
C H A P T E R XII

Skorokhod Embedding and Donsker’s
Invariance Principle

This chapter ties together a number of the topics introduced in the text via appli-
cations to the further analysis of Brownian motion, a fundamentally important
stochastic process whose existence was established in Chapter X.

The discrete-parameter random walk was introduced in Chapter II, where it was
shown to have the Markov property. Markov processes on a general state space S with
a given transition probability p(x, dy) were introduced in Chapter X (see Example
1 and Remark 10.4 in Chapter X). Generalizing from this example, a sequence of
random variables {Xn : n ≥ 0} defined on a probability space (Ω,F , P ) with values
in a measurable space (S,S) has the Markov property if for every m ≥ 0, the
conditional distribution of Xm+1 given Fm := σ(Xj , 0 ≤ j ≤ m) is the same as its
conditional distribution given σ(Xm). In particular, the conditional distribution is a
function of Xm, denoted by pm(Xm, dy), where pm(x, dy), x ∈ S is referred to as the
(one-step) transition probability at time m and satisfies the following:

1. For x ∈ S, pm(x, dy) is a probability on (S,S).
2. For B ∈ S, the function x→ pm(x,B) is a real-valued measurable function on S.

In the special case that pm(x, dy) = p(x, dy), for every m ≥ 0, the transition
probabilities are said to be homogeneous or stationary.

With the random walk example as background, let us recall some basic definitions.
Let Pz denote the distribution of a discrete-parameter stochastic process X = {Xn :
n ≥ 0}, i.e., a probability on the product space (S∞,S⊗∞), with transition probability
p(x, dy) and initial distribution P (X0 = z) = 1. The notation Ez is used to denote
expectations with respect to the probability Pz.
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Definition 12.1. Fix m ≥ 0. The after-m (future) process is defined by X+
m :=

{Xn+m : n ≥ 0}.

It follows from the definition of a Markov process {Xn : n = 0, 1, 2, . . .} with a
stationary transition probability given above that for every n ≥ 0 the conditional
distribution of (Xm,Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm) is the same as the Px-
distribution of (X0, . . . , Xn), evaluated at x = Xm. To see this, let f be a bounded
measurable function on (Sn+1,S⊗(n+1)). Then the claim is that

E
(
f(Xm,Xm+1, . . . , Xm+n)|σ(X0, . . . , Xm)

)
= g0(Xm), (12.1)

where given X0 = x,

g0(x) := Exf(X0,X1, . . . , Xn). (12.2)

For n = 0 this is trivial. For n ≥ 1, first take the conditional expectation of
f(Xm,Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm, . . . , Xm+n−1) to get, by the Markov
property, that

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−1)

)

=
∫

S

f(Xm, . . . , Xm+n−1, xm+n)p(Xm+n−1, dxm+n)

= gn−1(Xm, . . . , Xm+n−1), say. (12.3)

Next take the conditional expectation of the above with respect to σ(X0, . . . , Xm+n−2)
to get

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−2)

)

= E
(
gn−1(Xm, . . . , Xm+n−1)|σ(X0, . . . , Xm+n−2)

)

= E

∫

S

gn−1(Xm, . . . , Xm+n−2, xm+n−1)p(Xm+n−2, dxm+n−1)

= gn−2(Xm, . . . , Xm+n−2), say. (12.4)

Continuing in this manner one finally arrives at

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm)

)

= E
(
g1(Xm,Xm+1)|σ(X0, . . . , Xm, . . . , Xm)

)

=
∫

S

g1(Xm, xm+1)p(Xm, dxm+1) = g0(Xm), say. (12.5)
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Now, on the other hand, let us compute Exf(X0,X1, . . . , Xn). For this, one follows the
same steps as above, but with m = 0. That is, first take the conditional expectation of
f(X0,X1, . . . , Xn), given σ(X0,X1, . . . , Xn−1), arriving at gn−1(X0,X1, . . . , Xn−1).
Then take the conditional expectation of this given σ(X0,X1, . . . , Xn−2), arriving at
gn−2(X0, . . . , Xn−2), and so on. In this way one again arrives at g0(X0), which is
(12.1) with m = 0, or (12.2) with x = Xm.

Since finite-dimensional cylinders C = B × S∞, B ∈ S⊗(n+1) (n = 0, 1, 2, . . .)
constitute a π-system, and taking f = 1B in (12.1), (12.2), one has, for every A ∈
σ(X0, . . . , Xm),

E
(
1A1[X+

m∈C]

)
= E

(
1A1[(Xm,Xm+1,...,Xm+n)∈B]

)
= E

(
1APx(C)|x=Xm

)
. (12.6)

It follows from the π-λ theorem that

E
(
1A1[X+

m∈C]

)
= E

(
1APx(C)|x=Xm

)
, (12.7)

for all C ∈ S∞; here Px(C)|x=Xm
denotes the (composite) evaluation of the function

x �→ Px(C) at x = Xm. Thus, we have arrived at the following equivalent, but
seemingly stronger, definition of the Markov property.

Definition 12.2 (Markov Property). We say that X = {Xn : n ≥ 0} has the
(homogeneous) Markov Property if for every m ≥ 0, the conditional distribution
of X+

m, given the σ-field Fm, is PXm
, i.e., equals Py on the set [Xm = y].

This notion may be significantly strengthened by considering the future evolution
given its history up to and including a random stopping time. Let us recall that given
a stopping time τ , the pre-τ σ-field Fτ is defined by

Fτ = {A ∈ F : A ∩ [τ = m] ∈ Fm,∀m ≥ 0}. (12.8)

Definition 12.3. The after-τ process X+
τ = {Xτ ,Xτ+1,Xτ+2, . . .} is well defined

on the set [τ < ∞] by X+
τ = X+

m on [τ = m].

The following theorem shows that for discrete-parameter Markov processes, this
stronger (Markov) property that “conditionally given the past and the present the
future starts afresh at the present state” holds more generally for a stopping time τ
in place of a constant “present time” m.

