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PREFACE

In 1937, A.N. Kolmogorov introduced a measure-theoretic mathematical framework
for probability theory in response to David Hilbert’s Sixth Problem. This text provides
the basic elements of probability within this framework. It may be used for a one-
semester course in probability, or as a reference to prerequisite material in a course
on stochastic processes. Our pedagogical view is that the subsequent applications to
stochastic processes provide a continued opportunity to motivate and reinforce these
important mathematical foundations. The book is best suited for students with some
prior, or at least concurrent, exposure to measure theory and analysis. But it also
provides a fairly detailed overview, with proofs given in appendices, of the measure
theory and analysis used.

The selection of material presented in this text grew out of our effort to provide
a self-contained reference to foundational material that would facilitate a companion
treatise on stochastic processes that we have been developing.1 While there are many
excellent textbooks available that provide the probability background for various con-
tinued studies of stochastic processes, the present treatment was designed with this as
an explicit goal. This led to some unique features from the perspective of the ordering
and selection of material.

We begin with Chapter I on various measure-theoretic concepts and results required
for the proper mathematical formulation of a probability space, random maps, dis-
tributions, and expected values. Standard results from measure theory are motivated
and explained with detailed proofs left to an appendix.

Chapter II is devoted to two of the most fundamental concepts in probability
theory: independence and conditional expectation (and/or conditional probability).
This continues to build upon, reinforce, and motivate basic ideas from real analy-
sis and measure theory that are regularly employed in probability theory, such as
Carathéodory constructions, the Radon–Nikodym theorem, and the Fubini–Tonelli
theorem. A careful proof of the Markov property is given for discrete-parameter
random walks on R

k to illustrate conditional probability calculations in some
generality.

Chapter III provides some basic elements of martingale theory that have evolved
to occupy a significant foundational role in probability theory. In particular, optional
stopping and maximal inequalities are cornerstone elements. This chapter provides
sufficient martingale background, for example, to take up a course in stochastic dif-
ferential equations developed in a chapter of our text on stochastic processes. A more
comprehensive treatment of martingale theory is deferred to stochastic processes with
further applications there as well.

The various laws of large numbers and elements of large deviation theory are
developed in Chapter IV. This includes the classical 0-1 laws of Kolmogorov and

1Bhattacharya, R. and E. Waymire (2007): Theory and Applications of Stochastic
Processes, Springer-Verlag, Graduate Texts in Mathematics.
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Hewitt–Savage. Some emphasis is given to size-biasing in large deviation calculations
which are of contemporary interest.

Chapter V analyzes in detail the topology of weak convergence of probabilities
defined on metric spaces, culminating in the notion of tightness and a proof of
Prohorov’s theorem.

The characteristic function is introduced in Chapter VI via a first-principles devel-
opment of Fourier series and the Fourier transform. In addition to the operational
calculus and inversion theorem, Herglotz’s theorem, Bochner’s theorem, and the
Cramér–Lévy continuity theorem are given. Probabilistic applications include the
Chung–Fuchs criterion for recurrence of random walks on R

k, and the classical cen-
tral limit theorem for i.i.d. random vectors with finite second moments. The law of
rare events (i.e., Poisson approximation to binomial) is also included as a simple
illustration of the continuity theorem, although simple direct calculations are also
possible.

In Chapter VII, central limit theorems of Lindeberg and Lyapounov are derived.
Although there is some mention of stable and infinitely divisible laws, the full treat-
ment of infinite divisibility and Lévy–Khinchine representation is more properly
deferred to a study of stochastic processes with independent increments.

The Laplace transform is developed in Chapter VIII with Karamata’s Tauberian
theorem as the main goal. This includes a heavy dose of exponential size-biasing
techniques to go from probabilistic considerations to general Radon measures. The
standard operational calculus for the Laplace transform is developed along the way.

Random series of independent summands are treated in Chapter IX. This
includes the mean square summability criterion and Kolmogorov’s three series cri-
teria based on Kolmogorov’s maximal inequality. An alternative proof to that
presented in Chapter IV for Kolmogorov’s strong law of large numbers is given, to-
gether with the Marcinkiewicz and Zygmund extension, based on these criteria and
Kronecker’s lemma. The equivalence of a.s. convergence, convergence in probability,
and convergence in distribution for series of independent summands is also included.

In Chapter X, Kolmogorov’s consistency conditions lead to the construction of
probability measures on the Cartesian product of infinitely many spaces. Applications
include a construction of Gaussian random fields and discrete parameter Markov pro-
cesses. The deficiency of Kolmogorov’s construction of a model for Brownian motion
is described, and the Lévy–Ciesielski “wavelet” construction is provided.

Basic properties of Brownian motion are taken up in Chapter XI. Included are
various rescalings and time-inversion properties, together with the fine-scale structure
embodied in the law of the iterated logarithm for Brownian motion.

In Chapter XII many of the basic notions introduced in the text are tied together via
further considerations of Brownian motion. In particular, this chapter revisits condi-
tional probabilities in terms of the Markov and strong Markov properties for Brownian
motion, stopping times, and the optional stopping and/or sampling theorems for
Brownian motion and related martingales, and leads to weak convergence of rescaled
random walks with finite second moments to Brownian motion, i.e., Donsker’s invari-
ance principle or the functional central limit theorem, via the Skorokhod embedding
theorem.
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The text is concluded with a historical overview, Chapter XIII, on Brownian motion
and its fundamental role in applications to physics, financial mathematics, and partial
differential equations, which inspired its creation.

Most of the material in this book has been used by us in graduate probability courses
taught at the University of Arizona, Indiana University, and Oregon State University.
The authors are grateful to Virginia Jones for superb word-processing skills that went
into the preparation of this text. Also, two Oregon State University graduate students,
Jorge Ramirez and David Wing, did an outstanding job in uncovering and reporting
various bugs in earlier drafts of this text. Thanks go to Professor Anirban Dasgupta,
the editorial staff at Springer and anonymous referees for their insightful remarks.
Finally, the authors gratefully acknowledge partial support from NSF grants DMS
04-06143 and CMG 03-27705, which facilitated the writing of this book.

Rabi Bhattacharya
Edward C. Waymire
March 2007
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C H A P T E R I

Random Maps, Distribution,
and Mathematical Expectation

In the spirit of a refresher, we begin with an overview of the measure-theoretic frame-
work for probability. Readers for whom this is entirely new material may wish to
consult the appendices for statements and proofs of basic theorems from analysis.
A measure space is a triple (S,S, µ), where S is a nonempty set; S is a collec-
tion of subsets of S, referred to as a σ-field, which includes ∅ and is closed under
complements and countable unions; and µ : S → [0,∞] satisfies (i) µ(∅) = 0, (ii)
(countable additivity) µ(∪∞

n=1An) =
∑∞

n=1 µ(An) if A1, A2, . . . is a sequence of
disjoint sets in S. Subsets of S belonging to S are called measurable sets.. The pair
(S,S) is referred to as a measurable space, and the set function µ is called a mea-
sure. Familiar examples from real analysis are Lebesgue measure µ on S = R

k,
equipped with a σ-field S containing the class of all k-dimensional rectangles, say
R = (a1, b1]× · · · × (ak, bk], with “volume” measure µ(R) =

∏k
j=1(bj − aj); or Dirac

point mass measure µ = δx at x ∈ S defined by δx(B) = 1 if x ∈ B, δx(B) = 0 if
x ∈ Bc, for B ∈ S. Such examples should suffice for the present, but see Appendix A
for constructions of these and related measures based on the Carathéodory exten-
sion theorem. If µ(S) < ∞ then µ is referred to as a finite measure. If one may
write S = ∪∞

n=1Sn, where each Sn ∈ S(n ≥ 1) and µ(Sn) < ∞,∀n, then µ is said to
be a σ−finite measure.

A probability space is a triple (Ω,F , P ), where Ω is a nonempty set, F is a σ-
field of subsets of Ω, and P is a finite measure on the measurable space (Ω,F) with
P (Ω) = 1. The measure P is referred to as a probability. Intuitively, Ω represents
the set of all possible “outcomes” of a random experiment, real or conceptual, for
some given coding of the results of the experiment. The set Ω is referred to as the
sample space and the elements ω ∈ Ω as sample points or possible outcomes.
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The σ−field F comprises “events” A ⊆ Ω whose probability P (A) of occurrence is
well defined.

The finite total probability and countable additivity of a probability have many
important consequences such as finite additivity, finite and countable subad-
ditivity, inclusion–exclusion, monotonicity, and the formulas for both relative
complements and universal complements. Proofs of these properties are left to the
reader and included among the exercises.

Example 1 (Finite Sampling of a Balanced Coin). Consider m repeated tosses
of a balanced coin. Coding the individual outcomes as 1 or 0 (or, say, H,T), the
possible outcomes may be represented as sequences of binary digits of length m. Let
Ω = {0, 1}m denote the set of all such sequences and F = 2Ω, the power set of Ω. The
condition that the coin be balanced may be defined by the requirement that P ({ω})
is the same for each sequence ω ∈ Ω. Since Ω has cardinality |Ω| = 2m, it follows from
the finite additivity and total probability requirements that

P ({ω}) =
1

2m
=

1
|Ω| , ω ∈ Ω.

Using finite additivity this completely and explicitly specifies the model (Ω,F , P )
with

P (A) =
∑

ω∈A

P ({ω}) =
|A|
|Ω| , A ⊆ Ω.

The so-called continuity properties also follow from the definition as follows: A
sequence of events An, n ≥ 1, is said to be increasing (respectively, decreasing)
with respect to set inclusion if An ⊆ An+1,∀n ≥ 1 (respectively An ⊇ An+1∀n ≥ 1).
In the former case one defines limn An := ∪nAn, while for decreasing measurable
events limn An := ∩nAn. In either case the continuity of a probability, from below
or above, respectively, is the following consequence of countable additivity1 (Exercise
3):

P (lim
n

An) = lim
n

P (An). (1.1)

A bit more generally, if {An}∞n=1 is a sequence of measurable events one defines

lim sup
n

An := ∩n=1 ∪m≥n Am (1.2)

1With the exception of properties for “complements” and “continuity from above,” these
and the aforementioned consequences can be checked to hold for any measure.
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and

lim inf
n

An := ∪∞
n=1 ∩m≥n Am. (1.3)

The event lim supn An denotes the collection of outcomes ω ∈ Ω that correspond to
the occurrences of An for infinitely many n; i.e., the events An occur infinitely often.
This event is also commonly denoted by [An i.o.] := lim supn An. On the other hand,
lim infn An is the set of outcomes ω that belong to An for all but finitely many n.
Note that [An i.o.]c is the event that Ac

n occurs for all but finitely many n and equals
lim infn Ac

n.

Lemma 1 (Borel–Cantelli I ). Let (Ω,F , P ) be a probability space and An ∈
F , n = 1, 2, . . . . If

∑∞
n=1 P (An) < ∞ then P (An i.o.) = 0.

Proof. Apply (1.1) to the decreasing sequence of events ∪∞
m=1Am ⊇ ∪∞

m=2Am ⊇ · · ·
and then subadditivity of the probability to get

P (lim sup
n

An) = lim
n→∞

P (∪∞
m=nAm) ≤ lim

n→∞

∞∑

m=n

P (Am) = 0. (1.4)

�

A partial converse (Borel–Cantelli II) will be given in the next chapter.

Example 2 (Infinite Sampling of a Balanced Coin). The possible outcomes of
nonterminated repeated coin tosses can be coded as infinite binary sequences of 1’s
and 0’s. Thus the sample space is the infinite product space Ω = {0, 1}∞. Observe
that a sequence ω ∈ Ω may be viewed as the digits in a binary expansion of a
number x in the unit interval. The binary expansion x =

∑∞
n=1 ωn(x)2−n, where

ωn(x) ∈ {0, 1}, is not unique for binary rationals, e.g., 1
2 = .1000000 . . . = .011111 . . .,

however it may be made unique by requiring that infinitely many 0’s occur in the
expansion. Thus Ω and [0, 1) may be put in one-to-one correspondence. Observe
that for a given specification εn ∈ {0, 1}, n = 1, . . . ,m, of the first m tosses, the
event A = {ω = (ω1, ω2, . . .) ∈ Ω : ωn = εn, n ≤ m} corresponds to the subinter-
val [

∑m
n=1 εn2−n,

∑m
n=1 εn2−n + 2−m) of [0, 1) of length (Lebesgue measure) 2−m.

Again modeling the repeated tosses of a balanced coin by the requirement that for
each fixed m, P (A) not depend on the specified values εn ∈ {0, 1}, 1 ≤ n ≤ m,
it follows from finite additivity and total probability one that P (A) = 2−m = |A|,
where |A| denotes the one-dimensional Lebesgue measure of A. Based on these con-
siderations, one may use Lebesgue measure on [0, 1) to define a probability model
for infinitely many tosses of a balanced coin. As we will see below, this is an essen-
tially unique choice. For now, let us exploit the model with an illustration of the
Borel–Cantelli Lemma I. Fix a nondecreasing sequence rn of positive integers and let
An = {x ∈ [0, 1) : ωk(x) = 1, k = n, n + 1, . . . , n + rn − 1} denote the event that a
run of 1’s occurs of length at least rn starting at the nth toss. Note that this is an
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interval of length 2−rn . Thus if rn increases so quickly that
∑∞

n=1 2−rn < ∞ then
the Borel–Cantelli lemma I yields that P (An i.o.) = 0. For a concrete illustration, let
rn = [θ log2 n], for fixed θ > 0, with [·] denoting the integer part. Then P (An i.o.) = 0
for θ > 1.

In the previous example, probability considerations led us to conclude that under
the identification of sequence space with the unit interval, the probabilities of events
in a certain collection C coincide with their Lebesgue measures. Let us pursue this
situation somewhat more generally. For a given collection C of subsets of Ω, the
smallest σ-field that contains all of the events in C is called the σ-field generated
by C and is denoted by σ(C); if G is any σ−field containing C then σ(C) ⊆ G. Note
that, in general, if Fλ, λ ∈ Λ, is an arbitrary collection of σ-fields of subsets of Ω, then
∩λ∈ΛFλ := {F ⊆ Ω : F ∈ Fλ ∀λ ∈ Λ} is a σ-field. On the other hand ∪λ∈ΛFλ :=
{F ⊆ Ω : F ∈ Fλ for some λ ∈ Λ} is not generally a σ-field. Define the join σ-field,
denoted by

∨
λ∈Λ Fλ, to be the σ-field generated by ∪λ∈ΛFλ.

It is not uncommon that F = σ(C) for a collection C closed under finite intersec-
tions; such a collection C is called a π-system, e.g., Ω = (−∞,∞), C = {(a, b] : −∞ ≤
a ≤ b <∞}, or infinite sequence space Ω = R

∞, and C = {(a1, b1]×· · ·×(ak, bk]×R
∞ :

−∞ ≤ ai ≤ bi <∞, i = 1, . . . , k, k ≥ 1}.
A λ-system is a collection L of subsets of Ω such that (i) Ω ∈ L, (ii) If A ∈ L

then Ac ∈ L, (iii) If An ∈ L, An ∩Am = ∅, n �= m,n,m = 1, 2, . . . , then ∪nAn ∈ L. A
σ−field is clearly also a λ-system. The following π-λ theorem provides a very useful
tool for checking measurability.

Theorem 1.1 (Dynkin’s π-λ Theorem). If L is a λ-system containing a π-system
C, then σ(C) ⊆ L.

Proof. Let L(C) = ∩F , where the intersection is over all λ-systems F containing
C. We will prove the theorem by showing (i) L(C) is a π-system, and (ii) L(C) is a
λ-system. For then L(C) is a σ-field (see Exercise 2), and by its definition σ(C) ⊆
L(C) ⊆ L. Now (ii) is simple to check. For clearly Ω ∈ F for all F , and hence
Ω ∈ L(C). If A ∈ L(C), then A ∈ F for all F , and since every F is a λ-system, Ac ∈ F
for every F . Thus Ac ∈ L(C). If An ∈ L(C), n ≥ 1, is a disjoint sequence, then for
each F , An ∈ F , for all n and A ≡ ∪nAn ∈ F for all F . Since this is true for every
λ-system F , one has A ∈ L(C). It remains to prove (i). For each set A, define the class
LA := {B : A∩B ∈ L(C)}. It suffices to check that LA ⊇ L(C) for all A ∈ L(C). First
note that if A ∈ L(C), then LA is a λ-system, by arguments along the line of (ii) above
(Exercise 2). In particular, if A ∈ C, then A ∩ B ∈ C for all B ∈ C, since C is closed
under finite intersections. Thus LA ⊇ C. This implies, in turn, that L(C) ⊆ LA. This
says that A ∩B ∈ L(C) for all A ∈ C and for all B ∈ L(C). Thus, if we fix B ∈ L(C),
then LB ≡ {A : B ∩ A ∈ L(C)} ⊇ C. Therefore LB ⊇ L(C). In other words, for every
B ∈ L(C) and A ∈ L(C), one has A ∩B ∈ L(C). �

In view of the additivity properties of a probability, the following is an immediate
and important corollary to the π-λ theorem.
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Corollary 1.2 (Uniqueness). If P1, P2 are two probability measures such that
P1(C) = P2(C) for all events C belonging to a π−system C, then P1 = P2 on all
of F = σ(C).

Proof. Check that {A ∈ F : P1(A) = P2(A)} ⊇ C is a λ-system. �

For a related application suppose that (S, ρ) is a metric space. The Borel σ-field of
S, denoted by B(S), is defined as the σ-field generated by the collection C = T of
open subsets of S, the collection T being referred to as the topology on S specified by
the metric ρ. More generally, one may specify a topology for a set S by a collection
T of subsets of S that includes both ∅ and S, and is closed under arbitrary unions
and finite intersections. Then (S, T ) is called a topological space and members of
T define the open subsets of S. The topology is said to be metrizable when it may
be specified by a metric ρ as above. In any case, one defines the Borel σ-field by
B(S) := σ(T ).

Definition 1.1. A class C ⊆ B(S) is said to be measure-determining if for any
two finite measures µ, ν such that µ(C) = ν(C) ∀C ∈ C, it follows that µ = ν on
B(S).

One may directly apply the π-λ theorem, noting that S is both open and closed, to
see that the class T of all open sets is measure-determining, as is the class K of all
closed sets.

If (Si,Si), i = 1, 2, is a pair of measurable spaces then a function f : S1 → S2 is
said to be a measurable map if f−1(B) := {x ∈ S1 : f(x) ∈ B} ∈ S1 for all B ∈ S2.
In usual mathematical discourse the σ-fields required for this definition may not be
explicitly mentioned and will need to be inferred from the context. For example if
(S,S) is a measurable space, by a Borel-measurable function f : S → R is meant
measurability when R is given its Borel σ-field. A random variable, or a random
map, X is a measurable map on a probability space (Ω,F , P ) into a measurable
space (S,S). Measurability of X means that each event2 [X ∈ B] := X−1(B) belongs
to F ∀ B ∈ S. The term “random variable” is most often used to denote a real-valued
random variable, i.e., where S = R, S = B(R). When S = R

k, S = B(Rk), k > 1, one
uses the term random vector.

A common alternative to the use of a metric to define a topology, is to indirectly
characterize the topology by specifying what it means for a sequence to converge
in the topology. That is, if T is a topology on S, then a sequence {xn}∞n=1 in S
converges to x ∈ S with respect to the topology T if for arbitrary U ∈ T such
that x ∈ U , there is an N such that xn ∈ U for all n ≥ N. A topological space (S, T ),
or a topology T , is said to be metrizable if T coincides with the class of open sets
defined by a metric ρ on S. Using this notion, other commonly occurring measurable

2Throughout, this square-bracket notation will be used to denote events defined by inverse
images.
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image spaces may be described as follows: (i) S = R
∞—the space of all sequences of

reals with the (metrizable) topology of pointwise convergence, and S = B(R∞),
(ii) S = C[0, 1]—the space of all real-valued continuous functions on the interval [0, 1]
with the (metrizable) topology of uniform convergence, and S = B(C[0, 1]), and
(iii) S = C([0,∞) → R

k)—the space of all continuous functions on [0,∞) into R
k,

with the (metrizable) topology of uniform convergence on compact subsets
of [0,∞), S = B(S) (see Exercise 7).

The relevant quantities for a random map X on a probability space (Ω,F , P ) are
the probabilities with which X takes sets of values. In this regard, P determines the
most important aspect of X, namely, its distribution Q ≡ P ◦X−1 defined on the
image space (S,S) by Q(B) := P (X−1(B)) ≡ P (X ∈ B), B ∈ S. The distribution is
sometimes referred to as the induced measure of X under P . Note that given any
probability measure Q on a measurable space (S,S) one can construct a probability
space (Ω,F , P ) and a random map X on (Ω,F) with distribution Q. The simplest
such construction is given by letting Ω = S, F = S, P = Q, and X the identity map:
X(ω) = ω, ω ∈ S. This is often called a canonical construction, and (S,S, Q) with
the identity map X is called a canonical model.

If X =
∑m

j=1 aj1Aj
, Aj ∈ F , Ai ∩ Aj = ∅(i �= j), is a discrete random variable

or, equivalently, a simple random variable, then EX ≡
∫
Ω

XdP :=
∑m

j=1 ajP (Aj).
If X : Ω → [0,∞) is a random variable, then EX is defined by the “simple function
approximation” EX ≡

∫
Ω

XdP := sup{EY : 0 ≤ Y ≤ X,Y simple}. In particular,
one may apply the standard simple function approximations X = limn→∞ Xn given
by the nondecreasing sequence

Xn :=
n2n−1∑

j=0

j

2n
1[j2−n≤X<(j+1)2−n] + n1[X≥n], n = 1, 2, . . . , (1.5)

to write

EX = lim
n→∞

EXn = lim
n→∞

⎧
⎨

⎩

n2n−1∑

j=0

j

2n
P (j2−n ≤ X < (j + 1)2−n) + nP (X ≥ n)

⎫
⎬

⎭
.

(1.6)
Note that if EX < ∞, then nP (X > n) → 0 as n → ∞ (Exercise 16). Now, more
generally, if X is a real-valued random variable, then the expected value (or, mean)
of X is defined as

E(X) ≡
∫

Ω

XdP := EX+ − EX−, (1.7)

provided at least one of E(X+) and E(X−) is finite, where X+ = X1[X≥0] and
X− = −X1[X≤0]. If both EX+ < ∞ and EX− <∞, or equivalently, E|X| = EX+ +
EX− < ∞, then X is said to be integrable with respect to the probability P . Note
that if X is bounded a.s., then applying (1.5) to X+ and X−, one obtains a sequence
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Xn(n ≥ 1) of simple functions that converge uniformly to X, outside a P -null set.
(Exercise 1(i)).

If X is a random variable with values in (S,S) and if h is a real-valued Borel-
measurable function on S, then using simple function approximations to h, one may
obtain the following basic change of variables formula (Exercise 11)

E(h(X)) ≡
∫

Ω

h(X(ω))P (dω) =
∫

S

h(x)Q(dx), (1.8)

where Q is the distribution of X, provided one of the two indicated integrals may
be shown to exist. If X = (X1,X2, . . . , Xk) is a random vector, one defines E(X) =
(E(X1), . . . , E(Xk)).

This definition of expectation as an integral in the sense of Lebesgue is precisely
the same as that used in real analysis to define

∫
S

f(x)µ(dx) for a real-valued Borel
measurable function f on an arbitrary measure space (S,S, µ); see Appendix A.
One may exploit standard tools of real analysis (see Appendices A and C), such as
Lebesgue’s dominated convergence theorem, Lebesgue’s monotone convergence theo-
rem, Fatou’s lemma, Fubini–Tonelli theorem, Radon–Nykodym theorem, for estimates
and computations involving expected values.

Definition 1.2. A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P ) is said to converge in probability to a random variable X if for each
ε > 0, limn→∞ P (|Xn −X| > ε) = 0. The convergence is said to be almost sure if
the event [Xn �→ X] ≡ {ω ∈ Ω : Xn(ω) �→ X(ω)} has P -measure zero.

Note that almost-sure convergence always implies convergence in probability,
since for arbitrary ε > 0 one has 0 = P (∩∞

n=1 ∪∞
m=n [|Xm − X| > ε]) =

limn→∞ P (∪∞
m=n[|Xm −X| > ε]) ≥ lim supn→∞ P (|Xn −X| > ε). An equivalent for-

mulation of convergence in probability can be cast in terms of almost-sure convergence
as follows.

Proposition 1.3. A sequence of random variables {Xn}∞n=1 on (Ω,F , P ) converges
in probability to a random variable X on (Ω,F , P ) if and only if every subsequence
has an a.s. convergent subsequence to X.

Proof. Suppose that Xn → X in probability as n → ∞. Let {Xnk
}∞k=1 be a subse-

quence, and for each m ≥ 1 recursively choose nk(0) = 1, nk(m) = min{nk > nk(m−1) :
P (|Xnk

−X| > 1/m) ≤ 2−m}. Then it follows from the Borel–Cantelli lemma (Part
I) that Xnk(m) → X a.s. as m → ∞. For the converse suppose that Xn does not
converge to X in probability. Then there exists ε > 0 and a sequence n1, n2, . . . such
that limk P (|Xnk

− X| > ε) = α > 0. Since a.s. convergence implies convergence in
probability (see Appendix A, Proposition 2.4), there cannot be an a.s. convergent
subsequence of {Xnk

}∞k=1. �
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The notion of measure-determining classes of sets extends to classes of functions
as follows. Let µ, ν be arbitrary finite measures on the Borel σ-field of a metric space
S. A class Γ of real-valued bounded Borel measurable functions on S is measure-
determining if

∫
S

g dµ =
∫

S
g dν ∀g ∈ Γ implies µ = ν.

Proposition 1.4. The class Cb(S) of real-valued bounded continuous functions on
S is measure-determining.

Proof. To prove this, it is enough to show that for each (closed) F ∈ K there exists a
sequence of nonnegative functions {fn} ⊆ Cb(S) such that fn ↓ 1F as n ↑ ∞. Since F
is closed, one may view x ∈ F in terms of the equivalent condition that ρ(x, F ) = 0,
where ρ(x, F ) := inf{ρ(x, y) : y ∈ F}. Let hn(r) = 1− nr for 0 ≤ r ≤ 1/n, hn(r) = 0
for r ≥ 1/n. Then take fn(x) = hn(ρ(x, F )). In particular, 1F (x) = limn fn(x), x ∈ S,
and Lebesgue’s dominated convergence theorem applies. �

Note that the functions fn in the proof of Proposition 1.4 are uniformly continuous,
since |fn(x)− fn(y)| ≤ (nρ(x, y)) ∧ (2 supx |f(x)|). It follows that the set UCb(S) of
bounded uniformly continuous functions on S is measure determining.

Consider the Lp-space Lp(Ω,F , P ) of (real-valued) random variables X such that
E|X|p < ∞. When random variables that differ only on a P -null set are identified,
then for p ≥ 1, it follows from Theorem 1.5(e) below that Lp(Ω,F , P ) is a normed
linear space with norm ‖X‖p := (

∫
Ω
|X|pdP )

1
p ≡ (E|X|p) 1

p . It may be shown that
with this norm (and distance ‖X −Y ‖p), it is a complete metric space, and therefore
a Banach space (Exercise 18). In particular, L2(Ω,F , P ) is a Hilbert space with
inner product (see Appendix C)

〈X,Y 〉 = EXY ≡
∫

Ω

XY dP, ||X||2 = 〈X,X〉
1
2 . (1.9)

The L2(S,S, µ) spaces are the only Hilbert spaces that are required in this text, where
(S,S, µ) is a σ-finite measure space; see Appendix C for an exposition of the essential
structure of such spaces. Note that by taking S to be a countable set with counting
measure µ, this includes the l2 sequence space. Unlike the case of a measure space
(Ω,F , µ) with an infinite measure µ, for finite measures it is always true that

Lr(Ω,F , P ) ⊆ Ls(Ω,F , P ) if r > s ≥ 1, (1.10)

as can be checked using |x|s < |x|r for |x| > 1. The basic inequalities in the following
Theorem 1.5 are consequences of convexity at some level. So let us be precise about
this notion.

Definition 1.3. A function ϕ defined on an open interval J is said to be a convex
function if ϕ(ta + (1− t)b) ≤ tϕ(a) + (1− t)ϕ(b), for all a, b ∈ J , 0 ≤ t ≤ 1.
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If the function ϕ is sufficiently smooth, one may use calculus to check convexity, see
Exercise 14. The following lemma is required to establish a geometrically obvious
“line of support property” of convex functions.

Lemma 2 (Line of Support). Suppose ϕ is convex on an interval J . (a) If J is
open, then (i) the left-hand and right-hand derivatives ϕ− and ϕ+ exist and are finite
and nondecreasing on J , and ϕ− ≤ ϕ+. Also (ii) for each x0 ∈ J there is a constant
m = m(x0) such that ϕ(x) ≥ ϕ(x0) + m(x− x0),∀x ∈ J. (b) If J has a left (or right)
endpoint and the right-hand (left-hand) derivative is finite, then the line of support
property holds at this endpoint x0.

Proof. (a) In the definition of convexity, one may take a < b, 0 < t < 1. Thus
convexity is equivalent to the following inequality with the identification a = x, b = z,
t = (z − y)/(z − x): For any x, y, z ∈ J with x < y < z,

ϕ(y)− ϕ(x)
y − x

≤ ϕ(z)− ϕ(y)
z − y

. (1.11)

More generally, use the definition of convexity to analyze monotonicity and bounds
on the Newton quotients (slopes of secant lines) from the right and left to see that
(1.11) implies ϕ(y)−ϕ(x)

y−x ≤ ϕ(z)−ϕ(x)
z−x ≤ ϕ(z)−ϕ(y)

z−y (use the fact that c/d ≤ e/f for
d, f > 0 implies c/d ≤ (c + e)/(d + f) ≤ e/f). The first of these inequalities shows
that ϕ(y)−ϕ(x)

y−x decreases as y decreases, so that the right-hand derivative ϕ+(x) exists

and ϕ(y)−ϕ(x)
y−x ≥ ϕ+(x). Letting z ↓ y in (1.11), one gets ϕ(y)−ϕ(x)

y−x ≤ ϕ+(y) for all
y > x. Hence ϕ+ is finite and nondecreasing on J . Now fix x0 ∈ J . By taking x = x0

and y = x0 in turn in these two inequalities for ϕ+, it follows that ϕ(y) − ϕ(x0) ≥
ϕ+(x0)(y − x0) for all y ≥ x0, and ϕ(x0) − ϕ(x) ≤ ϕ+(x0)(x0 − x) for all x ≤ x0.
Thus the “line of support” property holds with m = ϕ+(x0). (b) If J has a left (right)
endpoint x0, and ϕ+(x0) (ϕ−(x0)) is finite, then the above argument remains valid
with m = ϕ+(x0) (ϕ−(x0)).

A similar proof applies to the left-hand derivative ϕ−(x) (Exercise 14). On letting
x ↑ y and z ↓ y in (1.11), one obtains ϕ−(y) ≤ ϕ+(y) for all y. In particular, the line
of support property now follows for ϕ−(x0) ≤ m ≤ ϕ+(x0). �

Theorem 1.5 (Basic Inequalities). Let X,Y be random variables on (Ω,F , P ).

(a)(Jensen’s Inequality) If ϕ is a convex function on the interval J and P (X ∈ J) = 1,
then ϕ(EX) ≤ E(ϕ(X)) provided that the indicated expectations exist. Moreover,
if ϕ is strictly convex, then equality holds if and only if X is a.s. constant.

(b)(Lyapounov Inequality) If 0 < r < s then (E|X|r) 1
r ≤ (E|X|s) 1

s .
(c) (Hölder Inequality) Let p ≥ 1. If X ∈ Lp, Y ∈ Lq, 1

p + 1
q = 1, then XY ∈ L1 and

E|XY | ≤ (E|X|p) 1
p (E|Y |q) 1

q .
(d)(Cauchy–Schwarz Inequality) If X,Y ∈ L2 then XY ∈ L1 and one has |E(XY )| ≤√

EX2
√

EY 2.
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(e) (Minkowski Triangle Inequality) Let p ≥ 1. If X,Y ∈ Lp then ‖X +Y ‖p ≤ ‖X‖p +
‖Y ‖p.

(f) (Markov and Chebyshev-type Inequalities) Let p ≥ 1. If X ∈ Lp then P (|X| ≥
λ) ≤ E(|X|p1[|X|≥λ])

λp ≤ E|X|p
λp , λ > 0,

Proof. The proof of Jensen’s inequality hinges on the line of support property of
convex functions in Lemma 2 by taking x = X(ω), ω ∈ Ω, x0 = EX. The Lyapounov
inequality follows from Jensen’s inequality by writing |X|s = (|X|r) s

r . for 0 < r < s.
For the Hölder inequality, let p, q > 1 be conjugate exponents in the sense that
1
p + 1

q = 1. Using convexity of the function exp(x) one sees that |ab| = exp(ln(|a|p)/p+

ln(|b|q)/q)) ≤ 1
p |a|p + 1

q |b|q. Applying this to a = |X|
‖X‖p

, b = |Y |
‖Y ‖q

and integrating,

it follows that E|XY | ≤ (E|X|p) 1
p (E|Y |q) 1

q . The Cauchy–Schwarz inequality is the
Hölder inequality with p = q = 2. For the proof of Minkowski’s inequality, first use
the inequality (1.21) to see that |X + Y |p is integrable from the integrability of |X|p
and |Y |p. Applying Hölder’s inequality to each term of the expansion E(|X|+ |Y |)p =
E|X|(|X| + |Y |)p−1 + E|Y |(|X| + |Y |)p−1, and solving the resulting inequality for
E(|X|+|Y |)p (using conjugacy of exponents), it follows that ‖X+Y ‖p ≤ ‖X‖p+‖Y ‖p.
Finally, for the Markov and Chebyshev-type inequalities simply observe that since
1{|X|≥λ} ≤

|X|p1{|X|≥λ})

λp ≤ |X|p
λp on Ω, taking expectations yields P (|X| ≥ λ) ≤

E(|X|p1{|X|≥λ})

λp ≤ E|X|p
λp , λ > 0. �

The Markov inequality refers to the case p = 1 in (f). Observe from the proofs that
(c–e) hold with the random variables X,Y replaced by measurable functions, in fact
complex-valued, on an arbitrary (not necessarily finite) measure space (S,S, µ); see
Exercise 19.

The main text includes use of another limit result for Lebesgue integrals, Scheffé’s
theorem, which is more particularly suited to probability applications in which one
may want to include the consequence of convergence almost everywhere in terms
of convergences in other metrics. It is included here for ease of reference. To state
it, suppose that (S,S, µ) is an arbitrary measure space and g : S → [0,∞) a
Borel-measurable function, though not necessarily integrable. One may use g as a
density to define another measure ν on (S,S), i.e., with g as its Radon–Nykodym
derivative dν/dµ = g, also commonly denoted by dν = g dµ, and meaning that
ν(A) =

∫
A

g dµ, A ∈ S; see Appendix C for a full treatment of the Radon–Nikodym
theorem3.

Recall that a sequence of measurable functions {gn}∞n=1 on S is said to converge µ-
a.e. to a measurable function g on S if and only if µ({x ∈ S : limn gn(x) �= g(x)}) = 0.

3A probabilistic proof can be given for the Radon–Nikodym theorem based on
martingales. Such a proof is given in the text on stochastic processes.



RANDOM MAPS, DISTRIBUTION, AND MATHEMATICAL EXPECTATION 11

Theorem 1.6 (Scheffé). Let (S,S, µ) be a measure space and suppose that
ν, {νn}∞n=1 are measures on (S,S) with respective nonnegative densities g, {gn}∞n=1

with respect to µ, such that
∫

S

gn dµ =
∫

S

g dµ < ∞, ∀n = 1, 2, . . . .

If gn → g as n →∞, µ-a.e., then

sup
A∈S

|
∫

A

g dµ−
∫

A

gn dµ| ≤
∫

S

|g − gn| dµ → 0, as n →∞.

Proof. The indicated bound on the supremum follows from the triangle inequality
for integrals. Since

∫
S
(g− gn) dµ = 0 for each n,

∫
S
(g− gn)+ dµ =

∫
Ω
(g− gn)− dµ. In

particular, since |g − gn| = (g − gn)+ + (g − gn)−,

∫

S

|g − gn| dµ = 2
∫

S

(g − gn)+ dµ.

But 0 ≤ (g − gn)+ ≤ g. Since g is µ-integrable, one obtains
∫

S
(g − gn)+ dµ → 0 as

n →∞ from Lebesgue’s dominated convergence theorem. �

For a measurable space (S,S), a useful metric (see Exercise 1) defined on the space
P(S) of probabilities on S = B(S) is furnished by the total variation distance
defined by

dv(µ, ν) := sup{|µ(A)− ν(A)| : A ∈ B(S)}, µ, ν ∈ P(S). (1.12)

Proposition 1.7. Suppose that (S,S) is a measurable space. Then

dv(µ, ν) =
1
2

sup
{∣
∣
∣
∣

∫

S

f dµ−
∫

S

f dν

∣
∣
∣
∣ : f ∈ B(S), |f | ≤ 1

}

,

where B(S) denotes the space of bounded Borel-measurable functions on S. Moreover,
(P(S), dv) is a complete metric space.

Proof. Let us first establish the formula for the total variation distance. By standard
simple function approximation it suffices to consider bounded simple functions in the
supremum. Fix arbitrary µ, ν ∈ P(S). Let f =

∑k
i=1 ai1Ai

∈ B(S) with |ai| ≤ 1, i =
1, . . . , k and disjoint sets Ai ∈ S, 1 ≤ i ≤ k. Let I+ := {i ≤ k : µ(Ai) ≥ ν(Ai)}. Let
I− denote the complementary set of indices. Then by definition of the integral of a
simple function and splitting the sum over I± one has upon twice using the triangle
inequality that

∣
∣
∣
∣

∫

S

fdµ−
∫

S

fdν

∣
∣
∣
∣ ≤

∑

i∈I+

|ai|(µ(Ai)− ν(Ai)) +
∑

i∈I−

|ai|(ν(Ai)− µ(Ai))
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≤
∑

i∈I+

(µ(Ai)− ν(Ai)) +
∑

i∈I−

(ν(Ai)− µ(Ai))

= µ(∪i∈I+Ai)− ν(∪i∈I+Ai) + ν(∪i∈I−Ai)− µ(∪i∈I−Ai)

≤ 2 sup{|µ(A)− ν(A)| : A ∈ S}. (1.13)

On the other hand, taking f = 1A − 1Ac , A ∈ S, one has

∣
∣
∣
∣

∫

S

fdµ−
∫

S

fdν

∣
∣
∣
∣ = |µ(A)− µ(Ac)− ν(A) + ν(Ac)|

= |µ(A)− ν(A)− 1 + µ(A) + 1− ν(A)|

= 2|µ(A)− ν(A)|. (1.14)

Thus, taking the supremum over sets A ∈ S establishes the asserted formula for
the total variation distance. Next, to prove that the space P(S) of probabilities is
complete for this metric, let {µn}∞n=1 be a Cauchy sequence in P(S). Since the closed
interval [0, 1] of real numbers is complete, one may define µ(A) := limn µn(A), A ∈ S.
Because this convergence is uniform over S, it is simple to check that µ ∈ P(S) and
µn → µ in the metric dv; see Exercise 1. �

So we note that Scheffé’s theorem provides conditions under which a.s. convergence
implies L1(S,S, µ)-convergence of the densities gn to g, and convergence in the total
variation metric of the probabilities νn to ν.

We will conclude this chapter with some further basic convergence theorems for
probability spaces. For this purpose we require a definition.

Definition 1.4. A sequence {Xn}∞n=1 of random variables on a probability space
(Ω,F , P ) is said to be uniformly integrable if limλ→∞ supn E{|Xn|1[|Xn|≥λ]} = 0.

Theorem 1.8 (L1−Convergence Criterion). Let {Xn}∞n=1 be a sequence of ran-
dom variables on a probability space (Ω,F , P ),Xn ∈ L1 (n ≥ 1). Then {Xn}∞n=1

converges in L1 to a random variable X if and only if (i) Xn → X in probability as
n →∞, and (ii) {Xn}∞n=1 is uniformly integrable.

Proof. (Necessity) If Xn → X in L1 then convergence in probability (i) follows from
the Markov inequality. Also

∫

[|Xn|≥λ]

|Xn|dP ≤
∫

[|Xn|≥λ]

|Xn −X|dP +
∫

[|Xn|≥λ]

|X|dP

≤
∫

Ω

|Xn −X|dP +
∫

[|X|≥λ/2]

|X|dP
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+
∫

[|X|<λ/2,|Xn−X|≥λ/2]

|X|dP. (1.15)

The first term of the last sum goes to zero as n →∞ by hypothesis. For each λ > 0
the third term goes to zero by the dominated convergence theorem as n → ∞. The
second term goes to zero as λ →∞ by the dominated convergence theorem too. Thus
there are numbers n(ε) and λ(ε) such that for all λ ≥ λ(ε),

sup
n≥n(ε)

∫

[|Xn|≥λ]

|Xn|dP ≤ ε. (1.16)

Since a finite sequence of integrable random variables {Xn : 1 ≤ n ≤ n(ε)} is always
uniformly integrable, it follows that the full sequence {Xn} is uniformly integrable.

(Sufficiency) Under the hypotheses (i), (ii), given ε > 0 one has for all n that

∫

Ω

|Xn|dP ≤
∫

[|Xn|≥λ]

|Xn|dP + λ ≤ ε + λ(ε) (1.17)

for sufficiently large λ(ε). In particular, {
∫
Ω
|Xn|dP}∞n=1 is a bounded sequence. Thus∫

Ω
|X|dP <∞ by Fatou’s lemma. Now

∫

[|Xn−X|≥λ]

|Xn −X|dP =
∫

[|Xn−X|≥λ,|Xn|≥λ/2]

|Xn −X|dP

+
∫

[|Xn|<λ/2,|Xn−X|≥λ]

|Xn −X|dP

≤
∫

[|Xn|≥λ/2]

|Xn|dP +
∫

[|Xn−X|≥λ/2]

|X|dP

+
∫

[|Xn|<λ/2,|Xn−X|≥λ]

(
λ

2
+ |X|)dP. (1.18)

Now, using (ii), given ε > 0, choose λ = λ(ε) > 0 so large that the first term of the
last sum is smaller than ε. With this value of λ = λ(ε) the second and third terms go
to zero as n →∞ by Lebesgue’s dominated convergence theorem, using (i). Thus,

lim sup
n→∞

∫

[|Xn−X|≥λ(ε)]

|Xn −X|dP ≤ ε. (1.19)

But again applying the dominated convergence theorem one also has

lim sup
n→∞

∫

[|Xn−X|<λ(ε)]

|Xn −X|dP = 0. (1.20)

Thus the conditions are also sufficient for L1 convergence to X. �
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The next result follows as a corollary.

Theorem 1.9 (Lp−Convergence Criterion). Let p ≥ 1. Let {Xn}∞n=1 be a sequence
of random variables on a probability space (Ω,F , P ),Xn ∈ Lp(n ≥ 1). Then {Xn}∞n=1

converges in Lp to a random variable X if and only if (i) Xn → X in probability as
n →∞, and (ii) {|Xn|p}∞n=1 is uniformly integrable.

Proof. Apply the preceding result to the sequence {|Xn − X|p}∞n=1. The proof of
necessity is analogous to (1.15) and (1.16) using the following elementary inequalities:

|a + b|p ≤ (|a|+ |b|)p ≤ (2max{|a|, |b|})p ≤ 2p(|a|p + |b|p). (1.21)

For sufficiency, note as in (1.17) that (i), (ii) imply X ∈ Lp, and then argue as in
(1.18) that the uniform integrability of {|Xn|p : n ≥ 1} implies that of {|Xn −X|p :
n ≥ 1}. �

Chebyshev-type inequalities often provide useful ways to check uniform integrability
of {|Xn|p}∞n=1 in the case that {E|Xn|m} can be shown to be a bounded sequence for
some m > p (see Exercise 15).

EXERCISES

Exercise Set I

1. Let (S,S) be a measurable space. (i) Show that if f is a real-valued bounded measurable
function, |f(x)| ≤ c for all x, then the standard simple function approximations (1.5) to
f+ and f− provide a sequence of simple functions fn converging to f uniformly on S,
and satisfying |fn(x)| ≤ c for all x and for all n. (ii) Show that (1.12) defines a metric on
P(S) i.e., is a well-defined nonnegative symmetric function on P(S)×P(S) satisfying the
triangle inequality with dv(µ, ν) = 0 if and only if µ = ν. Also show for a Cauchy sequence
{µn}∞n=1 in P(S), that the set function defined by µ(A) := limn µn(A) ∈ [0, 1], A ∈ S
is a probability measure. [Hint : The convergence of the real numbers µn(A) → µ(A) is
uniform for A ∈ S.]

2. Show that if L is a π-system and a λ-system, then it is a σ-field. In the proof of
Dynkin’s π-λ theorem, show that if A ∈ L(C), then LA is a λ-system. [Hint: A ∩ Bc =
(Ac ∪ (A ∩ B))c.]

3. Let (Ω,F , P ) be an arbitrary probability space and let A1, A2, . . . be measurable events.
Prove each of the following.
(i) (Finite Additivity). If A1, . . . , Am are disjoint then P (∪m

j=1Aj) =
∑m

j=1
P (Aj).

(ii) (Monotonicity). If A1 ⊆ A2 then P (A1) ≤ P (A2).
(iii) (Inclusion–Exclusion). P (∪m

j=1Aj) =
∑m

k=1
(−1)k+1

∑
1≤j1<···<jk≤m

P (Aj1 ∩ · · · ∩
Ajk).

(iv) (Subadditivity). P (∪jAj) ≤
∑

j
P (Aj).

(v) Show that the property µ(An) ↑ µ(A) if An ↑ A, holds for all measures µ. [Hint :
A = ∪nBn, B1 = A1, B2 = Ac

1 ∩ A2, . . . , Bn = Ac
1 ∩ · · · ∩ Ac

n−1 ∩ An, so that
An = ∪n

j=1Bj .]
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(vi) Show that the property: µ(An) ↓ µ(A) if An ↓ A holds for finite measures. Show by
counterexample that it does not, in general, hold for measures µ that are not finite.

4. (Bonferroni Inequalities) Show that for odd m ∈ {1, 2, . . . , n}, (a) P (∪n
j=1Aj) ≤∑m

k=1

∑
1≤j1≤j2≤···≤jk≤n

(−1)k+1P (Aj1 ∩ · · · ∩ Ajk), and for even m ∈ {2, . . . , n}, (b)

P (∪n
j=1Aj) ≥

∑m

k=1

∑
1≤j1≤j2≤···≤jk≤n

(−1)k+1P (Aj1 ∩ · · · ∩ Ajk).

5. Let (Ω,F , P ) be an arbitrary probability space and suppose A, B ∈ F are independent
events, i.e., P (A ∩ B) = P (A)P (B), and P (A) ≥ 1

2
≤ P (B). Show that P (A ∪ B) ≥ 3

4
.

6. Show that the Borel σ-field of R is generated by any one of the following classes of
sets: (i) C = {(a, b) : −∞ ≤ a ≤ b ≤ ∞}; (ii) C = {(a, b] : −∞ ≤ a ≤ b < ∞}; (iii)
C = {(−∞, x] : x ∈ R}.

7. In each case below, show that ρ is a metric for the indicated topology.
(i) For S = R

∞, ρ(x, y) =
∑∞

k=1
2−k|xk − yk|/(1 + |xk − yk|), for x = (x1, x2, . . .),

y = (y1, y2, . . .) ∈ R
∞ metrizes the topology of pointwise convergence: x(n) → x if

and only if x
(n)
k → xk for each k, as n → ∞.

(ii) For S = C[0, 1], ρ(f, g) = max{|f(x) − g(x)| : x ∈ [0, 1]} metrizes the topology of
uniform convergence of continuous functions on [0, 1].

(iii) For S = C([0,∞) → R
k), ρ(f, g) =

∑∞
n=1

2−n‖f − g‖n/(1 + ‖f − g‖n), where
‖f − g‖n := max{‖f(x) − g(x)‖ : x ∈ [0, n]}, ‖ · ‖ denoting the Euclidean norm on
R

k, metrizes the topology of uniform convergence on compacts.

8. Let X be a random map on (Ω,F , P ) with values in a measurable space (S,S). Show
that G := {[X ∈ A] : A ∈ S} is the smallest sub-σ-field of F such that X : Ω → S is a
random map on (Ω,G), i.e., such that [X ∈ A] ∈ G for all A ∈ S.

9. Let Ω = {(1, 1), (2, 2), (1, 2), (2, 1)} equipped with the power set F . Define a simple
random variable by X(ω) = ω1 + ω2, ω = (ω1, ω2) ∈ Ω. Give an explicit description
of σ(X) as a subcollection of sets in F and give an example of a set in F that is not in
σ(X).

10. (i) Let (Ω,F , P ) be a probability space and let P = {A1, A2, . . . , Am}, ∅ = Aj ∈ F ,
1 ≤ j ≤ m, be a disjoint partition of Ω. Let (S,S) be an arbitrary measurable space
such that S contains all of the singleton sets {x} for x ∈ S. Show that a random map
X : Ω → S is σ(P)-measurable if and only if X is a σ(P)-measurable simple function.
Give a counterexample in the case that S does not contain singletons. (ii) Let A1, . . . , Ak

be nonempty subsets of Ω. Describe the smallest σ-field containing {A1, . . . , Ak} and
show that its cardinality is at most 2k.

11. Give a proof of the change of variables formula. [Hint : (Method of simple function
approximation) Begin with h an indicator function, then h a simple function, then h ≥ 0,
and finally write h = h+ − h−.]

12. Let X1, X2 be real-valued random variables on (Ω,F , P ). Suppose that Fi(x) = P (Xi ≤
x), x ∈ R(i = 1, 2) are two distribution functions on (R,B) and F1 = F2. Show that X1

and X2 have the same distribution.

13. Suppose that X1 and X2 are two bounded real-valued random variables on (Ω,F , P ) such
that EXm

1 = EXm
2 , m = 1, 2, . . . . Show that X1 and X2 must have the same distribution.

[Hint : According to the Weierstrass approximation theorem, a continuous function on a
closed and bounded interval may be approximated by polynomials uniformly over the
interval (see Appendix B).]
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14. (i) Show that for a convex function ϕ on an open interval J , ϕ− is finite and nonde-
creasing, and the “line of support” property holds with m = ϕ−(x0), as well as with
any m ∈ [ϕ−(x0), ϕ

+(x0)]. (ii) Show that while a convex ϕ is continuous on an open
interval, it need not be so on an interval with left-hand and/or right-hand endpoints.
(iii) Show that if ϕ has a continuous, nondecreasing derivative ϕ′ on J , then ϕ is convex.
In particular, if ϕ is twice differentiable and ϕ′′ ≥ 0 on J , then ϕ is convex. [Hint : Use
the mean value theorem from calculus.]

15. Let p ≥ 1, Xn ∈ Lm(Ω,F , P ) for some m > p. Suppose there is an M such that E|Xn|m ≤
M, ∀n ≥ 1. Show that {|Xn|p}∞n=1 is uniformly integrable. [Hint : Use a Chebyshev-type
inequality.]

16. Let X be a nonnegative random variable. (i) Show that nP (X > n) → 0 as n → ∞ if
EX < ∞. [Hint : nP (X > n) ≤ EX1[X>n].] (ii) Prove that

∑∞
n=1

P (X > n) ≤ EX ≤∑∞
n=0

P (X > n). [Hint :
∑∞

n=1
(n − 1)P (n − 1 < X ≤ n) ≤ EX ≤

∑∞
n=1

nP (n − 1 <
X ≤ n).]

17. Let {fn : n ≥ 1} be a Cauchy sequence in measure: µ(|fn − fm| > ε) → 0 as n, m → ∞,
∀ε > 0. Prove that there exists a measurable function f such that fn → f in measure.
[Hint : Find a sequence n1 < n2 < · · · such that µ(|fnk − fnk+1 | > 2−k) < 2−k, k =

1, 2, . . .. Let B = [|fnk − fnk+1 | > 2−k i.o.], and show that µ(B) = 0. On Bc, {fnk}∞k=1

is a Cauchy sequence, converging to some function f . Also for every ε > 0, µ(|fn − f | >
ε) ≤ µ(|fn − fnk | > ε/2) + µ(|fnk − f | > ε/2). The first term on the right of this
inequality is o(1) as k → ∞, n → ∞. Also, outside Bk := ∪∞

m=k[|fnm − fnm+1 | > 2−m],

one has |fnk − f | ≤
∑∞

m=k
2−m = 2−(k−1). By choosing k0 such that 2−(k0−1) < ε/2,

one gets µ(|fnk − f | > ε/2) ≤ µ(Bk0) ≤ ε/2 for all k ≥ k0.]

18. Show that for every p ≥ 1, Lp(S,S, µ) is a complete metric space.

19. (Integration of Complex-Valued Functions) A Borel measurable function f = g + ih on
a measure space (S,S, µ) into C, (i.e., g, h are real-valued Borel-measurable), is said to

be integrable if its real and imaginary parts g and h are both integrable. Since 2− 1
2 (|g|+

|h|) ≤ |f | ≡
√

g2 + h2 ≤ |g| + |h|, f is integrable if and only if |f | is integrable. The
following extend a number of standard results for measurable real-valued functions to
measurable complex-valued functions.
(a) Extend Lebesgue’s dominated convergence theorem (Appendix A) to complex-

valued functions.
(b) Extend the inequalities of Lyapounov, Hölder, Minkowski, and Markov–Chebyshev

(Theorem 1.5(b),(c),(e),(f)) to complex-valued functions.
(c) For p ≥ 1, let the Lp-space of complex-valued functions be defined by equivalence

classes of complex-valued functions f induced by equality a.e. such that |f |p is
integrable. Show that this Lp-space is a Banach space over the field of complex

numbers with norm ‖f‖p = (
∫

S
|f |pdµ)

1
p .

(d) Show that the L2-space of complex-valued square-integrable functions is a Hilbert
space with inner product 〈f1, f2〉 =

∫
S

f1f2 dµ, where f2 is the complex conjugate
of f2.

(e) Show that for the special case of real-valued functions, the Lp-norm defined above
reduces to that introduced in the text.
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20. Suppose that X1, X2, . . . is a sequence of identically distributed random variables
defined on a probability space (Ω,F , P ). Show that if Ee|X1| < ∞, then a.s.

lim supn→∞
|Xn|
ln n

≤ 1.



C H A P T E R II

Independence, Conditional
Expectation

A stochastic process {Xt : t ∈ Λ} on a probability space (Ω,F , P ) with values in a
(measurable) space (S,S) is a family of random maps Xt : Ω → S, t ∈ Λ. The index
set Λ is most often of one of the following types: (i) Λ = {0, 1, 2, . . .}. Then {Xt : t =
0, 1, 2, . . .} is referred to as a discrete-parameter stochastic process, usually with
S = R or R

k. (ii) Λ = [0,∞). Then {Xt : t ≥ 0} is called a continuous-parameter
stochastic process, usually with S = R or R

k.
Given an arbitrary collection of sets St, t ∈ Λ, the product space, denoted by

S =
∏

t∈Λ St ≡ ×t∈ΛSt, is defined as the space of functions x = (xt, t ∈ Λ) mapping Λ
to ∪t∈ΛSt such that xt ∈ St for each t ∈ Λ. This general definition applies to cases in
which Λ is finite, countably infinite, or a continuum. In the case that each St, t ∈ Λ, is
also a measurable space with respective σ-fields St, the product σ-field, denoted by
⊗t∈ΛSt, is defined as the σ-field generated by the collection C of finite-dimensional
rectangles of the form C = {x ∈

∏
t∈Λ St : (xt1 , . . . , xtk

) ∈ B1 × · · · × Bk}, for
k ≥ 1, Bi ∈ Sti

, 1 ≤ i ≤ k. Alternatively, the product σ-field is the smallest σ-field
of subsets of

∏
t∈Λ St which makes each of the coordinate projections, Xs(x) =

xs,x ∈
∏

t∈Λ St, s ∈ Λ, a measurable map. In this case the pair (S =
∏

t∈Λ St,⊗t∈ΛSt)
will also be referred to as the (measure-theoretic) product space.

Recall that a field is a collection of subsets of Ω closed under complements and
finite unions, and contains the empty set. A nonnegative set function µ defined on
a field F0 of subsets of Ω is called a measure defined on this field if µ(∅) = 0 and
µ(∪∞

n=1An) =
∑∞

n=1 µ(An) whenever A1, A2, . . . is a disjoint sequence of members of
F0 such that ∪∞

n=1An ∈ F0. A measure µ is said to be σ-finite on F0 provided that
Ω = ∪∞

n=1An for some An ∈ F0, n ≥ 1, such that µ(An) < ∞ for all n. Given a
measure µ on a field F0 of subsets of Ω, one may define an extension of µ, denoted
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by µ∗, as a nonnegative function on all A ⊆ Ω, by Carathéodory’s extension formula

µ∗(A) = inf{
∑

n

µ(An) : An ∈ F0, n ≥ 1,∪nAn ⊇ A}. (2.1)

While the set function µ∗ defined for all subsets of Ω by (2.1) is generally not countably
additive, the Carathéodory method of restricting µ∗ to a smaller σ-field than the power
set of Ω provides an important extension of µ to a measure defined on the smallest
σ-field F = σ(F0) containing F0; see Appendix A.

Given a finite number of σ-finite measure spaces (Si,Si, µi), i = 1, . . . , n, one may
uniquely determine a measure µ1 × · · · × µn, called the product measure on the
product space (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn), by prescribing that

µ1 × · · · × µn(B1 × · · · ×Bn) :=
n∏

i=1

µi(Bi), Bi ∈ Si, (1 ≤ i ≤ n). (2.2)

In particular, for A ∈ S1 ⊗ · · · ⊗ Sn one has according to the Carathéodory extension
formula (see Appendix A)

µ1 × · · · × µn(A) = inf
∞∑

j=1

µ1(B1j)× · · · × µn(Bnj), (2.3)

where the infimum is taken over all covers ∪∞
j=1B1j × · · ·×Bnj ⊇ A, by Bij ∈ Si, 1 ≤

i ≤ n, j ≥ 1. Associativity of product measure, i.e., µ1 × µ2 × µ3 = (µ1 × µ2)× µ3 =
µ1 × (µ2 × µ3), is another important consequence of the uniqueness of the product
measure, that requires the property of σ-finiteness, and will be assumed throughout
without further mention.

A central notion in probability is that of independence. Given a finite set of random
variables (maps) X1,X2, . . . , Xn, with Xi a measurable map on (Ω,F , P ) into (Si,Si)
(1 ≤ i ≤ k), the Xi (1 ≤ i ≤ n), are said to be independent if the distribution
Q of X := (X1,X2, . . . , Xn) on the product space (S = S1 × S2 × · · · × Sn, S =
S1 ⊗ S2 ⊗ · · · ⊗ Sn) is the product measure Q = Q1 × Q2 × · · · × Qn, where Qi is
the distribution of Xi (1 ≤ i ≤ n). In other words, X1,X2, . . . , Xn are independent
iff ∀Bi ∈ Si, 1 ≤ i ≤ n,

Q(B1×B2×· · ·×Bn) ≡ P (Xi ∈ Bi, 1 ≤ i ≤ n) =
n∏

i=1

P (Xi ∈ Bi) ≡
n∏

i=1

Qi(Bi). (2.4)

This formulation of independence is particularly amenable to the use of the Fubini–
Tonelli theorem for integration over product spaces in terms of iterated integrals.
The following important application of Fubini–Tonelli is left as Exercise 4. Also see
Exercise 5 for applications to sums of independent exponentially distributed random
variables and Gaussian random variables.
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Theorem 2.1. Suppose X1,X2 are independent k-dimensional random vectors hav-
ing distributions Q1, Q2, respectively. The distribution of X1 + X2 is given by the
convolution of Q1 and Q2:

Q1 ∗Q2(B) =
∫

Rk

Q1(B − y)Q2(dy), B ∈ Bk,

where B − y := {x− y : x ∈ B}.

Observe that any subcollection of independent random variables will be indepen-
dent. In particular, pairs of random variables will be independent. The converse is not
true (Exercise 2). One may also observe that the definition of independence implies
that the factors of the indicated joint distribution are the marginal distributions
Qi = P ◦X−1

i , i = 1, . . . , n, of the respective random variables comprising the vector
(X1, . . . , Xn) (Exercise 2).

In practice, one typically applies the Tonelli part to |f | in order to determine
whether the Fubini part is applicable to f. Let us record a useful formula for the
moments of a random variable derived from the Fubini-Tonelli theorem before pro-
ceeding. Namely, if X is a random variable on (Ω,F , P ), then for any p > 0, x ≥ 0,
writing xp = p

∫ x

0
yp−1dy in the formula E|X|p =

∫
Ω
|X(ω)|pP (dω) and applying the

Tonelli part, one obtains

E|X|p =
∫

Ω

(

p

∫ |X(ω)|

0

yp−1dy

)

P (dω) = p

∫ ∞

0

yp−1P (|X| > y)dy. (2.5)

The following result is an important consequence of independence.

Theorem 2.2. If X1, . . . , Xn are independent random variables on (Ω,F , P ) such
that E|Xj | <∞, 1 ≤ j ≤ n, then E|X1 · · ·Xn| <∞ and

E(X1 · · ·Xn) = E(X1) · · ·E(Xn).

Proof. Let Qj = P ◦X−1
j , j ≥ 1. Since by independence, (X1, . . . , Xn) has product

measure as joint distribution, one may apply a change of variables and the Tonelli
part to obtain

E|X1 · · ·Xn| =
∫

Ω

|X1 · · ·Xn|dP

=
∫

Rn

|x1 · · ·xn|Q1 × · · · ×Qn(dx1 × · · · × dxn)

=
n∏

j=1

∫

R

|xj |Qj(dxj) =
n∏

j=1

E|Xj | <∞.
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With the integrability established one may apply the Fubini part to do the same thing
for E(X1 · · ·Xn) and the product measure distribution P ◦ X−1

1 × · · · × P ◦ X−1
n of

(X1, . . . , Xn). �

Two random variables X1,X2 in L2 = L2(Ω,F , P ) are said to be uncorrelated if
their covariance Cov(X1,X2) is zero, where

Cov(X1,X2) := E [(X1 − E(X1))(X2 − E(X2))] = E(X1X2)− E(X1)E(X2). (2.6)

The variance Var(Y ) of a random variable Y ∈ L2 is defined by the average squared
deviation of Y from its mean EY . That is, Var(Y ) = E(Y − EY )2 = EY 2 − (EY )2.
The covariance term naturally appears in consideration of the variance of sums of
random variables Xj ∈ L2(Ω,F , P ), 1 ≤ j ≤ n, i.e.,

Var

⎛

⎝
n∑

j=1

Xj

⎞

⎠ =
n∑

j=1

Var(Xj) + 2
∑

1≤i<j≤n

Cov(Xi,Xj).

Note that if X1 and X2 are independent, then it follows from Theorem 2.2 that they
are uncorrelated; but the converse is easily shown to be false.

Let {Xt : t ∈ Λ} be a possibly infinite family of random maps on (Ω,F , P ), with
Xt a measurable map into (St,St), t ∈ Λ. We will say that {Xt : t ∈ Λ} is a family
of independent maps if every finite subfamily is a family of independent maps.
More precisely, for all n ≥ 1 and for every n-tuple (t1, t2, . . . , tn) of distinct points
in Λ, the maps Xt1 ,Xt2 , . . . , Xtn

are independent (in the sense of (2.4)). Given any
family of probability measures Qt (on (St,St)), t ∈ Λ, one can construct a probability
space (Ω,F , P ) on which are defined random maps Xt (t ∈ Λ) such that (i) Xt has
distribution Qt (t ∈ Λ) and (ii) {Xt : t ∈ Λ} is a family of independent maps. Indeed,
on the product space (S ≡ ×t∈Λ St,S ≡ ⊗t∈ΛSt) there exists a product probability
measure Q =

∏
t∈Λ Qt; and one may take Ω = S, F = S, P = Q, Xt(ω) = xt for

ω = (xt, t ∈ Λ) ∈ S. The existence of such product probability measures is postponed
to Chapter X.

Let us briefly return to notions of uncorrelated and independent random variables.
Although zero correlation is a weaker notion than statistical independence, using
approximation by simple functions one may obtain the following characterization of
independence (Exercise 12).

Proposition 2.3. A family of random maps {Xt : t ∈ Λ} (with Xt a measurable
map into (St,St)) is an independent family if and only if for every pair of disjoint finite
subsets Λ1,Λ2 of Λ, any random variable V1 ∈ L2(σ{Xt : t ∈ Λ1}) is uncorrelated
with any random variable V2 ∈ L2(σ{Xt : t ∈ Λ2})

The important special case of a sequence X1,X2, . . . of independent and iden-
tically distributed random maps is referred to as an i.i.d. sequence. An example
of the construction of an i.i.d. (coin tossing) sequence {Xn}∞n=1 of Bernoulli valued
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random variables with values in {0, 1} and defined on a probability space (Ω,F , P )
with prescribed distribution P (X1 = 1) = p = 1 − P (X1 = 0), for given p ∈ [0, 1],
is given in Exercise 1. The general existence of infinite product measures will also
follow as a special case of the Kolmogorov extension theorem proved in Chap-
ter X in the case that (S,S) has some extra topological structure; see Exercise 1
for a simple special case illustrating how one may exploit topological considerations.
Existence of an infinite-product probability measure will also be seen to follow in
full measure-theoretic generality from the Tulcea extension theorem discussed in
Chapter X.

A collection C of events A ∈ F is defined to be a set of independent events if
the set of indicator random variables {1A : A ∈ C} is an independent collection. The
notion of independence may also be equivalently defined in terms of sub-σ-fields of
F . Given (Ω,F , P ), a family {Ft : t ∈ Λ} of σ-fields (contained in F) is a family of
independent σ-fields if for every n-tuple of distinct indices (t1, t2, . . . , tn) in Λ one
has P (Ft1∩Ft2∩· · ·∩Ftn

) = P (Ft1)P (Ft2) · · ·P (Ftn
) for all Fti

∈ Fti
(1 ≤ i ≤ n); here

n is an arbitrary finite integer, n ≤ cardinality of Λ. Note that the independence of a
family {Xt : t ∈ Λ} of random maps is equivalent to the independence of the family
{σ(Xt) : t ∈ Λ} of σ-fields σ(Xt) ≡ {[Xt ∈ B] : B ∈ St} generated by Xt(t ∈ Λ),
where (St,St) is the image space of Xt. The σ-field formulation of independence can
be especially helpful in tracking independence, as illustrated by the following two
results (Exercise 11).

It is useful to note the following consequence of the π − λ theorem.

Proposition 2.4. If {Ct}t∈Λ is a family of π-systems such that P (Ct1 ∩ · · ·∩Ctn
) =∏n

i=1 P (Cti
), Cti

∈ Cti
, for any distinct ti ∈ Λ, n ≥ 2, then {σ(Ct)}t∈Λ is a family of

independent σ-fields.

The simple example in which Ω = {a, b, c, d} consists of four equally probable out-
comes and C1 = {{a, b}}, C2 = {{a, c}, {a, d}}, shows that the π-system requirement
is indispensable. For a more positive perspective, note that if A,B ∈ F are indepen-
dent events then it follows immediately that A,Bc and Ac, Bc are respective pairs of
independent events, since σ({A}) = {A,Ac, ∅,Ω} and similarly for σ({B}).

Proposition 2.5. Let X1,X2, . . . be a sequence of independent random maps with
values in measurable spaces (S1,S1), (S2,S2), . . . , respectively, and let n1 < n2 <
· · · be a sequence of positive integers. Suppose that Y1 = f1(X1, . . . , Xn1), Y2 =
f2(Xn1+1, . . . , Xn2), . . . , where f1, f2, . . . are Borel-measurable functions on the re-
spective product measure spaces S1×· · ·×Sn1 , Sn1+1×· · ·×Sn2 , . . . . Then Y1, Y2, . . .
is a sequence of independent random variables.

Often one also needs the notion of independence of (among) several families of
σ-fields or random maps. Let Λi, i ∈ I, be a family of index sets and, for each i ∈ I,
{Ft : t ∈ Λi} a collection of (sub) σ-fields of F . The families {Ft : t ∈ Λi}i∈I
are said to be independent (of each other) if the σ-fields Gi := σ({Ft : t ∈ Λi})
generated by {Ft : t ∈ Λi} (i.e., Gi is the smallest σ-field containing ∪t∈Λi

Ft, i ∈ I,
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also denoted by Gi =
∨

t∈Λi
Ft), are independent in the sense defined above. The

corresponding definition of independence of (among) families of random maps
{Xt : t ∈ Λi}i∈I can now be expressed in terms of Ft := σ(Xt), t ∈ Λi, i ∈ I.

