant. In particular, the
physical parameters are embodied in a statistical parameter. Based on this derivation,
Jean Baptiste Perrin11 estimated k or, equivalently, Avogadro’s number, for which
he was awarded the Nobel Prize in 1926. Meanwhile, in 1923, Wiener12 proved that
one may take Brownian paths to be continuous almost surely. That is, he constructed
the probability measure Q, the so-called Wiener measure on C[0,∞), extending the
normal distribution to infinitely many dimensions in the sense that the coordinate
process Xt(ω) := ω(t), ω ∈ C[0,∞), t ≥ 0, has independent Gaussian increments,
namely, Xt+s −Xt has the normal distribution Φ0,s ≡ N(0, s), ∀ 0 ≤ t < ∞, s > 0,
and {Xti+1 − Xti

: i = 1, 2, . . . ,m − 1} are independent ∀ 0 ≤ t1 < t2 < · · · < tm
(∀ m > 1). This was a delicate result, especially since the Brownian paths turned
out to have very little smoothness beyond continuity. Indeed, in 1933 it was shown
by Paley, Wiener, and Zygmund13 that with probability one, a Brownian path is
continuous but nowhere differentiable. This says that a Brownian particle has no
velocity, confirming some remarkable empirical observations in the early physics of
Brownian motion. In his monograph “Atoms”, Perrin exclaims: “The trajectories are
confused and complicated so often and so rapidly that it is impossible to follow them;
the trajectory actually measured is very much simpler and shorter than the real one.
Similarly, the apparent mean speed of a grain during a given time varies in the wildest
way in magnitude and direction, and does not tend to a limit as the time taken for
an observation decreases, as may be easily shown by noting, in the camera lucida, the

10Einstein, A. (1906). On the theory of the Brownian movement. Ann. der Physik 19,
371–381. English translation in Investigations on the Theory of the Brownian Movement
(R. Fürth, ed.), Dover, 1954.

11Jean Perrin, Atoms, Ox Bow Press, 1990 (French original, 1913).
12Wiener, N. (1923). Differential space. J. Math. Phys. 2, 131–174.
13Paley, R.E.A.C., Wiener, N. and Zygmund, A. (1933). Notes on random functions. Math.

Zietschr. 37, 647–668.
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positions occupied by a grain from minute to minute, and then every five seconds, or,
better still, by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the movement. It is
impossible to fix a tangent, even approximately, at any point on a trajectory, and we
are thus reminded of the continuous underived functions of the mathematicians.”

A more dynamical theory of Brownian (particle) motion was given by Ornstein and
Uhlenbeck,14 following the turn-of-the-century work of Langevin.15

The so-called Langevin equation used by Ornstein and Uhlenbeck is a stochastic
differential equation given (in one dimension) by

dv(t) = −βv(t)dt + σdB(t), (13.2)

where v(t) is the velocity of a Brownian molecule of mass m, −mβv is the frictional
force on it, and σ2 = 2β2D (D as above). By integrating v(t) one gets a differentiable
model of the Brownian molecule. If β and σ2 →∞ such that s2/2β2 = D remains a
constant, then the position process converges to Einstein’s model of Brownian motion
(with variance parameter 2D), providing a scale range for which the models approxi-
mately agree.16 Within the framework of stochastic differential equations one sees that
the steady state velocity distribution for the Langevin equation is a Gaussian distribu-
tion. On physical grounds this can be equated with the Maxwell–Boltzmann velocity
distribution known from statistical mechanics and thermodynamics. In this way one
may obtain Einstein’s fundamental relationship between the physical parameters and
statistical parameters mentioned above.

Brownian motion is a central notion throughout the theoretical development of
stochastic processes and its applications. This rich history and its remarkable con-
sequences are brought to life under several different guises in major portions of the
theory of stochastic processes.

14Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of Brownian motion. Phys.
Rev. 36, 823–841. Reprinted in Selected Papers on Noise and Stochastic Processes (1954).
(N. Wax, ed.), Dover. Also see Chandrasekhar, S. (1943). Stochastic problems in physics
and astronomy. Rev. Modern Physics 15, 2–91. Reprinted in Selected Papers on Noise and
Stochastic Processes (1954) (N. Wax, ed.), Dover.

15Langevin, P. (1908). Sur La théorie du movement brownien. C.R. Acad. Sci. Paris 146,
530–533.

16For a complete dynamical description see Nelson, E. (1967). Dynamical Theories of
Brownian Motion. Princeton Univ. Press, Princeton, N.J.