Theorem 12.1 (Strong Markov Property). Let τ be a stopping time for the process
{Xn : n ≥ 0}. If this process has the Markov property of Definition 12.2, then on
[τ < ∞] the conditional distribution of the after-τ process X+

τ , given the pre-τ σ-field
Fτ , is PXτ

.
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Proof. Let f be a real-valued bounded measurable function on (S∞,S⊗∞), and let
A ∈ Fτ . Then

E(1[τ<∞]1Af(X+
τ )) =

∞∑

m=0

E(1[τ=m]1Af(X+
m))

=
∞∑

m=0

E(1[τ=m]∩AEXm
f)

=
∞∑

m=0

E(1[τ=m]∩AEXτ
f) = E(1[τ<∞]1AEXτ

f). (12.9)

The second equality follows from the Markov property in Definition 12.2 since A∩[τ =
m] ∈ Fm. �

Let us now consider the continuous-parameter Brownian motion process along simi-
lar lines. It is technically convenient to consider the canonical model of standard
Brownian motion {Bt : t ≥ 0} started at 0, on Ω = C[0,∞) with B the Borel σ-field
on C[0,∞), P0, referred to as Wiener measure, and Bt(ω) := ω(t), t ≥ 0, ω ∈ Ω,
the coordinate projections. However, for continuous-parameter processes it is often
useful to make sure that all events that have probability zero are included in the
σ-field for Ω. For example, in the analysis of fine-scale structure of Brownian motion
certain sets D may arise that imply events E ∈ B for which one is able to compute
P (E) = 0. In particular, then, one would want to conclude that D is measurable
(and hence assigned P (D) = 0 too). For this it may be necessary to replace B by its
σ-field completion F = B. We have seen that this can always be achieved, and there
is no loss in generality in assuming that the underlying probability space (Ω,F , P ) is
complete from the outset (see Appendix A).

Although the focus is on Brownian motion, just as for the above discussion of
random walk, some of the definitions apply more generally and will be so stated
in terms of a generic continuous-parameter stochastic process {Zt : t ≥ 0}, having
continuous sample paths (outside a P -null set).

Definition 12.4. For fixed s > 0 the after-s process is defined by Z+
s := {Zs+t :

t ≥ 0}.

Definition 12.5. A continuous-parameter stochastic process {Zt : t ≥ 0}, with a.s.
continuous sample paths, such that for each s > 0, the conditional distribution of the
after-s process Z+

s given σ(Zt, t ≤ s) coincides with its conditional distribution given
σ(Zs) is said to have the Markov property.

As will become evident from the calculations in the proof below, the Markov prop-
erty of a Brownian motion {Bt : t ≥ 0} follows from the fact that it has independent
increments.



SKOROKHOD EMBEDDING AND DONSKER’S INVARIANCE PRINCIPLE 151

Proposition 12.2 (Markov Property of Brownian Motion). Let Px denote the
distribution on C[0,∞) of standard Brownian motion Bx = {x + Bt : t ≥ 0} started
at x. For every s ≥ 0, the conditional distribution of (Bx

s )+ := {Bx
s+t : t ≥ 0} given

σ(Bx
u : 0 ≤ u ≤ s) is PBx

s
.

Proof. Write G := σ(Bx
u : 0 ≤ u ≤ s). Let f be a real-valued bounded measurable

function on C[0,∞). Then Ef
(
(Bx

s )+|G
)

= E
(
ψ(U, V )|G

)
, where U = Bx

s , V =
{Bx

s+t − Bx
s : t ≥ 0}, ψ(y, ω) := f(ωy), y ∈ R, ω ∈ C[0,∞), and ωy ∈ C[0,∞) by

ωy(t) = ω(t) + y. By the substitution property for conditional expectation (Theorem
2.7), since U is G-measurable and V is independent of G, one has

E
(
ψ(U, V )|G

)
= h(U) = h(Bx

s ),

where, simplifying notation by writing Bt = B0
t and, in turn, {Bt : t ≥ 0} for a

standard Brownian motion starting at 0,

h(y) = Eψ(y, V ) = Eψ(y, {Bt : t ≥ 0}) = Ef(By) =
∫

C[0,∞)

f dPy. �

It is sometimes useful to extend the definition of standard Brownian motion as
follows.

Definition 12.6. Let (Ω,F , P ) be a probability space and Ft, t ≥ 0, a filtration. The
k-dimensional standard Brownian motion with respect to this filtration is
a stochastic process {Bt : t ≥ 0} on (Ω,F , P ) having (i) stationary, independent
Gaussian increments Bt+s −Bs with mean zero and covariance matrix (t− s)Ik; (ii)
a.s. continuous sample paths t �→ Bt on [0,∞) → R

k; and (iii) for each t ≥ 0, Bt is
Ft-measurable and Bt−Bs is independent of Fs, 0 ≤ s < t. Taking B0 = 0 a.s., then
Bx := {x + Bt : t ≥ 0}, is referred to as the standard Brownian motion started
at x ∈ R

k (with respect to the given filtration).

For example, one may take the completion Ft = σ(Bs : s ≤ t), t ≥ 0, of the σ-field
generated by the coordinate projections t �→ ω(t), ω ∈ C[0,∞). Alternatively, one
may have occasion to use Ft = σ(Bs, s ≤ t)∨ G, where G is some σ-field independent
of F . The definition of the Markov property can be modified accordingly as follows.

Proposition 12.3. The Markov property of Brownian motions Bx on R
k defined

on (Ω,F , P ) holds with respect to (i) the right-continuous filtration defined by

Ft+ :=
⋂

ε>0

Ft+ε (t ≥ 0), (12.10)

where Ft = Gt := σ(Bu : 0 ≤ u ≤ t), or (ii) Ft is the P -completion of Gt, or (iii)
Ft = Gt ∨ G (t ≥ 0), where G is independent of F .
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Proof. (i) It is enough to prove that Bt+s − Bs is independent of Fs+ for every
t > 0. Let G ∈ Fs+ and t > 0. For each ε > 0 such that t > ε, G ∈ Fs+ε, so that if
f ∈ Cb(Rk), one has

E(1Gf(Bt+s −Bs+ε)) = P (G) · Ef(Bt+s −Bs+ε).

Letting ε ↓ 0 on both sides,

E(1Gf(Bt+s −Bs)) = P (G)Ef(Bt+s −Bs).

