
C H A P T E R I

Random Maps, Distribution,
and Mathematical Expectation

In the spirit of a refresher, we begin with an overview of the measure-theoretic frame-
work for probability. Readers for whom this is entirely new material may wish to
consult the appendices for statements and proofs of basic theorems from analysis.
A measure space is a triple (S,S, µ), where S is a nonempty set; S is a collec-
tion of subsets of S, referred to as a σ-field, which includes ∅ and is closed under
complements and countable unions; and µ : S → [0,∞] satisfies (i) µ(∅) = 0, (ii)
(countable additivity) µ(∪∞

n=1An) =
∑∞

n=1 µ(An) if A1, A2, . . . is a sequence of
disjoint sets in S. Subsets of S belonging to S are called measurable sets.. The pair
(S,S) is referred to as a measurable space, and the set function µ is called a mea-
sure. Familiar examples from real analysis are Lebesgue measure µ on S = R

k,
equipped with a σ-field S containing the class of all k-dimensional rectangles, say
R = (a1, b1]× · · · × (ak, bk], with “volume” measure µ(R) =

∏k
j=1(bj − aj); or Dirac

point mass measure µ = δx at x ∈ S defined by δx(B) = 1 if x ∈ B, δx(B) = 0 if
x ∈ Bc, for B ∈ S. Such examples should suffice for the present, but see Appendix A
for constructions of these and related measures based on the Carathéodory exten-
sion theorem. If µ(S) < ∞ then µ is referred to as a finite measure. If one may
write S = ∪∞

n=1Sn, where each Sn ∈ S(n ≥ 1) and µ(Sn) < ∞,∀n, then µ is said to
be a σ−finite measure.

A probability space is a triple (Ω,F , P ), where Ω is a nonempty set, F is a σ-
field of subsets of Ω, and P is a finite measure on the measurable space (Ω,F) with
P (Ω) = 1. The measure P is referred to as a probability. Intuitively, Ω represents
the set of all possible “outcomes” of a random experiment, real or conceptual, for
some given coding of the results of the experiment. The set Ω is referred to as the
sample space and the elements ω ∈ Ω as sample points or possible outcomes.
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The σ−field F comprises “events” A ⊆ Ω whose probability P (A) of occurrence is
well defined.

The finite total probability and countable additivity of a probability have many
important consequences such as finite additivity, finite and countable subad-
ditivity, inclusion–exclusion, monotonicity, and the formulas for both relative
complements and universal complements. Proofs of these properties are left to the
reader and included among the exercises.

Example 1 (Finite Sampling of a Balanced Coin). Consider m repeated tosses
of a balanced coin. Coding the individual outcomes as 1 or 0 (or, say, H,T), the
possible outcomes may be represented as sequences of binary digits of length m. Let
Ω = {0, 1}m denote the set of all such sequences and F = 2Ω, the power set of Ω. The
condition that the coin be balanced may be defined by the requirement that P ({ω})
is the same for each sequence ω ∈ Ω. Since Ω has cardinality |Ω| = 2m, it follows from
the finite additivity and total probability requirements that

P ({ω}) =
1

2m
=

1
|Ω| , ω ∈ Ω.

Using finite additivity this completely and explicitly specifies the model (Ω,F , P )
with

P (A) =
∑

ω∈A

P ({ω}) =
|A|
|Ω| , A ⊆ Ω.

The so-called continuity properties also follow from the definition as follows: A
sequence of events An, n ≥ 1, is said to be increasing (respectively, decreasing)
with respect to set inclusion if An ⊆ An+1,∀n ≥ 1 (respectively An ⊇ An+1∀n ≥ 1).
In the former case one defines limn An := ∪nAn, while for decreasing measurable
events limn An := ∩nAn. In either case the continuity of a probability, from below
or above, respectively, is the following consequence of countable additivity1 (Exercise
3):

P (lim
n

An) = lim
n

P (An). (1.1)

A bit more generally, if {An}∞n=1 is a sequence of measurable events one defines

lim sup
n

An := ∩n=1 ∪m≥n Am (1.2)

1With the exception of properties for “complements” and “continuity from above,” these
and the aforementioned consequences can be checked to hold for any measure.
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and

lim inf
n

An := ∪∞
n=1 ∩m≥n Am. (1.3)

The event lim supn An denotes the collection of outcomes ω ∈ Ω that correspond to
the occurrences of An for infinitely many n; i.e., the events An occur infinitely often.
This event is also commonly denoted by [An i.o.] := lim supn An. On the other hand,
lim infn An is the set of outcomes ω that belong to An for all but finitely many n.
Note that [An i.o.]c is the event that Ac

n occurs for all but finitely many n and equals
lim infn Ac

n.

Lemma 1 (Borel–Cantelli I ). Let (Ω,F , P ) be a probability space and An ∈
F , n = 1, 2, . . . . If

∑∞
n=1 P (An) < ∞ then P (An i.o.) = 0.

Proof. Apply (1.1) to the decreasing sequence of events ∪∞
m=1Am ⊇ ∪∞

m=2Am ⊇ · · ·
and then subadditivity of the probability to get

P (lim sup
n

An) = lim
n→∞

P (∪∞
m=nAm) ≤ lim

n→∞

∞∑

m=n

P (Am) = 0. (1.4)

�

A partial converse (Borel–Cantelli II) will be given in the next chapter.

Example 2 (Infinite Sampling of a Balanced Coin). The possible outcomes of
nonterminated repeated coin tosses can be coded as infinite binary sequences of 1’s
and 0’s. Thus the sample space is the infinite product space Ω = {0, 1}∞. Observe
that a sequence ω ∈ Ω may be viewed as the digits in a binary expansion of a
number x in the unit interval. The binary expansion x =

∑∞
n=1 ωn(x)2−n, where

ωn(x) ∈ {0, 1}, is not unique for binary rationals, e.g., 1
2 = .1000000 . . . = .011111 . . .,

however it may be made unique by requiring that infinitely many 0’s occur in the
expansion. Thus Ω and [0, 1) may be put in one-to-one correspondence. Observe
that for a given specification εn ∈ {0, 1}, n = 1, . . . ,m, of the first m tosses, the
event A = {ω = (ω1, ω2, . . .) ∈ Ω : ωn = εn, n ≤ m} corresponds to the subinter-
val [

∑m
n=1 εn2−n,

∑m
n=1 εn2−n + 2−m) of [0, 1) of length (Lebesgue measure) 2−m.

