
Chapter 4
True Random Number Generators
for Cryptography

Berk Sunar

4.1 Introduction

Random numbers and randomization techniques are critical for modern-day cryp-
tography. Random numbers are used to initialize key bits for secret- and public-key
algorithms, seed pseudo-random number generators, provide challenges, nonces,
padding bits, as well as initialization vectors in cryptographic primitives and pro-
tocols. For cryptographic applications it is crucial to generate pseudo-random bits
which will be unpredictable to the adversary even at the exposure of partial infor-
mation. The literature is filled with protocols that are built around state-of-the-art
cryptographic primitives, yet fail in practice, due to a weak random number genera-
tor (cf. [1]).

In this chapter, we focus on practical TRNG designs that are suitable for man-
ufacturing on common ASIC silicon process or to be implemented on reconfig-
urable logic platforms (e.g., FPGA, CPLD, etc.). Hence, esoteric designs and soft-
ware TRNGs (e.g., TRNGs that use randomness in RAM or Disk access times [2])
are not discussed. Unfortunately, the literature of TRNG designs is rather scattered.
Some designs appear in academic articles fragmented into a number of fields which
specialize in digital design techniques, integrated circuits, and even physics. Many
designs are simply patented and otherwise not published. Therefore, our survey of
TRNG design will be incomplete. We survey a number of selected designs and dis-
cuss them in terms of their performance, weaknesses, scalability, and versatility.

In the remainder of this chapter we first discuss the building blocks of common
TRNGs. We then present a potpouri of TRNG designs; incomplete, yet chosen to
expose the diversity in design techniques. This is followed by a survey of post-
processing techniques. Finally, we present several new research problems motivated
by real-life needs.

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute,
e-mail: sunar@wpi.edu

Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 4,
c© Springer Science+Business Media, LLC 2009

55

56 Berk Sunar

4.2 TRNG Building Blocks

A true random number generator (TRNG) is a device that utilizes physical processes
to generate a random bit stream. Although there is a zoo of TRNGs available, the
most popular and useful ones are commonly built from the following three compo-
nents:
Entropy Source: Numerous TRNG designs have been proposed in the literature for
collecting randomness from physical processes such as thermal and shot noise in
circuits, jitter and metastability in circuits, Brownian motion, atmospheric noise, or
even nuclear decay. The entropy source is perhaps the most critical component as it
determines the available entropy. On the other hand, it should be clear that sources
such as atmospheric noise [3] and nuclear decay are not viable except for fairly
restricted applications or online distribution services. Furthermore, some sources
exhibit biases which should be eliminated in the collection or postprocessing steps.
Quantification of the available entropy and its exact statistical properties is another
significant design task. Another issue is considering long-term effects which may
cause the breakdown in the entropy source. Active monitoring techniques for de-
tecting total breakdown are available. However, more subtle failures are difficult to
detect in practice.
Harvesting Technique: The entropy source is tapped using a harvesting technique
that ideally does not disturb the physical process above, yet collects as much entropy
as possible. A large number of designs have been proposed to realize this step. Since
blackbox analysis of TRNGs other than statistical tests and simple true randomness
tests (Tot and restart1) are impossible, the harvesting mechanism should come with
rigorous justification.
Postprocessing: Although this component is not needed in all designs, good design
practice dictates the use of a postprocessor. The goal is to make the TRNG de-
sign more robust by postprocessing the output bits. A postprocessor may be applied
to hide or eliminate biases and/or dependencies in the entropy source or harvest-
ing mechanism. A secondary goal, which has gained quite a bit of importance due
to active fault and side-channel attacks, is to provide resilience to environmental
changes and to tampering by adversaries. A postprocessor may be as simple as a
von Neumann corrector [4] or may be as complicated as an extractor function [5] or
a one-way hash function such as SHA-1 [6]. Although one-way hash functions such
as SHA-1 or MD5 provide a safety net when used for postprocessing, they make the
analysis of the output distribution very difficult.

Finally, we would like to note that postprocessing algorithms do not merely im-
prove the output distribution and make the design more robust but also bring a
degree of flexibility into the design. For instance, postprocessing techniques with

1 Briefly stated, Tot tests check for a total breakdown of the entropy source of an RNG usually
caused due to material ageing effects or extreme fluctuations in the operating conditions. Restart
tests verify generation of randomness by restarting the RNG from nearly identical operating con-
ditions.

4 True Random Number Generators for Cryptography 57

quantifiable properties allow trade-offs to be made between the quality of the output
bits and the throughput of the TRNG.

4.3 Desirable Features

Thus far a large number of TRNG designs have been proposed. These designs vary
significantly according to their entropy sources and the harvesting techniques they
employ. Each design has its strengths and weaknesses. Some of these properties are
related to performance and some are related to security and robustness. We summa-
rize below some of the features we would like TRNGs to have.

• From a practical standpoint it is essential that TRNGs are built using a commonly
available cheap silicon process. Moreover, it is highly desirable to implement
TRNGs using purely digital design technique. This allows for easier integration
with digital microprocessors, and also makes it possible to implement TRNGs
on popular reconfigurable platforms (i.e., FPGAs and CPLDs).

