
C H A P T E R XI

Brownian Motion: The LIL and Some
Fine-Scale Properties

In this chapter we analyze the growth of the Brownian paths t �→ Bt as t → ∞.
We will see by a property of “time inversion” of Brownian motion that this leads to
small-scale properties as well. First, however, let us record some basic properties of
the Brownian motion that follow somewhat directly from its definition.

Theorem 11.1. Let B = {Bt : t ≥ 0} be a standard one-dimensional Brownian
motion starting at 0. Then

1. (Symmetry) Wt := −Bt, t ≥ 0, is a standard Brownian motion starting at 0.
2. (Homogeneity and Independent Increments) {Bt+s − Bs : t ≥ 0} is a standard

Brownian motion independent of {Bu : 0 ≤ u ≤ s}, for every s ≥ 0.
3. (Scale-Change Invariance). For every λ > 0, {B(λ)

t := λ− 1
2 Bλt : t ≥ 0} is a

standard Brownian motion starting at 0.
4. (Time-Inversion Invariance) Wt := tB1/t, t > 0, W0 = 0, is a standard Brownian

motion starting at 0.

Proof. Each of these is obtained by showing that the conditions defining a Brownian
motion are satisfied. In the case of the time-inversion property one may apply the
strong law of large numbers to obtain continuity at t = 0. That is, if 0 < tn → 0 then
write sn = 1/tn →∞ and Nn := [sn], where [·] denotes the greatest integer function,
so that by the strong law of large numbers, with probability one

Wtn
=

1
sn

Bsn
=

Nn

sn

1
Nn

Nn∑

j=1

(Bi −Bi−1) +
1
sn

(Bsn
−BNn

) → 0,
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since Bi − Bi−1, i ≥ 1, is an i.i.d. mean-zero sequence, Nn/sn → 1, and (Bsn
−

BNn
)/sn → 0 a.s. as n →∞ (see Exercise 1). �

In order to prove our main result of this section, we will make use of the following
important inequality due to Paul Lévy.

Proposition 11.2 (Lévy’s Inequality). Let Xj , j = 1, . . . , N , be independent and
symmetrically distributed (about zero) random variables. Write Sj =

∑j
i=1 Xi, 1 ≤

j ≤ N . Then, for every y > 0,

P

(

max
1≤j≤N

Sj ≥ y

)

≤ 2P (SN ≥ y)− P (SN = y) ≤ 2P (SN ≥ y).

Proof. Write Aj = [S1 < y, . . . , Sj−1 < y, Sj ≥ y], for 1 ≤ j ≤ N . The events
[SN − Sj < 0] and [SN − Sj > 0] have the same probability and are independent of
Aj . Therefore

P

(

max
1≤j≤N

Sj ≥ y

)

= P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN < y])

≤ P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN − Sj < 0])

= P (SN ≥ y) +
N−1∑

j=1

P (Aj)P ([SN − Sj < 0])

= P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN − Sj > 0])

≤ P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN > y])

≤ P (SN ≥ y) + P (SN > y)

= 2P (SN ≥ y)− P (SN = y). (11.1)

This establishes the basic inequality. �

Corollary 11.3. For every y > 0 one has for any t > 0,

P

(

max
0≤s≤t

Bs ≥ y

)

≤ 2P (Bt ≥ y).
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Proof. Partition [0, t] by equidistant points 0 < u1 < u2 < · · · < uN = t, and let
X1 = Bu1 ,Xj+1 = Buj+1 −Buj

, 1 ≤ j ≤ N − 1, in the proposition. Now let N →∞,
and use the continuity of Brownian motion. �

Remark 11.1. It is shown in the text on stochastic processes that P (max0≤s≤t Bs ≥
y) = 2P (Bt ≥ y). Thus Lévy’s inequality is sharp in its stated generality. The
following proposition concerns the simple symmetric random walk defined by
S0 = 0, Sj = X1 + · · ·+ Xj , j ≥ 1, with X1,X2, . . . i.i.d. ±1-valued with equal proba-
bilities. It demonstrates the remarkable strength of the reflection method used in
the proof of the lemma, allowing one in particular to compute the distribution of the
maximum of a random walk over a finite time.