Again modeling the repeated tosses of a balanced coin by the requirement that for
each fixed m, P (A) not depend on the specified values εn ∈ {0, 1}, 1 ≤ n ≤ m,
it follows from finite additivity and total probability one that P (A) = 2−m = |A|,
where |A| denotes the one-dimensional Lebesgue measure of A. Based on these con-
siderations, one may use Lebesgue measure on [0, 1) to define a probability model
for infinitely many tosses of a balanced coin. As we will see below, this is an essen-
tially unique choice. For now, let us exploit the model with an illustration of the
Borel–Cantelli Lemma I. Fix a nondecreasing sequence rn of positive integers and let
An = {x ∈ [0, 1) : ωk(x) = 1, k = n, n + 1, . . . , n + rn − 1} denote the event that a
run of 1’s occurs of length at least rn starting at the nth toss. Note that this is an
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interval of length 2−rn . Thus if rn increases so quickly that
∑∞

n=1 2−rn < ∞ then
the Borel–Cantelli lemma I yields that P (An i.o.) = 0. For a concrete illustration, let
rn = [θ log2 n], for fixed θ > 0, with [·] denoting the integer part. Then P (An i.o.) = 0
for θ > 1.

In the previous example, probability considerations led us to conclude that under
the identification of sequence space with the unit interval, the probabilities of events
in a certain collection C coincide with their Lebesgue measures. Let us pursue this
situation somewhat more generally. For a given collection C of subsets of Ω, the
smallest σ-field that contains all of the events in C is called the σ-field generated
by C and is denoted by σ(C); if G is any σ−field containing C then σ(C) ⊆ G. Note
that, in general, if Fλ, λ ∈ Λ, is an arbitrary collection of σ-fields of subsets of Ω, then
∩λ∈ΛFλ := {F ⊆ Ω : F ∈ Fλ ∀λ ∈ Λ} is a σ-field. On the other hand ∪λ∈ΛFλ :=
{F ⊆ Ω : F ∈ Fλ for some λ ∈ Λ} is not generally a σ-field. Define the join σ-field,
denoted by

∨
λ∈Λ Fλ, to be the σ-field generated by ∪λ∈ΛFλ.

It is not uncommon that F = σ(C) for a collection C closed under finite intersec-
tions; such a collection C is called a π-system, e.g., Ω = (−∞,∞), C = {(a, b] : −∞ ≤
a ≤ b <∞}, or infinite sequence space Ω = R

∞, and C = {(a1, b1]×· · ·×(ak, bk]×R
∞ :

−∞ ≤ ai ≤ bi <∞, i = 1, . . . , k, k ≥ 1}.
A λ-system is a collection L of subsets of Ω such that (i) Ω ∈ L, (ii) If A ∈ L

then Ac ∈ L, (iii) If An ∈ L, An ∩Am = ∅, n �= m,n,m = 1, 2, . . . , then ∪nAn ∈ L. A
σ−field is clearly also a λ-system. The following π-λ theorem provides a very useful
tool for checking measurability.

Theorem 1.1 (Dynkin’s π-λ Theorem). If L is a λ-system containing a π-system
C, then σ(C) ⊆ L.

Proof. Let L(C) = ∩F , where the intersection is over all λ-systems F containing
C. We will prove the theorem by showing (i) L(C) is a π-system, and (ii) L(C) is a
λ-system. For then L(C) is a σ-field (see Exercise 2), and by its definition σ(C) ⊆
L(C) ⊆ L. Now (ii) is simple to check. For clearly Ω ∈ F for all F , and hence
Ω ∈ L(C). If A ∈ L(C), then A ∈ F for all F , and since every F is a λ-system, Ac ∈ F
for every F . Thus Ac ∈ L(C). If An ∈ L(C), n ≥ 1, is a disjoint sequence, then for
each F , An ∈ F , for all n and A ≡ ∪nAn ∈ F for all F . Since this is true for every
λ-system F , one has A ∈ L(C). It remains to prove (i). For each set A, define the class
LA := {B : A∩B ∈ L(C)}. It suffices to check that LA ⊇ L(C) for all A ∈ L(C). First
note that if A ∈ L(C), then LA is a λ-system, by arguments along the line of (ii) above
(Exercise 2). In particular, if A ∈ C, then A ∩ B ∈ C for all B ∈ C, since C is closed
under finite intersections. Thus LA ⊇ C. This implies, in turn, that L(C) ⊆ LA. This
says that A ∩B ∈ L(C) for all A ∈ C and for all B ∈ L(C). Thus, if we fix B ∈ L(C),
then LB ≡ {A : B ∩ A ∈ L(C)} ⊇ C. Therefore LB ⊇ L(C). In other words, for every
B ∈ L(C) and A ∈ L(C), one has A ∩B ∈ L(C). �

In view of the additivity properties of a probability, the following is an immediate
and important corollary to the π-λ theorem.
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Corollary 1.2 (Uniqueness). If P1, P2 are two probability measures such that
P1(C) = P2(C) for all events C belonging to a π−system C, then P1 = P2 on all
of F = σ(C).

Proof. Check that {A ∈ F : P1(A) = P2(A)} ⊇ C is a λ-system. �

For a related application suppose that (S, ρ) is a metric space. The Borel σ-field of
S, denoted by B(S), is defined as the σ-field generated by the collection C = T of
open subsets of S, the collection T being referred to as the topology on S specified by
the metric ρ. More generally, one may specify a topology for a set S by a collection
T of subsets of S that includes both ∅ and S, and is closed under arbitrary unions
and finite intersections. Then (S, T ) is called a topological space and members of
T define the open subsets of S. The topology is said to be metrizable when it may
be specified by a metric ρ as above. In any case, one defines the Borel σ-field by
B(S) := σ(T ).

Definition 1.1. A class C ⊆ B(S) is said to be measure-determining if for any
two finite measures µ, ν such that µ(C) = ν(C) ∀C ∈ C, it follows that µ = ν on
B(S).

One may directly apply the π-λ theorem, noting that S is both open and closed, to
see that the class T of all open sets is measure-determining, as is the class K of all
closed sets.