We will conclude the discussion of independence with a return to considerations of
a converse to the Borel–Cantelli lemma I. Clearly, by taking An = A1∀n, P (An i.o.) =
P (A1) ∈ [0, 1]. So there is no general theorem without some restriction on how much
dependence exists among the events in the sequence. Write An eventually for all n
to denote the event [Ac

n i.o.]c, i.e., “An occurs for all but finitely many n.”

Lemma 1 (Borel–Cantelli II ). Let {An}∞n=1 be a sequence of independent events
in a probability space (Ω,F , P ). If

∑∞
n=1 P (An) =∞ then P (An i.o. ) = 1.

Proof. Consider the complementary event to get from continuity properties of P, in-
dependence of complements, and the simple bound 1−x ≤ e−x, that 1 ≥ P (An i.o.) =
1−P (Ac

n eventually for all n) = 1−P (∪∞
n=1∩∞

m=nAc
m) = 1−limn→∞

∏∞
m=n P (Ac

m) ≥
1− limn→∞ exp{−

∑∞
m=n P (Am)} = 1. �

Example 1. Suppose that {Xn}∞n=1 is an i.i.d. sequence of Bernoulli 0 or 1-valued
random variables with P (X1 = 1) = p > 0. Then P (Xn = 1 i.o.) = 1 is a quick and
easy consequence of Borel–Cantelli II.

We now come to another basic notion of fundamental importance in probability—
the notion of conditional probability and conditional expectation. Since we will need
to consider G-measurable “approximations” to random variables X, where G is a sub-
σ-field of F , it is useful to consider the spaces Lp(Ω,G, P ). A little thought reveals that
an element of this last (Banach) space is not in general an element of Lp(Ω,F , P ). For
if Z is G-measurable, then the set (equivalence class) Z̃ of all F-measurable random
variables each of which differs from Z on at most a P -null set may contain random
variables that are not G-measurable. However, if we denote by Lp(G) the set of all
elements of Lp(Ω,F , P ), each equivalent to some G-measurable Z with E|Z|p < ∞,
then Lp(G) becomes a closed linear subspace of Lp(Ω,F , P ). In particular, under
this convention, L2(G) is a closed linear subspace of L2 ≡ L2(F) ≡ L2(Ω,F , P ), for
every σ-field G ⊆ F . The first definition below exploits the Hilbert space structure
of L2 through the projection theorem (see Appendix C) to obtain the conditional
expectation of X, given G, as the orthogonal projection of X onto L2(G).

Definition 2.1. (First Definition of Conditional Expectation (on L2)). Let X ∈ L2

and G be a sub-σ-field of F . Then a conditional expectation of X given G,
denoted by E(X|G), is a G-measurable version of the orthogonal projection of X onto
L2(G).

Intuitively, E(X|G) is the best prediction of X (in the sense of least mean square
error), given information about the experiment coded by events that constitute G. In
the case G = σ{Y } is a random map with values in a measurable space (S,S), this
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makes E(X|G) a version of a Borel measurable function of Y. This is because of the
following more general fact.

Proposition 2.6. Let Z, Y1, . . . , Yk be real-valued random variables on a measurable
space (Ω,F). A random variable Z : Ω → R is σ(Y1, . . . , Yk)-measurable iff there is a
Borel measurable function g : R

k → R such that Z = g(Y1, . . . , Yk).

Proof. If Z = g(Y1, . . . , Yk), then σ(Y1, . . . , Yk)-measurability is clear, since for B ∈
B(R), [Z ∈ B] = [(Y1, . . . , Yk) ∈ g−1(B)] and g−1(B) ∈ B(Rk) for Borel measurable
g.

For the converse, suppose that Z is a simple σ(Y1, . . . , Yk)-measurable random
variable with distinct values z1, . . . , zm. Then [Z = zj ] ∈ σ(Y1, . . . , Yk) implies
that there is a Bj ∈ B(Rk) such that [Z = zj ] = [(Y1, . . . , Yk) ∈ Bj ] and
Z =

∑k
j=1 fj(Y1, . . . , Yk), where fj(y1, . . . , yk) = zj1Bj

(y1, . . . , yk), so that Z =

g(Y1, . . . , Yk) with g =
∑k

j=1 fj . More generally, one may use approximation by
simple functions to write Z(ω) = limn→∞ Zn(ω), for each ω ∈ Ω, where Zn is
a σ(Y1, . . . , Yk)-measurable simple function, Zn(ω) = gn(Y1(ω), . . . , Yk(ω)), n ≥ 1,
ω ∈ Ω. In particular, g(y1, . . . , yk) = limn→∞ gn(y1, . . . , yk) exists for each (y1, . . . , yk)
in the range of (Y1, . . . , Yk). But since each gn is zero off the range, the limit exists
and defines g on all of R

k. �

As simple examples, consider the sub-σ-fields G0 = {Ω,F}, σ(X), and F . (The
σ-field G0, or the one comprising only P -null sets and their complements, is called the
trivial σ-field). One has for all X ∈ L2,

E(X|G0) = E(X), E(X|σ(X)) = X, E(X|F) = X. (2.7)

The first of these follows from the facts that (i) the only G0-measurable functions are
constants, and (ii) E(X − C)2 is minimized, uniquely, by the constant C = EX. The
other two relations in (2.7) are obvious from the definition.

In other words, if X ∈ L2, then the orthogonal projection of X onto 1⊥ ≡ {Y ∈ L2 :
Y ⊥ 1} = {Y ∈ L2 : EY = 0} is given by X−E(X), or equivalently, the projection of
X onto the space of (equivalence classes of) constants is E(X). Thus in particular, X
and Y (∈ L2) are uncorrelated if and only if their projections onto 1⊥ are orthogonal.

In addition to the intuitive interpretation of E(X|G) as a best predictor of X, there
is also an interpretation based on smoothing in the sense of averages that extends
beyond L2. For example, as noted above, E(X|{∅,Ω}) = EX =

∫
Ω

X(ω)P (dω). In
particular, this may be viewed as a smoothing of the function X over all sample
points ω ∈ Ω. Similarly, for B ∈ F , 0 < P (B) < 1, for X ∈ L2, one may check that
(Exercise 17)

E(X|{∅, B,Bc,Ω}) =
(

1
P (B)

∫

B

XdP

)

1B +
(

1
P (Bc)

∫

Bc

XdP

)

1Bc . (2.8)
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It may be noted that the conditional expectation is well defined only up to a
G-measurable P -null set. That is, if X is a version of E(X|G), then so is any G-
measurable Y such that P (Y �= X) = 0. Thus the conditional expectation E(X|G)
is uniquely defined only as an element of L2(Ω,G, P ). We will, however, continue
to regard E(X|G) as a G-measurable version of the orthogonal projection of X onto
L2(G). The orthogonality condition is expressed by

∫

Ω

(X − E(X|G))Y dP = 0 ∀ Y ∈ L2(Ω,G, P ), (2.9)

or
∫

Ω

XY dP =
∫

Ω

E(X|G)Y dP ∀ Y ∈ L2(Ω,G, P ). (2.10)

In particular, with Y = 1G for G ∈ G in (2.10), one has
∫

G

XdP =
∫

G

E(X|G)dP ∀ G ∈ G. (2.11)

It is simple to check that for X ∈ L2(Ω,F , P ), (2.11) is equivalent to (2.9) (or (2.10)).
But (2.11) makes sense for all X ∈ L1(Ω,F , P ), which leads to the second, more gen-
eral, definition.

Definition 2.2. (Second Definition of Conditional Expectation (on L1)). Let X ∈
L1(Ω,F , P ), and let G be a sub-σ-field of F . A G-measurable random variable is said
to be a conditional expectation of X given G, denoted by E(X|G), if (2.11) holds.

That E(X|G) exists for X ∈ L1, and is well defined a.e., may be proved by letting
Xn ∈ L2 converge to X in L1 (i.e., ‖Xn−X‖1 → 0 as n →∞), applying (2.11) to Xn,
and letting n →∞. Note that L2 is dense in L1 (Exercise 26). Alternatively, one may
apply the Radon–Nikodym theorem to the finite (signed) measure ν(G) :=

∫
G

X dP on
(Ω,G), which is absolutely continuous with respect to P (on (Ω,G)), i.e., if P (G) = 0,
then ν(G) = 0. Hence there exists a G-measurable function, say E(X|G), such that
(2.11) holds. Viewed as an element of L1(Ω,G, P ), E(X|G) is unique.

There are variations on the requirement (2.11) in the definition of conditional expec-
tation that may be noted. In particular, a version of E(X|G) is uniquely determined by
the condition that it be a G-measurable random variable on Ω satisfying the equivalent
version

E{Xg} = E{E(X|G)g} ∀g ∈ Γ, (2.12)

of (2.11), where Γ is the set of indicator random variables {1B : B ∈ G}, or, by simple
function approximation, Γ may alternatively be taken to be (i) the collection of all
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bounded nonnegative G-measurable random variables g on Ω or (ii) the collection of
all bounded G measurable random variables g on Ω, for example, as convenient.

The following properties of E(X|G) are important and, for the most part, immediate
consequences of the definitions.

Theorem 2.7. Let (Ω,F , P ) be a probability space, L1 = L1(Ω,F , P ), G,D
sub-σ-fields of F , X,Y ∈ L1. Then the following hold almost surely (P ):

(a) E(X|{Ω, φ}) = E(X).
(b) E[E(X|G)] = E(X).
(c) If X is G-measurable, then E(X|G) = X.
(d) (Linearity). E(cX + dY |G) = cE(X|G) + dE(Y |G) for all constants c, d.
(e) (Order). If X ≤ Y a.s., then E(X|G) ≤ E(Y |G).
(f) (Smoothing). If D ⊆ G, then E[E(X|G)|D] = E(X|D).
(g) (Conditional Jensen’s Inequality). Let ψ be a convex function on an interval J such

that ψ has finite right- (or left-)hand derivative(s) at left (or right) endpoint(s)
of J if J is not open. If P (X ∈ J) = 1, and if ψ(X) ∈ L1, then

ψ(E(X|G)) ≤ E(ψ(X)|G). (2.13)

(h) (Contraction). For X ∈ Lp(Ω,F , P ), p ≥ 1, ‖E(X|G)‖p ≤ ‖X‖p ∀ p ≥ 1.
(i) (Convergences).

(i1) If Xn → X in Lp then E(Xn|G) → E(X|G) in Lp (p ≥ 1).
(i2) (Conditional Monotone Convergence) If 0 ≤ Xn ↑ X a.s., Xn and X ∈ L1

(n ≥ 1), then E(Xn|G) ↑ E(X|G) a.s. and E(Xn|G) → E(X|G) in L1.
(i3) (Conditional Dominated Convergence) If Xn → X a.s. and |Xn| ≤ Y ∈ L1,

then E(Xn|G) → E(X|G)a.s.

(j) If XY ∈ L1 and X is G-measurable, then E(XY |G) = XE(Y |G).
(k) If σ(X) and G are independent then E(X|G) = E(X).
(�) (Substitution Property) Let U, V be random maps into (S1,S1) and (S2,S2), re-

spectively. Let ψ be a measurable real-valued function on (S1 × S2,S1 ⊗ S2). If
U is G-measurable, σ(V ) and G are independent, and E|ψ(U, V )| < ∞, then one
has that E[ψ(U, V )|G] = h(U), where h(u) := Eψ(u, V ).

Proof. (a–f) follow easily from the definitions; in the case of (e) take G = [E(X|G) ≤
E(Y |G)] ∈ G in the definition (2.11) of conditional expectation with X replaced by
Y −X. For (g) use the line of support Lemma 2 from Chapter I. If J does not have a
right endpoint, take x0 = E(X|G), and m = ψ+(E(X|G)), where ψ+ is the right-hand
derivative of ψ, to get ψ(X) ≥ ψ(E(X|G))+ψ+(E(X|G))(X−E(X|G)). Now take the
conditional expectation, given G, and use (e) to get (g). Similarly, if J does not have
a left endpoint, take m = ψ−(E(X|G)). If J has both right and left endpoints, say
a < b, let m = ψ+(E(X|G)) on [E(X|G) �= b] and m = ψ−(E(X|G)) on [E(X|G) �= a].
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The contraction property (h) follows from this by taking ψ(x) = |x|p in (2.13), and
then taking expectations on both sides. The first convergence in (i) follows from (h)
applied to Xn − X. The second convergence in (i) follows from the order property
(e), and the monotone convergence theorem. The L1 convergence in (i3) follows from
(i1). For the a.s. convergence in (i3), let Zn := sup{|Xm − X| : m ≥ n}. Then
Zn ≤ |X|+ |Y |, |X|+ |Y | −Zn ↑ |X|+ |Y | a.s., so that by (i2), E(|X|+ |Y | −Zn|G) ↑
E(|X|+ |Y ||G) a.s. Hence E(Zn|G) ↓ 0 a.s., and by (e), |E(Xn|G)−E(X|G)| ≤ E(|Xn−
X||G) ≤ E(Zn|G) → 0 a.s.

To prove (j), first consider the case of bounded X ≥ 0. Let g ∈ Γ, the set of bounded,
nonnegative G-measurable random variables. Then Xg ∈ Γ, so that E(gE(XY |G)) =
E(gXY ) = E(gXE(Y |G)). Next, for X ≥ 0,X ∈ L1, apply this to Xn = X1[X≤n]

and use XY ∈ L1 and Lebesgue’s dominated convergence theorem to get for g ∈ Γ,
E(XY g) = limn→∞ E(XnY g) = limn→∞ E(E(XnY |G)g) = limn→∞ E(XnE(Y |G)g) =
E(XE(Y |G)g). For the general case write X = X+ −X− and use linearity (d).

To prove (k), again let g ∈ Γ be a bounded, nonnegative G-measurable random
variable. By independence of σ(X) and G, one has, using Theorem 2.2, E(gX) =
E(g)E(X) = E(gE(X)). Since the constant E(X) is G-measurable, indeed, constant
random variables are measurable with respect to any σ-field, (k) follows by the defining
property (2.12).

If one takes G = σ(U), then (�) follows by the Fubini–Tonelli theorem (if one uses
the change of variables formula to do integrations on the product space (S1×S2,S1⊗
S2, Q1 × Q2), where Q1, Q2 are the distributions of U and V , respectively). For the
general case, first consider ψ of the form ψ(u, v) =

∑n
i=1 fi(u)gi(v) with fi and gi

bounded and measurable (on (S1,S1) and (S2,S2), respectively), 1 ≤ i ≤ n. In this
case, for every G ∈ G, one has h(U) =

∑n
i=1 fi(U)Egi(V ), and

∫

G

ψ(U, V )dP ≡ E

(

1G

n∑

i=1

fi(U)gi(V )

)

=
n∑

i=1

E(1Gfi(U) · gi(V )) =
n∑

i=1

E(1Gfi(U)) · Egi(V )

= E

(

1G

{
n∑

i=1

fi(U) · Egi(V )

})

= E(1Gh(U)) ≡
∫

G

h(U)dP.

The case of arbitrary ψ(U, V ) ∈ L1(Ω,F , P ) follows by the convergence result (i),
noting that functions of the form

∑n
i=1 fi(u)gi(v) are dense in L1(S1×S2,S1⊗S2, Q1×

Q2) (Exercise 13). �

Specializing the notion of conditional expectation to indicator functions 1A of sets
A in F , one defines the conditional probability of A given G, denoted by P (A|G),
by

P (A|G) := E(1A|G), A ∈ F . (2.14)
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As before, P (A|G) is a (unique) element of L1(Ω,G, P ), and thus defined only up to
“equivalence” by the (second) definition (2.11). That is, there are in general different
versions of (2.14) differing from one another only on P -null sets in G. In particular,
the orthogonality condition may be expressed as follows:

P (A ∩G) =
∫

G

P (A|G)(ω)P (dω), ∀G ∈ G. (2.15)

It follows from properties (d), (e), (i) (linearity, order, and monotone convergence)
in Theorem 2.7 that (outside G-measurable P -null sets)

0 ≤ P (A|G) ≤ 1, P (φ|G) = 0, P (Ω|G) = 1, (2.16)

and that for every countable disjoint sequence {An}∞n=1 in F ,

P (∪nAn|G) =
∑

n

P (An|G). (2.17)

In other words, conditional probability, given G, has properties like those of a prob-
ability measure. Indeed, under certain conditions one may choose for each A ∈ F a
version of P (A|G) such that A → P (A|G)(ω) is a probability measure on (Ω,F) for
every ω ∈ Ω. However, such a probability measure may not exist in the full generality
in which conditional expectation is defined.1 The technical difficulty in constructing
the conditional probability measure (for each ω ∈ Ω) is that each one of the relations
in (2.16) and (2.17) holds outside a P -null set, and individual P -null sets may pile
up to a nonnull set. Such a probability measure, when it exists, is called a regular
conditional probability measure given G, and denoted by PG(A)(ω). It is more
generally available as a probability measure (for each ω outside a P -null set) on app-
ropriate sub-σ-fields of F (even if it is not a probability measure on all of F). An
important case occurs under the terminology of a regular conditional distribution
of a random map Z (on (Ω,F , P ) into some measurable space (S,S)).

Definition 2.3. Let Y be a random map on (Ω,F , P ) into (S,S). Let G be a sub-
σ-field of F . A regular conditional distribution of Y given G, is a function
(ω,C) → QG(ω,C) ≡ PG([Y ∈ C])(ω) on Ω× S such that

(i) ∀ C ∈ S, QG(·, C) = P ([Y ∈ C]|G) a.s. (and QG(·, C) is G-measurable),
(ii) ∀ ω ∈ Ω, C → QG(ω,C) is a probability measure on (S,S).

The following result provides a topological framework in which one can be assured
of a regular version of the conditional distribution of a random map.

1Counterexamples have been constructed, see for example, Halmos (1950), p. 210.
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Definition 2.4. A topological space S whose topology can be induced by a metric
is said to be metrizable. If S is metrizable as a complete and separable metric space
then S is referred to as a Polish space.

Theorem 2.8 (Doob–Blackwell 2). Let Y be a random map with values in a Pol-
ish space equipped with its Borel σ-field B(S). Then Y has a regular conditional
distribution QG .

For our purposes in this text such an existence theorem will be unnecessary, since
we will have an explicit expression of QG given directly when needed. Once QG is
given, one can calculate E(f(Y )|G) (for arbitrary functions f on (S,S) such that
f(Y ) ∈ L1) as

E(f(Y )|G) =
∫

f(y)QG(·, dy). (2.18)

This formula holds for f(y) = 1C(y) ∀ C ∈ S by definition. The general result follows
by approximation of f by simple functions, using linearity and convergence properties
of conditional expectation (and of corresponding properties of integrals with respect
to a probability measure QG(ω, ·)).

The conditional Jensen inequality (g) of Theorem 2.7 follows from the existence of
a regular conditional distribution of X, given G (see Theorem 2.8 and relation (2.18)).

The following simple examples tie up the classical concepts of conditional
probability with the more modern general framework presented above.

Example 2. Let B ∈ F be such that P (B) > 0, P (Bc) > 0. Let G = σ(B) ≡
{Ω, B,Bc, ∅}. Then for every A ∈ F one has

P (A|G)(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P (A|B) :=
P (A ∩B)

P (B)
, if ω ∈ B

P (A|Bc) :=
P (A ∩Bc)

P (Bc)
, if ω ∈ Bc.

(2.19)

More generally, let {Bn : n = 1, 2, . . .} be a countable disjoint sequence in F such
that ∪nBn = Ω, called a partition of Ω. Let G = σ({Bn : n ≥ 1}) (G is the class
of all unions of sets in this countable collection). Then for every A in F , assuming
P (Bn) > 0, one has

P (A|G)(ω) =
P (A ∩Bn)

P (Bn)
if ω ∈ Bn. (2.20)

2This result is not required for the developments in this text but is stated for sake of
completeness of the discussion. For a proof, see Breiman (1968), pp. 77–80.
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If P (Bn) = 0 then for ω ∈ Bn, define P (A|G)(ω) to be some constant, say c, chosen
arbitrarily (Exercise 17).

Remark 2.1. Let Y ∈ L1(Ω,F , P ) and suppose X is a random map on (Ω,F , P )
with values in (S,S). In view of Proposition 2.6, E(Y |σ(X)) is a function of X,
say f(X), and thus constant on each event [X = x], x ∈ S; i.e., E(Y |σ(X))(ω) =
f(X(ω)) = f(x), ω ∈ [X = x] = {ω ∈ Ω : X(ω) = x}. In particular, the notation
E(Y |X = x) may be made precise by defining E(Y |X = x) := f(x), x ∈ S.

Example 3. Let Ω = S1 × S2, F = S1 ⊗ S2, where (Si,Si) are measurable spaces
(i = 1, 2). Let µi be a σ-finite measure on (Si,Si), i = 1, 2, and let f be a probability
density function (pdf) with respect to µ = µ1×µ2 on S1×S2, i.e., f is a nonnegative
F-measurable function such that

∫
Ω

f dµ = 1. Let P (A) =
∫

A
f du, A ∈ F . Let

G = {B × S2 : B ∈ S1}. One may view P as the distribution of the joint coordinate
maps (X,Y ), where X(ω) = x, Y (ω) = y, for ω = (x, y) ∈ S1 × S2. The σ-field G is
the σ-field generated by the first coordinate map X. For every A = S1 ×C (C ∈ S2),
one has

P (A|G)(ω) =

∫
C

f(x, y)µ2(dy)
∫

S2
f(x, y)µ2(dy)

if ω = (x, y′) (∈ Ω). (2.21)

To check this, first note that by the Fubini–Tonelli theorem, the function Z defined
by the right-hand side of (2.21) is G-measurable. Secondly, for every nonnegative
bounded Borel measurable g on S1 one has

E(g(X)Z) =
∫

S1×S2

g(x)

∫
C

f(x, y)µ2(dy)
∫

S2
f(x, y)µ2(dy)

f(x, y)µ1(dx)µ2(dy)

=
∫

S1

g(x)

{∫

S2

∫
C

f(x, y)µ2(dy)
∫

S2
f(x, y)µ2(dy)

f(x, y)µ2(dy)

}

µ1(dx)

=
∫

S1

g(x)

{ ∫
C

f(x, y)µ2(dy)
∫

S2
f(x, y)µ2(dy)

·
∫

S2

f(x, y)µ2(dy)

}

µ1(dx)

=
∫

S1

g(x)
{∫

C

f(x, y)µ2(dy)
}

µ1(dx) = E(1S1×Cg(X)) = E(g(X)1A).

The function f(x, y)/
∫

S2
f(x, y)µ2(dy) is called the conditional pdf of Y given

X = x, and denoted by f(y|x); i.e. the conditional pdf is simply the normalization
of the joint pdf to a probability density by dividing by the (marginal) pdf of X. Let
A ∈ F = S1 ⊗ S2. By the same calculations using Fubini–Tonelli one more generally
obtains (Exercise 17)

P (A|G)(ω) =
∫

Ax

f(y|x)µ2(dy) ≡
∫

Ax
f(x, y)µ2(dy)

∫
S2

f(x, y)µ2(dy)
if ω ≡ (x, y′), (2.22)
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where Ax = {y ∈ S2 : (x, y) ∈ A}.
One may change the perspective here a little and let (Ω,F , P ) be any probability

space on which are defined two maps X and Y with values in (S1,S1) and (S2,S2),
respectively. If the (joint) distribution of (X,Y ) on (S1 × S2,S1 ⊗ S2) has a pdf f
with respect to a product measure µ1 × µ2, where µi is a σ-finite measure on (S,Si),
i = 1, 2, then for G = σ(X), the (regular) conditional distribution of Y given G (or
“given X”) is given by

P ([Y ∈ C]|G)(ω) =

∫
C

f(x, y)µ2(dy)
∫

S2
f(x, y)µ2(dy)

if X(ω) = x,

i.e., if ω ∈ [X = x] ≡ X−1{x}, x ∈ S1. Note that the conditional probability is
constant on [X = x] as required for σ(X)-measurability; cf Proposition 2.6. The
earlier model Ω = S1 × S2, F = S1 ⊗ S2, dP = f dµ is a canonical model for this
calculation.

Example 4 (Markov Property for General Random Walks on R
k). Let {Zn : n ≥

1} be a sequence of independent and identically distributed (i.i.d.) k-dimensional
random vectors defined on a probability space (Ω,F , P ). Let µ denote the distribution
of Z1 (hence of each Zn). For arbitrary x ∈ R

k, a random walk starting at x with
step-size distribution µ is defined by the sequence Sx

n := x+Z1 + · · ·+Zn (n ≥ 1),
Sx

0 = x.
For notational simplicity we will restrict to the case of k = 1 dimensional random

walks, however precisely the same calculations are easily seen to hold for arbitrary
k ≥ 1 (Exercise 25). Let Qx denote the distribution of {Sx

n := n ≥ 0} on the product
space (R∞,B∞). Here B∞ is the σ-field generated by cylinder sets of the form C =
Bm × R

∞ := {y = (y0, y1, . . .) ∈ R
∞; (y0, y1, . . . , ym) ∈ Bm} with Bm a Borel subset

of R
m+1 (m = 0, 1, 2, . . .). Note that Qx(Bm × R

∞) = P ((Sx
0 , Sx

1 . . . , Sx
m) ∈ Bm),

so that Qx(Bm × R
∞) may be expressed in terms of the m-fold product measure

µ × µ × · · · × µ, which is the distribution of (Z1, Z2, . . . , Zm). For our illustration,
let Gn = σ({Sx

j : 0 ≤ j ≤ n}) = σ({Z1, Z2, . . . , Zn}) (n ≥ 1). We would like to
establish the following property: The conditional distribution of the “after-n
process” Sx+

n := {Sx
n+m : m = 0, 1, 2, . . .} on (R∞,B∞) given Gn is Qy|y=Sx

n
≡ QSx

n
.

In other words, for the random walk {Sx
n : n ≥ 0}, the conditional distribution of the

future evolution defined by Sx+
n given the past states Sx

0 , . . . , Sx
n−1 and present state

Sx
n depends solely on the present state Sx

n, namely QSx
n

i.e., it is given by the regular
conditional distribution QGn(ω, ·) = QSx

n(ω)(·).

Theorem 2.9 (Markov Property). For every n ≥ 1, the conditional distribution of
Sx+

n given σ(Sx
0 , . . . , Sx

n) is a function only of Sx
n, namely, QSx

n
.
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Proof. To prove the italicized statement above and hence the theorem, choose a
cylinder set C ∈ B∞. That is, C = Bm ×R

∞ for some m ≥ 0. We want to show that

P ([Sx+
n ∈ C]|Gn) ≡ E(1[Sx+

n ∈C]|Gn) = QSx
n
(C). (2.23)

Now [Sx+
n ∈ C] = [(Sx

n, Sx
n + Zn+1, . . . , S

x
n + Zn+1 + · · ·+ Zn+m) ∈ Bm], so that one

may write

E

(
1[Sx+

n ∈C]|Gn

)
= E(ψ(U, V )|Gn),

where U = Sx
n, V = (Zn+1, Zn+2, . . . , Zn+m) and, for u ∈ R and v ∈ R

m, ψ(u, v) =
1Bm

(u, u + v1, u + v1 + v2, . . . , u + v1 + · · ·+ vm). Since Sx
n is Gn-measurable and V is

independent of Gn, it follows from property (�) of Theorem 2.7 that E(ψ(U, V )|Gn) =
h(Sx

n), where h(u) = Eψ(u, V ). But

Eψ(u, V ) = P ((u, u + Zn+1, u + Zn+1 + Zn+2, . . . , u + Zn+1 + · · ·+ Zn+m) ∈ Bm)

= P ((u, u + Z1, u + Z1 + Z2, . . . , u + Z1 + · · ·+ Zm) ∈ Bm)

= P ((Su
0 , Su

1 , . . . , Su
m) ∈ Bm) = Qu(C).

Therefore, P ([Sx+
n ∈ C]|Gn) = (Qu(C))u=Sx

n
= QSx

n
(C). We have now shown that

the class L of sets C ∈ B∞ for which “P ([Sx+
n ∈ C]|Gn) = QSx

n
(C) a.s.” holds contains

the class C of all cylinder sets. Since this class is a λ-system (see the convergence
property (i) of Theorem 2.7) containing the π-system of cylinder sets that generate
B∞, it follows by the π − λ theorem that L = B∞. �

EXERCISES

Exercise Set II

1. Let Ω = {0, 1}∞ be the space of infinite binary 0-1 sequences, and let F0 denote the
field of finite unions of sets of the form An(ε1, . . . , εn) = {ω = (ω1, ω2, . . .) ∈ Ω :
ω1 = ε1, . . . , ωn = εn} for arbitrary εi ∈ {0, 1}, 1 ≤ i ≤ n, n ≥ 1. Fix p ∈ [0, 1]

and define Pp(An(ε1, . . . , εn)) = p

∑n

i=1
εi(1 − p)

n−
∑n

i=1
εi . (i) Show that the natural

finitely additive extension of Pp to F0 defines a measure on the field F0. [Hint : By
Tychonov’s theorem from topology, the set Ω is compact for the product topology, see
Appendix B. Check that sets C ∈ F0 are both open and closed for the product topology,
so that by compactness, any countable disjoint union belonging to F0 must be a finite
union.] (ii) Show that Pp has a unique extension to σ(F0). This probability Pp defines
the infinite product probability, also denoted by (pδ1 + (1 − p)δ0)

∞. [Hint : Apply the
Carathéodory extension theorem.] (iii) Show that the coordinate projections Xn(ω) =
ωn, ω = (ω1, ω2, . . .) ∈ Ω, n ≥ 1, define an i.i.d. sequence of (coin tossing) Bernoulli 0 or
1-valued random variables.

2. (i) Consider three independent tosses of a balanced coin and let Ai denote the event that
the outcomes of the ith and (i +1)st tosses match, for i = 1, 2. Let A3 be the event that



34 INDEPENDENCE, CONDITIONAL EXPECTATION

the outcomes of the third and first match. Show that A1, A2, A3 are pairwise independent
but not independent. (ii) Suppose that X1, . . . , Xn are independent random maps defined
on a probability space (Ω,F , P ). Show that the product measure Q = P ◦(X1, . . . , Xn)−1

is given by Q1×· · ·×Qn, where Qi = P ◦X−1
i . Also show that any subset of {X1, . . . , Xn}

comprises independent random maps.

3. Suppose that X1, X2, . . . is a sequence of independent random variables on (Ω,F , P ).
Show that the two families {X1, X3, X5, . . .} and {X2, X4, X6, . . .} are independent.

4. Suppose X1,X2 are independent k-dimensional random vectors having distributions
Q1, Q2, respectively. Prove that the distribution of X1 + X2 is given by the convolution
Q1 ∗Q2 defined by Q1 ∗Q2(B) =

∫
Rk Q1(B − x)Q2(dx), where B − x := {y − x : y ∈ B}

for Borel sets B ⊆ R
k.

5. Let X1, X2, . . . , Xn be i.i.d. random variables defined on (Ω,F , P ) and having (common)
distribution Q.
(i) Suppose Q(dx) = λe−λx1[0,∞)(x)dx, for some λ > 0, referred to as the expo-

nential distribution with parameter λ. Show that X1 + · · · + Xn has distribution

Q∗n(dx) = λn xn−1

(n−1)!
e−λx1[0,∞)(x)dx. This latter distribution is referred to as a

gamma distribution with parameters n, λ.

(ii) Suppose that Q(dx) = 1√
2πσ2 e

− (x−µ)2

σ2 dx; referred to as the Gaussian or normal

distribution with parameters µ ∈ R, σ2 > 0. Show that X1 + · · ·+ Xn has a normal
distribution with parameters nµ and nσ2.

(iii) Let X be a standard normal N(0, 1) random variable. Find the distribution Q of

X2, and compute Q∗2. [Hint :
∫ 1

0
u− 1

2 (1 − u)−
1
2 du = π.]

6. Suppose that X1, X2, . . . is a sequence of random variables on (Ω,F , P ) each having the
same distribution Q = P ◦ X−1

n . (i) Show that if E|X1| < ∞ then P (|Xn| > n i.o.) = 0.
[Hint : First use (2.5) to get E|X1| =

∫ ∞
0

P (|X1| > x)dx, and then apply Borel–Cantelli.]
(ii) Assume that X1, X2, . . . are also independent with E|Xn| = ∞. Show that P (|Xn| >
n i.o.) = 1.

7. Let (Ω,F , P ) be an arbitrary probability space and suppose A1, A2, . . . is a sequence of
independent events in F with P (An) < 1, ∀n. Suppose P (∪∞

n=1An) = 1. (i) Show that
P (An i.o.) = 1. (ii) Give an example to show that P (An) < 1 ∀n is necessary in (i).

8. Let (Ω,F , P ) be an arbitrary probability space and suppose {An}∞n=1 is a sequence of
independent events in F such that

∑∞
n=1

P (An) ≥ 2. Let E denote the event that none
of the An’s occur for n ≥ 1. (i) Show that E ∈ F .
(ii) Show that P (E) ≤ 1

e2 . [Hint : 1 − x ≤ e−x, x ≥ 0.]

9. Suppose that X1, X2, . . . is an i.i.d. sequence of Bernoulli 0 or 1-valued random variables
with P (Xn = 1) = p, P (Xn = 0) = q = 1 − p. Fix r ≥ 1 and let Rn := [Xn = 1, Xn+1 =
1, . . . , Xn+r−1 = 1] be the event of a run of 1’s of length at least r starting from n.
(i) Show that P (Rn i.o.) = 1 if 0 < p ≤ 1.
(ii) Suppose r is allowed to grow with n, say rn = [θ log2 n] in defining the event Rn;

here [x] denotes the largest integer not exceeding x. In the case of a balanced coin
(p = 1/2), show that if 0 < θ ≤ 1 then P (Rn i.o.) = 1.[Hint : Consider a subsequence
Rnk = [Xnk = 1, . . . , Xnk+rnk

−1 = 1] with n1 sufficiently large that θ log2 n1 > 1,
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and nk+1 = nk + rnk , k ≥ 1. Compare
∑∞

k=1
n−θ

k ≡
∑∞

k=1

n−θ
k

nk+1−nk
(nk+1 − nk) to

an integral
∫ ∞

n1
f(x)dx for an appropriately selected function f .]

10. Let X1, X2 be random maps on (Ω,F , P ) taking values in the measurable spaces
(S1,S1), (S2,S2), respectively. Show that the joint distribution of (X1, X2) on (S1 ×
S2,S1 ⊗S2) is product measure if and only if σ(X1) and σ(X2) are independent σ-fields.

11. Let X1, X2 be random maps on (Ω,F , P ). (i) Show that σ(X1) and σ(X2) are inde-
pendent if and only if E[g(X1)h(X2)] = Eg(X1)Eh(X2) for all bounded measurable
functions g, h on the respective image spaces. (ii) Prove Proposition 2.5. [Hint : Use (i)
and induction.]

12. This exercise is in reference to Proposition 2.3.
(i) Let V1 take values ±1 with probability 1/4 each, and 0 with probability 1/2. Let

V2 = V 2
1 . Show that Cov(V1, V2) = 0, though they are not independent.

(ii) Show that random maps V1, V2 are independent if and only if f(V1) and g(V2) are
uncorrelated for all pairs of real-valued Borel-measurable functions f, g such that
f(V1), g(V2) ∈ L2.

(iii) Show that a family of random maps {Xt ∈ Λ} (with Xt, a measurable map into
(St,St)) is an independent family if and only if for every pair of disjoint finite
subsets Λ1, Λ2 of Λ, any random variable V1 ∈ L2(σ{Xt : t ∈ Λ1}) is uncorrelated
with any random variable V2 ∈ L2(σ{Xtt ∈ Λ2}).

13. Let C denote the collection of functions of the form
∑n

i=1
fi(u)gi(v), (u, v) ∈ S1 × S2,

where fi, gi, 1 ≤ i ≤ n, are bounded Borel-measurable functions on the probability
spaces (S1,S1, Q1) and (S2,S2, Q2), respectively. Show that C is dense in L1(S1×S2,S1⊗
S2, Q1×Q2). [Hint : For A ∈ S1⊗S2, use the Carathéodory formula (2.3) to approximate
h = 1A in L1. The rest follows by the method of approximation by simple functions.]

14. Give a proof of Proposition 2.4.

15. Suppose that X, Y are independent random variables on (Ω,F , P ). Assume that there
is a number a < 1 such that P (X ≤ a) = 1. Also assume that Y is exponentially
distributed with mean one. Calculate E[eXY |σ(X)].

16. Suppose that (X, Y ) is uniformly distributed on the unit disk D = {(x, y) : x2 +y2 ≤ 1},
i.e., has constant pdf on D. (i) Calculate the (marginal) distribution of X. (ii) Calculate
the conditional distribution of Y given σ(X). (iii) Calculate E(Y 2|σ(X)).

17. (i) Give a proof of (2.8) using the second definition of conditional expectation. [Hint :
The only measurable random variables with respect to {Ω, ∅, B, Bc} are those of the
form c1B + d1Bc , for c, d ∈ R.] (ii) Prove (2.20), (2.22).

18. Suppose that X, Z are independent random variables with standard normal distribution.
Let Y = X+bZ; i.e. X with an independent additive noise term bZ. Calculate E[X|σ(Y )].

19. Let X1, . . . , Xn be an i.i.d. sequence of random variables on (Ω,F , P ) and let Sn =
X1 + · · · + Xn. Assume E|X1| < ∞. Show that E(Xj |σ(Sn)) = E(X1|σ(Sn)). [Hint : Use
Fubini–Tonelli.] Calculate E(Xj |σ(Sn)). [Hint : Add up and use properties of conditional
expectation.]

20. Suppose that Y1, . . . , Yn are i.i.d. exponentially distributed with mean one. Let Sn =∑n

j=1
Yj .
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(i) Calculate E(Y 2
1 |Sn). [Hint : Calculate the joint pdf of (Y1, Y2+· · ·+Yn) and then that

of (Y1, Sn) by a change of variable under the linear transformation (y, s) �→ (y, y+s).]
(ii) Calculate E(Y1Y2|Sn). hintConsider S2

n = E(S2
n|Sn) along with the previous exercise.

(iii) Make the above calculations in the case that Y1, Y2, . . . Yn are i.i.d. with standard
normal distributions.

21. (Conditional Chebyshev-type) For X ∈ Lp, p ≥ 1, prove for λ > 0, P (|X| > λ|G) ≤
E(|X|p|G)/λp a.s.

22. (Conditional Cauchy–Schwarz ) For X, Y ∈L2 show that |E(XY |G)|2≤ E(X2|G)E(Y 2|G).

23. Let Y be an exponentially distributed random variable on (Ω,F , P ). Fix a > 0.
(i) Calculate E(Y |σ(Y ∧a)), where Y ∧a := min{Y, a}. [Hint: [Y < a] = [Y ∧a < a]. Let

g be a bounded Borel-measurable function and either make and verify an intuitive
guess for E(Y |σ(Y ∧a)) (based on “lack of memory” of the exponential distribution)
or calculate E(Y g(Y ∧ a)) by integration by parts.]

(ii) Determine the regular conditional distribution of Y given σ(Y ∧ a).

24. Let U, V be independent random maps with values in measurable spaces (S1,S1) and
(S2,S2), respectively. Let ϕ(u, v) be a measurable map on (S1 × S2,S1 ⊗ S2) into a
measurable space (S,S). Show that a regular conditional distribution of ϕ(U, V ), given
σ(V ), is given by QV , where Qv is the distribution of ϕ(U, v). [Hint : Use the Fubini–
Tonelli theorem or Theorem 2.7(l).]

25. Prove the Markov property for k-dimensional random walks with k ≥ 2.

26. Let (Ω,F , P ) be a probability space. Show that the set of (equivalence classes of) simple
functions is dense in Lp ≡ Lp(Ω,F , P ), p ≥ 1.



C H A P T E R III

Martingales and Stopping Times

The notion of “martingale” has proven to be among the most powerful ideas to emerge
in probability in the last century. In this section some basic foundations are presented.
A more comprehensive treatment of the theory and its applications is provided in
our text on stochastic processes.1 For the prototypical illustration of the martingale
property, let Z1, Z2, . . . be an i.i.d. sequence of integrable random variables and let
Xn = Z1 + · · ·+ Zn, n ≥ 1. If EZ1 = 0 then one clearly has

E(Xn+1|Fn) = Xn, n ≥ 1,

where Fn := σ(X1, . . . , Xn).

Definition 3.1 (First Definition of Martingale). A sequence of integrable random
variables {Xn : n ≥ 1} on a probability space (Ω,F , P ) is said to be a martingale
if, writing Fn := σ(X1,X2, . . . , Xn),

E(Xn+1|Fn) = Xn a.s. (n ≥ 1). (3.1)

This definition extends to any (finite or infinite) family of integrable random variables
{Xt : t ∈ T}, where T is a linearly ordered set: Let Ft = σ(Xs : s ≤ t). Then

1Bhattacharya, R., and E. Waymire (2007): Theory and Applications of Stochastic
Processes, Springer Graduate Texts in Mathematics.
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{Xt : t ∈ T} is a martingale if

E(Xt|Fs) = Xs a.s ∀ s < t (s, t ∈ T ). (3.2)

In the previous case of a sequence {Xn : n ≥ 1}, as one can see by taking successive
conditional expectations E(Xn|Fm) = E[E(Xn|Fn+1)|Fm] = E(Xn+1|Fm) = · · · =
E(Xm+1|Fm) = Xm, (3.1) is equivalent to

E(Xn|Fm) = Xm a.s. ∀ m < n. (3.3)

Thus, (3.1) is a special case of (3.2). Most commonly, T = N or Z
+, or T = [0,∞).

Note that if {Xt : t ∈ T} is a martingale, one has the constant expectations property:
EXt = EXs ∀ s, t ∈ T.

Remark 3.1. Let {Xn : n ≥ 1} be a martingale sequence. Define its associated
martingale difference sequence by Z1 := X1, Zn+1 := Xn+1 −Xn (n ≥ 1). Note
that for Xn ∈ L2(Ω,F , P ), n ≥ 1, the martingale differences are uncorrelated. In fact,
for Xn ∈ L1(Ω,F , P ), n ≥ 1, one has

EZn+1f(X1,X2, . . . , Xn) = E[E(Zn+1f(X1, . . . , Xn)|Fn)]

= E[f(X1, . . . , Xn)E(Zn+1|Fn)] = 0 (3.4)

for all bounded Fn measurable functions f(X1, . . . , Xn). If Xn ∈ L2(Ω,F , P ) ∀ n ≥ 1,
then (3.1) implies, and is equivalent to, the fact that Zn+1 ≡ Xn+1 − Xn is or-
thogonal to L2(Ω,Fn, P ). It is interesting to compare this orthogonality to that
of independence of Zn+1 and {Zm : m ≤ n}. Recall that Zn+1 is independent of
{Zm : 1 ≤ m ≤ n} or, equivalently, of Fn = σ(X1, . . . , Xn) if and only if g(Zn+1)
is orthogonal to L2(Ω,Fn, P ) for all bounded measurable g such that Eg(Zn+1) = 0.
Thus independence translates as 0 = E{[g(Zn+1) − Eg(Zn+1)] · f(X1, . . . , Xn)} =
E{g(Zn+1) ·f(X1, . . . , Xn)}−Eg(Zn+1) ·Ef(X1, . . . , Xn), for all bounded measurable
g on R and for all bounded measurable f on R

n.

Example 1 (Independent Increment Process). Let {Zn : n ≥ 1} be an independent
sequence having zero means, and X0 an integrable random variable independent of
{Zn : n ≥ 1}. Then

X0, Xn := X0 + Z1 + · · ·+ Zn ≡ Xn−1 + Zn (n ≥ 1) (3.5)

is a martingale sequence.

Definition 3.2. If with Fn = σ(X1, . . . , Xn) one has inequality in place of (3.1),
namely,

E(Xn+1|Fn) ≥ Xn a.s. ∀n ≥ 1, (3.6)
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then {Xn : n ≥ 1} is said to be a submartingale. More generally, if the index set T is
as in (3.2), then {Xt : t ∈ T} is a submartingale if, with Ft as in Definition 3.2,

E(Xt|Fs) ≥ Xs ∀ s < t (s, t ∈ T ). (3.7)

If instead of ≥, one has ≤ in (3.7) ((3.8)), the process {Xn : n ≥ 1} ({Xt : t ∈ T}) is
said to be a supermartingale.

In Example 1, if EZk ≥ 0 ∀ k, then the sequence {Xn : n ≥ 1} of partial sums of
independent random variables is a submartingale. If EZk ≤ 0 for all k, then {Xn :
n ≥ 1} is a supermartingale. In Example 3, it follows from ±Xn+1 ≤ |Xn+1| taking
conditional expectations, that the sequence {Yn ≡ |Xn| : n ≥ 1} is a submartingale.
The following proposition provides an important generalization of this latter example.

Proposition 3.1. (a) If {Xn : n ≥ 1} is a martingale and ϕ(Xn) is a convex and
integrable function of Xn, then {ϕ(Xn) : n ≥ 1} is a submartingale. (b) If {Xn} is a
submartingale, and ϕ(Xn) is a convex and nondecreasing integrable function of Xn,
then {ϕ(Xn) : n ≥ 1} is a submartingale.

Proof. The proof is obtained by an application of the conditional Jensen’s inequality
given in Theorem 2.7. In particular, for (a) one has

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) = ϕ(Xn). (3.8)

Now take the conditional expectation of both sides with respect to Gn ≡
σ(ϕ(X1), . . . , ϕ(Xn)) ⊆ Fn, to get the martingale property of {ϕ(Xn) : n ≥ 1}. Sim-
ilarly, for (b), for convex and nondecreasing ϕ one has in the case of a submartingale
that

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn), (3.9)

and taking conditional expectation in (3.9), given Gn, the desired submartingale
property follows. �

Proposition 3.1 immediately extends to martingales and submartingales indexed by
an arbitrary linearly ordered set T .

Example 2. (a) If {Xt : t ∈ T} is a martingale, E|Xt|p <∞ (t ∈ T ) for some p ≥ 1,
then {|Xt|p : t ∈ T} is a submartingale. (b) If {Xt : t ∈ T} is a submartingale, then for
every real c, {Yt := max(Xt, c)} is a submartingale. In particular, {X+

t := max(Xt, 0)}
is a submartingale.

Remark 3.2. It may be noted that in (3.8), (3.9), the σ-field Fn is σ(X1, . . . , Xn),
and not σ(ϕ(X1), . . . , ϕ(Xn)), as seems to be required by the first definitions in (3.1),
(3.6). It is, however, more convenient to give the definition of a martingale (or
a submartingale) with respect to a filtration {Fn} for which (3.1) holds (or
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respectively, (3.6) holds) assuming at the outset that Xn is Fn-measurable (n ≥
1) (or, as one often says, {Xn} is {Fn}-adapted). One refers to this sequence as
an {Fn}-martingale (respectively {Fn}-submartingale). An important example
of Fn larger than σ(X1, . . . , Xn) is given by “adding independent information” via
Fn = σ(X1, . . . , Xn)∨G, where G is a σ-field independent of σ(X1,X2, . . .), and G1∨G2

denotes the smallest σ-field containing G1 ∪ G2. We formalize this with the following
definition; also see Exercise 10.

Definition 3.3. (Second General Definition) Let T be an arbitrary linearly ordered
set and suppose {Xt : t ∈ T} is a stochastic process with (integrable) values in R

and defined on a probability space (Ω,F , P ). Let {Ft : t ∈ T} be a nondecreasing
collection of sub-σ-fields of F , referred to as a filtration i.e., Fs ⊆ Ft if s ≤ t. Assume
that for each t ∈ T , Xt is adapted to Ft in the sense that Xt is Ft measurable. We say
that {Xt : t ∈ T} is a martingale, respectively submartingale, supermartingale,
with respect to the filtration {Ft} if E[Xt|Fs] = Xs, ∀s, t ∈ T, s ≤ t, respectively
≥ Xs,∀s, t ∈ T, s ≤ t, or≤ Xs ∀s, t ∈ T, s ≤ t.

Example 3. Let X be an integrable random variable on (Ω,F , P ) and let {Fn : n ≥
1} be a filtration of F . One may check that the stochastic process defined by

Xn := E(X|Fn) (n ≥ 1) (3.10)

is an {Fn}-martingale.

Note that for submartingales the expected values are nondecreasing, while those of
supermartingales are nonincreasing. Of course, martingales continue to have constant
expected values under this more general definition.

Theorem 3.2. (Doob’s Maximal Inequality). Let {X1,X2, . . . , Xn} be an {Fk : 1 ≤
k ≤ n}-martingale, or a nonnegative submartingale, and E|Xn|p <∞ for some p ≥ 1.
Then, for all λ > 0, Mn := max{|X1|, . . . , |Xn|} satisfies

P (Mn ≥ λ) ≤ 1
λp

∫

[Mn≥λ]

|Xn|pdP ≤ 1
λp

E|Xn|p. (3.11)

Proof. Let A1 = [|X1| ≥ λ], Ak = [|X1| < λ, . . . , |Xk−1| < λ, |Xk| ≥ λ] (2 ≤ k ≤ n).
Then Ak ∈ Fk and [Ak : 1 ≤ k ≤ n] is a (disjoint) partition of [Mn ≥ λ]. Therefore,

P (Mn ≥ λ) =
n∑

k=1

P (Ak) ≤
n∑

k=1

1
λp

E(1Ak
|Xk|p) ≤

n∑

k=1

1
λp

E(1Ak
|Xn|p)

=
1
λp

∫

[Mn≥λ]

|Xn|pdP ≤ E|Xn|p
λp

. �

Remark 3.3. By an obvious change in the definition of Ak(k = 1, . . . , n), one obtains
(3.11) with strict inequality Mn > λ on both sides of the asserted inequality.
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Remark 3.4. The classical Kolmogorov maximal inequality for sums of i.i.d. mean
zero, square-integrable random variables is a special case of Doob’s maximal inequality
obtained by taking p = 2 for the martingales of Example 1 having square-integrable
increments.

Corollary 3.3. Let {X1,X2, . . . , Xn} be an {Fk : 1 ≤ k ≤ n}-martingale such that
EX2

n < ∞. Then EM2
n ≤ 4EX2

n.

Proof. A standard application of the Fubini–Tonelli theorem (see (2.5)) provides the
second moment formula

EM2
n = 2

∫ ∞

0

λP (Mn > λ)dλ. (3.12)

Applying the first inequality in (3.11), then another application of the Fubini–Tonelli
theorem, and finally the Cauchy–Schwarz inequality, it follows that

EM2
n ≤ 2

∫ ∞

0

E
(
|Xn|1[Mn≥λ]

)
dλ = 2E (|Xn|Mn)

≤ 2
√

EX2
n

√
EM2

n.

Divide both sides by
√

EM2
n to complete the proof. �

Corollary 3.4. Let {Xt : t ∈ [0, T ]} be a right-continuous nonnegative {Ft}-
submartingale with E|XT |p < ∞ for some p ≥ 1. Then MT := sup{Xs : 0 ≤ s ≤ T}
is FT -measurable and, for all λ > 0,

P (MT > λ) ≤ 1
λp

∫

[MT >λ]

Xp
T dP ≤ 1

λp
EXp

T . (3.13)

Proof. Consider the nonnegative submartingale {X0,XT2−n , . . . , XTi2−n , . . . , XT },
for each n = 1, 2, . . . , and let Mn := max{XiT2−n : 0 ≤ i ≤ 2n}. For λ > 0, [Mn >
λ] ↑ [MT > λ] as n ↑ ∞. In particular, MT is FT -measurable. By Theorem 3.2,

P (Mn > λ) ≤ 1
λp

∫

[Mn>λ]

Xp
T dP ≤ 1

λp
EXp

T .

Letting n ↑ ∞, (3.13) is obtained. �

We finally come to the notion of stopping times, which provide a powerful
probabilistic tool to analyze processes by viewing them at appropriate random times.

Definition 3.4. Let {Ft : t ∈ T} be a filtration on a probability space (Ω,F , P ),
with T a linearly ordered index set to which one may adjoin, if necessary, a point
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‘∞’ as the largest point of T ∪ {∞}. A random variable τ : Ω → T ∪ {∞} is an
{Ft}-stopping time if [τ ≤ t] ∈ Ft ∀ t ∈ T. If [τ < t] ∈ Ft for all t ∈ T then τ is
called an optional time.

Most commonly, T in this definition is N or Z
+, or [0,∞), and τ is related to an

{Ft}-adapted process {Xt : t ∈ T}.
The intuitive idea of τ as a stopping-time strategy is that to “stop by time t, or

not,” according to τ , is determined by the knowledge of the past up to time t, and
does not require “a peek into the future.”

Example 4. Let {Xt : t ∈ T} be an {Ft}-adapted process with values in a mea-
surable space (S,S), with a linearly ordered index set. (a) If T = N or Z

+, then for
every B ∈ S,

τB := inf{t ≥ 0 : Xt ∈ B} (3.14)

is an {Ft}-stopping time. (b) If T = R+ ≡ [0,∞), S is a metric space S = B(S), and
B is closed, t �→ Xt is continuous, then τB is an {Ft}-stopping time. (c) If T = R+, S
is a topological space, t �→ Xt is right-continuous, and B is open, then [τB < t] ∈ Ft

for all t ≥ 0, and hence τB is an optional time.

We leave the proofs of (a)–(c) as Exercise 2. Note that (b), (c) imply that under
the hypothesis of (b), τB is an optional time if B is open or closed.

Definition 3.5. Let {Ft : t ∈ T} be a filtration on (Ω,F). Suppose that τ is a {Ft}-
stopping time. The pre-τ σ-field Fτ comprises all A ∈ F such that A ∩ [τ ≤ t] ∈ Ft

for all t ∈ T.

Heuristically, Fτ comprises events determined by information available only up to
time τ. For example, if T is discrete with elements t1 < t2 < · · · , and Ft = σ(Xs : 0 ≤
s ≤ t) ⊆ F ,∀t, where {Xt : t ∈ T} is a process with values in some measurable space
(S,S), then Fτ = σ(Xτ∧t : t ≥ 0); (Exercise 8). The stochastic process {Xτ∧t : t ≥ 0}
is referred to as the stopped process.

If τ1, τ2 are two {Ft}-stopping times and τ1 ≤ τ2, then it is simple to check that
(Exercise 1)

Fτ1 ⊆ Fτ2 . (3.15)

Suppose {Xt} is an {Ft}-adapted process with values in a measurable space (S,S),
and τ is an {Ft}-stopping time. For many purposes the following notion of adapted
joint measurability of (t, ω) �→ Xt(ω) is important.

Definition 3.6. Let T = [0,∞) or T = [0, t0] for some t0 < ∞. A stochastic process
{Xt : t ∈ T} with values in a measurable space (S,S) is progressively measurable
with respect to {Ft} if for each t ∈ T, the map (s, ω) �→ Xs(ω), from [0, t]×Ω to S is
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measurable with respect to the σ-fields B[0, t]⊗Ft (on [0, t]×Ω) and S (on S). Here
B[0, t] is the Borel σ-field on [0, t], and B[0, t]⊗Ft is the usual product σ-field.

Proposition 3.5. (a) Suppose {Xt : t ∈ T} is progressively measurable, and τ is
a stopping time. Then Xτ is Fτ -measurable, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ Ft for each
B ∈ S and each t ∈ T . (b) Suppose S is a metric space and S its Borel σ-field. If
{Xt : t ∈ T} is right-continuous, then it is progressively measurable.

Proof. (a) Fix t ∈ T . On the set Ωt := [τ ≤ t], Xτ is the composition of the maps
(i) f(ω) := (τ(ω), ω), from ω ∈ Ωt into [0, t] × Ωt, and (ii) g(s, ω) = Xs(ω) on
[0, t] × Ωt into S. Now f is F̃t-measurable on Ωt, where F̃t := {A ∩ Ωt : A ∈ Ft}
is the trace σ-field on Ωt, and B[0, t] ⊗ F̃t is the σ-field on [0, t] × Ωt. Next the
map g(s, ω) = Xs(ω) on [0, t] × Ω into S is B[0, t] ⊗ Ft-measurable. Therefore, the
restriction of this map to the measurable subset [0, t]×Ωt is measurable on the trace
σ-field {A ∩ ([0, t] × Ωt) : A ∈ B[0, t] ⊗ Ft}. Therefore, the composition Xτ is F̃t-
measurable on Ωt, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ F̃t ⊆ Ft and hence [Xτ ∈ B] ∈ Fτ , for
B ∈ S.

(b) Fix t ∈ T . Define, for each positive integer n, the stochastic process {X(n)
s : 0 ≤

s ≤ t} by

X(n)
s := Xj2−nt for (j − 1)2−nt ≤ s < j2−nt (1 ≤ j ≤ 2n), X

(n)
t = Xt.

Since {(s, ω) ∈ [0, t]×Ω : X
(n)
s (ω) ∈ B} = ∪2n

j=1([j−1)2−nt, j2−nt)×{ω : Xj2−nt(ω) ∈
B}) ∪ ({t} × {ω : Xt(ω) ∈ B}) ∈ B[0, t] ⊗ Ft, and X

(n)
s (ω) → Xs(ω) for all (s, ω)

as n → ∞, in view of the right-continuity of s �→ Xs(ω), it follows that {(s, ω) ∈
[0, t]× Ω : Xs(ω) ∈ B} ∈ B[0, t]⊗Ft. �

Remark 3.5. It is often important to relax the assumption of ‘right-continuity’ of
{Xt : t ∈ T} to “a.s. right-continuity.” To ensure progressive measurability progressive
measurability in this case, it is convenient to take F ,Ft to be P -complete, i.e., if
P (A) = 0 and B ⊆ A then B ∈ F and B ∈ Ft ∀ t. Then modify Xt to equal
X0 ∀ t on the P -null set N = {ω : t → Xt(ω) is not right-continuous}. This modified
{Xt : t ∈ T}, together with {Ft : t ∈ T} satisfy the hypothesis of part (b) of
Proposition 3.5.

Theorem 3.6. (Optional Stopping). Let {Xt : t ∈ T} be a right-continuous {Ft}-
martingale, where T = N or T = [0,∞). (a) If τ1 ≤ τ2 are bounded stopping times,
then

E(Xτ2 |Fτ1) = Xτ1 . (3.16)

(b) (Optional Sampling). If τ is a stopping time (not necessarily finite), then {Xτ∧t :
t ∈ T} is an {Fτ∧t}t∈T -martingale.
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(c) Suppose τ is a stopping time such that (i) P (τ < ∞) = 1, and (ii) Xτ∧t(t ∈ T )
is uniformly integrable. Then

EXτ = EX0. (3.17)

Proof. We will give a proof for the case T = [0,∞). The case T = N is similar
and simpler (Exercise 5). Let τ1 ≤ τ2 ≤ t0 a.s. The idea for the proof is to check
that E[Xt0 |Fτi

] = Xτi
, for each of the stopping times (i = 1, 2) simply by virtue of

their being bounded. Once this is established, the result (a) follows by smoothing of
conditional expectation, since Fτ1 ⊆ Fτ2 . That is, it will then follow that

E[Xτ2 |Fτ1 ] = E[E(Xt0 |Fτ2)|Fτ1 ] = E[Xt0 |Fτ1 ] = Xτ1 . (3.18)

So let τ denote either of τi, i = 1, 2, and consider E[Xt0 |Fτ ]. For each n ≥ 1 consider
the nth dyadic subdivision of [0, t0] and define τ (n) = (k+1)2−nt0 if τ ∈ [k2−nt0, (k+
1)2−nt0)(k = 0, 1, . . . , 2n − 1), and τ (n) = t0 if τ = t0. Then τ (n) is a stopping time
and Fτ ⊆ Fτ(n) (since τ ≤ τ (n)). For G ∈ Fτ , exploiting the martingale property
E[Xt0 |F(k+1)2−nt0 ] = Xt(k+1)2−nt0

, one has

E(1GXt0) =
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]Xt0)

=
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]X(k+1)2−nt0)

=
2n−1∑

k=0

E(1G∩[τ(n)=(k+1)2−nt0]Xτ(n)) = E(1GXτ(n)) → E(1GXτ ). (3.19)

The last convergence is due to the L1-convergence criterion of Theorem 1.8 in view
of the following checks: (1) Xt is right-continuous (and τ (n) ↓ τ), so that Xτ(n) → Xτ

a.s., and (2) Xτ(n) is uniformly integrable, since by the submartingale property of
{|Xt| : t ∈ T},

E(1[|X
τ(n) |>λ]|Xτ(n) |) =

2n−1∑

k=0

E(1[τ(n)=(k+1)2−nt0]∩[|X
τ(n) |>λ]|X(k+1)2−nt0 |)

≤
2n−1∑

k=0

E(1[τ(n)=(k+1)2−nt0]∩[|X
τ(n) |>λ]|Xt0 |)

= E(1[|X
τ(n) |>λ]|Xt0 |) → E(1[|Xτ |>λ]|Xt0 |).

Since the left side of (3.19) does not depend on n, it follows that

E(1GXt0) = E(1GXτ ) ∀ G ∈ Fτ ,
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i.e., E(Xt0 |Fτ ) = Xτ applies to both τ = τ1 and τ = τ2. The result (a) therefore
follows by the smoothing property of conditional expectations noted at the start of
the proof.

(b) Follows immediately from (a). For if s < t are given, then τ ∧ s and τ ∧ t are
both bounded by t, and τ ∧ s ≤ τ ∧ t.

(c) Since τ < ∞ a.s., τ ∧ t equals τ for sufficiently large t (depending on ω), outside
a P -null set. Therefore, Xτ∧t → Xτ a.s. as t →∞. By assumption (ii), Xτ∧t (t ≥ 0)
is uniformly integrable. Hence Xτ∧t → Xτ in L1. In particular, E(Xτ∧t) → E(Xτ ) as
t →∞. But EXτ∧t = EX0 ∀ t, by (b). �

Remark 3.6. If {Xt : t ∈ T} in Theorem 3.6 is taken to be a submartingale, then
instead of the equality sign “=” in (3.16), (3.17), one gets “≤.”

The following proposition and its corollary are often useful for verifying the
hypothesis of Theorem 3.6 in examples.

Proposition 3.7. Let {Zn : n ∈ N} be real-valued random variables such that for
some ε > 0, δ > 0, one has

P (Zn+1 > ε | Gn) ≥ δ, a.s. ∀ n = 0, 1, 2, . . .

or

P (Zn+1 < −ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . . , (3.20)

where Gn = σ{Z1, . . . , Zn} (n ≥ 1), G0 = {∅,Ω}. Let Sx
n = x + Z1 + · · ·+ Zn (n ≥ 1),

Sx
0 = x, and let a < x < b. Let τ be the first escape time of {Sx

n} from (a, b), i.e.,
τ = inf{n ≥ 1 : Sx

n ∈ (a, b)c}. Then τ < ∞ a.s. and

sup
{x:a<x<b}

Eeτz <∞ for −∞ < z <
1
n0

(

log
1

1− δ0

)

, (3.21)

where, writing [y] for the integer part of y,

n0 =
[
b− a

ε

]

+ 1, δ0 = δn0 . (3.22)

Proof. Suppose the first relation in (3.20) holds. Clearly, if Zj > ε ∀ j = 1, 2, . . . , n0,
then Sx

n0
> b, so that τ ≤ n0. Therefore, P (τ ≤ n0) ≥ P (Z1 > ε, . . . , Zn0 > ε) ≥ δn0 ,

by taking successive conditional expectations (given Gn0−1,Gn0−2, . . . ,G0, in that or-
der). Hence P (τ > n0) ≤ 1 − δn0 = 1 − δ0. For every integer k ≥ 2, P (τ > kn0) =
P (τ > (k − 1)n0, τ > kn0) = E[1[τ>(k−1)n0]P (τ > kn0|G(k−1)n0)] ≤ (1 − δ0)P (τ >
(k − 1)n0), since, on the set [τ > (k − 1)n0], P (τ ≤ kn0|G(k−1)n0) ≥ P (Z(k−1)n0+1 >

ε, . . . , Zkn0 > ε|G(k−1)n0) ≥ δn0 = δ0. By induction, P (τ > kn0) ≤ (1− δ0)k.
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Hence P (τ =∞) = 0, and for all z > 0,

Eezτ =
∞∑

r=1

ezrP (τ = r) ≤
∞∑

k=1

ezkn0

kn0∑

r=(k−1)n0+1

P (τ = r)

≤
∞∑

k=1

ezkn0P (τ > (k − 1)n0) ≤
∞∑

k=1

ezkn0(1− δ0)k−1

= ezn0(1− (1− δ0)ezn0)−1 if ezn0(1− δ0) < 1.

An entirely analogous argument holds if the second relation in (3.20) holds. �

The following corollary immediately follows from Proposition 3.7.

Corollary 3.8. Let {Zn : n = 1, 2, · · ·} be an i.i.d. sequence such that P (Z1 = 0) <
1. Let Sn

n = x + Z1 + · · ·+ Zn (n ≥ 1), Sx
0 = x, and a < x < b. Then the first escape

time τ of the random walk from the interval (a, b) has a finite moment generating
function in a neighborhood of 0.

Example 5. Let Zn(n ≥ 1) be i.i.d. symmetric Bernoulli, P (Zi = +1) = P (Zi =
−1) = 1

2 , and let Sx
n = x + Z1 + · · · + Zn(n ≥ 1), Sx

0 = x, be the simple symmetric
random walk on the state space Z, starting at x. Let a ≤ x ≤ b be integers, τy :=
inf{n ≥ 0 : Sx

n = y}, τ = τa ∧ τb = inf{n ≥ 0 : Sx
n ∈ {a, b}}. Then {Sx

n : n ≥ 0} is a
martingale and τ satisfies the hypothesis of Theorem 3.6 (c) (Exercise 7). Hence

x ≡ ESx
0 = ESx

τ = aP (τa < τb) + bP (τb < τa) = a + (b− a)P (τb < τa),

so that

P (τb < τa) =
x− a

b− a
, P (τa < τb) =

b− x

b− a
, a ≤ x ≤ b. (3.23)

To illustrate the importance of the hypothesis imposed on τ in Theorem 3.6 (c), one
may naively try to apply (3.17) to τb (see Exercise 7) and arrive at the silly conclusion
x = b!

Example 6. One may apply Theorem 3.6 (c) to a simple asymmetric random walk
with P (Zi = 1) = p, P (Zi = −1) = q ≡ 1 − p(0 < p < 1, p �= 1/2), so that
Xx

n := Sx
n − (2p− 1)n (n ≥ 1), Xx

0 ≡ x, is a martingale. Then with τa, τb, τ = τa ∧ τb

as above, one gets

x ≡ EXx
0 = EXx

τ = ESx
τ − (2p− 1)Eτ = a + (b− a)P (τb < τa)− (2p− 1)Eτ. (3.24)

Since we do not know Eτ yet, we can not quite solve (3.24). We therefore use a
second martingale (q/p)Sx

n (n ≥ 0). Note that E[(q/p)Sx
n+1 |σ{Z1, . . . , Zn}] = (q/p)Sx

n ·
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E[(q/p)Zn+1 ] = (q/p)Sx
n [(q/p)p + (q/p)−1q] = (q/p)Sx

n · 1 = (q/p)Sx
n , proving the

martingale property of the “exponential process” Yn := (q/p)Sx
n = exp(cSx

n), c =
ln(q/p), n ≥ 0. Note that (q/p)Sx

τ∧n ≤ max{(q/p)y : a ≤ y ≤ b}, which is a finite
number. Hence the hypothesis of uniform integrability holds. Applying (3.17) we get

(q/p)x = (q/p)a · P (τa < τb) + (q/p)bP (τb < τa),

or

P (τb < τa) =
(q/p)x − (q/p)a

(q/p)b − (q/p)a
≡ ϕ(x) (a ≤ x ≤ b). (3.25)

Using this in (3.24) we get

Eτ ≡ Eτa ∧ τb =
x− a− (b− a)ϕ(x)

1− 2p
, a ≤ x ≤ b. (3.26)

EXERCISES

Exercise Set III

1. Prove (3.15). Also prove that an {Ft}-stopping time is an {Ft}-optional time.

2. (i) Prove that τB defined by (3.14) is an {Ft}-stopping time if B is closed and t �→ Xt

is continuous with values in a metric space (S, ρ). [Hint : For t > 0, B closed, [τB ≤
t] = ∩n∈N ∪r∈Q∩[0,t] [ρ(Xr, B) ≤ 1

n
], where Q is the set of rationals.] (ii) Prove that if

t �→ Xt is right-continuous, τB is an optional time for B open. [Hint : For B open, t > 0,
[τB < t] = ∪r∈Q∩(0,t)[Xr ∈ B].] (iii) If T = N or Z

+, prove that τB is a stopping time
for all B ∈ S.

3. (i) If τ1 and τ2 are {Ft}-stopping times, then show that so are τ1 ∧ τ2 and τ1 ∨ τ2.
(ii) Show that τ + c is an {Ft}-stopping time if τ is an {Ft}-stopping time, c > 0, and

τ + c ∈ T ∪ {∞}. (iii) Show that (ii) is false if c < 0.

