C H A P T E R XI

Brownian Motion: The LIL and Some Fine-Scale Properties

In this chapter we analyze the growth of the Brownian paths $t \mapsto B_t$ as $t \to \infty$. We will see by a property of "time inversion" of Brownian motion that this leads to small-scale properties as well. First, however, let us record some basic properties of the Brownian motion that follow somewhat directly from its definition.

Theorem 11.1. Let $B = \{B_t : t \geq 0\}$ be a standard one-dimensional Brownian motion starting at 0. Then

- **1.** (Symmetry) $W_t := -B_t$, $t \geq 0$, is a standard Brownian motion starting at 0.
- **2.** (Homogeneity and Independent Increments) ${B_{t+s} B_s : t \ge 0}$ is a standard Brownian motion independent of $\{B_u : 0 \le u \le s\}$, for every $s \ge 0$.
- **3.** (Scale-Change Invariance). For every $\lambda > 0$, $\{B_t^{(\lambda)} := \lambda^{-\frac{1}{2}}B_{\lambda t} : t \geq 0\}$ is a standard Brownian motion starting at 0.
- **4.** (Time-Inversion Invariance) $W_t := tB_{1/t}$, $t > 0$, $W_0 = 0$, is a standard Brownian motion starting at 0.

Proof. Each of these is obtained by showing that the conditions defining a Brownian motion are satisfied. In the case of the time-inversion property one may apply the strong law of large numbers to obtain continuity at $t = 0$. That is, if $0 < t_n \to 0$ then write $s_n = 1/t_n \to \infty$ and $N_n := [s_n]$, where $[\cdot]$ denotes the greatest integer function, so that by the strong law of large numbers, with probability one

$$
W_{t_n} = \frac{1}{s_n} B_{s_n} = \frac{N_n}{s_n} \frac{1}{N_n} \sum_{j=1}^{N_n} (B_i - B_{i-1}) + \frac{1}{s_n} (B_{s_n} - B_{N_n}) \to 0,
$$

since $B_i - B_{i-1}$, $i \geq 1$, is an i.i.d. mean-zero sequence, $N_n/s_n \to 1$, and $(B_{s_n} B_{N_n}$ / $(s_n \rightarrow 0$ a.s. as $n \rightarrow \infty$ (see Exercise 1).

In order to prove our main result of this section, we will make use of the following important inequality due to Paul Lévy.

Proposition 11.2 (Lévy's Inequality). Let X_j , $j = 1, \ldots, N$, be independent and symmetrically distributed (about zero) random variables. Write $S_j = \sum_{i=1}^j X_i, 1 \leq j$ $j \leq N$. Then, for every $y > 0$,

$$
P\left(\max_{1\leq j\leq N} S_j \geq y\right) \leq 2P(S_N \geq y) - P(S_N = y) \leq 2P(S_N \geq y).
$$

Proof. Write $A_j = [S_1 \lt y, \ldots, S_{j-1} \lt y, S_j \ge y]$, for $1 \le j \le N$. The events $[S_N - S_j < 0]$ and $[S_N - S_j > 0]$ have the same probability and are independent of A_i . Therefore

$$
P\left(\max_{1\leq j\leq N} S_j \geq y\right) = P(S_N \geq y) + \sum_{j=1}^{N-1} P(A_j \cap [S_N < y])
$$
\n
$$
\leq P(S_N \geq y) + \sum_{j=1}^{N-1} P(A_j \cap [S_N - S_j < 0])
$$
\n
$$
= P(S_N \geq y) + \sum_{j=1}^{N-1} P(A_j) P([S_N - S_j < 0])
$$
\n
$$
= P(S_N \geq y) + \sum_{j=1}^{N-1} P(A_j \cap [S_N - S_j > 0])
$$
\n
$$
\leq P(S_N \geq y) + \sum_{j=1}^{N-1} P(A_j \cap [S_N > y])
$$
\n
$$
\leq P(S_N \geq y) + P(S_N > y)
$$
\n
$$
= 2P(S_N \geq y) - P(S_N = y). \tag{11.1}
$$

This establishes the basic inequality.