• Compact and efficient design with high throughput per area and energy spent.
Use of amplifiers or other analog components should be avoided, if possible.
Analog components tend to consume more energy and make the analysis diffi-
cult. Note that, since we are not allowing analog components, we have to sample
variations in the time domain (such as the design in [7] does) rather than the
variations in the voltage levels. If strictly followed, this criterion also means that
we should avoid complicated postprocessing schemes (e.g., SHA-1) or at least
implement them in the software.

• It is desirable to have a mathematical justification of the entropy collection mech-
anism, with all assumptions empirically verified. The design should be suffi-
ciently simple to allow rigorous analysis. To validate the output of TRNGs the
DIEHARD [8] or NIST Test Suites [9] are commonly employed. These statisti-
cal tests are necessary but not sufficient. Recently, Schindler and Killman [10]
sketched a methodology for evaluating true random number generators and out-
lined the pioneering standardization efforts of the BSI as described in [11]. They
advocate rigorous testing of TRNGs and note that a statistical blackbox testing
strategy may not be employed for this purpose. The AIS document provides clear
evaluation criteria for TRNGs and also allows TRNG designers to present their
own criteria.

4.4 Survey of TRNG Designs

In this section we present a survey of TRNG designs. The survery is certainly not
exhaustive and there are many other interesting designs available. Considering that
a large number of designs first appeared in patents and not in academic articles, it
is also likely that many innovative designs are simply kept as trade secrets. In any
case, we find it useful to present chosen representative designs to expose alternative
TRNG construction techniques.

58 Berk Sunar

4.4.1 Baggini and Bucci

The early design introduced by Baggini and Bucci [12] as shown in Figure 4.1 uses
a combination of analog and digital components for amplification and sampling
of white noise. The design is build to resist variations in operating conditions and
component behavior. Reference [12] gives an analytical model for the TRNG which
captures the relationship between the maximum bit correlation to the output bit-rate
and therefore claims that it is unnecessary to use statistical testing. The reference
does not report any implementation results.

/2 DFF

/N
clk

low pass filter

pulse generator

holding capacitance
samplersampling switch

noise
source

comparator /w hysterisis

Fig. 4.1 The Baggini and Bucci TRNG Design.

4.4.2 The Intel TRNG Design

The Intel TRNG Design shown in Figure 4.2 was discussed in [6]. The entropy
source of the design is thermal noise on a junction. The design uses two resistors
in differential configuration to make the design more robust against power supply
and environmental variations. The differential thermal noise is amplified and used
to drive a voltage controlled oscillator (VCO). The VCO is then sampled by another
oscillator. The output sequence is postprocessed using the von Neumann corrector
and then hashed using SHA-1. As an added safety measure, the software driver that
interfaces with the TRNG, implements the NIST 140-1 randomness tests monobit,
runs, and poker. Jun and Kocher in [6] who have analyzed the TRNG output using 16

VCO

OSC
High Speed
Oscillator

Corrector

Voltage Controlled Oscillator

Latch

Sampler

Thermal Noise Source

Amplifier

+

−

Fig. 4.2 The Intel Random Number Generator.

4 True Random Number Generators for Cryptography 59

specialized tests and the NIST FIPS 140-1 test suite report that no weaknesses were
found in the TRNG output before processing with SHA-1. The reference, however,
notes that the von Neumann postprocessing technique is essential for eliminating
biases in the output stream.

Since reference [6] gives only details of the security analysis we know nothing
about the performance of the design, i.e., footprint, throughput, and power con-
sumption. We may speculate that the footprint will be low due to the simplicity of
the design since SHA-1 is implemented on the software side. With respect to secu-
rity, we only have the blackbox analysis of Jun and Kocher. On the other hand, since
the design is relatively simple, by modeling the junction noise and the oscillator jit-
ter, one should be able to analyze the quality and performance of the TRNG output.
Finally, the design has analog components, i.e., noise amplifier and voltage con-
trolled oscillator, and therefore does not lend itself for implementation on a recon-
figurable platform.

4.4.3 The Tkacik TRNG Design

The innovative design introduced in [7] randomly samples the XOR of bits chosen
from a linear feedback shift register (LFSR) and a cellular automata shift register
(CASR). The randomness comes from the jitter in the two free-running oscillator
circuits which are used to clock the two deterministic circuits. The design is shown
in Figure 4.3. The TRNG outputs 32 bits at a time. The author states that it is used
with minor variations at Motorola for a number of years.

A positive aspect of the design is in its diversification. The output stream is
verified using the DIEHARD [8], NIST 140-1 [9] and the Crypt-X suites [13].
The author shows that the output of the entire design has far better statistical be-
havior when compared to the LFSR or CASR output alone. There are no details
given with regard to the performance aspects of the design. In [14] Dichtl outlines
an attack on this particular TRNG construction based on two weaknesses of the
design:

32−bit SelectOSC

OSC

43−bit LFSR

37−bit CASR 32−bit Select

Fig. 4.3 The Tkacik TRNG Design.

60 Berk Sunar

• The source of entropy is fairly limited (only two oscillators are used). In fact, the
LFSR and the CASR act as a pseudo-random number generator seeded with only
two low-entropy oscillators.