4. If τ is a discrete random variable with values t1 < t2 < · · · in a finite or countable set T
in R, then τ is an {Ft}t∈T -stopping time if and only if [τ = t] ∈ Ft ∀ t ∈ T .

5. Let {Xn : n = 0, 1, 2, . . .} be an {Fn}-martingale, and τ an {Fn}-stopping time. Give
simple direct proofs of the following: (i) EXτ = EX0 if τ is bounded. [Hint : Let τ ≤ m
a.s. Then EXτ =

∑m

n=0
EXn1[τ=n] =

∑m

n=0
EXm1[τ=n] = EXm1[τ≤m] = EXm = EX0.]

(ii) If Eτ < ∞ and E|Xτ∧m − Xτ | → 0 as m → ∞, then EXτ = X0.

6. (Wald’s Identity) Let {Yj : j ≥ 1} be an i.i.d. sequence with finite mean µ, and
take Y0 = 0, a.s. Let τ be an {Fn}-stopping time, where Fn = σ(Yj : j ≤ n). Write
Sn =

∑n

j=0
Yj . If Eτ < ∞ and E|Sτ − Sτ∧m| → 0 as m → ∞, prove that ESτ = µEτ .

[Hint : Apply Theorem 3.6(c) to the martingale {Sn − nµ : n ≥ 0}.]
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7. In Example 5 for τ = τa ∧ τb, show that (i) Eτ < ∞ ∀ a ≤ x ≤ b, and |Sτ∧n| ≤
max{|a|, |b|} ∀ n ≥ 0, is uniformly integrable, (ii) P (τa < ∞) = 1 ∀ x, a, but {Sτa∧n :
n ≥ 0} is not uniformly integrable. (iii) For Example 5 also show that Yn := S2

n−n, n ≥ 0,
is a martingale and {Yτ∧n : n ≥ 0} is uniformly integrable. Use this to calculate Eτ.
[Hint : Use triangle inequality estimates on |Yτ∧n| ≤ |Sτ∧n|2 + τ ∧ n.]

8. Let {Xt : t ∈ T} be a stochastic process on (Ω,F) with values in some measurable space
(S,S), T a discrete set with elements t1 < t2 < · · · . Define Ft = σ(Xs : 0 ≤ s ≤ t) ⊆ F ,
t ∈ T. Assume that τ is an {Ft}-stopping time and show that Fτ = σ(Xτ∧t : t ∈ T );
i.e., Fτ is the σ-field generated by the stopped process {Xτ∧t : t ∈ T}.

9. Prove that if τ is an optional time with respect to a filtration {Ft : 0 ≤ t < ∞}, then τ
is a stopping time with respect to {Ft+ : 0 ≤ t < ∞}, where Ft+ := ∩ε>0Ft+ε. Deduce
that under the hypothesis of Example 4(b), if B is open or closed, then τB is a stopping
time with respect to {Ft+ : 0 ≤ t < ∞}.

10. Let {Ft : t ∈ T} and {Gt : t ∈ T} be two filtrations of (Ω,F), each adapted to {Xt : t ∈
T}, and assume Ft ⊆ Gt, ∀t ∈ T. Show that if {Xt : t ∈ T} is a {Gt}-martingale (or sub
or super) then it is an {Ft}-martingale (or respectively sub or super).

11. Let Z1, Z2, . . . be i.i.d. ±1-valued Bernoulli random variables with P (Zn = 1) =
p, P (Zn = −1) = 1−p, n ≥ 1, where 0 < p < 1/2. Let Sn = Z1 + · · ·+Zn, n ≥ 1, S0 = 0.
(i) Show that P (supn≥0 Sn > y) ≤ ( p

q
)y, y ≥ 0. [Hint : Apply a maximal inequality to

Xn = (q/p)Sn .]
(ii) Show for p < 1/2 that E supn≥0 Sn ≤ p

q−p
. [Hint : Use (2.5).]

12. Suppose that Z1, Z2, . . . is a sequence of independent random variables with EZn = 0
such that

∑
n

EZ2
n < ∞. Show that

∑∞
n=1

Zn := limN

∑N

n=1
Zn exists a.s. [Hint :

Let Sj =
∑j

k=1
Zk and show that {Sj} is a.s. a Cauchy sequence. For this note that

Yn := maxk,j≥n |Sk − Sj | is a.s. a decreasing sequence and hence has a limit a.s. Apply
Kolmogorov’s maximal inequality to maxn≤j≤N |Sj − Sn| to show that the limit in
probability is zero, and hence a.s. zero.]
(i) For what values of θ will

∑∞
n=1

Zn converge a.s. if P (Zn = n−θ) = P (Zn = −n−θ) =
1/2 ?

(ii) (Random Signs) Suppose each Zn is symmetric Bernoulli ±1-valued. Show that the
series

∑∞
n=1

Znan converges with probability one if {an} is any square-summable
sequence of real numbers.

(iii) Show that
∑∞

n=1
Zn sin(nπt)/n converges a.s. for each t if the Zn’s are i.i.d. standard

normal.



C H A P T E R IV

Classical Zero–One Laws, Laws of
Large Numbers and Large Deviations

The term law has various meanings within probability. It is sometimes used synony-
mously with distribution of a random variable. However, it also may refer to an event
or phenomenon that occurs in some predictable sense, as in a “law of averages.” The
latter is the context of the present section. For example, if X0,X1, . . . is a sequence
of independent random variables and B ∈ B, then, in view of the Borel–Cantelli
lemmas, one may conclude that the event [Xn ∈ B i.o.] will occur with probabil-
ity one, or its complement is certain to occur. Before taking up the laws of large
numbers, we consider two standard zero–one laws of this type. In particular, observe
that the event A = [Xn ∈ B i.o.] is special in that it does not depend on any fi-
nite number of values of the sequence X0,X1,X2, . . .. Such an event is referred to as
a tail event. That is, an event E ∈ σ(X0,X1,X2, . . .) is said to be a tail event if
E ∈ σ(Xn,Xn+1, . . .) for every n ≥ 0. The collection of all tail events is given by the
tail σ-field T := ∩∞

n=0σ(Xn,Xn+1, . . .).

Theorem 4.1 (Kolmogorov Zero–One Law). A tail event for a sequence of inde-
pendent random variables has probability either zero or one.

Proof. To see this first check that σ(X0,X1, . . .) = σ(F0), where F0 :=
∪∞

k=0σ(X0, . . . , Xk) is a field and, in particular, a π-system. For E ∈ F0, one has
E = [(X0, . . . , Xk) ∈ C] for some k ≥ 0, C ∈ Bk+1. Thus if A is a tail event then
A ∈ σ(Xk+1, . . .) and hence A is independent of E; i.e., A is independent of F0 and
hence of σ(F0) = σ(X0,X1, . . .) since both {A} and F0 are π-systems. This makes A
independent of itself and hence P (A) = P (A ∩ A) = P (A)P (A). The only solutions
to the equation x2 = x are 0 and 1. �
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Not all tail events for the sums need be tail events for the terms of the series. Let
Sn = X1 + · · · + Xn, n ≥1. For example, an event of the form [Sn ∈ B i.o.] is not
covered by Kolmogorov’s zero–one law since the sums S1, S2, . . . are not independent.
However, there is a special way in which such tail events for the sums depend on the
sequence X1,X2, . . . of i.i.d. summands captured by the following zero-one law.

Let B∞ denote the (Borel) σ-field of subsets of R
∞ = {(x1, x2, . . .) : xi ∈ R

1}
generated by events depending on finitely many coordinates.

Theorem 4.2 (Hewitt–Savage Zero–One Law). Let X1,X2,. . . be an i.i.d. seq-
uence of random variables. If an event A = [(X1,X2, . . .) ∈ B], where B ∈
B∞, is invariant under finite permutations (Xi1 ,Xi2 , . . .) of terms of the sequence
(X1,X2, . . .), that is, A = [(Xi1 ,Xi2 , . . .) ∈ B] for any finite permutation (i1, i2, . . .)
of (1, 2, . . .), then P (A) = 1 or 0.

As noted above, the symmetric dependence with respect to {Xn}∞n=1 applies, for
example, to tail events for the sums {Sn}∞n=1.

Proof. To prove the Hewitt–Savage 0–1 law, proceed as in the Kolmogorov 0–1 law by
selecting finite-dimensional approximants to A of the form An = [(X1, . . . , Xn) ∈ Bn],
Bn ∈ Bn, such that P (A∆An) → 0 as n →∞, where E∆F := (Ec ∩F )∪ (E ∩F c) is
the symmetric difference of sets E,F ; this approximation may be achieved from the
Carathéodory extension formula (see Exercise 1). For each fixed n, let (i1, i2, . . .) be
the permutation (2n, 2n−1, . . . , 1, 2n+1, . . .) and define Ãn = [(Xi1 , . . . , Xin

) ∈ Bn].
Then Ãn, and An are independent with P (An ∩ Ãn) = P (An)P (Ãn) = (P (An))2 →
(P (A))2 as n → ∞. On the other hand, P (A∆Ãn) = P (A∆An) → 0. Note that
A∆Ãn is obtained by a permutation from A∆An. Hence P (An∆Ãn) ≤ P (An∆A) +
P (Ãn∆A) → 0 and, in particular, therefore P (An ∩ Ãn) → P (A) as n → ∞. Thus
x = P (A) satisfies x = x2. �

The classical strong law of large numbers (SLLN) refers to the almost sure limit
of averages of a “large number” of i.i.d. random variables having finite first moment.
While the zero-one laws are not required in the following proof, they do imply that
the indicated limit of the averages is either sure to exist or sure not to exist.

A good warm-up exercise is to work out a proof using the Borel–Cantelli lemma I
based on Chebyshev inequality estimates, assuming finite fourth moments (Exercise
2). The proof we present in this section is due to Etemadi.1 It is based on Part 1 of the
Borel–Cantelli lemmas. Other proofs are included by other methods in other chapters
of the text on stochastic processes, e.g., as consequences of the ergodic theorem and
by the martingale convergence theorem.

Theorem 4.3 (Strong Law of Large Numbers). Let {Xn : n ≥ 1} be a sequence
of pairwise independent and identically distributed random variables defined on a

1Etemadi, N. (1983): “On the Laws of Large Numbers for Nonnegative Random
Variables,” J. Multivariate Analysis, 13, pp. 187–193.
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probability space (Ω,F , P ). If E|X1| < ∞ then with probability 1,

lim
n→∞

X1 + · · ·+ Xn

n
= EX1. (4.1)

Proof. Without loss of generality we may assume for the proof of the SLLN that the
random variables Xn are nonnegative, since otherwise we can write Xn = X+

n −X−
n ,

where X+
n = max(Xn, 0) and X−

n = −min(Xn, 0) are both nonnegative random
variables, and then the result in the nonnegative case yields that

Sn

n
=

1
n

n∑

k=1

X+
k −

1
n

n∑

k=1

X−
k

converges to EX+
1 − EX−

1 = EX1 with probability 1.
Truncate the variables Xn by Yn = Xn1[Xn≤n]. Then Yn has moments of all orders.

Let Tn =
∑n

k=1 Yk and consider the sequence {Tn}∞n=1 on the “fast” time scale τn =
[αn], for a fixed α > 1, where brackets [ ] denote the integer part. Let ε > 0. Then by
Chebyshev’s inequality and pairwise independence,

P

(∣
∣
∣
∣
Tτn

− ETτn

τn

∣
∣
∣
∣ > ε

)

≤ Var(Tτn
)

ε2τ2
n

=
1

ε2τ2
n

τn∑

k=1

Var Yk ≤
1

ε2τ2
n

τn∑

k=1

EY 2
k

=
1

ε2τ2
n

τn∑

k=1

E{X2
k1[Xk≤k] =

1
ε2τ2

n

τn∑

k=1

E{X2
11[X1≤k]}

≤ 1
ε2τ2

n

τn∑

k=1

E{X2
11[X1≤τn]} =

1
ε2τ2

n

τnE{X2
11[X1≤τn]}. (4.2)

Therefore,

∞∑

n=1

P

(∣
∣
∣
∣
Tτn

− ETτn

τn

∣
∣
∣
∣ > ε

)

≤
∞∑

n=1

1
ε2τn

E{X2
11[X1≤τn]} =

1
ε2

E

{

X2
1

∞∑

n=1

1
τn

1[X1≤τn]

}

.

(4.3)
Let x > 0 and let N = min{n ≥ 1 : τn ≥ x}. Then αN ≥ x, and since y ≤ 2[y] for
any y ≥ 1,

∞∑

n=1

1
τn

1[x≤τn] =
∑

τn≥x

1
τn
≤ 2

∑

n≥N

α−n =
2α

α− 1
α−N = aα−N ≤ a

x
,

where a = 2α/(α− 1). Therefore,

∞∑

n=1

1
τn

1[X1≤τn] ≤
a

X1
for X1 > 0.
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So

∞∑

n=1

P

(∣
∣
∣
∣
Tτn

− ETτn

τn

∣
∣
∣
∣ > ε

)

≤ a
E[X1]

ε2
< ∞. (4.4)

By the Borel–Cantelli lemma I, taking a union over positive rational values of ε, with
probability 1, (Tτn

− ETτn
)/τn → 0 as n →∞. Therefore,

Tτn

τn
→ EX1, (4.5)

since EYn → EX1,

lim
n→∞

1
τn

ETτn
= lim

n→∞
EYτn

= EX1.

Since

∞∑

n=1

P (Xn �= Yn) =
∞∑

n=1

P (X1 > n) ≤
∫ ∞

0

P (X1 > u) du = EX1 < ∞,

we get by another application of the Borel–Cantelli lemma that, with probability 1,

Sn − Tn

n
→ 0 as n →∞. (4.6)

Therefore, the previous results about {Tn} give for {Sn} that

Sτn

τn
→ EX1 as n →∞ (4.7)

with probability 1. If τn ≤ k ≤ τn+1, then since Xi ≥ 0,

τn

τn+1

Sτn

τn
≤ Sk

k
≤ τn+1

τn

Sτn+1

τn+1
. (4.8)

But τn+1/τn → α, so that now we get with probability 1,

1
α

EX1 ≤ lim inf
k

Sk

k
≤ lim sup

k

Sk

k
≤ αEX1. (4.9)

Take the intersection of all such events for rational α > 1 to get limk→∞ Sk/k = EX1

with probability 1. This is the strong law of large numbers (SLLN). �

The above proof of the SLLN is really quite remarkable, as the following observa-
tions show. First, pairwise independence is used only to make sure that the positive
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and negative parts of Xn, and their truncations, remain (pairwise) uncorrelated for
the calculation of the variance of Tk as the sum of the variances. Observe that if the
random variables all are mean zero and are uniformly bounded below, then it suffices
to require that they merely be uncorrelated for the same proof to go through. How-
ever, this means that if the random variables are bounded, then it suffices that they
be uncorrelated to get the SLLN; for one may simply add a sufficiently large constant
to make them all positive. Thus, we have the following (Exercise 3).

Proposition 4.4. Let X1,X2, . . . , be a sequence of mean-zero uncorrelated ran-
dom variables that are uniformly bounded below, or uniformly bounded above. If, in
addition, V arXn, n ≥ 1, is a bounded sequence, then with probability 1,

X1 + · · ·+ Xn

n
→ 0 as n →∞.

In particular, this holds for every bounded, mean-zero, uncorrelated sequence.

Corollary 4.5. If X1,X2, . . . is an i.i.d. sequence and EX+
1 = ∞ and EX−

1 < ∞,
then with probability 1,

X1 + · · ·+ Xn

n
→∞ as n→∞.

Similarly, if EX+
1 < ∞ and EX−

1 =∞, then the a.s. limit is −∞.

As an obvious corollary, since a.s. convergence implies convergence in probabil-
ity, one may conclude that the averages converge in probability as well. The latter
statement is referred to as a weak law of large numbers (WLLN).

The proof of the Weierstrass approximation theorem given in Appendix B may be
viewed as an application of the WLLN to a classic problem in calculus; namely,
a continuous function f on [0, 1] may be uniformly approximated by polynomi-
als qn(x) =

∑n
k=0

(
n
k

)
f( k

n )xk(1 − x)n−k, 0 ≤ x ≤ 1, referred to as Bernstein
polynomials.

Let us now briefly turn some attention to deviations from the law of averages.
Suppose X1,X2, . . . is an i.i.d. sequence of random variables with mean µ. Then the
WLLN implies that for any δ > 0, the event that the sample average AN := X1+···+XN

N
would fall outside the interval µ± δ, i.e., “would deviate from µ by a positive amount
δ,” is a rare event for large N . In fact, under suitable conditions one might expect the
probability to be exponentially small for large N . The “large deviation theorem” below
provides an important illustration of such conditions. We will need a few preliminaries
to prepare for the statement and proof.

Definition 4.1. Let X be a random variable on (Ω,F , P ) with distribution Q.
The moment generating function of X (or Q) is defined by m(h) = EehX =∫

R
ehxQ(dx). The cumulant generating function is c(h) = lnm(h), h ∈ R.
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Note that m(h) may be infinite; see Exercise 6. The function m(−h) is the Laplace
transform of the distribution Q.

Proposition 4.6. (a) Assume that m(h) < ∞ for all h in a neighborhood of h = 0.
Then E|X|k < ∞ for all k ≥ 1 and EXk = m(k)(0) ≡ dk

dhk m(0). (b) Assume that
m(h) < ∞ for all h in a neighborhood of h = r ∈ R. Then E|XkerX | < ∞ and
m(k)(r) ≡ dk

drk m(r) = EXkerX , for all k ≥ 1.

Proof. Since e|hx| ≤ ehx + e−hx, it follows from the hypothesis for (a) that EehX ≤
Ee|hX| < ∞ for all h in a neighborhood of h = 0. Also, since the partial sums
∑n

k=0
|hX|k

k! are bounded by e|hX|, one has by the dominated convergence theorem
that EehX = E

∑∞
k=0

hkXk

k! =
∑∞

k=0
EXk

k! hk. The assertion (a) now follows from the
uniqueness of the coefficients in Taylor series expansions about the origin (Exercise
7). For part (b) consider the change of measure defined by Q̃(dx) = erx

m(r)Q(dx).

Recall that the factor 1
m(r) is the normalization of erxQ(dx) to a probability. If X̃ is

a random variable with distribution Q̃, then its moment-generating function is given
by m̃(h) = m(h+r)

m(r) . Under hypothesis (b), X̃ has a moment-generating function in a
neighborhood of h = 0, so that (a) yields EXkerX/m(r) = m(k)(r)/m(r). Multiplying
by m(r) yields the assertion (b). �

Definition 4.2. Suppose that µ̂(b) ≡
∫

ebxµ(dx) < ∞. The change of mea-
sure defined by µ̃(dx) = ebx

µ̂(b)µ(dx) is called an exponential size-bias or tilting
transformation.

For the rest of this section assume that X is nondegenerate, i.e. Q is not a Dirac
measure δc. Assuming that m(h) is finite in a neighborhood of zero, the second deriva-
tive of m(h) is obviously positive, and one may use the Cauchy–Schwarz inequality
to check c(2)(h) > 0 as well; see Exercise 8.

Corollary 4.7. Suppose that m(h) = EehX <∞ for all h ∈ R. Then both m(h) and
c(h) are convex functions on R.

Theorem 4.8 (Cramér-Chernoff ). Suppose that X1,X2, . . . is an i.i.d. sequence
with finite mean EX1 = µ. Moreover, assume that the moment-generating function

m(h) := EehX1

is finite for all h ∈ R. Let c(h) := ln m(h) denote the cumulant-generating function.
Then for AN = X1+···+XN

N ,

lim
N→∞

ln P (AN ≥ µ + δ)
N

= I(δ), δ > 0, (4.10)
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where I(δ) = −c∗(µ + δ) for

c∗(x) = sup
h∈R

{xh− c(h)} ≥ 0.

Proof. We may assume P (X1 ≥ µ + δ) > 0. For otherwise, (4.10) is trivially true,
since I(δ) = −∞ and both sides of (4.10) are zero (Exercise 9). To obtain the formula
(4.10), first note the simple inequality

EehNAN ≥ E{ehNAN 1[AN ≥ µ + δ]} ≥ ehN(µ+δ)P (AN ≥ µ + δ)

for all h ≥ 0. Since by independence, the moment generating function of NAN ≡
X1 + · · ·+ XN may be expressed as eNc(h), one has for any h ≥ 0,

P (AN ≥ µ + δ) ≤ e−N((µ+δ)h−c(h)).

Thus one obtains an (upper) bound for the rate of decay of probability in (4.10) of
the form

lim sup
N→∞

ln P (AN ≥ µ + δ)
N

≤ −c∗(µ + δ).

It suffices to prove the reverse inequality to establish (4.10). For this it is useful to
exponentially size-bias the distribution of X in such a way that the deviant event is
the rule, rather than the exception. For the given deviation µ + δ, suppose that the
maximum defining c∗(µ + δ) is achieved at h = hδ > 0 (see Exercise 9), with

c∗(µ + δ) = (µ + δ)hδ − c(hδ),
d

dh
((µ + δ)h− c(h))|h=hδ

= 0.

In particular, µ + δ = d
dhc(h)|h=hδ

. So define a random variable X̃ to have the size-
biased distribution given by

P (X̃ ∈ dy) = Z−1
δ ehδyP (X ∈ dy),

where Zδ = ec(hδ) = m(hδ) normalizes ehδyP (X ∈ dy) to a probability distribution.
Now observe that

EX̃ = e−c(hδ)

∫

R

yehδyP (X ∈ dy) =
d

dh
c(h)|h=hδ

= µ + δ. (4.11)

That is, for the size-biased distribution, the deviation by δ is to be expected for the
average behavior. In particular, the law of large numbers yields

lim
N→∞

ÃN = lim
N→∞

X̃1 + · · ·+ X̃N

N
= EX̃ = µ + δ.
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From here one may obtain the reverse inequality by the law of large numbers under
size biasing: Namely, let ε > 0, and consider deviations of size µ + δ (to within ±ε)
defined by

DN := {(y1, . . . , yN ) ∈ R
N :

1
N

N∑

j=1

yj ∈ (µ + δ − ε, µ + δ + ε)}.

Note that for h ≥ 0, exp{−Nh(µ + δ + ε) + h
∑N

j=1 Xj} ≤ 1 on the event
[(X1, . . . , XN ) ∈ DN ]. Thus one has for h = hδ ≥ 0,

P (AN > µ + δ − ε)

≥ P (AN ∈ (µ + δ − ε, µ + δ + ε))

= E1[(X1, . . . , XN ) ∈ DN ]

≥ E1[(X1, . . . , XN ) ∈ DN ] exp{−Nhδ(µ + δ + ε) + hδ

N∑

j=1

Xj}

= exp{−Nhδ(µ + δ + ε)}ZN
δ E{1[(X1, . . . , XN ) ∈ DN ]

N∏

j=1

Z−1
δ ehδXj}

= exp{−Nhδ(µ + δ + ε)}eNc(hδ)P ((X̃1, . . . , X̃N ) ∈ DN )

= exp{−(hδ(µ + δ + ε)− c(hδ))N}P (ÃN ∈ (µ + δ − ε, µ + δ + ε)). (4.12)

Now, the law of large numbers under the size-biased distribution (having mean µ+ δ)
makes ÃN → µ + δ and hence P (ÃN ∈ (µ + δ − ε, µ + δ + ε)) → 1 as N → ∞. In
particular, it follows from (4.12) that for any ε > 0,

lim inf
N→∞

ln P (AN > µ + δ − ε)
N

≥ −c∗(µ + δ)− hδε.

Since lim infN→∞
ln P (AN >µ+δ−ε)

N is an increasing function of ε, the inequality follows.
The case in which the supremum defining c∗(µ + δ) is finite but not achieved is left
to Exercise 7. �

The function I(δ) is referred to as the large deviation rate and is computed here in
terms of the so-called Legendre transform c∗ of the cumulant-generating function
c of the common distribution Q for the sequence of random variables; see Exercise 10.
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EXERCISES

Exercise Set IV

1. (i) Use the definition of product probability measure via the Carathéodory construc-
tion to obtain the approximation of A ∈ B∞ by finite-dimensional events An =
[(X1, . . . , Xn) ∈ Bn], Bn ∈ Bn, such that P (A∆An) → 0 as n → ∞. [Hint : Given ε > 0,
obtain a cover A ⊆ ∪m≥1Rm, with Rm ∈ σ(X1, . . . , Xm), such that P (∪m≥1Rm\A) <
ε/2. Use continuity of the probability from above to argue that P (∪m≥1Rm\∪n

m=1Rm) <
ε/2 for n sufficiently large.] (ii) Show that |P (A)−P (An)| ≤ P (A∆An). (iii) Show that
on a finite measure space (S,S, µ), (a) µ(B∆A) = µ(A∆B) ≥ 0, (b) µ(A∆A) = 0, and
(c) µ(A∆B) + µ(B∆C) ≥ µ(A∆C) hold for all A, B, C ∈ S. That is, (A, B) → µ(A∆B)
is a pseudo-metric on S.

2. Give a simple proof of the strong law of large numbers (SLLN) for i.i.d. random vari-
ables Z1, Z2, . . . having finite fourth moments. That is, for Sn := Z1 + · · · + Zn, n ≥ 1,
limn→∞ Sn/n → EZ1 a.s. as n → ∞. [Hint : Use a fourth moment Chebyshev-type
inequality and the Borel–Cantelli lemma I to check for each ε = 1/k, k ≥ 1, P (|Sn

n
−

EZ1| > ε i.o.) = 0.]

3. (i) Write out proofs of Proposition 4.4 and Corollary 4.5. (ii) Suppose {Xn : n ≥ 1} is a
sequence of mean zero uncorrelated random variables such that

∑n

k=1
var(Xk)/n2 → 0.

Show that 1
n

∑n

k=1
Xk → 0 in probability.

4. Let X1, X2, . . . be an i.i.d. sequence of positive random variables such that E| ln X1| <

∞. Calculate the a.s. limiting geometric mean limn→∞(X1 · · ·Xn)
1
n . Determine the

numerical value of this limit in the case of uniformly distributed random variables on
(0, 1).

5. (Hausdorff’s Estimate) Let X1, X2, . . . be an i.i.d. sequence of random variables with
mean zero and moments of all orders. Let Sn = X1 + · · · + Xn, n ≥ 1. Show that given

any ε > 0 the event A := [|Sn| = O(n
1
2+ε) as n → ∞] has probability one. [Hint : For two

sequences of numbers {an}n and {bn = 0}n one writes an = O(bn) as n → ∞ if and only
if there is a constant C > 0 such that |an| ≤ C|bn| for all n. Check that E|Sn|2k ≤ cknk,
k = 1, 2, 3, . . ., and use the Borel–Cantelli lemma I to prove the assertion.]

6. Compute the moment-generating function m(h) for each of the following random vari-
ables X: P (X = n) = Q({n}) = c

n2 , n = ±1,±2, . . ., where c−1 = 2
∑∞

n=1
1

n2 . (b)

Q(dx) = λe−λx1[0,∞)(x)dx, where λ > 0. (c) Q(dx) = 1
2π

e−
1
2 x2

dx. (d) Show that
m(h) < ∞ for all h ∈ R if X is a bounded random variable, i.e., P (|X| ≤ B) = 1 for
some B ≥ 0.

7. (Interchange of the Order of Differentiation and Integration) (i) Let f(x, θ) be a real-
valued function on S× (c, d), where (S,S, µ) is a measure space and (a) f is µ-integrable
for all θ, (b) θ �→ f(x, θ) is differentiable at θ = θ0 ∈ (c, d), and (c) |f(x, θ0 + ε) −
f(x, θ0)|/|ε| ≤ g(x) for all x ∈ S and for all ε such that 0 < |ε| < ε0 (for some ε0 > 0), and∫

S
g dµ < ∞. Then show that d

dθ

∫
S

f(x, θ)µ(dx)|θ=θ0 =
∫

S
( d

dθ
f(x, θ))θ=θ0µ(dx). [Hint :

Apply Lebesgue’s dominated convergence theorem to the sequence gn(x) := (f(x, θ0 +
εn) − f(x, θ0))/εn (0 = εn → 0).] (ii) Verify the term-by-term differentiation of m(h) =
∑∞

k=0
hk

k!
EXk at h = 0 in the proof of Proposition 4.6.
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8. Assume m(h) < ∞ for all h ∈ R. If P (X = 0) < 1, show that c(2)(h) > 0 for all h ∈ R.

[Hint : c(2)(h) = EX̃2 − (EX̃)2, where X̃ has the distribution ehxQ(dx)
m(h)

.]

9. For a > µ = EX, show that c∗(a) = suph∈R
{ah − c(h)} is attained at h = ha > 0

if P (X > a) > 0. [Hint : Write c(h) − ah = ln m(h) + ln e−ah = ln Eeh(X−a) → ∞ as
h → −∞, and it goes to ∞ as h → ∞, provided P (X > a) > 0. If P (X > a) = 0,
Eeh(X−a) ↓ P (X = a) as h ↑ ∞. Note that c(0)− a · 0 = 0, and c′(0)− a = EX − a < 0.]
(ii) Show that for a > µ, P (X > a) = 0, c∗(a) = − ln P (X = a), and it is not attained
by any h ∈ R. [Hint : In this case, c∗(a) = ∞ if P (X1 = a) = 0. If P (X1 = a) > 0,
P (An ≥ a) = (P (X1 = a))n. If c∗(a) is attained by ha, then by the proof of Theorem
4.8 one must have c∗(a) = − ln P (X1 = a) and c′(ha) = a, which implies EX̃ = a, where
X̃ has distribution ehaxQ(dx)/m(ha). This is impossible, since the maximum value of
X̃ is a (Q̃-a.s.).]

10. (Properties of Legendre Transform) Let u, v be smooth convex functions on R with
Legendre transforms u∗, v∗.
(i) (Convexity) Show that u∗ is convex.
(ii) (Involution) Show that u∗∗ = u
(iii) (Young’s Inequality) Show that if u = v∗ then xy ≤ u(x) + v(y).

11. (i) Suppose that X1 has a Gaussian distribution with mean µ and variance σ2. Compute
the large deviation rate I(δ). (ii) If X1 is Poisson with mean µ, compute I(δ). (iii) If X1

is Bernoulli, P (X1 = 0) = 1 − p, P (X1 = 1) = p (0 < p < 1), compute I(δ).

12. (i) Prove that Theorem 4.8 holds if m(a) is finite in a neighborhood of zero. [Hint :
Let (a, b) be the interval on which m(h) is finite, −∞ ≤ a < 0 < b < ∞. On (a, b)c,
m(h) = ∞, and therefore, one may restrict attention to h ∈ (a, b) in the definition of
c∗(x).] (ii) Calculate I(δ) for a gamma-distributed random variable with density f(x) =
αβ

Γ(β)
xβ−1e−αx1(0,∞)(x).



C H A P T E R V

Weak Convergence of Probability
Measures

Let (S, ρ) be a metric space and let P(S) be the set of all probability measures on
(S,B(S)). Recall the total variation metric (distance) for P(S) that emerged in the
context of Scheffe’s theorem. In this section another (weaker) form of convergence
is introduced that has widespread applications pertaining to limit distributions that
arise in a variety of other contexts. To fix ideas one may regard a sequence of prob-
abilities Pn ∈ P(S), n ≥ 1, as respective distributions of random maps Xn, n ≥ 1,
defined on some probability space and taking values in the metric space S.

A topology may be defined on P(S) by the following neighborhood system: For
P0 ∈ P(S), δ > 0, and fi (1 ≤ i ≤ m) real-valued bounded continuous functions on
S, define an open neighborhood of P0 ∈ P(S) as

N(P0 : f1, f2, . . . , fm; δ) := {P ∈ P(S) :
∣
∣
∣
∣

∫

S

fi dP −
∫

S

fi dP0

∣
∣
∣
∣ < δ ∀ i = 1, . . . , m}.

(5.1)
Here all δ > 0, m ≥ 1, and fi ∈ Cb(S) (the set of all real-valued bounded continuous
functions on S), 1 ≤ i ≤ m, are allowed. An open set of P(S) is defined to be a set
U such that every P0 in U has an open neighborhood of the form (5.1) contained in
U. Since the neighborhoods (5.1) are taken to be open, the topology is the collection
of all unions of such sets. The topology (i.e., the collection of open sets) so defined
is called the weak topology1 of P(S). We restrict the presentation to only those
results that will be used in this text.

1Billingsley (1999) provides a detailed exposition and comprehensive account of the weak
convergence theory.
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Definition 5.1. A sequence of probabilities {Pn : n ≥ 1} is said to converge
weakly to a probability P if

∫
S

f dPn →
∫

S
f dP ∀ f ∈ Cb(S). Denote this by

Pn ⇒ P.

Recall that the collection Cb(S) is a measure-determining class of functions. Thus the
limit P of {Pn}∞n=1 is uniquely defined by weak convergence (also see Remark 5.1
below).

Note that if Pn, P are viewed as distributions of random maps Xn, X, respec-
tively, defined on some probability space, then the definition of weak convergence,
equivalently convergence in distribution, takes the form

lim
n

Ef(Xn) = Ef(X) ∀f ∈ Cb. (5.2)

There are a number of equivalent formulations of weak convergence that are useful in
various contexts. We will need the following topological notions. Recall that a point
belongs to the closure of a set A if it belongs to A or if every neighborhood of the
point intersects both A and Ac. On the other hand, a point belongs to the interior of
A if there is an open set contained in A that includes the point. Denoting the closure
of a set A by A− and the interior by A◦, one defines the boundary by ∂A = A−\A◦.
A set A in B whose boundary ∂A satisfies P (∂A) = 0 is called a P -continuity set.
Since ∂A is closed, it clearly belongs to the σ-field S = B(S).

Theorem 5.1 (Alexandrov Theorem). Let Pn, n ≥ 1, P be probability measures
on (S,B(S)). The following are equivalent:

(i) Pn ⇒ P.

(ii) limn

∫
S

f dPn =
∫

S
f dP for all bounded, uniformly continuous real f.

(iii) lim supn Pn(F ) ≤ P (F ) for all closed F.

(iv) lim infn Pn(G) ≥ P (G) for all open G.

(v) limn Pn(A) = P (A) for all P -continuity sets A.

Proof. The plan is to first prove (i) implies (ii) implies (iii) implies (i), and hence
that (i), (ii), and (iii) are equivalent. We then directly prove that (iii) and (iv) are
equivalent and that (iii) and (v) are equivalent.
(i) implies (ii): This follows directly from the definition.
(ii) implies (iii): Let F be a closed set and δ > 0. For a sufficiently small but fixed
value of ε, Gε = {x : ρ(x, F ) < ε} satisfies P (Gε) < P (F ) + δ, by continuity of the
probability measure P from above, since the sets Gε decrease to F = ∩ε↓0Gε. Adopt
the construction from the proof of Proposition 1.4 that Cb(S) is measure-determining
to produce a uniformly continuous function h on S such that h(x) = 1 on F, h(x) = 0
on the complement Gc

ε of Gε, and 0 ≤ h(x) ≤ 1 for all x. In view of (ii) one has
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limn

∫
S

h dPn =
∫

S
h dP. In addition,

Pn(F ) =
∫

F

h dPn ≤
∫

S

h dPn

and
∫

S

h dP =
∫

Gε

h dP ≤ P (Gε) < P (F ) + δ.

Thus

lim sup
n

Pn(F ) ≤ lim
n

∫

S

h dPn =
∫

S

h dP < P (F ) + δ.

Since δ was arbitrary this proves (iii).
(iii) implies (i): Let f ∈ Cb(S). It suffices to prove

lim sup
n

∫

S

f dPn ≤
∫

S

f dP. (5.3)

For then one also gets lim infn

∫
S

f dPn ≥
∫

S
f dP, and hence (i), by replacing f by −f.

But in fact, for (5.3) it suffices to consider f ∈ Cb(S) such that 0 < f(x) < 1, x ∈ S,
since the more general f ∈ Cb(S) can be reduced to this by translating and rescaling
f. Fix an integer k and let Fi be the closed set Fi = {x : f(x) ≥ i/k}, i = 0, 1, . . . , k.
Then taking advantage of 0 < f < 1, one has

k∑

i=1

i− 1
k

P

(

{x :
i− 1

k
≤ f(x) <

i

k
}
)

≤
∫

S

f dP ≤
k∑

i=1

i

k
P

(

{x :
i− 1

k
≤ f(x) <

i

k
}
)

.

Noting that F0 = S, Fk = ∅, the sum on the right telescopes as

k∑

i=1

i

k
[P (Fi−1)− P (Fi)] =

1
k

+
1
k

k∑

i=1

P (Fi),

while the sum on the left is smaller than this by 1/k. Hence

1
k

k∑

i=1

P (Fi) ≤
∫

S

f dP <
1
k

+
1
k

k∑

i=1

P (Fi). (5.4)

In view of (iii), lim supn Pn(Fi) ≤ P (Fi) for each i. So, using the upper bound in (5.4)
with Pn in place of P and the lower bound with P, it follows that

lim sup
n

∫

S

f dPn ≤
1
k

+
1
k

k∑

i=1

P (Fi) ≤
1
k

+
∫

S

f dP.
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Now let k → ∞ to obtain the asserted inequality (5.3) to complete the proof of (i)
from (iii).
(iii) iff (iv): This is simply due to the fact that open and closed sets are complementary.
(iii) implies (v): Let A be a P -continuity set. Since (iii) implies (iv) one has

P (A−) ≥ lim sup
n

Pn(A−) ≥ lim sup
n

Pn(A)

≥ lim inf
n

Pn(A) ≥ lim inf
n

Pn(A◦) ≥ P (A◦). (5.5)

Since P (∂A) = 0, P (A−) = P (A◦), so that the inequalities squeeze down to P (A)
and limn Pn(A) = P (A) follows.
(v) implies (iii): Let F be a closed set. The idea is to observe that F may be expressed
as the limit of a decreasing sequence of P -continuity sets as follows. Since ∂{x :
ρ(x, F ) ≤ δ} ⊆ {x : ρ(x, F ) = δ}, these boundaries are disjoint for distinct δ, (Exercise
5). Thus at most countably many of them can have positive P -measure (Exercise 5),
all other, therefore, being P -continuity sets. In particular, there is a sequence of
positive numbers δk ↓ 0 such that the sets Fk = {x : ρ(x, F ) ≤ δk} are P -continuity
sets. From (v) one has lim supn Pn(F ) ≤ limn Pn(Fk) = P (Fk) for each k. Since F is
closed one also has Fk ↓ F, so that (iii) follows from continuity of the probability P
from above. This completes the proof of the theorem. �

The following result provides a useful tool for tracking weak convergence in a variety
of settings. Note that in the case that h is continuous it follows immediately from the
definition of weak convergence since compositions of bounded continuous functions
with h are bounded and continuous.

Theorem 5.2. Let S1, S2 be a pair of metric spaces and h : S1 → S2 a Borel-
measurable map. Suppose that {Pn}∞n=1, P are probabilities on the Borel σ-field of
S1 such that Pn ⇒ P . If h is P -a.s. continuous, then Pn ◦ h−1 ⇒ P ◦ h−1.

Proof. Let F be a closed subset of S2. Then, letting Fh = h−1(F ), it follows
from Alexandrov conditions that lim supn Pn(Fh) ≤ lim supn Pn(F−

h ) ≤ P (F−
h ). But

P (F−
h ) = P (Fh) since F−

h ⊆ Dh ∪ Fh, where Dh denotes the set of discontinuities of
h (Exercise 5) and, by hypothesis, P (Dh) = 0. �

In the special finite-dimensional case S = R
k, the following theorem provides some

alternative useful conditions for weak convergence. Additional useful methods are
developed in Exercises.

Theorem 5.3 (Finite-Dimensional Weak Convergence). Let {Pn}∞n=1, P be prob-
abilities on the Borel σ-field of R

k. The following are equivalent statements:

(i) Pn ⇒ P .
(ii)

∫
Rk fdPn →

∫
Rk fdP for all (bounded) continuous f vanishing outside a compact

set.
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(iii)
∫

Rk fdPn →
∫

Rk fdP for all infinitely differentiable functions f vanishing outside
a compact set.

(iv) Let Fn(x) := Pn((−∞, x1] × · · · × (−∞, xk]), and F (x) := P ((−∞, x1] × · · · ×
(−∞, xk]), x ∈ R

k, n = 1, 2, . . . . Then Fn(x) → F (x) as n → ∞, for every point
of continuity x of F .

Proof. We give the proof for the one-dimensional case k = 1. The case k ≥ 2
requires no difference in proof for (i)–(iii) and is left as Exercise 1 for these parts.
The equivalence of (i) and (iv) for the case k ≥ 2 is outlined in detail in Exercise
2. First let us check that (ii) is sufficient. It is obviously necessary by definition of
weak convergence. Assume (ii) and let f be an arbitrary bounded continuous function,
|f(x)| ≤ c for all x. The idea is to construct a continuous approximation to f having
compact support. For notational convenience write {x ∈ R

1 : |x| ≥ N} = {|x| ≥ N},
etc. Given ε > 0 there exists N such that P ({|x| ≥ N}) < ε/4c. Define θN by θN (x) =
1, |x| ≤ N, θN (x) = 0, |x| ≥ N + 1, and linearly interpolate for N ≤ |x| ≤ N + 1.
Then,

limn→∞ Pn({|x| ≤ N + 1}) ≥ limn→∞

∫

θN (x)dPn(x) =
∫

θN (x)dP (x)

≥ P ({|x| ≤ N}) > 1− ε

4c
,

so that

limn→∞ Pn({|x| > N + 1}) ≡ 1− limn→∞ Pn({|x| ≤ N + 1}) <
ε

4c
. (5.6)

Now define fN := fθN+1. Noting that f = fN on {|x| ≤ N + 1} and that on
{|x| > N + 1} one has |f(x)| ≤ c, upon first writing f = f1{|x|≤N+1} + f1{|x|>N+1},
and then further writing

∫
R1 fN1{|x|≤N+1}dPn =

∫
R1 fNdPn−

∫
{N+1<|x|≤N+2} fNdPn

(and similarly for the integral with respect to P ), one has from the triangle inequality
and the bound on f and fN that

limn→∞

∣
∣
∣
∣

∫

R1
f dPn −

∫

R1
f dP

∣
∣
∣
∣ ≤ limn→∞

∣
∣
∣
∣

∫

R1
fN dPn −

∫

R1
fN dP

∣
∣
∣
∣

+ limn→∞(2cPn({|x| > N + 1})

+ 2cP ({|x| > N + 1}))

< 2c
ε

4c
+ 2c

ε

4c
= ε.

Since ε > 0 is arbitrary,
∫

R1 f dPn →
∫

R1 f dP . So (i) and (ii) are equivalent. Let us
now show that (ii) and (iii) are equivalent. It is enough to prove (iii) is sufficient for
(ii). For this we construct an approximation to f that is C∞ and has compact support.
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For each ε > 0 define the function

ρε(x) = d(ε) exp
{

− 1
1− x2/ε2

}

1[−ε,ε](x), (5.7)

where d(ε) is so chosen as to make
∫

ρε(x)dx = 1. One may check that ρε(x) is
infinitely differentiable in x. Now let f be a continuous function that vanishes outside
a finite interval. Then f is uniformly continuous, and therefore, δ(ε) = sup{|f(x) −
f(y)| : |x− y| ≤ ε} → 0 as ε ↓ 0. Define

fε(x) = f ∗ ρε(x) :=
∫ ε

−ε

f(x− y)ρε(y)dy, (5.8)

and note that fε(x) is infinitely differentiable, vanishes outside a compact set, and is
an average over values of f within the interval (x− ε, x+ ε), |fε(x)− f(x)| ≤ δ(ε) for
all ε. Hence,

∣
∣
∣
∣

∫

R1
f dPn −

∫

R1
fε dPn

∣
∣
∣
∣ ≤ δ(ε) for all n,

∣
∣
∣
∣

∫

R1
f dP −

∫

R1
fε dP

∣
∣
∣
∣ ≤ δ(ε),

∣
∣
∣
∣

∫

R1
f dPn −

∫

R1
f dP

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R1
f dPn −

∫

R1
fε dPn

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R1
fε dPn −

∫

R1
fε dP

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R1
fε dP −

∫

R1
f dP

∣
∣
∣
∣

≤ 2δ(ε) +
∣
∣
∣
∣

∫

R1
fε dPn −

∫

R1
fε dP

∣
∣
∣
∣→ 2δ(ε) as n →∞.

Since δ(ε) → 0 as ε → 0 it follows that
∫

R1 f dPn →
∫

R1 f dP , as claimed. Next let
Fn, F be the distribution functions of Pn, P , respectively (n = 1, 2, . . .). Suppose (i)
holds and observe that (−∞, x] is a P -continuity set if and only if 0 = P (∂(−∞, x]) =
P ({x}). That is, x must be a continuity point of F , so that (i) implies (iii) follows
from Alexandrov’s theorem. To show that the converse is also true, suppose Fn(x) →
F (x) at all points of continuity of a distribution function (d.f.) F. Note that since
F is nondecreasing and bounded between 0 and 1, it can have at most countably
many discontinuities, i.e., only finitely many jumps of size larger than 1/n for any
n = 1, 2, . . .. Consider a continuous function f that vanishes outside the compact set
K contained in an interval [a, b] where a, b are selected as points of continuity of F .
The idea is to construct an approximation to f by a step function with jumps at points
of continuity of F . Given any ε > 0 one may partition [a, b] into a finite number of
subintervals whose endpoints are all points of continuity of F , and obtain a uniform
approximation of f to within ε > 0 by a step function fε having constant values of f at
the endpoint over each respective subinterval. Then,

∫
S

fεdPn →
∫

S
fεdP as n →∞.

Thus |
∫

S
fdPn −

∫
S

fdP | ≤
∫

S
|f − fε|dPn + |

∫
S

fεdPn −
∫

S
fεdP |+

∫
S
|fε − f |dP ≤

2ε + |
∫

S
fεdPn −

∫
S

fεdP |. Since ε > 0 is arbitrary, one readily obtains (i). �
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Remark 5.1. It follows from Theorem 5.1, in particular, that if (S, ρ) is a metric
space then

∫
S

f dP =
∫

S
f dQ ∀ f ∈ Cb(S) implies P = Q. Note that by a simple

rescaling this makes {f ∈ Cb(S) : ‖f‖∞ ≤ 1} measure-determining as well. The same
is true for the set UCb(S) of all bounded uniformly continuous real-valued functions
on S in place of Cb(S).

Using a technique from the proof of Theorem 5.1 one may also obtain the following
equivalent specification of the weak topology.

Proposition 5.4. The weak topology is defined by the system of open neighbor-
hoods of the form (5.1) with f1, f2, . . . , fm bounded and uniformly continuous.

Proof. Fix P0 ∈ P(S), f ∈ Cb(S), ε > 0. We need to show that the set {P ∈
P(S) : |

∫
S

f dP −
∫

S
f dP0| < ε} contains a set of the form (5.1), but with fi’s that

are uniformly continuous and bounded. Without essential loss of generality, assume
0 < f < 1. As in the proof of Theorem 5.1, (iii) implies (i), see the relations (5.4),
one may choose and fix a large integer k such that 1/k < ε/4 and consider the sets
Fi in that proof. Next, as in the proof of (ii) implies (iii) of Theorem 5.1, there
exist uniformly continuous functions gi, 0 ≤ gi ≤ 1, such that gi = 1 on Fi and
|
∫

S
gi dP0 − P0(Fi)| < ε/4, 1 ≤ i ≤ k. Then on the set {P : |

∫
S

gi dP −
∫

S
gi dP0| <

ε/4, 1 ≤ i ≤ k}, one has (see (5.1))

∫

S

fdP ≤ 1
k

k∑

i=1

P (Fi) +
1
k
≤ 1

k

k∑

i=1

∫

S

gidP +
1
k

<
1
k

k∑

i=1

∫

S

gidP0 +
ε

4
+

1
k
≤ 1

k

k∑

i=1

P0(Fi) +
2ε

4
+

1
k

<

∫

S

fdP0 +
3ε

4
<

∫

S

fdP0 + ε. (5.9)

Similarly, replacing f by 1−f in the above argument, one may find uniformly contin-
uous hi, 0 ≤ hi ≤ 1, such that on the set {P : |

∫
S

hi dP−
∫

S
hi dP0| < ε/4, 1 ≤ i ≤ k},

one has
∫

S
(1− f)dP <

∫
S
(1− f)dP0 + ε. Therefore

{P ∈ P(S) : |
∫

S

f dP −
∫

S

f dP0| < ε}

⊇
{

P :
∣
∣
∣
∣

∫

S

gi dP −
∫

S

gi dP0

∣
∣
∣
∣ < ε/4,

∣
∣
∣
∣

∫

S

hi dP −
∫

S

hi dP0

∣
∣
∣
∣ < ε/4, 1 ≤ i ≤ k

}

.

By taking intersections over m such sets, it follows that a neighborhood N(P0), say,
of P0 of the form (5.1) (with fi ∈ Cb(S), 1 ≤ i ≤ m) contains a neighborhood of
P0 defined with respect to bounded uniformly continuous functions. In particular,
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N(P0) is an open set defined by the latter neighborhood system. Since the latter
neighborhood system is a subset of the system (5.1), the proof is complete. �

Two points of focus for the remainder of this section are metrizability and (relative)
compactness in the weak topology. Compactness in a metric space may be equivalently
viewed as the existence of a limit point for any sequence in the space.

In the case that (S, ρ) is a compact metric space, C(S) ≡ Cb(S) is a complete
separable metric space under the “sup” norm ‖f‖∞ := max{|f(x)| : x ∈ S}, i.e.,
under the distance d∞(f, g) := ‖f −g‖∞ ≡ max{|f(x)−g(x)| : x ∈ S} (see Appendix
B). In this case the weak topology is metrizable, i.e., P(S) is a metric space with the
metric

dW (P,Q) :=
∞∑

n=1

2−n

∣
∣
∣
∣

∫

S

fn dP −
∫

S

fndQ

∣
∣
∣
∣ , (5.10)

where {fn : n ≥ 1} is a dense subset of {f ∈ C(S) : ‖f‖∞ ≤ 1}. Using Cantor’s diag-
onal procedure and the Riesz representation theorem (for bounded linear functionals
on C(S) in Appendix A), one may check that every sequence {Pn : n ≥ 1} has a
convergent subsequence. In other words, one has the following result (Exercise 8).

Proposition 5.5. If (S, ρ) is compact, then P(S) is a compact metric space under
the weak topology, with a metric given by (5.10).

A slightly weaker form of convergence is sometimes useful to consider within the
general theme of this section, for example in analyzing the nature of certain failures
of weak convergence (see Exercise 7). A function f ∈ Cb(S) is said to vanish at
infinity if for each ε > 0 there is a compact subset Kε such that |f(x)| < ε for all
x ∈ Kc

ε . Let C0
b (S) denote the collection of all such functions on S.

Definition 5.2. A sequence of probability measures {Pn}∞n=1 on (S,B(S)) is
said to converge vaguely to a finite measure P, not necessarily a probability, if
limn

∫
S

fdPn =
∫

S
fdP for all f ∈ C0

b (S).

Corollary 5.6 (Helly Selection Principle). Every sequence of probabilities µn, n ≥
1, on (R,B) has a vaguely convergent subsequence.

Proof. Let ϕ : R → (−1, 1) by ϕ(x) = 2
π tan−1(x), x ∈ R, and define a probability νn

supported on (−1, 1) by νn(A) = µn({x : ϕ(x) ∈ A}) for Borel subsets A of (−1, 1).
One may regard νn as a probability on the compact interval [−1, 1] (supported on
the open interval). Thus, by Theorem 5.10, there is a probability ν on [−1, 1] and
a subsequence {νnm

: m ≥ 1} such that νnm
⇒ ν as m → ∞. Define ν̃(A) = ν(A)

for Borel subsets A of (−1, 1). Then ν̃ is a measure on (−1, 1) with ν̃(−1, 1) ≤ 1.
Let µ(B) = ν̃({y ∈ (−1, 1) : ϕ−1(y) ∈ B}) for Borel subsets B of R. Since for f ∈
C0

b (R), the map g := f ◦ ϕ−1 is in Cb([−1, 1]), where g(1) = g(−1) = f(ϕ−1(±1)) :=
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limx→±1 f(ϕ−1(x)) = 0, one has, using the change of variable formula,

∫

R

f(x)µ(dx) =
∫

(−1,1)

f(ϕ−1(y))µ ◦ ϕ−1(dy) =
∫

(−1,1)

g(y)ν̃(dy)

=
∫

[−1,1]

g(y)ν(dy) = lim
m→∞

∫

[−1,1]

g(y)νnm
(dy)

= lim
m→∞

∫

R

f(x)µnm
(dx),

where the change of variable formula is again used to write the last equality. �

For our next result we need the following lemma. Let H = [0, 1]N be the space of
all sequences in [0, 1] with the product topology, referred to as the Hilbert cube

Lemma 1 (Hilbert Cube Embedding). Let (S, ρ) be a separable metric space. There
exists a map h on S into the Hilbert cube H ≡ [0, 1]N with the product topology, such
that h is a homeomorphism of S onto h(S), in the relative topology of h(S).

Proof. Without loss of generality, assume ρ(x, y) ≤ 1 ∀ x, y ∈ S. Let {zk : k =
1, 2, . . .} be a dense subset of S. Define the map

h(x) = (ρ(x, z1), ρ(x, z2), . . . , ρ(x, zk), . . .) (x ∈ S). (5.11)

If xn → x in S, then ρ(xn, zk) → ρ(x, zk) ∀ k, so that h(xn) → h(x) in the
(metrizable) product topology (of pointwise convergence) on h(S). Also, h is one-
to-one. For if x �= y, one may find zk such that ρ(x, zk) < 1

3ρ(x, y), and hence
ρ(y, zk) ≥ ρ(y, x) − ρ(zk, x) > 2

3ρ(x, y), so that ρ(x, zk) �= ρ(y, zk). Finally, let
ãn ≡ (an1, an2, . . .) → ã = (a1, a2, . . .) in h(S), and let xn = h−1(ãn), x = h−1(ã).
One then has (ρ(xn, z1), ρ(xn, z2), . . .) → (ρ(x, z1), ρ(x, z2), . . .). Hence ρ(xn, zk) →
ρ(x, zk) ∀ k, implying xn → x, since {zk : k ≥ 1} is dense in S. �

Theorem 5.7. Let (S, ρ) be a separable metric space. Then P(S) is a separable
metric (i.e., metrizable) space under the weak topology.

Proof. By Lemma 1, S may be replaced by its homeomorphic image Sh ≡ h(S) in
[0, 1]N which is compact under the product topology by Tychonov’s theorem (App-
endix B), and is metrizable with the metric d(ã, b̃) :=

∑∞
n=1 2−n|an − bn|(ã =

(a1, a2, . . .), b̃ = (b1, b2, . . .)). We shall consider uniform continuity of functions on
Sh with respect to this metric d. Every uniformly continuous bounded f on Sh has a
unique extension f̄ to S̄h (≡ closure of Sh in [0, 1]N) : f̄(ã) := limk→∞ f(ãk), where
ãk ∈ Sh, ãk → ã. Conversely, the restriction of every g ∈ C(S̄h) is a uniformly con-
tinuous bounded function on Sh. In other words, UCb(Sh) may be identified with
C(S̄h) as sets and as metric spaces under the supremum distance d∞ between func-
tions. Since S̄h is compact, Cb(S̄h) ≡ C(S̄h) is a separable metric space under the
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supremum distance d∞, and therefore, so is UCb(Sh). Letting {fn : n = 1, 2, . . .} be
a dense subset of UCb(Sh), one now defines a metric dW on P(Sh) as in (5.10). This
proves metrizability of P(Sh).

To prove separability of P(Sh), for each k = 1, 2, . . . , let Dk := {xki : i =
1, 2, . . . , nk} be a finite (1/k)-net of Sh (i.e., every point of Sh is within a distance
1/k from some point in this net). Let D = {xki : i = 1, . . . , nk, k ≥ 1} = ∪∞

k=1Dk.
Consider the set E of all probabilities with finite support contained in D and having
rational mass at each point of support. Then E is countable and is dense in P(Sh).
To prove this last assertion, fix P0 ∈ P(Sh). Consider the partition generated by the
set of open balls {x ∈ Sh : d(x, xki) < 1

k}, 1 ≤ i ≤ nk. Let Pk be the probability
measure defined by letting the mass of P0 on each nonempty set of the partition be
assigned to a singleton {xki} in Dk that is at a distance of at most 1/k from the set.
Now construct Qk ∈ E , where Qk has the same support as Pk but the point masses of
Qk are rational and are such that the sum of the absolute differences between these
masses of Pk and the corresponding ones of Qk is less than 1/k. Then it is simple
to check that dW (P0, Qk) → 0 as k → ∞, that is,

∫
Sh

g dQk →
∫

Sh
g dP0 for every

uniformly continuous and bounded g on Sh. �

The next result is of considerable importance in probability. To state it we need a
notion called “tightness.”

Definition 5.3. A subset Λ of P(S) is said to be tight if for every ε > 0, there
exists a compact subset Kε of S such that

P (Kε) ≥ 1− ε ∀ P ∈ Λ. (5.12)

Theorem 5.8 (Prohorov’s Theorem). (a) Let (S, ρ) be a separable metric space. If
Λ ⊆ P(S) is tight then its weak closure Λ̄ is compact (metric) in the weak topology.
(b) If (S, ρ) is Polish, then the converse is true: For a set Λ to be conditionally compact
(i.e., Λ̄ compact) in the weak topology, it is necessary that Λ be tight.

Proof. We begin with a proof of part (a). Suppose Λ ⊆ P(S) is tight. Let S̃ =
∪∞

j=1K1/j , where K1/j is a compact set determined from (5.12) with ε = 1/j. Then
P (S̃) = 1 ∀ P ∈ Λ. Also, S̃ is σ-compact, and so is its image S̃h equal to ∪∞

j=1h(K1/j)
under the map h (appearing in the proofs of Lemma 1 and Theorem 5.7) since the
image of a compact set under a continuous map is compact. In particular, S̃h is a
Borel subset of [0, 1]N and therefore of ¯̃Sh. Let Λh be the image of Λ in S̃h under h,
i.e., Λh = {P ◦ h−1 : P ∈ Λ} ⊆ P(S̃h). In view of the homeomorphism h : S̃ → S̃h, it
is enough to prove that Λh is conditionally compact as a subset of P(S̃h).

Since S̃h is a Borel subset of ¯̃Sh, one may take P(S̃h) as a subset of P( ¯̃Sh), extending
P in P(S̃h) by setting P ( ¯̃Sh\S̃h) = 0. Thus Λh ⊆ P(S̃h) ⊆ P( ¯̃Sh). By Proposition
5.5, P( ¯̃Sh) is compact metric (in the weak topology). Hence every sequence {Pn :
n = 1, 2, . . .} in Λh has a subsequence {Pnk

: k = 1, 2, . . .} converging weakly to some
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Q ∈ P( ¯̃Sh). We need to show that Q ∈ P(S̃h), that is, Q(S̃h) = 1. By Theorem 5.1,
Q(h(K1/j)) ≥ lim supk→∞ Pnk

(h(K1/j)) ≥ 1 − 1/j. (By hypothesis, P (h(K1/j)) ≥
1 − 1/j ∀ P ∈ Λh). Letting j → ∞, one gets Q(S̃h) = 1. Finally, note that if Λ is
conditionally compact when considered as a subset of P(S̃), it is also conditionally
compact when regarded as a subset of P(S) (Exercise 12).

For part (b) suppose that (S, ρ) is separable and complete and let Λ be relatively
compact in the weak topology. We will first show that given any nondecreasing seq-
uence Gn, n ≥ 1, of open subsets of S such that ∪nGn = S and given any ε > 0, there
is an n = n(ε) such that P (Gn(ε)) ≥ 1− ε for all P ∈ Λ. For suppose this is not true.
Then there are an ε > 0 and P1, P2, . . . in Λ such that Pn(Gn) < 1−ε for all n ≥ 1. But
by the assumed compactness, there is a subsequence Pn(k) that converges weakly to
some probability Q ∈ P(S). By Alexandrov’s theorem this implies, noting Gn ⊆ Gn(k)

for n ≤ n(k), that Q(Gn) ≤ lim infk→∞ Pn(k)(Gn) ≤ lim infk→∞ Pn(k)(Gn(k)) ≤ 1−ε,
for n ≥ 1. This leads to the contradiction 1 = Q(S) = limn→∞ Q(Gn) ≤ 1−ε. Now to
prove that Λ is tight, fix ε > 0. By separability of S for each k ≥ 1 there is a sequence
of open balls Bn,k, n ≥ 1, having radii smaller than 1/k and such that ∪n≥1Bn,k = S.
Let Gn,k := ∪n

m=1Bm,k. Using the first part of this proof of (b), it follows that for each
k there is an n = n(k) such that P (Gn(k),k) ≥ 1 − 2−kε for all P ∈ Λ. Define G :=
∩∞

k=1Gn(k),k. Then its closure G is totally bounded, since for each k there is a finite
cover of G by n(k) closed balls Bn,k of diameter smaller than 1/k. Thus completeness
of S implies that G is compact2. But P (G) ≥ P (G) ≥ 1−

∑∞
k=1 2−kε = 1− ε for all

P ∈ Λ. �

Corollary 5.9. Let (S, ρ) be a Polish space. Then any finite collection Λ of
probabilities on (S,B(S)) is tight.

Remark 5.2. The compactness asserted in part (a) of Theorem 5.8 remains valid
without the requirement of separability for the metric space (S, ρ). To see this, simply
note that the set S̃ = ∪∞

j=1K1/j is σ-compact metric whether S is separable or not.
However, in this case P(S) may not be metric under the weak topology. Nonetheless,
the relative weak topology on Λ (and Λ̄) is metrizable.

In applications one might have Λ = {Pn}∞n=1, where Pn = P◦X−1
n is the distribution

of a random map Xn. If Xn is real-valued, for example, then one might try to check
tightness by a Chebyshev-type inequality, see, for example, Exercise 9.

The following definition and proposition provide a frequently used metrization in
weak convergence theory.

Definition 5.4. The Prohorov metric dπ on P(S) is defined by

dπ(P,Q) := inf{ε > 0 : P (A) ≤ Q(Aε) + ε,Q(A) ≤ P (Aε) + ε,∀A ∈ B(S)}.

2See, for example, Royden, H. L. (1968), p. 164.
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Remark 5.3. Essentially using the symmetry that A ⊆ S\Bε if and only if B ⊆
S\Aε, one may check that if P (A) ≤ Q(Aε) + ε for all A ∈ B(S) then dπ(P,Q) ≤ ε.
That is it suffices to check that one of the inequalities holds for all A ∈ B(S) to
get the other. For if the first inequality holds for all A, taking B = S\Aε, one has
P (Aε) = 1− P (B) ≥ 1−Q(Bε)− ε = Q(S\Bε)− ε ≥ Q(A)− ε.

Proposition 5.10. Let (S, ρ) be a separable metric space. Then dπ metrizes the
weak topology on P(S) in the sense that:

(i) dπ defines a metric on P(S).
(ii) If dπ(Pn, P ) → 0 as n →∞ then Pn ⇒ P .
(iii) If Pn ⇒ P , then dπ(Pn, P ) → 0 as n→∞.

Proof. Suppose that dπ(P,Q) = 0. Then from the definition of dπ one arrives for
all closed sets F , letting ε ↓ 0 with A = F in the definition, at P (F ) ≤ Q(F ) and
Q(F ) ≤ P (F ). Symmetry and nonnegativity are obvious. For the triangle inequality
let dπ(Pi, Pi+1) = εi, i = 1, 2. Then P1(A) ≤ P2(Aε′

1)+ε′1 ≤ P3((A)ε′
1)ε′

2)+ε′1+ε′2, for
all ε′i > εi, i = 1, 2. Thus dπ(P1, P3) ≤ ε′1+ε′2. Since this is true for all ε′i > εi, i = 1, 2,
the desired triangle inequality follows. Next suppose that dπ(Pn, P ) → 0 as n → ∞.
Let εn → 0 be such that dπ(Pn, P ) < εn. Then, by definition, Pn(F ) ≤ P (F εn) + εn

for all closed F . Thus lim supn Pn(F ) ≤ P (F ) for all closed F , and weak convergence
follows from Alexandrov’s conditions. For the converse, fix an ε > 0. In view of the
remark following the definition of dπ it suffices to show that for all n sufficiently large,
say n ≥ n0, one has for any Borel set A that P (A) ≤ Pn(Aε) + ε. By separability,
S is the union of countably many open balls Bi, i ≥ 1, of diameter smaller than ε.
Choose N such that P (S\ ∪N

m=1 Bm) ≤ P (∪m≥N+1Bm) < ε. Now by Alexandrov’s
conditions, Pn ⇒ P implies that for any of the finitely many open sets of the form
G := Bi1∪· · ·∪Bim

, 1 ≤ i1 < · · · < im ≤ N , there is an n0 such that Pn(G) > P (G)−ε
for all n ≥ n0. For A ∈ B(S) let Â = ∪N

i=1{Bi : Bi ∩ A �= ∅}. Then consider the
special choice G = Âε := {x ∈ S : ρ(x, Â) < ε}. In particular, one has for n > n0 that
P (A) ≤ P (Â)+P (∪i>NBi) ≤ P (Â)+ ε < Pn(Â)+2ε ≤ Pn(Âε)+2ε ≤ Pn(A2ε)+2ε,
since Â ⊆ Aε, so that Âε ⊆ A2ε. Thus dπ(Pn, P ) ≤ 2ε for all n ≥ n0. �

EXERCISES

Exercise Set V

1. Prove the equivalence of (i)–(iii) of Theorem 5.3 in the case k ≥ 2.

2. Complete the following steps to prove the equivalence of (i) and (iv) of Theorem 5.3 in
the case k ≥ 2.
(i) Show that F is continuous from above at x in the sense that given ε > 0 there is a

δ > 0 such that |F (x) − F (y)| < ε whenever xi ≤ yi < xi + δ, i = 1, . . . , k. [Hint :
Use the continuity of probability measure from above.]
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(ii) Say that F is continuous from below at x if given ε > 0 there is a δ > 0 such that
|F (x)−F (y)| < ε whenever xi−δ < yi ≤ xi, i = 1, . . . , k. Show that x is a continuity
point of F if and only if continuity holds from above and below. Moreover, x is a
continuity point of F if and only if F (x) = P (∩k

i=1{y ∈ R
k : yi < xi}).

(iii) Show that x is a continuity point of F if and only if ∩k
i=1{y ∈ R

k : yi ≤ xi} is
a P -continuity set. [Hint : The boundary of ∩k

i=1{y ∈ R
k : yi ≤ xi} is the relative

complement ∩k
i=1{y ∈ R

k : yi ≤ xi}\ ∩k
i=1 {y ∈ R

k : yi < xi}.]
(iv) Show that if Pn ⇒ P then Fn(x) → F (x) at all continuity points x of F .
(v) Let A be a π-system of Borel subsets of S, i.e., closed under finite intersections.

Assume that each open subset of S is a finite or countable union of elements of
A. Show that if Pn(A) → P (A) for each A ∈ A then Pn ⇒ P . [Hint : Use the
inclusion–exclusion principle to show that Pn(∪N

m=1Am) → P (∪N
m=1Am) if Am ∈ A

for m = 1, . . . , m. Verify for ε > 0 and open G = ∪mAm, Am ∈ A, that there is an
N such that P (G) − ε ≤ P (∪N

m=1Am) = limn Pn(∪N
m=1Am) ≤ lim infn Pn(G).]

(vi) Let A be a π-system of sets such that for each x ∈ S and every ε > 0 there is an
A ∈ A such that x ∈ A◦ ⊆ A ⊆ Bε(x) := {y ∈ S : d(y, x) < ε}, where A◦ denotes
the set of points belonging to the interior of A. Show that if S is a separable metric
space and Pn(A) → P (A) for all A ∈ A then Pn ⇒ P . [Hint : Check that A satisfies
the conditions required in the previous step.]

(vii)Show that if Fn(x) → F (x) at each point x of continuity of F then Pn ⇒ P . [Hint :
Take A to be the collection of sets of the form A = {x : ai < xi ≤ bi, i = 1, . . . , k}
for which the 2k (k−1)-dimensional hyperplanes determining each of its faces has P -
measure zero. The P, Pn-probabilities of A ∈ A are sums and differences of values of
F (x), Fn(x), respectively, as x varies over the 2k vertices of A. Moreover, vertices of
A ∈ A are continuity points of F , and at most countably many parallel hyperplanes
can have positive P -measure.]

3. Use Prohorov’s theorem to give a simple derivation for Exercise 2. [Hint : Suppose that
Fn(x) → F (x) at all points x of continuity of F . Show that {Pn : n ≥ 1} is tight, using

Pn((a, b]) ≥ Fn(b) −
∑k

i=1
Fn(b1, . . . , bi−1, ai, bi+1, . . . , bk), 1 ≤ i ≤ k, for ai < bi, ∀i,

where a = (a1, . . . , ak), b = (b1, . . . , bk).]