Since the indicator of every closed subset of R
k is a decreasing limit of continuous

functions bounded by 1 (see the proof of Alexandrov’s theorem in Chapter V), the last
equality also holds for indicator functions f of closed sets. Since the class of closed
sets is a π-system, and the class of Borel sets whose indicator functions f satisfy
the equality is a σ-field, one can use the π-λ theorem to obtain the equality for all
B ∈ B(Rk). The proofs of (ii) and (iii) are left to Exercise 2 . �

One may define the σ-field governing the “past up to time τ” as the σ-field of events
Fτ given by

Fτ := σ(Zt∧τ : t ≥ 0). (12.11)

The stochastic process {Z̃t : t ≥ 0} := {Zt∧τ : t ≥ 0} is referred to as the process
stopped at τ . Events in Fτ depend only on the process stopped at τ . The stopped
process contains no further information about the process {Zt : t ≥ 0} beyond the
time τ . Alternatively, in analogy with the discrete-parameter case, a description of
the past up to time τ that is often more useful for checking whether a particular event
belongs to it may be formulated as follows.

Definition 12.7. Let τ be a stopping time with respect to a filtration Ft, t ≥ 0.
The pre-τ σ-field is

Fτ = {F ∈ F : F ∩ [τ ≤ t] ∈ Ft for all t ≥ 0}.

For example, using this definition it is simple to check that

[τ ≤ t] ∈ Fτ ,∀t ≥ 0, [τ < ∞] ∈ Fτ . (12.12)

Remark 12.1. We will always use1 Definition 12.7, and not (12.11). Note, however,
that t ∧ τ ≤ t for all t, so that σ(Xt∧τ : t ≥ 0} is contained in Fτ (see Exercise 1).

1The proof of the equivalence of (12.11) and that of Definition 12.7 for processes with
continuous sample paths may be found in Stroock and Varadhan (1980, p. 33).
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The future relative to τ is the after-τ process Z+
τ = {(Z+

τ )t : t ≥ 0} obtained by
viewing {Zt : t ≥ 0} from time t = τ onwards, for τ < ∞. This is

(Z+
τ )t(ω) = Zτ(ω)+t(ω), t ≥ 0, on [τ < ∞]. (12.13)

Theorem 12.4 (Strong Markov Property for Brownian Motion). Let {Bt : t ≥ 0}
be a k-dimensional Brownian motion with respect to a filtration {Ft : t ≥ 0} starting
at 0 and let P0 denote its distribution (Wiener measure) on C[0,∞). For x ∈ R

k

let Px denote the distribution of the Brownian motion process Bx
t := x + Bt, t ≥ 0,

started at x. Let τ be a stopping time. On [τ < ∞], the conditional distribution of
B+

τ given Fτ is the same as the distribution of {By
t : t ≥ 0} starting at y = Bτ . In

other words, this conditional distribution is PBτ
on [τ < ∞].

Proof. First assume that τ has countably many values ordered as 0 ≤ s1 < s2 < · · ·.
Consider a finite-dimensional function of the after-τ process of the form

h(Bτ+t′1
, Bτ+t′2

, . . . , Bτ+t′r ), [τ < ∞], (12.14)

where h is a bounded continuous real-valued function on (Rk)r and 0 ≤ t′1 < t′2 <
· · · < t′r. It is enough to prove

E
[
h(Bτ+t′1

, . . . , Bτ+t′r )1[τ<∞] | Fτ

]
= [Eh(By

t′1
, . . . , By

t′r
)]y=Bτ

1[τ<∞]. (12.15)

That is, for every A ∈ Fτ we need to show that

E(1Ah(Bτ+t′1
, . . . , Bτ+t′r )1[τ<∞]) = E

(

1A

[
Eh(By

t′1
, . . . , By

t′r
)
]

y=Bτ

1[τ<∞]

)

.

(12.16)
Now

[τ = sj ] = [τ ≤ sj ] ∩ [τ ≤ sj−1]c ∈ Fsj
,

so that A ∩ [τ = sj ] ∈ Fsj
. Express the left side of (12.16) as

∞∑

j=1

E
(
1A∩[τ=sj ]h(Bsj+t′1

, . . . , Bsj+t′r )
)
. (12.17)

By the Markov property, the jth summand in (12.17) equals

E(1A1[τ=sj ][Eh(By
t′1

, . . . , By
t′r

)]y=Bsj
) = E(1A1[τ=sj ][Eh(By

t′1
, . . . , By

t′r
)]y=Bτ

).
(12.18)
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Summing this over j, one obtains the desired relation (12.16). This completes the
proof in the case that τ has countably many values 0 ≤ s1 < s2 < · · ·.

The case of more general τ may be dealt with by approximating it by stopping
times assuming countably many values. Specifically, for each positive integer n define

τn =

⎧
⎨

⎩

j

2n
if

j − 1
2n

< τ ≤ j

2n
, j = 0, 1, 2, . . .

∞ if τ =∞.
(12.19)

Since

[

τn =
j

2n

]

=
[
j − 1
2n

< τ ≤ j

2n

]

=
[

τ ≤ j

2n

]

\
[

τ ≤ j − 1
2n

]

∈ Fj/2n , (12.20)

it follows that

[τn ≤ t] =
⋃

j:j/2n≤t

[

τn =
j

2n

]

∈ Ft for all t ≥ 0. (12.21)

Therefore, τn is a stopping time for each n and τn(ω) ↓ τ(ω) as n ↑ ∞ for each ω ∈ Ω.
Also one may easily check that Fτ ⊆ Fτn

from the definition (see Exercise 1). Let h
be a bounded continuous function on (Rk)r. Define

ϕ(y) ≡ Eh(By
t′1

, . . . , By
t′r

). (12.22)

One may also check that ϕ is continuous using the continuity of y → (By
t′1

, . . . , By
t′r

).
Let A ∈ Fτ (⊆ Fτn

). Applying (12.16) to τ = τn one has

E(1Ah(Bτn+t′1
, . . . , Bτn+t′r )1[τn<∞]) = E(1Aϕ(Bτn

)1[τn<∞]). (12.23)

Since h, ϕ are continuous, {Bt : t ≥ 0} has continuous sample paths, and τn ↓ τ as
n → ∞, Lebesgue’s dominated convergence theorem may be used on both sides of
(12.23) to get

E(1Ah(Bτ+t′1
, . . . , Bτ+t′r )1[τ<∞]) = E(1Aϕ(Bτ )1[τ<∞]). (12.24)

This establishes (12.16). Since finite-dimensional distributions determine a probability
on C[0,∞), the proof is complete. �

Remark 12.2. Note that the proofs of the Markov property (Proposition 12.3 and
the strong Markov property (Theorem 12.1) hold for R

k-valued Brownian motions on
R

k with arbitrary drift and positive definite diffusion matrix (Exercise 2).
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The examples below illustrate the usefulness of Theorem 12.4 in typical computa-
tions. In examples 2–4, B = {Bt : t ≥ 0} is a one-dimensional standard Brownian
motion starting at zero. For ω ∈ C([0,∞) : R) define, for every a ∈ R,

τ (1)
a (ω) ≡ τa(ω) := inf{t ≥ 0 : ω(t) = a}, (12.25)

and, recursively,

τ (r+1)
a (ω) := inf{t > τ (r)

a : ω(t) = a}, r ≥ 1, (12.26)

with the usual convention that the infimum of an empty set of numbers is ∞.
Similarly, in the context of the simple random walk, put Ω = Z

∞ = {ω =
(ω0, ω1, . . .) : ωn ∈ Z,∀n ≥ 1}, and define

τ (1)
a (ω) ≡ τa(ω) := inf{n ≥ 0 : ωn = a}, (12.27)

and, recursively,

τ (r+1)
a (ω) := inf{n > τ (r)

a : ωn = a}, r ≥ 1. (12.28)

Example 1 (Recurrence of Simple Symmetric Random Walk). Consider the simple
symmetric random walk Sx := {Sx

n = x + S0
n : n ≥ 0} on Z started at x. Suppose

one wishes to prove that Px(τy < ∞) = 1 for y ∈ Z. This may be obtained from
the (ordinary) Markov property applied to ϕ(x) := Px(τy < τa), a ≤ x ≤ y. For
a < x < y, conditioning on Sx

1 , and writing Sx+
1 = {Sx

1+n : n ≥ 0}, we have

ϕ(x) = Px(τy < τa) = P (τy ◦ Sx < τa ◦ Sx)

= P (τy ◦ Sx+
1 < τa ◦ Sx+

1 )

= ExPSx
1
(τy < τa) = Eϕ(Sx

1 )

= E(1[Sx
1 =x+1]ϕ(x + 1) + 1[Sx

1 =x−1]ϕ(x− 1))

=
1
2
ϕ(x + 1) +

1
2
ϕ(x− 1), (12.29)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving, one obtains ϕ(x) = (x−a)/(y−a).
Thus Px(τy < ∞) = 1 follows by letting a→ −∞ using basic “continuity properties”
of probability measures. Similarly, letting y → ∞, one gets Px(τa < ∞) = 1. Write
ηa := inf{n ≥ 1 : ωn = a} for the first return time to a. Then ηa = τa on
{ω : ω0 �= a}, and ηa > τa = 0 on {ω : ω0 = a}. By conditioning on Sx

1 again,
one has Px(ηx < ∞) = 1

2Px−1(τx < ∞) + Px+1P (τx < ∞) = 1
2 · 1 + 1

2 · 1 = 1.
While this calculation required only the Markov property, next consider the problem
of showing that the process will return to y infinitely often. One would like to argue
that, conditioning on the process up to its return to y, it merely starts over. This of
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course is the strong Markov property. So let us examine carefully the calculation to
show that under Px, the rth passage time to y, τ

(r)
y , is a.s. finite for every r = 1, 2, . . ..

First note that by the (ordinary) Markov property, Px(τy < ∞) = 1 ∀x. To simplify
notation, write τ

(r)
y = τ

(r)
y ◦ Sx, and Sx+

τ
(r)
y

= {Sx+

τ
(r)
y +n

: n ≥ 0} is then the after-τ (r)
y

process (for the random walk Sx). Applying the strong Markov property with respect
to the stopping time τ

(r)
y one has, remembering that Sx

τ
(r)
y

= y,

Px(τ (r+1)
y <∞) = P (τ (r)

y < ∞, ηy ◦ Sx+

τ
(r)
y

<∞)

= E
(
1

[τ
(r)
y <∞]

Py(ηy <∞)
)

= E
(
1

[τ
(r)
y <∞]

)
· 1

= Px(τ (r)
y <∞) = 1 (r = 1, 2, . . .), (12.30)

by induction on r. If x = y, then τ
(1)
x is replaced by ηx. Otherwise, the proof remains

the same. This is equivalent to the recurrence of the state y in the sense that

P (Sx
n = y for infinitely many n) = P (∩∞

r=1[τ
(r)
y < ∞]) = 1. (12.31)

Example 2 (Boundary Value Distribution of Brownian Motion). Let Bx = {Bx
t :=

x + Bt : t ≥ 0} be a one-dimensional standard Brownian motion started at x ∈ [c, d]
for c < d, and let τy = τy ◦Bx. The stopping time τc∧τd denotes the first time for Bx

to reach the “boundary” states {c, d}, referred to as a hitting time for Bx. Define

ψ(x) := P (Bx
τc∧τd

= c) ≡ P ({Bx
t : t ≥ 0} reaches c before d), (c ≤ x ≤ d).

(12.32)
Fix x ∈ (c, d) and h > 0 such that [x− h, x + h] ⊂ (c, d). In contrast to the discrete-
parameter case there is no “first step” to consider. It will be convenient to consider
τ = τx−h ∧ τx+h, i.e., τ is the first time {Bx

t : t ≥ 0} reaches x − h or x + h. Then
P (τ < ∞) = 1, by the law of the iterated logarithm (see Exercise 5 for an alternative
argument). Now,

ψ(x) = P ({Bx
t : t ≥ 0} reaches c before d) = P ({(Bx+

τ )t : t ≥ 0} reaches c before d)

= E(P ({(Bx+
τ )t : t ≥ 0} reaches c before d | Fτ )). (12.33)

The strong Markov property (Theorem 12.4) now gives that

ψ(x) = E(ψ(Bx
τ )), (12.34)
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so that by symmetry of Brownian motion, i.e., B0 and−B0 have the same distribution,

ψ(x) = ψ(x− h)P (Bx
τ = x− h) + ψ(x + h)P (Bx

τ = x + h)

= ψ(x− h)
1
2

+ ψ(x + h)
1
2
, (12.35)

where, by (12.32), ψ(x) satisfies the boundary conditions ψ(c) = 1, ψ(d) = 0.
Therefore,

ψ(x) =
d− x

d− c
. (12.36)

Now, by (12.36) (see also Exercise 5),

P ({Bx
t : t ≥ 0} reaches d before c) = 1− ψ(x) =

x− c

d− c
(12.37)

for c ≤ x ≤ d. It follows, on letting d ↑ ∞ in (12.36), and c ↓ −∞ in (12.37) that

Px(τy <∞) = 1 for all x, y. (12.38)

As another illustrative application of the strong Markov property one may derive
a Cantor-like structure of the random set of zeros of Brownian motion as follows.