If (Si,Si), i = 1, 2, is a pair of measurable spaces then a function f : S1 → S2 is
said to be a measurable map if f−1(B) := {x ∈ S1 : f(x) ∈ B} ∈ S1 for all B ∈ S2.
In usual mathematical discourse the σ-fields required for this definition may not be
explicitly mentioned and will need to be inferred from the context. For example if
(S,S) is a measurable space, by a Borel-measurable function f : S → R is meant
measurability when R is given its Borel σ-field. A random variable, or a random
map, X is a measurable map on a probability space (Ω,F , P ) into a measurable
space (S,S). Measurability of X means that each event2 [X ∈ B] := X−1(B) belongs
to F ∀ B ∈ S. The term “random variable” is most often used to denote a real-valued
random variable, i.e., where S = R, S = B(R). When S = R

k, S = B(Rk), k > 1, one
uses the term random vector.

A common alternative to the use of a metric to define a topology, is to indirectly
characterize the topology by specifying what it means for a sequence to converge
in the topology. That is, if T is a topology on S, then a sequence {xn}∞n=1 in S
converges to x ∈ S with respect to the topology T if for arbitrary U ∈ T such
that x ∈ U , there is an N such that xn ∈ U for all n ≥ N. A topological space (S, T ),
or a topology T , is said to be metrizable if T coincides with the class of open sets
defined by a metric ρ on S. Using this notion, other commonly occurring measurable

2Throughout, this square-bracket notation will be used to denote events defined by inverse
images.
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image spaces may be described as follows: (i) S = R
∞—the space of all sequences of

reals with the (metrizable) topology of pointwise convergence, and S = B(R∞),
(ii) S = C[0, 1]—the space of all real-valued continuous functions on the interval [0, 1]
with the (metrizable) topology of uniform convergence, and S = B(C[0, 1]), and
(iii) S = C([0,∞) → R

k)—the space of all continuous functions on [0,∞) into R
k,

with the (metrizable) topology of uniform convergence on compact subsets
of [0,∞), S = B(S) (see Exercise 7).

The relevant quantities for a random map X on a probability space (Ω,F , P ) are
the probabilities with which X takes sets of values. In this regard, P determines the
most important aspect of X, namely, its distribution Q ≡ P ◦X−1 defined on the
image space (S,S) by Q(B) := P (X−1(B)) ≡ P (X ∈ B), B ∈ S. The distribution is
sometimes referred to as the induced measure of X under P . Note that given any
probability measure Q on a measurable space (S,S) one can construct a probability
space (Ω,F , P ) and a random map X on (Ω,F) with distribution Q. The simplest
such construction is given by letting Ω = S, F = S, P = Q, and X the identity map:
X(ω) = ω, ω ∈ S. This is often called a canonical construction, and (S,S, Q) with
the identity map X is called a canonical model.

If X =
∑m

j=1 aj1Aj
, Aj ∈ F , Ai ∩ Aj = ∅(i �= j), is a discrete random variable

or, equivalently, a simple random variable, then EX ≡
∫
Ω

XdP :=
∑m

j=1 ajP (Aj).
If X : Ω → [0,∞) is a random variable, then EX is defined by the “simple function
approximation” EX ≡

∫
Ω

XdP := sup{EY : 0 ≤ Y ≤ X,Y simple}. In particular,
one may apply the standard simple function approximations X = limn→∞ Xn given
by the nondecreasing sequence

Xn :=
n2n−1∑

j=0

j

2n
1[j2−n≤X<(j+1)2−n] + n1[X≥n], n = 1, 2, . . . , (1.5)

to write

EX = lim
n→∞

EXn = lim
n→∞

⎧
⎨

⎩

n2n−1∑

j=0

j

2n
P (j2−n ≤ X < (j + 1)2−n) + nP (X ≥ n)

⎫
⎬

⎭
.

(1.6)
Note that if EX < ∞, then nP (X > n) → 0 as n → ∞ (Exercise 16). Now, more
generally, if X is a real-valued random variable, then the expected value (or, mean)
of X is defined as

E(X) ≡
∫

Ω

XdP := EX+ − EX−, (1.7)

provided at least one of E(X+) and E(X−) is finite, where X+ = X1[X≥0] and
X− = −X1[X≤0]. If both EX+ < ∞ and EX− <∞, or equivalently, E|X| = EX+ +
EX− < ∞, then X is said to be integrable with respect to the probability P . Note
that if X is bounded a.s., then applying (1.5) to X+ and X−, one obtains a sequence
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Xn(n ≥ 1) of simple functions that converge uniformly to X, outside a P -null set.
(Exercise 1(i)).

If X is a random variable with values in (S,S) and if h is a real-valued Borel-
measurable function on S, then using simple function approximations to h, one may
obtain the following basic change of variables formula (Exercise 11)

E(h(X)) ≡
∫

Ω

h(X(ω))P (dω) =
∫

S

h(x)Q(dx), (1.8)

where Q is the distribution of X, provided one of the two indicated integrals may
be shown to exist. If X = (X1,X2, . . . , Xk) is a random vector, one defines E(X) =
(E(X1), . . . , E(Xk)).

This definition of expectation as an integral in the sense of Lebesgue is precisely
the same as that used in real analysis to define

∫
S

f(x)µ(dx) for a real-valued Borel
measurable function f on an arbitrary measure space (S,S, µ); see Appendix A.
One may exploit standard tools of real analysis (see Appendices A and C), such as
Lebesgue’s dominated convergence theorem, Lebesgue’s monotone convergence theo-
rem, Fatou’s lemma, Fubini–Tonelli theorem, Radon–Nykodym theorem, for estimates
and computations involving expected values.

Definition 1.2. A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P ) is said to converge in probability to a random variable X if for each
ε > 0, limn→∞ P (|Xn −X| > ε) = 0. The convergence is said to be almost sure if
the event [Xn �→ X] ≡ {ω ∈ Ω : Xn(ω) �→ X(ω)} has P -measure zero.

Note that almost-sure convergence always implies convergence in probability,
since for arbitrary ε > 0 one has 0 = P (∩∞

n=1 ∪∞
m=n [|Xm − X| > ε]) =

limn→∞ P (∪∞
m=n[|Xm −X| > ε]) ≥ lim supn→∞ P (|Xn −X| > ε). An equivalent for-

mulation of convergence in probability can be cast in terms of almost-sure convergence
as follows.