• The design uses linear components (e.g., LFSR), and therefore the attacker can
build a linear model and solve it.

The attack allows an adversary to predict the output bits assuming he/she had ac-
cess to earlier bits. The treatment is theoretical and thus it is unclear if the attack
would work in practice. Also, the assumption that the attacker knows some of the
previously generated bits will make it impractical for many applications. On the
other hand, the attack points to a dependency between output bits, and casts serious
doubts about the reliability of the Tkacik TRNG. Finally, the design can be made
robust by significantly lowering the output rate and/or including non-linear com-
ponents. In [15] Schindler further analyzes the Tkacik design under a formulated
stochastical model and develops lower and upper entropy bounds on the random
output bits. Schindler also shows that the output bits carry sufficient entropy when
the output is sampled 60,000 times more slowly than suggested in [7].

4.4.4 The Epstein et al. TRNG Design

In [16], a simple architecture based on bi-stable circuits is proposed. Figure 4.4
shows the basic component of the TRNG design which simply lays out many such
units and computes the XOR of their output bits. A unit consists of two multiplex-
ers and two inverters put together in a configuration that gives a metastable circuit.
Note that if the select input is logic 0, then the circuit reduces to two separate single
inverter oscillator rings. Alternatively, if the select input is set to logic 1, the circuit
becomes functionally identical to two cascaded inverters. In the first mode, we have
two free-running oscillators and in the second mode a stable circuit with no switch-

out

sel

in2

in1

sel
in1

in2
out

Oscillator

Output

Select

Fig. 4.4 Bi-stable memory component of the Epstein et al. TRNG design.

4 True Random Number Generators for Cryptography 61

ing activity. Now, consider the case when the select input transitions from logic 0
to 1. Then, the two free-running oscillators may not be in the same phase and we
obtain a bi-stable circuit with uncertainty in the output signal until the transitions
settle.

The TRNG design which was composed of 15 instances of the components
shown in Figure 4.4 and an additional 14 XOR gates was manufactured using a
0.18μ CMOS technology. All output sequences passed the DIEHARD tests after
being postprocessed by the von Neumann corrector. Being constructed only from
digital components, the design could be implemented on reconfigurable logic as
well. Also, the design is fairly compact and should be power efficient as well. Un-
fortunately, reference [4] gives no information about the performance of the design.
The output is verified using statistical tests. A security analysis is not provided.

4.4.5 The Fischer–Drutarovský Design

The design introduced by Fischer and Drutarovský [17] samples the jitter in a phase
locked loop (PLL) on a specialized reconfigurable logic platform. The design is
unique in the sense that it was the first TRNG proposal targeting FPGAs. The ref-
erence implementation targeted a particular Altera field programmable logic device
family that comes with a PLL (e.g., APEX E and APEX II families) as shown in
Figure 4.5. The jitter of the clock signal generated by the on-chip PLL is sampled
via delay cascaded samplers organized in the configuration shown in Figure 4.6.
The key idea is to use multiple samplers to be able to sample near the transition
zone that is influenced by the jitter which according to [17] is of the order of only
several tens of picoseconds. The multiple samples taken at regular intervals which
are then XOR-ed together gives a sample from an area of the waveform that has
the desired uncertainty. Finally, the output of the XOR is then downsampled using
a decimator. The authors of [17] give a fairly detailed summary of the actual imple-
mentation and the design choices made. For instance, the authors note that resources
need to be locked in place in the FPLD to obtain the desired routing configuration.

phase comparator
voltage
controlled
oscillator

FIN
m/ (n*k)

FIN VCO 1/k
1/n

1/m
Clock Shift
Circuitry

1/v
FIN

m/ (n*v)

Fig. 4.5 Architecture of the programmable PLL used as the entropy source in the Fischer–
Drutarovský TRNG design.

62 Berk Sunar

fclk

..

.
Q

Q

Q

PLL D

D

D

T

T

T

.

1/k

Fig. 4.6 The Fischer–Drutarovský TRNG Design.

This is especially important for the delayed samplers. The reported implementation
yielded a bit-rate of nearly 70 Kbits/s. However it is not clear whether this was the
upper limit of reliable operation, or whether this is merely a design choice. The
generated random bit sequence was verified for statistical behavior using the NIST
tests.

All in all, the Fischer–Drutarovský is important in the sense that it highlights
the importance of TRNGs for reconfigurable platforms. The authors introduce the
novel cascaded delayed sampler and also provide a mathematical model that allows
them to pick operating points to increase the likelihood of collecting bits near the
transition zones.

4.4.6 The Golić FIGARO Design

The Fibonacci oscillator [18] is shown in Figure 4.7. Basically, the structure is iden-
tical to an LFSR except for the delay elements being replaced by inverters. The
feedback positions are labeled by switch values fi. If fi = 1 then the switch is closed
and otherwise it is open. The switch values can be represented more conveniently in
terms of the feedback polynomial which is given as follows.

...

Output

Oscillator

f1 f2 fr−1

Fig. 4.7 The Fibonacci Oscillator Design.

4 True Random Number Generators for Cryptography 63

f (x) =
r

∑
i=0

fix
i where f0 = fr = 1.