Proposition 11.4. For the simple symmetric random walk one has for every positive
integer y,

P

(

max
0≤j≤N

Sj ≥ y

)

= 2P (SN ≥ y)− P (SN = y).

Proof. In the notation of Lévy’s inequality given in Proposition 11.2 one has, for
the present case of the random walk moving by ±1 units at a time, that Aj = [S1 <
y, . . . , Sj−1 = y], 1 ≤ j ≤ N . Then in (11.1) the probability inequalities are all
equalities for this special case. �

Theorem 11.5 (Law of the Iterated Logarithm (LIL) for Brownian Motion). Each
of the following holds with probability one:

limt→∞
Bt√

2t log log t
= 1, limt→∞

Bt√
2t log log t

= −1.

Proof. Let ϕ(t) :=
√

2t log log t, t > 0. Let us first show that for any 0 < δ < 1, one
has with probability one that

limt→∞
Bt

ϕ(t)
≤ 1 + δ. (11.2)

For arbitrary α > 1, partition the time interval [0,∞) into subintervals of
exponentially growing lengths tn+1 − tn, where tn = αn, and consider the event

En :=
[

max
tn≤t≤tn+1

Bt

(1 + δ)ϕ(t)
> 1

]

.
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Since ϕ(t) is a nondecreasing function, one has, using Corollary 11.3, a scaling
property, and Lemma 5 from Chapter X, that

P (En) ≤ P

(

max
0≤t≤tn+1

Bt > (1 + δ)ϕ(tn)
)

≤ 2P

(

B1 >
(1 + δ)ϕ(tn)√

tn+1

)

≤
√

2
π

√
tn+1

(1 + δ)ϕ(tn)
e
− (1+δ)2ϕ2(tn)

2tn+1 ≤ c
1

n(1+δ)2/α
(11.3)

for a constant c > 0 and all n ≥ (log α)−1. For a given δ > 0 one may select 1 < α <
(1 + δ)2 to obtain P (En i.o.) = 0 from the Borel–Cantelli lemma (Part I). Thus we
have (11.2). Since δ > 0 is arbitrary we have with probability one that

limt→∞
Bt

ϕ(t)
≤ 1. (11.4)

Next let us show that with probability one,

limt→∞
Bt

ϕ(t)
≥ 1. (11.5)

For this consider the independent increments Btn+1 −Btn
, n ≥ 1. For θ = tn+1−tn

tn+1
=

α−1
α < 1, using Feller’s tail probability estimate (Lemma 5, Chapter X) and Brownian

scale change,

P
(
Btn+1 −Btn

> θϕ(tn+1)
)

= P

(

B1 >

√
θ

tn+1
ϕ(tn+1)

)

≥ c′e−θ log log tn+1

≥ cn−θ (11.6)

for suitable constants c, c′ depending on α and for all sufficiently large n. It follows
from the Borel–Cantelli Lemma (Part II) that with probability one,

Btn+1 −Btn
> θϕ(tn+1) i.o. (11.7)

Also, by (11.4) and replacing {Bt : t ≥ 0} by the standard Brownian motion {−Bt :
t ≥ 0},

limt→∞
Bt

ϕ(t)
≥ −1, a.s. (11.8)
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Since tn+1 = αtn > tn, we have

Btn+1√
2tn+1 log log tn+1

=
Btn+1 −Btn√

2tn+1 log log tn+1

+
1√
α

Btn√
2tn(log log tn + log log α)

.