Proposition 1.3. A sequence of random variables {Xn}∞n=1 on (Ω,F , P ) converges
in probability to a random variable X on (Ω,F , P ) if and only if every subsequence
has an a.s. convergent subsequence to X.

Proof. Suppose that Xn → X in probability as n → ∞. Let {Xnk
}∞k=1 be a subse-

quence, and for each m ≥ 1 recursively choose nk(0) = 1, nk(m) = min{nk > nk(m−1) :
P (|Xnk

−X| > 1/m) ≤ 2−m}. Then it follows from the Borel–Cantelli lemma (Part
I) that Xnk(m) → X a.s. as m → ∞. For the converse suppose that Xn does not
converge to X in probability. Then there exists ε > 0 and a sequence n1, n2, . . . such
that limk P (|Xnk

− X| > ε) = α > 0. Since a.s. convergence implies convergence in
probability (see Appendix A, Proposition 2.4), there cannot be an a.s. convergent
subsequence of {Xnk

}∞k=1. �
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The notion of measure-determining classes of sets extends to classes of functions
as follows. Let µ, ν be arbitrary finite measures on the Borel σ-field of a metric space
S. A class Γ of real-valued bounded Borel measurable functions on S is measure-
determining if

∫
S

g dµ =
∫

S
g dν ∀g ∈ Γ implies µ = ν.

Proposition 1.4. The class Cb(S) of real-valued bounded continuous functions on
S is measure-determining.

Proof. To prove this, it is enough to show that for each (closed) F ∈ K there exists a
sequence of nonnegative functions {fn} ⊆ Cb(S) such that fn ↓ 1F as n ↑ ∞. Since F
is closed, one may view x ∈ F in terms of the equivalent condition that ρ(x, F ) = 0,
where ρ(x, F ) := inf{ρ(x, y) : y ∈ F}. Let hn(r) = 1− nr for 0 ≤ r ≤ 1/n, hn(r) = 0
for r ≥ 1/n. Then take fn(x) = hn(ρ(x, F )). In particular, 1F (x) = limn fn(x), x ∈ S,
and Lebesgue’s dominated convergence theorem applies. �

Note that the functions fn in the proof of Proposition 1.4 are uniformly continuous,
since |fn(x)− fn(y)| ≤ (nρ(x, y)) ∧ (2 supx |f(x)|). It follows that the set UCb(S) of
bounded uniformly continuous functions on S is measure determining.

Consider the Lp-space Lp(Ω,F , P ) of (real-valued) random variables X such that
E|X|p < ∞. When random variables that differ only on a P -null set are identified,
then for p ≥ 1, it follows from Theorem 1.5(e) below that Lp(Ω,F , P ) is a normed
linear space with norm ‖X‖p := (

∫
Ω
|X|pdP )

1
p ≡ (E|X|p) 1

p . It may be shown that
with this norm (and distance ‖X −Y ‖p), it is a complete metric space, and therefore
a Banach space (Exercise 18). In particular, L2(Ω,F , P ) is a Hilbert space with
inner product (see Appendix C)

〈X,Y 〉 = EXY ≡
∫

Ω

XY dP, ||X||2 = 〈X,X〉
1
2 . (1.9)

The L2(S,S, µ) spaces are the only Hilbert spaces that are required in this text, where
(S,S, µ) is a σ-finite measure space; see Appendix C for an exposition of the essential
structure of such spaces. Note that by taking S to be a countable set with counting
measure µ, this includes the l2 sequence space. Unlike the case of a measure space
(Ω,F , µ) with an infinite measure µ, for finite measures it is always true that

Lr(Ω,F , P ) ⊆ Ls(Ω,F , P ) if r > s ≥ 1, (1.10)

as can be checked using |x|s < |x|r for |x| > 1. The basic inequalities in the following
Theorem 1.5 are consequences of convexity at some level. So let us be precise about
this notion.

Definition 1.3. A function ϕ defined on an open interval J is said to be a convex
function if ϕ(ta + (1− t)b) ≤ tϕ(a) + (1− t)ϕ(b), for all a, b ∈ J , 0 ≤ t ≤ 1.
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If the function ϕ is sufficiently smooth, one may use calculus to check convexity, see
Exercise 14. The following lemma is required to establish a geometrically obvious
“line of support property” of convex functions.

Lemma 2 (Line of Support). Suppose ϕ is convex on an interval J . (a) If J is
open, then (i) the left-hand and right-hand derivatives ϕ− and ϕ+ exist and are finite
and nondecreasing on J , and ϕ− ≤ ϕ+. Also (ii) for each x0 ∈ J there is a constant
m = m(x0) such that ϕ(x) ≥ ϕ(x0) + m(x− x0),∀x ∈ J. (b) If J has a left (or right)
endpoint and the right-hand (left-hand) derivative is finite, then the line of support
property holds at this endpoint x0.

Proof. (a) In the definition of convexity, one may take a < b, 0 < t < 1. Thus
convexity is equivalent to the following inequality with the identification a = x, b = z,
t = (z − y)/(z − x): For any x, y, z ∈ J with x < y < z,

ϕ(y)− ϕ(x)
y − x

≤ ϕ(z)− ϕ(y)
z − y

. (1.11)

More generally, use the definition of convexity to analyze monotonicity and bounds
on the Newton quotients (slopes of secant lines) from the right and left to see that
(1.11) implies ϕ(y)−ϕ(x)

y−x ≤ ϕ(z)−ϕ(x)
z−x ≤ ϕ(z)−ϕ(y)

z−y (use the fact that c/d ≤ e/f for
d, f > 0 implies c/d ≤ (c + e)/(d + f) ≤ e/f). The first of these inequalities shows
that ϕ(y)−ϕ(x)

y−x decreases as y decreases, so that the right-hand derivative ϕ+(x) exists

and ϕ(y)−ϕ(x)
y−x ≥ ϕ+(x). Letting z ↓ y in (1.11), one gets ϕ(y)−ϕ(x)

y−x ≤ ϕ+(y) for all
y > x. Hence ϕ+ is finite and nondecreasing on J . Now fix x0 ∈ J . By taking x = x0

and y = x0 in turn in these two inequalities for ϕ+, it follows that ϕ(y) − ϕ(x0) ≥
ϕ+(x0)(y − x0) for all y ≥ x0, and ϕ(x0) − ϕ(x) ≤ ϕ+(x0)(x0 − x) for all x ≤ x0.
Thus the “line of support” property holds with m = ϕ+(x0). (b) If J has a left (right)
endpoint x0, and ϕ+(x0) (ϕ−(x0)) is finite, then the above argument remains valid
with m = ϕ+(x0) (ϕ−(x0)).