It is important that the oscillator is not stuck in a single fixed state. The necessary
and sufficient conditions are given in Theorems 4.1 and 4.2.

Theorem 4.1 ([18]). A Fibonacci ring oscillator does not have a fixed state if and
only if

f (x) = (1 + x)h(x) and h(1) = 1 .

Theorem 4.2 ([18]). A Galois ring oscillator does not have a fixed state if and only
if

f (1) = 1 and r is odd.

Furthermore, for both kinds of oscillators, if h(x) is chosen to be a primitive poly-
nomial, we are guaranteed to have two cycles: a short cycle of only 2 states and a
long cycle which includes the remaining 2r − 2 states. The Galois configuration of
the oscillator ring is shown in Figure 4.8. The FIGARO (Fibonacci-Galois-Ring-
Oscillator) TRNG design simply XORs the output of a Figaro oscillator with the
output of a Galois oscillator and samples the XOR output. To eliminate local corre-
lations and biases the author also proposes to use a self-controlled LFSR for post-
processesing of the output. Later on the performance was analyzed by Dichtl and
Golić (see Section 4.4.12).

4.4.7 The Kohlbrenner–Gaj Design

Similar to earlier design the Kohlbrenner–Gaj design [19] uses jitter in ring oscilla-
tors as the entropy source. What makes this design different is that, it is designed to
perfectly match the CLB architecture of a Xilinx Virtex-II FPGA. The oscillator, for
instance, is build into a CLB. The oscillator signal passes twice through the CLB
structure and is flipped in only one of the passes (in LUT1) as shown in Figure 4.9.
For clarity the clk and reset signals are not shown in the figure. The oscillation fre-
quency is determined by the delay elements on the oscillator path, i.e., two lookup
tables, four multiplexers, and two memory cells. Kohlbrenner notes that, this partic-
ular configuration gives a sufficiently stable 130 MHz oscillator signal. The TRNG
samples one such oscillator with another one.

Output

f1 f2 fr−1

...
Oscillator

Fig. 4.8 The Galois Oscillator Design.

64 Berk Sunar

Oscillator
D

Q

D
Q

A4
A3
A2
A1

D

LUT1

A4
A3
A2
A1

D

LUT2

Output

Fig. 4.9 Oscillator/CLB structure of the Kohlbrenner–Gaj Design.

The TRNG output is also postprocessed with a simple succesive XOR scheme, to
eliminate biases. The reported bit-rate is of the order of several hundred kilobits/s.
The exact rate depends on the strength of the XOR postprocessing scheme. Although
the rate is relatively low, the design is fairly compact and its bit-rate will be sufficient
in many applications. The output sequence was statistically verified using the NIST
140-1 test suite.

4.4.8 The Bucci–Luzzi Testable TRNG Design Framework

Bucci and Luzzi [20] made the observation that it is difficult, and perhaps impos-
sible, to test the quality of TRNG outputs after complex postprocessing techniques
have been employed. The authors propose to augment the designs with reset circuits
that clear the state of the TRNG. This is done to support a so-called certification
mode which establishes whether the TRNG is trustworthy. In the certification mode,
the TRNG is restarted before the collection of each output bit. The objective be-
hind the restart is to eliminate any dependencies between the collected bits. Then
the output of the TRNG is either stuck in a fixed bit and no entropy is generated, or
it generates independent bits. The former can be checked via a scheme that simply
counts the transitions. If the transition rate is as expected, then biases in the output
may be eliminated by using a stateless postprocessor. The stateless postprocessor
preserves the independence among output blocks. In principle, the proposed restart
approach is applicable mainly to any entropy source that permits a restart. The key
point though is that the output diverges quickly from the start state into an unpre-
dictable state. Hence, the amount of time required for an entropy source to produce
diverging outputs after reset may be used as a metric.

An important side benefit of the stateless TRNG approach is that it makes de-
tection of forcing attacks much easier when stateless linear postprocessors are used.
A non-(pseudo) random bias introduced by the the attacker will be visible at the
output due to the independence of the output bits and the linearity of the post-
processor.

4 True Random Number Generators for Cryptography 65

4.4.9 The Rings Design

The rings design shown in Figure 4.10 was proposed by Sunar, Martin and Stinson
in [21]. The design is very simple. Basically, free-running ring oscillator outputs
are combined together via an XOR operation and then sampled. The source of ran-
domness, is phase jitter. The main idea is to populate the output waveform with
transition zones and then to sample randomly. The authors provide a mathematical
framework and rigorous analysis of the quality of the output of the TRNG based on
a set of assumptions at the input. Furthemore, to reduce the number of rings, the au-
thors propose to use a resilient function for postprocessing of the TRNG output. By
keeping the degree of the resilient function high, the TRNG develops a quantifiable
tolerance against active adversaries. The rings design has two main contributions:
the analysis framework and the introduction of resilient functions for postprocess-
ing. The analysis builds a simple jitter model, and computes the minimum number of
rings that need to be included in the design to achieve a certain fill-rate in the sam-
pling window, at a certain confidence level. The deterministic bits collected from
the unfilled portion of the sampling window are eliminated by a resilient function of
appropriate strength.