Example 3.

Proposition 12.5. With probability one, the set Z := {t ≥ 0 : Bt = 0} of zeros
of the sample path of a one dimensional standard Brownian motion, starting at 0,
is uncountable, closed, unbounded, and has no isolated point. Moreover, Z a.s. has
Lebesgue measure zero.

Proof. The law of iterated logarithm (LIL) may be applied as t ↓ 0 to show that with
probability one, Bt = 0 for infinitely many t in every interval [0, ε]. Since t �→ Bt(ω)
is continuous, Z(ω) is closed. Applying the LIL as t ↑ ∞, it follows that Z(ω) is
unbounded a.s.

We will now show that for 0 < c < d, the probability is zero of the event A(c, d), say,
that B has a single zero in [c, d]. For this consider the stopping time τ := inf{t ≥ c :
Bt = 0}. By the strong Markov property, B+

τ is a standard Brownian motion, starting
at zero. In particular, τ is a point of accumulation of zeros from the right (a.s.). Also,
P (Bd = 0) = 0. This implies P (A(c, d)) = 0. Considering all pairs of rationals c, d
with c < d, it follows that Z has no isolated point outside a set of probability zero
(see Exercise 4 for an alternate argument).
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Finally, for each T > 0 let HT = {(t, ω) : 0 ≤ t ≤ T , Bt(ω) = 0} ⊂ [0, T ] × Ω. By
the Fubini–Tonelli theorem, denoting the Lebesgue measure on [0,∞) by m, one has

(m× P )(HT ) =
∫ T

0

{∫

Ω

1{ω:Bt(ω)=0}P (dω)
}

dt =
∫ T

0

P (Bt = 0)dt = 0, (12.39)

so that m({t ∈ [0, T ] : Bt(ω) = 0}) = 0 for P -almost all ω. �

The following general consequence of the Markov property can also be useful in
the analysis of the (infinitesimal) fine-scale structure of Brownian motion and may
be viewed as a corollary to Proposition 12.3. As a consequence, for example, one sees
that for any given function ϕ(t), t > 0, the event

Dϕ := [Bt < ϕ(t) for all sufficiently small t] (12.40)

will certainly occur or is certain not to occur. Functions ϕ for which P (Dϕ) = 1 are
said to belong to the upper class. Thus ϕ(t) =

√
2t log log t belongs to the upper

class by the law of the iterated logarithm for Brownian motion (Theorem 11.5).

Proposition 12.6 (Blumenthal’s Zero–One Law). With the notation of Proposi-
tion 12.3,

P (A) = 0 or 1 ∀A ∈ F0+. (12.41)

Proof. It follows from (the proof of) Proposition 12.3 that Fs+ is independent of
σ{Bt+s − Bs : t ≥ 0} ∀ s ≥ 0. Set s = 0 to conclude that F0+ is independent of
σ(Bt : t ≥ 0) ⊇ F0+. Thus F0+ is independent of F0+, so that ∀ A ∈ F0+ one has
P (A) ≡ P (A ∩A) = P (A) · P (A). �

In addition to the strong Markov property, another powerful tool for the analysis of
Brownian motion is made available by observing that both the processes {Bt : t ≥ 0}
and {B2

t − t : t ≥ 0} are martingales. Thus one has available the optional sampling
theory (Theorem 3.6).

Example 4 (Hitting by BM of a Two-Point Boundary). Let {Bx
t : t ≥ 0} be a one-

dimensional standard Brownian motion starting at x, and let 0 < x < d. Let τ denote
the stopping time, τ = inf{t ≥ 0 : Bx

t = c or d}. Then writing ψ(x) := P ({Bx
t }t≥0

reaches d before c), one has (see (12.36))

ψ(x) =
x− c

d− c
c < x < d. (12.42)

Applying the optional sampling theorem to the martingale Xt := (Bx
t − x)2 − t, one

gets EXτ = 0, or (d − x)2ψ(x) + (x − c)2(1 − ψ(x)) = Eτ , so that Eτ = [(d − x)2 −
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(x− c)2]ψ(x) + (x− c)2, or

Eτ = (d− x)(x− c). (12.43)

Consider now a Brownian motion {Y x
t : t ≥ 0} with nonzero drift µ and diffusion

coefficient σ2 > 0, starting at x. Then {Y x
t − tµ : t ≥ 0} is a martingale, so that (see

Exercise 5) E(Y x
τ − µτ) = x, i.e., dψ1(x) + c(1− ψ1(x))− µEτ = x, or

(d− c)ψ1(x)− µEτ = x− c, (12.44)

where ψ1(x) = P (Y x
τ = d), i.e., the probability that {Y x

t : t ≥ 0} reaches d before
c. There are two unknowns, ψ1 and Eτ in (12.44), so we need one more relation to
solve for them. Consider the exponential martingale Zt := exp

{
ξ(Y x

t − tµ)− ξ2σ2

2 t
}

(t ≥ 1). Then Z0 = eξx, so that eξx = EZτ = E exp{ξ(d − τµ) − ξ2σ2 τ/2}1[Y x
τ =d] +

E[exp{ξ(c− τµ)− ξ2σ2 τ/2}1[Y x
τ =c]]. Take ξ �= 0 such that the coefficient of τ in the

exponent is zero, i.e., ξµ+ξ2 σ2/2 = 0, or ξ = −2µ/σ2. Then optional stopping yields

e−2µx/σ2
= exp{ξd}ψ1(x) + exp{ξc}(1− ψ1(x)),

= ψ1(x)
[

exp
{

−2µd

σ2

}

− exp
{

−2µc

σ2

}]

+ exp
{

−2µc

σ2

}

,

or

ψ1(x) =
exp{−2µx/σ2} − exp{−2µc/σ2}

exp{− 2µd
σ2 } − exp{−2µc

σ2 }
. (12.45)

One may use this to compute Eτ :

Eτ =
(d− c)ψ1(x)− (x− c)

µ
. (12.46)

Checking the hypothesis of the optional sampling theorem for the validity of the
relations (12.42)–(12.46) is left to Exercise 5.