A similar proof applies to the left-hand derivative ϕ−(x) (Exercise 14). On letting
x ↑ y and z ↓ y in (1.11), one obtains ϕ−(y) ≤ ϕ+(y) for all y. In particular, the line
of support property now follows for ϕ−(x0) ≤ m ≤ ϕ+(x0). �

Theorem 1.5 (Basic Inequalities). Let X,Y be random variables on (Ω,F , P ).

(a)(Jensen’s Inequality) If ϕ is a convex function on the interval J and P (X ∈ J) = 1,
then ϕ(EX) ≤ E(ϕ(X)) provided that the indicated expectations exist. Moreover,
if ϕ is strictly convex, then equality holds if and only if X is a.s. constant.

(b)(Lyapounov Inequality) If 0 < r < s then (E|X|r) 1
r ≤ (E|X|s) 1

s .
(c) (Hölder Inequality) Let p ≥ 1. If X ∈ Lp, Y ∈ Lq, 1

p + 1
q = 1, then XY ∈ L1 and

E|XY | ≤ (E|X|p) 1
p (E|Y |q) 1

q .
(d)(Cauchy–Schwarz Inequality) If X,Y ∈ L2 then XY ∈ L1 and one has |E(XY )| ≤√

EX2
√

EY 2.
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(e) (Minkowski Triangle Inequality) Let p ≥ 1. If X,Y ∈ Lp then ‖X +Y ‖p ≤ ‖X‖p +
‖Y ‖p.

(f) (Markov and Chebyshev-type Inequalities) Let p ≥ 1. If X ∈ Lp then P (|X| ≥
λ) ≤ E(|X|p1[|X|≥λ])

λp ≤ E|X|p
λp , λ > 0,

Proof. The proof of Jensen’s inequality hinges on the line of support property of
convex functions in Lemma 2 by taking x = X(ω), ω ∈ Ω, x0 = EX. The Lyapounov
inequality follows from Jensen’s inequality by writing |X|s = (|X|r) s

r . for 0 < r < s.
For the Hölder inequality, let p, q > 1 be conjugate exponents in the sense that
1
p + 1

q = 1. Using convexity of the function exp(x) one sees that |ab| = exp(ln(|a|p)/p+

ln(|b|q)/q)) ≤ 1
p |a|p + 1

q |b|q. Applying this to a = |X|
‖X‖p

, b = |Y |
‖Y ‖q

and integrating,

it follows that E|XY | ≤ (E|X|p) 1
p (E|Y |q) 1

q . The Cauchy–Schwarz inequality is the
Hölder inequality with p = q = 2. For the proof of Minkowski’s inequality, first use
the inequality (1.21) to see that |X + Y |p is integrable from the integrability of |X|p
and |Y |p. Applying Hölder’s inequality to each term of the expansion E(|X|+ |Y |)p =
E|X|(|X| + |Y |)p−1 + E|Y |(|X| + |Y |)p−1, and solving the resulting inequality for
E(|X|+|Y |)p (using conjugacy of exponents), it follows that ‖X+Y ‖p ≤ ‖X‖p+‖Y ‖p.
Finally, for the Markov and Chebyshev-type inequalities simply observe that since
1{|X|≥λ} ≤

|X|p1{|X|≥λ})

λp ≤ |X|p
λp on Ω, taking expectations yields P (|X| ≥ λ) ≤

E(|X|p1{|X|≥λ})

λp ≤ E|X|p
λp , λ > 0. �

The Markov inequality refers to the case p = 1 in (f). Observe from the proofs that
(c–e) hold with the random variables X,Y replaced by measurable functions, in fact
complex-valued, on an arbitrary (not necessarily finite) measure space (S,S, µ); see
Exercise 19.

The main text includes use of another limit result for Lebesgue integrals, Scheffé’s
theorem, which is more particularly suited to probability applications in which one
may want to include the consequence of convergence almost everywhere in terms
of convergences in other metrics. It is included here for ease of reference. To state
it, suppose that (S,S, µ) is an arbitrary measure space and g : S → [0,∞) a
Borel-measurable function, though not necessarily integrable. One may use g as a
density to define another measure ν on (S,S), i.e., with g as its Radon–Nykodym
derivative dν/dµ = g, also commonly denoted by dν = g dµ, and meaning that
ν(A) =

∫
A

g dµ, A ∈ S; see Appendix C for a full treatment of the Radon–Nikodym
theorem3.

Recall that a sequence of measurable functions {gn}∞n=1 on S is said to converge µ-
a.e. to a measurable function g on S if and only if µ({x ∈ S : limn gn(x) �= g(x)}) = 0.

3A probabilistic proof can be given for the Radon–Nikodym theorem based on
martingales. Such a proof is given in the text on stochastic processes.
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Theorem 1.6 (Scheffé). Let (S,S, µ) be a measure space and suppose that
ν, {νn}∞n=1 are measures on (S,S) with respective nonnegative densities g, {gn}∞n=1

with respect to µ, such that
∫

S

gn dµ =
∫

S

g dµ < ∞, ∀n = 1, 2, . . . .

If gn → g as n →∞, µ-a.e., then

sup
A∈S

|
∫

A

g dµ−
∫

A

gn dµ| ≤
∫

S

|g − gn| dµ → 0, as n →∞.

Proof. The indicated bound on the supremum follows from the triangle inequality
for integrals. Since

∫
S
(g− gn) dµ = 0 for each n,

∫
S
(g− gn)+ dµ =

∫
Ω
(g− gn)− dµ. In

particular, since |g − gn| = (g − gn)+ + (g − gn)−,

∫

S

|g − gn| dµ = 2
∫

S

(g − gn)+ dµ.

