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Improved Techniques for Side-Channel Analysis

Pankaj Rohatgi

14.1 Introduction

Over the last several years, side-channel analysis has emerged as a major threat to
securing sensitive information in hardware and systems. The list of side-channels
that have been (re)discovered include timing [8] micro-architectural anomalies
[1, 5, 12, 13], power consumption [9], electromagnetic emanations [2, 7, 14], opti-
cal [10, 11] and acoustic leakage [4]. These side-channels have been used to break
implementations of all major cryptographic algorithms (such as DES, AES, RSA,
Diffie-Hellman, Elliptic curves, COMP128, etc.) both in software and in hardware
as well as for extracting information directly from peripherals. Concurrently a va-
riety of side-channel analysis techniques have been developed to perform these at-
tacks. These techniques include simple power/EM analysis (SPA/SEMA), differen-
tial power/EM analysis (DPA/DEMA), higher-order DPA/DEMA, inferential power
analysis (IPA), partitioning attacks, collision attacks, hidden Markov model, etc.

In fact, side-channel analysis is so powerful that most attacks succeed, in prac-
tice, using only a fraction of the information present within the side-channel(s)!
Typically, these techniques do not analyze the characteristics of the noise present
within the side-channel signals, but try to remove it by averaging over a large num-
ber of samples. Related leakages that occur at different times in a side-channel trace
are not combined to extract more information, and leakages from multiple side-
channels are rarely combined. Therefore, if such techniques fail to break an im-
plementation using a small number of side-channel signals, it cannot be assumed
that the implementation is immune to side-channel attacks involving a limited num-
ber of side-channel traces. This question is particularly important to vendors, since
there are several system-level side-channel countermeasures [9] based on nonlin-
ear key updates that rely on the assumption that an adversary cannot extract the
key from a single (or few) side-channel trace(s). This question is also pertinent to

IBM T. J. Watson Research Center
e-mail: rohatgi@us.ibm.com

Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 14,
c© Springer Science+Business Media, LLC 2009

381



382 Pankaj Rohatgi

implementations of stream ciphers such as RC4 that have a rapidly (and nonlinearly)
evolving internal secret state, where a side-channel attack must be able to recover
the state before it gets changed.

Answering such questions related to the fundamental capabilities and limits of
side-channel attacks requires a deeper understanding of side-channel leakages from
a device and an information-theoretic analysis of the optimal side-channel attacks
that are possible against it. In this chapter, we describe the theoretical foundations
for such an analysis by presenting a leakage model for CMOS devices and the max-
imum likelihood principle as the information theoretic basis for determining the
optimal attacks and limits of side-channel analysis. We introduce the multivariate
Gaussian noise assumption that makes it practical to apply the maximum likeli-
hood principle to side-channel analysis. We then describe several applications of
this approach. The first application, template attacks, shows how implementations
of stream ciphers such as RC4 that are immune to simple and differential side-
channel attacks could be broken using a single side-channel trace. Since this clas-
sical template attack has several practical shortcomings we also describe single-bit
template attacks that may be suboptimal but much more practical. We then describe
other applications of the maximum likelihood approach, such as an improved met-
ric for DPA/DEMA attacks, the design and analysis of attacks involving multiple
side-channels, and for information leakage assessment.

14.2 CMOS Devices: Side-Channel Leakage Perspective

Side-channels such as power and EM from a CMOS device are directly attributable
to the currents flowing within the device as it operates. The two basic types of cur-
rent flows include intentional flows, which are currents that flow in accordance to
the circuit design as it performs the computation, and leakage currents, which are
a property of the technology used to fabricate the device. In addition, there is non-
linear electromagnetic coupling between the different currents flowing within the
device which causes amplitude and angle modulation that in turn gives rise to sev-
eral EM side-channels. In addition there are variations within the different current
flows due to thermal noise.