Our main goal for this chapter is to derive a beautiful result of Skorokhod (1965)
representing a general random walk (partial sum process) as values of a Brownian
motion at a sequence of successive stopping times (with respect to an enlarged fil-
tration). This will be followed by a proof of the functional central limit theorem
(invariance principle) based on the Skorokhod embedding representation. Recall that
for c < x < d,

P (τx
d < τx

c ) =
x− c

d− c
, (12.47)
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where τx
a := τa(Bx) ≡ inf{t ≥ 0 : Bx

t = a}. Also,

E(τx
c ∧ τx

d ) = (d− x)(x− c). (12.48)

Write τa = τ0
a , B0 = B = {Bt : t ≥ 0}. Consider now a two-point distribution Fu,v

with support {u, v}, u < 0 < v, having mean zero. That is, Fu,v({u}) = v/(v − u)
and Fu,v({v}) = −u/(v − u). It follows from (12.47) that with τu,v = τu ∧ τv, Bτu,v

has distribution Fu,v and, in view of (12.48),

Eτu,v = −uv = |uv|. (12.49)

In particular, the random variable Z := Bτu,v
with distribution Fu,v is naturally

embedded in the Brownian motion. We will see by the theorem below that any
given nondegenerate distribution F with mean zero may be similarly embedded by
randomizing over such pairs (u, v) to get a random pair (U, V ) such that BτU,V

has
distribution F , and EτU,V =

∫
(−∞,∞)

x2F (dx), the variance of F . Indeed, this is
achieved by the distribution γ of (U, V ) on (−∞, 0)× (0,∞) given by

γ(du dv) = θ(v − u)F−(du)F+(dv), (12.50)

where F+ and F− are the restrictions of F to (0,∞) and (−∞, 0), respectively. Here
θ is the normalizing constant given by

1 = θ

[(∫

(0,∞)

vF+(dv)

)

F−((−∞, 0)) +

(∫

(−∞,0)

(−u)F−(du)

)

F+(0,∞)

]

,

or, noting that the two integrals are each equal to 1
2

∫∞
−∞ |x|F (dx) since the mean of

F is zero, one has

1/θ =
(

1
2

∫ ∞

−∞
|x|F (dx)

)

[1− F ({0})]. (12.51)

Let (Ω,F , P ) be a probability space on which are defined (1) a standard Brownian
motion B ≡ B0 = {Bt : t ≥ 0}, and (2) a sequence of i.i.d. pairs (Ui, Vi) independent
of B, with the common distribution γ above. Let Ft := σ{Bs : 0 ≤ s ≤ t}∨σ{(Ui, Vi) :
i ≥ 1}, t ≥ 0. Define the {Ft : t ≥ 0}-stopping times (Exercise 12)

T0 ≡ 0, T1 := inf{t ≥ 0 : Bt = U1 or V1},

Ti+1 := inf{t > Ti : Bt = BTi
+ Ui+1 or BTi

+ Vi+1} (i ≥ 1). (12.52)

Theorem 12.7 (Skorokhod Embedding). Assume that F has mean zero and finite
variance. Then (a) BT1 has distribution F , and BTi+1 − BTi

(i ≥ 0) are i.i.d. with
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common distribution F , and (b) Ti+1 − Ti (i ≥ 0) are i.i.d. with

E (Ti+1 − Ti) =
∫

(−∞,∞)

x2F (dx). (12.53)

Proof. (a) Given (U1, V1), the conditional probability that BT1 = V1 is −U1
V1−U1

.
Therefore, for all x > 0,

P (BT1 > x) = θ

∫

{v>x}

∫

(−∞,0)

−u

v − u
· (v − u)F−(du)F+(dv)

= θ

∫

{v>x}

{∫

(−∞,0)

(−u)F−(du)

}

F+(dv) =
∫

{v>x}
F+(dv), (12.54)

since
∫
(−∞,0)

(−u)F−(du) = 1
2

∫
|x|F (dx) = 1/θ. Thus the restriction of the distri-

bution of BT1 on (0,∞) is F+. Similarly, the restriction of the distribution of BT1

on (−∞, 0) is F−. It follows that P (BT1 = 0) = F ({0}). This shows that BT1 has
distribution F . Next, by the strong Markov property, the conditional distribution of
B+

Ti
≡ {BTi+t : t ≥ 0}, given FTi

, is PBTi
(where Px is the distribution of Bx). There-

fore, the conditional distribution of B+
Ti
− BTi

≡ {BTi+t − BTi
; t ≥ 0}, given FTi

, is
P0. In particular, Yi := {(Tj , BTj

) : 1 ≤ j ≤ i} and Xi := B+
Ti
−BTi

are independent.
Since Yi and Xi are functions of B ≡ {Bt : t ≥ 0} and {(Uj , Vj); 1 ≤ j ≤ i}, they are
both independent of (Ui+1, Vi+1). Since τ (i+1) := Ti+1− Ti is the first hitting time of
{Ui+1, Vi+1} by Xi, it now follows that (1) (Ti+1−Ti ≡ τ (i+1), BTi+1−BTi

≡ Xi
τ(i+1))

is independent of {(Tj , BTj
) : 1 ≤ j ≤ i}, and (2) (Ti+1 − Ti, BTi+1 − BTi

) has the
same distribution as (T1, BT1).

(b) It remains to prove (12.53). But this follows from (12.49):

ET1 = θ

∫

(−∞,0)

∫

(0,∞)

(−uv)(v − u)F−(du)F+(dv)

= θ

[∫

(0,∞)

v2F+(dv) ·
∫

(−∞,0)

(−u)F−(du) +
∫

(−∞,0)

u2F−(du) ·
∫

(0,∞)

vF+(dv)

]

=
∫

(0,∞)

v2F+(dv) +
∫

(−∞,0)

u2F−(du) =
∫

(−∞,∞)

x2F (dx). �

We now present an elegant proof of Donsker’s invariance principle, or func-
tional central limit theorem, using Theorem 12.7. Consider a sequence of i.i.d.
random variables Zi (i ≥ 1) with common distribution having mean zero and vari-
ance 1. Let Sk = Z1 + · · · + Zk (k ≥ 1), S0 = 0, and define the polygonal random
function S(n) on [0, 1] as follows:

S
(n)
t :=

Sk−1√
n

+ n

(

t− k − 1
n

)
Sk − Sk−1√

n
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for t ∈
[

k−1
n , k

n

]
, 1 ≤ k ≤ n. (12.55)

That is, S
(n)
t = Sk√

n
at points t = k

n (0 ≤ k ≤ n), and t �→ S
(n)
t is linearly interpolated

between the endpoints of each interval
[

k−1
n , k

n

]
.