But 0 ≤ (g − gn)+ ≤ g. Since g is µ-integrable, one obtains
∫

S
(g − gn)+ dµ → 0 as

n →∞ from Lebesgue’s dominated convergence theorem. �

For a measurable space (S,S), a useful metric (see Exercise 1) defined on the space
P(S) of probabilities on S = B(S) is furnished by the total variation distance
defined by

dv(µ, ν) := sup{|µ(A)− ν(A)| : A ∈ B(S)}, µ, ν ∈ P(S). (1.12)

Proposition 1.7. Suppose that (S,S) is a measurable space. Then

dv(µ, ν) =
1
2

sup
{∣
∣
∣
∣

∫

S

f dµ−
∫

S

f dν

∣
∣
∣
∣ : f ∈ B(S), |f | ≤ 1

}

,

where B(S) denotes the space of bounded Borel-measurable functions on S. Moreover,
(P(S), dv) is a complete metric space.

Proof. Let us first establish the formula for the total variation distance. By standard
simple function approximation it suffices to consider bounded simple functions in the
supremum. Fix arbitrary µ, ν ∈ P(S). Let f =

∑k
i=1 ai1Ai

∈ B(S) with |ai| ≤ 1, i =
1, . . . , k and disjoint sets Ai ∈ S, 1 ≤ i ≤ k. Let I+ := {i ≤ k : µ(Ai) ≥ ν(Ai)}. Let
I− denote the complementary set of indices. Then by definition of the integral of a
simple function and splitting the sum over I± one has upon twice using the triangle
inequality that

∣
∣
∣
∣

∫

S

fdµ−
∫

S

fdν

∣
∣
∣
∣ ≤

∑

i∈I+

|ai|(µ(Ai)− ν(Ai)) +
∑

i∈I−

|ai|(ν(Ai)− µ(Ai))
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≤
∑

i∈I+

(µ(Ai)− ν(Ai)) +
∑

i∈I−

(ν(Ai)− µ(Ai))

= µ(∪i∈I+Ai)− ν(∪i∈I+Ai) + ν(∪i∈I−Ai)− µ(∪i∈I−Ai)

≤ 2 sup{|µ(A)− ν(A)| : A ∈ S}. (1.13)

On the other hand, taking f = 1A − 1Ac , A ∈ S, one has

∣
∣
∣
∣

∫

S

fdµ−
∫

S

fdν

∣
∣
∣
∣ = |µ(A)− µ(Ac)− ν(A) + ν(Ac)|

= |µ(A)− ν(A)− 1 + µ(A) + 1− ν(A)|

= 2|µ(A)− ν(A)|. (1.14)

Thus, taking the supremum over sets A ∈ S establishes the asserted formula for
the total variation distance. Next, to prove that the space P(S) of probabilities is
complete for this metric, let {µn}∞n=1 be a Cauchy sequence in P(S). Since the closed
interval [0, 1] of real numbers is complete, one may define µ(A) := limn µn(A), A ∈ S.
Because this convergence is uniform over S, it is simple to check that µ ∈ P(S) and
µn → µ in the metric dv; see Exercise 1. �

So we note that Scheffé’s theorem provides conditions under which a.s. convergence
implies L1(S,S, µ)-convergence of the densities gn to g, and convergence in the total
variation metric of the probabilities νn to ν.

We will conclude this chapter with some further basic convergence theorems for
probability spaces. For this purpose we require a definition.

Definition 1.4. A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P ) is said to be uniformly integrable if limλ→∞ supn E{|Xn|1[|Xn|≥λ]} = 0.

Theorem 1.8 (L1−Convergence Criterion). Let {Xn}∞n=1 be a sequence of ran-
dom variables on a probability space (Ω,F , P ),Xn ∈ L1 (n ≥ 1). Then {Xn}∞n=1

converges in L1 to a random variable X if and only if (i) Xn → X in probability as
n →∞, and (ii) {Xn}∞n=1 is uniformly integrable.

Proof. (Necessity) If Xn → X in L1 then convergence in probability (i) follows from
the Markov inequality. Also

∫

[|Xn|≥λ]

|Xn|dP ≤
∫

[|Xn|≥λ]

|Xn −X|dP +
∫

[|Xn|≥λ]

|X|dP

≤
∫

Ω

|Xn −X|dP +
∫

[|X|≥λ/2]

|X|dP
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+
∫

[|X|<λ/2,|Xn−X|≥λ/2]

|X|dP. (1.15)

The first term of the last sum goes to zero as n →∞ by hypothesis. For each λ > 0
the third term goes to zero by the dominated convergence theorem as n → ∞. The
second term goes to zero as λ →∞ by the dominated convergence theorem too. Thus
there are numbers n(ε) and λ(ε) such that for all λ ≥ λ(ε),

sup
n≥n(ε)

∫

[|Xn|≥λ]

|Xn|dP ≤ ε. (1.16)

Since a finite sequence of integrable random variables {Xn : 1 ≤ n ≤ n(ε)} is always
uniformly integrable, it follows that the full sequence {Xn} is uniformly integrable.

(Sufficiency) Under the hypotheses (i), (ii), given ε > 0 one has for all n that

∫

Ω

|Xn|dP ≤
∫

[|Xn|≥λ]

|Xn|dP + λ ≤ ε + λ(ε) (1.17)

for sufficiently large λ(ε). In particular, {
∫
Ω
|Xn|dP}∞n=1 is a bounded sequence. Thus∫

Ω
|X|dP <∞ by Fatou’s lemma. Now

∫

[|Xn−X|≥λ]

|Xn −X|dP =
∫

[|Xn−X|≥λ,|Xn|≥λ/2]

|Xn −X|dP

+
∫

[|Xn|<λ/2,|Xn−X|≥λ]

|Xn −X|dP

≤
∫

[|Xn|≥λ/2]

|Xn|dP +
∫

[|Xn−X|≥λ/2]

|X|dP

+
∫

[|Xn|<λ/2,|Xn−X|≥λ]

(
λ

2
+ |X|)dP. (1.18)

Now, using (ii), given ε > 0, choose λ = λ(ε) > 0 so large that the first term of the
last sum is smaller than ε. With this value of λ = λ(ε) the second and third terms go
to zero as n →∞ by Lebesgue’s dominated convergence theorem, using (i). Thus,

lim sup
n→∞

∫

[|Xn−X|≥λ(ε)]

|Xn −X|dP ≤ ε. (1.19)

But again applying the dominated convergence theorem one also has

lim sup
n→∞

∫

[|Xn−X|<λ(ε)]

|Xn −X|dP = 0. (1.20)

Thus the conditions are also sufficient for L1 convergence to X. �
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The next result follows as a corollary.