4. Suppose that {(Xn, Yn)}∞n=1 is a sequence of pairs of real-valued random variables that
converge in distribution to (X, Y ). Show that Xn+Yn converges in distribution to X+Y .
[Hint : The map h : R × R → R given by h(x, y) = x + y is continuous.]

5. (i) Show that if F is closed, δ > 0, then ∂{x : ρ(x, F ) ≤ δ} ⊆ {x : ρ(x, F ) = δ}. [Hint :
If y belongs to the set on the left, there is a sequence yn → y such that ρ(yn, F ) ≥ δ.]
(ii) Let (Ω,F , P ) be an arbitrary probability space. Suppose Aδ, δ > 0, is a collection
of disjoint measurable sets. Show that P (Aδ) > 0 for at most countably many δ. [Hint :
For each positive integer n, the set {δ > 0 : P (Aδ) > 1/n} must be a finite set.] (iii) Let
h : S1 → S2 be Borel measurable and P -a.s. continuous. With Fh as in Theorem 5.2,
show that F−

h ⊆ Fh ∪ Dh. [Hint : If y ∈ F−
h \Fh ⊆ ∂Fh, then h(y) /∈ F , but there is a

sequence yn → y such that h(yn) ∈ F for all n ≥ 1.]

6. Let {Xn}∞n=1 be a sequence of random maps with values in a metric space S with metric
ρ and Borel σ-field S = B(S).
(i) Show that Xn converges in probability to an a.s. constant c if and only if the sequence

of probabilities Qn := P ◦X−1
n converge weakly to δc. [Here convergence in probability

means that given ε > 0 one has P (ρ(Xn, c) > ε) → 0 as n → ∞.]
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(ii) Show that convergence in probability to a random map X implies P ◦X−1
n ⇒ P ◦X−1

as n → ∞.

7. Let S be a metric space with Borel σ-field B(S). (a) Give an example to show that vague
convergence does not imply weak convergence, referred to as escape of probability mass
to infinity. [Hint : Consider, for example, Pn = 2

3
δ{ 1

n
} + 1

3
δ{n}.] (b) Show that if {Pn}∞n=1

is tight, then vague convergence and weak convergence are equivalent for {Pn}∞n=1.

8. Let (S, ρ) be a compact metric space.
(i) Show that S is separable. [Hint : For each integer n ≥ 1, consider the open cover of

S by open balls of radii 2−n centered at x ∈ S.]
(ii) Give a proof of Proposition 5.5. [Hint : Let {fn} be a countable dense sequence in

C(S). For a sequence of probabilities Pn, first consider the bounded sequence of num-
bers

∫
S

f1dPn, n ≥ 1. Extract a subsequence Pn1k such that L(f1) := lim
∫

S
f1dPn1k

exists. Next consider the bounded subsequence
∫

S
f2dPn1k , etc. Use Cantor’s diag-

onalization to obtain a densely defined bounded linear functional L (on the linear
span of {fk : k ≥ 1}) and extend by continuity to C(S). Use the Riesz representation
theorem (Appendix A) to obtain the weak limit point.]

9. Let {Xn}∞n=1 be a sequence of real-valued random variables on (Ω,F , P ).
(i) Suppose that each Xn is in Lp, n ≥ 1, for some p ≥ 1, and supn E|Xn|p < ∞.

Show that {Qn = P ◦ X−1
n }∞n=1 is a tight sequence. [Hint : Use a Chebyshev-type

inequality.]
(ii) Suppose there is a δ > 0 such that for each −δ ≤ t ≤ δ. EtXn < ∞ for each n, and

limn→∞ EetXn = m(t) exists and is finite. Show that {Qn = P ◦ X−1
n }∞n=1 is tight.

[Hint : Apply the Markov inequality to the event [eδ|Xn| > eδa].]

10. Define probabilities on R absolutely continuous with respect to Lebesgue measure with
density Pε(dx) = ρε(x)dx, where ρε(x) was introduced to obtain C∞-approximations
with compact support in (5.7). Let δ{0} denote the Dirac probability concentrated at
0, and show that Pε ⇒ δ{0} as ε ↓ 0. [Hint : Consider probabilities of open sets in
Alexandrov’s theorem.]

11. Suppose that Pn, n ≥ 1, is a sequence of probabilities concentrated on [a, b]. Suppose
that one may show for each positive integer r that

∫
[a,b]

xrPn(dx) → mr ∈ R as n → ∞.

Show that there is a probability P such that Pn ⇒ P as n → ∞ and
∫
[a,b]

xrP (dx) = mr

for each r ≥ 1.

12. Let (S, ρ) be a metric space and B a Borel subset of S given the relative (metric) topology.
Let {Pn : n ≥ 1} be a sequence of probabilities in P(S) such that Pn(B) = 1 for all n.
If the restrictions of Pn, n ≥ 1, to B converge weakly to a probability P ∈ P(B), show
that Pn ⇒ P , when considered in P(S), i.e., extending P to S by setting P (S\B) = 0.



C H A P T E R VI

Fourier Series, Fourier Transform,
and Characteristic Functions

Consider a real- or complex-valued periodic function on the real line. By changing
the scale if necessary, one may take the period to be 2π. Is it possible to represent f
as a superposition of the periodic functions (“waves”) cos nx, sin nx of frequency n
(n = 0, 1, 2, . . .)? In view of the Weierstrass approximation theorem (Theorem
6.1 below), every continuous periodic function f of period 2π is the limit (in the sense
of uniform convergence of functions) of a sequence of trigonometric polynomials,
i.e., functions of the form

T∑

n=−T

cneinx = c0 +
T∑

n=1

(an cos nx + bn sin nx).

The theory of Fourier series says, among other things, that with the weaker notion
of L2-convergence the approximation holds for a wider class of functions, namely
for all square-integrable functions f on [−π, π]; here square-integrability means that
f is measurable and that

∫ π

−π
|f(x)|2 dx < ∞. This class of functions is denoted

by L2[−π, π]. The successive coefficients cn for this approximation are the so-called
Fourier coefficients:

cn =
1
2π

∫ π

−π

f(x)e−inx dx (n = 0,±1,±2, . . .). (6.1)

It should be noted that in general, we consider integrals of complex-valued functions
in this section, and the Lp = Lp(dx) spaces are those of complex-valued functions
(See Exercise 19 of Chapter I).
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The functions einx (n = 0,±1,±2, . . .) form an orthonormal set:

1
2π

∫ π

−π

einxe−imx dx =

{
0, for n �= m,

1 for n = m,
(6.2)

so that the Fourier series of f written formally, without regard to convergence for
the time being, as

∞∑

n=−∞
cneinx (6.3)

is a representation of f as a superposition of orthogonal components. To make matters
precise we first prove the following theorem; see Exercise 1 for an alternative approach.

Theorem 6.1. Let f be a continuous periodic function of period 2π. Then,
given δ > 0, there exists a trigonometric polynomial, specifically a Fejér average∑N

n=−N dneinx, such that

sup
x∈R1

∣
∣
∣
∣
∣
f(x)−

N∑

n=−N

dneinx

∣
∣
∣
∣
∣
< δ.

Proof. For each positive integer N , introduce the Fejér kernel

kN (x) :=
1
2π

N∑

n=−N

(

1− |n|
N + 1

)

einx. (6.4)

This may also be expressed as

2π(N + 1)kN (x) =
∑

0≤j,k≤N

ei(j−k)x =

∣
∣
∣
∣
∣
∣

N∑

j=0

eijx

∣
∣
∣
∣
∣
∣

2

=
2{1− (cos(N + 1)x}

2(1− cos x)
=

(
sin{ 1

2 (N + 1)x}
sin 1

2x

)2

. (6.5)

At x = 2nπ (n = 0,±1,±2, . . .), the right side is taken to be (N + 1)2. The first
equality in (6.5) follows from the fact that there are N +1−|n| pairs (j, k) in the sum
such that j − k = n. It follows from (6.5) that kN is a positive continuous periodic
function with period 2π. Also, kN is a pdf on [−π, π], since nonnegativity follows
from (6.5) and normalization from (6.4) on integration. For every ε > 0 it follows
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from (6.5) that kN (x) goes to zero uniformly on [−π,−ε] ∪ [ε, π], so that

∫

[−π,−ε]∪[ε,π]

kN (x)dx → 0 as N →∞. (6.6)

In other words, kN (x)dx converges weakly to δ0(dx), the point mass at 0, as N →∞.
Consider now the approximation fN of f defined by

fN (x) :=
∫ π

−π

f(y)kN (x− y)dy =
N∑

n=−N

(

1− |n|
N + 1

)

cneinx, (6.7)

where cn is the nth Fourier coefficient of f . By changing variables and using the
periodicity of f and kN , one may express fN as

fN (x) =
∫ π

−π

f(x− y)kN (y)dy.

Therefore, writing M = sup{|f(x)| : x ∈ R}, and δε = sup{|f(y)−f(y′)| : |y−y′| < ε},
one has

|f(x)−fN (x)| ≤
∫ π

−π

|f(x−y)−f(x)|kN (y)dy ≤ 2M

∫

[−π,−ε]∪[ε,π]

kN (y)dy+δε. (6.8)

It now follows from (6.6) that f − fN converges to zero uniformly as N → ∞. Now
write dn = (1− |n|/(N + 1))cn. �

The next task is to establish the convergence of the Fourier series (6.3) to f in L2.
Here the norm ‖ · ‖ is ‖ · ‖2 as defined by (6.10) below.

Theorem 6.2.

a. For every f in L2[−π, π], the Fourier series of f converges to f in L2-norm, and
the identity ‖f‖ = (

∑∞
−∞ |cn|2)1/2 holds for its Fourier coefficients cn.

b. If (i) f is differentiable, (ii) f(−π) = f(π), and (iii) f ′ is square-integrable, then
the Fourier series of f also converges uniformly to f on [−π, π].

Proof. (a) Note that for every square-integrable f and all positive integers N ,

1
2π

∫ π

−π

(

f(x)−
N∑

−N

cneinx

)

e−imxdx = cm − cm = 0 (m = 0,±1, . . . ,±N).

(6.9)
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Therefore, if one defines the norm (or “length”) of a function g in L2[−π, π] by

‖g‖ =
(

1
2π

∫ π

−π

|g(x)|2dx

)1/2

≡ ‖g‖2, (6.10)

then, writing z̄ for the complex conjugate of z,

0 ≤ ‖f −
N∑

−N

cnein·‖2

=
1
2π

∫ π

−π

(

f(x)−
N∑

−N

cneinx

)(

f̄(x)−
N∑

−N

c̄ne−inx

)

dx

=
1
2π

∫ π

−π

(f(x)−
N∑

−N

cneinx)f̄(x)dx

= ‖f‖2 −
N∑

−N

cnc̄n = ‖f‖2 −
N∑

−N

|cn|2. (6.11)

This shows that ‖f −
∑N

−N cnein·‖2 decreases as N increases and that

lim
N→∞

‖f −
N∑

−N

cnein·‖2 = ‖f‖2 −
∞∑

−∞
|cn|2. (6.12)

To prove that the right side of (6.12) vanishes, first assume that f is continuous and
f(−π) = f(π). Given ε > 0, there exists, by Theorem 6.1, a trigonometric polynomial
∑N0

−N0
dneinx such that

max
x

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

dneinx

∣
∣
∣
∣
∣
< ε.

This implies

1
2π

∫ π

−π

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

dneinx

∣
∣
∣
∣
∣

2

dx < ε2. (6.13)

But by (6.9), f(x)−
∑N0

−N0
cn exp{inx} is orthogonal to eimx (m = 0, ±1, . . . ,±N0),

so that

1
2π

∫ π

−π

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

dneinx

∣
∣
∣
∣
∣

2

dx
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=
1
2π

∫ π

−π

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

cneinx +
N0∑

−N0

(cn − dn)einx

∣
∣
∣
∣
∣

2

dx

=
1
2π

∫ π

−π

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

cneinx

∣
∣
∣
∣
∣

2

dx

+
1
2π

∫ π

−π

∣
∣
∣
∣
∣

N0∑

−N0

(cn − dn)einx

∣
∣
∣
∣
∣

2

dx. (6.14)

Hence, by (6.13), (6.14), and (6.11),

1
2π

∫ π

−π

∣
∣
∣
∣
∣
f(x)−

N0∑

−N0

cneinx

∣
∣
∣
∣
∣

2

dx < ε2, lim
N→∞

∥
∥
∥
∥
∥
f −

N∑

−N

cnein·

∥
∥
∥
∥
∥

2

≤ ε2. (6.15)

Since ε > 0 is arbitrary, it follows that

lim
N→∞

∥
∥
∥
∥
∥
f(x)−

N∑

−N

cneinx

∥
∥
∥
∥
∥

= 0, (6.16)

and by (6.12),

‖f‖2 =
∞∑

−∞
|cn|2. (6.17)

This completes the proof of convergence for continuous periodic f . Now it may be
shown that given a square-integrable f and ε > 0, there exists a continuous periodic g
such that ‖f −g‖ < ε/2 (Exercise 1). Also, letting

∑
dneinx,

∑
cneinx be the Fourier

series of g, f , respectively, there exists N1 such that

∥
∥
∥
∥
∥
g −

N1∑

−N1

dnein·

∥
∥
∥
∥
∥

<
ε

2
.

Hence (see (6.14))

∥
∥
∥
∥
∥
f −

N1∑

−N1

cnein·

∥
∥
∥
∥
∥
≤

∥
∥
∥
∥
∥
f −

N1∑

−N1

dnein·

∥
∥
∥
∥
∥
≤ ‖f − g‖+

∥
∥
∥
∥
∥
g −

N1∑

−N1

dnein·

∥
∥
∥
∥
∥

<
ε

2
+

ε

2
= ε. (6.18)
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Since ε > 0 is arbitrary and ‖f(x)−
∑N

−N cneinx‖2 decreases to ‖f‖2−
∑∞

−∞ |cn|2 as
N ↑ ∞ (see (6.12)), one has

lim
N→∞

∥
∥
∥
∥
∥
f −

N∑

−N

cnein·

∥
∥
∥
∥
∥

= 0; ‖f‖2 =
∞∑

−∞
|cn|2. (6.19)

To prove part (b), let f be as specified. Let
∑

cneinx be the Fourier series of f , and
∑

c
(1)
n einx that of f ′. Then

c(1)
n =

1
2π

∫ π

−π

f ′(x)e−inx dx =
1
2π

f(x)e−inx

∣
∣
∣
∣

π

−π

+
in

2π

∫ π

−π

f(x)e−inx dx

= 0 + incn = incn. (6.20)

Since f ′ is square-integrable,

∞∑

−∞
|ncn|2 =

∞∑

−∞
|c(1)

n |2 < ∞. (6.21)

Therefore, by the Cauchy–Schwarz inequality,

∞∑

−∞
|cn| = |c0|+

∑

n�=0

1
|n| |ncn| ≤ |c0|+

⎛

⎝
∑

n�=0

1
n2

⎞

⎠

1/2 ⎛

⎝
∑

n�=0

|ncn|2
⎞

⎠

1/2

< ∞. (6.22)

But this means that
∑

cneinx is uniformly absolutely convergent, since

max
x

∣
∣
∣
∣
∣
∣

∑

|n|>N

cneinx

∣
∣
∣
∣
∣
∣
≤

∑

|n|>N

|cn| → 0 as N →∞.

Since the continuous functions
∑N

−N cneinx converge uniformly (as N → ∞) to
∑∞

−∞ cneinx, the latter must be a continuous function, say h. Uniform convergence
to h also implies convergence in norm to h. Since

∑∞
−∞ cneinx also converges in norm

to f , f(x) = h(x) for all x. For if the two continuous functions f and h are not
identically equal, then

∫ π

−π

|f(x)− h(x)|2dx > 0. �



FOURIER SERIES, FOURIER TRANSFORM, AND CHARACTERISTIC FUNCTIONS 79

Definition 6.1. For a finite measure (or a finite signed measure) µ on the circle
[−π, π) (identifying −π and π), the nth Fourier coefficient of µ is defined by

cn =
1
2π

∫

[−π,π)

e−inxµ(dx) (n = 0,±1, . . .). (6.23)

If µ has a density f , then (6.23) is the same as the nth Fourier coefficient of f given
by (6.1).

Proposition 6.3. A finite measure µ on the circle is determined by its Fourier
coefficients.

Proof. Approximate the measure µ(dx) by gN (x) dx, where

gN (x) :=
∫

[−π,π)

kN (x− y)µ(dy) =
N∑

−N

(

1− |n|
N + 1

)

cneinx, (6.24)

with cn defined by (6.23). For every continuous periodic function h (i.e., for every
continuous function on the circle),

∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

(∫

[−π,π)

h(x)kN (x− y) dx

)

µ(dy). (6.25)

As N → ∞, the probability measure kN (x − y) dx = kN (y − x) dx on the circle
converges weakly to δy(dx). Hence, the inner integral on the right side of (6.25) con-
verges to h(y). Since the inner integral is bounded by sup{|h(y)| : y ∈ R}, Lebesgue’s
dominated convergence theorem implies that

lim
N→∞

∫

[−π,π)

h(x)gN (x) dx =
∫

[−π,π)

h(y)µ (dy). (6.26)

This means that µ is determined by {gN : N ≥ 1}. The latter in turn are determined
by {cn}n∈Z. �

We are now ready to answer an important question: When is a given sequence {cn :
n = 0,±1, . . .} the sequence of Fourier coefficients of a finite measure on the circle? A
sequence of complex numbers {cn : n = 0,±1,±2, . . .} is said to be positive-definite
if for any finite sequence of complex numbers {zj : 1 ≤ j ≤ N}, one has

∑

1≤j,k≤N

cj−kzj z̄k ≥ 0. (6.27)
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Theorem 6.4 (Herglotz Theorem). {cn : n = 0,±1, . . .} is the sequence of Fourier
coefficients of a probability measure on the circle if and only if it is positive-definite,
and c0 = 1

2π .

Proof.
Necessity. If µ is a probability measure on the circle, and {zj : 1 ≤ j ≤ N} a given
finite sequence of complex numbers, then

∑

1≤j,k≤N

cj−kzj z̄k =
1
2π

∑

1≤j,k≤N

zj z̄k

∫

[−π,π)

ei(k−j)xµ(dx)

=
1
2π

∫

[−π,π)

(
N∑

1

zje
ikx

)(
N∑

1

z̄ke−ijx

)

µ(dx)

=
1
2π

∫

[−π,π)

∣
∣
∣
∣
∣

N∑

1

zje
ijx

∣
∣
∣
∣
∣

2

µ(dx) ≥ 0. (6.28)

Also,

c0 =
1
2π

∫

[−π,π)

µ(dx) =
1
2π

.

Sufficiency. Take zj = ei(j−1)x, j = 1, 2, . . . , N + 1, in (6.27) to get

gN (x) :=
1

N + 1

∑

0≤j,k≤N

cj−kei(j−k)x ≥ 0. (6.29)

Again, since there are N + 1− |n| pairs (j, k) such that j − k = n (−N ≤ n ≤ N) it
follows that (6.29) becomes

0 ≤ gN (x) =
N∑

−N

(

1− |n|
N + 1

)

einxcn. (6.30)

In particular, using (6.2),
∫

[−π,π)

gN (x)dx = 2πc0 = 1. (6.31)

Hence gN is a pdf on [−π, π]. By Proposition 5.5, there exists a subsequence {gN ′}
such that gN ′(x) dx converges weakly to a probability measure µ(dx) on [−π, π] as
N ′ →∞. Also, again using (6.2) yields

∫

[−π,π)

e−inxgN (x)dx = 2π

(

1− |n|
N + 1

)

cn (n = 0,±1, . . . ,±N). (6.32)
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For each fixed n, restrict to the subsequence N = N ′ in (6.32) and let N ′ →∞. Then,
since for each n, cos(nx), sin(nx) are bounded continuous functions,

2πcn = lim
N ′→∞

2π

(

1− |n|
N ′ + 1

)

cn =
∫

[−π,π)

e−inxµ(dx) (n = 0,±1, . . .). (6.33)

In other words, cn is the nth Fourier coefficient of µ. �

Corollary 6.5. A sequence {cn : n = 0,±1, . . .} of complex numbers is the sequence
of Fourier coefficients of a finite measure on the circle [−π, π) if and only if {cn : n =
0,±1, . . .} is positive-definite.

Proof. Since the measure µ = 0 has Fourier coefficients cn = 0 for all n, and the
latter is trivially a positive-definite sequence, it is enough to prove the correspondence
between nonzero positive-definite sequences and nonzero finite measures. It follows
from Theorem 6.4, by normalization, that this correspondence is 1–1 between positive-
definite sequences {cn : n = 0,±1, . . .} with c0 = c > 0 and measures on the circle
having total mass 2πc. �

Definition 6.2. The Fourier transform of an integrable (real- or complex-valued)
function f on (−∞,∞) is the function f̂ on (−∞,∞) defined by

f̂(ξ) =
∫ ∞

−∞
eiξyf(y) dy, −∞ < ξ <∞. (6.34)

As a special case take f = 1(c,d]. Then,

f̂(ξ) =
eiξd − eiξc

iξ
, (6.35)

so that f̂(ξ) → 0 as |ξ| → ∞. This convergence to zero as ξ → ±∞ is clearly valid
for arbitrary step functions, i.e., finite linear combinations of indicator functions of
finite intervals. Now let f be an arbitrary integrable function. Given ε > 0 there exists
a step function fε such that (see Remark following Proposition 2.6, Appendix A)

‖fε − f‖1 :=
∫ ∞

−∞
|fε(y)− f(y)| dy < ε. (6.36)

Now it follows from (6.34) that |f̂ε(ξ)− f̂(ξ)| ≤ ‖fε − f‖1 for all ξ. Since f̂ε(ξ) → 0
as ξ → ±∞, one has lim sup|ξ|→∞ |f̂(ξ)| ≤ ε. Since ε > 0 is arbitrary,

f̂(ξ) → 0 as |ξ| → ∞. (6.37)

Thus we have proved the following result.
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Proposition 6.6 (Riemann–Lebesgue Lemma). The Fourier transform f̂(ξ) of an
integrable function f tends to zero in the limit as |ξ| → ∞.

If f is continuously differentiable and f , f ′ are both integrable, then integration by
parts yields (Exercise 2(b))

f̂ ′(ξ) = −iξf̂(ξ). (6.38)

The boundary terms in deriving (6.38) vanish, for if f ′ is integrable (as well as f)
then f(x) → 0 as x→ ±∞. More generally, if f is r-times continuously differentiable
and f (j), 0 ≤ j ≤ r, are all integrable, then one may repeat the relation (6.38) to get
by induction (Exercise 2(b))

f̂ (r)(ξ) = (−iξ)rf̂(ξ). (6.39)

In particular, (6.39) implies that if f , f ′, f ′′ are integrable then f̂ is integrable.

Definition 6.3. The Fourier transform µ̂ of a finite measure µ on R is defined
by

µ̂(ξ) =
∫ ∞

−∞
eiξx dµ(x). (6.40)

If µ is a finite signed measure, i.e., µ = µ1 − µ2 where µ1, µ2 are finite measures,
then also one defines µ̂ by (6.40) directly, or by setting µ̂ = µ̂1 − µ̂2. In particular,
if µ(dx) = f(x) dx, where f is real-valued and integrable, then µ̂ = f̂ . If µ is a
probability measure, then µ̂ is also called the characteristic function of µ, or of
any random variable X on (Ω,F , P ) whose distribution is µ = P ◦X−1. In this case,
by the change of variable formula, one has the equivalent definition

µ̂(ξ) = EeiξX . (6.41)

We next consider the convolution of two integrable functions f , g:

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y) dy (−∞ < x <∞). (6.42)

Since by the Tonelli part of the Fubini–Tonelli theorem,

∫ ∞

−∞
|f ∗ g(x)| dx =

∫ ∞

−∞

∫ ∞

−∞
|f(x− y)||g(y)| dy dx

=
∫ ∞

−∞
|f(x)| dx

∫ ∞

−∞
|g(y)| dy, (6.43)
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f ∗ g is integrable. Its Fourier transform is

(f ∗ g)ˆ(ξ) =
∫ ∞

−∞
eiξx

(∫ ∞

−∞
f(x− y)g(y) dy

)

dx

=
∫ ∞

−∞

∫ ∞

−∞
eiξ(x−y)eiξyf(x− y)g(y) dy dx

=
∫ ∞

−∞

∫ ∞

−∞
eiξzeiξyf(z)g(y) dy dz = f̂(ξ)ĝ(ξ), (6.44)

a result of importance in probability and analysis. By iteration, one defines the n-fold
convolution f1 ∗ · · · ∗ fn of n integrable functions f1, . . . , fn and it follows from (6.44)
that (f1 ∗ · · · ∗ fn)ˆ = f̂1f̂2 · · · f̂n. Note also that if f , g are real-valued integrable
functions and one defines the measures µ, ν by µ(dx) = f(x) dx, ν(dx) = g(x) dx,
and µ ∗ ν by (f ∗ g)(x) dx, then

(µ ∗ ν)(B) =
∫

B

(f ∗ g)(x) dx =
∫ ∞

−∞

(∫

B

f(x− y) dx

)

g(y) dy

=
∫ ∞

−∞
µ(B − y)g(y) dy

∫ ∞

−∞
µ(B − y)dν(y), (6.45)

for every interval (or, more generally, for every Borel set) B. Here B − y is the
translate of B by −y, obtained by subtracting from each point in B the number y. Also
(µ∗ν)ˆ = (f ∗g)ˆ = f̂ ĝ = µ̂ν̂. In general (i.e., whether or not finite signed measures µ
and/or ν have densities), the last expression in (6.45) defines the convolution µ ∗ ν of
finite signed measures µ and ν. The Fourier transform of this finite signed measure is
still given by (µ∗ν)ˆ = µ̂ν̂. Recall that if X1, X2 are independent random variables on
some probability space (Ω,A, P ) and have distributions Q1, Q2, respectively, then the
distribution of X1+X2 is Q1∗Q2. The characteristic function (i.e., Fourier transform)
may also be computed from

(Q1 ∗Q2)ˆ(ξ) = Eeiξ(X1+X2) = EeiξX1EeiξX2 = Q̂1(ξ)Q̂2(ξ). (6.46)

This argument extends to finite signed measures, and is an alternative way of thinking
about (or deriving) the result (µ ∗ ν)ˆ = µ̂ν̂.

Theorem 6.7 (Uniqueness). Let P,Q be probabilities on the Borel σ-field of R
1.

Then P̂ (ξ) = Q̂(ξ) for all ξ ∈ R if and only if P = Q.

Proof. For each ξ ∈ R, one has by definition of the characteristic function that
e−iξxP̂ (ξ) =

∫
R

eiξ(y−x)P (dy). Thus, integrating with respect to Q, one obtains the
duality relation

∫

R

e−iξxP̂ (ξ)Q(dξ) =
∫

R

Q̂(y − x)P (dy). (6.47)
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Let ϕ1/σ2(x) = σ√
2π

e−
σ2x2

2 , x ∈ R, denote the Gaussian pdf with variance 1/σ2

centered at 0, and take Q(dx) ≡ Φ1/σ2(dx) := ϕ1/σ2(x)dx in (6.47). Then Q̂(ξ) =

Φ̂1/σ2(ξ) = e−
ξ2

2σ2 =
√

2πσ2ϕσ2(ξ) so that the right-hand side may be expressed as√
2πσ2 times the pdf of Φσ2 ∗ P . In particular, one has

1
2π

∫

R

e−iξxP̂ (ξ)e−
σ2ξ2

2 dξ =
∫

R

ϕσ2(y − x)P (dy).

The right-hand side may be viewed as the pdf of the distribution of the sum of
independent random variables Xσ2 + Y with respective distributions Φσ2 and P .
Also, by the Chebyshev inequality, Xσ2 → 0 in probability as σ2 → 0. Thus the
distribution of X2

σ + Y converges weakly to P . Equivalently, the pdf of Xσ2 + Y is
given by the expression on the left side, involving P only through P̂ . In this way P̂
uniquely determines P . �

Remark 6.1. The equation (6.47) may be viewed as a form of Parseval’s relation.

At this point we have established that the map P ∈ P(R) → P̂ ∈ P̂(R) is one-to-
one, and transforms convolution as pointwise multiplication. Some additional basic
properties are presented in the exercises. We next consider important special cases
of an inversion formula for absolutely continuous finite (signed) measures µ(dx) =
f(x)dx on R. This is followed by a basic result on the continuity of the map P → P̂
for respectively the weak topology on P(R) and the topology of pointwise convergence
on P̂(R), and an identification of the range of the Fourier transform of finite positive
measures.

It is instructive to consider the Fourier transform as a limiting version of a Fourier
series. In particular, if f is differentiable and vanishes outside a finite interval, and if
f ′ is square-integrable, then one may use the Fourier series of f (scaled to be defined
on (−π, π]) to obtain (see Exercise 6) the Fourier inversion formula,

f(z) =
1
2π

∫ ∞

−∞
f̂(y)e−izy dy. (6.48)

Moreover, any f that vanishes outside a finite interval and is square-integrable is
automatically integrable, and for such an f one has the Plancherel identity (see
Exercise 6)

‖f̂‖22 :=
∫ ∞

−∞
|f̂(ξ)|2 dξ = 2π

∫ ∞

−∞
|f(y)|2 dy = 2π‖f‖22. (6.49)

Let us now check that (6.48), (6.49), in fact, hold under the following more general
conditions.
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Theorem 6.8.

a. If f and f̂ are both integrable, then the Fourier inversion formula (6.48) holds.
b. If f is integrable as well as square-integrable, then the Plancherel identity (6.49)

holds.

Proof. (a) Let f, f̂ be integrable. Assume for simplicity that f is continuous. Note
that this assumption is innocuous since the inversion formula yields a continuous (ver-
sion of) f (see Exercise 7(i) for the steps of the proof without this a priori continuity
assumption for f). Let ϕε2 denote the pdf of the Gaussian distribution with mean zero
and variance ε2 > 0. Then writing Z to denote a standard normal random variable,

f ∗ ϕε2(x) =
∫

R1
f(x− y)ϕε2(y)dy = Ef(x− εZ) → f(x), (6.50)

as ε→ 0. On the other hand, using the easily verifiable inversion formula for ϕε2 (see
Exercise 3),

f ∗ ϕε2(x) =
∫

R

f(x− y)ϕε2(y)dy =
∫

R

f(x− y)
{

1
2π

∫

R

e−iξye−ε2ξ2/2dξ

}

dy

=
1
2π

∫

R

e−ε2ξ2/2

{∫

R

eiξ(x−y)f(x− y)dy

}

e−iξxdξ

=
1
2π

∫

R

e−iξxe−ε2ξ2/2f̂(ξ)dξ → 1
2π

∫

R

e−iξxf̂(ξ)dξ (6.51)

as ε → 0. The inversion formula (6.48) follows from (6.50), (6.51). For part (b) see
Exercise 7(ii). �

The above results and notions may be extended to higher dimensions R
k. The

Fourier series of a square-integrable function f on [−π, π)× [−π, π)× · · · × [−π, π) =
[−π, π)k is defined by

∑
v cv exp{iv · x}, where the summation is over all integral

vectors (or multi-indices) v = (v(1), v(2), . . . , v(k)), each v(i) being an integer. Also,
v · x =

∑k
i=1 v(i)x(i) is the usual Euclidean inner product on R

k between two vectors
v = (v(1), . . . , v(k)) and x = (x(1), x(2), . . . , x(k)). The Fourier coefficients are given by

cv =
1

(2π)k

∫ π

−π

· · ·
∫ π

−π

f(x)e−iv·x dx. (6.52)

The extensions of Theorems 6.1, 6.2, 6.7, 6.8 and Propositions 6.1, 6.6 are fairly
obvious. Similarly, the Fourier transform of an integrable function (with respect to
Lebesgue measure on R

k) f is defined by

f̂(ξ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
eiξ·yf(y) dy (ξ ∈ R

k), (6.53)
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and the Fourier inversion formula becomes

f(z) =
1

(2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
f̂(ξ)e−iz·ξ dξ, (6.54)

which holds when f(x) and f̂(ξ) are integrable. The Plancherel identity (6.49) becomes

∫ ∞

−∞
· · ·

∫ ∞

−∞
|f̂(ξ)|2 dξ = (2π)k

∫ ∞

−∞
· · ·

∫ ∞

−∞
|f(y)|2 dy, (6.55)

which holds whenever f is integrable and square-integrable, i.e., Theorem 6.8 to R
k.

The definitions of the Fourier transform and convolution of finite signed measures on
R

k are as in (6.40) and (6.45) with integrals over (−∞,∞) being replaced by integrals
over R

k. The proof of the property (µ1 ∗ µ2)ˆ = µ̂1µ̂2 is unchanged. The following
Parseval relation is easily established by an application of the Fubini–Tonelli theorem
and definition of characteristic function.

Proposition 6.9 (Parseval Relation). Let µ and ν be probabilities on R
k with

characteristic functions µ̂ and ν̂, respectively. Then
∫

Rk

µ̂(x)ν(dx) =
∫

Rk

ν̂(x)µ(dx).

Next we will see that the correspondence P �→ P̂ , on the set of probability measures
with the weak topology onto the set of characteristic functions with the topology of
pointwise convergence is continuous, thus providing a basic tool for obtaining weak
convergence of probabilities on the finite-dimensional space R

k.

Theorem 6.10 (Cramér–Lévy Continuity Theorem). Let Pn(n ≥ 1) be probability
measures on (Rk,Bk).

a. If Pn converges weakly to P , then P̂n(ξ) converges to P̂ (ξ) for every ξ ∈ R
k.

b. If for some continuous function ϕ one has P̂n(ξ) → ϕ(ξ) for every ξ, then ϕ is
the characteristic function of a probability P , and Pn converges weakly to P .

Proof. (a) Since P̂n(ξ), P̂ (ξ) are the integrals of the bounded continuous function
exp{iξ ·x} with respect to Pn and P , it follows from the definition of weak convergence
that P̂n(ξ) → P̂ (ξ). (b) We will show that {Pn : n ≥ 1} is tight. First let k = 1. For
δ > 0 one has

1
2δ

∫ δ

−δ

(1− P̂n(ξ))dξ =
1
2δ

∫

R

{∫ δ

−δ

(1− eiξx)dξ

}

Pn(dx)

=
1
2δ

∫

R

(

2δ − ξ
sin(ξx)

ξx

∣
∣
∣
∣
∣
δ
−δ

)

Pn(dx)
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=
1
2δ

∫

R

(

2δ − 2δ
sin(δx)

δx

)

Pn(dx)

=
∫

R

(

1− sin(δx)
δx

)

Pn(dx)

≥ 1
2
Pn({x : |δx| ≥ 2}) =

1
2
Pn

({

x : |x| ≥ 2
δ

})

. (6.56)

Hence, by assumption,

Pn

({

x : |x| ≥ 2
δ

})

≤ 2
2δ

∫ δ

−δ

(1− P̂n(ξ))dξ → 2
2δ

∫ δ

−δ

(1− ϕ(ξ))dξ, (6.57)

as n → ∞. Since ϕ is continuous and ϕ(0) = 1, given any ε > 0 one may choose
δ > 0 such that (1 − ϕ(ξ)) ≤ ε/4 for |ξ| ≤ δ. Then the limit in (6.57) is no more
than ε/2, proving tightness. For k > 1, consider the distribution Pj,n under Pn of
the one-dimensional projections x = (x1, . . . , xk) �→ xj for each j = 1, . . . , k. Then
P̂j,n(ξj) = P̂n(0, . . . , 0, ξj , 0, . . . , 0) → ϕj(ξj) := ϕ(0, . . . , 0, ξj , 0, . . . , 0) for all ξj ∈ R

1.
The previous argument shows that {Pj,n : n ≥ 1} is a tight family for each j =
1, . . . , k. Hence there is a δ > 0 such that Pn({x ∈ R

k : |xj | ≤ 2/δ, j = 1, . . . , k}) ≥
1−

∑k
j=1 Pj,n({xj : |xj | ≥ 2/δ}) ≥ 1−kε/2 for all sufficiently large n, establishing the

desired tightness. By Prohorov’s Theorem (Theorem 5.8), there exists a subsequence
of {Pn}∞n=1, say {Pnm

}∞m=1, that converges weakly to some probability P . By part
(a), P̂nm

(ξ) → P̂ (ξ), so that P̂ (ξ) = ϕ(ξ) for all ξ ∈ R
k. Since the limit characteristic

function ϕ(ξ) is the same regardless of the subsequence {Pnm
}∞m=1, it follows that Pn

converges weakly to P as n →∞. �

The law of rare events, or Poisson approximation to the binomial distribution,
provides a simple illustration of the Cramér–Lévy continuity theorem 6.10.

Proposition 6.11 (Law of Rare Events). For each n ≥ 1, suppose that
Xn,1, . . . , Xn,n is a sequence of n i.i.d. 0 or 1-valued random variables with pn =
P (Xn,k = 1), qn = P (Xn,k = 0), where limn→∞ npn = λ > 0, qn = 1 − pn. Then
Yn =

∑n
k=1 Xn,k converges in distribution to Y , where Y is distributed by the Poisson

law

P (Y = m) =
λm

m!
e−λ,

m = 0, 1, 2, . . ..

Proof. Using the basic fact that limn→∞(1 + an

n )n = elimn an whenever {an}∞n=1 is a
sequence of complex numbers such that limn an exists, one has by independence, and
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in the limit as n →∞,

EeiξYn =
(
qn + pneiξ

)n
=

(

1 +
npn(eiξ − 1)

n

)n

→ exp(λ(eiξ − 1)), ξ ∈ R.

One may simply check that this is the characteristic function of the asserted limiting
Poisson distribution. �

The development of tools for Fourier analysis of probabilities is concluded with
an application of the Herglotz theorem (Theorem 6.4) to identify the range of the
Fourier transform of finite positive measures.

Definition 6.4. A complex-valued function ϕ on R is said to be positive-definite
if for every positive integer N and finite sequences {ξ1, ξ2, . . . , ξN} ⊂ R and
{z1, z2, . . . , zN} ⊆ C (the set of complex numbers), one has

∑

1≤j,k≤N

zj z̄kϕ(ξj − ξk) ≥ 0. (6.58)

Theorem 6.12 (Bochner’s Theorem). A function ϕ on R is the Fourier transform
of a finite measure on R if and only if it is positive-definite and continuous.

Proof. The proof of necessity is entirely analogous to (6.28). It is sufficient to consider
the case ϕ(0) = 1. For each positive integer N , cj,N := ϕ(−j2−N ), j = 0,±1,±2, . . .,
is positive-definite in the sense of (6.27). Hence, by the Herglotz theorem, there exists
a probability γN on [−π, π) such that cj,N = (2π)−1

∫
[−π,π)

e−ijxγN (dx) for each j. By

the change of variable x→ 2Nx, one has ϕ(j2−N ) = (2π)−1
∫
[−2N π,2N π)

eij2−N xµN (dx)
for some probability µN (dx) on [−2Nπ, 2Nπ). The characteristic function µ̂N (ξ) :=∫

R1 eiξxµN (dx) agrees with ϕ at all dyadic rational points j2−N , j ∈ Z, dense in R.
To conclude the proof we note that one may use the continuity of ϕ(ξ) to see that
the family of functions µ̂N (ξ) is equicontinuous (see Exercise 27). Thus it follows by
the Arzelà-Ascoli theorem (Appendix B) that there is a subsequence that converges
pointwise to a continuous function g on R. Since g and ϕ agree on a dense subset of
R, it follows that g = ϕ. �

We will illustrate the use of characteristic functions in two probability applications.
For the first, let us recall the general random walk on R

k from Chapter II. A basic
consideration in the probabilistic analysis of the long-run behavior of a stochastic
evolution involves frequencies of visits to specific states.

Let us consider the random walk Sn := Z1+ · · ·+Zn, n ≥ 1, starting at S0 = 0. The
state 0 is said to be neighborhood recurrent if for every ε > 0, P (Sn ∈ Bε i.o.) = 1,
where Bε = {x ∈ R

k : |x| < ε}. It will be convenient for the calculations to use
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the rectangular norm |x| := max{|xj | : j = 1, . . . , k}, for x = (x1, . . . , xk). All
finite-dimensional norms being equivalent, there is no loss of generality in this choice.

Observe that if 0 is not neighborhood recurrent, then for some ε > 0, P (Sn ∈
Bε i.o.) < 1, and therefore by the Hewitt–Savage 0-1 law, P (Sn ∈ Bε i.o.) = 0. Much
more may be obtained with regard to recurrence dichotomies, expected return times,
nonrecurrence, etc., which is postponed to a fuller treatment of stochastic processes.
However, the following lemma is required for the result given here. As a warm-up,
note that by the Borel–Cantelli lemma I, if

∑∞
n=1 P (Sn ∈ Bε) < ∞ for some ε > 0

then 0 cannot be neighborhood recurrent. In fact one has the following basic result.

Lemma 1 (Chung–Fuchs). If 0 is not neighborhood recurrent then for all ε > 0,∑∞
n=1 P (Sn ∈ Bε) <∞.

Proof. The proof is based on establishing the following two calculations:

(A)
∞∑

n=0

P (Sn ∈ Bε) =∞⇒ P (Sn ∈ B2ε i.o.) = 1,

(B)
∞∑

n=0

P (Sn ∈ Bε) ≥
1

(2m)k

∞∑

n=0

P (Sn ∈ Bmε), m ≥ 2.

In particular, it will follow that if
∑∞

n=0 P (Sn ∈ Bε) = ∞ for some ε > 0, then
from (B),

∑∞
n=0 P (Sn ∈ Bε′) = ∞ for all ε′ < ε. In view of (A) this would make 0

neighborhood recurrent. To prove (A), let Nε := card{n ≥ 0 : Sn ∈ Bε} count the
number of visits to Bε. Also let Tε := sup{n : Sn ∈ Bε} denote the (possibly infinite)
time of the last visit to Bε. To prove (A) we will show that if

∑∞
m=0 P (Sm ∈ Bε) =∞,

then P (T2ε =∞) = 1. Let r be an arbitrary positive integer. Notice that for arbitrary
m = 0, 1, 2, . . ., the event Am := [Sm ∈ Bε, |Sn| ≥ ε ∀ n ≥ r + m] is disjoint from
∪∞

j=m+r[Sj ∈ Bε, |Sn| ≥ ε ∀ n ≥ r + j]. Thus it follows that 1A0 + 1A1 + · · · +
1Ar−1+· · · ≤ r. Taking expectations, it follows from Lebesgue’s monotone convergence
theorem that

∑∞
m=0 P (Sm ∈ Bε, |Sn| ≥ ε ∀ n ≥ m + r) ≤ r. Thus, using the Markov

property,

r ≥
∞∑

m=0

P (Sm ∈ Bε, |Sn| ≥ ε ∀ n ≥ m + r)

≥
∞∑

m=0

P (Sm ∈ Bε, |Sn − Sm| ≥ 2ε ∀ n ≥ m + r)

=
∞∑

m=0

P (Sm ∈ Bε)P (|Sn| ≥ 2ε ∀ n ≥ r). (6.59)
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Assuming
∑∞

m=0 P (Sm ∈ Bε) = ∞, one must therefore have P (T2ε ≤ r) ≤ P (|Sn| ≥
2ε ∀ n ≥ r) = 0. Thus P (T2ε < ∞) = 0. For the proof of (B), let m ≥ 2 and
for x = (x1, . . . , xk) ∈ R

k, define τx = inf{n ≥ 0 : Sn ∈ Rε(x)}, where Rε(x) :=
[0, ε)k + x := {y ∈ R

k : 0 ≤ yi − xi < ε, i = 1, . . . , k} is the translate of [0, ε)k

by x, i.e., “square with lower left corner at x of side lengths ε.” For arbitrary fixed
x ∈ {−mε,−(m− 1)ε, . . . , (m− 1)ε}k,

∞∑

n=0

P (Sn ∈ Rε(x)) =
∞∑

m=0

∞∑

n=m

P (Sn ∈ Rε(x), τx = m)

≤
∞∑

m=0

∞∑

n=m

P (|Sn − Sm| < ε, τx = m)

=
∞∑

m=0

P (τx = m)
∞∑

j=0

P (Sj ∈ Bε)

≤
∞∑

j=0

P (Sj ∈ Bε).

Thus, it now follow that

∞∑

n=0

P (Sn ∈ Bmε) ≤
∞∑

n=0

∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k

P (Sn ∈ Rε(x))

=
∑

x∈{−mε,−(m−1)ε,...,(m−1)ε}k

∞∑

n=0

P (Sn ∈ Rε(x))

≤ (2m)k
∞∑

n=0

P (Sn ∈ Bε). �

We turn now to conditions on the distribution of the displacements for neighbor-
hood recurrence. If, for example, EZ1 exists and is nonzero, then it follows from the
strong law of large numbers that a.s. |Sn| → ∞. The following is a complete character-
ization of neighborhood recurrence in terms of the distribution of the displacements.

Theorem 6.13 (Chung–Fuchs Recurrence Criterion). Let Z1, Z2, . . . be an i.i.d.
sequence of random vectors in R

k with common distribution Q. Let {Sn = Z1 +
· · · + Zn : n ≥ 1}, S0 = 0, be a random walk on R

k starting at 0. Then 0 is a
neighborhood-recurrent state if and only if for every ε > 0,

sup
0<r<1

∫

Bε

Re

(
1

1− rQ̂(ξ)

)

dξ =∞.
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Proof. First observe that the “triangular probability density function” f̂(ξ) =
(1− |ξ|)+, ξ ∈ R, has the characteristic function f(x) = 21−cos(x)

x2 , x ∈ R, and there-
fore, 1

2π f(x) has characteristic function f̂(ξ) (Exercise 22). One may also check that
f(x) ≥ 1/2 for |x| ≤ 1 (Exercise 22). Also with f(x) :=

∏k
j=1 f(xj), x = (x1, . . . , xk),

f̂(ξ) :=
∏k

j=1 f̂(ξj), f̂ has characteristic function f . In view of Parseval’s relation
(Proposition 6.9), one may write

∫

Rk

f
(x

λ

)
Q∗n(dx) = λk

∫

Rk

f̂(λξ)Q̂n(ξ)dξ,

for any λ > 0, n ≥ 1. Using the Fubini–Tonelli theorem one therefore has for 0 < r < 1
that

∫

Rk

f(
x
λ

)
∞∑

n=0

rnQ∗n(dx) = λk

∫

Rk

f̂(λξ)
1− rQ̂(ξ)

dξ.

Also, since the integral on the left is real, the right side must also be a real integral.
For what follows note that when an indicated integral is real, one may replace the
integrand by its respective real part. Suppose that for some ε > 0,

sup
0<r<1

∫

B 1
ε

Re

(
1

1− rQ̂(ξ)

)

dξ < ∞.

Then, it follows that

∞∑

n=1

P (Sn ∈ Bε) =
∞∑

n=1

Q∗n(Bε) ≤ 2k

∫

Rk

f(
x
ε
)

∞∑

n=0

Q∗n(dx)

≤ 2kεk sup
0<r<1

∫

Rk

f̂(εξ)
1− rQ̂(ξ)

dξ

≤ 2kεk sup
0<r<1

∫

B 1
ε

Re

(
1

1− rQ̂(ξ)

)

dξ <∞.

Thus, in view of of Borel–Cantelli I, 0 cannot be neighborhood recurrent.
For the converse, suppose that 0 is not neighborhood recurrent. Then, by Lemma

1, one must have for any ε > 0 that
∑∞

n=1 Q∗n(Bε) <∞.
Let ε > 0. Then, again using the Parseval relation with (2π)k f̂ as the Fourier

transform of f ,

sup
0<r<1

∫

Bε

Re

(
1

1− rQ̂(ξ)

)

dξ ≤ 2k sup
0<r<1

∫

Bε

Re

(
f(xε )

1− rQ̂(x)

)

dx
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≤ 2k(2π)kεk sup
0<r<1

∫

Rk

f̂(εx)
∞∑

n=0

rnQ∗n(dx)

≤ 2k(2π)kεk

∫

Bε−1

f̂(εx)
∞∑

n=0

Q∗n(dx)

≤ (4επ)k
∞∑

n=1

Q∗n(Bε−1) <∞. �

We now turn to a hallmark application of Theorem 6.10 in probability to prove
the celebrated Theorem 6.14 below. First we need an estimate on the error in the
Taylor polynomial approximation to the exponential function. The following lemma
exploits the special structure of the exponential to obtain two bounds: a “good small
x bound” and a “good large x bound”, each of which is valid for all x.

Lemma 2 (Taylor Expansion of Characteristic Function). Suppose that X is a
random variable defined on a probability space (Ω,F , P ) such that E|X|m < ∞.
Then

∣
∣
∣
∣
∣
EeiξX −

m∑

k=0

(iξ)k

k!
EXk

∣
∣
∣
∣
∣
≤ E min

{
|ξ|m+1|X|m+1

(m + 1)!
, 2
|ξ|m|X|m

m!

}

, ξ ∈ R.

Proof. Let fm(x) = eix −
∑m

j=0
(ix)j

j! . Note that fm(x) = i
∫ x

0
fm−1(y)dy. Iteration

yields a succession of m−1 iterated integrals with integrand of modulus |f1(ym−1)| =
|eiym−1 − 1| ≤ 2. The iteration of the integrals is therefore at most 2 |x|m

m! . To obtain
the other bound note the following integration by parts identity:

∫ x

0

(x− y)meiydy =
xm+1

m + 1
+

i

m + 1

∫ x

0

(x− y)m+1eiydy.

This defines a recursive formula that by induction leads to the expansion

eix =
m∑

j=0

(ix)j

j!
+

im+1

m!

∫ x

0

(x− y)meiydy.

For x ≥ 0, bound the modulus of the integrand by |x−y|m ≤ ym to get the bound on
the modulus of the integral term by |x|m+1

(m+1)! . Similarly for x < 0. Since both bounds
hold for all x, the smaller of the two also holds for all x. Now replace x by |ξX| and
take expected values to complete the proof. �

Theorem 6.14 (The Classical Central Limit Theorem). Let Xn, n ≥ 1, be i.i.d.
k-dimensional random vectors with (common) mean µ and a finite covariance matrix
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D. Then the distribution of (X1 + · · · + Xn − nµ)/
√

n converges weakly to ΦD, the
normal distribution on R

k with mean zero and covariance matrix D.

Proof. It is enough to prove the result for µ = 0 and D = I, the k×k identity matrix
I, since the general result then follows by an affine linear (and hence continuous)
transformation. First consider the case k = 1, {Xn : n ≥ 1} i.i.d. EXn = 0, EX2

n = 1.
Let ϕ denote the (common) characteristic function of Xn. Then the characteristic
function, say ϕn, of (X1 + · · ·+ Xn)/

√
n is given at a fixed ξ by

ϕn(ξ) = ϕn(ξ/
√

n) =
(

1− ξ2

2n
+ o

(
1
n

))n

, (6.60)

where no( 1
n ) = o(1) → 0 as n → ∞. The limit of (6.60) is e−

ξ2

2 , the characteristic
function of the standard normal distribution, which proves the theorem for the case
k = 1, using Theorem 6.10(b).

For k > 1, let Xn, n ≥ 1, be i.i.d. with mean zero and covariance matrix I. Then for
each fixed ξ ∈ R

k, ξ �= 0, Yn = ξ ·Xn, n ≥ 1, defines an i.i.d. sequence of real-valued
random variables with mean zero and variance σ2

ξ = ξ · ξ. Hence by the preceding,
Zn := (Y1 + · · · + Yn)/

√
n converges in distribution to the one-dimensional normal

distribution with mean zero and variance ξ · ξ, so that the characteristic function of
Zn converges to the function η �→ exp{−(ξ · ξ)η2/2}, η ∈ R. In particular, at η = 1,
the characteristic function of Zn is

Eeiξ·(X1+···+Xn)/
√

n → e−ξ·ξ/2. (6.61)

Since (6.61) holds for every ξ ∈ R
k, the proof is complete by the Cramér–Lévy

continuity theorem. �

EXERCISES

Exercise Set VI

1. Prove that given f ∈ L2[−π, π] and ε > 0, there exists a continuous function g on [−π, π]
such that g(−π) = g(π) and ‖f − g‖ < ε, where ‖‖ is the L2-norm defined by (6.10).
[Hint : By Proposition 2.6 in Appendix A, there exists a continuous function h on [−π, π]
such that ‖f − h‖ < ε

2
. If h(−π) = h(π), modify it on [π − δ, π] by a linear interpolation

with a value h(π − δ) at π − δ and a value h(−π) at π, where δ > 0 is suitably small.]

2. (a) Prove that if E|X|r < ∞ for some positive integer r, then the characteristic function
ϕ(ξ) of X has a continuous rth order derivative ϕ(r)(ξ) = ir

∫
R

xreiξxPX(dx), where PX

is the distribution of X. In particular, ϕ(r)(0) = irEXr. (b) Prove (6.39) assuming that
f and f (j), 1 ≤ j ≤ r, are integrable. [Hint : Prove (6.38) and use induction.] (c) If r ≥ 2
in (b), prove that f̂ is integrable.

3. This exercise concerns the normal (or Gaussian) distribution.
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(i) Prove that for every σ = 0, ϕσ2,µ(x) = (2πσ2)−
1
2 e

− (x−µ)2

2σ2 , −∞ < x < ∞, is
a probability density function (pdf). The probability on (R,B(R)) with this pdf
is called the normal (or Gaussian) distribution with mean µ variance σ2, de-

noted by Φσ2,µ. [Hint : Let c =
∫ ∞
−∞ e−x2/2dx. Then c2 =

∫
R2 e−(x2+y2)/2dxdy =

∫ ∞
0

∫ 2π

0
re−r2/2dθdr = 2π.]

(ii) Show that
∫ ∞
−∞ xϕσ2,µ(x)dx = µ,

∫ ∞
−∞(x − µ)2ϕσ2,µ(x)dx = σ2. [Hint :

∫ ∞
−∞(x −

µ)ϕσ2,µ(x)dx = 0,
∫ ∞
−∞ x2e−x2/2dx = 2

∫ ∞
0

x(−de−x2/2) = 2
∫ ∞
0

e−x2/2dx =√
2π.]

(iii) Write ϕ = ϕ1,0, the standard normal density. Show that its odd-order moments
vanish and the even-order moments are given by µ2n =

∫ ∞
−∞ x2nϕ(x)dx = (2n −

1) · (2n − 3) · · · 3 · 1 for n = 1, 2, . . .. [Hint : Use integration by parts to prove the
recursive relation µ2n = (2n − 1)µ2n−2, n = 1, 2 . . ., with µ0 = 1.]

(iv) Show that Φ̂σ2,µ(ξ) = eiξµ−σ2ξ2/2, ϕ̂(ξ) = e−ξ2/2. [Hint : ϕ̂(ξ) =
∫ ∞
−∞(cos(ξx))

ϕ(x)dx. Expand cos(ξx) in a power series and integrate term by term using (iii).]
(v) (Fourier Inversion for ϕσ2 ≡ ϕσ2,0). Show that ϕσ2(x) = (2π)−1

∫ ∞
−∞ e−iξxϕ̂σ2

(ξ)dξ. [Hint : ϕ̂σ2(ξ) =
√

2π
σ2 ϕ 1

σ2
(ξ). Now use (iv).]

(vi) Let Z = (Z1, . . . , Zk) be a random vector where Z1, Z2, . . . , Zk are i.i.d. ran-
dom variables with standard normal density ϕ. Then Z is said to have the
k-dimensional standard normal distribution. Its pdf (with respect to Lebesgue

measure on R
k) is ϕI(x) = ϕ(x1) · · ·ϕ(xk) = (2π)−

k
2 e−

|x|2
2 , for x = (x1, . . . , xk).

If Σ is a k×k positive-definite symmetric matrix and µ ∈ R
k, then the normal (or

Gaussian) distribution ΦΣ,µ with mean µ and dispersion (or covariance) matrix Σ

has pdf ϕΣ,µ(x) = (2π)−
k
2 (detΣ)−

1
2 exp{− 1

2
(x−µ) ·Σ−1(x−µ)}, where · denotes

the inner (dot) product on R
k. (a) Show that ϕ̂Σ,µ(ξ) = exp{iξ ·µ− 1

2
ξ ·Σξ}, ξ ∈

R
k. (Customary abuse of notation identifies the characteristic function of the dis-

tribution with the characteristic function of the pdf). (b) If A is a k×k matrix such
that AA′ = Σ, show that for standard normal Z, AZ+µ has the distribution ΦΣ,µ.
(c) Prove the inversion formula ϕΣ,µ(x) = (2π)−k

∫
Rk ϕ̂Σ,µ(ξ)e−iξ·xdξ, x ∈ R

k.
(vii) Show that if (X1, . . . , Xk) has a k-dimensional Gaussian distribution, then

{X1, . . . , Xk} is a collection of independent random variables if and only if they
are uncorrelated.

4. Suppose that {Pn}∞n=1 is a sequence of Gaussian probability distributions on (Rk,Bk)

with respective mean vectors m(n) = (m
(n)
1 , . . . , m

(n)
k ) and variance–covariance matrices

Γ(n) = ((γ
(n)
i,j ))1≤i,j≤k. (i) Show that if m(n) → m and Γ(n) → Γ (componentwise) as

n → ∞, then Pn ⇒ P, where P is Gaussian with mean vector m and variance–covariance
matrix Γ. [Hint : Apply the continuity theorem for characteristic functions. Note that in
the case of nonsingular Γ one may apply Scheffé’s theorem, or apply Fatou’s lemma to
Pn(G), G open.] (ii) Show that if Pn ⇒ P , then P must be Gaussian. [Hint : Consider the
case k = 1, mn = 0, σ2

n =
∫

R
x2Pn(dx). Use the continuity theorem and observe that if

σ2
n (n ≥ 1) is unbounded, then P̂n(ξ) ≡ exp {−σ2

n
2

ξ2} does not converge to a continuous
limit at ξ = 0.]

5. (Change of Location/Scale/Orientation) Let X be a k-dimensional random vector and
compute the characteristic function of Y = AX + b, where A is a k × k matrix and
b ∈ R

k.
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6. (Fourier Transform, Fourier Series, Inversion, and Plancherel) Suppose f is differ-
entiable and vanishes outside a finite interval, and f ′ is square-integrable. Derive the
inversion formula (6.48) by justifying the following steps. Define gN (x) := f(Nx), vani-

shing outside (−π, π). Let
∑

cn,Neinx,
∑

c
(1)
n,Neinx be the Fourier series of gN and its

derivative g′
N , respectively.

(i) Show that cn,N = 1
2Nπ

f̂
(
− n

N

)
.

(ii) Show that
∑∞

n=−∞ |cn,N | ≤ 1
2π

∣
∣
∣
∫ π

−π
gN (x) dx

∣
∣
∣ + A

(
1
2π

∫ π

−π
|g′

N (x)|2 dx
)1/2

< ∞,

where A = (2
∑∞

n=1
n−2)1/2. [Hint : Split off |c0,N | and apply Cauchy–Schwarz

inequality to
∑

n�=0
1
|n| (|ncn,N |). Also note that |c(1)

n,N |2 = |ncn,N |2.]
(iii) Show that for all sufficiently large N , the following convergence is uniform: f(z) =

gN

(
z
N

)
=

∑∞
n=−∞ cn,Neinz/N =

∑∞
n=−∞

1
2Nπ

f̂
(
− n

N

)
einz/N .

(iv) Show that (6.48) follows by letting N → ∞ in the previous step if f̂ ∈ L1(R, dx).
(v) Show that for any f that vanishes outside a finite interval and is square-integrable,

hence integrable, one has, for all sufficiently large N , 1
N

∑∞
n=−∞

∣
∣f̂

(
n
N

)∣
∣2 =

2π
∫ ∞
−∞ |f(y)|2 dy. [Hint : Check that 1

2π

∫ π

−π
|gN (x)|2 dx = 1

2Nπ

∫ ∞
−∞ |f(y)|2 dy, and

1
2π

∫ π

−π
|gN (x)|2 dx =

∑∞
n=−∞ |cn,N |2 = 1

4N2π2

∑∞
n=−∞

∣
∣f̂

(
n
N

)∣
∣2.]

(vi) Show that the Plancherel identity (6.49) follows in the limit as N → ∞, in (v).

7. ((i) Inversion Formula) Prove (6.48) assuming only that f , f̂ are integrable. [Hint :
Step 1. Continuous functions with compact support are dense in L1 ≡ L1(R, dx). Step
2. Show that translation y → g(· + y)(≡ g(x + y), x ∈ R), is continuous on R into L1,
for any g ∈ L1. For this, given δ > 0, find continuous h with compact support such that
‖g−h‖1 < δ/3. Then find ε > 0 such that ‖h(·+y)−h(·+y′)‖1 < δ/3 if |y−y′| < ε. Then
use ‖g(·+y)−g(·+y′)‖1 ≤ ‖g(·+y)−h(·+y)‖1+‖h(·+y)−h(·+y′)‖1+‖h(·+y′)−g(·+
y′)‖1 < δ, noting that the Lebesgue integral (measure) is translation invariant. Step 3.
Use Step 2 to prove that Ef(x+εZ) → f(x) in L1 as ε → 0, where Z is standard normal.
Step 4. Use (6.51), which does not require f to be continuous, and Step 3, to show that
the limit in (6.51) is equal a.e. to f .] (ii) (Plancherel Identity). Let f ∈ L1 ∩ L2. Prove
(6.49). [Hint : Let f̃(x) := f(−x), g = f ∗ f̃ . Then g ∈ L1, |g(x)| ≤ ‖f‖2

2, g(0) = ‖f‖2
2.

Also g(x) = 〈fx, f〉, where fx(y) = f(x + y). Since x → fx is continuous on R into L2

(using arguments similar to those in Step 2 of part (i) above), and 〈, 〉 is continuous on
L2 × L2 into R, g is continuous on R. Apply the inversion formula (in part (i)) to get
‖f‖2

2 = g(0) = 1
2π

∫
ĝ(ξ)dξ ≡ 1

2π

∫
|f̂(ξ)|2dξ.]

8. (Smoothing Property of Convolution) (a) Suppose µ, ν are probabilities on R
k, with ν

absolutely continuous with pdf f ; ν(dx) = f(x)dx. Show that µ ∗ ν is absolutely contin-
uous and calculate its pdf. (b) If f, g ∈ L1(Rk, dx) and if g is bounded and continuous,
show that f ∗ g is continuous. (c) If f, g ∈ L1(Rk, dx), and if g and its first r derivatives
g(j), j = 1, . . . , r are bounded and continuous, show that f ∗ g is r times continuously
differentiable. [Hint : Use induction.]

9. Suppose f, f̂ are integrable on (R, dx). Show
ˆ̂
f(x) = 2πf(−x).

10. Let Q(dx) = 1
2
1[−1,1](x)dx be the uniform distribution on [−1, 1].

(i) Find the characteristic functions of Q and Q∗2 ≡ Q ∗ Q.
(ii) Show that the probability with pdf c sin2 x/x2, for appropriate normalizing constant

c, has a characteristic function with compact support and compute this characteristic
function. [Hint : Use Fourier inversion for f = Q̂2.]
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11. Derive the multidimensional extension of the Fourier inversion formula.

12. Show that:
(i) The Cauchy distribution with pdf (π(1 + x2))−1, x ∈ R, has characteristic function

e−|ξ|.
(ii) The characteristic function of the double-sided exponential distribution 1

2
e−|x|dx is

(1+ξ2)−1. [Hint : Use integration by parts twice to show that
∫ ∞
−∞ eiξx( 1

2
e−|x|)dx ≡

∫ ∞
0

e−x cos(ξx)dx = (1 + ξ2)−1.]

13. (i) Give an example of a pair of dependent random variables X, Y such that the distri-
bution of their sum is the convolution of their distributions. [Hint : Consider the Cauchy
distribution with X = Y .] (ii) Give an example of a non-Gaussian bivariate distribution
such that the marginals are Gaussian.

14. Show that if ϕ is the characeristic function of a probability then ϕ must be uniformly
continuous on R.

15. (Symmetric Distributions) (i) Show that the characteristic function of X is real-valued
if and only if X and −X have the same distribution. (ii) A symmetrization of (the distri-
bution of) a random variable X may be defined by (the distribution of) X−X′, where X′

is an independent copy of X, i.e., independent of X and having the same distribution as
X. Express symmetrization of a random variable in terms of its characteristic function.

16. (Multidimensional Gaussian characterization) Suppose that X = (X1, . . . , Xk) is a k-
dimensional random vector having a positive pdf f(x1, . . . , xk) on R

k(k ≥ 2). Assume
that (a) f is differentiable, (b) X1, . . . , Xk are independent, and (c) have an isotropic
density, i.e. f(x1, . . . , xk) is a function of ‖x‖2 = x2

1 + · · · + x2
k, (x1, . . . , xk) ∈ R

k. Show
that X1, . . . , Xk are i.i.d. normal with mean zero and common variance. [Hint : Let fj

denote the marginal pdf of Xj and argue that
f ′

j

2xjfj
must be a constant.]

17. (i) Show that the functions {eξ : ξ ∈ R
k} defined by eξ(x) := exp(iξ · x), x ∈ R

k con-
stitute a measure-determining class for probabilities on (Rk,Bk). [Hint : Given two
probabilities P, Q for which the integrals of the indicated functions agree, construct
a sequence by Pn = P ∀ n = 1, 2, . . . whose characteristic functions will obviously
converge to that of Q.]

(ii) Show that the closed half-spaces of R
k defined by Fa := {x ∈ R

k : xj ≤ aj , 1 ≤ j ≤
k}, a = (a1, . . . , ak) constitute a measure-determining collection of Borel subsets of
R

k. [Hint : Use a trick similar to that above.]

18. Compute the distribution with characteristic function ϕ(ξ) = cos(ξ), ξ ∈ R
1.

19. (Fourier Inversion for Lattice Random Variables)
(i) Let pj , j ∈ Z, be a probability mass function (pmf) of a probability distribution Q

on the integer lattice Z. Show that the Fourier transform Q̂ is periodic with period 2π,
and derive the inversion formula pj = (2π)−1

∫
(−π,π]

e−ijξQ̂(ξ)dξ. (ii) Let Q be a lattice

distribution of span h > 0 i.e., for some a0, Q({a0 + jh : j = 0,±1,±2, . . .}) = 1. Show
that Q̂ is periodic with period 2π/h and write down an inversion formula. (iii) Extend
(i), (ii) to the multidimensional lattice distributions with Z

k in place of Z.

20. (Parseval’s Relation) (i) Let f, g,∈ L2([−π, π)), with Fourier coefficients {cn}, {dn},
respectively. Prove that

∑
n

cndn = 1
2π

∫
(−π,π]

f(x)g(x)dx ≡ 〈f, g〉. (ii) Let f, g ∈
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L2(Rk, dx) with Fourier transforms f̂ , ĝ. Prove that 〈f̂ , ĝ〉 = 2π〈f, g〉. [Hint : Use (a)
the Plancherel identity and (b) the polar identity 4〈f, g〉 = ‖f + g‖2 − ‖f − g‖2.]

21. (i) Let ϕ be continuous and positive-definite on R in the sense of Bochner, and ϕ(0) = 1.
Show that the sequence {cj ≡ ϕ(j) : j ∈ Z} is positive-definite in the sense of Herglotz
(6.27). (ii) Show that there exist distinct probability measures on R whose characteristic
functions agree at all integer points.

22. Show that the “triangular function” f̂(ξ) = (1 − |ξ|)+ is the characteristic function of

f(x) = 1
π

1−cos(x)

x2 , x ∈ R.[Hint : Consider the characteristic function of the convolution
of two uniform distributions on [−1/2, 1/2] and Fourier inversion.] Also show that 1 −
cos(x) ≥ x2/4 for |x| ≤ π/3. [Hint : Use cos(y) ≥ 1/2 for 0 < y < π/3.]

23. Show that if
∫

Bε
Re

(
1

1−Q̂(ξ)

)
dξ = ∞ for ε > 0, then the random walk with dis-

placement distribution is neighborhood-recurrent.1 [Hint : Pass to the limit as r → 1

in 0 ≤ Re
(

1

1−rQ̂(ξ)

)
, using the Chung–Fuchs criterion]

24. (Chung–Fuchs) For the one-dimensional random walk show that if Sn
n

→ 0 in proba-
bility as n → ∞, i.e., WLLN holds, then 0 is neighborhood recurrent. [Hint : Using
the lemma for the proof of Chung–Fuchs, for any positive integer m and δ, ε > 0,
∑∞

n=0
P (Sn ∈ Bε) ≥ 1

2m

∑∞
n=0

P (Sn ∈ Bmε) ≥ 1
2m

∑mδ−1

n=0
P (Sn ∈ Bδε), using mono-

tonicity of r → P (Sn ∈ Br). Let m → ∞ to obtain for the indicated Cesàro average, using
limn→∞ P (Sn ∈ Bδε) = 1 from the WLLN hypothesis, that

∑∞
n=0

P (Sn ∈ Bε) ≥ 1
2δ

.
Let δ → 0 and apply the Lemma 1.]