An initial reference implementation of the Rings design was provided by
Schellekens et al. in [22] on a Xilinx Virtex-II FPGA. The implementation pro-
duced a stream at a 2.5 Mbps bit-rate with a sampling frequency of 40 MHz and us-
ing 110 rings with 13 inverters and the resilient function constructed from the linear
cyclic code (256,16,113). The output sequence was verified using the DIEHARD
and NIST tests. Schellekens et al. also observed that the Rings design is stateless
and uses a linear stateless postprocessing technique (a resilient function constructed
from a linear code) and therefore satisfies the criteria for testability introduced ear-
lier by Bucci and Luzzi [20].

Finally, we should note that the Rings design received criticism in several aspects
from Dichtl and Golić [23]. Among the criticisms are the independence assumption
of the ring oscillators and the sampling rate. While the sampling rate may be easily
reduced, it is more difficult to verify the independence of the ring oscillators when

...

...

R1

...

...

R2

Rr

Ψ2

Ψ1

Ψr

Ψ

fs

D Q

Fig. 4.10 The ring oscillators design.

66 Berk Sunar

a large number of rings are used. For a smaller number of rings, careful place and
routing may sufficiently isolate the rings from interacting with each other. A much
simpler solution is to collect only one sample from one oscillation period. In this
case, ring independence is not required. It suffices to check against phase interlock
which would reduce the fill-rate.

4.4.10 The PUF–RNG Design

An RNG design based on physically unclonable functions (PUFs) was proposed by
O’Donnel et al. in [24]. The RNG design is build around a PUF circuit as shown
in Figure 4.11. Under normal operation the output of the PUF circuit is determined
by the subtle imprecisions in the delay paths created during the manufacturing pro-
cess along with the challenge value supplied. Alternatively, for a particular set of
challenges the delays will be closely matched and the sampling circuit will enter a
meta-stable state. Hence, the output of the device will be unpredictable. While this
is good news, a challenge that gives rise to metastability does so only temporarily
due to temperature and voltage variations.

Hence, the PUF–RNG design searches for meta-stable challenges by repeatedly
applying a challenge and checking if a sufficiently unstable output is obtained.
Roughly stated, the same challenge is fed to the PUF circuit a fixed number of
times with a fixed window length, with the hope of obtaining nearly uniform dis-
tribution at the PUF output in one window. If this is not achieved after trying a
fixed number of windows, a new challenge is generated with the help of a pseudo-
random number generator. When a meta-stable challenge is found, it is used to
generate an output string which is further postprocessed using the von Neumann
corrector.

The reference reports an implementation based on the PUF integrated into the
AEGIS secure processor [25]. The PRNG, as well as the metastable challenge
searching technique, is implemented in the software. The output of the RNG is ver-
ified using the NIST test suite. Unfortunately, the throughput rate is not given. The
primary advantage of this design is that it makes use of an existing PUF component.

C1 C2 Cn

latch

Fig. 4.11 A delay-based PUF design.

4 True Random Number Generators for Cryptography 67

PUF circuits have become a popular tool for IC identification and for achieving
tamper-resilience. Therefore, it is quite likely that a security device comes with an
integrated PUF device.

4.4.11 The Yoo et al. Design

The practical aspects of the Rings design including IC routing effects, and the effects
of power supply and temperature variations were investigated in [26]. The authors
first note that if the signal is subsampled, then there is a chance especially at low
fill-rates that the sampler may end up being stuck in an deterministic portion of
the sampling window. The authors therefore recommend sampling at a frequency
that is relatively prime to the oscillation frequency. The authors note that IC level
effects such as phase interlock, narrow signal rejection in the XOR tree, and narrow
signal attenuation affects will limit the scalability and performance of the Rings
TRNG design. Furthermore, the same reference shows via experiments performed
on an FPGA implementation that by changing the temperature and supply voltage,
the oscillation frequency may be shifted to invalidate the relatively prime condition.
Hence, the Rings TRNG may be vulnerable to non-invasive temperature and supply
voltage variation attacks. Finally, to make the design robust against such attacks,
the authors propose to use more than one ring length in the design. A design that
features two ring lengths is proposed. The design passes the DIEHARD and NIST
tests and delivers a throughput of 67 Mbps at a power consumption less than 300
mW with an area of less than 1000 LUTs. The design is also shown to be robust to
temperature and power supply variations.

4.4.12 The Dichtl and Golić RNG Design

Dichtl and Golić investigated Fibonacci and Galois ring oscillators in [23]. Their
analysis is primarily based on the restart technique. By restarting the oscillators
from the same initial conditions they measure the time it takes to observe a bit
change in the otherwise pseudo-random bitstream. Hence, the time it takes to ob-
serve a random bit determines the sampling rate and throughput of the RNG. In the
same reference, the authors report an FPGA implementation of a Fibonacci ring that
achieves a troughput of 6.25 Mbps.

Based on their experiments, Dichtl and Golić claim much higher entropy rates
than that of traditional ring oscillators. The authors also note that the restart tech-
nique may be used as a mode of operation for the RNG and that the restart approach
allows testability. Another contribution of this work is a novel two-level sampler
design which reduces the bias introduced by the sampling flip-flop. With its small
footprint the design seems to be ideal for embedded systems. The authors provide
some preliminary justification for the performance improvement.