Theorem 12.8 (Invariance Principle). S(n) converges in distribution to the
standard Brownian motion, as n→∞.

Proof. Let Tk, k ≥ 1, be as in Theorem 12.7, defined with respect to a standard
Brownian motion {Bt : t ≥ 0}. Then the random walk {Sk : k = 0, 1, 2, . . .} has the
same distribution as {S̃k := BTk

: k = 0, 1, 2, . . .}, and therefore, S(n) has the same
distribution as S̃(n) defined by S̃

(n)
k/n := n− 1

2 BTK
(k = 0, 1, . . . , n) and with linear

interpolation between k/n and (k + 1)/n (k = 0, 1, . . . , n − 1). Also, define, for each
n = 1, 2, . . . , the standard Brownian motion B̃

(n)
t := n− 1

2 Bnt, t ≥ 0. We will show
that

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃

(n)
t

∣
∣
∣ −→ 0 in probability as n →∞, (12.56)

which implies the desired weak convergence. Now

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃

(n)
t

∣
∣
∣ ≤ n− 1

2 max
1≤k≤n

|BTk
−Bk|

+ max
0≤k≤n−1

{

max
k
n≤t≤ k+1

n

∣
∣
∣S̃

(n)
t − S̃

(n)
k/n

∣
∣
∣ + n− 1

2 max
k≤t≤k+1

|Bt −Bk|
}

= I(1)
n + I(2)

n + I(3)
n , say. (12.57)

Now, writing Z̃k = S̃k − S̃k−1, it is simple to check (Exercise 13) that as n →∞,

I(2)
n ≤ n− 1

2 max{|Z̃k| : 1 ≤ k ≤ n} → 0 in probability,

I(3)
n ≤ n− 1

2 max
0≤k≤n−1

max{|Bt −Bk| : k ≤ t ≤ k + 1} → 0 in probability.

Hence we need to prove, as n →∞,

I(1)
n := n− 1

2 max
1≤k≤n

|BTk
−Bk| −→ 0 in probability. (12.58)

Since Tn/n → 1 a.s., by SLLN, it follows that (Exercise 13)

εn := max
1≤k≤n

∣
∣
∣
∣
Tk

n
− k

n

∣
∣
∣
∣ −→ 0 as n →∞ (almost surely). (12.59)
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In view of (12.59), there exists for each ε > 0 an integer nε such that P (εn < ε) >
1− ε for all n ≥ nε. Hence with probability greater than 1− ε one has for all n ≥ nε

the estimate (writing d= for equality in distribution)

I(1)
n ≤ max

|s−t|≤nε,
0≤s,t≤n+nε

n− 1
2 |Bs −Bt| = max

|s−t|≤nε,
0≤s,t≤n(1+ε)

∣
∣
∣B̃

(n)
s/n − B̃

(n)
t/n

∣
∣
∣

= max
|s′−t′|≤ε,

0≤s′,t′≤1+ε

∣
∣
∣B̃

(n)
s′ − B̃

(n)
t′

∣
∣
∣

d= max
|s′−t′|≤ε,

0≤s′,t′≤1+ε

|Bs′ −Bt′ |

−→ 0 as ε ↓ 0,

by the continuity of t → Bt. Given δ > 0 one may then choose ε = εδ such that for
all n ≥ n(δ) := nεδ

, P (I(1)
n > δ) < δ. Hence I

(1)
n → 0 in probability. �

For another application of Skorokhod embedding let us see how to obtain a law of
the iterated logarithm (LIL) for sums of i.i.d. random variables using the LIL for
Brownian motion.

Theorem 12.9 (Law of the Iterated Logarithm). Let X1,X2, . . . be an i.i.d. seq-
uence of random variables with EX1 = 0, 0 < σ2 := EX2

1 < ∞, and let Sn =
X1 + · · ·+ Xn, n ≥ 1. Then with probability one,

lim sup
n→∞

Sn√
2σ2n log log n

= 1.

Proof. By rescaling if necessary, one may take σ2 = 1 without loss of generality. In
view of Skorokhod embedding one may replace the sequence {Sn : n ≥ 0} by the
embedded random walk {S̃n = BTn

: n ≥ 0}. By the SLLN one also has Tn

n → 1 a.s.
as n →∞. In view of the law of the iterated logarithm for Brownian motion, it is then
sufficient to check that S̃[t]−Bt√

t log log t
→ 0 a.s. as t →∞. From Tn

n → 1 a.s., it follows for

given ε > 0 that with probability one, 1
1+ε <

T[t]

t < 1 + ε for all t sufficiently large.
Let tn = (1 + ε)n, n = 1, 2, . . .. Then for tn ≤ t ≤ tn+1, for some n ≥ 1, one has

Mt := max
{

|Bs −Bt| :
t

1 + ε
≤ s ≤ t(1 + ε)

}

≤ max
{

|Bs −Bt| :
t

1 + ε
≤ s ≤ t

}

+ max {|Bs −Bt| : t ≤ s ≤ t(1 + ε)}

≤ max
{

|Bs −Btn
| : tn

1 + ε
≤ s ≤ tn+1

}

+ max {|Bs −Btn
| : tn ≤ s ≤ tn+1}

≤ 2Mtn
+ 2Mtn+1 .
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Since tn+1− tn−1 = γtn−1 = γ
1+ε tn, where γ = (1+ε)2−1, it follows from the scaling

property of Brownian motion, using Lévy’s Inequality and Feller’s tail probability
estimate, that

P

(

Mtn
>

√

3
γ

1 + ε
tn log log tn

)

= P

(

max
0≤u≤1

|Bu| >
√

3 log log tn

)

≤ 4P
(
B1 ≥

√
3 log log(tn)

)

≤ 4√
3 log log tn

exp
(

−3
2

log log tn

)

≤ cn− 3
2

for a constant c > 0. Summing over n, it follows from the Borel–Cantelli lemma I that
with probability one, Mtn

≤
√

3 γ
1+ε tn log log tn for all but finitely many n. Since a.s.