Corollary 11.3. For every $y > 0$ one has for any $t > 0$,

$$
P\left(\max_{0\leq s\leq t} B_s \geq y\right) \leq 2P(B_t \geq y).
$$

Proof. Partition [0,t] by equidistant points $0 < u_1 < u_2 < \cdots < u_N = t$, and let $X_1 = B_{u_1}, X_{j+1} = B_{u_{j+1}} - B_{u_j}, 1 \le j \le N-1$, in the proposition. Now let $N \to \infty$, and use the continuity of Brownian motion.

Remark 11.1. It is shown in the text on stochastic processes that $P(\max_{0 \leq s \leq t} B_s \geq$ $y) = 2P(B_t > y)$. Thus Lévy's inequality is sharp in its stated generality. The following proposition concerns the **simple symmetric random walk** defined by $S_0 = 0, S_j = X_1 + \cdots + X_j, j \ge 1$, with X_1, X_2, \ldots i.i.d. ± 1 -valued with equal probabilities. It demonstrates the remarkable strength of the **reflection method** used in the proof of the lemma, allowing one in particular to compute the distribution of the maximum of a random walk over a finite time.

Proposition 11.4. For the simple symmetric random walk one has for every positive integer y,

$$
P\left(\max_{0\leq j\leq N} S_j \geq y\right) = 2P(S_N \geq y) - P(S_N = y).
$$

Proof. In the notation of Lévy's inequality given in Proposition 11.2 one has, for the present case of the random walk moving by ± 1 units at a time, that $A_i = [S_1 \lt$ $y, \ldots, S_{i-1} = y$, $1 \leq j \leq N$. Then in (11.1) the probability inequalities are all equalities for this special case.

*Theorem 11.5 (*Law of the Iterated Logarithm (LIL) for Brownian Motion*).* Each of the following holds with probability one:

$$
\overline{\lim}_{t\to\infty}\frac{B_t}{\sqrt{2t\log\log t}}=1,\qquad \underline{\lim}_{t\to\infty}\frac{B_t}{\sqrt{2t\log\log t}}=-1.
$$

Proof. Let $\varphi(t) := \sqrt{2t \log \log t}, t > 0$. Let us first show that for any $0 < \delta < 1$, one has with probability one that

$$
\overline{\lim}_{t \to \infty} \frac{B_t}{\varphi(t)} \le 1 + \delta. \tag{11.2}
$$

For arbitrary $\alpha > 1$, partition the time interval $[0, \infty)$ into subintervals of exponentially growing lengths $t_{n+1} - t_n$, where $t_n = \alpha^n$, and consider the event

$$
E_n := \left[\max_{t_n \leq t \leq t_{n+1}} \frac{B_t}{(1+\delta)\varphi(t)} > 1 \right].
$$

Since $\varphi(t)$ is a nondecreasing function, one has, using Corollary 11.3, a scaling property, and Lemma 5 from Chapter X, that

$$
P(E_n) \le P\left(\max_{0 \le t \le t_{n+1}} B_t > (1+\delta)\varphi(t_n)\right)
$$

\n
$$
\le 2P\left(B_1 > \frac{(1+\delta)\varphi(t_n)}{\sqrt{t_{n+1}}}\right)
$$

\n
$$
\le \sqrt{\frac{2}{\pi}} \frac{\sqrt{t_{n+1}}}{(1+\delta)\varphi(t_n)} e^{-\frac{(1+\delta)^2\varphi^2(t_n)}{2t_{n+1}}} \le c \frac{1}{n^{(1+\delta)^2/\alpha}} \tag{11.3}
$$

for a constant $c > 0$ and all $n \geq (\log \alpha)^{-1}$. For a given $\delta > 0$ one may select $1 < \alpha <$ $(1 + \delta)^2$ to obtain $P(E_n \text{ i.o.}) = 0$ from the Borel–Cantelli lemma (Part I). Thus we have (11.2). Since $\delta > 0$ is arbitrary we have with probability one that