68 Berk Sunar

4.5 Postprocessing Techniques

There are several postprocessing techniques used in practice. Here we present the
most popular ones.

• Cryptographic Hash Functions: Perhaps the most popular and most robust
postprocessing technique is to run the output of a TRNG design through a cryp-
tographically strong hash function such as SHA-1 or MD5. For instance, the
Intel RNG makes use of SHA-1. From a performance perspective, implement-
ing a full hash function for a TRNG seems like an overkill. However, from a
security perspective, if properly implemented it has the important side-benefit
of falling back to a pseudo-random number generator if a total breakdown oc-
curs in the randomness source. Furthermore, the non-linearity of the hash func-
tion becomes useful if a weakness in the collection mechanism is found. A
good strategy would be to implement the one-way function as the last step in
software.

• Von Neumann Corrector: The von Neumann corrector is one of the oldest and
best known postprocessing techniques and is used to eliminate localized biases.
It takes pairs of bits from the random bit stream. If they are of identical value
(i.e., both ‘0’ bits or both ‘1’ bits) it removes them from the random bit stream. If
they are different, it uses one of the bits, e.g., the first bit. On average, the bit-rate
will be reduced to only about 1/4 of the input bit-rate. The big advantage of the
von Neumann corrector is that it is very easy to implement.

• Extractor Functions: The use of extractor functions was proposed by Barak,
Shaltiel and Tomer in [5] with the purpose of making TRNG designs robust
against changing environmental conditions. Extractor functions are powerful
stateless functions with quantifiable properties originally developed as a tool for
complexity theory. The authors develop a mathematicl model to capture an ad-
versary’s influence on the randomness source and give an explicit construction
based on universal hash functions which is proven for its output properties even
if non-local correlations exists in the input source. We give several definitions
relevant to extractor functions as follows.

Definition 4.1. The statistical distance between two distributions X and Y is de-
fined as

ε =
1
2 ∑

a
|ProbX = a−ProbY = a| .

In practice, we say that X is ε-close to Y and vice versa.

Definition 4.2 (Min-Entropy). A distribution X on {0,1}n is said to have min-
entropy k, if for all x ∈ {0,1}n ProbX = x ≤ 2−k.

In general, an extractor is a function characterized with respect to its input-
output behavior. An extractor is viewed as taking an input with a certain level
of min-entropy k, and guarantees an output distribution that is ε close to uni-
form distribution. In [5] the authors provide an extension to this definition. The

4 True Random Number Generators for Cryptography 69

authors define a function E : {0,1}n �→ {0,1}m which is fixed by the choice
of a public parameter. They allow an adversary to choose from 2t distributions
D1,D2, . . . ,D2t over {0,1}n such that the min-entropy of each Di is greater than
k for all i = 1,2, . . . ,2t . A public parameter π is chosen at random and indepen-
dently of the choices of Di. The adversary chooses one of the distributions, i.e.,
Du. The user evaluates the extractor function using the public parameter π and a
value drawn from the chosen distribution Du. A t-resilient extractor function is
defined as follows:

Definition 4.3 (t-Resilient Extractor Function, [5]). Given m, k, ε , and t, an
extractor E : {0,1}n �→ {0,1}m is t-resilient if with probability at the most 1− ε
over the choice of the public parameter π , the statistical distance of the output
distribution of Eπ(X) to the uniform distribution is at the most ε .

In a practical setting, this means that the adversary is assumed to have control
over t binary values (or 2t internal states) of the TRNG through control of volt-
age, temperature, operating frequency, etc. Despite the adversary’s ability, the
output distribution is biased away from the uniform distribution by at the most ε .
This construction gives great power to TRNG designers, since it implicitly cap-
tures any kind of influence by the adversary. On the other hand, from a design
point of view, it is not clear how to quantify the advery’s abilities and therefore
it is difficult to choose design parameters for the extractor (or for the underlying
universal hash function family).

• Resilient Functions: Resilient functions were proposed by Sunar, Martin, and
Stinson in [21] as the postprocessing step for the Rings Design. The goal was to
filter any deterministic bits by using the resilient function. Treating bits effected
by the adversary as deterministic bits, enables one to study the tolerance proper-
ties of resilient functions against active adversaries. The reference recommends
using higher resiliency degrees than necessary to remove deterministic bits. The
difference between the degree of the resilient function and the number of de-
terministic bits expected in a sampling window quantifies the tolerance (in bits)
of the TRNG to active adversaries. Resilient functions are formally defined as
follows:

Definition 4.4 (t-Resilient Function). An (n,m,t)-resilient function is a
function

F(x1,x2, . . . ,xn) = (y1,y2, . . . ,ym)

from Z
n
2 to Z

m
2 enjoying the property that, for any t coordinates i1, . . . , it , for any

constants a1, . . . ,at from Z2 and any element y of the codomain

ProbF(x) = y|xi1 = a1, . . . ,xil = al =
1

2m .

In the computation of this probability, all xi for i �∈ {i1, . . . , it} are viewed as inde-
pendent random variables each of which takes on the value 0 or 1 with probability
0.5.