(11.9)
Now, using (11.7) and (11.8), it follows that with probability one,

limn→∞
Btn+1

ϕ(tn+1)
≥ θ − 1√

α
=

α− 1
α

− 1√
α

. (11.10)

Since α > 1 may be selected arbitrarily large, one has with probability one that

limt→∞
Bt

ϕ(t)
≥ limn→∞

Btn+1

ϕ(tn+1)
≥ 1. (11.11)

This completes the computation of the limit superior. To get the limit inferior simply
replace {Bt : t ≥ 0} by {−Bt : t ≥ 0}. �

The time inversion property for Brownian motion turns the law of the iterated
logarithm (LIL) into a statement concerning the degree (or lack) of local smoothness.
(Also see Exercise 5).

Corollary 11.6. Each of the following holds with probability one:

limt→0
Bt√

2t log log 1
t

= 1, limt→0

Bt√
2t log log 1

t

= −1.

EXERCISES

Exercise Set XI

1. Use Feller’s tail estimate (Lemma 5, Chapter X). to prove that max{|Bi − Bi−1| : i =
1, 2, . . . , N + 1}/N → 0 a.s. as N → ∞.

2. Show that with probability one, standard Brownian motion has arbitrarily large zeros.
[Hint : Apply the LIL.]

3. Fix t ≥ 0 and use the law of the iterated logarithm to show that limh→0
Bt+h−Bt

h
exists

only with probability zero. [Hint : Check that Yh := Bt+h − Bt, h ≥ 0, is distributed as

standard Brownian motion starting at 0. Consider 1
h
Yh = Yh√

2h log log(1/h)

√
2h log log(1/h)

h
.]

4. For the simple symmetric random walk, find the distributions of the extremes: (a) MN =
max{Sj : j = 0, . . . , N}, and (b) mN = min{Sj : 0 ≤ j ≤ N}.
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5. (Lévy Modulus of Continuity1) Use the wavelet construction Bt :=
∑

n,k
Zn,kSn,k(t),

0 ≤ t ≤ 1, of standard Brownian motion to establish the following fine-scale properties.
(i) Let 0 < δ < 1

2
. With probability one there is a random constant K such that if

|t − s| ≤ δ then |Bt − Bs| ≤ K
√

δ log 1
δ
. [Hint : Fix N and write the increment as

a sum of three terms: Bt − Bs = Z00(t − s) +
∑N

n=0

∑2n+1−1

k=2n Zn,k

∫ t

s
Hn,k(u)du +

∑∞
n=N+1

∑2n+1−1

k=2n Zn,k

∫ t

s
Hn,k(u)du = a + b + c. Check that for a suitable (ran-

dom) constant K′ one has |b| ≤ |t − s|K′ ∑N

n=0
n

1
2 2

n
2 ≤ |t − s|K′

√
2√

2−1

√
N2

N
2 ,

and |c| ≤ K′ ∑∞
n=N+1

n
1
2 2− n

2 ≤ K′
√

2√
2−1

√
N2− N

2 . Use these estimates, taking

N = [− log2(δ)] such that δ2N ∼ 1, to obtain the bound |Bt − Bs| ≤ |Z00|δ +

2K′
√

−δ log2(δ). This is sufficient since δ <
√

δ.]
(ii) The modulus of continuity is sharp in the sense that with probability one, there is a

sequence of intervals (sn, tn), n ≥ 1, of respective lengths tn−sn → 0 as n → ∞ such

that the ratio
Btn−Bsn√

−(tn−sn) log(tn−sn)
is bounded below by a positive constant. [Hint :

Use Borel–Cantelli I together with Feller’s tail probability estimate for the Gaussian
distribution to show that P (An i.o.) = 0, where An := [|Bk2−n − B(k−1)2−n | ≤
c
√

n2−n, k = 1, . . . , 2n] and c is fixed in (0,
√

2 log 2). Interpret this in terms of the
certain occurrence of the complimentary event [An i.o.]c.]

(iii) The paths of Brownian motion are a.s. nowhere differentiable.

1The calculation of the modulus of continuity for Brownian motion is due to Lévy,
P. (1937), Théorie de l’addition des variables aléatores, Gauthier-Villars, Paris. However
this exercise follows Pinsky, M. (1999): Brownian continuity modulus via series expansions,
J. Theor. Probab. 14 (1), 261–266.