25. Show that 0 is neighborhood recurrent for the random walk if and only if
∑∞

n=0
P (Sn ∈

B1) = ∞.

26. Prove that the set of trigonometric polynomials is dense in L2([−π, π), µ), where µ is a
finite measure on [−π, π).

27. (An Equicontinuity Lemma)
(i) Let ϕN , N ≥ 1, be a sequence of characteristic functions of probabilities µN . Show

that if the sequence is equicontinuous at ξ = 0 then it is equicontinuous at all ξ ∈ R.
[Hint : Use the Cauchy–Schwarz inequality to check that |ϕN (ξ) − ϕN (ξ + η)|2 ≤
2|ϕN (0) − Re ϕN (η)|.]

(ii) In the notation of the proof of Bochner’s theorem, let µN be the probability on
[−2Nπ, 2Nπ] with characteristic function ϕN = µ̂N , where ϕN (ξ) = ϕ(ξ) for ξ =
j2−N , j ∈ Z. (a) Show that for h ∈ [−1, 1], 0 ≤ 1 − Re ϕN (h2−N ) ≤ 1 − Re ϕ(2−N ).
[Hint : Write the formula and simply note that 1 − cos(hx) ≤ 1 − cos(x) for −π ≤
x ≤ π, 0 ≤ h ≤ 1.] (b) Show that ϕN is equicontinuous at 0, and hence at all points
of R (by (i)). [Hint : Given ε > 0 find δ > 0, (0 < δ < 1) such that |1 − ϕ(θ)| < ε
for all |θ| < δ. Express each such θ as θ = (hN + kN )2−N , where kN = [2Nθ]
is the integer part of 2Nθ, and hN = 2Nθ − [2Nθ] ∈ [−1, 1]. Use the inequality
|a + b|2 ≤ 2|a|2 + 2|b|2 together with the inequality in the hint for (i) to check that

1That the converse is also true was independently established in Stone, C. J. (1969):
On the potential operator for one-dimensional recurrent random walks, Trans. AMS , 136
427–445, and Ornstein, D. (1969): Random walks, Trans. AMS, 138, 1–60.
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|1−ϕN (θ)|2 = |1−ϕN ((hN + kN )2−N )|2 ≤ 2|1−ϕ(kN2−N )|2 + 4|1−Re ϕ(2−N )| ≤
2ε2 + 4ε.]

28. Establish the formula
∫

R
g(x)µ ∗ ν(dx) =

∫
R

∫
R

g(x + y)µ(dx)ν(dy) for any bounded
measurable function g, and finite measures µ, ν.



C H A P T E R VII

Classical Central Limit Theorems

In view of the great importance of the central limit theorem (CLT) we shall give
a general but self-contained version due to Lindeberg. This version is applicable to
nonidentically distributed summands and provides the foundation to the following
CLT paradigm, which permeates the sciences: “The sum of a large number of ‘small’
independent random terms is approximately normally distributed.”

The following simple lemma is easily checked by an integration by parts left as
Exercise 1.

Lemma 1 (A Second-Order Taylor Expansion). Let f be a real-valued function of
R such that f, f ′, f ′′, f ′′′ are bounded. Then for x, h ∈ R,

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + h2

∫ 1

0

(1− θ){f ′′(x + θh)− f ′′(x)} dθ.

Theorem 7.1 (Lindeberg’s CLT). For each n, let Xn,1, . . . , Xn,kn
be an indepen-

dent array of random variables satisfying

EXn,j = 0, σn,j := (EX2
n,j)

1/2 <∞,

kn∑

j=1

σ2
n,j = 1, (7.1)

and, for each ε > 0,
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(Lindeberg condition) lim
n→∞

kn∑

j=1

E(X2
n,j1[|Xn,j |>ε]) = 0. (7.2)

Then
∑kn

j=1 Xn,j converges in distribution to the standard normal law N(0, 1).

Proof. Let {Zj : j ≥ 1} be a sequence of i.i.d. N(0, 1) random variables, independent
of {Xn,j : 1 ≤ j ≤ kn}. Write

Zn,j := σn,jZj (1 ≤ j ≤ kn), (7.3)

so that EZn,j = 0 = EXn,j , EZ2
n,j = σ2

n,j = EX2
n,j . Define

Un,m :=
m∑

j=1

Xn,j +
kn∑

j=m+1

Zn.j (1 ≤ m ≤ kn − 1),

Un,0 :=
kn∑

j=1

Zn,j , Un,kn
:=

kn∑

j=1

Xn,j , (7.4)

Vn,m := Un,m −Xn,m (1 ≤ m ≤ kn).

Let f be a real-valued function of R such that f, f ′, f ′′, f ′′′ are bounded. Taking
x = Vn,m, h = Xn,m in the Taylor expansion Lemma 1, one has

Ef(Un,m) ≡ Ef(Vn,m + Xn,m) = Ef(Vn,m) + E(Xn,mf ′(Vn,m))

+ 1
2E(X2

n,mf ′′(Vn,m)) + E(Rn,m), (7.5)

where

Rn,m := X2
n,m

∫ 1

0

(1− θ){f ′′(Vn,m + θXn,m)− f ′′(Vn,m)} dθ. (7.6)

Since Xn,m and Vn,m are independent, and EXn,m = 0, EX2
n,m = σ2

n,m, (7.5) reduces
to

Ef(Un,m) = Ef(Vn,m) +
σ2

n,m

2
Ef ′′(Vn,m) + E(Rn,m). (7.7)

Also Un,m−1 = Vn,m + Zn,m, and Vn,m and Zn,m are independent. Therefore, exactly
as above one gets, using EZn,m = 0, EZ2

n,m = σ2
n,m,

Ef(Un,m−1) = Ef(Vn,m) +
σ2

n,m

2
Ef ′′(Vn,m) + ER′

n,m), (7.8)
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where

R′
n,m := Z2

n,m

∫ 1

0

(1− θ){f ′′(Vn,m + θZn,m)− f ′′(Vn,m)} dθ. (7.9)

Hence,

|Ef(Un,m)− Ef(Un,m−1)| ≤ E|Rn,m|+ E|R′
n,m| (1 ≤ m ≤ kn). (7.10)

Now, given an arbitrary ε > 0,

E|Rn,m| = E(|Rn,m|1[|Xn,m|>ε]) + E(|Rn,m|1[Xn,m|≤ε])

≤ E

[

X2
n,m1[|Xn,m|>ε]

∫ 1

0

(1− θ)2‖f ′′‖∞ dθ

]

+ E

[

X2
n,m1[|Xn,m|≤ε]

∫ 1

0

(1− θ)|Xn,m|‖f ′′′‖∞ dθ

]

≤ ‖f ′′‖∞E(X2
n,m1[|Xn,m|>ε]) + 1

2εσ2
n,m‖f ′′′‖∞. (7.11)

We have used the notation ‖g‖∞ := sup{|g(x)| : x ∈ R}. By (7.1), (7.2), and (7.11),

lim
kn∑

m=1

E|Rn,m| ≤ 1
2ε‖f ′′′‖∞.

Since ε > 0 is arbitrary,

lim
kn∑

m=1

E|Rn,m| = 0. (7.12)

Also,

E|R′
n,m| ≤ E

[

Z2
n,m

∫ 1

0

(1− θ)‖f ′′′‖∞|Zn,m| dθ

]

=
1
2
‖f ′′′‖∞E|Zn,m|3

= 1
2‖f

′′′‖∞σ3
n,mE|Z1|3 ≤ cσ3

m,n ≤ c

(

max
1≤m≤kn

σm,n

)

σ2
n,m, (7.13)

where c = 1
2‖f ′′′‖∞E|Z1|3. Now, for each δ > 0,

σ2
n,m = E(X2

n,m1[|Xn,m|>δ]) + E(X2
n,m1[Xn,m|≤δ]) ≤ E(X2

n,m1[|Xn,m|>δ]) + δ2,
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which implies that

max
1≤m≤kn

σ2
n,m ≤

kn∑

m=1

E(X2
n,m1[|Xn,m|>δ]) + δ2.

Therefore, by (7.2),

max
1≤m≤kn

σn,m → 0 as n →∞. (7.14)

From (7.13) and (7.14) one gets

kn∑

m=1

E|R′
n,m| ≤ c

(

max
1≤m≤kn

σn,m

)

→ 0 as n →∞. (7.15)

Combining (7.12) and (7.15), one finally gets, on telescoping the difference between
(7.7) and (7.8),

|Ef(Un,kn
)− Ef(Un,0)| ≤

kn∑

m=1

(E|Rn,m|+ E|R′
n,m|) → 0 as n →∞. (7.16)

But Un,0 is a standard normal random variable. Hence,

Ef

⎛

⎝
kn∑

j=1

Xn,j

⎞

⎠−
∫

R

f(y)(2π)−1/2 exp{− 1
2y2} dy → 0 as n →∞.

By Theorem 5.3, the proof is complete. �

It has been shown by Feller1 that in the presence of the uniform asymptotic
negligibility condition (7.14), the Lindeberg condition is also necessary for the CLT
to hold.

Corollary 7.2 (The Classical CLT). Let {Xj : j ≥ 1} be i.i.d. EXj = µ, 0 <
σ2 := Var Xj <∞. Then

∑n
j=1(Xj − µ)/(σ

√
n) converges in distribution to N(0, 1).

Proof. Let Xn,j = (Xj − µ)/(σ
√

n), kn = n, and apply Theorem 7.1. �

Remark 7.1. Note that the case kn = n corresponds to an exact triangular array
of random variables. The general framework of the Lindeberg CLT is referred to as a
triangular array as well.

1Billingsley, P. (1968), Convergence of probability measures, Wiley, NY., p. 373.
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Corollary 7.3 (Lyapounov’s CLT). For each n let X1,n, X2,n, . . . , Xn,kn
be kn

independent random variables such that

kn∑

j=1

EXn,j = µ,

kn∑

j=1

VarXn,j = σ2 > 0,

(Lyapounov condition) lim
n→∞

kn∑

j=1

E|Xn,j − EXn,j |2+δ = 0 (7.17)

for some δ > 0. Then
∑kn

j=1 Xn,j converges in distribution to the Gaussian law with
mean µ and variance σ2.

Proof. By normalizing one may assume, without loss of generality, that

EXn,j = 0,

kn∑

j=1

EX2
n,j = 1.

It then remains to show that the hypothesis of the corollary implies the Lindeberg
condition (7.2). This is true, since for every ε > 0,

kn∑

j=1

E(X2
n,j1[Xn,j > ε]) ≤

kn∑

j=1

E
|Xn,j |2+δ

εδ
→ 0 (7.18)

as n →∞, by (7.17). �

Observe that the most crucial property of the normal distribution used in the proof
of Theorem 7.1 is that the sum of independent normal random variables is normal. In
fact, the normal distribution N(0, 1) may be realized as the distribution of the sum
of independent normal random variables having zero means and variances σ2

i for any
arbitrarily specified set of nonnegative numbers σ2

i adding up to 1; a form of infinite
divisibility 2 of the normal distribution.

Definition 7.1. A probability Q on (Rk,Bk) is said to be infinitely divisible if
for each integer n ≥ 1 there is a probability Qn such that Q = Q∗n

n .

Another well-known distribution possessing infinite divisibility properties is the
Poisson distribution, as well as the stable laws defined in Exercises 3 and 6.

The following multidimensional version of Corollary 7.2 was proved by the method
of characteristic functions in Chapter VI.

2Infinitely divisible distributions are naturally associated with stochastic processes having
independent increments. This connection is thoroughly developed in our companion text on
stochastic processes.
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Theorem 7.4 (Multivariate Classical CLT). Let {Xn : n = 1, 2, . . .} be a sequence
of i.i.d. random vectors with values in R

k. Let EX1 = µ ∈ R
k (defined componentwise)

and assume that the dispersion matrix (i.e., variance–covariance matrix) D of X1 is
nonsingular. Then as n → ∞, n−1/2(X1 + · · · + Xn − nµ) converges in distribution
to the Gaussian probability measure with mean zero and dispersion matrix D.

Proof. For each ξ ∈ R
k\{0} apply Corollary 7.2, to the sequence ξ ·Xn, n ≥ 1. Then

use the Cramér–Lévy continuity theorem (Theorem 6.10) (see Exercise 11). �

EXERCISES

Exercise Set VII

1. Give a proof of Lemma 1. [Hint : Use integration by parts.]

2. Define a one-dimensional normal distribution with mean µ and variance σ2 = 0 to
be δµ, the Dirac measure concentrated at µ. For dimensions k > 1, given µ ∈ R

k,
and a nonnegative-definite (possibly singular) k × k matrix D, a k-dimensional normal
distribution ΦD,µ is defined to be the distribution of µ+

√
DZ, where Z is k-dimensional

standard normal, and
√

D denotes a nonnegative definite symmetric matrix such that√
D
√

D = D. Extend Corollary 7.3 and Theorem 7.4 to versions with such possible
limits.

3. A nondegenerate distribution Q on R, i.e. Q = δ{c}, is said to be stable if for every integer

n there is a centering constant cn and a scaling index α > 0 such that n− 1
α (X1 + · · · +

Xn−cn) has distribution Q whenever Xj , j ≥ 1, are i.i.d. with distribution Q. Show that
the normal distribution and Cauchy distribution are both stable with respective indices
α = 2 and α = 1.

4. Show that a stable law Q is infinitely divisible.

5. Show that if Q is a stable distribution symmetric about 0 with exponent α, then cn = 0
and 0 < α ≤ 2. [Hint : Q̂(ξ) must be real by symmetry, and positivity follows from the
case n = 2 in the definition.]

6. (One-dimensional Holtzmark Problem) Consider 2n points (eg., masses or charges)
X1, . . . , X2n independently and uniformly distributed within an interval [−n/ρ, n/ρ] so
that the density of points is the constant ρ > 0. Suppose that there is a fixed point (mass,
charge) at the origin that exerts an inverse rth power force on the randomly distributed
points, where r > 1/2. That is, the force exerted by the point at the origin on a mass at

location x is csgn(x)|x|−r for a positive constant c. Let Fn = c
∑2n

j=1

sgn(Xj)

|Xj |r denote the

total force exerted by the origin on the 2n points. (a) Calculate the characteristic function
of the limit distribution Qr of Fn as n → ∞. [Hint : Take c = 1 without loss of generality.

For ξ > 0, EeiξFn =
(

E cos( ξsgn(X1)
|X1|r )

)2n

=

(

1 − ρξ
1
r

nr

∫ ∞
ξ(

ρ
n

)r (1 − cos(y))y− r+1
r dy

)2n

(after a change of variable). Use the fact that |1− cos(y)| ≤ 2 to investigate integrability

on [1,∞) and 1−cos(y)

y2 → 1
2

as y ↓ 0 to investigate integrability on (0, 1).] (b) Show that

Qr is a stable distribution with index α = 1
r
∈ (0, 2).
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7. (Random Walk with Symmetric Stable Displacements: Transience/Recurrence) Con-
sider a one-dimensional random walk with symmetric stable displacement distribution3

Q having characteristic function Q̂(ξ) = e−|ξ|α . Show that 0 is neighborhood recur-
rent for 1 ≤ α ≤ 2 and not neighborhood recurrent for 0 < α < 1. [Hint : Use the
Chung–Fuchs theorem from the previous section.]

8. Suppose that {Xj}∞j=1, . . . is a sequence of independent random variables respectively
distributed uniformly on [−j, j], j ≥ 1. Show that for a suitable choice of scaling constants
cn, the rescaled sum c−1

n (X1 + · · · + Xn) is asymptotically normal with mean 0 and
variance 1 as n → ∞.

9. {Xj}∞j=1, . . . is a sequence of independent random variables uniformly bounded by M >
0. Assume σ2

n =
∑n

k=1
Var(Xk) → ∞ as n → ∞. . Show that the central limit theorem

holds under suitable centering and scaling.

10. Suppose that {Xm}∞m=1, . . . is a sequence of independent random variables respectively
distributed as P (Xm = 1) = P (Xm = −1) = pm, P (Xm = 0) = 1 − 2pm, m ≥ 1, where∑∞

m=1
pm = ∞. Use each of the methods of (a) Lindeberg, (b) Lyapounov, and (c)

characteristic functions to give a proof that for a suitable choice of scaling constants cn,
the rescaled sum c−1

n (X1 + · · ·+Xn) is asymptotically normal with mean 0 and variance
1 as n → ∞.

11. (Cramér–Wold Device) Show that a sequence of k-dimensional random vectors Xn(n ≥
1) converge in distribution to (the distribution of a random vector) X if and only if

all linear functions c · X ≡
∑k

j=1
cjX

(j)
n converge in distribution to c · X for all c =

(c1, . . . , ck) ∈ R
k. [Hint : Use the Cramér- Lévy continuity theorem of Chapter VI.]

3This exercise begs for a word of caution, since the tails of displacement distributions in
a recurrent random walk can be arbitrarily large; see Shepp, L.A. (1964): Recurrent random
walks may take arbitrarily large steps, Bull. AMS 70, 540–542, and/or Grey, D.R. (1989):
Persistent random walks may have arbitrarily large tails, Adv. Appld. Probab. 21, 229–230.



C H A P T E R VIII

Laplace Transforms and Tauberian
Theorem

Like the Fourier transform, the Laplace transform of a measure µ has a number
of useful operational properties pertaining to moment generation, convolutions, and
vague convergence. However, the main point of this chapter is to show that if µ is
concentrated on a half-line, say [0,∞), then its Laplace transform can also be useful
for obtaining the asymptotic behavior of µ[0, x] as x→∞.

Definition 8.1. Let µ be a measure on [0,∞). The Laplace transform µ̂(λ) of µ
is the real-valued function defined for λ ≥ c by

µ̂(λ) :=
∫ ∞

0

e−λxµ(dx), λ > c, (8.1)

where c = inf{λ :
∫∞
0

e−λxµ(dx) <∞}.

Notice that by monotonicity of e−λx, x ≥ 0, as a function of λ, the finiteness of the
integral defining µ̂(a) implies finiteness of

∫∞
0

e−λxµ(dx) for all λ ≥ a. If µ is a finite
measure, then µ̂(λ) is defined at least for all λ ≥ 0. On the other hand, one may also
wish to view µ̂(λ) as an extended real-valued, i.e., possibly infinite-valued, function
defined for all λ ∈ R, which is easy to do since the integrand is nonnegative. However,
in general, the statement that the Laplace transform µ̂(λ) exists is intended to mean
that the defining integral is finite on some half-line.

Remark 8.1 (Special Cases and Terminology). In the case that µ is absolutely
continuous, say µ(dx) = g(x)dx, then ĝ(λ) := µ̂(λ) is also referred to as the Laplace
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transform of the (Radon–Nikodym derivative) function g. Also, if µ = P ◦ X−1 is
the distribution of a nonnegative random variable X defined on a probability space
(Ω,F , P ), then µ̂(λ) is also referred to as the Laplace transform of X,

µ̂(λ) = Ee−λX .

In the case that µ is a probability, the function µ̂(−λ) is the moment-generating
function.

Although the Laplace transform is an analytic tool, the theory to be developed is
largely based on the probabilistic ideas already introduced in previous sections. This
is made possible by the exponential size-bias transformation introduced in the
treatment of large deviations, although in terms of the moment-generating function
of a probability. Specifically, if µ is a measure on [0,∞) such that µ̂(c) < ∞ for some
c, then one obtains a probability µc on [0,∞) by

µc(dx) =
1

µ̂(c)
e−cxµ(dx). (8.2)

Observe also that

µ̂c(λ) =
µ̂(c + λ)

µ̂(c)
. (8.3)

Just as with the Fourier transform one has the following basic operational calculus.

Proposition 8.1 (Moment Generation). If µ̂ exists on (0,∞), then µ̂(λ) has
derivatives of all orders m = 1, 2, . . . given by

dm

dλm
µ̂(λ) = (−1)m

∫ ∞

0

xme−λxµ(dx), λ > 0.

In particular, µ has an mth order finite moment if and only if dm

dλm µ̂(0+) exists and
is finite.

Proof. For the first derivative one has for arbitrary λ > 0,

lim
h→0

µ̂(λ + h)− µ̂(λ)
h

= lim
h→0

∫ ∞

0

(
e−hx − 1

h

)

e−λxµ(dx).

Since |(e−hx−1)/h| ≤ c(δ)eδx for some constant c(δ) if |h| ≤ δ/2, where λ−δ > 0, the
limit may be passed under the integral sign by the dominated convergence theorem.
The remainder of the proof of the first assertion follows by induction. For the final
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assertion, by the monotone convergence theorem,

lim
λ↓0

∫ ∞

0

xme−λxµ(dx) =
∫ ∞

0

xmµ(dx). �

The proof of the following property is obvious, but its statement is important enough
to record.

Proposition 8.2 (Scale Change). Let µ be a measure on [0,∞) with Laplace trans-
form µ̂(λ) for λ > 0. Define α : [0,∞) → [0,∞) by α(x) = ax, for an a > 0. Then one
has µ̂ ◦ α−1(λ) = µ̂(aλ).

Proposition 8.3 (Convolution Products). If µ and ν are measures on [0,∞) such
that µ̂(λ) and ν̂(λ) both exist for λ > 0, then the convolution γ = µ ∗ ν has Laplace
transform γ̂(λ) = µ̂(λ)ν̂(λ) for all λ > 0.

Proof. This is a consequence of the basic formula (Exercise 1)

∫ ∞

0

g(x)µ ∗ ν(dx) =
∫ ∞

0

∫ ∞

0

g(x + y)µ(dx)ν(dy)

for bounded Borel-measurable functions g, using the nonnegativity and multiplicative
property of the exponential function. �

Theorem 8.4 (Uniqueness & Inversion Formula). Let µ, ν be two measures on
[0,∞) such that

∫∞
0

e−cxµ(dx) =
∫∞
0

e−cxν(dx) < ∞ for some c and

µ̂(λ) = ν̂(λ) <∞, ∀ λ ≥ c.

Then one has µ = ν. Moreover if µ[0,∞) <∞, then one also has the inversion formula

µ[0, x] = lim
λ→∞

∑

j≤λx

(−λ)j

j!
dj

dλj
µ̂(λ)

at each continuity point x of the (distribution) function x→ µ([0, x]).

Proof. Assume first that µ and ν are finite measures. In this case a probabilistic
proof is made possible by the asserted inversion formula obtained as follows. Without
loss of generality, assume that µ and ν are normalized to probabilities. For arbitrary
fixed x, z > 0, consider the expression

∑
j≤λz

(−λ)j

j!
dj

dλj µ̂(λ) =
∑

j≤λz
(−1)jλj

j!
dj

dλj µ̂(λ),
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along with the expected value

P (Yλx ≤ z) = Ehz(Yλx) =
∞∑

j=0

hz(
j

λ
)
(λx)j

j!
e−λx,

where Yλx, λ, x > 0, is Poisson distributed on the lattice {0, 1/λ, 2/λ, . . .} with inten-
sity λx, and hz(y) = 1[0,z](y), y ≥ 0. Note that EYλx = x, and Var(Yλx) = x

λ → 0 as
λ → ∞. Notice that in general, if {µt,a : t ≥ 0, a ∈ R} is a collection of probabilities
on R, such that µt,a has mean a and variance σ2(a) → 0 as t → ∞, then µt,a ⇒ δa

as t →∞. In particular,

lim
λ→∞

P (Yλx ≤ z) =

{
0, if z < x,

1 if z > x,
(8.4)

Now, in view of the moment-generation formula (−1)j dj

dλj µ̂(λ) =
∫∞
0

xje−λxµ(dx),
one has

∑

j≤λz

(−λ)j

j!
dj

dλj
µ̂(λ) =

∫ ∞

0

P (Yλx ≤ z)µ(dx).

The inversion formula and hence uniqueness follows in the limit λ →∞ by application
of the dominated convergence theorem. The general uniqueness assertion follows by
the exponential size-bias transformation. Specifically, since µc and νc are probabilities
whose Laplace transforms agree, one has µc = νc. Since µ � µc = νc and νc � ν, it
follows that µ � ν and dµ

dν = dµ
dµc

dνc

dν = µ̂(c)
e−cx

e−cx

ν̂(c) = 1. �

Recall from Chapter V that a sequence of measures µn(n ≥ 1) on [0,∞) is said
to converge vaguely to a measure µ if

∫
[0,∞)

g dµn →
∫
[0,∞)

g dµ for all continuous
functions g vanishing at infinity, i.e., g(x)→ 0 as x→∞.

Theorem 8.5 (Continuity). Let µn, n ≥ 1, be a sequence of measures on [0,∞)
with respective Laplace transforms µ̂n, n ≥ 1, defined on a common half-line λ ≥ c.

a. If µn, n ≥ 1, converges vaguely to µ, and if {µ̂n(c) : n ≥ 1} is a bounded sequence
of real numbers, then limn µ̂n(λ) = µ̂(λ) for all λ > c. Conversely, if for a sequence
of measures µn(n ≥ 1), µ̂n(λ) → ϕ(λ) > 0 ∀ λ > c as n → ∞, then ϕ is the
Laplace transform of a measure, µ and µn converges vaguely to µ.

b. Suppose c = 0 in (a), ϕ(0+) = 1, and µn, n ≥ 1, is a sequence of probabilities.
Then µ is a probability and µn ⇒ µ as n →∞.

Proof. We will prove part (b) first. For this we use the Helly selection principle
(Corollary 5.6) to select a weakly convergent subsequence {µnm

: m ≥ 1} to a measure
µ with µ(R) ≤ 1 on [0,∞). Since x �→ e−λx is continuous and vanishes at infinity on
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[0,∞), µ̂nm
(λ) → µ̂(λ) as m → ∞ for each λ > 0. Thus µ is the unique measure on

[0,∞) with Laplace transform ϕ. In particular, there can be only one (vague) limit
point. Since ϕ(0+) = 1 it follows that µ is a probability.

We now turn to part (a). Assume that µn, n ≥ 1, converges vaguely to µ, and
first suppose that limn µ̂n(c) = m exists. Apply exponential size-biasing to obtain for
bounded continuous functions f vanishing at infinity that

lim
n→∞

∫ ∞

0

f(x)
e−cx

µ̂n(c)
µn(dx) =

∫ ∞

0

f(x)
e−cx

m
µ(dx) =

∫ ∞

0

f(x)µc(dx),

for some measure µc. For λ > c, take f(x) = e−(λ−c)x, x ≥ 0, to see that limn µ̂n(λ) =
µ̂(λ), λ > c. Assuming only that {µ̂n(c) : n ≥ 1} is bounded, consider any convergent
subsequence limn′ µ̂n′(c) = m′. Since the limit limn µ̂n′(λ) = µ̂(λ) does not depend
on the subsequence, µ̂n(λ) → µ̂(λ).

For the converse part of (a) suppose that µ̂n(λ) → ϕ(λ) for all λ > c. For
any fixed λ′ > c, note that µ̂n(λ+λ′)

µ̂n(λ′) is the Laplace transform of the exponen-

tially size-biased probability µ′
n(dx) = 1

µ̂n(λ′)e
−λ′xµn(dx). By part (b), µ′

n, n ≥ 1,
converges vaguely to a finite measure µ′, and therefore µn converges vaguely to
µ(dx) = ϕ(c)ecxµ′(dx). �

Definition 8.2. A function ϕ on (0,∞) is said to be completely monotone if it
possesses derivatives of all orders m = 1, 2, . . . on (0,∞) and (−1)m dm

dλm µ̂(λ) ≥ 0 for
each λ > 0.

It follows from the moment generation theorem that µ̂(λ) is completely monotone. In
fact, we will now see that this property characterizes Laplace transforms of measures
on [0,∞). We preface this with two lemmas characterizing the range of generating
functions (combinatorial) originally due to S. Bernstein, while the proofs here are
along the lines of those given in Feller.1

For a given continuous function g on [0, 1], the Bernstein polynomials arise
naturally in the Weierstrass approximation theorem (see Appendix B) and are defined
by

Bn(t) =
n∑

k=0

g(
k

n
)
(

n

k

)

tk(1− t)n−k, 0 ≤ t ≤ 1.

Lemma 1 (Finite Differences and Bernstein Polynomials). The following is an
equivalent representation of the Bernstein polynomials for a given continuous function

1See Feller, W. (1970).
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g on [0, 1] in terms of the difference operator ∆hg(t) = g(t+h)−g(t)
h :

Bn(t) =
n∑

k=0

(
n

k

)

(
t

n
)k∆k

1
n
g(0),

where ∆1
h = ∆h,∆k

h = ∆h(∆k−1
h ), k ≥ 1, and ∆0

h is the identity operator.

Proof. Insert the binomial expansion of (1− t)n−k =
∑n−k

j=0

(
n−k

j

)
(−1)n−k−jtn−k−j

in the definition of Bn(t), to obtain

Bn(t) =
n∑

j=0

j∑

k=0

g

(
k

n

)(
n

k

)(
n− k

n− j

)

(−1)j−ktj .

For any finite or infinite sequence a0, a1, . . . of real numbers, the difference notation
∆1am := am+1−am is also used. For notational convenience we simply write ∆ := ∆1,
i.e., h = 1. Upon iteration of ∆am = am+1 − am, one inductively arrives at

∆kam =
k∑

j=0

(
k

j

)

(−1)k−jam+j . (8.5)

For another sequence b0, b1, . . ., multiply this by
(
n
k

)
bk and sum over k = 0, . . . , n.

Then making a change in the order of summation, the coefficient of am+j may be
read off as

n∑

k=j

(
n

k

)(
k

j

)

(−1)k−jbk = (−1)n−j

(
n

j

) n−j∑

l=0

(
n− j

l

)

(−1)n−j−lbl+j

=
(

n

j

)

(−1)n−j∆n−jbj .

The first equality is by a change of order of summation and writing (−1)l =
(−1)n−j(−1)n−j−l, and the last equality is by (8.5) applied to the sequence b0, b1, . . ..
Thus one has the so-called general reciprocity formula relating differences ∆kam and
∆kbm for two arbitrary sequences {am : m = 0, 1, . . .} and {bm : m = 0, 1, . . .} in a
“summation by parts” form

n∑

k=0

bk

(
n

k

)

∆kam =
n∑

j=0

am+j

(
n

j

)

(−1)n−j∆n−jbj . (8.6)
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For 0 < t < 1, applying (8.6) to bm = tm using (8.5), one has ∆kbm = tm(1−t)k(−1)k.
Thus, applying (8.6) yields the identity

n∑

m=0

tm
(

n

m

)

∆mak =
n∑

j=0

ak+j

(
n

j

)

tj(1− t)n−j . (8.7)

Now fix h = 1/n and consider the difference ratios ∆m
h ak ≡ h−m∆mak of the sequence

ak = g( k
n ), k = 0, 1, . . . , n. The asserted difference representation of the Bernstein

polynomials for g now follows directly from (8.7). �

The dual representation of Bernstein polynomials can be used to characterize power
series with positive coefficients as follows.

Lemma 2. Let g be a function on [0, 1). Then the following are equivalent: (a)
g(t) =

∑∞
n=0 cntn, 0 ≤ t < 1 with cn ≥ 0, ∀n; (b) g(n)(t) ≡ dn

dtn g(t) exists at
each t ∈ (0, 1) and is nonnegative for every n = 0, 1, 2, . . .; (c) ∆k

1
n

g(0) ≥ 0, for
k = 0, 1, . . . , n− 1, n ≥ 1. Such functions g are said to be absolutely monotone.

Proof. That (a) ⇒ (b) follows from the analyticity of Taylor series expansion and
term by term differentiation (see Exercise 7, Chapter IV). Also (b) ⇒ (c) since mono-
tonicity of g implies ∆ 1

n
g(t) ≥ 0, and monotonicity of g′ then implies monotonicity of

∆ 1
n
g(t), so that ∆2

hg(t) ≥ 0. Iterating this argument, one arrives at (c) from (b). In
fact, ∆n

1
n

g(0) ≥ 0 as well. For (c)⇒ (a), first consider the case that g satisfies (c) for
k = 0, 1, . . . , n and is continuously defined on the closed interval [0, 1] with g(1) = 1.
In view of the Weierstrass approximation theorem, the Bernstein polynomials

Bn(t) =
n∑

k=0

g

(
k

n

)(
n

k

)

tk(1− t)n−k, 0 ≤ t ≤ 1,

converge uniformly to g on [0, 1] as n →∞ (see Appendix B). From (c) one sees using
Lemma 1 that the coefficients pj,n =

∑j
k=0 g( k

n )
(
n
k

)(
n−k
n−j

)
(−1)j−k, j = 0, 1 . . . , n, are

nonnegative and
∑n

j=0 pj,n = Bn(1) = 1. Thus Bn(e−λ) is the Laplace transform
of the probability µn defined by {pj,n : j = 0, 1, . . . , n}, i.e., µn =

∑n
j=0 pj,nδ{j}. It

follows from the Weierstrass approximation and the continuity theorem for Laplace
transforms that there is a probability µ such that µn ⇒ µ, and µ has the desired
Laplace transform g(e−λ) = limn→∞ Bn(e−λ). Take λ = log t to complete the proof
of (a) for the case in which g continuously extends to [0, 1]. If g(1−) = ∞, fix an
arbitrary 0 < δ < 1 and define gδ(t) = g(δt)

g(δ) , for 0 ≤ t ≤ 1. Then gδ satisfies (c) and
the above proof applied to gδ yields an expansion (in s = δt)

g(s) = g(δ)
∞∑

n=0

dn(δ)sn, 0 ≤ s < δ.
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By uniqueness of coefficients in a series expansion of g(s) on an interval [0, δ), the
coefficients cn = g(δ)dn(δ) do not depend on δ, and the expansion (a) is therefore
valid on [0, δ) for δ arbitrarily close to 1, i.e., valid on [0, 1). �

Theorem 8.6 (Range of Laplace Transforms). A function ϕ on (0,∞) is
completely monotone if and only if there is a measure µ on [0,∞) such that

ϕ(λ) =
∫ ∞

0

e−λxµ(dx), λ > 0.

In particular, µ is a probability if and only if ϕ(0+) = 1.

Proof. In the case that µ is a finite measure, the necessity of complete monotonicity
follows directly from the previous moment-generation formula. For general measures
µ on [0,∞) for which µ̂(λ) exists for λ > 0, it then follows from exponential size-
biasing that µ̂(λ+c)

µ̂(c) is completely monotone as a function of λ > 0 for any fixed c > 0.
Thus, the necessity is proven.

Suppose that ϕ is a completely monotone function on (0,∞). For arbitrary fixed
h > 0, define a measure µh by

µh =
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)δ{n

h }.

Then by linearity of the Laplace transform and the continuity theorem applied to the
limit of the partial sums,

µ̂h(λ) =
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)e−λ n

h .

Since cn := 1
n!

dn

dλn ϕ(h(1− t))|t=0 = (−h)n

n!
dn

dλn ϕ(h) ≥ 0 for each n, it follows from the
preceding lemma that ϕ(h(1− t)) has the power series expansion

ϕ(h(1− t)) :=
∞∑

n=0

(−h)n

n!
dn

dλn
ϕ(h)tn, 0 ≤ t < 1 (8.8)

(also see Exercise 10). Thus gh(λ) := ϕ(h(1−e−
λ
h )), λ > 0, is the Laplace transform of

µh. Since gh(λ) converges to ϕ(λ) on (0,∞) as h →∞, it follows from the continuity
theorem that there exists a measure µ on [0,∞) having Laplace transform ϕ. �

Already the condition that the Laplace transform µ̂(λ) exists at some λ ≥ 0, readily
implies that for any bounded interval J = (a, b), µ(J) ≤ eλbµ̂(λ) < ∞; finiteness of
µ(J) for all bounded intervals J is referred to as the Radon property. As the
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following theorem illustrates, much more on the asymptotic behavior of µ may be
obtained from that of its Laplace transform near zero, and vice versa. For the proofs
of results it will be convenient to use the distribution function Gµ of a (Radon)
measure µ on [0,∞), defined by

Gµ(x) = µ[0, x], x ≥ 0.

Theorem 8.7 (Karamata Tauberian Theorem). Let µ be a measure on [0,∞)
whose Laplace transform exists for λ > 0. Then for θ ≥ 0,

lim
α↓0

µ̂(αλ)
µ̂(α)

= λ−θ if and only if lim
a→∞

µ[0, ax]
µ[0, a]

= xθ.

In particular, either of these implies for α ↓ 0, a = α−1 →∞, that

µ̂(α) ∼ µ[0, a]Γ(θ + 1),

where Γ(r) =
∫∞
0

xr−1e−xdx, r > 0, is the gamma function.

Proof. Suppose limα↓0
µ̂(αλ)
µ̂(α) = λ−θ. Observe that the limit on the left side applies

to Laplace transforms of measures µa obtained from µ by scale changes of the form
Gµa

(x) = Gµ(ax)
µ̂(α) , where a = α−1. On the other hand, the right side is the Laplace

transform γ̂(λ) = λ−θ of the measure γ(dx) = 1
Γ(θ)x

θ−1dx on [0,∞). Thus, by the
continuity theorem for Laplace transforms, µa converges vaguely to γ as a → ∞.
Since γ is absolutely continuous with respect to Lebesgue measure, it follows that the
(improper) distribution function converges at all points x ≥ 0. That is,

Gµa
(x)→ Gγ(x) =

1
Γ(θ + 1)

xθ

as a →∞. Take x = 1 to get

µ̂(α) ∼ Gµ(a)Γ(θ + 1) = µ[0, a]Γ(θ + 1).

With this it also follows that

lim
a→∞

µ[0, ax]
µ[0, a]

= xθ.

For the converse, assume that lima→∞
µ[0,ax]
µ[0,a] = xθ. The Laplace transform of the

measure µa with distribution function Gµa
(x) = µ[0,ax]

µ[0,a] is µ̂(αλ)
Gµ(a) , and that of Gγ(x) =
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xθ is Γ(θ+1)λ−θ. Thus, in view of the continuity theorem, if one can show that µ̂(αc)
Gµ(a)

is bounded for some c > 0, then it will follow that

µ̂(αλ)
Gµ(a)

→ Γ(θ + 1)λ−θ

as α → 0, a = α−1. From here the converse assertions follow as above. So it suffices
to prove the boundedness of µ̂(αc)

Gµ(a) for some c > 0. For this, first observe that the

assumption lima→∞
µ[0,ax]
µ[0,a] = xθ implies that there is a c > 1 such that Gµ(2x) ≤

2θ+1Gµ(x) for x > c. Thus, with a = α−1,

µ̂(αc) ≤ µ̂(α) =
∫ a

0

e−αxµ(dx) +
∞∑

n=0

∫ 2n+1a

2na

e−αxµ(dx)

≤ Gµ(a) +
∞∑

n=0

e−2n

Gµ(2n+1a)

≤ Gµ(a)

{

1 +
∞∑

n=0

2(n+1)(θ+1)e−2n

}

,

for all a > c > 1. In particular, this establishes a desired bound to complete the
proof. �

Definition 8.3. A function L on [0,∞) is said to be slowly varying at infinity if
for each fixed x > 0, one has lima→∞

L(ax)
L(a) = 1.

The following corollary is essentially just a reformulation of the statement of the
Tauberian theorem. The proof is left as Exercise 6.

Corollary 8.8. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(λ) ∼ λ−θL

(
1
λ

)

as λ ↓ 0

if and only if

µ[0, x] ∼ 1
Γ(θ + 1)

xθL(x) as x→∞.

Remark 8.2. It is to be noted that asymptotic relations in the Tauberian theorem
are also valid with the roles of α and a reversed, i.e., for α →∞ and a → 0.
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In the case that µ(dx) = g(x)dx has a density f one may obtain a “differentiated
form” of the asymptotic relation under sufficient regularity in g. One such condition2

is the following:

Definition 8.4. A function g on [0,∞) is said to be ultimately monotone if it is
monotone on some [x0,∞) for some x0 ≥ 0.

Lemma 3 (Monotone Density Lemma). Suppose that µ(dx) = g(x)dx has an
ultimately monotone density g. If Gµ(x) ∼ 1

Γ(θ+1)x
θL(x) as x → ∞, then g(x) ∼

xθ−1

Γ(θ) L(x) ∼ θGµ(x)/x as x→∞.

Proof. Assume that g is ultimately nondecreasing. Then, for arbitrary 0 < c < d <

∞, for all x sufficiently large one may bound Gµ(dx)−Gµ(cx)
xθL(x)

=
∫ dx

cx
g(y)dy

xθL(x)
above and

below by

(d− c)xg(cx)
xθL(x)

≤ Gµ(dx)−Gµ(cx)
xθL(x)

≤ (d− c)xg(dx)
xθL(x)

.

Thus,

lim sup
x→∞

g(cx)
xθ−1L(x)

≤ lim sup
x→∞

Gµ(dx)−Gµ(cx)
(d− c)xθL(x)

=lim sup
x→∞

{
Gµ(dx)

(dx)θ(d− c)L(dx)
dθ L(dx)

L(x)
− Gµ(cx)

(cx)θ(d− c)L(cx)
cθ L(cx)

L(x)

}

→ (dθ − cθ)
d− c

.

Take c = 1 and let d ↓ 1 to get the desired upper bound on the limsup. The same
lower bound on the liminf is obtained by the same considerations applied to the other
inequality. Finally, the case in which g is nonincreasing follows by the same argument
but with reversed estimates for the upper and lower bounds. �

The Tauberian theorem together with the monotone density lemma immediately
yields the following consequence.

2A treatment of the problem with less-stringent conditions can be found in the more
comprehensive monograph Bingham, N.H., C.M. Goldie, J.L. Teugels (1987).
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Corollary 8.9. Suppose that µ(dx) = g(x)dx has an ultimately monotone density
g. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(λ) ∼ λ−θL

(
1
λ

)

as λ ↓ 0 if and only if g(x) ∼ 1
Γ(θ)

xθ−1L(x) as x→∞.

Finally, for discrete measures one has the following asymptotic behavior conve-
niently expressed in terms of (combinatorial) generating functions, i.e., with t =
e−λ.

Corollary 8.10. Let µ̃(t) =
∑∞

n=0 µntn, 0 ≤ t < 1, where {µn}∞n=0 is a sequence of
nonnegative numbers. For L slowly varying at infinity and 0 ≤ θ <∞ one has

µ̂(t) ∼ (1− t)−θL

(
1

1− t

)

as t ↑ 1

if and only if

n∑

j=0

µj ∼
1

Γ(θ)
nθL(n) as n →∞.

Moreover, if the sequence {µn}∞n=0 is ultimately monotone and 0 < θ < ∞, then
equivalently,

µn ∼
1

Γ(θ)
nθ−1L(n) as n →∞.

Proof. Let µ(dx) =
∑∞

n=0 µn1[n,n+1)(x)dx, with (improper) distribution function
Gµ. Then Gµ(n) =

∑n
j=0 µj . Also

µ̂(λ) =
1− e−λ

λ

∞∑

n=0

µne−nλ =
1− e−λ

λ
µ̃(e−λ).

The assertions now follow immediately from the Tauberian theorem and previous
corollary. �

EXERCISES

Exercise Set VIII

1. Establish the formula
∫ ∞
0

g(x)µ ∗ ν(dx) =
∫ ∞
0

∫ ∞
0

g(x + y)µ(dx)ν(dy) for bounded
Borel-measurable functions g used in the proof of the convolution property of Laplace
transforms.

2. Show that size-biasing a Gaussian distribution corresponds to a shift in the mean.
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3. Show that g(t) = 1
1−t

, 0 ≤ t < 1, is absolutely monotone and ϕ(λ) = eλ

eλ−1
, λ > 0, is

completely monotone. Calculate the measure µ with Laplace transform ϕ(λ).

4. Show that if g is absolutely monotone on [0, 1] with g(1) = 1, then pj,n =∑j

k=0
g
(

k
n

) (
n
k

)(
n−k
n−j

)
(−1)j−k is a probability.

5. Show that (i) | log x|r, x > 0, is slowly varying at infinity and at 0 for any exponent r;
(ii) log log x, x > 1, is slowly varying at ∞; (iii) (1 + x−s)r, x > 0, is slowly varying at
∞ for any exponents r and s > 0.

6. Complete the proofs of the corollaries to the Tauberian theorem. [Hint : Note that
Gµ(ax)

Gµ(a)
∼ xθ as a → ∞ if and only if L(x) =

Gµ(x)

xθ is slowly varying at infinity, and
µ̂(αλ)
µ̂(α)

∼ λ−θ as α → 0 if and only if λθµ̂(λ) varies slowly at 0.]

7. (Renewal Equation Asymptotics) Let µ be a probability on [0,∞) not concentrated at
{0}, and suppose g is a nonnegative measurable function on [0,∞). Show that u(t) =

g ∗µ(t) :=
∫ t

0
g(t− s)µ(ds), t ≥ 0, satisfies the renewal equation u(t) = g(t)+

∫ t

0
u(t−

s)µ(ds), t ≥ 0. Show that if g is integrable on [0,∞) and µ has finite first moment m,
then u(t) ∼ { 1

m

∫ ∞
0

g(s)ds}t as t → ∞. [Hint : Use the Tauberian theorem.]

8. (Branching with Geometric Offspring) Let Yn,1, Yn,2, . . . , Yn,n be a triangular array of
i.i.d. random variables having geometric (offspring) distribution P (Yn,j = k) = qpk, k =

0, 1, 2 . . .. Recursively define Xn+1 =
∑Xn

j=1
Yn,j1[Xn≥1], for n ≥ 0, with X0 = 1. Then

Xn+1 may be viewed as the number of offspring in the (n + 1)st generation produced
by ancestors in the nth generation. The geometric offspring assumption makes vari-
ous explicit calculations possible that are otherwise impossible. Let gn(t) = EtXn , and
g1(t) = g(t) = EtYn,j the generating function of the offspring distribution.
(i) Show that gn+1(t) = g(gn(t)).

(ii) For p = q show that gn(t) = q pn−qn−(pn−1−qn−1)pt

pn+1−qn+1−(pn−qn)pt
.

(iii) For p < 1
2
, consider the total progeny defined by N =

∑∞
n=0

Xn. Show that P (N <
∞) = 1. [Hint : Consider P (Xn = 0) = gn(0) and [Xn = 0] ⊆ [Xn+1 = 0].]

(iv) For p < 1
2
, let h(t) = EtN be the generating function for the total progeny. Show

that h(t) = tg(h(t)) = qh(t)
1−ph(t)

, 0 < t < 1. [Hint : Consider the generating functions

hn(t) = Et

∑n

j=0
Xj

, n ≥ 0, in the limit as n → ∞.]

(v) For p < 1
2
, show that h(t) = 1−

√
1−4pqt
2p

, 0 < t < 1. [Hint : Solve the quadratic
equation implied by the preceding calculation.]

(vi) Show that
∑n

k=1
k

(4pq)k P (N = k) ∼ 1
p
√

π
n

1
2 as n → ∞. [Hint : Apply the Taube-

rian theorem to h′( t
4pq

) and use properties of the gamma function: Γ(x + 1) =

xΓ(x), Γ( 1
2
) =

√
π.]

9. Show that under the hypothesis of Theorem 8.5, the sequence of probabilities {µn : n ≥
1} is tight. [Hint : Given ε > 0 there exists λε > 0 such that µ̂n(λε) ≥ 1 − ε

2
for all n.

Now find M = Mε such that e−λεM < ε
2
. Then µn[0, M ] ≥ 1 − ε for all n.]

10. Show that the series (8.8) converges uniformly on [0, a] for all a < 1. [Hint : Check that
the series increases monotonically to ϕ(h(1−t)) and apply Dini’s theorem from advanced
calculus.]

11. (i) Show that under the hypothesis of part (b) of Theorem 8.5 the sequence of probabili-
ties {µn : n ≥ 1} is tight. [Hint : Given ε > 0 there exists λε > 0 such that µ̂n(λε) ≥ 1− ε

2
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for all n. Now find M = Mε such that e−λεM < ε/2. Then µn[0, M ] ≥ 1 − ε for all n.]
(ii) Give an example to show that the boundedness of µ̂n(c) is necessary in part (a).
[Hint : Consider point-mass measures µn at positive integers n.]



C H A P T E R IX

Random Series of Independent
Summands

The convergence of an infinite series
∑∞

n=1 Xn is a tail event. Thus, if X1,X2, . . .
is a sequence of independent random variables, the convergence takes place with
probability one or zero. For a concrete example, consider the so-called random signs
question for the divergent series

∑∞
n=1

1
n . Namely, while

∑∞
n=1

(−1)n+1

n is convergent,
one might ask what happens if the signs are assigned by i.i.d. tosses of a balanced
coin (see Exercise 1)?

To answer questions about almost-sure convergence of a random series, one often
proceeds with an effort to show that the sequence {Sn = X1 + · · · + Xn : n ≥ 1}
of partial sums is not Cauchy with probability zero. A “non-Cauchy with probability
zero” statement may be formulated by first observing that the event that {Sn}∞n=1

is not Cauchy implies ∪∗
ε>0[supj,k≥n |Sj − Sk| ≥ ε ∀ n] = ∪∗

ε>0 ∩∞
n=1 [supj,k≥n |Sj −

Sk| ≥ ε], where ∪∗
ε>0 denotes a countable union over rational ε > 0. Moreover,

by continuity of the probability P from above, P (∩∞
n=1[supj,k≥n |Sj − Sk| ≥ ε]) =

limn→∞ P (supj,k≥n |Sj − Sk| ≥ ε). Now, since supj,k≥n |Sj − Sk| = supj,k≥0 |Sn+j −
Sn+k| ≤ supj≥0 |Sn+j − Sn|+ supk≥0 |Sn+k − Sn| = 2 supm≥1 |Sn+m − Sn|, one has

P

(

sup
j,k≥n

|Sj − Sk| ≥ ε

)

≤ 2P

(

sup
m≥1

|Sm+n − Sn| ≥
ε

2

)

= 2 lim
N→∞

P

(

max
1≤m≤N

|Sn+m − Sn| ≥
ε

2

)

. (9.1)

Thus, to prove non-Cauchy with probability zero it is sufficient to show that
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lim
n,N→∞

P

(

max
1≤m≤N

|Sn+m − Sn| ≥ ε

)

= 0. (9.2)

This approach is facilitated by the use of maximal inequalities of the type found
previously for martingales. At the cost of some redundancy, here is another statement
and derivation of Kolmogorov’s maximal inequality for sums of independent random
variables.

Theorem 9.1 (Kolmogorov’s Maximal Inequality). Let X1, . . . , Xn be independent
random variables with EXj = 0, Var Xj < ∞, for j = 1, . . . , n. Let Sk =

∑k
j=1 Xj .

For δ > 0 one has P (max1≤k≤n |Sk| ≥ δ) ≤ Var Sn

δ2 .

Proof. Let τ = min{k ≤ n : |Sk| > δ}, with τ = ∞ if |Sk| ≤ δ for all k ≤ n. Then

E
(
S2

n

)
≥

n∑

k=1

E
(
S2

n1[τ=k]

)

=
n∑

k=1

E({Sk + (Sn − Sk)}21[τ=k]) (9.3)

=
n∑

k=1

E
(
{S2

k + 2Sk(Sn − Sk) + (Sn − Sk)2}1[τ=k]

)

≥
n∑

k=1

E{S2
k + 2Sk(Sn − Sk)}1[τ=k]. (9.4)

Now observe that [τ = k] ∈ σ(X1, . . . , Xk) and Sk is σ(X1, . . . , Xk)-measurable. Thus
1[τ=k]Sk and Sn − Sk are independent. Since the latter has mean zero, the expected
value of their product is zero, and the above bound reduces to

ES2
n ≥

n∑

k=1

E{S2
k1[τ=k]} ≥

n∑

k=1

δ2P (τ = k).

Noting that
∑n

k=1 P (τ = k) = P (max1≤k≤n |Sk| ≥ δ) completes the proof. �

Theorem 9.2 (Mean-Square-Summability Criterion). Let X1,X2, . . . be indepen-
dent random variables with mean zero. If

∑∞
n=1 Var(Xn) < ∞ then

∑∞
n=1 Xn

converges a.s.
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Proof. Applying Kolmogorov’s maximal inequality to the sum of Xn+1, . . . , Xn+m

yields for arbitrary ε > 0,

P

(

max
1≤k≤m

|Sn+k − Sn| > ε

)

≤ 1
ε2

m∑

k=1

Var(Xn+k) ≤ 1
ε2

∞∑

k=1

Var(Xn+k).

Using continuity of the probability P , it follows that P (supk≥1 |Sn+k − Sn| > ε) =
limm→∞ P (max1≤k≤m |Sn+k − Sn| > ε) ≤ 1

ε2

∑∞
k=1 Var(Xn+k). Since the bound is

by the tail of a convergent series, one has, letting n →∞, that

lim
n→∞

P (sup
k≥1

|Sn+k − Sn| > ε) = 0.

It follows by the method leading up to (9.2) that the event [{Sn}∞n=1 is not a Cauchy
sequence] has probability zero. �

As a quick application of the mean-square-summability criterion one may obtain a
strong law of large numbers for sums of independent centered random variables whose
variances do not grow too rapidly; see Exercise 3.

We will see below that it can also be employed in a proof of strong laws for rescaled
averages of i.i.d. sequences under suitable moment conditions. This will use truncation
arguments stemming from the following further consequence; also see Exercises 5, 6.

Corollary 9.3 (Kolmogorov’s Three-Series Criteria: Sufficiency Part). Let X1,
X2, . . . be independent random variables. Suppose that there is a (truncation level)
number a > 0 such that the following three series converge: (i)

∑∞
n=1 P (|Xn| > a);

(ii)
∑∞

n=1 E
(
Xn1[|Xn|≤a]

)
; (iii)

∑∞
n=1 Var(Xn1[|Xn|≤a]). Then

∑∞
n=1 Xn converges with

probability one.

Proof. Convergence of (i) implies that the truncated and nontruncated series con-
verge and diverge together, since by Borel–Cantelli I, they differ by at most finitely
many terms with probability one. In view of the mean-square-summability criterion,
part (iii) gives a.s. convergence of the centered truncated sum, and adding (ii) gives
the convergence of the uncentered truncated sum. �

As an application of the CLT one may also establish the necessity of Kolmogorov’s
three series criteria as follows.

Corollary 9.4 (Kolmogorov’s Three-Series Criteria: Necessary Part). Let X1, X2,
. . . be independent random variables. If

∑∞
n=1 Xn converges with probability one,

then for any (truncation level) number a > 0 the following three series converge: (i)∑∞
n=1 P (|Xn| > a); (ii)

∑∞
n=1 E[Xn1[|Xn|≤a]]; (iii)

∑∞
n=1 Var(Xn1[|Xn|≤a]).

Proof. Assume that
∑∞

n=1 Xn converges a.s. and let a > 0. Necessity of condi-
tion (i) follows from Borel–Cantelli II. Let S

(a)
n =

∑n
k=1 Xk1[|Xk|≤a], and σ2

n(a) =
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Var(S(a)
n ), µn(a) = ES

(a)
n . Suppose for the sake of contradiction of (iii) that σn(a) →

∞. Then S
(a)
n /σn(a) → 0 a.s. as n → ∞, and hence in probability as well. However,

since the terms Xk1[|Xk|≤a] − E{Xk1[|Xk|≤a]} are uniformly bounded, one may use
the central limit theorem to compute for an arbitrary interval J = (c, d], c < d, that

P

(
S

(a)
n − µn(a)

σn(a)
∈ J,

|S(a)
n |

σn(a)
< 1

)

≥ P

(
S

(a)
n − µn(a)

σn(a)
∈ J

)

− P

(
|S(a)

n |
σn(a)

≥ 1

)

is bounded away from zero for all sufficiently large n. This is a contradiction since it
implies that for sufficiently large n, the numbers −µn(a)/σn(a) are between c−1 and
d + 1 for two distinct choices of intervals J more than 2 units apart. Thus condition
(iii) holds. The necessity of condition (ii) now follows by applying the mean-square-
summability criterion, Theorem 9.2, to see that

∑∞
n=1{Xn1[|Xn|≤a] − µn(a)} is a.s.

convergent by (ii). Thus
∑∞

n=1 µn(a) must converge. �

In preparation for an extension1 of the strong law of large numbers, we record here
two very basic facts pertaining to the ordinary “calculus of averages”; their proofs are
left as Exercise 4.

Lemma 1. Let {cn}∞n=1 be a sequence of positive real numbers such that cn ↑ ∞
as n → ∞. Let {an}∞n=1 be an arbitrary sequence of real numbers. (a) If an → a as
n →∞, then defining c0 = 0,

[Cesàro] lim
n→∞

1
cn

n∑

j=1

(cj − cj−1)aj = a. (9.5)

(b) If
∑∞

j=1
aj

cj
converges then

[Kronecker] lim
n→∞

1
cn

n∑

j=1

aj = 0. (9.6)

Theorem 9.5 (Strong Law of Large Numbers). Let X1,X2, . . . be an i.i.d. sequence
of random variables, and let 0 < θ < 2. Then n− 1

θ

∑n
j=1 Xj converges a.s. if and only

if E|X1|θ < ∞ and either (i) θ ≤ 1 or (ii) θ > 1 and EX1 = 0. When the limit exists
it is EX1 in the case θ = 1, and is otherwise zero for all other cases of θ ∈ (0, 2),
θ �= 1.

1Theorem 9.5 is a stronger statement than Kolmogorov’s classical strong law due to
Marcinkiewicz and Zygmund (1937): Sur les fonctions indépendentes, Fund. Math. 29,
60–90., but clearly contains the classical law as a special case.
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Proof. The case θ = 1 was considered in Chapter IV (also see Exercise 6). Fix
θ ∈ (0, 2), θ �= 1, and assume E|X1|θ < ∞. For the cases in which θ > 1, one has
E|X1| < ∞, but assume for the sufficiency part that EX1 = 0 in such cases. We will
show that n− 1

θ

∑n
j=1 Xj → 0 a.s. as n →∞.

The basic idea for the proof is to use “truncation methods” as follows. Let Yn =
Xn1[

|Xn|≤n
1
θ

], n ≥ 1. Then it follows from the identical distribution and moment

hypothesis, using Borel-Cantelli lemma I, that P (Yn �= Xn i.o) = 0 since

∞∑

n=1

P (Yn �= Xn) =
∞∑

n=1

P (|X1|θ > n) ≤
∫ ∞

0

P (|X1|θ > x)dx = E|X1|θ <∞.

Thus, it is sufficient to show that n− 1
θ

∑n
j=1 Yj a.s. converges to zero. In view of

Kronecker’s lemma, for this one needs only to show that
∑∞

n=1
Yn

n
1
θ

is a.s. convergent.
If θ < 1, then this follows by the direct calculation that

E

∞∑

n=1

1
n

1
θ

|Yn| =
∞∑

n=1

n− 1
θ E|Xn|1

[|Xn|≤n
1
θ ]

≤
∫ ∞

0

x− 1
θ E|X1|1

[|X1|≤x
1
θ ]

dx

= E

{

|X1|
∫ ∞

|X1|θ
x− 1

θ dx

}

≤ cE|X1|θ < ∞,

for a positive constant c. Thus n− 1
θ

∑n
j=1 Yj is a.s. absolutely convergent for θ < 1. For

θ > 1, using the three-series theorem, it suffices to check that
∑∞

n=1 E
Yn

n
1
θ

is convergent,

and
∑∞

n=1
Var(Yn)

n
2
θ

< ∞. For the first of these, noting that EYn = −EXn1
[|Xn|>n

1
θ ]

,
one has

∞∑

n=1

n− 1
θ |EYn| ≤

∞∑

n=1

n− 1
θ E|Xn|1

[|Xn|>n
1
θ ]

≤
∫ ∞

0

x− 1
θ E|X1|1

[|X1|>x
1
θ ]

dx

= E

{

|X1|
∫ |X1|θ

0

x− 1
θ dx

}

≤ c′E|X1|θ < ∞,
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for some constant c′. Similarly, for the second one has

∞∑

n=1

n− 2
θ Var(|Yn|) ≤

∞∑

n=1

n− 2
θ E|Yn|2

=
∞∑

n=1

n− 2
θ E|Xn|21

[|Xn|≤n
1
θ ]

≤
∫ ∞

0

x− 2
θ E|X1|21

[|X1|≤x
1
θ ]

dx

= E

{

|X1|2
∫ ∞

|X1|θ
x− 2

θ dx

}

≤ c′E|X1|θ <∞.

For the converse, suppose that n− 1
θ

∑n
j=1 Xj is a.s. convergent. Let Sn :=

∑n
j=1 Xj .

Since a.s.

Xn

n
1
θ

=
Sn

n
1
θ

−
(

n− 1
n

) 1
θ Sn−1

(n− 1)
1
θ

→ 0

as n →∞, it follows from Boret Cantelli II that

E|X1|θ =
∫ ∞

0

P (|X1|θ > x)dx ≤ 1 +
∞∑

n=1

P (|X1|θ > n) <∞.

In the case that θ > 1, one may further conclude that EX1 = 0 in view of the scaling.
That is, knowing that E|X1|

1
θ < ∞, one may apply the direct half to conclude that

a.s. n− 1
θ (Sn−nEX1) → 0. Since n− 1

θ Sn is assumed to converge a.s., so must n1− 1
θ EX1

and hence EX1 = 0 in this case as asserted. �

Proposition 9.6 (Almost-Sure & Convergence in Probability for Series of Inde-
pendent Terms). Let X1,X2, . . . be independent random variables. Then

∑∞
n=1 Xn

converges a.s. if and only if
∑∞

n=1 Xn converges in probability.

Proof. One part is obvious since almost-sure convergence always implies convergence
in probability. For the converse suppose, for contradiction, that limn

∑n
j=1 Xj exists

in probability, but with positive probability is divergent. Then there is an ε > 0 and
a γ > 0 such that for any fixed k, P (supn>k |Sn − Sk| > ε) > γ. Use Skorokhod’s
maximal inequality in Exercise 2 to bound P (maxk<n≤m |Sn−Sk| > ε) for fixed k,m.
Then note that p = pk,m := maxk<n≤m P (|Sm − Sn−1| > ε/2) → 0 as k,m → ∞,
since |Sm−Sk| → 0 in probability as k,m →∞. This indicates a contradiction. �
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Proposition 9.7 (Almost-Sure & Convergence in Distribution for Series of Inde-
pendent Summands). Let {Xn : n ≥ 1} be a sequence of independent real-valued
random variables. Then

∑n
k=1 Xk converges a.s. as n →∞ if and only if it converges

in distribution.

Proof. One way follows from the dominated convergence theorem using characteris-
tic functions. For the other, suppose

∑n
k=1 Xk → Y a.s. Then letting ϕk(ξ) = EeiξXk ,

ϕ(ξ) = EeiξY , one has
∏n

k=1 ϕk(ξ) → ϕ(ξ) as n → ∞. Thus
∏n

k=m ϕk(ξ) → 1 for
all ξ as m,n → ∞. By (6.57), for every ε > 0, one has P (|

∑n
k=m Xk| > 2ε) ≤

ε
∫
[− 1

ε , 1
ε ]

(1−
∏n

k=m ϕk(ξ))dξ → 0 as m,n →∞. Now use Proposition 9.6 to complete
the proof. �

EXERCISES

Exercise Set IX

1. (Random Signs Problem) Suppose that a1, a2, . . . is a sequence of real numbers, and
X1, X2, . . . an i.i.d. sequence of symmetrically distributed Bernoulli ±1-valued ran-
dom variables. Show that

∑∞
n=1

Xnan converges with probability one if and only if∑∞
n=1

a2
n < ∞. [Hint : Use mean-square-summability in one direction and a Kolmogorov’s

three-series theorem for the other.]

2. (Skorokhod’s Maximal Inequality) Let X1, . . . , Xn be independent random variables,

Sk =
∑k

j=1
Xj . For a given δ > 0, let p = maxk≤n P (|Sn − Sk| > δ) < 1. Show that

P (maxk≤n |Sk| > 2δ) ≤ 1
q
P (|Sn| > δ), where q = 1 − p = mink≤n P (|Sn − Sk| ≤ δ) > 0.

[Hint : Proceed along the lines of the proof of Kolmogorov’s maximal inequality by us-
ing values of τ := inf{k : |Sk| > 2δ} to decompose the event [|Sn| > δ], and noting
that P (|Sn| > δ, τ = k) ≥ P (|Sn − Sk| ≤ δ, τ = k). The latter probability factors by
independence.]

3. (A Strong Law of Large Numbers) Use the mean-square-summability criterion to for-
mulate and prove a strong law of large numbers for a sequence of independent random

variables X1, X2, . . . such that EXn = 0 for each n ≥ 1, and
∑∞

n=1

EX2
n

n2 < ∞. For what

values of θ does one have this strong law with Var(Xn) = nθ ?

4. (Cesàro Limits and Kronecker’s Lemma) Give a proof of the Cesàro and Kronecker
lemmas. [Hint : For the Cesàro limit, let ε > 0 and choose N sufficiently large that
a + ε > aj > a − ε for all j ≥ N . Consider lim sup and lim inf in the indicated aver-
age. For Kronecker’s lemma make a “summation by parts” to the indicated sum, and
apply the Cesàro limit result. Use bn := −

∑∞
j=n

aj

cj
,
∑n

j=1
aj =

∑n

j=1
(bj+1 − bj)cj =

a1 + bncn − b1c1 −
∑n−1

j=1
bj+1(cj+1 − cj).]

5. (Kolmogorov’s Truncation Method) Let X1, X2, . . . be an i.i.d. sequence of random vari-
ables with E|X1| < ∞. Define Yn = Xn1[|Xn|≤n], for n ≥ 1. Show that in the limit as

n → ∞, (a) EYn → EX1; (b) P (Yn = Xni.o.) = 0; and (c)
∑∞

n=1

Var(Yn)

n2 < ∞. [Hint :
For (a), Lebesgue’s dominated convergence; for (b), Borel–Cantelli I; for (c), Var(Yn) ≤
EY 2

n = E{X2
11[|X1| ≤ n]}, and

∑∞
n=1

1
n2 EX2

11[|X1|≤n] ≤ EX2
1

∫ ∞
|X1|

x−2dx = E|X1|.]

6. (A strong law of large numbers) Use Kolmogorov’s truncation method from the previ-
ous exercise together with Exercise 3 to prove the classic strong law for i.i.d. sequences
having finite first moment.



C H A P T E R X

Kolmogorov’s Extension Theorem
and Brownian Motion

Suppose a probability measure Q is given on a product space Ω =
∏

t∈Λ St with
the product σ-field F = ⊗t∈ΛSt. Let C denote the class of all finite-dimensional
cylinders C of the form

C =

{

ω = (xt, t ∈ Λ) ∈
∏

t∈Λ

St : (xt1 , xt2 , . . . , xtn
) ∈ B

}

, (10.1)

for n ≥ 1, B ∈ St1 ⊗ · · · ⊗ Stn
, and (t1, t2, . . . , tn) an arbitrary n-tuple of distinct

elements of Λ. Since ⊗t∈ΛSt is the smallest σ-field containing C, it is simple to check
from the π − λ theorem that Q is determined by its values on C. Write µt1,t2,...,tn

for
the probability measure on the product space (St1×St2×· · ·×Stn

,St2⊗St2⊗· · ·⊗Stn
)

given by

µt1,t2,...,tn
(B) := Q(C) (B ∈ St1 ⊗ · · · ⊗ Stn

), (10.2)

where C ∈ C is of the form (10.1) for a given n-tuple (t1, t2, . . . , tn) of dis-
tinct elements in Λ. Note that this collection of finite-dimensional distributions
Pf := {µt1,t2,...,tn

: ti ∈ Λ, ti �= tj for i �= j, n ≥ 1} satisfies the following so-called
consistency properties:

(a)For any n-tuple of distinct elements (t1, t2, . . . , tn), n ≥ 1, and all permutations
(t′1, t′2, . . . , t′n) = (tπ(1), . . . , tπ(n)) of (t1, t2, . . . , tn), (n ≥ 1), one has µt′1,t′2,...,t′n

=
µt1,t2,...,tn

◦ T−1 under the permutation of coordinates T : St1 × · · · × Stn
→
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St′1
× · · · × St′n given by T (xt1 , xt2 , . . . , xtn

) := (xt′1
, xt′2

, . . . , xt′n), i.e., for finite-
dimensional rectangles

µt′1,t′2,...,t′n
(Bt′1

× · · · ×Bt′n) = µt1,t2,...,tn
(Bt1 × · · · ×Btn

), Bti
∈ Sti

(1 ≤ i ≤ n).
(10.3)

(b)If (t1, t2, . . . , tn, tn+1) is an (n+1)-tuple of distinct elements of Λ, then µt1, t2,...,tn

is the image of µt1,t2,...,tn+1 under the projection map π : St1 × · · · × Stn+1 →
St1 × · · · × Stn

given by π(xt1 , xt2 , . . . , xtn
, xtn+1) := (xt1 , xt2 , . . . , xtn

),

i.e., for finite-dimensional cylinders,

µt1,t2,...,tn
(B) = µt1,t2,...,tn,tn+1(B × Stn+1) ∀ B ∈ St1 ⊗ · · · ⊗ Stn

. (10.4)

The theorem below, variously referred to by other names such as Kolmogorov’s
existence theorem or Kolmogorov’s consistency theorem, says, conversely, that given
a family Pf of consistent finite-dimensional probabilities, there exists a Q on (S,S)
with these as the finite-dimensional distributions.