70 Berk Sunar

In more informal terms, if up to any t of the input bits are deterministic and the
remaining bits are random, the output of the resilient function will be perfectly
random (or unpredictable). From a cryptographic viewpoint, knowledge of any
t values of the input to the function does not allow one to make anything better
than a random guess at the output. Resilient functions are used in a number of
cryptographic applications where the adversary is assumed to have captured or
determined a number of of the key bits.
A simple technique for constructing resilient functions is given in the following
theorem:

Theorem 4.3. (e.g., [27]) Let G be a generator matrix for an [n,m,d] linear code
C. Define a function f : {0,1}n �→ {0,1}m by the rule f (x) = xGT . Then f is an
(n,m,d −1)-resilient function.

For more information on resilient functions, and their connections to codes and
designs see [28] and [29].
When compared to extractor functions, resilient functions appear to be much
more limited in their capabilities of eliminating the effects of active adversaries
on the output stream. The reason for this is that resilient functions are defined
to work on either perfectly random or perfectly deterministic bits. In contast, ex-
tractor functions assume only a specific min-entropy at the input. On the positive
side, resilient functions give perfect output distribution (ε = 0) and are easily
constructed from codes. When linear codes are used for the construction the re-
silient function is also linear and therefore allows testability of the TRNG design
in the sense of Bucci and Luzzi [20].

4.6 Exercises

Whenever a TRNG is to be built, several questions come to mind. Here we give
an incomplete list of these questions. The reader should extend the list further by
considering the context of the implementation, the platform, and development envi-
ronment.

1. How small can we build it? Low footprint TRNGs are crucial for constrained
applications such as RFIDs, smartcards and sensor networks. Usually only a tiny
fraction of the chip area is available for the TRNG.

2. Does it scale? Trade-offs between throughput and the quality of the TRNG output
are important to optimally meet application requirements at a wide variety of
design points.

3. Is it robust? Robustness is an important issue especially in embedded applica-
tions, e.g., smartcards, where the user (potential attacker) has full access to the
device.

4. Will we know when it fails? There is a great need for online tests. Robustness of
the test circuit is also important.

4 True Random Number Generators for Cryptography 71

References

1. I. Goldberg and D. Wagner. Randomness in the Netscape Browser. Dr. Dobb’s
Journal, January 1996.

2. D. Davis, R. Ihaka, and P. P. Fenstermacher, Cryptographic randomness from
air turbulence in disk drives. In Y. Desmedt editor, Advances in Cryptology
(Crypto 94), vol. 839, pp. 114–120, Heidelberg, Germany: Springer-Verlag,
1994.

3. Random.org. True random number service v2.0 beta. www.random.org
4. J. von Neumann. Various techniques for use in connection with random digits,

von Neumann’s Collected Works, vol. 5, Pergamon, pp. 768–770, 1963.
5. B. Barak, R. Shaltiel, and E. Tomer. True Random Number Generators Secure

in a Changing Environment. In Ç. K. Koç and C. Paar, editors, Workshop
on Cryptographic Hardware and Embedded Systems—CHES 2003, pp. 166–
180, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2779 2003.
Springer-Verlag, 2003.

6. B. Jun and P. Kocher. The Intel random number generator, White Paper Pre-
pared for Intel Corporation, April 1999.

7. T. E. Tkacik. A Hardware Random Number Generator In B. S. Kaliski Jr.,
Ç. K. Koç, C. Paar, editors, Workshop on Cryptographic Hardware and Em-
bedded Systems—CHES 2002, pp. 450–453, Berlin, Germany, Lecture Notes
in Computer Science, Vol. 2523. Springer-Verlag Berlin Heidelberg, 2003.

8. G. Marsaglia. DIEHARD: A Battery of Tests of Randomness, http://
stat.fsu.edu/∼geo, 1996.

9. NIST. A Statistical Test Suite for Random and Pseudorandom Numbers. Spe-
cial Publication 800-22, December 2000.

10. W. Schindler and W. Killmann. Evaluation Criteria for True (Physical) Random
Number Generators Used in Cryptographic Applications. In B. S. Kaliski Jr.,
Ç. K. Koç, C. Paar, editors, Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2002, Lecture Notes in Computer
Science, Vol. 2523, pp. 431–449, Springer-Verlag Berlin Heidelberg, August
2002.

11. Anwendungshinweise und Interpretationen zum Schema (AIS). AIS 32, Ver-
sion 1, Bundesamt fr Sicherheit in der Informationstechnik, 2001.

12. V. Bagini and M. Bucci. A Design of Reliable True Random Number Generator
for Cryptographic Applications. In Ç. K. Koç and C. Paar, editors, Workshop on
Cryptographic Hardware and Embedded Systems—CHES 1999, pp. 204–218,
Berlin, Germany, Lecture Notes in Computer Science, Vol. 1717. Springer-
Verlag, 1999.

13. Crypt-X. http://www.isi.qut.edu.au/resources/cryptx/.
14. M. Dichtl. How to Predict the Output of a Hardware Random Number Gener-

ator, In C. D. Walter, Ç. K. Koç, C. Paar, editors, Proceedings of the Workshop
on Cryptographic Hardware and Embedded Systems – CHES 2003, Lecture
Notes in Computer Science, Vol. 2779, pp. 181–188, Springer-Verlag Berlin
Heidelberg, 2003.