Theorem 1.9 (Lp−Convergence Criterion). Let p ≥ 1. Let {Xn}∞n=1 be a sequence
of random variables on a probability space (Ω,F , P ),Xn ∈ Lp(n ≥ 1). Then {Xn}∞n=1

converges in Lp to a random variable X if and only if (i) Xn → X in probability as
n →∞, and (ii) {|Xn|p}∞n=1 is uniformly integrable.

Proof. Apply the preceding result to the sequence {|Xn − X|p}∞n=1. The proof of
necessity is analogous to (1.15) and (1.16) using the following elementary inequalities:

|a + b|p ≤ (|a|+ |b|)p ≤ (2max{|a|, |b|})p ≤ 2p(|a|p + |b|p). (1.21)

For sufficiency, note as in (1.17) that (i), (ii) imply X ∈ Lp, and then argue as in
(1.18) that the uniform integrability of {|Xn|p : n ≥ 1} implies that of {|Xn −X|p :
n ≥ 1}. �

Chebyshev-type inequalities often provide useful ways to check uniform integrability
of {|Xn|p}∞n=1 in the case that {E|Xn|m} can be shown to be a bounded sequence for
some m > p (see Exercise 15).

EXERCISES

Exercise Set I

1. Let (S,S) be a measurable space. (i) Show that if f is a real-valued bounded measurable
function, |f(x)| ≤ c for all x, then the standard simple function approximations (1.5) to
f+ and f− provide a sequence of simple functions fn converging to f uniformly on S,
and satisfying |fn(x)| ≤ c for all x and for all n. (ii) Show that (1.12) defines a metric on
P(S) i.e., is a well-defined nonnegative symmetric function on P(S)×P(S) satisfying the
triangle inequality with dv(µ, ν) = 0 if and only if µ = ν. Also show for a Cauchy sequence
{µn}∞n=1 in P(S), that the set function defined by µ(A) := limn µn(A) ∈ [0, 1], A ∈ S
is a probability measure. [Hint : The convergence of the real numbers µn(A) → µ(A) is
uniform for A ∈ S.]

2. Show that if L is a π-system and a λ-system, then it is a σ-field. In the proof of
Dynkin’s π-λ theorem, show that if A ∈ L(C), then LA is a λ-system. [Hint: A ∩ Bc =
(Ac ∪ (A ∩ B))c.]

3. Let (Ω,F , P ) be an arbitrary probability space and let A1, A2, . . . be measurable events.
Prove each of the following.
(i) (Finite Additivity). If A1, . . . , Am are disjoint then P (∪m

j=1Aj) =
∑m

j=1
P (Aj).

(ii) (Monotonicity). If A1 ⊆ A2 then P (A1) ≤ P (A2).
(iii) (Inclusion–Exclusion). P (∪m

j=1Aj) =
∑m

k=1
(−1)k+1

∑
1≤j1<···<jk≤m

P (Aj1 ∩ · · · ∩
Ajk).

(iv) (Subadditivity). P (∪jAj) ≤
∑

j
P (Aj).

(v) Show that the property µ(An) ↑ µ(A) if An ↑ A, holds for all measures µ. [Hint :
A = ∪nBn, B1 = A1, B2 = Ac

1 ∩ A2, . . . , Bn = Ac
1 ∩ · · · ∩ Ac

n−1 ∩ An, so that
An = ∪n

j=1Bj .]
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(vi) Show that the property: µ(An) ↓ µ(A) if An ↓ A holds for finite measures. Show by
counterexample that it does not, in general, hold for measures µ that are not finite.

4. (Bonferroni Inequalities) Show that for odd m ∈ {1, 2, . . . , n}, (a) P (∪n
j=1Aj) ≤∑m

k=1

∑
1≤j1≤j2≤···≤jk≤n

(−1)k+1P (Aj1 ∩ · · · ∩ Ajk), and for even m ∈ {2, . . . , n}, (b)

P (∪n
j=1Aj) ≥

∑m

k=1

∑
1≤j1≤j2≤···≤jk≤n

(−1)k+1P (Aj1 ∩ · · · ∩ Ajk).

5. Let (Ω,F , P ) be an arbitrary probability space and suppose A, B ∈ F are independent
events, i.e., P (A ∩ B) = P (A)P (B), and P (A) ≥ 1

2
≤ P (B). Show that P (A ∪ B) ≥ 3

4
.

6. Show that the Borel σ-field of R is generated by any one of the following classes of
sets: (i) C = {(a, b) : −∞ ≤ a ≤ b ≤ ∞}; (ii) C = {(a, b] : −∞ ≤ a ≤ b < ∞}; (iii)
C = {(−∞, x] : x ∈ R}.

7. In each case below, show that ρ is a metric for the indicated topology.
(i) For S = R

∞, ρ(x, y) =
∑∞

k=1
2−k|xk − yk|/(1 + |xk − yk|), for x = (x1, x2, . . .),

y = (y1, y2, . . .) ∈ R
∞ metrizes the topology of pointwise convergence: x(n) → x if

and only if x
(n)
k → xk for each k, as n → ∞.

(ii) For S = C[0, 1], ρ(f, g) = max{|f(x) − g(x)| : x ∈ [0, 1]} metrizes the topology of
uniform convergence of continuous functions on [0, 1].

(iii) For S = C([0,∞) → R
k), ρ(f, g) =

∑∞
n=1

2−n‖f − g‖n/(1 + ‖f − g‖n), where
‖f − g‖n := max{‖f(x) − g(x)‖ : x ∈ [0, n]}, ‖ · ‖ denoting the Euclidean norm on
R

k, metrizes the topology of uniform convergence on compacts.

8. Let X be a random map on (Ω,F , P ) with values in a measurable space (S,S). Show
that G := {[X ∈ A] : A ∈ S} is the smallest sub-σ-field of F such that X : Ω → S is a
random map on (Ω,G), i.e., such that [X ∈ A] ∈ G for all A ∈ S.