Theorem 10.1 (Kolmogorov’s Existence Theorem). Suppose St, t ∈ Λ, are Polish
spaces and St = B(St) ∀ t ∈ Λ. Then given any family Pf of finite-dimensional prob-
abilities, Pf = {µt1,...,tn

: ti ∈ Λ, ti �= tjfor i �= j, n ≥ 1} satisfying the consistency
properties (a) and (b), there exists a unique probability Q on the product space (Ω =∏

t∈Λ St,F =
⊗

t∈Λ St) satisfying (10.2) for all n ≥ 1 and every (t1, . . . , tn) (n-tuple of
distinct elements of Λ), µt1,t2,...,tn

. Moreover, the stochastic process X = (Xt : t ∈ Λ)
defined on Ω by the coordinate projections Xt(ω) = xt, ω = (xt, t ∈ Λ) ∈ Ω has
distribution Q.

Proof. A complete proof is sketched in Exercises 6, 7 with broad hints. We give
a proof1 here in the case that each image space St, t ∈ Λ, is assumed a compact
metric space. The more general statement can be proved using an embedding into a
compact metric space (see Exercise 8). Assuming compactness of the image spaces
makes Ω =

∏
t∈Λ St compact for the product topology by Tychonov’s2 Theorem.

On the Banach space C(Ω) of continuous functions on Ω with the uniform norm
‖f‖ := maxx∈Ω |f(x)|, define a bounded linear functional h as follows: For a function
f ∈ C(S) that depends on only finitely many coordinates, say

f(x) = f(xt1 , . . . , xtn
),

1This proof is due to Edward Nelsen (1959), Regular Probability Measures on Function
Spaces, Ann. of Math. 69, 630–643.

2See Appendix B for a proof of Tychonov’s theorem for the case of countable Λ. For
uncountable Λ, see Folland, G.B. (1984).
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for some n ≥ 1, distinct t1, . . . , tn, and f : St1 × · · · × Stn
→ R, define

h(f) =
∫

St1×···×Stn

f dµt1,...,tn
.

One may check from the consistency properties that h is well-defined. By the Stone–
Weierstrass theorem from real analysis, see Appendix B, the class of functions in C(Ω)
depending on finitely many coordinates is dense in C(Ω). Thus h uniquely extends
to a bounded (i.e., continuous) linear functional defined on all of C(Ω). One may
then apply the Riesz representation theorem3 to obtain the desired probability Q.
In particular, since C(St1 × · · · × Stn

) is a measure-determining class of functions, it
follows that Q ◦ π−1

t1,...,tn
= µt1...tn

, where πt1...tn
(ω) = (xt1 , . . . , xtn

), for ω = (xt : t ∈
Λ). �

Remark 10.1. In the full generality of the specification of finite-dimensional
distributions for Kolmogorov’s extension theorem, topological assumptions (for com-
pactness) are used to prove countable additivity of Q. However, for constructing an
infinite product probability measure, or even the distribution of a discrete pa-
rameter Markov process with arbitrary measurable state spaces (St,St), t ∈ Λ, from
specified transition probabilities and initial distribution, consistency is sufficient to
prove that Q is a probability. The trade-off is that one is assuming more on the type of
dependence structure for the finite-dimensional distributions. The extension theorem
is referred to as Tulcea’s extension theorem. The precise statement is as follows in the
case Λ = {0, 1, . . .}.

Theorem 10.2 (Tulcea’s Extension Theorem). Let (Sm,Sm), m = 0, 1, 2, . . ., be
an arbitrary sequence of measurable spaces, and let Ω =

∏∞
m=0 Sm, F = ⊗∞

m=0Sm

denote the corresponding product space and product σ-field. Let µ0 be a probability
on S0 and suppose that (a) for each n ≥ 1 and (x0, x1, . . . , xn) ∈ S1 × · · · × Sn,
B → µn(x0, x1, . . . , xn−1, B), B ∈ Sn, is a probability on Sn and (b) for each n ≥ 1,
B ∈ Sn, the map (x0, x1, . . . , xn−1) �→ µn(x0, x1, . . . , xn−1, B) is a Borel-measurable
map from

∏n−1
m=0 Sm into [0, 1]. Then there is a probability Q on (Ω,F) such that for

each finite-dimensional cylinder set C = B × Sn × Sn+1 × · · · ∈ F , B ∈ ⊗n−1
m=0Sm

(n ≥ 1),

Q(C) =
∫

S0

· · ·
∫

Sn−1

1B(x0, . . . , xn−1)µn−1(x0, . . . , xn−2, dxn−1) · · ·µ1(x0, dx1)µ0(dx0).

In the case that the spaces are Polish spaces this is a consistent specification and the
theorem is a special case of Kolmogorov’s extension theorem. However, in the absence

3See Appendix A for a proof of the Riesz representation theorem for compact metric
spaces S. For general locally compact Hausdorff spaces see Folland, G.B. (1984), or Royden,
H.L. (1988).
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of topology, it stands alone. The proof4 is essentially a matter of checking countable
additivity so that the Carathéodory extension theorem may be applied.

Remark 10.2. For the case of a product probability measure
∏

t∈Λ µt on (×t∈ΛSt,
⊗t∈ΛSt) the component probability spaces (St,St, µt), t ∈ Λ, may be arbitrary mea-
sure spaces, and Λ may be uncountable.5 On such a space the coordinate projections
Xs(ω) = ωs, ω = (ωt : t ∈ Λ), define a family of independent random variables with
marginal distributions µs (s ∈ Λ).

The following example is a recasting of the content of Tulcea’s theorem in the
language of Markov processes whose transition probabilities are assumed to have
densities.

Example 1 (Discrete-Parameter Markov Process.). Let (S,S) be a measurable
space, ν a σ-finite measure on (S,S). Let p(x, y) be a nonnegative measurable function
on (S × S,S ⊗ S) such that

∫
S

p(x, y)ν(dy) = 1 ∀ x ∈ S. The function p(x, y) is
the (one-step) transition probability density of a Markov process {Xn : n =
0, 1, 2, . . .} constructed here on the infinite product space (S∞,S⊗∞) of all sequences
x := (x0, x1, x2, . . .) in S. Here, as usual, S⊗∞ is the product σ-field on S∞ generated
by the class of all finite-dimensional rectangles of the form

C = {x = (x0, x1, . . .) ∈ S∞ : xi ∈ Bi for i = 0, 1, 2, . . . ,m}, (10.5)

for m ≥ 1, Bi ∈ S, i = 0, 1, . . . ,m. For this construction, fix a probability measure µ0

on (S,S) and define for Bi ∈ S, i = 0, 1, . . . , n,

µ0,1,2,...,n(B0 ×B1 × · · · ×Bn) (10.6)

=
∫

B0

∫

B1

· · ·
∫

Bn

p(x0, x1)p(x1, x2) · · · p(xn−1, xn)ν(dxn)ν(dxn−1) · · · ν(dx1)µ0(dx0).

More generally, µ0,1,2,...n(B) is defined ∀ B ∈ S⊗(n+1) by integration of the function
p(x0, x1) · · · p(xn−1, xn) over B with respect to the product measure µ0× ν × · · · × ν.
Since

∫
S

p(xn, xn+1)ν(dxn+1) = 1, the condition (b) for consistency of µ0,1,...,n, n ≥ 0,
required by Theorem 10.1 is easily checked. For integers 0 ≤ m0 < m1 < · · · <
mn(n ≥ 0), the finite-dimensional probability µm0,...,mn

can then be consistently
defined by µm0,...,mn

= µ0,1,...,mn
◦ π−1

m0,...,mn
, where πm0,...,mn

(x0, . . . , xmn
) :=

(xm0 , . . . , xmn
), for (x0, . . . , xmn

) ∈ Smn+1. If one also defines µτ(m0),τ(m1),...,τ(mn)

for any given permutation τ of (0, 1, 2, . . . , n) as the induced-image measure on
(Smn+1,S⊗(mn+1)) under the map (x0, x1, . . . , xmn

) �→ (xmτ(0) , xmτ(1) , . . . , xmτ(n)) on
(Smn+1,S⊗(mn+1), µ0,1,2,...,mn

) into (Smn+1,S⊗(mn+1)), then the family Pf of The-
orem 10.1 is obtained, and it automatically satisfies (a) as well as (b). As noted

4For a proof of Tulcea’s theorem see S.N. Ethier and T. Kurtz (1986), or J. Neveu (1965).
5See Neveu (1965).
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above, according to Tulcea’s proof the conclusion of Theorem 10.1 holds without
any topological conditions on (S,S). The coordinate process {Xn : n = 0, 1, 2, . . .}
defined by Xn(ω) = xn ∀ ω = (x0, x1, . . . , xn, . . .) ∈ S∞ n = 0, 1, 2, . . . on
(S∞,S⊗∞, Q) is a Markov process in the sense of Theorem 2.9: The (regular) con-
ditional distribution of X+

m := (Xm,Xm+1, . . .) given Fm := σ(X0,X1, . . . , Xm)
is (Qy)y=Xm

≡ QXm
, where Qy = Q with the initial distribution µ0 taken to be

the Dirac delta measure δy (i.e., µ0({y}) = 1, µ0(S\{y}) = 0) (Exercise 2).

Remark 10.3. As illustrated by this example, in the discrete parameter case in which
Λ = {0, 1, 2, . . .}, it is enough to consistently specify µ0,1,...,n for n = 0, 1, 2 . . . , subject
to condition (b) and then consistently define the other finite-dimensional probabilities
as being induced by the coordinate projections and permutation maps. More generally,
the condition (a) on permutation consistency can always be built into the specification
of finite-dimensional probabilities when Λ is linearly ordered. This is accomplished by
specifying µt1,t2,...,tn

for t1 < t2 < · · · < tn and then defining µτ(1),τ(2),...,τ(n) as
the image (measure) of µt1,t2,...,tn

under the permutation map (xt1 , xt2 , . . . , xtn
) →

(xτ(1), xτ(2), . . . , xτ(n)). Thus one needs only to check the consistency property (b) to
hold for ordered n-tuples (t1, t2, . . . , tn) with t1 < t2 < · · · < tn.

Remark 10.4. On an arbitrary measurable space (S,S) one defines a tran-
sition probability p(x,B) : S × S → [0, 1] requiring only that (i) x �→
p(x,B) be measurable for each B ∈ S, and that (ii) for each x ∈ S, B �→
p(x,B) is a probability on S. The construction of a Markov process with a
given transition probability p(·, ·) and a given initial distribution µ0 is now
defined by the successive iterated integration, generalizing (10.7), beginning with
the integral of p(xn−1, Bn) with respect to the measure p(xn−2, dxn−1) to get∫

Bn−1
p(xn−1, Bn)p(xn−2, dxn−1) = gn−2(xn−2), say. Then integrate this with respect

to p(xn−3, dxn−2) to get
∫

Bn−2
gn−2(xn−2)p(xn−3, dxn−2) = gn−3(xn−3), say, and so

on. In this manner one has µ0,1,2,...,n(B0 × B1 × · · · × Bn) =
∫

B0
g0(x0)µ0(dx0),

g0(x0) =
∫

B1
g1(x1)p(x0, dx1), g1(x1) =

∫
B2

g1(x2)p(x1, dx2), . . . , gn−2(xn−2) =
∫

Bn−1
gn−1(xn−1)p(xn−2, dxn−1), gn−1(xn−1) = p(xn−1, Bn) ≡

∫
Bn

p(xn−1, dxn),
beginning with the last term and moving successively backward.

Example 2 (Gaussian Process/Random Field). Here we take St = R, St =
B(R), t ∈ Λ. The Kolmogorov extension theorem may be used to construct a prob-
ability space (Ω,F , P ) on which a family of Gaussian, or normal, random variables
{Xt : t ∈ Λ} are defined with arbitrarily specified (i) means mt = E(Xt), t ∈ Λ,
and (ii) covariances σt,t′ = Cov(Xt,Xt′), t and t′ ∈ Λ, with the property that for ev-
ery n-tuple (t1, t2, . . . , tn) of distinct indices (n ≥ 1), the matrix ((σti,tj

))1≤i, j≤n

is symmetric and nonnegative definite. In this case, using the notation above,
µt1,t2,...,tn

is the Gaussian probability distribution parameterized by a (mean) vector
(mt1 ,mt2 , . . . ,mtn

)t ∈ R
n and symmetric, nonnegative definite (covariance) ma-

trix ((σti,tj
))1≤i, j≤n. More specifically, µt1,t2,...,tn

is defined as the distribution of
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Y = AZ + m, where Z = (Z1, . . . , Zn)t is n-dimensional standard normal with pdf
ϕ(z1, . . . , zn) = (2π)−

n
2 exp{− 1

2

∑n
j=1 z2

j }, m = (mt1 , . . . ,mtn
) and AtA = Γ :=

((σti,tj
))1≤i, j≤n. Consistency properties (a), (b) are easily checked. Hence there exists

a probability measure Q on the product space (Ω = R
Λ,F = B(R)⊗Λ) such that the

coordinate process {Xt : t ∈ Λ} is the desired Gaussian process. Here Xt(ω) = xt

for ω = (xt′ , t
′ ∈ Λ) ∈ Ω ≡ R

Λ (t ∈ Λ). The indexing set Λ is general and includes
examples such as Λ = [0,∞), [0, 1], or in a construction, for example, of Gaussian
random fields where Λ = R

k.
As a special case, let Λ = [0,∞) (or Λ = [0, 1]), mt = 0 ∀ t, and σt,t′ =

min{t, t′} (t, t′ ∈ Λ). The check that ((σti,tj
))1≤i,j≤n is nonnegative-definite for all

n-tuples of distinct indices is outlined in Exercise 1. The process so constructed on
(Ω = R

[0,∞) or R
[0,1]) defines a Brownian motion process on the Kolmogorov

σ-field B(R)⊗[0,∞) (or B(R)⊗[0,1]), i.e., on the product σ-field for Ω generated by
finite-dimensional cylinders of the form C = {ω = (xt, t ∈ Λ) : (xt1 , xt2 , . . . , xtn

) ∈ B}
for arbitrary n ≥ 1, t1 < t2 < · · · < tn, B ∈ B(Rn). Unfortunately, the Kolmogorov
σ-field does not include the set of (all) continuous functions C[0,∞) (or C[0, 1]). The
reason for this is that the product σ-field consists only of sets determined by countably
many coordinates, rendering this model mathematically inadequate for computing
probabilities of many “events”of interest due to nonmeasurability (Exercise 4). The
first resolution of this situation was obtained by the seminal construction of Norbert
Wiener. This led to the following definition of Brownian motion.

Definition 10.1. A stochastic process B = {Bt : t ≥ 0}, B0 = 0, defined on a
probability space (Ω,F , P ) a.s. having continuous sample paths t → Bt, t ≥ 0, and
such that for any 0 < t1 < t2 < · · · < tk, k ≥ 1 (Bt1 , . . . , Btk

) has a k-dimensional
Gaussian distribution with zero mean and variance-covariance matrix ((ti∧tj))1≤i,j≤k

is referred to as one-dimensional standard Brownian motion started at B0 = 0.
The distribution P ◦ B−1 of the process B is a probability measure concentrated on
the Borel σ-field of C[0,∞), referred to as Wiener measure.

Since Wiener’s construction, a number of alternative approaches have become known,
several of which will arise in the main course of the companion textbook on stochastic
processes. For the present, however, a resolution of this problem is given below by a so-
called wavelet construction in close resemblance to the classic “Fourier construction”
of Wiener, but technically much simpler. Specifically, a construction is made of a
probability space (Ω,F , P ) and stochastic process B = {Bt : t ∈ [0,∞)} such that, as
above, for each 0 ≤ t1 < t2 < · · · < tk (k ≥ 1), (Bt1 , . . . , Btk

) is Gaussian with mean 0
and covariance matrix ((min{ti, tj}))1≤i,j≤k. Equivalently, the increments Btj

−Btj−1 ,
1 ≤ j ≤ k, are independent Gaussian random variables with zero mean and variance
tj− tj−1, respectively; cf. Exercise 1. Moreover, for such a model of Brownian motion,
the subset [B ∈ C[0,∞)] ∈ F is a measurable event (and has probability one).
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10.1 A Wavelet Construction of Brownian Motion: The Lévy–Ciesielski
Construction

A construction6 of Brownian motion based on a.s. uniform and absolute convergence
on the time interval [0,1] of a random series expansion in terms of the integrated
Haar wavelet basis, referred to as the Schauder basis, of L2[0, 1] may be obtained
as a consequence of the following sequence of lemmas. First, though, recursively
define Haar wavelet functions H0,0,Hn,k n = 0, 1, 2, . . ., 2n ≤ k < 2n+1,
on 0 ≤ t ≤ 1, H0,0(t) ≡ 1; H0,1(t) := 1[0,1/2](t) − 1(1/2,1](t); and Hn,k(t) :=
2

n
2 1[k2−n−1,k2−n−1+2−n−1](t) − 2

n
2 1(k2−n−1+2−n−1,k2−n−1+2−n](t), 0 ≤ t ≤ 1. Recall

the definition of a complete orthonormal basis in a Hilbert space (see Appendix C).

Lemma 1. The collection of Haar wavelet functions {Hn,k} is a complete ortho-
normal basis for L2[0, 1]. In particular, 〈f, g〉 =

∑
(n,k)〈f,Hn,k〉〈g,Hn,k〉 holds for

f, g ∈ L2[0, 1].

Proof. Orthonormality follows by a direct calculation. To prove completeness one
needs to show that if f ∈ L2[0, 1] and 〈f,Hn,k〉 = 0 for all n, k, then f = 0 almost
everywhere with respect to Lebesgue measure on [0, 1]. Define

If (t) =
∫ t

0

f(s)ds, 0 ≤ t ≤ 1.

Then If is continuous with If (0) = 0. Moreover, orthogonality with respect to H0,0

implies that If (1) = 0. Next If ( 1
2 ) = 0 in view of If (0) = If (1) = 0 and orthogonality

of f to H0,1. Using the orthogonality of f to H1,2, one shows that If ( 1
4 ) − (If ( 1

2 ) −
If ( 1

4 )) = 0, so that If ( 1
4 ) = 0. Orthogonality with H1,3 means that If ( 3

4 ) − If ( 1
2 ) −

(If (1) − If ( 3
4 )) = 0, implying If ( 3

4 ) = 0. Continuing by induction one finds that
If (k2−n) = 0 for all dyadic rationals k2−n ∈ [0, 1]. By continuity it now follows
that If (t) = 0 for all t ∈ [0, 1] and hence f = 0 a.e., as asserted. The last equality
is then simply Parseval’s relation which holds for any complete orthonormal system
(see Appendix C). �

Definition 10.2. The functions defined by Sn,k(t) :=
∫ t

0
Hn,k(s)ds, 0 ≤ t ≤ 1, are

called the Schauder functions.

Lemma 2. The Schauder functions Sn,k on [0, 1] are continuous, nonnegative, and
attain a maximum value 2−( n

2 +1). Moreover, for fixed n, the functions Sn,k, k =
2n, . . . , 2n+1 − 1, have disjoint supports.

6This construction originated in Ciesielski, Z. (1961): Hölder condition for realization of
Gaussian processes, Trans. Amer. Math. Soc. 99 403–413, based on a general approach of
Lévy, P. (1948): Processes stochastique et mouvement Brownian, Gauthier-Villars, Paris.



136 KOLMOGOROV’S EXTENSION THEOREM AND BROWNIAN MOTION

Proof. Continuity is obvious. The assertions are also clearly true for S0,0 and S0,1.
Since Hn,k is positive, with constant value 2

n
2 on the interval [k2−n − 1, k2−n − 1 +

2−n−1] to the left of (k2−n−1, k2−n−1+2−n−1], where it takes negative constant value
−2

n
2 , and it has the value 0 off these two intervals, Sn,k is positive and increasing

on the first interval with a maximum value Sn,k(tM ) = 2
n
2 (k2−n − 1 + 2−n−1 −

k2−n + 1) = 2−( n
2 +1) at the endpoint tM = k2−n − 1 + 2−n−1. Moreover, it attains

a minimum value Sn,k(tm) = 0 at the rightmost endpoint tm = k2−n − 1 + 2−n−1.
Thus Sn,k is nonnegative with disjoint supports [k2−n − 1, k2−n − 1 + 2−n−1] for
k = 2n, . . . , 2n+1 − 1. �

Lemma 3. For 0 ≤ s ≤ t ≤ 1,

∑

n,k

Sn,k(s)Sn,k(t) = min{s, t} = s.

Proof. By definition of the Schauder functions one has Sn,k(t) = 〈1[0,t],Hn,k〉 for
fixed t ∈ [0, 1]. Thus one may apply Parseval’s equation to obtain for s ≤ t,∑

n,k Sn,k(s)Sn,k(t) =
∑

n,k〈1[0,s],Hn,k〉〈1[0,t],Hn,k〉 = 〈1[0,s],1[0,t]〉 = s, since
1[0,s]1[0,t] = 1[0,s]. �

Since the maximum of the Schauder functions are decaying exponentially, there is
some room for growth in the coefficients of a series expansion in these functions as
furnished by the next lemma.

Lemma 4. If max2n≤k<2n+1 |an,k| = O(2nε), for some 0 < ε < 1/2, then∑
n,k an,kSn,k on [0, 1] converges uniformly and absolutely to a continuous function.

Proof. The key is to observe that since for given n, the Schauder functions have
disjoint supports for 2n ≤ k < 2n+1, the maximum value of |

∑2n+1−1
k=2n an,kSn,k| on

[0, 1] is (max2n≤k<2n+1 |an,k|)2−( n
2 +1). Thus for some c > 0,

∑

n≥m

∣
∣
∣
∣
∣
∣

2n+1−1∑

k=2n

an,kSn,k(t)

∣
∣
∣
∣
∣
∣
≤

∑

n≥m

c2nε2−(n/2+1)

is the tail of a convergent geometric series. In particular, the partial sums are uniformly
Cauchy. The assertion follows since the uniform limit of continuous functions on [0, 1]
is continuous. �

Lemma 5 (Feller’s Tail Probability Estimates). For a standard normal random

variable Z, (z−1 − z−3)
√

2
π exp{−z2/2} ≤ P (|Z| ≥ z) ≤

√
2

πz2 exp{−z2/2}, z > 1.
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In particular,

lim
z→∞

P (|Z| > z)
√

2
πz2 exp{−z2/2}

= 1.

Proof. One may obtain simple upper and lower bounds on the integrand by per-
fect derivatives as follows:

∫∞
z

e−
x2
2 dx ≤

∫∞
z

x
z e−

x2
2 dx, and for the other direction

− d
dx{(

1
x −

1
x3 )e−

x2
2 } = (1− 3

x4 )e−
x2
2 ≤ e−

x2
2 . �

Lemma 6. There is an i.i.d. sequence an,k = Zn,k of standard normal random vari-
ables on a probability space (Ω,F , P ). Moreover,

∑
n,k Zn,kSn,k is uniformly and

absolutely convergent on [0, 1] with probability one.

Proof. The existence of the i.i.d. sequence follows from Kolmogorov’s extension
theorem. From here apply Borel–Cantelli I and the Feller’s tail probability esti-
mates to obtain by the preceding lemma that with probability one,

∑
n,k Zn,kSn,k

is uniformly and absolutely convergent on [0, 1]. Specifically, for some c′ > 0,
∑∞

n=1 P (max2n≤k<2n+1 |Zn,k| > 2nε) ≤ c′
∑∞

n=1 2n2−
nε
2 e−

1
222εn

< ∞. Thus
max2n≤k<2n+1 |Zn,k| is a.s. O(2nε) for any choice of 0 < ε < 1/2. �

Lemma 7. Define Bt :=
∑

n,k Zn,kSn,k(t), 0 ≤ t ≤ 1. Then with probability one,
{Bt : 0 ≤ t ≤ 1} has continuous sample paths, B0 = 0, and for any 0 = t0 < t1 <
· · · < tm ≤ 1, m ≥ 1, the increments Btj

− Btj−1 , j = 1, . . . ,m, are distributed
as independent normal random variables with zero mean and respective variances
tj − tj−1, j = 1, . . . , m.

Proof. Observe that using the Parseval’s relation as in Lemma 3,

EeiξBt =
∏

(n,k)

EeiξZn,kSn,k(t)

=
∏

(n,k)

e−
1
2 ξ2S2

n,k(t)

= exp

⎧
⎨

⎩
−1

2
ξ2

∑

(n,k)

S2
n,k(t)

⎫
⎬

⎭
= e−

1
2 ξ2t.

(10.7)

Proceed inductively on m, similarly using Parseval’s relation, to check that the
increments Btj

− Btj−1 , j = 1, . . . , m, have the multivariate characteristic function
E exp{i

∑m
j=1 ξj(Btj

−Btj−1)} =
∏m

j=1 exp(− 1
2 (tj − tj−1)ξ2

j ). �
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Theorem 10.3. There is a stochastic process B = {Bt : t ≥ 0} defined on a probabil-
ity space (Ω,F , P ) with continuous sample paths and having stationary independent
Gaussian increments Bt −Bs with mean zero and variance t− s for each 0 ≤ s < t.

Proof. First use Lemma 7 to construct a Brownian motion on its image space C[0, 1].
By the Kolmogorov extension theorem one may construct a sequence B

(r)
t , 0 ≤ t ≤

1, r = 1, 2, . . . of independent standard Brownian motions on [0, 1] each starting at 0.
Inductively extend Bt := B

(1)
t , 0 ≤ t ≤ 1, by Bt := B

(r)
t−r+1 + Br−1, r − 1 ≤ t ≤ r,

r = 1, 2, . . .. Then it is simple to check that the stochastic process {Bt : t ≥ 0}
satisfies all the properties that define a standard Brownian motion on [0,∞) starting
at 0. �

Definition 10.3. A k-dimensional standard Brownian motion is a stochastic
process {Bt = (B(1)

t , . . . , B
(k)
t ) : t ≥ 0} such that {B(j)

t : t ≥ 0}, j = 1, . . . , k, are k
independent one-dimensional standard Brownian motions.

In the next chapter some fine-scale properties of Brownian motion paths are pre-
sented. In particular, see Exercise 5 of Chapter XI for a simple application of the
wavelet construction in this connection.

The idea of a process {Bt : t ≥ 0} that has independent Gaussian increments
derives from a central limit theorem (CLT) governing the distribution of sums of
large numbers of “independent small displacements”.

Many classical limit theorems for sums of independent random variables in fact arise
as consequences of much more general theories that lead to the existence of Brownian
motion with a.s. continuous sample paths. This point is explored in Chapter XII via a
beautiful proof of the weak convergence of suitably scaled random walks to Brownian
motion by the so-called Skorokhod embedding.

EXERCISES

Exercise Set X

1. (i) Suppose that Y1, Y2, . . . is a sequence of real-valued random variables in L2(Ω,F , P )
and let Γ := ((Cov(Yi, Yj))1≤i,j≤n. Show that Γ is nonnegative-definite. [Hint :
Expand 0 ≤ E|

∑n

i=
ciYi|2 for real numbers c1, . . . , cn.]

(ii) Show that ((σti,tj ))1≤i,j≤n := ((min{ti, tj}))1≤i,j≤n is nonnegative-definite for all
n-tuples of distinct indices t1, . . . , tj . [Hint : Take 0 ≤ t1 < t2 < · · · < tn, and let
Z1, Z2, . . . , Zn be independent mean-zero Gaussian random variables (for example
defined on a finite product space (Rn,B(Rn)) such that Var(Z1) = t1, Var(Zj) =
tj −tj−1(j = 2, . . . , n). Consider Y1 = Z1, Y2 = Z1+Z2, . . . , Yn = Z1+Z2+ · · ·+Zn.
Compute the covariance matrix of Y1, Y2, . . . , Yn.]

2. Prove the assertion in Example 1 that the (regular) conditional distribution of X+
m :=

(Xm, Xm+1, . . .), given Fm := σ(X0, X1, . . . , Xm), is (Qy)y=Xm ≡ QXm , where
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Qy = Q with the initial distribution µ0 taken to be the Delta measure δy (i.e.,
µ0({y}) = 1, µ0(S\{y}) = 0). [Hint : First consider a cylinder set C as in (10.5)
and show that QXm(C), as given by the right side of (10.6) with µ0 = δXm equals
P ([X+

m ∈ C]|σ(X0, X1, . . . , Xm)) ≡ P ([(Xm, Xm+1, . . . , Xm+n) ∈ B0 × B1 × · · · ×
Bn]|σ(X0, X1, . . . , Xm)) ≡ E(1[(Xm,Xm+1,...,Xm+n)∈B0×···×Bn]|σ(X0, X1, . . . , Xm)). For
this, first check with n = 0 and then n = 1. For the latter, let g(X0, X1, . . . , Xm)
be nonnegative, bounded measurable and calculate E(1[Xm∈B0,Xm+1∈B1]g(X0, . . . , Xm))
using (10.6). Finally, use induction and properties of conditional expectation to calculate
E(1[Xm∈B0,...,Xn+m∈Bn]g(X0, X1, . . . , Xm)).]

3. Let Sn = {0, 1}, with the power set σ-field Sn = 2Sn , n = 1, 2, . . . . Suppose
that pn : S1 × · · · × Sn → [0, 1], n ≥ 1, are probability mass functions, i.e.,∑

(s1,...,sn)∈{0,1}n pn(s1, . . . , sn) = 1, for each n. Assume the following consistency con-

dition: pn(s1, . . . , sn) = pn+1(s1, . . . , sn, 0) + pn+1(s1, . . . , sn, 1), si ∈ {0, 1}, 1 ≤ i ≤ n.
Give a direct proof of the existence of a probability space (Ω,F , P ) and a sequence
of random variables X1, X2, . . . such that P (X1 = s1, . . . , Xn = sn) = pn(s1, . . . , sn),
si ∈ {0, 1}, 1 ≤ i ≤ n, n ≥ 1. [Hint :

∏
n∈N Sn may be viewed as a compact space, with

Borel σ-field B ≡ ⊗
n∈NSn and such that the finite-dimensional cylinders are both open

and closed. Define a set function on the field of finite-dimensional cylinders and use the
Heine–Borel compactness property to prove countable additivity on this field. The rest
follows by Carathéodory extension theory.]

4. For Ω = R
[0,1], we write ω = (xt, 0 ≤ t ≤ 1) ∈ Ω to denote a real-valued function on [0, 1].

Also B⊗[0,1] = σ(C), where C ∈ C if and only if C ≡ C(T, B1, B2, . . .) := {ω = (xt, 0 ≤
t ≤ 1) ∈ Ω : xt1 ∈ B1, . . . , xtn ∈ Bn, . . .} for some countable set T = {t1, t2, . . .} ⊆ [0, 1],
and Borel sets B1, B2, . . . . Let T denote the collection of countable subsets of [0, 1]. For
fixed T ∈ T , let CT be the collection of all subsets of Ω of the form C(T, B1, B2, . . .).
(i) Show that B⊗[0,1] = ∪T∈T σ(CT ).
(ii) For fixed T ∈ T , let ϕT : R

[0,1] → R
∞ by ϕT (ω) = (xt1 , xt2 , . . .), ω = (xt, 0 ≤ t ≤ 1).

Show that σ(CT ) = σ(ϕT ) is the smallest σ-field on R
[0,1] that makes ϕT measurable

for the product σ-field B∞ on R
∞.

(iii) Show that if A ∈ σ(CT ) and ω ∈ A, then ω′ ∈ Ω with ϕT (ω) = ϕT (ω′) implies
ω′ ∈ A. [Hint : σ(ϕT ) = {ϕ−1

T (F ) : F ∈ B∞}.]
(iv) Show that C[0, 1] is not measurable for the Kolmogorov product σ-field B⊗[0,1].
(v) Show that {x ∈ R

[0,1] : sup0≤t≤1 x(t) ≤ 1} is not a measurable set for the
Kolmogorov product σ-field.

5. Suppose that S is a Polish space with Borel σ-field S = B(S). (i) Let µn(x0, . . ., xn−1,
B) = p(xn−1, B) in Tulcea’s theorem 10.2, with p(x, dy) a probability on (S,S) for each
x ∈ S, and such that x → p(x, B) is Borel measurable for each fixed B ∈ S. Show that
the existence of the probability Q asserted in Tulcea’s extension theorem follows from
Kolmogorov’s extension theorem. [Hint : Show that the specification of finite-dimensional
distributions by the initial distribution µ and the transition probabilities p(x, dy), x ∈ S,
satisfy the Kolmogorov consistency condition (b).] (ii) Following Remark 10.4, extend
the specification (10.3) to define µ0,1,...,n(B) to all B ∈ S⊗(n+1). [Hint : Successively
define, (i)gn−1(xn−1; x0, . . . , xn−2) = p(xn−1, Bx0,x1,...,xn−1), where Bx0,x1,...,xn−1 =
{y ∈ S : (x0, x1, . . . , xn) ∈ B} is the (x0, x1, . . . , xn−1)-section of B. Then de-
fine gn−2(xn−2; x0, . . . , xn−3) =

∫
gn−1(xn−1; x0, . . . , xn−2)p(xn−2, dxn−1), and so on.]

(iii) Show that the canonical process given by coordinate projections x → xn,
(x = (x0, x1, . . . ∈ S∞), say Xn(n ≥ 0), on (S∞,S⊗∞, Q), has the Markov property:
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the conditional distribution of Xm+1 given Fm = σ(Xj : 0 ≤ j ≤ m) is p(Xm, dy), and
it is a Markov process as defined in Example 1.

6. (Kolmogorov’s Existence Theorem) Let Stj (j = 1, 2, . . .) be Polish spaces and let
µt1,t2,...,tn be a consistent sequence of probability measures on (St1 × · · · × Stn ,St1 ⊗
· · · ⊗ Stn) (n ≥ 1). Define a sequence of probabilities on S = ×∞

j=1Stj , with the product
σ-field S, as follows. Fix x = (xt1 , xt2 , . . .) ∈ S. Define Pn(B) := µt1,...,tn(Bxn+), where
xn+ = (xtn+1 , xtn+2 , . . .) ∈ S, and Bxn+1 = {y ∈ B : ytn+j = xtn+j : j = 1, 2, . . .}
(B ∈ S). (i) Show that {Pn : n ≥ 1} is tight. [Hint : Fix ε > 0. Find a compact set
Ktn ⊆ Stn such that xtn ∈ Ktn and µ(Ktn) > 1− ε

2n (use the fact that each probability
on a Polish space is tight). Then Pn(×∞

j=1Ktj ) > 1 − ε.] (ii) Show that if Pn′ ⇒ Q for
some sequence n′(n ≥ 1), then Q is the desired probability.

7. (Kolmogorov’s Existence Theorem) Assume the hypothesis of Theorem 10.1 with Λ
uncountable. On the field C of all finite-dimensional cylinders (see (10.1)) define the set
function Q as in (10.2). (i) Show that Q is a measure on C. [Hint : If {Cn : n = 0, 1, . . .}
is a disjoint collection in C whose union C = ∪∞

n=1Cn ∈ C, there exists a countable set
T = {tj : j = 1, 2, . . .} such that Cn, C(n ≥ 1) belong to the σ-field FT on Ω = ×t∈ΛSt

generated by the coordinate projections x �→ xtj , tj ∈ T . By Exercise 6, there is a
unique extension of Q to FT that is countably additive.] (ii) Show that there is a unique
extension of Q from C to the product σ-field ⊗t∈ΛSt. [Hint : Use the Carathéodory
extension theorem.]

8. (i) Show that every Polish space St (t ∈ Λ) has a homeomorphic image ht(St) in a com-
pact metric space Kt. [Hint : See Lemma 1, Chapter V.] (ii) Show that the construction
of the product probability given in the text holds on ×t∈Λht(St).



C H A P T E R XI

Brownian Motion: The LIL and Some
Fine-Scale Properties

In this chapter we analyze the growth of the Brownian paths t �→ Bt as t → ∞.
We will see by a property of “time inversion” of Brownian motion that this leads to
small-scale properties as well. First, however, let us record some basic properties of
the Brownian motion that follow somewhat directly from its definition.

Theorem 11.1. Let B = {Bt : t ≥ 0} be a standard one-dimensional Brownian
motion starting at 0. Then

1. (Symmetry) Wt := −Bt, t ≥ 0, is a standard Brownian motion starting at 0.
2. (Homogeneity and Independent Increments) {Bt+s − Bs : t ≥ 0} is a standard

Brownian motion independent of {Bu : 0 ≤ u ≤ s}, for every s ≥ 0.
3. (Scale-Change Invariance). For every λ > 0, {B(λ)

t := λ− 1
2 Bλt : t ≥ 0} is a

standard Brownian motion starting at 0.
4. (Time-Inversion Invariance) Wt := tB1/t, t > 0, W0 = 0, is a standard Brownian

motion starting at 0.

Proof. Each of these is obtained by showing that the conditions defining a Brownian
motion are satisfied. In the case of the time-inversion property one may apply the
strong law of large numbers to obtain continuity at t = 0. That is, if 0 < tn → 0 then
write sn = 1/tn →∞ and Nn := [sn], where [·] denotes the greatest integer function,
so that by the strong law of large numbers, with probability one

Wtn
=

1
sn

Bsn
=

Nn

sn

1
Nn

Nn∑

j=1

(Bi −Bi−1) +
1
sn

(Bsn
−BNn

) → 0,
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since Bi − Bi−1, i ≥ 1, is an i.i.d. mean-zero sequence, Nn/sn → 1, and (Bsn
−

BNn
)/sn → 0 a.s. as n →∞ (see Exercise 1). �

In order to prove our main result of this section, we will make use of the following
important inequality due to Paul Lévy.

Proposition 11.2 (Lévy’s Inequality). Let Xj , j = 1, . . . , N , be independent and
symmetrically distributed (about zero) random variables. Write Sj =

∑j
i=1 Xi, 1 ≤

j ≤ N . Then, for every y > 0,

P

(

max
1≤j≤N

Sj ≥ y

)

≤ 2P (SN ≥ y)− P (SN = y) ≤ 2P (SN ≥ y).

Proof. Write Aj = [S1 < y, . . . , Sj−1 < y, Sj ≥ y], for 1 ≤ j ≤ N . The events
[SN − Sj < 0] and [SN − Sj > 0] have the same probability and are independent of
Aj . Therefore

P

(

max
1≤j≤N

Sj ≥ y

)

= P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN < y])

≤ P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN − Sj < 0])

= P (SN ≥ y) +
N−1∑

j=1

P (Aj)P ([SN − Sj < 0])

= P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN − Sj > 0])

≤ P (SN ≥ y) +
N−1∑

j=1

P (Aj ∩ [SN > y])

≤ P (SN ≥ y) + P (SN > y)

= 2P (SN ≥ y)− P (SN = y). (11.1)

This establishes the basic inequality. �

Corollary 11.3. For every y > 0 one has for any t > 0,

P

(

max
0≤s≤t

Bs ≥ y

)

≤ 2P (Bt ≥ y).
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Proof. Partition [0, t] by equidistant points 0 < u1 < u2 < · · · < uN = t, and let
X1 = Bu1 ,Xj+1 = Buj+1 −Buj

, 1 ≤ j ≤ N − 1, in the proposition. Now let N →∞,
and use the continuity of Brownian motion. �

Remark 11.1. It is shown in the text on stochastic processes that P (max0≤s≤t Bs ≥
y) = 2P (Bt ≥ y). Thus Lévy’s inequality is sharp in its stated generality. The
following proposition concerns the simple symmetric random walk defined by
S0 = 0, Sj = X1 + · · ·+ Xj , j ≥ 1, with X1,X2, . . . i.i.d. ±1-valued with equal proba-
bilities. It demonstrates the remarkable strength of the reflection method used in
the proof of the lemma, allowing one in particular to compute the distribution of the
maximum of a random walk over a finite time.

Proposition 11.4. For the simple symmetric random walk one has for every positive
integer y,

P

(

max
0≤j≤N

Sj ≥ y

)

= 2P (SN ≥ y)− P (SN = y).

Proof. In the notation of Lévy’s inequality given in Proposition 11.2 one has, for
the present case of the random walk moving by ±1 units at a time, that Aj = [S1 <
y, . . . , Sj−1 = y], 1 ≤ j ≤ N . Then in (11.1) the probability inequalities are all
equalities for this special case. �

Theorem 11.5 (Law of the Iterated Logarithm (LIL) for Brownian Motion). Each
of the following holds with probability one:

limt→∞
Bt√

2t log log t
= 1, limt→∞

Bt√
2t log log t

= −1.

Proof. Let ϕ(t) :=
√

2t log log t, t > 0. Let us first show that for any 0 < δ < 1, one
has with probability one that

limt→∞
Bt

ϕ(t)
≤ 1 + δ. (11.2)

For arbitrary α > 1, partition the time interval [0,∞) into subintervals of
exponentially growing lengths tn+1 − tn, where tn = αn, and consider the event

En :=
[

max
tn≤t≤tn+1

Bt

(1 + δ)ϕ(t)
> 1

]

.
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Since ϕ(t) is a nondecreasing function, one has, using Corollary 11.3, a scaling
property, and Lemma 5 from Chapter X, that

P (En) ≤ P

(

max
0≤t≤tn+1

Bt > (1 + δ)ϕ(tn)
)

≤ 2P

(

B1 >
(1 + δ)ϕ(tn)√

tn+1

)

≤
√

2
π

√
tn+1

(1 + δ)ϕ(tn)
e
− (1+δ)2ϕ2(tn)

2tn+1 ≤ c
1

n(1+δ)2/α
(11.3)

for a constant c > 0 and all n ≥ (log α)−1. For a given δ > 0 one may select 1 < α <
(1 + δ)2 to obtain P (En i.o.) = 0 from the Borel–Cantelli lemma (Part I). Thus we
have (11.2). Since δ > 0 is arbitrary we have with probability one that

limt→∞
Bt

ϕ(t)
≤ 1. (11.4)

Next let us show that with probability one,

limt→∞
Bt

ϕ(t)
≥ 1. (11.5)

For this consider the independent increments Btn+1 −Btn
, n ≥ 1. For θ = tn+1−tn

tn+1
=

α−1
α < 1, using Feller’s tail probability estimate (Lemma 5, Chapter X) and Brownian

scale change,

P
(
Btn+1 −Btn

> θϕ(tn+1)
)

= P

(

B1 >

√
θ

tn+1
ϕ(tn+1)

)

≥ c′e−θ log log tn+1

≥ cn−θ (11.6)

for suitable constants c, c′ depending on α and for all sufficiently large n. It follows
from the Borel–Cantelli Lemma (Part II) that with probability one,

Btn+1 −Btn
> θϕ(tn+1) i.o. (11.7)

Also, by (11.4) and replacing {Bt : t ≥ 0} by the standard Brownian motion {−Bt :
t ≥ 0},

limt→∞
Bt

ϕ(t)
≥ −1, a.s. (11.8)
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Since tn+1 = αtn > tn, we have

Btn+1√
2tn+1 log log tn+1

=
Btn+1 −Btn√

2tn+1 log log tn+1

+
1√
α

Btn√
2tn(log log tn + log log α)

.

(11.9)
Now, using (11.7) and (11.8), it follows that with probability one,

limn→∞
Btn+1

ϕ(tn+1)
≥ θ − 1√

α
=

α− 1
α

− 1√
α

. (11.10)

Since α > 1 may be selected arbitrarily large, one has with probability one that

limt→∞
Bt

ϕ(t)
≥ limn→∞

Btn+1

ϕ(tn+1)
≥ 1. (11.11)

This completes the computation of the limit superior. To get the limit inferior simply
replace {Bt : t ≥ 0} by {−Bt : t ≥ 0}. �

The time inversion property for Brownian motion turns the law of the iterated
logarithm (LIL) into a statement concerning the degree (or lack) of local smoothness.
(Also see Exercise 5).

Corollary 11.6. Each of the following holds with probability one:

limt→0
Bt√

2t log log 1
t

= 1, limt→0

Bt√
2t log log 1

t

= −1.

EXERCISES

Exercise Set XI

1. Use Feller’s tail estimate (Lemma 5, Chapter X). to prove that max{|Bi − Bi−1| : i =
1, 2, . . . , N + 1}/N → 0 a.s. as N → ∞.

2. Show that with probability one, standard Brownian motion has arbitrarily large zeros.
[Hint : Apply the LIL.]

3. Fix t ≥ 0 and use the law of the iterated logarithm to show that limh→0
Bt+h−Bt

h
exists

only with probability zero. [Hint : Check that Yh := Bt+h − Bt, h ≥ 0, is distributed as

standard Brownian motion starting at 0. Consider 1
h
Yh = Yh√

2h log log(1/h)

√
2h log log(1/h)

h
.]

4. For the simple symmetric random walk, find the distributions of the extremes: (a) MN =
max{Sj : j = 0, . . . , N}, and (b) mN = min{Sj : 0 ≤ j ≤ N}.
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5. (Lévy Modulus of Continuity1) Use the wavelet construction Bt :=
∑

n,k
Zn,kSn,k(t),

0 ≤ t ≤ 1, of standard Brownian motion to establish the following fine-scale properties.
(i) Let 0 < δ < 1

2
. With probability one there is a random constant K such that if

|t − s| ≤ δ then |Bt − Bs| ≤ K
√

δ log 1
δ
. [Hint : Fix N and write the increment as

a sum of three terms: Bt − Bs = Z00(t − s) +
∑N

n=0

∑2n+1−1

k=2n Zn,k

∫ t

s
Hn,k(u)du +

∑∞
n=N+1

∑2n+1−1

k=2n Zn,k

∫ t

s
Hn,k(u)du = a + b + c. Check that for a suitable (ran-

dom) constant K′ one has |b| ≤ |t − s|K′ ∑N

n=0
n

1
2 2

n
2 ≤ |t − s|K′

√
2√

2−1

√
N2

N
2 ,

and |c| ≤ K′ ∑∞
n=N+1

n
1
2 2− n

2 ≤ K′
√

2√
2−1

√
N2− N

2 . Use these estimates, taking

N = [− log2(δ)] such that δ2N ∼ 1, to obtain the bound |Bt − Bs| ≤ |Z00|δ +

2K′
√

−δ log2(δ). This is sufficient since δ <
√

δ.]
(ii) The modulus of continuity is sharp in the sense that with probability one, there is a

sequence of intervals (sn, tn), n ≥ 1, of respective lengths tn−sn → 0 as n → ∞ such

that the ratio
Btn−Bsn√

−(tn−sn) log(tn−sn)
is bounded below by a positive constant. [Hint :

Use Borel–Cantelli I together with Feller’s tail probability estimate for the Gaussian
distribution to show that P (An i.o.) = 0, where An := [|Bk2−n − B(k−1)2−n | ≤
c
√

n2−n, k = 1, . . . , 2n] and c is fixed in (0,
√

2 log 2). Interpret this in terms of the
certain occurrence of the complimentary event [An i.o.]c.]

(iii) The paths of Brownian motion are a.s. nowhere differentiable.

1The calculation of the modulus of continuity for Brownian motion is due to Lévy,
P. (1937), Théorie de l’addition des variables aléatores, Gauthier-Villars, Paris. However
this exercise follows Pinsky, M. (1999): Brownian continuity modulus via series expansions,
J. Theor. Probab. 14 (1), 261–266.



C H A P T E R XII

Skorokhod Embedding and Donsker’s
Invariance Principle

This chapter ties together a number of the topics introduced in the text via appli-
cations to the further analysis of Brownian motion, a fundamentally important
stochastic process whose existence was established in Chapter X.

The discrete-parameter random walk was introduced in Chapter II, where it was
shown to have the Markov property. Markov processes on a general state space S with
a given transition probability p(x, dy) were introduced in Chapter X (see Example
1 and Remark 10.4 in Chapter X). Generalizing from this example, a sequence of
random variables {Xn : n ≥ 0} defined on a probability space (Ω,F , P ) with values
in a measurable space (S,S) has the Markov property if for every m ≥ 0, the
conditional distribution of Xm+1 given Fm := σ(Xj , 0 ≤ j ≤ m) is the same as its
conditional distribution given σ(Xm). In particular, the conditional distribution is a
function of Xm, denoted by pm(Xm, dy), where pm(x, dy), x ∈ S is referred to as the
(one-step) transition probability at time m and satisfies the following:

1. For x ∈ S, pm(x, dy) is a probability on (S,S).
2. For B ∈ S, the function x→ pm(x,B) is a real-valued measurable function on S.

In the special case that pm(x, dy) = p(x, dy), for every m ≥ 0, the transition
probabilities are said to be homogeneous or stationary.

With the random walk example as background, let us recall some basic definitions.
Let Pz denote the distribution of a discrete-parameter stochastic process X = {Xn :
n ≥ 0}, i.e., a probability on the product space (S∞,S⊗∞), with transition probability
p(x, dy) and initial distribution P (X0 = z) = 1. The notation Ez is used to denote
expectations with respect to the probability Pz.
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Definition 12.1. Fix m ≥ 0. The after-m (future) process is defined by X+
m :=

{Xn+m : n ≥ 0}.

It follows from the definition of a Markov process {Xn : n = 0, 1, 2, . . .} with a
stationary transition probability given above that for every n ≥ 0 the conditional
distribution of (Xm,Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm) is the same as the Px-
distribution of (X0, . . . , Xn), evaluated at x = Xm. To see this, let f be a bounded
measurable function on (Sn+1,S⊗(n+1)). Then the claim is that

E
(
f(Xm,Xm+1, . . . , Xm+n)|σ(X0, . . . , Xm)

)
= g0(Xm), (12.1)

where given X0 = x,

g0(x) := Exf(X0,X1, . . . , Xn). (12.2)

For n = 0 this is trivial. For n ≥ 1, first take the conditional expectation of
f(Xm,Xm+1, . . . , Xm+n), given σ(X0, . . . , Xm, . . . , Xm+n−1) to get, by the Markov
property, that

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−1)

)

=
∫

S

f(Xm, . . . , Xm+n−1, xm+n)p(Xm+n−1, dxm+n)

= gn−1(Xm, . . . , Xm+n−1), say. (12.3)

Next take the conditional expectation of the above with respect to σ(X0, . . . , Xm+n−2)
to get

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm+n−2)

)

= E
(
gn−1(Xm, . . . , Xm+n−1)|σ(X0, . . . , Xm+n−2)

)

= E

∫

S

gn−1(Xm, . . . , Xm+n−2, xm+n−1)p(Xm+n−2, dxm+n−1)

= gn−2(Xm, . . . , Xm+n−2), say. (12.4)

Continuing in this manner one finally arrives at

E
(
f(Xm,Xm+1, . . . , Xm+n) |σ(X0, . . . , Xm, . . . , Xm)

)

= E
(
g1(Xm,Xm+1)|σ(X0, . . . , Xm, . . . , Xm)

)

=
∫

S

g1(Xm, xm+1)p(Xm, dxm+1) = g0(Xm), say. (12.5)
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Now, on the other hand, let us compute Exf(X0,X1, . . . , Xn). For this, one follows the
same steps as above, but with m = 0. That is, first take the conditional expectation of
f(X0,X1, . . . , Xn), given σ(X0,X1, . . . , Xn−1), arriving at gn−1(X0,X1, . . . , Xn−1).
Then take the conditional expectation of this given σ(X0,X1, . . . , Xn−2), arriving at
gn−2(X0, . . . , Xn−2), and so on. In this way one again arrives at g0(X0), which is
(12.1) with m = 0, or (12.2) with x = Xm.

Since finite-dimensional cylinders C = B × S∞, B ∈ S⊗(n+1) (n = 0, 1, 2, . . .)
constitute a π-system, and taking f = 1B in (12.1), (12.2), one has, for every A ∈
σ(X0, . . . , Xm),

E
(
1A1[X+

m∈C]

)
= E

(
1A1[(Xm,Xm+1,...,Xm+n)∈B]

)
= E

(
1APx(C)|x=Xm

)
. (12.6)

It follows from the π-λ theorem that

E
(
1A1[X+

m∈C]

)
= E

(
1APx(C)|x=Xm

)
, (12.7)

for all C ∈ S∞; here Px(C)|x=Xm
denotes the (composite) evaluation of the function

x �→ Px(C) at x = Xm. Thus, we have arrived at the following equivalent, but
seemingly stronger, definition of the Markov property.

Definition 12.2 (Markov Property). We say that X = {Xn : n ≥ 0} has the
(homogeneous) Markov Property if for every m ≥ 0, the conditional distribution
of X+

m, given the σ-field Fm, is PXm
, i.e., equals Py on the set [Xm = y].

This notion may be significantly strengthened by considering the future evolution
given its history up to and including a random stopping time. Let us recall that given
a stopping time τ , the pre-τ σ-field Fτ is defined by

Fτ = {A ∈ F : A ∩ [τ = m] ∈ Fm,∀m ≥ 0}. (12.8)

Definition 12.3. The after-τ process X+
τ = {Xτ ,Xτ+1,Xτ+2, . . .} is well defined

on the set [τ < ∞] by X+
τ = X+

m on [τ = m].

The following theorem shows that for discrete-parameter Markov processes, this
stronger (Markov) property that “conditionally given the past and the present the
future starts afresh at the present state” holds more generally for a stopping time τ
in place of a constant “present time” m.

Theorem 12.1 (Strong Markov Property). Let τ be a stopping time for the process
{Xn : n ≥ 0}. If this process has the Markov property of Definition 12.2, then on
[τ < ∞] the conditional distribution of the after-τ process X+

τ , given the pre-τ σ-field
Fτ , is PXτ

.
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Proof. Let f be a real-valued bounded measurable function on (S∞,S⊗∞), and let
A ∈ Fτ . Then

E(1[τ<∞]1Af(X+
τ )) =

∞∑

m=0

E(1[τ=m]1Af(X+
m))

=
∞∑

m=0

E(1[τ=m]∩AEXm
f)

=
∞∑

m=0

E(1[τ=m]∩AEXτ
f) = E(1[τ<∞]1AEXτ

f). (12.9)

The second equality follows from the Markov property in Definition 12.2 since A∩[τ =
m] ∈ Fm. �

Let us now consider the continuous-parameter Brownian motion process along simi-
lar lines. It is technically convenient to consider the canonical model of standard
Brownian motion {Bt : t ≥ 0} started at 0, on Ω = C[0,∞) with B the Borel σ-field
on C[0,∞), P0, referred to as Wiener measure, and Bt(ω) := ω(t), t ≥ 0, ω ∈ Ω,
the coordinate projections. However, for continuous-parameter processes it is often
useful to make sure that all events that have probability zero are included in the
σ-field for Ω. For example, in the analysis of fine-scale structure of Brownian motion
certain sets D may arise that imply events E ∈ B for which one is able to compute
P (E) = 0. In particular, then, one would want to conclude that D is measurable
(and hence assigned P (D) = 0 too). For this it may be necessary to replace B by its
σ-field completion F = B. We have seen that this can always be achieved, and there
is no loss in generality in assuming that the underlying probability space (Ω,F , P ) is
complete from the outset (see Appendix A).

Although the focus is on Brownian motion, just as for the above discussion of
random walk, some of the definitions apply more generally and will be so stated
in terms of a generic continuous-parameter stochastic process {Zt : t ≥ 0}, having
continuous sample paths (outside a P -null set).

Definition 12.4. For fixed s > 0 the after-s process is defined by Z+
s := {Zs+t :

t ≥ 0}.

Definition 12.5. A continuous-parameter stochastic process {Zt : t ≥ 0}, with a.s.
continuous sample paths, such that for each s > 0, the conditional distribution of the
after-s process Z+

s given σ(Zt, t ≤ s) coincides with its conditional distribution given
σ(Zs) is said to have the Markov property.

As will become evident from the calculations in the proof below, the Markov prop-
erty of a Brownian motion {Bt : t ≥ 0} follows from the fact that it has independent
increments.
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Proposition 12.2 (Markov Property of Brownian Motion). Let Px denote the
distribution on C[0,∞) of standard Brownian motion Bx = {x + Bt : t ≥ 0} started
at x. For every s ≥ 0, the conditional distribution of (Bx

s )+ := {Bx
s+t : t ≥ 0} given

σ(Bx
u : 0 ≤ u ≤ s) is PBx

s
.

Proof. Write G := σ(Bx
u : 0 ≤ u ≤ s). Let f be a real-valued bounded measurable

function on C[0,∞). Then Ef
(
(Bx

s )+|G
)

= E
(
ψ(U, V )|G

)
, where U = Bx

s , V =
{Bx

s+t − Bx
s : t ≥ 0}, ψ(y, ω) := f(ωy), y ∈ R, ω ∈ C[0,∞), and ωy ∈ C[0,∞) by

ωy(t) = ω(t) + y. By the substitution property for conditional expectation (Theorem
2.7), since U is G-measurable and V is independent of G, one has

E
(
ψ(U, V )|G

)
= h(U) = h(Bx

s ),

where, simplifying notation by writing Bt = B0
t and, in turn, {Bt : t ≥ 0} for a

standard Brownian motion starting at 0,

h(y) = Eψ(y, V ) = Eψ(y, {Bt : t ≥ 0}) = Ef(By) =
∫

C[0,∞)

f dPy. �

It is sometimes useful to extend the definition of standard Brownian motion as
follows.

Definition 12.6. Let (Ω,F , P ) be a probability space and Ft, t ≥ 0, a filtration. The
k-dimensional standard Brownian motion with respect to this filtration is
a stochastic process {Bt : t ≥ 0} on (Ω,F , P ) having (i) stationary, independent
Gaussian increments Bt+s −Bs with mean zero and covariance matrix (t− s)Ik; (ii)
a.s. continuous sample paths t �→ Bt on [0,∞) → R

k; and (iii) for each t ≥ 0, Bt is
Ft-measurable and Bt−Bs is independent of Fs, 0 ≤ s < t. Taking B0 = 0 a.s., then
Bx := {x + Bt : t ≥ 0}, is referred to as the standard Brownian motion started
at x ∈ R

k (with respect to the given filtration).

For example, one may take the completion Ft = σ(Bs : s ≤ t), t ≥ 0, of the σ-field
generated by the coordinate projections t �→ ω(t), ω ∈ C[0,∞). Alternatively, one
may have occasion to use Ft = σ(Bs, s ≤ t)∨ G, where G is some σ-field independent
of F . The definition of the Markov property can be modified accordingly as follows.

Proposition 12.3. The Markov property of Brownian motions Bx on R
k defined

on (Ω,F , P ) holds with respect to (i) the right-continuous filtration defined by

Ft+ :=
⋂

ε>0

Ft+ε (t ≥ 0), (12.10)

where Ft = Gt := σ(Bu : 0 ≤ u ≤ t), or (ii) Ft is the P -completion of Gt, or (iii)
Ft = Gt ∨ G (t ≥ 0), where G is independent of F .
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Proof. (i) It is enough to prove that Bt+s − Bs is independent of Fs+ for every
t > 0. Let G ∈ Fs+ and t > 0. For each ε > 0 such that t > ε, G ∈ Fs+ε, so that if
f ∈ Cb(Rk), one has

E(1Gf(Bt+s −Bs+ε)) = P (G) · Ef(Bt+s −Bs+ε).

Letting ε ↓ 0 on both sides,

E(1Gf(Bt+s −Bs)) = P (G)Ef(Bt+s −Bs).

Since the indicator of every closed subset of R
k is a decreasing limit of continuous

functions bounded by 1 (see the proof of Alexandrov’s theorem in Chapter V), the last
equality also holds for indicator functions f of closed sets. Since the class of closed
sets is a π-system, and the class of Borel sets whose indicator functions f satisfy
the equality is a σ-field, one can use the π-λ theorem to obtain the equality for all
B ∈ B(Rk). The proofs of (ii) and (iii) are left to Exercise 2 . �

One may define the σ-field governing the “past up to time τ” as the σ-field of events
Fτ given by

Fτ := σ(Zt∧τ : t ≥ 0). (12.11)

The stochastic process {Z̃t : t ≥ 0} := {Zt∧τ : t ≥ 0} is referred to as the process
stopped at τ . Events in Fτ depend only on the process stopped at τ . The stopped
process contains no further information about the process {Zt : t ≥ 0} beyond the
time τ . Alternatively, in analogy with the discrete-parameter case, a description of
the past up to time τ that is often more useful for checking whether a particular event
belongs to it may be formulated as follows.

Definition 12.7. Let τ be a stopping time with respect to a filtration Ft, t ≥ 0.
The pre-τ σ-field is

Fτ = {F ∈ F : F ∩ [τ ≤ t] ∈ Ft for all t ≥ 0}.

For example, using this definition it is simple to check that

[τ ≤ t] ∈ Fτ ,∀t ≥ 0, [τ < ∞] ∈ Fτ . (12.12)

Remark 12.1. We will always use1 Definition 12.7, and not (12.11). Note, however,
that t ∧ τ ≤ t for all t, so that σ(Xt∧τ : t ≥ 0} is contained in Fτ (see Exercise 1).

1The proof of the equivalence of (12.11) and that of Definition 12.7 for processes with
continuous sample paths may be found in Stroock and Varadhan (1980, p. 33).
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The future relative to τ is the after-τ process Z+
τ = {(Z+

τ )t : t ≥ 0} obtained by
viewing {Zt : t ≥ 0} from time t = τ onwards, for τ < ∞. This is

(Z+
τ )t(ω) = Zτ(ω)+t(ω), t ≥ 0, on [τ < ∞]. (12.13)

Theorem 12.4 (Strong Markov Property for Brownian Motion). Let {Bt : t ≥ 0}
be a k-dimensional Brownian motion with respect to a filtration {Ft : t ≥ 0} starting
at 0 and let P0 denote its distribution (Wiener measure) on C[0,∞). For x ∈ R

k

let Px denote the distribution of the Brownian motion process Bx
t := x + Bt, t ≥ 0,

started at x. Let τ be a stopping time. On [τ < ∞], the conditional distribution of
B+

τ given Fτ is the same as the distribution of {By
t : t ≥ 0} starting at y = Bτ . In

other words, this conditional distribution is PBτ
on [τ < ∞].

Proof. First assume that τ has countably many values ordered as 0 ≤ s1 < s2 < · · ·.
Consider a finite-dimensional function of the after-τ process of the form

h(Bτ+t′1
, Bτ+t′2

, . . . , Bτ+t′r ), [τ < ∞], (12.14)

where h is a bounded continuous real-valued function on (Rk)r and 0 ≤ t′1 < t′2 <
· · · < t′r. It is enough to prove

E
[
h(Bτ+t′1

, . . . , Bτ+t′r )1[τ<∞] | Fτ

]
= [Eh(By

t′1
, . . . , By

t′r
)]y=Bτ

1[τ<∞]. (12.15)

That is, for every A ∈ Fτ we need to show that

E(1Ah(Bτ+t′1
, . . . , Bτ+t′r )1[τ<∞]) = E

(

1A

[
Eh(By

t′1
, . . . , By

t′r
)
]

y=Bτ

1[τ<∞]

)

.

(12.16)
Now

[τ = sj ] = [τ ≤ sj ] ∩ [τ ≤ sj−1]c ∈ Fsj
,

so that A ∩ [τ = sj ] ∈ Fsj
. Express the left side of (12.16) as

∞∑

j=1

E
(
1A∩[τ=sj ]h(Bsj+t′1

, . . . , Bsj+t′r )
)
. (12.17)

By the Markov property, the jth summand in (12.17) equals

E(1A1[τ=sj ][Eh(By
t′1

, . . . , By
t′r

)]y=Bsj
) = E(1A1[τ=sj ][Eh(By

t′1
, . . . , By

t′r
)]y=Bτ

).
(12.18)
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Summing this over j, one obtains the desired relation (12.16). This completes the
proof in the case that τ has countably many values 0 ≤ s1 < s2 < · · ·.

The case of more general τ may be dealt with by approximating it by stopping
times assuming countably many values. Specifically, for each positive integer n define

τn =

⎧
⎨

⎩

j

2n
if

j − 1
2n

< τ ≤ j

2n
, j = 0, 1, 2, . . .

∞ if τ =∞.
(12.19)

Since

[

τn =
j

2n

]

=
[
j − 1
2n

< τ ≤ j

2n

]

=
[

τ ≤ j

2n

]

\
[

τ ≤ j − 1
2n

]

∈ Fj/2n , (12.20)

it follows that

[τn ≤ t] =
⋃

j:j/2n≤t

[

τn =
j

2n

]

∈ Ft for all t ≥ 0. (12.21)

Therefore, τn is a stopping time for each n and τn(ω) ↓ τ(ω) as n ↑ ∞ for each ω ∈ Ω.
Also one may easily check that Fτ ⊆ Fτn

from the definition (see Exercise 1). Let h
be a bounded continuous function on (Rk)r. Define

ϕ(y) ≡ Eh(By
t′1

, . . . , By
t′r

). (12.22)

One may also check that ϕ is continuous using the continuity of y → (By
t′1

, . . . , By
t′r

).
Let A ∈ Fτ (⊆ Fτn

). Applying (12.16) to τ = τn one has

E(1Ah(Bτn+t′1
, . . . , Bτn+t′r )1[τn<∞]) = E(1Aϕ(Bτn

)1[τn<∞]). (12.23)

Since h, ϕ are continuous, {Bt : t ≥ 0} has continuous sample paths, and τn ↓ τ as
n → ∞, Lebesgue’s dominated convergence theorem may be used on both sides of
(12.23) to get

E(1Ah(Bτ+t′1
, . . . , Bτ+t′r )1[τ<∞]) = E(1Aϕ(Bτ )1[τ<∞]). (12.24)

This establishes (12.16). Since finite-dimensional distributions determine a probability
on C[0,∞), the proof is complete. �

Remark 12.2. Note that the proofs of the Markov property (Proposition 12.3 and
the strong Markov property (Theorem 12.1) hold for R

k-valued Brownian motions on
R

k with arbitrary drift and positive definite diffusion matrix (Exercise 2).
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The examples below illustrate the usefulness of Theorem 12.4 in typical computa-
tions. In examples 2–4, B = {Bt : t ≥ 0} is a one-dimensional standard Brownian
motion starting at zero. For ω ∈ C([0,∞) : R) define, for every a ∈ R,

τ (1)
a (ω) ≡ τa(ω) := inf{t ≥ 0 : ω(t) = a}, (12.25)

and, recursively,

τ (r+1)
a (ω) := inf{t > τ (r)

a : ω(t) = a}, r ≥ 1, (12.26)

with the usual convention that the infimum of an empty set of numbers is ∞.
Similarly, in the context of the simple random walk, put Ω = Z

∞ = {ω =
(ω0, ω1, . . .) : ωn ∈ Z,∀n ≥ 1}, and define

τ (1)
a (ω) ≡ τa(ω) := inf{n ≥ 0 : ωn = a}, (12.27)

and, recursively,

τ (r+1)
a (ω) := inf{n > τ (r)

a : ωn = a}, r ≥ 1. (12.28)

Example 1 (Recurrence of Simple Symmetric Random Walk). Consider the simple
symmetric random walk Sx := {Sx

n = x + S0
n : n ≥ 0} on Z started at x. Suppose

one wishes to prove that Px(τy < ∞) = 1 for y ∈ Z. This may be obtained from
the (ordinary) Markov property applied to ϕ(x) := Px(τy < τa), a ≤ x ≤ y. For
a < x < y, conditioning on Sx

1 , and writing Sx+
1 = {Sx

1+n : n ≥ 0}, we have

ϕ(x) = Px(τy < τa) = P (τy ◦ Sx < τa ◦ Sx)

= P (τy ◦ Sx+
1 < τa ◦ Sx+

1 )

= ExPSx
1
(τy < τa) = Eϕ(Sx

1 )

= E(1[Sx
1 =x+1]ϕ(x + 1) + 1[Sx

1 =x−1]ϕ(x− 1))

=
1
2
ϕ(x + 1) +

1
2
ϕ(x− 1), (12.29)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving, one obtains ϕ(x) = (x−a)/(y−a).
Thus Px(τy < ∞) = 1 follows by letting a→ −∞ using basic “continuity properties”
of probability measures. Similarly, letting y → ∞, one gets Px(τa < ∞) = 1. Write
ηa := inf{n ≥ 1 : ωn = a} for the first return time to a. Then ηa = τa on
{ω : ω0 �= a}, and ηa > τa = 0 on {ω : ω0 = a}. By conditioning on Sx

1 again,
one has Px(ηx < ∞) = 1

2Px−1(τx < ∞) + Px+1P (τx < ∞) = 1
2 · 1 + 1

2 · 1 = 1.
While this calculation required only the Markov property, next consider the problem
of showing that the process will return to y infinitely often. One would like to argue
that, conditioning on the process up to its return to y, it merely starts over. This of
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course is the strong Markov property. So let us examine carefully the calculation to
show that under Px, the rth passage time to y, τ

(r)
y , is a.s. finite for every r = 1, 2, . . ..