1
1+ε <

T[t]

t < 1 + ε for all t sufficiently large, one has that, with probability one,

lim sup
t→∞

|S̃[t] −Bt|√
t log log t

≤
√

3
γ

1 + ε
.

Letting ε ↓ 0 one has γ
1+ε → 0, establishing the desired result. �

EXERCISES

Exercise Set XII

1. (i) If τ1, τ2 are stopping times, show that τ1 ∨ τ2 and τ1 ∧ τ2 are stopping times. (ii) If
τ1 ≤ τ2 are stopping times, show that Fτ1 ⊆ Fτ2 .

2. (i) Extend the Markov property for one-dimensional Brownian motion (Proposition 12.2)
to k-dimensional Brownian motion with respect to a given filtration. (ii) Prove parts (ii),
(iii) of Proposition 12.3.

3. Suppose that X, Y, Z are three random variables with values in arbitrary measurable
spaces (Si,Si), i = 1, 2, 3. Assume that regular conditional distributions exist; see Chap-
ter II for general conditions. Show that σ(Z) is conditionally independent of σ(X) given
σ(Y ) if and only if the conditional distribution of Z given σ(Y ) a.s. coincides with the
conditional distribution of Z given σ(X, Y ).

4. Prove that the event A(c, d) introduced in the proof of Proposition 12.5 is measurable,
i.e., the event [τ < d, Bt > 0 ∀τ < t ≤ d] is measurable.

5. Check the conditions for the application of the optional sampling theorem (Theorem
3.6(b)) for deriving (12.42)–(12.46). [Hint : For Brownian motion {Y x

t : t ≥ 0} with a
drift µ and diffusion coefficient σ2 > 0, let Z1 = Y x

1 − x, Zk = Y x
k − Y x

k−1(k ≥ 1). Then
Z1, Z2, . . . are i.i.d. and Corollary 3.8 applies with a = c, b = d. This proves P (τ < ∞) =
1. The uniform integrability of {Y x

t∧τ : t ≥ 0} is immediate, since c ≤ Y x
t∧τ ≤ d for all

t ≥ 0.]
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6. Let u′ < 0 < v′. Show that if F = Fu′,v′ is the mean-zero two-point distribution
concentrated at {u′, v′}, then P ((U, V ) = (u′, v′)) = 1 in the Skorokhod embedding of
F defined by γ(du dv).

7. Given any distribution F on R, let τ := inf{t ≥ 0 : Bt = Z}, where Z is independent of
B = {Bt : t ≥ 0} and has distribution F . Then Bτ = Z. One can thus embed a random
walk with (a nondegenerate) step distribution F (say, with mean zero) in different ways.
However, show that Eτ = ∞. [Hint : The stable distribution of τa := inf{t ≥ 0 : Bt = a}
has infinite mean for every a 
= 0. To see this, use Corollary 11.3 to obtain P (τa > t) ≥
1 − 2P (Bt > a) = P (|Bt| ≤ a) = P (|B1| ≤ a√

t
), whose integral over [0,∞) is divergent.]

8. Prove that ϕ(λ) := E exp{λτu,v} ≤ E exp{λτ−a,a} < ∞ for λ < λ0(a) for some λ0(a) > 0,
where a = max{−u, v}. Here τu,v is the first passage time of standard Brownian motion
to {u, v}, u < 0 < v. [Hint : Use Corollary 3.8 with Xn := Bn − Bn−1 (n ≥ 1).]

9. (i) Show that for every λ ≥ 0, Xt := exp{
√

2λBt − λt}, t ≥ 0, is a martingale.

(ii) Use the optional sampling theorem to prove ϕ(−λ) = 2
(
e
√

2λ a + e−
√

2λ a
)−1

,

where ϕ(−λ) = E exp(−λτ−a,a), in the notation of the previous exercise.

10. Refer to the notation of Theorem 12.8.
(i) Prove that Ti − Ti−1 (i ≥ 1) has a finite moment-generating function in a

neighborhood of the origin if F has compact support.
(ii) Prove that ET 2

1 < ∞ if
∫
|z|5F (dz) < ∞. [Hint : τu,v ≤ τ−a,a with a :=

max{−u, v} ≤ v − u and Eτ2
U,V ≤ cθ

∫
(v − u)5F+(dv)F−(du) for some c > 0.]

11. In Theorem 12.7 suppose F is a symmetric distribution. Let Xi (i ≥ 1) be i.i.d. with

common distribution F and independent of {Bt : t ≥ 0}. Let T̃1 := inf{t ≥ 0 : Bt ∈
{−X1, X1}, T̃i := T̃i−1 + inf{t ≥ 0 : B

T̃i−1+t
∈ {−Xi, Xi}} (i ≥ 1), T̃0 = 0.

(i) Show that B
T̃i
−B

T̃i−1
(i ≥ 1) are i.i.d. with common distribution F , and T̃i−T̃i−1

(i ≥ 1) are i.i.d.

(ii) Prove that ET̃1 = EX2
1 , and ET̃ 2

1 = cEX4
1 , where c is a constant to be computed.

(iii) Compute Ee−λT̃1 for λ ≥ 0.

12. Prove that Ti (i ≥ 0) defined by (12.52) are {Ft}–stopping times, where Ft is as defined
there.

13. (i) Let Zk, k ≥ 1, be i.i.d. with finite variance. Prove that n− 1
2 max{|Zk| : 1 ≤ k ≤

n} → 0 in probability as n → ∞. [Hint : nP (Z1 >
√

n ε) ≤ 1
ε2 EZ2

11[|Z1| ≥
√

n ε],
∀ ε > 0].

(ii) Derive (12.59) [Hint : εn = max1≤k≤n |Tk
k

− 1| · k
n
≤

{
max1≤k≤k0 |Tk

k
− 1|

}
· k0

n
+

maxk≥k0

∣
∣Tk

k
− 1

∣
∣ ∀ k0 = 1, 2, . . ..]