$$
\overline{\lim}_{t \to \infty} \frac{B_t}{\varphi(t)} \le 1. \tag{11.4}
$$

Next let us show that with probability one,

$$
\overline{\lim}_{t \to \infty} \frac{B_t}{\varphi(t)} \ge 1. \tag{11.5}
$$

For this consider the independent increments $B_{t_{n+1}} - B_{t_n}$, $n \geq 1$. For $\theta = \frac{t_{n+1} - t_n}{t_{n+1}} =$ $\frac{\alpha-1}{\alpha}$ < 1, using Feller's tail probability estimate (Lemma 5, Chapter X) and Brownian scale change,

$$
P\left(B_{t_{n+1}} - B_{t_n} > \theta \varphi(t_{n+1})\right) = P\left(B_1 > \sqrt{\frac{\theta}{t_{n+1}}} \varphi(t_{n+1})\right)
$$

$$
\ge c' e^{-\theta \log \log t_{n+1}}
$$

$$
\ge cn^{-\theta} \tag{11.6}
$$

for suitable constants c, c' depending on α and for all sufficiently large n. It follows from the Borel–Cantelli Lemma (Part II) that with probability one,

$$
B_{t_{n+1}} - B_{t_n} > \theta \varphi(t_{n+1}) \ i.o. \tag{11.7}
$$

Also, by (11.4) and replacing ${B_t : t \ge 0}$ by the standard Brownian motion ${-B_t : t \ge 0}$ $t \geq 0$,

$$
\underline{\lim}_{t \to \infty} \frac{B_t}{\varphi(t)} \ge -1, \ a.s. \tag{11.8}
$$

Since $t_{n+1} = \alpha t_n > t_n$, we have

$$
\frac{B_{t_{n+1}}}{\sqrt{2t_{n+1}\log\log t_{n+1}}} = \frac{B_{t_{n+1}} - B_{t_n}}{\sqrt{2t_{n+1}\log\log t_{n+1}}} + \frac{1}{\sqrt{\alpha}} \frac{B_{t_n}}{\sqrt{2t_n(\log\log t_n + \log\log \alpha)}}.
$$
\n(11.9)

Now, using (11.7) and (11.8), it follows that with probability one,

$$
\overline{\lim}_{n \to \infty} \frac{B_{t_{n+1}}}{\varphi(t_{n+1})} \ge \theta - \frac{1}{\sqrt{\alpha}} = \frac{\alpha - 1}{\alpha} - \frac{1}{\sqrt{\alpha}}.
$$
\n(11.10)

Since $\alpha > 1$ may be selected arbitrarily large, one has with probability one that

$$
\overline{\lim}_{t \to \infty} \frac{B_t}{\varphi(t)} \ge \overline{\lim}_{n \to \infty} \frac{B_{t_{n+1}}}{\varphi(t_{n+1})} \ge 1.
$$
\n(11.11)

This completes the computation of the limit superior. To get the limit inferior simply replace ${B_t : t ≥ 0}$ by ${-B_t : t ≥ 0}.$

The time inversion property for Brownian motion turns the law of the iterated logarithm (LIL) into a statement concerning the degree (or lack) of *local smoothness*. (Also see Exercise 5).

Corollary 11.6. Each of the following holds with probability one:

$$
\overline{\lim}_{t \to 0} \frac{B_t}{\sqrt{2t \log \log \frac{1}{t}}} = 1, \qquad \underline{\lim}_{t \to 0} \frac{B_t}{\sqrt{2t \log \log \frac{1}{t}}} = -1.
$$