9. Let Ω = {(1, 1), (2, 2), (1, 2), (2, 1)} equipped with the power set F . Define a simple
random variable by X(ω) = ω1 + ω2, ω = (ω1, ω2) ∈ Ω. Give an explicit description
of σ(X) as a subcollection of sets in F and give an example of a set in F that is not in
σ(X).

10. (i) Let (Ω,F , P ) be a probability space and let P = {A1, A2, . . . , Am}, ∅ = Aj ∈ F ,
1 ≤ j ≤ m, be a disjoint partition of Ω. Let (S,S) be an arbitrary measurable space
such that S contains all of the singleton sets {x} for x ∈ S. Show that a random map
X : Ω → S is σ(P)-measurable if and only if X is a σ(P)-measurable simple function.
Give a counterexample in the case that S does not contain singletons. (ii) Let A1, . . . , Ak

be nonempty subsets of Ω. Describe the smallest σ-field containing {A1, . . . , Ak} and
show that its cardinality is at most 2k.

11. Give a proof of the change of variables formula. [Hint : (Method of simple function
approximation) Begin with h an indicator function, then h a simple function, then h ≥ 0,
and finally write h = h+ − h−.]

12. Let X1, X2 be real-valued random variables on (Ω,F , P ). Suppose that Fi(x) = P (Xi ≤
x), x ∈ R(i = 1, 2) are two distribution functions on (R,B) and F1 = F2. Show that X1

and X2 have the same distribution.

13. Suppose that X1 and X2 are two bounded real-valued random variables on (Ω,F , P ) such
that EXm

1 = EXm
2 , m = 1, 2, . . . . Show that X1 and X2 must have the same distribution.

[Hint : According to the Weierstrass approximation theorem, a continuous function on a
closed and bounded interval may be approximated by polynomials uniformly over the
interval (see Appendix B).]
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14. (i) Show that for a convex function ϕ on an open interval J , ϕ− is finite and nonde-
creasing, and the “line of support” property holds with m = ϕ−(x0), as well as with
any m ∈ [ϕ−(x0), ϕ

+(x0)]. (ii) Show that while a convex ϕ is continuous on an open
interval, it need not be so on an interval with left-hand and/or right-hand endpoints.
(iii) Show that if ϕ has a continuous, nondecreasing derivative ϕ′ on J , then ϕ is convex.
In particular, if ϕ is twice differentiable and ϕ′′ ≥ 0 on J , then ϕ is convex. [Hint : Use
the mean value theorem from calculus.]

15. Let p ≥ 1, Xn ∈ Lm(Ω,F , P ) for some m > p. Suppose there is an M such that E|Xn|m ≤
M, ∀n ≥ 1. Show that {|Xn|p}∞n=1 is uniformly integrable. [Hint : Use a Chebyshev-type
inequality.]

16. Let X be a nonnegative random variable. (i) Show that nP (X > n) → 0 as n → ∞ if
EX < ∞. [Hint : nP (X > n) ≤ EX1[X>n].] (ii) Prove that

∑∞
n=1

P (X > n) ≤ EX ≤∑∞
n=0

P (X > n). [Hint :
∑∞

n=1
(n − 1)P (n − 1 < X ≤ n) ≤ EX ≤

∑∞
n=1

nP (n − 1 <
X ≤ n).]

17. Let {fn : n ≥ 1} be a Cauchy sequence in measure: µ(|fn − fm| > ε) → 0 as n, m → ∞,
∀ε > 0. Prove that there exists a measurable function f such that fn → f in measure.
[Hint : Find a sequence n1 < n2 < · · · such that µ(|fnk − fnk+1 | > 2−k) < 2−k, k =

1, 2, . . .. Let B = [|fnk − fnk+1 | > 2−k i.o.], and show that µ(B) = 0. On Bc, {fnk}∞k=1

is a Cauchy sequence, converging to some function f . Also for every ε > 0, µ(|fn − f | >
ε) ≤ µ(|fn − fnk | > ε/2) + µ(|fnk − f | > ε/2). The first term on the right of this
inequality is o(1) as k → ∞, n → ∞. Also, outside Bk := ∪∞

m=k[|fnm − fnm+1 | > 2−m],

one has |fnk − f | ≤
∑∞

m=k
2−m = 2−(k−1). By choosing k0 such that 2−(k0−1) < ε/2,

one gets µ(|fnk − f | > ε/2) ≤ µ(Bk0) ≤ ε/2 for all k ≥ k0.]

18. Show that for every p ≥ 1, Lp(S,S, µ) is a complete metric space.

19. (Integration of Complex-Valued Functions) A Borel measurable function f = g + ih on
a measure space (S,S, µ) into C, (i.e., g, h are real-valued Borel-measurable), is said to

be integrable if its real and imaginary parts g and h are both integrable. Since 2− 1
2 (|g|+

|h|) ≤ |f | ≡
√

g2 + h2 ≤ |g| + |h|, f is integrable if and only if |f | is integrable. The
following extend a number of standard results for measurable real-valued functions to
measurable complex-valued functions.
(a) Extend Lebesgue’s dominated convergence theorem (Appendix A) to complex-

valued functions.
(b) Extend the inequalities of Lyapounov, Hölder, Minkowski, and Markov–Chebyshev

(Theorem 1.5(b),(c),(e),(f)) to complex-valued functions.
(c) For p ≥ 1, let the Lp-space of complex-valued functions be defined by equivalence

classes of complex-valued functions f induced by equality a.e. such that |f |p is
integrable. Show that this Lp-space is a Banach space over the field of complex

numbers with norm ‖f‖p = (
∫

S
|f |pdµ)

1
p .

(d) Show that the L2-space of complex-valued square-integrable functions is a Hilbert
space with inner product 〈f1, f2〉 =

∫
S

f1f2 dµ, where f2 is the complex conjugate
of f2.

(e) Show that for the special case of real-valued functions, the Lp-norm defined above
reduces to that introduced in the text.
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20. Suppose that X1, X2, . . . is a sequence of identically distributed random variables
defined on a probability space (Ω,F , P ). Show that if Ee|X1| < ∞, then a.s.

lim supn→∞
|Xn|
ln n

≤ 1.