72 Berk Sunar

15. W. Schindler. A Stochastical Model and Its Analysis for a Physical Ran-
dom Number Generator In K. G. Paterson editor, Cryptography and Coding—
IMA 2003, Springer, Lecture Notes in Computer Science, vol. 2898, 276–289,
Berlin, 2003.

16. M. Epstein, L. Hars, R. Krasinski, M. Rosner and H. Zheng. Design and Imple-
mentation of a True Random Number Generator Based on Digital Circuit Arti-
facts. In C. D. Walter, Ç. K. Koç, C. Paar, editors, Workshop on Cryptographic
Hardware and Embedded Systems—CHES 2003, Lecture Notes in Com-
puter Science, Vol. 2779, pp. 152–165. Springer-Verlag Berlin Heidelberg,
2003.

17. V. Fischer and M. Drutarovský. True Random Number Generator Embedded
in Reconfigurable Hardware In B. S. Kaliski Jr., Ç. K. Koç, C. Paar, editors,
Workshop on Cryptographic Hardware and Embedded Systems—CHES 2002,
pp. 415–430, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2523.
Springer-Verlag Berlin Heidelberg, 2003.

18. J. Dj. Golić,. New methods for digital generation and postprocessing of random
data. IEEE Transactions on Computers 55(10): 1217–1229, 2006.

19. P. Kohlbrenner and K. Gaj. An embedded true random number generator for
FPGAs International Symposium on Field Programmable Gate Arrays. In Pro-
ceedings of the 2004 ACM/SIGDA 12th international symposium on Field pro-
grammable gate arrays, PP. 71–78, ACM Press, New York, NY, 2004.

20. M. Bucci and R. Luzzi. Design of Testable Random Bit Generators, In J. R.
Rao and B. Sunar, editors, Proceedings of the Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2005, Lecture Notes in Computer
Science, Vol. 3659, pp. 131–146, Springer-Verlag Berlin Heidelberg, August
2005.

21. B. Sunar, W. J. Martin, and D. R. Stinson. A Provably Secure True Random
Number Generator with Built-in Tolerance to Active Attacks, IEEE Transac-
tions on Computers, vol. 58, no 1, p. 109–119, January 2007.

22. D. Schellekens, B. Preneel, and I. Verbauwhede FPGA Vendor Agnostic True
Random Number Generator. In Proceedings of the 16th International Con-
ference on Field Programmable Logic and Applications. pp. 1–6, August,
2006.

23. M. Dichtl and J. Dj. Golić. High-Speed True Random Number Generation with
Logic Gates Only. Pascal Paillier, Ingrid verbauwhede, editors, Proceedings of
the Cryptographic Hardware and Embedded Systems – CHES 2007, 9th Inter-
national Workshop, Vienna, Austria, September 10–13, 2007. Lecture Notes in
Computer Science, vol. 4727, pp. 45-62, Springer Verlag, 2007.

24. C. W. O’Donnell, G. E. Suh, and S. Devadas. PUF-Based Random Number
Generation. Technical Report 481, MIT CSAIL, November 2004. Available at
http://www.csg.csail.mit.edu/pubs/publications.html.

25. G. E. Suh, C. W. ODonnell, I. Sachdev, and S. Devadas. Design and Imple-
mentation of the AEGIS Single-Chip Secure Processor Using Physical Random
Functions. Technical report, MIT CSAIL CSG Technical Memo 483, Novem-
ber 2004.

4 True Random Number Generators for Cryptography 73

26. S.-K. Yoo, B. Sunar, D. Karakoyunlu, and B. Birand. Practical Aspects of the
Rings Design, Available at http://ece.wpi.edu/∼sunar/preprints/rings.pdf.

27. B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R. Smolensky.
The bit extraction problem or t-resilient functions, 26th IEEE Symposium on
Foundations of Computer Science, pp. 396–407, 1985.

28. C. J. Colbourn, J. H. Dinitz and D. R. Stinson. Applications of combinatorial
designs to communications, cryptography and networking, Surveys in Combi-
natorics, 1999, pp. 37–100, (1999 British Combinatorial Conference).

29. D. R. Stinson and K. Gopalakrishnan. Applications of Designs to Cryptogra-
phy, In C. D. Colbourn, and J. H. Dinitz, editors, CRC Handbook of Combina-
torial Designs, CRC Press 1996.

30. R. A. Schulz. Random Number Generator Circuit. United States Patent, Patent
Number 4905176, February, 27, 1990.

	True Random Number Generators for Cryptography
	Berk Sunar
	Introduction
	TRNG Building Blocks
	Desirable Features
	Survey of TRNG Designs
	Baggini and Bucci
	The Intel TRNG Design
	The Tkacik TRNG Design
	The Epstein et al. TRNG Design
	The Fischer--Drutarovský Design
	The Golic FIGARO Design
	The Kohlbrenner--Gaj Design
	The Bucci--Luzzi Testable TRNG Design Framework
	The Rings Design
	The PUF--RNG Design
	The Yoo et al. Design
	The Dichtl and Golic RNG Design

	Postprocessing Techniques
	Exercises
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