EXERCISES

Exercise Set XI

- 1. Use Feller's tail estimate (Lemma 5, Chapter X). to prove that $\max\{|B_i B_{i-1}| : i =$ $1, 2, \ldots, N + 1$ }/N \rightarrow 0 a.s. as $N \rightarrow \infty$.
- 2. Show that with probability one, standard Brownian motion has arbitrarily large zeros. [Hint: Apply the LIL.]
- 3. Fix $t \geq 0$ and use the law of the iterated logarithm to show that $\lim_{h\to 0} \frac{B_{t+h}-B_t}{h}$ exists only with probability zero. [Hint: Check that $Y_h := B_{t+h} - B_t, h \geq 0$, is distributed as standard Brownian motion starting at 0. Consider $\frac{1}{h}Y_h = \frac{Y_h}{\sqrt{2h \log \log(1/h)}}$ $\frac{\sqrt{2h \log \log(1/h)}}{h}$.]
- 4. For the simple symmetric random walk, find the distributions of the extremes: (a) $M_N =$ $\max\{S_j : j = 0, \ldots, N\}$, and (b) $m_N = \min\{S_j : 0 \le j \le N\}$.
- 5. (Lévy Modulus of Continuity¹) Use the wavelet construction $B_t := \sum_{n,k} Z_{n,k} S_{n,k}(t)$, $0 \le t \le 1$, of standard Brownian motion to establish the following fine-scale properties.
	- (i) Let $0 < \delta < \frac{1}{2}$. With probability one there is a random constant K such that if $|t - s| \leq \delta$ then $|B_t - B_s| \leq K \sqrt{\delta} \log \frac{1}{\delta}$. [*Hint*: Fix N and write the increment as a sum of three terms: $B_t - B_s = Z_{00}(t - s) + \sum_{n=0}^{N} \sum_{k=2^n}^{2^{n+1}-1} Z_{n,k} \int_s^t H_{n,k}(u) du +$ $\sum_{n=N+1}^{\infty} \sum_{k=2^n}^{2^{n+1}-1} Z_{n,k} \int_s^t H_{n,k}(u) du = a + b + c.$ Check that for a suitable (ran- $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=2}^n \frac{1}{n^2} \sum_{j=0}^n \frac{1}{k^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{k^2} \sum_{k=0}^n \frac{1}{k^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{k=0}^n \frac{1}{n^2} \sum_{$ and $|c| \leq K' \sum_{n=N+1}^{\infty} n^{\frac{1}{2}} 2^{-\frac{n}{2}} \leq K' \frac{\sqrt{2}}{\sqrt{2}-1} \sqrt{N} 2^{-\frac{N}{2}}$. Use these estimates, taking $N = [-\log_2(\delta)]$ such that $\delta 2^N \sim 1$, to obtain the bound $|B_t - B_s| \leq |Z_{00}|\delta +$ $2K' \sqrt{-\delta \log_2(\delta)}$. This is sufficient since $\delta < \sqrt{\delta}$.]
	- (ii) The modulus of continuity is sharp in the sense that with probability one, there is a sequence of intervals $(s_n, t_n), n \geq 1$, of respective lengths $t_n - s_n \to 0$ as $n \to \infty$ such that the ratio $\frac{B_{t_n}-B_{s_n}}{\sqrt{-(t_n-s_n)\log(t_n-s_n)}}$ is bounded below by a positive constant. [Hint: Use Borel–Cantelli I together with Feller's tail probability estimate for the Gaussian distribution to show that $P(A_n \text{ i.o.}) = 0$, where $A_n := [B_{k2^{-n}} - B_{(k-1)2^{-n}}] \leq$ $c\sqrt{n2^{-n}}$, $k = 1, ..., 2^n$ and c is fixed in $(0, \sqrt{2 \log 2})$. Interpret this in terms of the certain occurrence of the complimentary event $[A_n \ i.o.]^c.$
	- (iii) The paths of Brownian motion are a.s. nowhere differentiable.

¹The calculation of the modulus of continuity for Brownian motion is due to Lévy, P. (1937), Théorie de l'addition des variables aléatores, Gauthier-Villars, Paris. However this exercise follows Pinsky, M. (1999): Brownian continuity modulus via series expansions, J. Theor. Probab. **14** (1), 261–266.