First note that by the (ordinary) Markov property, Px(τy < ∞) = 1 ∀x. To simplify
notation, write τ

(r)
y = τ

(r)
y ◦ Sx, and Sx+

τ
(r)
y

= {Sx+

τ
(r)
y +n

: n ≥ 0} is then the after-τ (r)
y

process (for the random walk Sx). Applying the strong Markov property with respect
to the stopping time τ

(r)
y one has, remembering that Sx

τ
(r)
y

= y,

Px(τ (r+1)
y <∞) = P (τ (r)

y < ∞, ηy ◦ Sx+

τ
(r)
y

<∞)

= E
(
1

[τ
(r)
y <∞]

Py(ηy <∞)
)

= E
(
1

[τ
(r)
y <∞]

)
· 1

= Px(τ (r)
y <∞) = 1 (r = 1, 2, . . .), (12.30)

by induction on r. If x = y, then τ
(1)
x is replaced by ηx. Otherwise, the proof remains

the same. This is equivalent to the recurrence of the state y in the sense that

P (Sx
n = y for infinitely many n) = P (∩∞

r=1[τ
(r)
y < ∞]) = 1. (12.31)

Example 2 (Boundary Value Distribution of Brownian Motion). Let Bx = {Bx
t :=

x + Bt : t ≥ 0} be a one-dimensional standard Brownian motion started at x ∈ [c, d]
for c < d, and let τy = τy ◦Bx. The stopping time τc∧τd denotes the first time for Bx

to reach the “boundary” states {c, d}, referred to as a hitting time for Bx. Define

ψ(x) := P (Bx
τc∧τd

= c) ≡ P ({Bx
t : t ≥ 0} reaches c before d), (c ≤ x ≤ d).

(12.32)
Fix x ∈ (c, d) and h > 0 such that [x− h, x + h] ⊂ (c, d). In contrast to the discrete-
parameter case there is no “first step” to consider. It will be convenient to consider
τ = τx−h ∧ τx+h, i.e., τ is the first time {Bx

t : t ≥ 0} reaches x − h or x + h. Then
P (τ < ∞) = 1, by the law of the iterated logarithm (see Exercise 5 for an alternative
argument). Now,

ψ(x) = P ({Bx
t : t ≥ 0} reaches c before d) = P ({(Bx+

τ )t : t ≥ 0} reaches c before d)

= E(P ({(Bx+
τ )t : t ≥ 0} reaches c before d | Fτ )). (12.33)

The strong Markov property (Theorem 12.4) now gives that

ψ(x) = E(ψ(Bx
τ )), (12.34)
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so that by symmetry of Brownian motion, i.e., B0 and−B0 have the same distribution,

ψ(x) = ψ(x− h)P (Bx
τ = x− h) + ψ(x + h)P (Bx

τ = x + h)

= ψ(x− h)
1
2

+ ψ(x + h)
1
2
, (12.35)

where, by (12.32), ψ(x) satisfies the boundary conditions ψ(c) = 1, ψ(d) = 0.
Therefore,

ψ(x) =
d− x

d− c
. (12.36)

Now, by (12.36) (see also Exercise 5),

P ({Bx
t : t ≥ 0} reaches d before c) = 1− ψ(x) =

x− c

d− c
(12.37)

for c ≤ x ≤ d. It follows, on letting d ↑ ∞ in (12.36), and c ↓ −∞ in (12.37) that

Px(τy <∞) = 1 for all x, y. (12.38)

As another illustrative application of the strong Markov property one may derive
a Cantor-like structure of the random set of zeros of Brownian motion as follows.

Example 3.

Proposition 12.5. With probability one, the set Z := {t ≥ 0 : Bt = 0} of zeros
of the sample path of a one dimensional standard Brownian motion, starting at 0,
is uncountable, closed, unbounded, and has no isolated point. Moreover, Z a.s. has
Lebesgue measure zero.

Proof. The law of iterated logarithm (LIL) may be applied as t ↓ 0 to show that with
probability one, Bt = 0 for infinitely many t in every interval [0, ε]. Since t �→ Bt(ω)
is continuous, Z(ω) is closed. Applying the LIL as t ↑ ∞, it follows that Z(ω) is
unbounded a.s.

We will now show that for 0 < c < d, the probability is zero of the event A(c, d), say,
that B has a single zero in [c, d]. For this consider the stopping time τ := inf{t ≥ c :
Bt = 0}. By the strong Markov property, B+

τ is a standard Brownian motion, starting
at zero. In particular, τ is a point of accumulation of zeros from the right (a.s.). Also,
P (Bd = 0) = 0. This implies P (A(c, d)) = 0. Considering all pairs of rationals c, d
with c < d, it follows that Z has no isolated point outside a set of probability zero
(see Exercise 4 for an alternate argument).
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Finally, for each T > 0 let HT = {(t, ω) : 0 ≤ t ≤ T , Bt(ω) = 0} ⊂ [0, T ] × Ω. By
the Fubini–Tonelli theorem, denoting the Lebesgue measure on [0,∞) by m, one has

(m× P )(HT ) =
∫ T

0

{∫

Ω

1{ω:Bt(ω)=0}P (dω)
}

dt =
∫ T

0

P (Bt = 0)dt = 0, (12.39)

so that m({t ∈ [0, T ] : Bt(ω) = 0}) = 0 for P -almost all ω. �

The following general consequence of the Markov property can also be useful in
the analysis of the (infinitesimal) fine-scale structure of Brownian motion and may
be viewed as a corollary to Proposition 12.3. As a consequence, for example, one sees
that for any given function ϕ(t), t > 0, the event

Dϕ := [Bt < ϕ(t) for all sufficiently small t] (12.40)

will certainly occur or is certain not to occur. Functions ϕ for which P (Dϕ) = 1 are
said to belong to the upper class. Thus ϕ(t) =

√
2t log log t belongs to the upper

class by the law of the iterated logarithm for Brownian motion (Theorem 11.5).

Proposition 12.6 (Blumenthal’s Zero–One Law). With the notation of Proposi-
tion 12.3,

P (A) = 0 or 1 ∀A ∈ F0+. (12.41)

Proof. It follows from (the proof of) Proposition 12.3 that Fs+ is independent of
σ{Bt+s − Bs : t ≥ 0} ∀ s ≥ 0. Set s = 0 to conclude that F0+ is independent of
σ(Bt : t ≥ 0) ⊇ F0+. Thus F0+ is independent of F0+, so that ∀ A ∈ F0+ one has
P (A) ≡ P (A ∩A) = P (A) · P (A). �

In addition to the strong Markov property, another powerful tool for the analysis of
Brownian motion is made available by observing that both the processes {Bt : t ≥ 0}
and {B2

t − t : t ≥ 0} are martingales. Thus one has available the optional sampling
theory (Theorem 3.6).

Example 4 (Hitting by BM of a Two-Point Boundary). Let {Bx
t : t ≥ 0} be a one-

dimensional standard Brownian motion starting at x, and let 0 < x < d. Let τ denote
the stopping time, τ = inf{t ≥ 0 : Bx

t = c or d}. Then writing ψ(x) := P ({Bx
t }t≥0

reaches d before c), one has (see (12.36))

ψ(x) =
x− c

d− c
c < x < d. (12.42)

Applying the optional sampling theorem to the martingale Xt := (Bx
t − x)2 − t, one

gets EXτ = 0, or (d − x)2ψ(x) + (x − c)2(1 − ψ(x)) = Eτ , so that Eτ = [(d − x)2 −
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(x− c)2]ψ(x) + (x− c)2, or

Eτ = (d− x)(x− c). (12.43)

Consider now a Brownian motion {Y x
t : t ≥ 0} with nonzero drift µ and diffusion

coefficient σ2 > 0, starting at x. Then {Y x
t − tµ : t ≥ 0} is a martingale, so that (see

Exercise 5) E(Y x
τ − µτ) = x, i.e., dψ1(x) + c(1− ψ1(x))− µEτ = x, or

(d− c)ψ1(x)− µEτ = x− c, (12.44)

where ψ1(x) = P (Y x
τ = d), i.e., the probability that {Y x

t : t ≥ 0} reaches d before
c. There are two unknowns, ψ1 and Eτ in (12.44), so we need one more relation to
solve for them. Consider the exponential martingale Zt := exp

{
ξ(Y x

t − tµ)− ξ2σ2

2 t
}

(t ≥ 1). Then Z0 = eξx, so that eξx = EZτ = E exp{ξ(d − τµ) − ξ2σ2 τ/2}1[Y x
τ =d] +

E[exp{ξ(c− τµ)− ξ2σ2 τ/2}1[Y x
τ =c]]. Take ξ �= 0 such that the coefficient of τ in the

exponent is zero, i.e., ξµ+ξ2 σ2/2 = 0, or ξ = −2µ/σ2. Then optional stopping yields

e−2µx/σ2
= exp{ξd}ψ1(x) + exp{ξc}(1− ψ1(x)),

= ψ1(x)
[

exp
{

−2µd

σ2

}

− exp
{

−2µc

σ2

}]

+ exp
{

−2µc

σ2

}

,

or

ψ1(x) =
exp{−2µx/σ2} − exp{−2µc/σ2}

exp{− 2µd
σ2 } − exp{−2µc

σ2 }
. (12.45)

One may use this to compute Eτ :

Eτ =
(d− c)ψ1(x)− (x− c)

µ
. (12.46)

Checking the hypothesis of the optional sampling theorem for the validity of the
relations (12.42)–(12.46) is left to Exercise 5.

Our main goal for this chapter is to derive a beautiful result of Skorokhod (1965)
representing a general random walk (partial sum process) as values of a Brownian
motion at a sequence of successive stopping times (with respect to an enlarged fil-
tration). This will be followed by a proof of the functional central limit theorem
(invariance principle) based on the Skorokhod embedding representation. Recall that
for c < x < d,

P (τx
d < τx

c ) =
x− c

d− c
, (12.47)
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where τx
a := τa(Bx) ≡ inf{t ≥ 0 : Bx

t = a}. Also,

E(τx
c ∧ τx

d ) = (d− x)(x− c). (12.48)

Write τa = τ0
a , B0 = B = {Bt : t ≥ 0}. Consider now a two-point distribution Fu,v

with support {u, v}, u < 0 < v, having mean zero. That is, Fu,v({u}) = v/(v − u)
and Fu,v({v}) = −u/(v − u). It follows from (12.47) that with τu,v = τu ∧ τv, Bτu,v

has distribution Fu,v and, in view of (12.48),

Eτu,v = −uv = |uv|. (12.49)

In particular, the random variable Z := Bτu,v
with distribution Fu,v is naturally

embedded in the Brownian motion. We will see by the theorem below that any
given nondegenerate distribution F with mean zero may be similarly embedded by
randomizing over such pairs (u, v) to get a random pair (U, V ) such that BτU,V

has
distribution F , and EτU,V =

∫
(−∞,∞)

x2F (dx), the variance of F . Indeed, this is
achieved by the distribution γ of (U, V ) on (−∞, 0)× (0,∞) given by

γ(du dv) = θ(v − u)F−(du)F+(dv), (12.50)

where F+ and F− are the restrictions of F to (0,∞) and (−∞, 0), respectively. Here
θ is the normalizing constant given by

1 = θ

[(∫

(0,∞)

vF+(dv)

)

F−((−∞, 0)) +

(∫

(−∞,0)

(−u)F−(du)

)

F+(0,∞)

]

,

or, noting that the two integrals are each equal to 1
2

∫∞
−∞ |x|F (dx) since the mean of

F is zero, one has

1/θ =
(

1
2

∫ ∞

−∞
|x|F (dx)

)

[1− F ({0})]. (12.51)

Let (Ω,F , P ) be a probability space on which are defined (1) a standard Brownian
motion B ≡ B0 = {Bt : t ≥ 0}, and (2) a sequence of i.i.d. pairs (Ui, Vi) independent
of B, with the common distribution γ above. Let Ft := σ{Bs : 0 ≤ s ≤ t}∨σ{(Ui, Vi) :
i ≥ 1}, t ≥ 0. Define the {Ft : t ≥ 0}-stopping times (Exercise 12)

T0 ≡ 0, T1 := inf{t ≥ 0 : Bt = U1 or V1},

Ti+1 := inf{t > Ti : Bt = BTi
+ Ui+1 or BTi

+ Vi+1} (i ≥ 1). (12.52)

Theorem 12.7 (Skorokhod Embedding). Assume that F has mean zero and finite
variance. Then (a) BT1 has distribution F , and BTi+1 − BTi

(i ≥ 0) are i.i.d. with
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common distribution F , and (b) Ti+1 − Ti (i ≥ 0) are i.i.d. with

E (Ti+1 − Ti) =
∫

(−∞,∞)

x2F (dx). (12.53)

Proof. (a) Given (U1, V1), the conditional probability that BT1 = V1 is −U1
V1−U1

.
Therefore, for all x > 0,

P (BT1 > x) = θ

∫

{v>x}

∫

(−∞,0)

−u

v − u
· (v − u)F−(du)F+(dv)

= θ

∫

{v>x}

{∫

(−∞,0)

(−u)F−(du)

}

F+(dv) =
∫

{v>x}
F+(dv), (12.54)

since
∫
(−∞,0)

(−u)F−(du) = 1
2

∫
|x|F (dx) = 1/θ. Thus the restriction of the distri-

bution of BT1 on (0,∞) is F+. Similarly, the restriction of the distribution of BT1

on (−∞, 0) is F−. It follows that P (BT1 = 0) = F ({0}). This shows that BT1 has
distribution F . Next, by the strong Markov property, the conditional distribution of
B+

Ti
≡ {BTi+t : t ≥ 0}, given FTi

, is PBTi
(where Px is the distribution of Bx). There-

fore, the conditional distribution of B+
Ti
− BTi

≡ {BTi+t − BTi
; t ≥ 0}, given FTi

, is
P0. In particular, Yi := {(Tj , BTj

) : 1 ≤ j ≤ i} and Xi := B+
Ti
−BTi

are independent.
Since Yi and Xi are functions of B ≡ {Bt : t ≥ 0} and {(Uj , Vj); 1 ≤ j ≤ i}, they are
both independent of (Ui+1, Vi+1). Since τ (i+1) := Ti+1− Ti is the first hitting time of
{Ui+1, Vi+1} by Xi, it now follows that (1) (Ti+1−Ti ≡ τ (i+1), BTi+1−BTi

≡ Xi
τ(i+1))

is independent of {(Tj , BTj
) : 1 ≤ j ≤ i}, and (2) (Ti+1 − Ti, BTi+1 − BTi

) has the
same distribution as (T1, BT1).

(b) It remains to prove (12.53). But this follows from (12.49):

ET1 = θ

∫

(−∞,0)

∫

(0,∞)

(−uv)(v − u)F−(du)F+(dv)

= θ

[∫

(0,∞)

v2F+(dv) ·
∫

(−∞,0)

(−u)F−(du) +
∫

(−∞,0)

u2F−(du) ·
∫

(0,∞)

vF+(dv)

]

=
∫

(0,∞)

v2F+(dv) +
∫

(−∞,0)

u2F−(du) =
∫

(−∞,∞)

x2F (dx). �

We now present an elegant proof of Donsker’s invariance principle, or func-
tional central limit theorem, using Theorem 12.7. Consider a sequence of i.i.d.
random variables Zi (i ≥ 1) with common distribution having mean zero and vari-
ance 1. Let Sk = Z1 + · · · + Zk (k ≥ 1), S0 = 0, and define the polygonal random
function S(n) on [0, 1] as follows:

S
(n)
t :=

Sk−1√
n

+ n

(

t− k − 1
n

)
Sk − Sk−1√

n
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for t ∈
[

k−1
n , k

n

]
, 1 ≤ k ≤ n. (12.55)

That is, S
(n)
t = Sk√

n
at points t = k

n (0 ≤ k ≤ n), and t �→ S
(n)
t is linearly interpolated

between the endpoints of each interval
[

k−1
n , k

n

]
.

Theorem 12.8 (Invariance Principle). S(n) converges in distribution to the
standard Brownian motion, as n→∞.

Proof. Let Tk, k ≥ 1, be as in Theorem 12.7, defined with respect to a standard
Brownian motion {Bt : t ≥ 0}. Then the random walk {Sk : k = 0, 1, 2, . . .} has the
same distribution as {S̃k := BTk

: k = 0, 1, 2, . . .}, and therefore, S(n) has the same
distribution as S̃(n) defined by S̃

(n)
k/n := n− 1

2 BTK
(k = 0, 1, . . . , n) and with linear

interpolation between k/n and (k + 1)/n (k = 0, 1, . . . , n − 1). Also, define, for each
n = 1, 2, . . . , the standard Brownian motion B̃

(n)
t := n− 1

2 Bnt, t ≥ 0. We will show
that

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃

(n)
t

∣
∣
∣ −→ 0 in probability as n →∞, (12.56)

which implies the desired weak convergence. Now

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃

(n)
t

∣
∣
∣ ≤ n− 1

2 max
1≤k≤n

|BTk
−Bk|

+ max
0≤k≤n−1

{

max
k
n≤t≤ k+1

n

∣
∣
∣S̃

(n)
t − S̃

(n)
k/n

∣
∣
∣ + n− 1

2 max
k≤t≤k+1

|Bt −Bk|
}

= I(1)
n + I(2)

n + I(3)
n , say. (12.57)

Now, writing Z̃k = S̃k − S̃k−1, it is simple to check (Exercise 13) that as n →∞,

I(2)
n ≤ n− 1

2 max{|Z̃k| : 1 ≤ k ≤ n} → 0 in probability,

I(3)
n ≤ n− 1

2 max
0≤k≤n−1

max{|Bt −Bk| : k ≤ t ≤ k + 1} → 0 in probability.

Hence we need to prove, as n →∞,

I(1)
n := n− 1

2 max
1≤k≤n

|BTk
−Bk| −→ 0 in probability. (12.58)

Since Tn/n → 1 a.s., by SLLN, it follows that (Exercise 13)

εn := max
1≤k≤n

∣
∣
∣
∣
Tk

n
− k

n

∣
∣
∣
∣ −→ 0 as n →∞ (almost surely). (12.59)
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In view of (12.59), there exists for each ε > 0 an integer nε such that P (εn < ε) >
1− ε for all n ≥ nε. Hence with probability greater than 1− ε one has for all n ≥ nε

the estimate (writing d= for equality in distribution)

I(1)
n ≤ max

|s−t|≤nε,
0≤s,t≤n+nε

n− 1
2 |Bs −Bt| = max

|s−t|≤nε,
0≤s,t≤n(1+ε)

∣
∣
∣B̃

(n)
s/n − B̃

(n)
t/n

∣
∣
∣

= max
|s′−t′|≤ε,

0≤s′,t′≤1+ε

∣
∣
∣B̃

(n)
s′ − B̃

(n)
t′

∣
∣
∣

d= max
|s′−t′|≤ε,

0≤s′,t′≤1+ε

|Bs′ −Bt′ |

−→ 0 as ε ↓ 0,

by the continuity of t → Bt. Given δ > 0 one may then choose ε = εδ such that for
all n ≥ n(δ) := nεδ

, P (I(1)
n > δ) < δ. Hence I

(1)
n → 0 in probability. �

For another application of Skorokhod embedding let us see how to obtain a law of
the iterated logarithm (LIL) for sums of i.i.d. random variables using the LIL for
Brownian motion.

Theorem 12.9 (Law of the Iterated Logarithm). Let X1,X2, . . . be an i.i.d. seq-
uence of random variables with EX1 = 0, 0 < σ2 := EX2

1 < ∞, and let Sn =
X1 + · · ·+ Xn, n ≥ 1. Then with probability one,

lim sup
n→∞

Sn√
2σ2n log log n

= 1.

Proof. By rescaling if necessary, one may take σ2 = 1 without loss of generality. In
view of Skorokhod embedding one may replace the sequence {Sn : n ≥ 0} by the
embedded random walk {S̃n = BTn

: n ≥ 0}. By the SLLN one also has Tn

n → 1 a.s.
as n →∞. In view of the law of the iterated logarithm for Brownian motion, it is then
sufficient to check that S̃[t]−Bt√

t log log t
→ 0 a.s. as t →∞. From Tn

n → 1 a.s., it follows for

given ε > 0 that with probability one, 1
1+ε <

T[t]

t < 1 + ε for all t sufficiently large.
Let tn = (1 + ε)n, n = 1, 2, . . .. Then for tn ≤ t ≤ tn+1, for some n ≥ 1, one has

Mt := max
{

|Bs −Bt| :
t

1 + ε
≤ s ≤ t(1 + ε)

}

≤ max
{

|Bs −Bt| :
t

1 + ε
≤ s ≤ t

}

+ max {|Bs −Bt| : t ≤ s ≤ t(1 + ε)}

≤ max
{

|Bs −Btn
| : tn

1 + ε
≤ s ≤ tn+1

}

+ max {|Bs −Btn
| : tn ≤ s ≤ tn+1}

≤ 2Mtn
+ 2Mtn+1 .
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Since tn+1− tn−1 = γtn−1 = γ
1+ε tn, where γ = (1+ε)2−1, it follows from the scaling

property of Brownian motion, using Lévy’s Inequality and Feller’s tail probability
estimate, that

P

(

Mtn
>

√

3
γ

1 + ε
tn log log tn

)

= P

(

max
0≤u≤1

|Bu| >
√

3 log log tn

)

≤ 4P
(
B1 ≥

√
3 log log(tn)

)

≤ 4√
3 log log tn

exp
(

−3
2

log log tn

)

≤ cn− 3
2

for a constant c > 0. Summing over n, it follows from the Borel–Cantelli lemma I that
with probability one, Mtn

≤
√

3 γ
1+ε tn log log tn for all but finitely many n. Since a.s.

1
1+ε <

T[t]

t < 1 + ε for all t sufficiently large, one has that, with probability one,

lim sup
t→∞

|S̃[t] −Bt|√
t log log t

≤
√

3
γ

1 + ε
.

Letting ε ↓ 0 one has γ
1+ε → 0, establishing the desired result. �

EXERCISES

Exercise Set XII

1. (i) If τ1, τ2 are stopping times, show that τ1 ∨ τ2 and τ1 ∧ τ2 are stopping times. (ii) If
τ1 ≤ τ2 are stopping times, show that Fτ1 ⊆ Fτ2 .

2. (i) Extend the Markov property for one-dimensional Brownian motion (Proposition 12.2)
to k-dimensional Brownian motion with respect to a given filtration. (ii) Prove parts (ii),
(iii) of Proposition 12.3.

3. Suppose that X, Y, Z are three random variables with values in arbitrary measurable
spaces (Si,Si), i = 1, 2, 3. Assume that regular conditional distributions exist; see Chap-
ter II for general conditions. Show that σ(Z) is conditionally independent of σ(X) given
σ(Y ) if and only if the conditional distribution of Z given σ(Y ) a.s. coincides with the
conditional distribution of Z given σ(X, Y ).

4. Prove that the event A(c, d) introduced in the proof of Proposition 12.5 is measurable,
i.e., the event [τ < d, Bt > 0 ∀τ < t ≤ d] is measurable.

5. Check the conditions for the application of the optional sampling theorem (Theorem
3.6(b)) for deriving (12.42)–(12.46). [Hint : For Brownian motion {Y x

t : t ≥ 0} with a
drift µ and diffusion coefficient σ2 > 0, let Z1 = Y x

1 − x, Zk = Y x
k − Y x

k−1(k ≥ 1). Then
Z1, Z2, . . . are i.i.d. and Corollary 3.8 applies with a = c, b = d. This proves P (τ < ∞) =
1. The uniform integrability of {Y x

t∧τ : t ≥ 0} is immediate, since c ≤ Y x
t∧τ ≤ d for all

t ≥ 0.]
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6. Let u′ < 0 < v′. Show that if F = Fu′,v′ is the mean-zero two-point distribution
concentrated at {u′, v′}, then P ((U, V ) = (u′, v′)) = 1 in the Skorokhod embedding of
F defined by γ(du dv).

7. Given any distribution F on R, let τ := inf{t ≥ 0 : Bt = Z}, where Z is independent of
B = {Bt : t ≥ 0} and has distribution F . Then Bτ = Z. One can thus embed a random
walk with (a nondegenerate) step distribution F (say, with mean zero) in different ways.
However, show that Eτ = ∞. [Hint : The stable distribution of τa := inf{t ≥ 0 : Bt = a}
has infinite mean for every a = 0. To see this, use Corollary 11.3 to obtain P (τa > t) ≥
1 − 2P (Bt > a) = P (|Bt| ≤ a) = P (|B1| ≤ a√

t
), whose integral over [0,∞) is divergent.]

8. Prove that ϕ(λ) := E exp{λτu,v} ≤ E exp{λτ−a,a} < ∞ for λ < λ0(a) for some λ0(a) > 0,
where a = max{−u, v}. Here τu,v is the first passage time of standard Brownian motion
to {u, v}, u < 0 < v. [Hint : Use Corollary 3.8 with Xn := Bn − Bn−1 (n ≥ 1).]

9. (i) Show that for every λ ≥ 0, Xt := exp{
√

2λBt − λt}, t ≥ 0, is a martingale.

(ii) Use the optional sampling theorem to prove ϕ(−λ) = 2
(
e
√

2λ a + e−
√

2λ a
)−1

,

where ϕ(−λ) = E exp(−λτ−a,a), in the notation of the previous exercise.

10. Refer to the notation of Theorem 12.8.
(i) Prove that Ti − Ti−1 (i ≥ 1) has a finite moment-generating function in a

neighborhood of the origin if F has compact support.
(ii) Prove that ET 2

1 < ∞ if
∫
|z|5F (dz) < ∞. [Hint : τu,v ≤ τ−a,a with a :=

max{−u, v} ≤ v − u and Eτ2
U,V ≤ cθ

∫
(v − u)5F+(dv)F−(du) for some c > 0.]

11. In Theorem 12.7 suppose F is a symmetric distribution. Let Xi (i ≥ 1) be i.i.d. with

common distribution F and independent of {Bt : t ≥ 0}. Let T̃1 := inf{t ≥ 0 : Bt ∈
{−X1, X1}, T̃i := T̃i−1 + inf{t ≥ 0 : B

T̃i−1+t
∈ {−Xi, Xi}} (i ≥ 1), T̃0 = 0.

(i) Show that B
T̃i
−B

T̃i−1
(i ≥ 1) are i.i.d. with common distribution F , and T̃i−T̃i−1

(i ≥ 1) are i.i.d.

(ii) Prove that ET̃1 = EX2
1 , and ET̃ 2

1 = cEX4
1 , where c is a constant to be computed.

(iii) Compute Ee−λT̃1 for λ ≥ 0.

12. Prove that Ti (i ≥ 0) defined by (12.52) are {Ft}–stopping times, where Ft is as defined
there.

13. (i) Let Zk, k ≥ 1, be i.i.d. with finite variance. Prove that n− 1
2 max{|Zk| : 1 ≤ k ≤

n} → 0 in probability as n → ∞. [Hint : nP (Z1 >
√

n ε) ≤ 1
ε2 EZ2

11[|Z1| ≥
√

n ε],
∀ ε > 0].

(ii) Derive (12.59) [Hint : εn = max1≤k≤n |Tk
k

− 1| · k
n
≤

{
max1≤k≤k0 |Tk

k
− 1|

}
· k0

n
+

maxk≥k0

∣
∣Tk

k
− 1

∣
∣ ∀ k0 = 1, 2, . . ..]



C H A P T E R XIII

A Historical Note on Brownian
Motion

Historically, the mathematical roots of Brownian motion lie in the central limit the-
orem (CLT). The first CLT seems to have been obtained in 1733 by DeMoivre1 for
the normal approximation to the binomial distribution (i.e., sum of i.i.d. Bernoulli 0
or 1-valued random variables). In his 1812 treatise Laplace2 obtained the far reaching
generalization to sums of arbitrary independent and identically distributed random
variables having finite moments of all orders. Although by the standards of rigor
of present day mathematics Laplace’s derivation would not be considered complete,
the essential ideas behind this remarkable result may be found in his work. The first
rigorous proof3 of the CLT was given by Lyapounov almost 100 years later using char-
acteristic functions under the Lyapounov condition for sums of independent, but not
necessarily identically distributed, random variables having finite (2 + δ)th moments
for some δ > 0. This moment condition was relaxed in 1922 by Lindeberg4 to prove
the more general CLT, and in 1935, Feller5 showed that the conditions are necessary
(as well as sufficient), under uniform asymptotic negligibility of summands. The most

1DeMoivre’s normal approximation to the binomial first appeared in a pamphlet
“Approximatio ad summam terminorum binomii” in 1733. It appeared in book form in
the 1756 edition of the Doctrine of Chance, London.

2Laplace, P.-S. (1812), “Théorie Analytique des Probabilités”, Paris.
3Lyapunov, A.M. (1901). Nouvelle forme du théorème sur la limite de probabilités. Mem.

Acad. Imp. Sci. St.-Petersberg 12 (5), 1–24.
4Lindeberg, J.W. (1922). Eine neue Herleitung des Exponentialgesetzes in der

Wahrscheinlichkeitsrechnung. Math. Zeitschr. 15, 211–225.
5Feller, W. (1935). Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung.

Math. Zeitschr. 40, 521–559. Also, ibid (1937), 42, 301–312.
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popular form of the CLT is that for i.i.d. summands with finite second moments due
to Paul Lévy.6

There are not many results in mathematics that have had such a profound impact
as the CLT, not only on probability and statistics but also on many other branches
of mathematics, as well as the natural and physical sciences and engineering as a
whole. The idea of a stochastic process {Bt : t ≥ 0} that has independent Gaus-
sian increments also derives from it. One may consider an infinite i.i.d. sequence
{Xm : m ≥ 1} with finite second moments as in the CLT, and consider sums
Sn, S2n − Sn, S3n − S2n, . . . , over consecutive disjoint blocks of n of these random
variables Xm having mean µ and variance σ2. The block sums are independent, each
approximately Gaussian with mean nµ and variance nσ2. If one scales the sums as
Sn−nµ

σ
√

n
, S2n−Sn−nµ

σ
√

n
. . . , then in the limit one should get a process with independent

Gaussian increments. If time is scaled so that one unit of time in the new macroscopic
scale is equal to n units of time in the old scale, the B1, B2−B1, B3−B2, . . . are inde-
pendent Gaussian Φ0,1. Brownian motion is precisely such a process, but constructed
for all times t ≥ 0 and having continuous sample paths. The conception of such a
process was previously introduced in a1900 PhD thesis by Bachelier7 as a model for
the movements of stock prices.

Brownian motion is named after the nineteenth-century botanist Robert Brown,
who observed under the microscope perpetual irregular motions exhibited by small
grains or particles of the size of colloidal molecules immersed in a fluid. Brown8

himself credited earlier scientists for having made similar observations. After some
initial speculation that the movements are those of living organisms was discounted,
the movements were attributed to inherent molecular motions. Independently of this
debate and unaware of the massive experimental observations that had been made
concerning this matter, Einstein9 published a paper in 1905 in which he derived the
diffusion equation

∂C(t, x)
∂t

= D

(
∂2C(t, x)

∂x2
1

+
∂2C(t, x)

∂x2
2

+
∂2C(t, x)

∂x2
3

)

, x = (x1, x2, x3), (13.1)

for the concentration C(t, x) of large solute molecules of uniform size and spherical
shape in a stationary liquid at a point x at time t. The argument (at least im-
plicit in the above article) is that a solute molecule is randomly displaced frequently
by collisions with the molecules of the surrounding liquid. Regarding the successive

6Lévy, P. (1925).
7Bachelier, L. (1900). Théorie de las spéculation. Ann. Sci. École Norm. Sup. 17, 21–86.

(In: The Random Character of Stock Market Prices, Paul H. Cootner, ed. MIT Press, 1964).
8Brown, R. (1828). A brief account of microscopical observations made in the months of

June, July, and August, 1827, on the particles contained in the pollen of plants; and on the
general existence of active molecules in organic and inorganic bodies. Philos. Magazine N.S.
14, 161–173.

9Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid
demanded by the molecular–kinetic theory of heat. Ann. der Physik 17, 549.
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displacements as independent (and identically distributed) with mean vector zero and
dispersion matrix Diag(d, d, d), one deduces a Gaussian distribution of the position
of the solute molecule at time t with mean vector zero and a dispersion matrix 2t
Diag(D,D,D), where 2D = fd with f as the average number of collisions, or displace-
ments, per unit time. The law of large numbers (assuming that the different solute
molecules move independently) then provides a Gaussian concentration law that is
easily seen to satisfy the equation (13.1), away from the boundary. It is not clear that
Laplace was aware of the profound fact that the operator ∆ =

∑3
1 ∂2/∂x2

i in (13.1)
bearing his name is intimately related to the central limit theorem he had derived.

Apprised of the experimental evidence concerning the so-called Brownian move-
ment, Einstein titled his next article10 on the subject, “On the theory of the Brownian
movement.” In addition to deriving the form of the equation (13.1), Einstein used
classical thermodynamics, namely the Maxwell–Boltzmann steady-state (Gaussian)
velocity distribution and Stokes’ law of hydrodynamics (for the frictional force on
a spherical particle immersed in a liquid) to express the diffusion coefficient D as
D = kT/3πηa, where a is the radius of the spherical solute molecule, η is the coefficient
of viscosity, T is the temperature, and k is the Boltzmann constant. In particular, the
physical parameters are embodied in a statistical parameter. Based on this derivation,
Jean Baptiste Perrin11 estimated k or, equivalently, Avogadro’s number, for which
he was awarded the Nobel Prize in 1926. Meanwhile, in 1923, Wiener12 proved that
one may take Brownian paths to be continuous almost surely. That is, he constructed
the probability measure Q, the so-called Wiener measure on C[0,∞), extending the
normal distribution to infinitely many dimensions in the sense that the coordinate
process Xt(ω) := ω(t), ω ∈ C[0,∞), t ≥ 0, has independent Gaussian increments,
namely, Xt+s −Xt has the normal distribution Φ0,s ≡ N(0, s), ∀ 0 ≤ t < ∞, s > 0,
and {Xti+1 − Xti

: i = 1, 2, . . . ,m − 1} are independent ∀ 0 ≤ t1 < t2 < · · · < tm
(∀ m > 1). This was a delicate result, especially since the Brownian paths turned
out to have very little smoothness beyond continuity. Indeed, in 1933 it was shown
by Paley, Wiener, and Zygmund13 that with probability one, a Brownian path is
continuous but nowhere differentiable. This says that a Brownian particle has no
velocity, confirming some remarkable empirical observations in the early physics of
Brownian motion. In his monograph “Atoms”, Perrin exclaims: “The trajectories are
confused and complicated so often and so rapidly that it is impossible to follow them;
the trajectory actually measured is very much simpler and shorter than the real one.
Similarly, the apparent mean speed of a grain during a given time varies in the wildest
way in magnitude and direction, and does not tend to a limit as the time taken for
an observation decreases, as may be easily shown by noting, in the camera lucida, the

10Einstein, A. (1906). On the theory of the Brownian movement. Ann. der Physik 19,
371–381. English translation in Investigations on the Theory of the Brownian Movement
(R. Fürth, ed.), Dover, 1954.

11Jean Perrin, Atoms, Ox Bow Press, 1990 (French original, 1913).
12Wiener, N. (1923). Differential space. J. Math. Phys. 2, 131–174.
13Paley, R.E.A.C., Wiener, N. and Zygmund, A. (1933). Notes on random functions. Math.

Zietschr. 37, 647–668.
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positions occupied by a grain from minute to minute, and then every five seconds, or,
better still, by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the movement. It is
impossible to fix a tangent, even approximately, at any point on a trajectory, and we
are thus reminded of the continuous underived functions of the mathematicians.”

A more dynamical theory of Brownian (particle) motion was given by Ornstein and
Uhlenbeck,14 following the turn-of-the-century work of Langevin.15

The so-called Langevin equation used by Ornstein and Uhlenbeck is a stochastic
differential equation given (in one dimension) by

dv(t) = −βv(t)dt + σdB(t), (13.2)

where v(t) is the velocity of a Brownian molecule of mass m, −mβv is the frictional
force on it, and σ2 = 2β2D (D as above). By integrating v(t) one gets a differentiable
model of the Brownian molecule. If β and σ2 →∞ such that s2/2β2 = D remains a
constant, then the position process converges to Einstein’s model of Brownian motion
(with variance parameter 2D), providing a scale range for which the models approxi-
mately agree.16 Within the framework of stochastic differential equations one sees that
the steady state velocity distribution for the Langevin equation is a Gaussian distribu-
tion. On physical grounds this can be equated with the Maxwell–Boltzmann velocity
distribution known from statistical mechanics and thermodynamics. In this way one
may obtain Einstein’s fundamental relationship between the physical parameters and
statistical parameters mentioned above.

Brownian motion is a central notion throughout the theoretical development of
stochastic processes and its applications. This rich history and its remarkable con-
sequences are brought to life under several different guises in major portions of the
theory of stochastic processes.

14Uhlenbeck, G.E. and Ornstein, L.S. (1930). On the theory of Brownian motion. Phys.
Rev. 36, 823–841. Reprinted in Selected Papers on Noise and Stochastic Processes (1954).
(N. Wax, ed.), Dover. Also see Chandrasekhar, S. (1943). Stochastic problems in physics
and astronomy. Rev. Modern Physics 15, 2–91. Reprinted in Selected Papers on Noise and
Stochastic Processes (1954) (N. Wax, ed.), Dover.

15Langevin, P. (1908). Sur La théorie du movement brownien. C.R. Acad. Sci. Paris 146,
530–533.

16For a complete dynamical description see Nelson, E. (1967). Dynamical Theories of
Brownian Motion. Princeton Univ. Press, Princeton, N.J.



A P P E N D I X A

Measure and Integration

1 MEASURES AND THE CARATHÉODORY EXTENSION.

Let S be a nonempty set. A class A of subsets of S is a field, or an algebra if
(i) ∅ ∈ A, S ∈ A, (ii) A ∈ A =⇒ Ac ∈ A, (iii) A,B ∈ A =⇒ A ∪ B ∈ A. Note that
(ii) and (iii) imply that A is closed under finite unions and finite intersections. If (iii)
is replaced by (iii)′: An ∈ A (n = 1, 2, . . . ) =⇒ ∪∞

n=1An ∈ A, then A is said to be
a σ-field, or a σ-algebra. Note that (iii)′ implies (iii), and that a σ-field is closed
under countable intersections.

A function µ : A → [0,∞] is said to be a measure on a field A if µ(∅) = 0
and µ(∪∞

n=1An) =
∑∞

n=1 µ(An) for every sequence of pairwise disjoint sets An ∈ A
(n = 1, 2, . . . ) such that ∪∞

n=1An ∈ A. Note that this property, known as countable
additivity, implies finite additivity (by letting An = ∅ for n ≥ m for some m, say).
A measure µ on a field A is σ-finite if there exists a sequence An ∈ A (n = 1, 2, . . . )
such that ∪∞

n=1An = S and µ(An) <∞ for every n.
If µ is a measure on a field A, and An ∈ A (n ≥ 1), A ⊆ ∪nAn, A ∈ A, then

µ(A) ≤
∑∞

n=1 µ(An) (subadditivity). To see this write B1 = A1, Bn = Ac
1 ∩ . . . ∩

Ac
n−1 ∩An(n ≥ 2). Then Bn(n ≥ 1) are disjoint, ∪∞

n=1An = ∪∞
n=1Bn, so that µ(A) =

µ(A ∩ (∪∞
n=1Bn)) =

∑∞
n=1 µ(A ∩Bn) ≤

∑∞
n=1 µ(An) (since Bn ⊆ An for all n).

Let µ be a measure on a σ-field F on S. Then F is said to be µ-complete if all
subsets of µ-null sets in F belong to F : N ∈ F , µ(N) = 0, B ⊆ N =⇒ B ∈ F .
In this case the measure µ is also said to be complete. Given any measure µ on a
σ-field F , it is simple to check that the class of sets

F = {C = A ∪B : A ∈ F , B ⊆ N for some N ∈ F such that µ(N) = 0} (1.1)
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is a µ-complete σ-field, µ̃(A∪B) := µ(A) (A ∈ F , B ⊆ N, µ(N) = 0) is well defined,
and µ̃ is a measure on F extending µ. This extension of µ is called the completion
of µ.

We now derive one of the most basic results in measure theory, due to Carathéodory,
which provides an extension of a measure µ on a field A to a measure on the σ-field
F = σ(A), the smallest σ-field containing A. First, on the set 2S of all subsets of
S, call a set function µ∗ : 2S → [0,∞] an outer measure on S if (1) µ∗(∅) = 0,
(2) (monotonicity) A ⊆ B =⇒ µ∗(A) ≤ µ∗(B), and (3) (subadditivity) µ∗(∪∞

n=1An) ≤∑∞
n=1 µ∗(An) for every sequence An (n = 1, 2, . . . ).

Proposition 1.1. Let A be a class of sets such that ∅ ∈ A, S ∈ A, and let µ : A →
[0,∞] be a function such that µ(∅) = 0. For every set A ⊆ S, define

µ∗(A) = inf

{
∑

n

µ(An) : An ∈ A ∀n,A ⊆ ∪nAn

}

. (1.2)

Then µ∗ is an outer measure on S.

Proof. (1) Since ∅ ⊆ ∅ ∈ A, µ∗(∅) = 0. (2) Let A ⊆ B. Then every countable
collection {An : n = 1, 2, . . . } ⊂ A that covers B (i.e., B ⊆ ∪nAn) also covers A.
Hence µ∗(A) ≤ µ∗(B). (3) Let An ⊂ S (n = 1, 2, . . . ), and A = ∪nAn. If µ∗(An) = ∞
for some n, then by (2), µ∗(A) = ∞. Assume now that µ∗(An) < ∞ ∀n. Fix ε > 0
arbitrarily. For each n there exists a sequence {An,k : k = 1, 2, · · · } ⊂ A such that
An ⊆ ∪kAn,k and

∑
k µ(An,k) < µ∗(An)+ ε/2n (n = 1, 2, . . . ). Then A ⊆ ∪n∪k An,k,

and therefore µ∗(A) ≤
∑

n,k µ(An,k) ≤
∑

n µ∗(An) + ε. �

The technically simplest, but rather unintuitive, proof of Carathéodory’s theorem
given below is based on the following notion. Let µ∗ be an outer measure on S. A set
A ⊆ S is said to be µ∗-measurable if the following “balance conditions” are met:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) ∀ E ⊆ S. (1.3)

Theorem 1.2 (Carathéodory Extension Theorem). (a) Let µ∗ be an outer measure
on S. The class M of all µ∗-measurable sets is a σ-field, and the restriction of µ∗ to
M is a complete measure. (b) Let µ∗ be defined by (1.2), where A is a field and µ is
a measure on A. Then σ(A) ⊆ M and µ∗ = µ on A. (c) If a measure µ on a field A
is σ-finite, then it has a unique extension to a measure on σ(A), this extension being
given by µ∗ in (1.2) restricted to σ(A).

Proof. (a) To show that M is a field, first note that A = ∅ trivially satisfies (1.3)
and that if A satisfies (1.3), so does Ac. Now, in view of the subadditivity property
of µ∗, (1.3) is equivalent to the inequality

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) ∀ E ⊆ S. (1.4)
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To prove that M is closed under finite intersections, let A,B ∈M. Then ∀ E ⊆ S,

µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc) (since B ∈M)

= µ∗(E ∩B ∩A) + µ∗(E ∩B ∩Ac) + µ∗(E ∩Bc ∩A)

+ µ∗(E ∩Bc ∩Ac) (since A ∈M)

≥ µ∗(E ∩ (B ∩A)) + µ∗(E ∩ (B ∩A)c).

For the last inequality, use (B ∩ A)c = Bc ∪ Ac = (Bc ∩ A) ∪ (Bc ∩ Ac) ∪ (B ∩ Ac),
and subadditivity of µ∗. By the criterion (1.4), B ∩A ∈M. Thus M is a field.

Next, we show thatM is a σ-field and µ∗ is countably additive on M. Let Bn ∈M
(n = 1, 2, . . . ) be a pairwise disjoint sequence inM, and write Cm = ∪m

n=1Bn (m ≥ 1).
We will first show, by induction on m, that

µ∗(E ∩ Cm) =
m∑

n=1

µ∗(E ∩Bn) ∀ E ⊆ S. (1.5)

This is true for m = 1, since C1 = B1. Suppose (1.5) holds for some m. Since
Bm+1 ∈M, one has for all E ⊆ S,

µ∗(E ∩ Cm+1) = µ∗((E ∩ Cm+1) ∩Bm+1) + µ∗((E ∩ Cm+1) ∩Bc
m+1)

= µ∗(E ∩Bm+1) + µ∗(E ∩ Cm)

= µ∗(E ∩Bm+1) +
m∑

n=1

µ∗(E ∩Bm),

using the induction hypothesis for the last equality. Thus (1.5) holds for m + 1 in
place of m, and the induction is complete. Next, writing A = ∪∞

n=1Bn one has, for all
E ⊆ S,

µ∗(E) = µ∗(E ∩ Cm) + µ∗(E ∩ Cc
m) (since Cm ∈M)

=
m∑

n=1

µ∗(E ∩Bn) + µ∗(E ∩ Cc
m) ≥

m∑

n=1

µ∗(E ∩Bn) + µ∗(E ∩Ac),

since Cc
m ⊃ Ac. Letting m→∞, one gets

µ∗(E) ≥
∞∑

n=1

µ∗(E ∩Bn) + µ∗(E ∩Ac) ≥ µ∗(E ∩A) + µ∗(E ∩Ac), (1.6)

using the subadditivity property for the last inequality. This shows that A ≡
∪∞

n=1Bn ∈ M, i.e., M is closed under countable disjoint unions. If {An : n = 1, . . . }
is an arbitrary sequence in M, one may express A ≡ ∪∞

n=1An as A = ∪∞
n=1Bn, where
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B1 = A1, B2 = Ac
1 ∩ A2, Bn = Ac

1 ∩ · · · ∩ Ac
n−1 ∩ An (n > 2), are pairwise disjoint

sets in M. Hence A ∈M, proving that M is a σ-field. To prove countable additivity
of µ∗ on M, let Bn (n ≥ 1) be a pairwise disjoint sequence in M as before, and take
E = A ≡ ∪∞

n=1Bn in the first inequality in (1.6) to get µ∗(∪∞
n=1Bn) ≥

∑∞
n=1 µ∗(Bn).

By the subadditive property of µ∗, it follows that µ∗(∪∞
n=1Bn) =

∑∞
n=1 µ∗(Bn).

We have proved that µ∗ is a measure on the σ-field M. Finally, if A ⊆ N ∈ M,
µ∗(N) = 0, then µ∗(E ∩A) ≤ µ∗(A) ≤ µ∗(N) = 0, and µ∗(E ∩Ac) ≤ µ∗(E), so that
(1.4) holds, proving A ∈M. Hence M is µ∗-complete.

(b) Consider now the case in which A is a field, µ is a measure on A, and µ∗

is the outer measure (1.2). To prove A ⊆ M, let A ∈ A. Fix E ⊆ S and ε > 0
arbitrarily. There exists An ∈ A (n = 1, 2, . . . ) such that E ⊆ ∪∞

n=1An and µ∗(E) ≥∑∞
n=1 µ(An)− ε. Also,

µ∗(E ∩A) ≤ µ∗

(

A ∩
∞⋃

n=1

An

)

≤
∞∑

n=1

µ(A ∩An),

µ∗(E ∩Ac) ≤ µ∗

(

Ac ∩
∞⋃

n=1

An

)

≤
∞∑

n=1

µ(Ac ∩An),

µ∗(E ∩A) + µ∗(E ∩Ac) ≤
∞∑

n=1

{µ(A ∩An) + µ(Ac ∩An)}

=
∞∑

n=1

µ(An) ≤ µ∗(E) + ε.

Hence (1.4) holds, proving that A ∈ M. To prove µ = µ∗ on A, let A ∈ A. By
definition (1.2), µ∗(A) ≤ µ(A) (letting A1 = A and An = ∅ for n ≥ 2, be a cover
of A). On the other hand, µ(A) ≤

∑∞
n=1 µ(An) for every sequence An ∈ A (n ≥ 1)

such that A ⊆ ∪∞
n=1An, so that µ∗(A) ≥ µ(A) (by subadditivity of µ on A). Hence

µ∗(A) = µ(A).
(c) Suppose µ is a σ-finite measure on the field A, and µ∗ its extension to the σ-field

σ(A) (⊆ M) as derived in (b). Let ν be another extension of µ to σ(A). Since one
may express S = ∪∞

n=1An with An ∈ A pairwise disjoint and µ(An) < ∞ ∀n, it is
enough to consider the restrictions of µ and ν to An ∩ σ(A) ≡ {An ∩ A : A ∈ σ(A)}
for each n separately. In other words, it is enough to prove that µ = ν on σ(A) in the
case µ(S) <∞. But for this case, the class C = {A ∈ F : µ(A) = ν(A)} is a λ-system,
and it contains the π-system A. Hence, by the π-λ theorem, C = σ(A). �

Example 1 (Lebesgue–Stieltjes Measures). Let S = R and B(R) the Borel σ-
field. A measure µ on B(R) is said to be a Lebesgue–Stieltjes (or L–S) measure
if µ((a, b]) < ∞ ∀ − ∞ < a < b < ∞. Given such a measure one may define its
distribution function Fµ : R → R by
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Fµ(x) =

{
−µ((x, 0]) + c if x < 0

µ((0, x]) + c if x > 0,
(1.7)

where c is an arbitrary constant. Note that

µ((a, b]) = Fµ(b)− Fµ(a) (−∞ < a < b <∞). (1.8)

Moreover, Fµ is nondecreasing and right-continuous. Conversely, given a function F
which is nondecreasing and right-continuous on R, there exists a unique Lebesgue–
Stieltjes measure µ whose distribution function is F . To prove this, first, fix an
interval S = (c, d], −∞ < c < d < ∞. The class of all finite unions ∪m

j=1(aj , bj ]
of pairwise disjoint intervals (aj , bj ] (c ≤ aj < bj ≤ d) is a field A on S. Define
the set function µ on A first by (1.8) on intervals (a, b], and then on disjoint unions
above as

∑m
j=1 µ((aj , bj ]). It is simple to check that this is well-defined, i.e., if (ci, di],

1 ≤ i ≤ n, is another representation of ∪m
j=1(aj , bj ] as a union of disjoint inter-

vals, then
∑n

i=1[F (di) − F (ci)] =
∑m

j=1[F (bj) − F (aj)] (Show this by splitting each
(aj , bj ] by (ci, di], 1 ≤ i ≤ n). Finite additivity of µ on A is then a consequence
of the definition of µ. In view of this, to prove countable additivity of µ on A, it is
enough to show that if Ij = (aj , bj ] (j = 1, 2, . . . ) is a sequence of pairwise disjoint
intervals whose union is (a, b], then µ((a, b]) ≡ F (b) − F (a) =

∑∞
j=1 µ(Ij). Clearly,

∑n
j=1 µ(Ij) = µ(∪n

j=1Ij) ≤ µ((a, b]) for all n, so that
∑∞

j=1 µ(Ij) ≤ µ((a, b]). For
the opposite inequality, fix ε > 0 and find δ > 0 such that F (a + δ) − F (a) < ε
(by right-continuity of F ). Also, find δj > 0 such that F (bj + δj) − F (bj) < ε/2j

(j = 1, 2, . . . ). Then {(aj , bj + δj) : j ≥ 1} is an open cover of the compact interval
[a+ δ, b], so that there exists a finite subcover: [a+ δ, b] ⊆ ∪m

j=1(aj , bj + δj), say. Then
µ((a, b]) = F (b) − F (a) ≤ F (b) − F (a + δ) + ε ≤

∑m
j=1[F (bj + δj) − F (aj)] + ε ≤

∑m
j=1[F (bj)−F (aj)]+2ε ≤

∑∞
j=1[F (bj)−F (aj)]+2ε ≤

∑∞
j=1 µ(Ij)+2ε. This proves

that µ is a measure on A. Now use Carathéodory’s extension theorem to extend
uniquely µ to σ(A) = B((c, d]). Since R = ∪∞

n=−∞ (n, n + 1], one may construct µ on
each of (n, n + 1] and then piece (or add) them together to construct the unique L-S
measure on B(R) with the given distribution function F .

(a) As a very special L-S measure, one constructs Lebesgue measure m on
(R,B(R)) specified by

m((a, b]) = b− a,

with distribution function F (x) = x.
(b) For an example of a L-S measure with a continuous distribution, but that does

not have a density with respect to Lebesgue measure, consider the representation of
a real x in (0, 1] by its ternary representation x =

∑∞
n=1 an3−n, where an ∈ {0, 1, 2}.

By requiring that there be an infinite number of 2’s among {an} one gets a one-to-
one correspondence x �→ {an}. The Cantor set C is defined to be the set of all x
in whose ternary expansion the digit 1 does not occur. That is, C is obtained by
first omitting the middle third (1/3, 2/3] of (0, 1], then omitting the middle thirds
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of the two remaining intervals (0, 1/3], (2/3, 1], then omitting the middle thirds of
the four remaining intervals, and so on. The Lebesgue measure of the omitted set is∑∞

n=1 2n−13−n = 1. Hence the remaining set C has Lebesgue measure zero. Define
the Cantor function

F (x) =
∞∑

n=1

an

2
2−n for x =

∑∞
n=1 an3−n ∈ C,

and extend F to [0, 1] by letting F (0) = 0, and F constant between the endpoints of
every omitted interval. Then F is continuous and nondecreasing, and the correspond-
ing L–S probability measure µ is the Cantor measure on (0, 1], which is nonatomic
(i.e., µ({x}) = 0 ∀x) and singular in the sense that µ(C) = 1 and m(C) = 0, where
m is Lebesgue measure.

2 INTEGRATION AND BASIC CONVERGENCE THEOREMS

Let S be a σ-field on S. We say that (S,S) is a measurable space. Denote by L
the class of all (extended) real-valued measurable functions f : S → R = [−∞,∞],
i.e., f−1(B) ∈ S ∀B ∈ B(R) and f−1({−∞}) ∈ S, f−1({+∞}) ∈ S. The subclass of
nonnegative measurable functions is denoted by L+. A simple function is of the
form f =

∑m
1 aj1Aj

, where m ≥ 1, aj ∈ R ∀ j, Aj ’s are pairwise disjoint sets in S.
The class of all simple functions is denoted by Ls, and the subclass of nonnegative
simple functions by L+

s .
In general, if (Si,Si) (i = 1, 2) are measurable spaces, a map, or function, f :

S1 → S2 is said to be measurable if f−1(B) ∈ S1 ∀B ∈ S2. In particular, if Si is a
metric space with Borel σ-field Si (i = 1, 2), then a continuous map f : S1 → S2 is
measurable, since f−1(B) is an open subset of S1 if B is an open subset of S2, and
since F ≡ {B ∈ S2 : f−1(B) ∈ S1} is a σ-field (containing the class of all open subsets
of S2). It is simple to check that compositions of measurable maps are measurable.
As an example, let (S,S) be a measurable space, and let f, g be measurable maps
on S into R

k. Then αf + βg is measurable for all constants α, β ∈ R. To see this,
consider the map h(x, y) �→ αx + βy on R

k × R
k into R

k. Since h is continuous, it is
measurable. Also, ϕ(s) := (f(s), g(s)) is a measurable map on S into S × S, with the
product σ-field S ⊗ S (i.e., the smallest σ-field on S × S containing the class of all
measurable rectangles A×B, A ∈ S, B ∈ S). Now αf +βg equals the composition
h ◦ ϕ and is therefore measurable.

Example 1. (a) Let f1f2, . . . , fk be (extended) real-valued measurable functions on
a measurable space (S,S). Then M ≡ max{f1, . . . , fk} is measurable, since [M ≤ x] =
∩k

j=1[fj ≤ x] ∀x ∈ R
1. Similarly, min{f1, . . . , fk} is measurable. (b) Let fn (n ≥ 1)

be a sequence of (extended) real-valued measurable functions on a measurable space
(S,S). Then h ≡ lim inf fn is measurable. For gn := inf{fj : j ≥ n} is measurable
(n ≥ 1), since [gn ≥ x] = ∩∞

j=n[fj ≥ x]. Also, gn ↑ h, so that [h ≤ x] = ∩∞
n=1[gn ≤ x]

∀x ∈ R. Similarly, lim sup fn is measurable.
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Let µ be a σ-finite measure on (S,S) (i.e., on S). For f ∈ L+
s define the integral∫

fdµ, or simply
∫

f when there is no ambiguity about the underlying measure µ, by

∫

f ≡
∫

f dµ :=
m∑

j=1

ajµ(Aj), (2.1)

with the convention 0 · ∞ = 0. If f =
∑n

1 bi1Bi
is another representation of f , then

aj = bi on Aj ∩ Bi, and using the finite additivity of µ, one has
∑m

1 ajµ(Aj) =∑
j

∑
i ajµ(Aj ∩ Bi) =

∑
j

∑
i biµ(Aj ∩ Bi) =

∑
i biµ(Bi). Thus

∫
f is well defined

for f ∈ L+
s . Using a similar splitting where necessary, one can prove the following

properties of the integral on L+
s :

(i)
∫

cf = c

∫

f ∀ c ≥ 0,

(ii)
∫

f ≤
∫

g if f ≤ g,

(iii)
∫

(f + g) =
∫

f +
∫

g.

(2.2)

For an arbitrary f ∈ L+ (set of all extended nonnegative measurable functions on S)
define

∫

f := lim
∫

fn, (2.3)

where fn ∈ L+
s and fn ↑ f . To show that

∫
f is well defined let us first observe that

there does exist fn ∈ L+
s , fn ↑ f . For example, let fn be the so-called standard

approximation,

fn =
n2n
∑

k=1

(k − 1)2−n1[ k−1
2n ≤f< k

2n ] + n1[f≥n]. (2.4)

Secondly, suppose fn, gn ∈ L+
s , fn ↑ f , gn ↑ f . We will show that

lim
n

∫

gn = lim
n

∫

fn. (2.5)

For this fix c ∈ (0, 1) and m ≥ 1. One may write gm =
∑k

1 aj1Aj
,
∫

cgm =
c
∑k

1 ajµ(Aj) = c
∫

gm. Let Bn = {x ∈ S : fn(x) ≥ cgm(x)}. Then fn =
fn1Bn

+ fn1Bc
n
, so that (by (2.2)), and using Bn ↑ S,

∫

fn =
∫

fn1Bn
+

∫

fn1Bc
n
≥

∫

fn1Bn
≥

∫

cgm1Bn
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= c

k∑

j=1

ajµ(Aj ∩Bn) ↑ c

k∑

j=1

ajµ(Aj) = c

∫

gm as n ↑ ∞.

Hence limn

∫
fn ≥ c

∫
gm ∀ c ∈ (0, 1), which implies limn

∫
fn ≥

∫
gm. Letting m ↑ ∞,

we obtain limn

∫
fn ≥ limm

∫
gm. Reversing the roles of fn and gn, we then get (2.5),

and
∫

f is well defined.
As simple consequences of the definition (2.3) and the order property (2.2)(ii), one

obtains the following results.

Proposition 2.1. (a) Let f ∈ L+. Then

∫

f = sup
{∫

g : g ∈ L+
s , g ≤ f

}

, ∀ f ∈ L+. (2.6)

(b) Let f, g ∈ L+, c ≥ 0. Then (2.2)(i)—(iii) hold.

Proof. (a). Clearly,
∫

f is dominated by the right hand side of (2.6), by the definition
(2.3). For the reverse inequality, let g ∈ L+

s , g ≤ f . Then gn := max{g, fn} ↑ f with
fn as in (2.3). Since gn ∈ L+

s , it follows that
∫

g ≤
∫

gn →
∫

f . Hence
∫

g ≤
∫

f .
(b) (i) and (iii) in (2.2) follow from the definition (2.3), while (ii) follows from

(2.6). �

A useful convergence result for functions in L+ is the following.

Proposition 2.2. Let fk, f ∈ L+, fn ↑ f . Then
∫

fk ↑
∫

f .

Proof. By Proposition 2.1(b), limk

∫
fk ≤

∫
f (order property of integrals). Next,

let gk,n ∈ L+
s , gk,n ↑ fk as n ↑ ∞. Define gn = max{gk,n : k = 1, . . . , n} ∈ L+

s ,
gn ↑ g, say. But gn ≥ gk,n ∀ k ≤ n, so that g ≥ fk ∀ k, implying g ≥ f . On the other
hand, gn ≤ f ∀n. Thus g = f and, therefore, limn

∫
gn =

∫
f . But gn ≤ fn ∀n which

implies limn

∫
fn ≥ limn

∫
gn =

∫
f . �

Let f ∈ L, and set f+ = max{f, 0}, f− = −min{f, 0}. Then f+, f− ∈ L+ and
f = f+ − f−. If at least one of

∫
f+,

∫
f− is finite, we say that the integral of f

exists and define

∫

f =
∫

f+ −
∫

f−. (2.7)

If
∫

f+ and
∫

f− are both finite, then 0 ≤
∫
|f | =

∫
f+ +

∫
f− < ∞ (since |f | =

f+ + f−, Proposition 2.1(b) applies), and f is said to be integrable (with respect
to µ). The following result is now simple to prove.
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Proposition 2.3. Let f, g ∈ L be integrable and α, β ∈ R
1. Then (i) αf , βg,

αf + βg are integrable and
∫

(αf + βg) = α
∫

f + β
∫

g (linearity), and (ii) f ≤ g
implies

∫
f ≤

∫
g (order).

Proof. (i) First, let α ≥ 0. Then (αf)+ = αf+, (αf)− = αf−, so that
∫

αf =∫
αf+ −

∫
αf− = α

∫
f+ − α

∫
f− = α

∫
f , by Proposition 2.1(b). Now let α <

0. Then (αf)+ = −αf−, (αf)− = −αf+. Hence
∫

αf =
∫
−αf− −

∫
−αf+ =

−α
∫

f− − (−α)
∫

f+ = α(
∫

f+ −
∫

f−) = α
∫

f . Next if f, g are integrable, then
writing h = f + g, we have |h| ≤ |f | + |g|, so that

∫
|h| ≤

∫
|f | +

∫
|g| < ∞. Since

h = f + g = f+ + g+ − f− − g− = h+ − h−, one has h+ + f− + g− = h− + f+ + g+

and, by Proposition 2.1(b),
∫

h+ +
∫

f− +
∫

g− =
∫

h− +
∫

f+ +
∫

g+. Therefore,∫
h ≡

∫
h+ −

∫
h− =

∫
f+ −

∫
f− +

∫
g+ −

∫
g− =

∫
f +

∫
g. This proves (i). To

prove (ii) note that f ≤ g implies f+ ≤ g+, f− ≥ g−. Hence
∫

f ≡
∫

f+ −
∫

f− ≤∫
g+ −

∫
g− ≡

∫
g. �

Our next task is to show that the integral of a function f remains unaffected if it
is modified arbitrarily (but measurably) on a µ-null set. First, note that if f ∈ L+,
then

∫

f = 0 iff f = 0 a.e. (µ) (f ∈ L+), (2.8)

where a.e. (µ) is short-hand for almost everywhere with respect to µ, or outside a µ-
null set. To prove (2.8), let N = {x : f(x) > 0}. Then one has f = f1N +f1Nc = f ·1N

(f = 0 on N c). If µ(N) = 0, then for all g ∈ L+
s , g ≤ f , one has g = 0 on N c, so that∫

g =
∫

g1N
+

∫
g1Nc

=
∫

g1N
= 0, implying

∫
f = 0. Conversely, if

∫
f = 0, then

µ(N) = 0. For otherwise there exists ε > 0 such that writing Nε := {x : f(x) > ε},
one has µ(Nε) > 0. In that case, g := ε1Nε

≤ f and
∫

f ≥
∫

g = εµ(Nε) > 0, a
contradiction.

As a consequence of (2.8), one has the result that if f = g a.e., and f, g are
integrable, then

∫
f =

∫
g. To see this note that |

∫
f−

∫
g| = |

∫
(f−g)| ≤

∫
|f−g| = 0,

since |f − g| = 0 a.e.
From here on, all functions f , g, h, fn, gn, hn, etc., are assumed to be measurable,

unless specified otherwise.
An important notion in measure theory is that of convergence in measure. Let

fn (n ≥ 1), f be measurable functions on a measure space (S,S, µ). The sequence
{fn}n≥1 converges in measure to f if

µ ([|fn − f | > ε]) −→ 0 as n →∞, ∀ ε > 0. (2.9)

Proposition 2.4. (a) If fn → f in measure then there exists a subsequence {fnk
}k≥1

that converges a.e. to f . (b) If µ(S) < ∞, then the convergence fn → f a.e. implies
fn → f in measure.
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Proof. (a) Assume fn → f in measure. For each k one can find nk such that µ([|fnk
−

f | > 1/2k]) < 1/2k. Now, for any given ε > 0, [lim supk |fnk
− f | > ε] ⊆ ∩∞

m=1 ∪∞
k=m

[|fnk
− f | > 1/2k] = N , say. But µ(N) ≤

∑∞
k=m 2−k = 2−m+1 → 0 as m → ∞,

i.e., µ(N) = 0, proving fnk
→ f a.e., as k → ∞. (b) Suppose µ(S) < ∞, and

fn → f a.e. If fn does not converge in measure to f , there exist ε > 0, δ > 0, and
a subsequence {fnk

}k≥1 such that µ([|fnk
− f | > ε]) > δ ∀ k = 1, 2, . . . . But writing

Ak = [|fnk
− f | > ε], one then has Bm ≡ ∪∞

k=mAk ↓ B = [|fnk
− f | > ε for infinitely

many k]. Since Bc
m ↑ Bc, it follows from countable additivity of µ that µ(Bc

m) ↑ µ(Bc),
so that µ(Bm) = µ(S)− µ(Bc

m) → µ(S)− µ(Bc) = µ(B). Since µ(Bm) > δ ∀m, one
obtains µ(B) ≥ δ, which contradicts the fact that fn → f a.e. �

Theorem 2.5 (Basic Convergence Theorems for Integrals).
(a) (Monotone Convergence Theorem). Suppose fn (n ≥ 1), f are nonnegative

a.e. and fn ↑ f a.e., then
∫

fn ↑
∫

f .
(b) (Fatou’s Lemma). If gn ≥ 0 a.e., then

∫
lim inf gn ≤ lim inf

∫
gn.

(c) (Lebesgue’s Dominated Convergence Theorem). If fn → f in µ-measure and
|fn| ≤ h a.e., where h is integrable, then limn

∫
|fn− f | = 0. In particular,

∫
fn →∫

f .

Proof. (a) Since a countable union of µ-null sets is µ-null, there exists N such that
µ(N) = 0 and fn ≥ 0, f ≥ 0, fn ↑ f on N c. Setting fn = 0 (n ≥ 1) and f = 0 on N
does not change the integrals

∫
fn,

∫
f . Hence one may apply Proposition 2.2.

(b) As in (a), one may assume gn ≥ 0 on S (∀n ≥ 1). Let fn = inf{gk : k ≥ n}.
Then 0 ≤ fn ↑ lim inf gn = f , say, and

∫
fn ↑

∫
f (by (a)). Also fn ≤ gn ∀n, so that∫

gn ≥
∫

fn ∀n, implying, in particular, lim inf
∫

gn ≥ lim inf
∫

fn = lim
∫

fn =
∫

f .
(c) First assume fn → f a.e. Apply Fatou’s lemma to gn := 2h−|fn−f |, 0 ≤ gn →

2h a.e., to get
∫

2h ≤ lim inf
∫

gn =
∫

2h−lim sup
∫
|fn−f |, proving lim

∫
|fn−f | = 0.

Now assume fn → f in µ-measure. If
∫
|fn − f | does not converge to zero, there

exist δ > 0 and a subsequence 1 < n1 < n2 < · · · such that
∫
|fnk

− f | > δ ∀ k.
Then there exists, by Proposition 2.4(a), a further subsequence of {nk : k ≥ 1}, say
{n′

k : k ≥ 1}, such that fn′
k
→ f a.e. as k →∞, to which the above result applies to

yield
∫
|fn′

k
− f | → 0 as k →∞, contradicting

∫
|fn′

k
− f | > δ ∀ k. �

The next result provides useful approximations to functions in the complex Banach
space Lp = Lp(Rk,B(Rk), µ), with norm ‖f‖ :=

( ∫
Rk |f(x)|pµ(dx)

) 1
p , where 1 ≤ p <

∞. The result can of course be specialized to the real Banach space Lp.

Proposition 2.6. Let µ be a measure on (Rk,B(Rk)) that is finite on compact
subsets of R

k. Then the set of infinitely differentiable functions with compact support
is dense in Lp.

Proof. For simplicity of notation we will take k = 1. The general case is similar. It
is easy to see by considering real and imaginary parts separately, and then splitting
a real-valued function f as f = f+ − f−, that it is enough to consider real-valued,
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nonnegative f ∈ Lp. Given ε > 0, find N > 0 such that
∫
{x:|x|≥N} fpdµ < ε

5 . Set
fN = f1(−N,N ]. Since fN,M := fN ∧M ≡ min{fN ,M} ↑ f as M ↑ ∞, and |fN,M −
fN |p ≤ 2p|fN |p ≤ 2p|f |p, there exists M such that ‖fN − fN,M‖ < ε

5 . Because fN,M

is bounded, there exists a simple function g =
∑m

j=1 xj1Bj
, where xj > 0, Bj Borel,

Bj ⊆ (−N,N ], µ(Bj) < ∞, 1 ≤ j ≤ m, such that sup{|fN,M (x)− g(x)| : x ∈ R} < ε
5

(use the standard approximation (2.4 )). Then ‖fN,M − g‖ < ε
5 .

We will now approximate g by a µ-a.e. continuous step function. For this, first note
that the set of all finite unions of disjoint intervals of the form (a, b], −N ≤ a < b ≤ N ,
is a field F0 on (−N,N ] such that σ(F0) = B((−N,N ]). Hence by Carathéodory’s
extension theorem, one can find a sequence of such disjoint intervals whose union
contains Bj and approximates it as closely as desired. Since µ(Bj) <∞, one may take
a finite subset of these intervals, say (aij , bij ], 1 ≤ i ≤ nj , such that Aj = ∪nj

i=1(aij , bij ]
satisfies µ(Bj∆Aj) < m−1( ε

5c )p, for c := max{x1, . . . , xm} (1 ≤ j ≤ m). Since the
set {x : µ({x}) > 0} is countable, one may use the approximation of (aij , bij ] from
above and below, if necessary, to ensure that µ({aij}) = 0 = µ({bij}), 1 ≤ i ≤ nj , j =
1, . . . m. Note that, with h =

∑m
j=1 xj1Aj

and g =
∑m

j=1 xj1Bj
, as above, one has

‖h−g‖p ≤ mcp[m−1( ε
5 )p] = ( ε

5 )p, so that ‖h−g‖ < ε/5. Finally, let ψ be an infinitely
differentiable probability density on R with compact support (e.g. see (5.7) in Chapter
V). Define ψn(x) = nψ(nx)(n = 1, 2, . . .). Then the probabilities ψn(x)dx converge
weakly to δ0 as n →∞. Hence the functions

hn(x) :=
∫

R

h(x− y)ψn(y)dy =
∫

R

h(y)ψn(x + y)dy, n ≥ 1, (2.10)

are infinitely differentiable with compact support, and hn(x) → h(x) at all points
x of continuity of h. Since the set of possible discontinuities of h, namely {aij :
1 ≤ i ≤ nj , 1 ≤ j ≤ m} ∪ {bij : 1 ≤ i ≤ nj , 1 ≤ j ≤ m} has µ-measure zero,
hn → h µ-almost everywhere. Also hn, h have compact support and are uniformly
bounded by c = max{x1, . . . , xm}. Hence hn → h in Lp, and there exists n0 such that
‖hn0 − h‖ < ε

5 . Therefore,

‖hn0 − f‖ ≤ ‖hn0 − f‖+ ‖h− g‖+ ‖g − fN,M‖+ ‖fN,M − fN‖+ ‖fN − f‖

< 5(
ε

5
) = ε.

Since ε > 0 is arbitrary the proof is complete. �

Remark 2.1. Note that the proof shows that if µ is finite on compacts sets, then
step functions are dense in Lp(R,B(R), µ). Indeed rational-valued step functions with
supporting intervals whose endpoints are dyadic rationals are dense in Lp. In par-
ticular, it follows that Lp is separable. The argument extends to R

k for k > 1 as
well.
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3 PRODUCT MEASURES

Let (Si,Si) (i = 1, 2) be measurable spaces. The product σ-field S = S1 ⊗ S2 on
the Cartesian product space S = S1 × S2 is the smallest σ-field containing all sets of
the form A×B, with A ∈ S1 and B ∈ S2, called measurable rectangles. Let µi be
a σ-finite measure on (Si,Si) (i = 1, 2). Define the set function µ on the class R of
all measurable rectangles

µ(A×B) := µ1(A)µ2(B) (A ∈ S1, B ∈ S2). (3.1)

Theorem 3.1. There exists a unique extension of µ from R to a σ-finite measure
on the product σ-field S = S1 ⊗ S2.

Proof. For the proof we need first the fact that if C ∈ S, then the x-section Cx :=
{y ∈ S2 : (x, y) ∈ C} belongs to S2, ∀x ∈ S1. The class C of all sets C for which this
is true contains R, since (A×B)x = B (if x ∈ A), or ∅ (if x /∈ A). Since it is easy to
check that C is a λ-system containing the π-system R, it follows by the π−λ Theorem
that C ⊃ S.

Similarly, if f is an extended real-valued measurable function on the product space
(S,S) then every x-section of f defined by fx(y) = f(x, y), y ∈ S2, is a measurable
function on (S2,S2), ∀x ∈ S. For if D ∈ B(R) and x ∈ S1, then f−1

x (D) ≡ [y :
f(x, y) ∈ D] = (f−1(D))x ∈ S2.

Next, for C ∈ S the function x �→ µ2(Cx) is measurable on (S1,S1). This is clearly
true for C ∈ R, and the general assertion again follows from the π-λ theorem. Now
define µ on C by

µ(C) :=
∫

S1

µ2(Cx)µ1(dx). (3.2)

If C = ∪nCn, where Cn ∈ S (n = 1, 2, . . . ) are pairwise disjoint, then Cx =
∪n(Cn)x and, by countable additivity of µ2, µ2(Cx) =

∑
n µ2((Cn)x), so that

µ(C) =
∫

S1

∑
n µ2((Cn)x)µ1(dx) =

∑
n

∫
S1

µ2((Cn)x)µ1(dx) =
∑

n µ(Cn). Here
the interchange of the order of summation and integration is valid, by the mono-
tone convergence theorem. Thus (3.2) defines a measure on S, extending (3.1). The
measure µ is clearly σ-finite. If ν is another σ-finite measure on (S,S) such that
ν(A × B) = µ1(A)µ2(B) ∀A × B ∈ R, then the class of sets C ∈ S such that
µ(C) = ν(C) is easily seen to be a σ-field and therefore contains σ(R) = S. �

The measure µ in Theorem 3.1 is called the product measure and denoted by
µ1 × µ2. The measure space (S,S, µ) with S = S1 × S2, S = S1 ⊗S2, µ = µ2 × µ2, is
called the product measure space.

Next note that instead of (3.2), one can define the measure µ̃ by

µ̃(C) =
∫

S2

µ1(Cy)µ2(dy), C ∈ S, (3.3)
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where Cy = {x ∈ S1 : (x, y) ∈ C| is the y-section of C, for y ∈ S2. But µ̃ = µ on
R and therefore, by the uniqueness of the extension, µ̃ = µ on S. It follows that if
f = 1C for some C ∈ S and fy(x) := f(x, y), then

∫

S

fdµ =
∫

S1

{∫

S2

fx(y)µ2(dy)
}

µ1(dx) =
∫

S2

{∫

S1

fy(x)µ1(dx)
}

µ2(dy). (3.4)

This equality of the iterated integrals with different orders of integration immediately
extends to nonnegative simple functions. For arbitrary nonnegative S-measurable f
one uses an approximation fn ↑ f by simple functions fn and applies the monotone
convergence theorem to arrive at the following important result.

Theorem 3.2 (Fubini–Tonelli Theorem). (a) Let f be a nonnegative measurable
function on the product measure space (S,S, µ), where S = S1 × S2, S = S1 ⊗ S2,
µ = µ1 × µ2. Then (3.4) holds. (b) If f is µ-integrable, then (3.4) holds.

Proof. We have outlined above a proof of (a). For (b), use f = f+− f−, linearity of
the integral (with respect to µ, µ1, µ2), and (a). �

Given k (≥ 2) σ-finite measure spaces (Si,Si, µi), 1 ≤ i ≤ k, the above definitions
and results can be extended to define the product measure space (S,S, µ) with (1) S =
S1 × · · · × Sk the Cartesian product of S1, . . . , Sk, and (2) S = S1 ⊗ · · · ⊗ Sk,
the product σ-field, i.e., the smallest σ-field on S containing the class R of all
measurable rectangles A1 × A2 × · · · × Ak (Ai ∈ Si, 1 ≤ i ≤ k), and (3) µ =
µ1 × µ2 × · · · × µk, the σ-finite product measure on S satisfying

µ(A1 ×A2 × · · · ×Ak) = µ1(A1)µ2(A2) · · ·µk(Ak) (Ai ∈ Si, a ≤ i ≤ k). (3.5)

Example 1. The Lebesgue measure on R
k is the product measure m = m1 ×

m2 × · · · ×mk defined by taking Si = R, Si = B(R), mi = Lebesgue measure on R,
1 ≤ i ≤ k.

4 RIESZ REPRESENTATION ON C(S)

Suppose that S is a compact metric space with Borel σ-field B. If µ is a finite measure
on (S,B), then the linear functional �µ(f) =

∫
S

f dµ, f ∈ C(S), is clearly a linear
functional on C(S). Moreover �µ is a positive linear functional in the sense that
�µ(f) ≥ 0 for all f ∈ C(S) such that f(x) ≥ 0 for all x ∈ S. Additionally, giving C(S)
the uniform norm ‖f‖ = sup{|f(x)| : x ∈ S}, one has that �µ is a bounded linear
functional in the sense that sup‖f‖≤1,f∈C(S) |�µ(f)| < ∞. In view of linearity this
boundedness is easily checked to be equivalent to continuity of �µ : C(S) → R. The
Riesz representation theorem for C(S) asserts that these are the only bounded
positive linear functionals on C(S).
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Theorem 4.1 (Riesz Representation Theorem on C(S)). Let S be a compact met-
ric space. If � is a bounded positive linear functional on C(S), then there is a unique
finite measure µ on (S,B) such that for all f ∈ C(S),

�(f) =
∫

S

f dµ.

Moreover, µ is regular in the sense that

µ(A) = inf{µ(G) : G ⊇ A,G open} = sup{µ(F ) : F ⊆ A,F closed}, A ∈ B.

Observe that the uniqueness assertion follows trivially from the fact that C(S) is a
measure-determining class of functions for finite measures. The proof will follow from
a sequence of lemmas.

For a function f ∈ C(S), the smallest closed set outside of which f is zero is
called the support of f and is denoted by supp(f). Note that if f ∈ C(S) satisfies
0 ≤ f ≤ 1A, then supp(f) ⊆ A. For open sets G ⊆ S it is convenient to introduce
notation g ≺ G to denote a function g ∈ C(S) subordinate to G in the sense that
0 ≤ g ≤ 1 and supp(g) ⊆ G. With this notation we will see that the desired measure
may be expressed explicitly for open G ⊆ S as

µ(G) = sup{�(g) : g ≺ G}. (4.1)

Note that since S is open (and closed), one has µ(S) < ∞ from the boundedness of
�. With µ defined for open sets by (4.1), for arbitrary A ⊆ S let

µ∗(A) = inf{µ(G) : G ⊇ A, G open}. (4.2)

Lemma 1 (Urysohn). Given F closed, G open, F ⊂ G, there exists g ∈ C(S) such
that g ≺ G, g = 1 on F.

Proof. For each x ∈ F there exists εx > 0 such that B(x : 2εx) ⊂ G, where B(x : δ)
is the open ball with center x and radius δ > 0. Then {B(x : εx) : x ∈ F} is an open
cover of the compact set F . let {B(xi : εxi

) : i = 1, . . . , N} be a subcover. Write
V = UN

i=1B(xi : εxi
). By the proof of “(ii) implies (iii)” in Alexandrov’s Theorem

(Theorem 5.1), there exists g ∈ C(S) such that g = 1 on F , g = 0 on V c, 0 ≤ g ≤ 1.
Since supp(g) ⊂ V ⊂ G; the proof is complete. �

Lemma 2 (Partition of Unity). Suppose that G1, . . . , GN are open subsets of a
compact metric space S, and assume that F ⊆ G1 ∪G2 ∪ · · · ∪GN is a closed subset
of S. Then there are functions gn ≺ Gn, n = 1, . . . , N , such that

∑N
n=1 gn = 1 on F .

Proof. For each x ∈ F there is an open set Ux containing x whose closure is contained
in Gn for some n (depending on x). Since F is compact there are points x1, . . . , xm

with Ux1 ∪ · · · ∪ Uxm
⊇ F . For 1 ≤ n ≤ N , let Hn denote the union of sets Uxj

contained in Gn. By the Urysohn lemma, there exist functions hn ≺ Gn, hn = 1 on
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Hn. Take g1 = h1, g2 = (1 − h1)h2, . . . , gN = ΠN−1
n=1 (1 − hn)hN . Then gn ≺ Gn for

each n and, by induction,

N∑

n=1

gn = 1−ΠN
n=1(1− hn).

Notice that, since F ⊆ H1 ∪ · · · ∪ HN , one has hn(x) = 1 for some n, at each
x ∈ F . �

Lemma 3. µ∗ is an outer measure and each Borel-measurable subset of S is µ∗-
measurable.

Proof. For the first part we will in fact show that

µ∗(A) = inf

{ ∞∑

n=1

µ(Gn) : ∪∞
n=1Gn ⊃ A,Gnopen

}

.

from which it follows by Proposition 1.1 that µ∗ is an outer measure. For this formula
it suffices to check that for any given sequence Gn, n ≥ 1, of open sets one has
µ(∪∞

n=1Gn) ≤
∑∞

n=1 µ(Gn). Let G = ∪∞
n=1Gn and g ≺ G, g ∈ C(S). The support

supp(g) ⊆ S is compact, and hence supp(g) ⊂ ∪N
n=1Gn, for some N . By Lemma 2,

there are functions gn ∈ C(S), 1 ≤ n ≤ N , such that gn ≺ Gn, and
∑N

n=1 gn = 1 on
supp(g). Now g =

∑N
n=1 gng and gng ≺ Gn, so that

�(g) =
N∑

n=1

l(gng) ≤
N∑

n=1

µ(Gn) ≤
∞∑

n=1

µ(Gn).

Since g ≺ G is arbitrary, it follows that µ(G) ≤
∑∞

n=1 µ(Gn) as desired. For the second
part of the lemma it suffices to check that each open set is µ∗-measurable. That is, if
G is an open set, then for any E ⊆ S one must check µ∗(E) ≥ µ∗(E∩G)+µ∗(E∩Gc).
If E is also open then given ε > 0 there is a g ∈ C(S), g ≺ E ∩ G, such that �(g) >
µ(E∩G)−ε. Similarly, E∩supp(g)c is open and there is a g̃ ∈ C(S), g̃ ≺ E∩supp(g)c,
such that �(g̃) > µ(E ∩ supp(g)c)− ε. But now g + g̃ ≺ E and µ(E) > �(g) + �(g̃) >
µ(E ∩G) + µ(E ∩ supp(g)c)− 2ε ≥ µ∗(E ∩G) + µ∗(E ∩Gc)− 2ε. Since ε is arbitrary,
the desired Carathéodory balance condition (1.3) holds for open E. For arbitrary
E ⊆ S let ε > 0 and select an open set U ⊇ E such that µ(U) < µ∗(E) + ε. Then
µ∗(E) + ε ≥ µ(U) ≥ µ∗(U ∩G) + µ∗(U ∩Gc) ≥ µ∗(E ∩G) + µ∗(E ∩Gc). �

From here one readily obtains a measure space (S,B, µ) by restricting µ∗ to B. The
proof of the theorem is completed with the following lemma.

Lemma 4. For closed F ⊆ S,

µ(F ) = inf{�(h) : h ≥ 1F }.
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Moreover,

�(f) =
∫

S

f dµ ∀f ∈ C(S).

Proof. For closed F ⊆ S and an arbitrary h ∈ C(S) with h ≥ 1F consider, for
ε > 0, the open set Gε = {x ∈ S : h(x) > 1 − ε}. Let g ∈ C(S), g ≺ Gε. Then
�(g) ≤ (1 − ε)−1�(h). It now follows that µ(F ) ≤ µ(Gε) ≤ (1 − ε)−1�(h), and hence,
since ε > 0 is arbitrary, µ(F ) ≤ �(h). To see that µ(F ) is the greatest lower bound,
let ε > 0 and let G ⊃ F be an open set with µ(G) − µ(F ) < ε. By Urysohn’s
lemma there is an h ∈ C(S), h ≺ G, with h ≥ 1F . Thus, using the definition of µ,
�(h) ≤ µ(G) ≤ µ(F ) + ε. To establish that µ furnishes the desired representation of
�, let f ∈ C(S). In view of the linearity of �, it suffices to check that �(f) ≤

∫
S

f dµ;
since the same inequality would then be true with f replaced by −f , and hence the
reverse inequality follows. Let m = min{f(x) : x ∈ S},M = max{f(x) : x ∈ S}. For
ε > 0, partition [m,M ] as y0 < m < y1 < · · · < yn = M such that yj − yj−1 < ε.
Let Aj = f−1(yj−1, yj ] ∩ supp(f), 1 ≤ j ≤ n. Then A1, . . . , An is a partition of
supp(f) into disjoint Borel-measurable subsets. Let Gj ⊃ Aj be an open set with
µ(Gj) < µ(Aj) + ε

n , j = 1, . . . , n, with f(x) < yj + ε, x ∈ Gj . Apply Lemma 2
to obtain gj ≺ Gj with

∑n
j=1 gj = 1 on supp(f). Then f =

∑n
j=1 gjf , and since

gjf ≤ (yj + ε)gj , and yj − ε < f(x) on Aj , one has

�(f) =
n∑

j=1

�(gjf) ≤
n∑

j=1

(yj + ε)�(gj) ≤
n∑

j=1

(yj + ε)µ(Gj)

≤
n∑

j=1

(yj + ε)µ(Aj) +
n∑

j=1

(yj + ε)
ε

n

≤
n∑

j=1

(yj − ε)µ(Aj) + 2εµ(supp(f)) + (M + ε)ε

≤
n∑

j=1

∫

Aj

fdµ + {2µ(supp(f)) + M + ε}ε

=
∫

S

fdµ + {2µ(supp(f)) + M + ε}ε.

Since ε > 0 is arbitrary, the desired inequality is established. �

Example 1. To associate the Riemann integral of continuous functions f on the
k-dimensional unit S = [−1, 1]k with a measure and the corresponding Lebesgue
integral, apply the Riesz representation theorem to the bounded linear functional
defined by

�(f) =
∫ 1

−1

· · ·
∫ 1

−1

f(x1, . . . , xk)dx1 · · · dxk. (4.3)
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Topology and Function Spaces

We begin with an important classical result. Let C[0, 1] denote the set of all real-valued
continuous functions on [0, 1], endowed with the sup norm: ‖f‖ = max{|f(x)| : x ∈
[0, 1]}. With the distance d(f, g) = ‖f − g‖, C[0, 1] is a real Banach space i.e., it
is a vector space (with respect to real scalars) and it is a complete (normed) metric
space. Recall that a norm ‖ ‖ : V → [0,∞) on a vector space V satisfies: ‖g‖ = 0
iff g = 0, ‖αg‖ = |α| · ‖g‖ (α scalar, g ∈ V ), and ‖f + g‖ ≤ ‖f‖+ ‖g‖. Also, a subset
A of a metric space is complete if every Cauchy sequence in A has a convergent
subsequence in A.

Theorem 1.2 (Weirstrass Polynomial Approximation Theorem). Polynomials are
dense in C[0, 1].

Proof. Let g ∈ C[0, 1]. Define a sequence hn (n ≥ 1) of polynomials on [0, 1] as

hn(p) =
n∑

i=0

g

(
i

n

)(
n

i

)

pi(1− p)n−i (p ∈ [0, 1]), n ≥ 1. (1.4)

Then, for each p one may write hn(p) = Eg(X/n), where X is a binomial random
variable B(n, p). Let ε > 0 be given. There exists δ > 0 such that |g(p′)−g(p′′)| ≤ ε/2,
if |p′ − p′′| ≤ δ and p′, p′′ ∈ [0, 1]. Hence

|hn(p)− g(p)| = |Eg(X/n)− g(p)|

≤ ε

2
P

(∣
∣
∣
∣
X

n
− p

∣
∣
∣
∣ ≤ δ

)

+ 2‖g‖P
(∣
∣
∣
∣
X

n
− p

∣
∣
∣
∣ > δ

)
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≤ ε

2
+ 2‖g‖p(1− p)

nδ2
≤ ε

2
+

ε

2
= ε

for all p if n ≥ ‖g‖
εδ2 . �

Instead of [0, 1], we now consider an arbitrary compact Hausdorff space S. Recall
that a topological space S (with a topology T of open sets) is Hausdorff if for every
pair x, y ∈ S, x �= y, there exist disjoint open sets U, V such that x ∈ U , y ∈ V . A
topological space is compact if every open cover of S has a finite subcover. That is,
if {Vλ : λ ∈ Λ} is a collection of open sets such that ∪λ∈ΛVλ = S, then there exists a
finite set {λ1, . . . , λk} ⊆ Λ such that ∪{Vλi

: 1 ≤ i ≤ k} = S. By taking complements
it is immediately seen that S is compact if and only if it has the finite intersection
property: if {Cλ : λ ∈ Λ} is a collection of closed sets whose intersection is empty,
then it has a finite subcollection whose intersection is empty. The following are a
few useful related notions. A topological space S is called locally compact if every
point x ∈ S has a compact neighborhood. The space S is called σ-compact if it is a
countable union of compact sets. A subset D of a topological space (S, T ) is compact
if it is compact as a topological space with the relative topology defined by D ∩ T .

It is simple to check, using the finite intersection property, that a real-valued contin-
uous function on a compact space S attains its supremum (and infimum). From this
it follows that the space C(S) of real-valued continuous functions on S is a Banach
space under the norm (called the supnorm ) ‖f‖ := max{|f(x)| : x ∈ S}. It is also an
algebra i.e., it is a vector space that is also closed under (pointwise) multiplication
(f, g) �→ fg ∀ f, g ∈ C(S). A subalgebra of C(S) is a vector subspace that is also
closed under multiplication. A subset H of C(S) is said to separate points if for
every pair of points x �= y in S there is a function f ∈ H such that f(x) �= f(y).

Theorem 1.3 (Stone–Weierstrass Theorem). Let S be a compact Hausdorff
space, and H a subalgebra of C(S). If H includes constant functions and separates
points, then H is dense in S, i.e., H = C(S).

Proof. Step 1. If f ∈ H, then |f | ∈ H. To prove this use Theorem 1.2 to find a
sequence hn of polynomials converging uniformly to the function h(p) =

√
p on [0, 1].

Now if f ∈ H then all polynomial functions of g ≡ f/‖f‖ belong to H. In particular,
hn ◦ g2 ∈ H (g2(x) ≡ (g(x))2 ∈ [0, 1]). But hn ◦ g2 converges uniformly on S to
h ◦ g2 = |f |/‖f‖, so that the functions (‖f‖)hn ◦ g2 in H converge uniformly to |f |.

Step 2. If f, g ∈ H then max{f, g}, min{f, g} ∈ H. To see this, write max{f, g} =
1
2 (f + g + |f − g|), min{f, g} = 1

2 (f + g − |f − g|) and apply Step 1.
Step 3. Let x �= y ∈ S, α and β real numbers. Then there exists f ∈ H such that

f(x) = α, f(y) = β. For this, find g ∈ H such that a ≡ g(x) �= b ≡ g(y). Let
f = α + β−α

b−a (g − a).
Step 4. Let f ∈ C(S). Given any x ∈ S and ε > 0, there exists g ∈ H such that

g(x) = f(x) and g(y) < f(y)+ε ∀ y ∈ S. To prove this, fix f , x, ε as above. By Step 3,
for each y �= x there exists gy ∈ H such that gy(x) = f(x), gy(y) = f(y) + ε/2. Then
y belongs to the open set Oy = {z : gy(z) < f(y) + ε}, and S = ∪{Oy : y ∈ S\{x}}.
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Let {Oy1 , . . . ,Oyk
} be a subcover of S. Define g = min{gy1 , . . . , gyk

}. Then g ∈ H
(by Step 2), g(x) = f(x), and g(y) < f(y) + ε ∀ y ∈ S.

Step 5. To complete the proof of the theorem, fix f ∈ C(S), ε > 0. For each x ∈ S,
let fx = g be the function obtained in Step 4. Then Vx := [z ∈ S : fx(z) > f(z)− ε],
x ∈ S, form an open cover of S (since x ∈ Vx). Let {Vx1 , . . . , Vxm

} be a finite subcover.
Then fε ≡ max{fx1 , fx2 , . . . , fxm

} ∈ H (by Step 2), and f(z)− ε < fε(z) < f(z) + ε
∀ z ∈ S. �

Among many important applications of Theorem 1.3, let us mention two.

Corollary 1.4. Let S be a compact subset of R
m (m ≥ 1). Then the set Pm of all

polynomials in m variables is dense in C(S).

Proof. The set Pm is clearly an algebra that includes all constant functions. Also, let
x = (x1, . . . , xm) �= y = (y1, . . . , ym) ∈ S. Define f(z) = (z1−x1)2 + · · ·+(zm−xm)2.
Then f ∈ Pm, f(x) = 0, f(y) > 0. Hence Theorem 1.3 applies. �

Corollary 1.5 (Separability of C(S)). Let (S, ρ) be a compact metric space. Then
C(S) is a separable metric space.

Proof. First observe that S is separable. For there exist finitely many open balls
{B(xj,n : 1/n) : 1 ≤ j ≤ kn} that cover S. Here B(x : ε) = {y ∈ S : ρ(x, y) < ε}
is a ball with center x and radius ε. Clearly, {xj,n : j = 1, . . . , kn; n = 1, 2, . . . } is a
countable dense subset of S. To prove separability of C(S), let {xn : n = 1, 2, . . . }
be a countable dense subset of S. Denote by Bn,k the ball with center xn and radius
1/k (k = 1, 2, . . . ; n = 1, 2, . . . ). Also, let hm(u) = 1−mu, 0 ≤ u < 1/m, hm(u) = 0
for u ≥ 1/m, define a sequence of continuous functions on [0,∞) (m = 1, 2, . . . ).
Define fn,k,m(x) := hm(ρ(x,Bn,k)) (n ≥ 1, k ≥ 1, m ≥ 1), and let M be the
set of all (finite) linear combinations of monomials of the form f j1

n1k1,m1
· · · f jr

nr,kr,mr

(r ≥ 1; j1, . . . , jr nonnegative integers). ThenM is a subalgebra of C(S) that includes
constant functions and separates points: if x �= y then there exists Bn,k such that
x ∈ Bn,k and y /∈ Bn,k, implying fn,k,m(x) = 1, fn,k,m(y) < 1, if m is sufficiently
large. By Theorem 1.3, M is dense in C(S). The countable subset of M comprising
linear combinations of the monomials with rational scalars is dense inM and therefore
in M = C(S). �

Remark 1.1. Let C(S : C) denote the set of all complex-valued continuous functions
on a compact metric space S. Under the sup norm ‖f‖ := sup{|f(x)| : x ∈ S},
C(S : C) is a (complex) Banach space. Letting {fn : n = 1, 2, . . . } be a dense sequence
in the real Banach space C(S), the countable set {fn + ifm : n ≥ 1,m ≥ 1} is clearly
dense in C(S : C). Hence C(S : C) is separable.

The next result concerns the product topology of the Cartesian product S =
×λ∈ΛSλ of an arbitrary collection of compact spaces Sλ (λ ∈ Λ). This topology
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comprises all arbitrary unions of sets of the form V = [x ≡ (xλ : λ ∈ Λ) : xλi
∈ Vλi

,
1 ≤ i ≤ k], λi ∈ Λ, Vλi

an open subset of Sλi
(1 ≤ i ≤ k), for some k ≥ 1.

Theorem 1.6 (Tychonov’s Theorem). Let Sλ be compact for all λ ∈ Λ. Then
S = ×λ∈ΛSλ is compact under the product topology.

Proof. We will give a proof when Λ is denumerable, say Λ = {1, 2, . . . }, and (Sn, ρn)
are compact metric spaces, n ≥ 1. The proof of the general case requires invoking the
axiom of choice, and may be found in Folland.1

Let x(n) = (x(n)
1 , x

(n)
2 , . . . ), n ≥ 1, be a sequence in S. We will find a convergent

subsequence. Let {x(n(1))
1 : n ≥ 1} be a subsequence of {x(n)

1 : n ≥ 1}, converg-
ing to some x1 ∈ S1, n(1) > n ∀n. Let {x(n(2))

2 : n ≥ 1} be a subsequence of
{x(n(1))

2 : n ≥ 1}, converging to some x2 ∈ S2, n(2) > n(1) ∀n. In general, let
{x(n(k))

k : n ≥ 1} be a subsequence of {x(n(k−1))
k : n ≥ 1}, converging to xk ∈ Sk

(k = 1, 2, . . . ). Then the diagonal subsequence x(1(1)),x(2(2)), . . . ,x(k(k)), . . . converges
to x = (x1, x2, . . . , xk, . . . ). �

Definition 1.1. A family C of continuous functions defined on a topological space
S is said to be equicontinuous at a point x ∈ S if for every ε > 0 there is a
neighborhood U of x such that for every f ∈ C, |f(y)− f(x)| < ε for all y ∈ U . If C is
equicontinuous at each x ∈ S then C is called equicontinuous. Also C is said to be
uniformly bounded if there is a number M > 0 such that |f(x)| ≤M for all f ∈ C
and all x ∈ S.

The next concept is especially useful in the context of C(S) viewed as a metric space
with the uniform metric.

Definition 1.2. A subset A of a metric space is said to be totally bounded if, for
every δ > 0 there is a covering of A by finitely many balls of radius δ.

Lemma 5. If A is a complete and totally bounded subset of a metric space then A
is compact.

Proof. Let {xn : n ≥ 1} be a sequence in A. Since A may be covered by finitely
many balls of radii 1/2, one of these, denoted by B1, must contain xn for infinitely
many n, say n ∈ N1. Next A∩B1 may be covered by finitely many balls of radii 1/4.
One of these balls, denoted by B2, contains {xn : n ∈ N1} for infinitely many n, say
n ∈ N2 ⊆ N1. Continuing in this way, by selecting distinct points n1 < n2 < · · · from
N1, N2, . . ., one may extract a subsequence {xnm

: nm ∈ Nm} which is Cauchy and,
since A is complete, converges in A. Now suppose that {Uλ : λ ∈ Λ} is an open cover
of A. In view of the total boundedness of A, if for some ε > 0 one can show that
every ball of radius ε which meets A is a subset of some Uλ, then a finite subcover

1Folland, G.B. (1984). Real Analysis, p. 130. Wiley.
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exists. To see that this is indeed the case, suppose not. That is, suppose for every
n ≥ 1 there is a ball Bn of radius at most 2−n which meets A but is not a subset of
any Uλ. For each n there is an xn ∈ Bn ∩A. Since there is a convergent subsequence
to x ∈ A, one has x ∈ Uλ for some λ ∈ Λ. Since Uλ is open and since x is a limit
point of the sequence xn, it follows that x ∈ Bn ⊆ Uλ for n sufficiently large. This is
a contradiction to the construction of Bn, n ≥ 1. �

Theorem 1.7 (Arzelà-Ascoli). A collection C ⊂ C[a, b] is relatively compact for
the uniform metric on C[a, b] if and only if C is uniformly bounded and equicontinuous.

Proof. Assume that C is uniformly bounded and equicontinuous. In view of Lemma 5,
it is enough to show the closure of C is totally bounded and complete to prove relative
compactness. The completeness follows from the completeness of C[a, b]. For total
boundedness it is sufficient to check that C is totally bounded, since this will be
preserved in the closure. Let δ > 0. By equicontinuity, for each x ∈ [a, b] there is an
open set Ux containing x such that |f(y)− f(x)| < δ/4 for all y ∈ Ux, and all f ∈ C.
By compactness of [a, b], there are finitely many points x1, . . . , xn in [a, b] such that
∪n

j=1Uxj
= [a, b]. Now {f(xj) : f ∈ C, j = 1, . . . , n} is a bounded set. Thus there

are numbers y1, . . . , ym such that for each f ∈ C, and each j, |f(xj) − yk| < δ/4
for some 1 ≤ k ≤ m. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. The set Y X of
functions from X into Y is a finite set and C = ∪g∈Y XCg, where Cg := {f ∈ C :
|f(xj)− g(xj)| < δ/4, 1 ≤ j ≤ n}. Now, to complete the proof of total boundedness,
let us see that this covering of C is by sets Cg of diameter at most δ. Let f, h ∈ Cg.
Then |f − h| < δ/2 on X. For x ∈ [a, b], one has x ∈ Uxj

for some j, and therefore
|f(x)− h(x)| ≤ |f(x)− f(xj)|+ |f(xj)− h(xj)|+ |h(xj)− h(x)| < δ.

To prove necessity, let us first observe that if C is compact, then C is totally bounded.
For suppose not. Then there is a δ > 0 such that there is no finite cover by balls of
radii δ. Thus, for arbitrary but fixed g1 ∈ C, there is a g2 ∈ C such that ‖g1 − g2‖ :=
maxa≤x≤b |g1(x)−g2(x)| > δ. This is because otherwise, the ball centered at g1 would
be a cover of C. Proceeding by induction, having found g1, . . . , gn, there must be a
gn+1 ∈ C such that ‖gk−gn+1‖ > δ for k = 1, . . . n. Thus, there is an infinite sequence
g1, g2, . . . in C such that ‖gj−gk‖ > δ for j �= k. Thus C cannot be compact. Now, since
C is totally bounded, given any ε > 0 there exist g1, . . . , gn ∈ C such that for any f ∈ C
one has ‖f − gk‖ < ε

3 for some 1 ≤ k ≤ n. Since each gk is a continuous function on
the compact interval [a, b], it is bounded. Let M = max1≤k≤n,a≤x≤b |gk(x)|+ ε

3 . Then,
for f ∈ C, one has |f(x)| ≤ |gk(x)| + ε

3 ≤ M for all a ≤ x ≤ b. Thus C is uniformly
bounded. Since each gk is continuous and hence, uniformly continuous on [a, b], there
is a δk > 0 such that |gk(x) − gk(y)| < ε

3 if |x − y| < δk. Let δ = min{δ1, . . . , δn}.
Then for f ∈ C one has for suitably chosen gk, |f(x) − f(y)| ≤ ‖f − gk‖ + |gk(x) −
gk(y)|+ ‖gk − f‖ < ε if |x− y| < δ. Thus C and hence, C ⊆ C is equicontinuous. �

Note that the theorem holds for a compact metric space S in place of [a, b], with
virtually the same proof.
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Hilbert Spaces and Applications
in Measure Theory

1 HILBERT SPACES

Let H be a real vector space endowed with an inner-product (x, y) �→ 〈x, y〉, i.e.,
(i) 〈x, y〉 = 〈y, x〉 (symmetry),
(ii) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 ∀α, β ∈ R (linearity), and
(iii) 〈x, x〉 ≥ 0 ∀x, with equality iff x = 0 (positive definiteness). One writes

‖x‖2 = 〈x, x〉.
Among the basic inequalities on H are the parallelogram law

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, (1.1)

which is easy to check, and the Cauchy–Schwarz inequality,

|〈x, y〉| ≤ ‖x‖ · ‖y‖. (1.2)

To prove this, fix x, y. If x or y is 0, this inequality is trivial. Assume then that x, y
are nonzero. Since for all u ∈ R,

0 ≤ ‖x + uy‖2 = ‖x‖2 + u2‖y‖2 + 2u〈x, y〉,

minimizing the right side with u = −〈x, y〉/‖y‖2, one gets 0 ≤ ‖x‖2 − 〈x, y〉2/‖y‖2,
from which (1.2) follows. One can now derive the triangle inequality

‖x + y‖ ≤ ‖x‖+ ‖y‖, (1.3)
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by observing that ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ =
(‖x‖ + ‖y‖)2, in view of (1.2). Thus ‖ · ‖ is a norm: (a) ‖x‖ ≥ 0, with equality iff
x = 0, (b) ‖αx‖ = |α| ·‖x‖ for all x ∈ H and real scalar α, and (c) ‖x+y‖ ≤ ‖x‖+‖y‖
for all x, y ∈ H. If H is a complete metric space under the metric d(x, y) = ‖x− y‖,
then H is said to be a (real) Hilbert space.

Lemma 1. Let M be a closed linear subspace of the Hilbert space H. Then for
each x ∈ H, the distance d ≡ d(x,M) ≡ inf{d(x, y) : y ∈ M} is attained at some
z : d = d(x, z).

Proof. Let zn be such that d(x, zn) → d as n → ∞, zn ∈ M ∀n. By (1.1), with
x− zn, x− zm for x and y, respectively, one has

‖zn − zm‖2 = 2‖x− zn‖2 + 2‖x− zm‖2 − ‖2x− zn − zm‖2

= 2‖x− zn‖2 + 2‖x− zm‖2 − 4‖x− 1
2
(zn + zm)‖2

≤ 2‖x− zn‖2 + 2‖x− zm‖2 − 4d2 −→ 2d2 + 2d2 − 4d2 = 0,

showing that {zn : n ≥ 1} is a Cauchy sequence in M . Letting z = lim zn, one gets
the desired result. �

Theorem 1.1 (Projection Theorem). Let M be a closed linear subspace of a real
Hilbert space H. Then each x ∈ H has a unique representation: x = y + z, y ∈ M ,
z ∈ M⊥ ≡ {w ∈ H : 〈w, v〉 = 0 ∀ v ∈M}.

Proof. Let x ∈ H. Let y ∈M be such that d ≡ d(x,M) = d(x, y). Define z = x− y.
Then x = y + z. For all u ∈ R and w ∈M , w �= 0, one has

d2 ≤ ‖x− (y + uw)‖2 = ‖x− y‖2 + u2‖w‖2 − 2u〈x− y, w〉. (1.4)

If 〈x − y, w〉 �= 0, one may set u = 〈x − y, w〉/‖w‖2 to get d2 ≤ ‖x − y‖2 − 〈x −
y, w〉2/‖w‖2 < d2, which is impossible, implying 〈x − y, w〉 = 0 ∀w ∈ M . Hence
z ∈ M⊥. To prove uniqueness of the decomposition, suppose x = w + v, w ∈ M ,
v ∈ M⊥. Then w + v = y + z, and w − y = z − v. But w − y ∈ M and z − v ∈ M⊥,
implying w − y = 0, z − v = 0. �

The function x �→ y in Theorem 1.1 is called the (orthogonal) projection onto
M , and x→ z is the orthogonal projection onto M⊥. It is simple to check that these
projections are linear maps (on H onto M , and on H onto M⊥).

We will denote by H∗ the set of all real-valued continuous linear functions (func-
tionals) on H. Note that if �1, �2 ∈ H∗ and α, β ∈ R, then α�1 + β�2 ∈ H∗, i.e.,
H∗ is a real vector space. It turns out that H∗ is isomorphic to H. To see this,
note that for each y ∈ H, the functional �y, defined by �y(x) = 〈x, y〉, belongs to H∗.
Conversely, one has the following result.
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Theorem 1.2 (Riesz Representation Theorem on Hilbert Spaces). If � ∈ H∗, there
exists a unique y ∈ H such that �(x) = 〈x, y〉 ∀x ∈ H.

Proof. Since � = 0 is given by �(x) = 〈x, 0〉, and corresponds to �0, assume � �= 0.
Then M ≡ {x ∈ H : �(x) = 0} is a closed proper linear subspace of H, M �= H,
and therefore M⊥ �= {0}. Let z ∈ M⊥, ‖z‖ = 1. Consider, for any given x ∈ H,
the element w = �(x)z − �(z)x ∈ H, and note that �(w) = 0. Thus w ∈ M , so that
0 = 〈w, z〉 = �(x)− �(z)〈x, z〉, implying �(x) = �(z)〈x, z〉 = 〈x, y〉, where y = �(z)z.

To prove uniqueness of the representation, suppose 〈x, y1〉 = 〈x, y2〉 ∀x ∈ H. With
x = y1 − y2 one gets 0 = 〈x, y1 − y2〉 = ‖y1 − y2‖2, so that y1 = y2. �

A complex vector space H is a vector space with the complex scalar field C.
An inner product on such a space is a function 〈 , 〉 on H × H into C satisfying
(i) 〈x, y〉 = 〈y, x〉, (α is the complex conjugate of α ∈ C), (ii) 〈αx+βy, z〉 = α〈x, z〉+
β〈y, z〉, (iii) ‖x‖2 ≡ 〈x, x〉 > 0 ∀x �= 0. If H, with distance d(x, y) = ‖x − y‖, is
a complete metric space, it is called a complex Hilbert space. The parallelogram
law (1.1) follows easily in this case. For the Cauchy–Schwarz inequality (1.2), take
u = − 〈x,y〉

‖y‖2 in the relations (for arbitrary x, y ∈ H, and u ∈ C)

0 ≤ ‖x + uy‖2 = ‖x‖2 + |u|2 · ‖y‖2 + u〈x, y〉+ u〈x, y〉

to get 0 ≤ ‖x‖2 − |〈x, y〉|2/‖y‖2, from which (1.2) follows. The proof of the lemma
remains unchanged for complex H. The triangle inequality (1.3) follows as in the case
of real H. In the proof of the projection theorem, (1.4) changes (for u ∈ C) to

d2 ≤ ‖x− y‖2 + |u|2 · ‖w‖2 − u〈x− y, w〉 − u〈x− y, w〉,

so that taking u = 〈x − y, w〉/‖w‖2, one gets d2 ≤ ‖x − y‖2 − |〈x − y, w〉|2/‖w‖2,
which implies 〈x − y, w〉 = 0 ∀w ∈ M . The rest of the proof remains intact. For the
proof of the Riesz representation, the relation 0 = �(x) − �(z)〈x, z〉 implies �(x) =
�(z)〈x, z〉 = 〈x, �(z)z〉 = 〈x, y〉 with y = �(z)z (instead of �(z)z in the case of real H).
Thus Theorems 1.1, 1.2 hold for complex Hilbert spaces H also.

A set {xi : i ∈ I} ⊆ H is orthonormal if 〈xi, xj〉 = 0 for all i �= j, and ‖xi‖ = 1.
An orthonormal set is complete if 〈x, xi〉 = 0 for all i ∈ I implies x = 0. A complete
orthonormal subset of a Hilbert space is called an orthonormal basis of H. Suppose
H is a separable Hilbert space with a dense set {yn : n = 1, 2, . . .}. By the following
Gram–Schmidt procedure one can construct a countable orthonormal basis for
H. Without loss of generality assume yn �= 0, n ≥ 1. Let x1 = y1/‖y1‖, u2 = y2 −
〈y2, x1〉x1, x2 = u2/‖u2‖, assuming u2 �= 0. If u2 = 0, replace y2 by the first y in
the sequence such that y − 〈y, x1〉x1 �= 0, and relabel y = y2. Having constructed
u2, x2, . . . , un, xn in this manner, define un+1 = yn+1 −

∑n
j=1〈yn+1, xj〉xj , xn+1 =

yn+1/‖yn+1‖, assuming un+1 �= 0 (if un+1 = 0 then find the first y in the sequence that
is not linearly dependent on {x1, . . . , xn} and relabel it yn+1). The process terminates
after a finite number of steps if H is finite dimensional. Otherwise, one obtains a
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complete orthonormal sequence {xn : n = 1, 2, . . .}. Completeness follows from the
fact that if 〈x, xn〉 = 0 for all n, then 〈x, yn〉 = 0 for all n, so that x ∈ {yn : n ≥
1}⊥ = {0} (since {yn : n ≥ 1} is dense in H, and A⊥ is a closed set for all A ⊆ H).
A complete orthonormal set is called a complete orthonormal basis, in view of
Theorem 1.3 below.

Lemma 2 (Bessel’s Inequality). Let {x1, x2, . . .} be a finite or countable or-
thonormal subset of a Hilbert space H. Then

∑
n |〈x, xn〉|2 ≤ ‖x‖2 for all x ∈

H.

Proof. One has

‖x−
∑

n

〈x, xn〉xn‖2 = ‖x‖2 − 2Re

〈

x,
∑

n

〈x, xn〉xn

〉

+

∥
∥
∥
∥
∥

∑

n

〈x, xn〉xn

∥
∥
∥
∥
∥

2

= ‖x‖2 − 2Re
∑

n

|〈x, xn〉|2 +
∑

n

|〈x, xn〉|2 =‖x‖2 −
∑

n

|〈x, xn〉|2.

The inequality is proven since the expression is nonnegative. �

Theorem 1.3. Let {x1, x2, . . .} be a complete orthonormal set in a separable Hilbert
space. Then for all x one has (a) (Fourier Expansion) x =

∑
n〈x, xn〉xn, and (b)

(Parseval’s Equation) ‖x‖2 =
∑

n |〈x, xn〉|2, and 〈x, y〉 =
∑

n〈x, xn〉〈y, yn〉, for all
x, y ∈ H.

Proof. (a) In view of Bessel’s inequality, the series
∑

n |〈x, xn〉|2 converges, so that
∥
∥
∥
∑N

M 〈x, xn〉xn

∥
∥
∥

2

→ 0 as M,N → ∞. Hence
∑

n〈x, xn〉xn converges to z ∈ H, say.
Since 〈xm, xn〉 = 0, n �= m, and 〈xm, xm〉 = 1, it follows that 〈z, xm〉 = 〈x, xm〉
for all m. Therefore, 〈z − x, xm〉 = 0 for all m, and hence by completeness of
{xn : n ≥ 1}, x = z =

∑
n〈x, xn〉xn. Also, the first calculation in (b) follows, since

‖x‖2 = ‖
∑

n〈x, xn〉xn‖2 =
∑

n |〈x, xn〉|2. More generally, one has x =
∑

n〈x, xn〉xn,
y =

∑
n〈y, xn〉xn, so that 〈x, y〉 =

∑
n〈x, xn〉〈y, xn〉, using (i) convergence of

∑N
n=1〈x, xn〉xn to x and that of

∑N
n=1〈y, xn〉xn to y as N →∞, and (ii) the continuity

of the inner product (u, v) → 〈u, v〉 as a function on H ×H. �

For a real Hilbert space, the conjugation sign in (b) is dropped.

2 LEBESGUE DECOMPOSITION AND THE RADON–NIKODYM
THEOREM

In the subsection we will give von Neumann’s elegant proof of one of the most
important results in measure theory.
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Let µ, ν be measures on a measurable space (S,S). One says that ν is absolutely
continuous with respect to µ, ν � µ in symbols, if ν(B) = 0 ∀B ∈ S for which
µ(B) = 0. At the other extreme, ν is singular with respect to µ if there exists A ∈ S
such that ν(A) = 0 and µ(AC) = 0, that is, if µ and ν concentrate their entire masses
on disjoint sets: one then writes ν ⊥ µ. Note that ν ⊥ µ implies µ ⊥ ν. However,
ν � µ does not imply µ� ν.

Theorem 2.1 (Lebesgue Decomposition and the Radon–Nikodym Theorem). Let
µ, ν be σ-finite measures on (S,S). Then (a) there exist unique measures νa � µ
and νs ⊥ µ such that ν = νa + νs (Lebesgue decomposition), and there exists a µ-
a.e. unique nonnegative measurable h such that νa(B) =

∫
B

h dµ ∀B ∈ S. (b) In
particular, if ν � µ, then there exists a µ-a.e. unique h ≥ 0 such that ν(B) =

∫
B

h dµ
∀B ∈ S (Radon–Nikodym theorem).

Proof. First consider the case of finite µ, ν. Write λ = µ + ν. On the real Hilbert
space L2(λ) ≡ L2(S,S, λ), define the linear functional

�(f) =
∫

S

f dν f ∈ L2(λ). (2.1)

By the Cauchy–Schwarz inequality, writing ‖f‖ = (
∫
|f |2dλ)1/2, we have

|�(f)| ≤
∫

S

|f |dλ ≤ ‖f‖ · (λ(S))
1
2 . (2.2)

Thus � is a continuous linear functional on L2(λ). By the Riesz representation theorem
(Theorem 1.2), there exists g ∈ L2(λ) such that

�(f) ≡
∫

S

f dν =
∫

s

fg dλ (f ∈ L2(λ)). (2.3)

In particular, for f = 1B ,

ν(B) =
∫

B

g dλ, ∀ B ∈ S. (2.4)

Letting B = {x ∈ S : g(x) > 1} = E, say, one gets λ(E) = 0 = ν(E). For if λ(E) > 0,
then (2.4) implies ν(E) =

∫
E

g dλ > λ(E), which is impossible. Similarly, letting
F = {x : g(x) < 0}, one shows that λ(F ) = 0. Modifying g on a λ-null set if necessary,
we take g to satisfy 0 ≤ g ≤ 1 on S. Consider the sets S1 = {x : 0 ≤ g(x) < 1} and
S2 = Sc

1 = {x : g(x) = 1}, and define the following measures ν1, ν2:

ν1(B) := ν(B ∩ S1), ν2(B) := ν(B ∩ S2), B ∈ S. (2.5)
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Now, using λ = µ + ν, one may rewrite (2.4) as

∫

B

(1− g) dν =
∫

B

g dµ (B ∈ S). (2.6)

For B = S2, the left side is zero, while the right side is µ(S2), i.e., µ(S2) = 0. Since
ν2(Sc

2) = 0 by definition, one has ν2 ⊥ µ. On the other hand, on S1, 1 − g > 0, so
that µ(B) = 0 =⇒

∫
B∩S1

(1 − g)dν = 0 =⇒ ν(B ∩ S1) = 0, i.e., ν1(B) = 0. Hence
ν1 � µ. Thus we have a Lebesgue decomposition ν = νa + νs, with νa = ν1, νs = ν2.
Its uniqueness follows from Corollary 2.3 below. Multiplying both sides of (2.6) by 1,
g, g2, . . . , gn, and adding, we get

∫

B

(1− gn+1) dν =
∫

B

(g + g2 + · · ·+ gn+1) dµ (B ∈ S). (2.7)

Since 1 − gn+1 ↑ 1 (as n ↑ ∞) on S1, denoting by h the increasing limit of g + g2 +
· · ·+ gn+1, one gets

νa(B) ≡ ν1(B) = ν(B ∩ S1) =
∫

B∩S1

h dµ =
∫

B

h dµ (B ∈ S),

completing the proof of (a). Now (b) is a special case of (a). The uniqueness of the
function h in this case does not require Proposition 2.2 below. For if

∫
B

h dµ =
∫

B
h′ dµ

∀B ∈ S, then
∫

B
(h − h′) dµ = 0 ∀B ∈ S. In particular

∫
{h>h′}(h − h′) dµ = 0 and

∫
{h≤h′}(h

′ − h) dµ = 0, so that
∫
|h− h′|dµ = 0.

For the general case of σ-finite measures µ, ν, let {An : n ≥ 1} be a sequence
of pairwise disjoint sets in S such that ∪∞

n=1An = S, µ(An) < ∞, ν(An) < ∞ ∀n.
Applying the above result separately to each An and adding up one gets the desired
result, using the monotone convergence theorem. �

For the next result, call ν a finite signed measure if ν : S → (−∞,∞) satisfies
ν(∅) = 0, and ν(∪nBn) =

∑
n ν(Bn) for every pairwise disjoint sequence Bn (n ≥ 1)

in S. If ν takes one of the two values −∞, ∞, but not both, ν is said to be σ-finite
signed measure if there exists a sequence of pairwise disjoint sets Bn ∈ S such that
ν is a finite signed measure on each Bn (n ≥ 1), and S = ∪nBn.

Proposition 2.2 (Hahn–Jordan Decomposition). Suppose ν is a σ-finite signed
measure on (S,S). Then (a) there exists a set C ∈ S such that ν(C ∩ B) ≥ 0
∀B ∈ S, and ν(Cc ∩ B) ≤ 0 ∀B ∈ S (Hahn decomposition), and (b) defining the
measures ν+(B) := ν(C ∩ B), ν−(B) := −ν(Cc ∩ B), one has ν = ν+ − ν− (Jordan
decomposition).

Proof. First assume that ν is finite, and let u = sup{ν(B) : B ∈ S}. Let Bn ∈ S (n ≥
1) be such that ν(Bn) → u. We will construct a set C ∈ S such that ν(C) = u. For each
m, consider the partition Γm of S by 2m sets of the form B′

1∩B′
2∩· · ·∩B′

m with B′
i = Bi
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or Bc
i , 1 ≤ i ≤ m. Let Am be the union of those among these sets whose ν-measures are

nonnegative. Clearly, ν(Am) ≥ ν(Bm). Expressing Am∪Am+1 as a (disjoint) union of
certain members of the partition Γm+1 and noting that those sets in Γm+1 that make
up Am+1\Am all have nonnegative ν-measures, one has ν(Am ∪ Am+1) ≥ ν(Am).
By the same argument, ν(Am ∪ Am+1 ∪ Am+2) ≥ ν(Am ∪ Am+1) ≥ ν(Am), and so
on, so that ν(∪n

i=mAi) ≥ ν(Am) ∀n ≥ m, implying that Cm ≡ ∪∞
i=mAi satisfies

ν(Cm) ≥ ν(Am) ≥ ν(Bm). Hence ν(C) = u, where C = limm→∞ Cm. We will now
show that ν(B∩C) ≥ 0 and ν(B∩Cc) ≤ 0 ∀B ∈ S. First note that u < ∞, since ν is
finite. Now if ν(B ∩C) < 0 for some B, then ν(C\(B ∩C)) > u, which is impossible.
Similarly, if ν(B ∩ Cc) > 0 for some B, then ν(C ∪ (B ∩ Cc)) > u. We have proved
the Hahn decomposition (a). The Jordan decomposition (b) follows immediately from
this.

If ν is σ-finite, then S is a disjoint union of sets An (n ≥ 1) such that νn(B) ≡ ν(An∩
B), B ∈ S, is a finite signed measure for all n ≥ 1. The Hahn–Jordan decomposition
νn = ν+

n − ν−
n leads to the corresponding decomposition of ν = ν+ − ν−, with

ν+ =
∑

n ν+
n , ν− =

∑
n ν−

n . �

The measure |ν| := ν+ + ν− is called the total variation of a σ-finite signed
measure ν.

Corollary 2.3. The Hahn–Jordan decomposition of a σ-finite signed measure ν is
the unique decomposition of ν as the difference between two mutually singular σ-finite
measures.

Proof. It is enough to assume that ν is finite. Let ν = γ1 − γ2 where γ1 ⊥ γ2 are
measures, with γ1(Dc) = 0, γ2(D) = 0 for some D ∈ S. Clearly, γ1(D) = γ1(S) =
sup{ν(B) : B ∈ S} = ν(D) = u, say. As in the proof of Proposition 2.2, it follows that
γ1(B) = ν(B ∩D), γ2(B) = −ν(B ∩Dc) for all B ∈ S. If C is as in Proposition 2.2,
then u = ν(C). Suppose, if possible, ν+(B) ≡ ν(B ∩ C) > γ1(B) = ν(B ∩ D), i.e.,
ν(B ∩C ∩Dc) + ν(B ∩C ∩D) > ν(B ∩D∩C) + ν(B ∩D∩Cc), or, ν(B ∩C ∩Dc) >
ν(B∩D∩Cc) = γ1(B∩Cc) ≥ 0. But then ν(D∪ (B∩C ∩Dc)) > ν(D) = γ1(D) = u,
a contradiction. Hence ν+(B) ≤ γ1(B) ∀B ∈ S. Similarly, γ1(B) ≤ ν+(B) ∀B ∈
S. �

One may take ν to be a σ-finite signed measure in Theorem 2.1 (and µ a σ-finite
measure). Then ν is absolutely continuous with respect to µ, ν � µ, if µ(B) = 0 =⇒
ν(B) = 0 (B ∈ S). Use the Hahn–Jordan decomposition ν = ν+ − ν−, and apply
Theorem 2.1 separately to ν+ and ν− : ν+ = (ν+)a + (ν+)s, ν− = (ν−)a + (ν−)s.
Then let νa = (ν+)a − (ν−)a, νs = (ν+)s − (ν−)s.

Corollary 2.4. Theorem 2.1 extends to σ-finite signed measures ν, with ν = νa+νs,
where νa and νs are σ–finite signed measures, νa � µ, νs ⊥ µ. Also, there exists a
measurable function h, unique up to a µ–null set, such that νa(B) =

∫
B

h dµ ∀B ∈ S.
If ν � µ, then ν(B) =

∫
B

h dµ ∀B ∈ S.
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Villars, Paris (1st ed. 1937).

Liggett, T.M. (1985): Interacting Particle Systems, Springer-Verlag, NY.
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wavelet construction, 135

Wiener construction, 134

Canonical model, 6, 32

canonical process, 140

Cantor function, 176

Cantor measure, 176

Cantor set, 175

Carathéodory extension formula, 20

Carathéodory Extension Theorem, 172

Carathéodory extension theorem, 1

Cartesian product, 183

Cauchy–Schwarz inequality, 193

central limit theorem, 92, 102, 138

Lindeberg, 99

Lyapounov, 103

multivariate, 103

Cesàro limit, 124

change of variables, 7

characteristic function, 82

Taylor expansion, 92

Chung–Fuchs theorem, 89

recurrence criterion, 90, 97

compact

finite intersection property, 188

complete

orthonormal set, 195

complete metric space, 187

completely monotone, 111

conditional expectation

Cauchy-Schwarz inequality, 36

Chebyshev inequality, 36

contraction, 27

convergence theorems, 27

dominated convergence, 27

first definition by L2-projection, 24

Jensen inequality, 27

linearity, 27

monotone convergence, 27

ordering, 27

second definition on L1, 26

smoothing, 27

substitution property, 27

conditional probability, 28

regular conditional distribution, 29

regular conditional distribution of Y , 29

conditional probability density function, 31

conjugate exponents, 10

convergence

almost sure a.s., 7

finite-dimensional weak, 62

in distribution, 60

in measure, 179

in probability, 7

vague, 66, 110

weak, 59

Convergence Theorems

for Integrals, 180

convex function, 8

line of support property, 9

convolution, 21, 34, 82, 83

smoothing property, 95

coordinate projections, 19

correlation

uncorrelated, 22

countable additivity, 1

covariance, 22

Cramér–Chernoff Theorem, 54

Cramér-Lèvy Continuity Theorem, 86

cumulant generating function, 53

cylinder sets, 32

Diagonal Subsequence, 190

diffusion coefficient, 169

distribution, 6

singular, 176

distribution function, 174

Donsker’s invariance principle, 161, 162

Doob Maximal Inequality, 40

Doob-Blackwell Theorem, 30

Equicontinuity lemma, 97

equicontinuous, 190

pointwise, 190

event, 2

tail, 49

events

increasing, decreasing, 2

infinitely often, i.o., 3

limsup, liminf, 3

expected value, 6

exponential distribution, 34

Fatou’s Lemma, 180

Fejér average, 74

Fejér kernel, 74

Feller’s Gaussian tail probability estimates,

136
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field, 19, 171

filtration, 40

right-continuous, 151

finite intersection property, 188

finite-dimensional cylinders, 129

finite-dimensional distributions, 129

finite-dimensional rectangles, 19

Fourier coefficient, 75

measure, 79

Fourier coefficients, 73

multi-dimensional, 85

Fourier inversion formula, 84

Fourier series, 74

multi-dimensional, 85

Fourier transform, 82

function, 81

inversion, 85, 94

inversion for lattice random variables, 96

location-scale change, 94

multi-dimensional, 85

range, 88

uniqueness theorem, 83

Fourier transfrom

inversion, 86

Fubini–Tonelli Theorem, 183

function

measurable, 176

simple, 176

support, 184

function Spaces, 187

functional central limit theorem, 159, 161, 162

Gamma distribution, 34

Gaussian distribution, 34, 93, 136

generating function

combinatorial, 111

Gram–Schmidt procedure, 195

Haar wavelet functions, 135

Hahn–Jordan Decomposition, 198

Hausdorff estimates, 57

Herglotz Theorem, 79

Hewitt–Savage zero–one law, 50

Hilbert cube, 67

Hilbert space, 8, 194

complex, 195

Holtzmark problem, 104

Inclusion-exclusion formula, 14

independent

σ-fields, 23

maps, 22

pairwise, 52

random variables, 20

independent and identically distributed, i.i.d.,

22

independent increments, 38, 138

inequality

Lèvy, 142

Bonferroni, 15

Cauchy-Schwarz, 9

Chebyshev, 10

Hölder, 9

Jensen, 9

Markov, 10

Minkowski triangle, 10

infinitely divisible, 103

inner product, 195

inner-product, 193

integrable, 178

integral, 177

complex, 16

Lebesgue, 7

invariance principle, 159, 162

Kolmogorov consistency, 129

Kolmogorov consistency theorem, 130

Kolmogorov existence theorem, 130

Kolmogorov Maximal Inequality, 41, 122

Kolmogorov zero–one law, 49

Kronecker’s Lemma, 124

Langevin equation, 170

Laplace transform, 54, 107

continuity theorem, 110

convolution product, 109

inversion, 109

moment generation, 108

range, 114

uniqueness theorem, 109

Laplace transform, scale change, 109

large deviation rate, 56

law of large numbers

Marcinkiewicz-Zygmund, 124

strong, 50, 124, 127

weak, 53

law of rare events, 87

law of the iterated logarithm, 143

classical i.i.d. summands, 163

Lebesgue Decomposition and the

Radon–Nikodym Theorem, 197

Lebesgue measure, 175, 183
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Lebesgue’s Dominated Convergence Theorem,

180

Lebesgue–Stieltjes Measures, 174

Legendre transform, 56, 58

Liapounov inequality, 9

LIL

law of the iterated logarithm, 143

linear functional

positive, 183

linear functional

bounded, 183

continuous, 183

locally compact, 188

Map

identity, 6

Markov inequality, 10

Markov process, 133

discrete parameter, 132

Markov property, 140, 149

Brownian motion, 150

continuous-parameter, 150

discrete-parameter, 147

general random walk, 32

homogeneous transition probabilities, 147,

149

stationary transition probabilities, 147

with respect to filtration, 151

martingale

Brownian motion, 158

first definition, 37

second general definition, 40

martingale differences, 38

mean, 6

measurable

set, 1

measurable function

Borel, 5

nonnegative, 176

measurable map, 5

measurable rectangles, 176, 182

measurable space, 1, 176

measure, 1

σ-finite, 19

σ−finite, 1

associativity of product measure, 20

complete, 171

completion of, 172

continuity properties, 2

countable additivity, 171

countably additive, 1

defined on a field, 19

Dirac point mass, 1

distribution function, 174

finite, 1

finite additivity, 171

induced, 6

Lebesgue, 1, 175

Lebesgue–Stieltjes, 174

nonatomic, 176

on a field, algebra, 171

outer, 172

probability, 1

product, 20

signed, 198

singular, 176

subadditivity, 171

measure determining events, 5

measure determining functions, 8

measure space, 1

completion, 172

measures

absolutely continuous, 196

singular, 196

metrizable, 30

moment generating function, 53

moment-generating function, 108

monomials, 189

monotone density lemma, 117

Norm, 187

normal distribution, 34

normed vector space

complete, 194

Optional sampling theorem, 43

Brownian motion, 158

optional stopping theorem, 43

optional time, 42

orthonormal, 74, 195

basis, 196

complete, 195

set, 195

outer measure, 172

Parallelogram law, 193

Parseval relation, 84, 96

multi-dimensional, 86

partition, 30

Plancheral identity, 84–86

Poisson approximation, 87

Poisson distribution, 103
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Polish space, 30

positive-definite, 79, 88

possible outcome, 1

pre-τ σ-field

continuous-parameter, 152

discrete-parameter, 149

probability, 1

monotonicity, 14

sub-additivity, 14

probability space, 1

product σ-field, 129, 182, 183

product measure, 182, 183

product measure space, 182

product space, 19, 129

product topology, 189

progressive measurability, 42

Prohorov metric, 69

Prohorov Theorem, 68

projection

orthogonal, 194

Projection Theorem, 194

pseudo-metric, 57

Radon property, 114

random field, 133

Gaussian, 134

random map, 5

random series

almost-sure convergence, 126

convergence in distribution, 126

convergence in probability, 126

Kolmogorov three series criteria, 123

mean-square-summability criterion, 122

random signs problem, 127

random variable, 5

discrete, 6

integrable, 6

simple, 6

random vector, 5

random walk, 88

recurrence, 155

rth passage times, 155

first return time, 155

Markov property, 147

recurrence, 88, 156

simple, 143

symmetric stable displacements, 104

random walk on R
k

Markov property, 32

reciprocity formula, 112

recurrence

random walk, 156

recurrent

neighborhood, 88

reflection principle, 143

regular conditional distribution, 29

relative topology, 188

renewal equation, 119

Riemann–Lebesgue Lemma, 81

Riesz Representation Theorem

C(S), 183

Hilbert spaces, 195

Sample points, 1

sample space, 1

Schauder functions, 135

Scheffé theorem, 10

section

measurable function, 182

measurable set, 182

separability of C(S), 189

set

P -continuity, 60

boundary, 60

closure, 60

simple function, 176

standard approximation, 177

simple symmetric random walk

reflection principle, 143

size-bias

exponential, 108

exponential size-bias, 54

Skorokhod embedding, 138, 159

Skorokhod Embedding Theorem, 160

Skorokhod maximal inequality, 127

slowly varying, 116

stable law, 103, 104

stochastic process, 19

continuous-parameter, 19

discrete-parameter, 19

Stone–Weierstrass Theorem, 131, 188

stopped process, 42, 152

stopping time, 41, 149

strong law of large numbers, 50, 124, 127

strong Markov property

Brownian motion, 153

discrete-parameter, 149

submartingale, 39, 40

subordinate, 184

subset

compact, 188

supermartingale, 39, 40
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supnorm, 188

support, 184

symmetric difference, 50

symmetrization, 96

Tail event, 49

tauberian theorem

Karamata, 115

Taylor expansion, 92

second-order, 99

tight, 68

tilting

size-bias, 54

topological space, 5

compact, 188

convergence in, 5

Hausdorff, 188

topology, 5, 187

metrizable, 5

pointwise convergence, 6

uniform convergence, 6

uniform convergence on compacts, 6

weak, 59

total variation

signed measure, 199

total variation distance, 11, 59

totally bounded, 190

transition probability, 133

triangle inequality, 193

triangular array, 102

trigonometric polynomials, 73

truncation method

Kolmogorov, 127

Tulcea extension theorem, 23, 131

Tychonoff’s Theorem, 190

Ultimately monotone, 117

uncorrelated, 53

uniformly bounded, 190

uniformly integrable, 12

upper class functions, 158

Urysohn lemma, 184

Vague convergence, 66, 110

variance, 22

variance of sums, 22

vector space

algebra, 188

complex, 195

Weak law of large numbers,

WLLN, 53

weak topology, 59

Weierstrass Approximation

Theorem, 53

periodic functions, 73

Weirstrass Polynomial Approximation

Theorem, 187

Wiener measure, 134, 150, 169

Zero–one law

Hewitt-Savage, 50

Kolmogorov, 49

zero-one law

Blumenthal, 158
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N, set of natural numbers

R, set of real numbers

C, set of complex numbers

Re, real-part

Z, set of integers

Z
+, set of nonnegative integers

R
k, k-dimensional real Euclidean space

R+, set of nonnegative real numbers, page 42

R = [−∞,∞], extended real numbers, page 176

R
∞, infinite sequence space, page 4, 32

(S∞,S⊗∞), infinite product space, page 132

∆, symmetric difference page 50

δx Dirac delta (point mass), page 1

lim sup, page 2

lim inf, page 3

σ(C), page 4∨
, σ-field join, page 4

B,B(S) Borel σ-field, page 9

B
∞, infinite product of Borel σ-fields, page 32,

50∏
t∈Λ

,×t∈Λ, Cartesian product of sets, page

19∏
t∈Λ

µt, product measure, page 132
⊗

, product of σ-fields, page 19

Fτ , pre-τ σ-field, page 42, 152

Ft+ , right-continuous filtration, page 151

X+
m, (Z+

s ), after-m (-s) process, page 148, 150

X+
τ , after-τ process, page 149, 153

fx(y), fy(x), Cx, Cy , sections, pages 182-183

[X ∈ B], inverse image, page 5

supp, (closed) support, page 184

C[0, 1], set of continuous. real-valued functions

defined on [0, 1], page 6

C([0,∞) → R
k), set of continuous functions on

[0,∞) with values in R
k, page 6

Cb(S), set of continuous bounded functions on

a metric (or topological) space S, page 8

UCb(S), set of uniformly continuous functions

on a metric space S, page 8

B(S), set of bounded, measurable functions on

a measurable space (S,S), page 11

C(S), continuous functions on a metric or

topological space S, page 130, 188

C0
b (S), continuous functions on a metric or

topological space vanishing at infinity,

page 70

C(S : C), set of complex-valued functions on

S, page 189

Lp,

‖ · ‖p, 1 ≤ p ≤ ∞, page 8

∗, convolution, page 21, page 82

�, absolutely continuous, page 196

⊥, mutually singular, page 197

Cov, covariance, page 22

Var, variance, page 22

⇒, weak convergence, page 60

∂A, boundary of set A page 60

Ao, interior of set A, page 60

A−, closure of set A, page 60
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