14.2.1 Intentional Current Flows

In CMOS devices, all data processing is typically controlled by a “square-wave”-
shaped clock. From a logical perspective, each clock edge causes the device to per-
form an elementary operation resulting in a change in the state of the device. From a
physical perspective, the clock edge triggers a state-dependent sequence of switch-
ing events that result in current flows within the device. These events are transient
and a steady state is achieved before the next clock edge. At any clock cycle, the
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events and resulting currents are dependent on only a small number of bits of the
logic state of the device and not its entire state. These bits are termed relevant bits
and consist of the bits of the state that change as well as the bits that influence
the bits of the state that get changed. The set of relevant bits during a clock cycle
constitute the relevant state of the device at that clock cycle.

14.2.2 Leakage Current Flows

In an ideal CMOS device, currents only flow when there is switching activity. How-
ever, due to shrinking feature sizes and usage of stressed silicon, there is a significant
amount of current due to leakage even within the inactive parts of the circuit. The
net leakage current within the circuit depends purely on the technology used and the
size of the circuit. For our purposes we can approximate leakage current within a
CMOS device as a constant plus a small Gaussian noise term that is uncorrelated to
the activity occurring within the active part of the circuit.

14.2.3 Information Leakage in Power and EM Side-Channels

The power side-channel can be viewed as an aggregate measure of all the currents
flowing within the device. Of these currents, only the intentional currents can pro-
vide information about the relevant state of the device. However, due to aggregation
of currents and noise and due to impedances within the circuit and power grid, the
influence of weak individual intentional currents on the power side-channel can be
quite small. For understanding information leakage from EM, one only needs to
consider coupling effects that involve at least one intentional current. Even a single
EM sensor can pick up multiple and distinct mixtures of coupling effects over the
entire EM spectrum.

As a very good first approximation, both power and EM side-channel emanations
during a clock cycle carry information only about the relevant state of the device
during the clock cycle and not the other parts of the device state.

This is strongly supported by the experimental results which show that algo-
rithmic bits are significantly correlated to the power/EM signals only during the
clock cycles where the bits are actively involved in a computation. While an al-
gorithmic bit may leak to different degrees in different power and EM channels
at different parts of the computation, it never leaks when it is inactive. For exam-
ple, Figure 14.1 shows a power trace (in gray) overlaid with the contribution of
a particular bit to power trace (in black). This bit only impacts the power trace
during some clock cycles where it is part of the relevant state and not during
all clock cycles. Figure 14.2 which plots the leakage of the same bit in different
power/EM side-channels shows that the extent of leakage is different for different
side-channels.
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Fig. 14.1 Power side-channel (gray) overlayed with contribution from single relevant bit (black).

Fig. 14.2 DPA and three DEMA correlation curves (aligned).
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14.3 Characterizing Side-Channel Leakage Using Maximum
Likelihood

14.3.1 Adversarial Model

Given the side-channel leakage model above, it becomes natural to formulate side-
channel attacks in terms of how successful an adversary can be in obtaining infor-
mation about the relevant state using side-channels. For example, an adversary may
be interested in the LSB of the data bus during a LOAD instruction or he may be
interested in finding out the address of the data being loaded.

In general, the adversary would like to use side-channels to extract information
about the relevant state of a device when it is performing an elementary operation
given some prior knowledge about the relevant state. This is a classical inferencing
problem, but for simplicity, we can assume that the adversary is attempting to find
information about parts of the relevant state that are completely unknown. In this
case the problem is naturally formulated as a hypothesis testing problem as follows:

The adversarial model consists of two phases. The first phase, known as the pro-
filing phase, is a training phase for the adversary. He is given a training device
identical to a target device, an elementary operation, k distinct probability distribu-
tions B1, . . . ,Bk on the relevant states from which the elementary operation can be
invoked and a set of sensors for monitoring side-channel signals.

The adversary can invoke the elementary operation, on the training device, start-
ing from any relevant state. It is expected that adversary uses this phase to prepare
an attack.

In the second phase, known as the hypothesis testing phase, the adversary is given
a target device and the same set of sensors. He is allowed to make a bounded num-
ber L of invocations to the same elementary operation on the target device starting
from a relevant state that is drawn independently for each invocation according to
exactly one of the k distributions B1, . . . ,Bk. The choice of distribution is completely
unknown to the adversary (i.e., a priori, each distribution is equally likely to be cho-
sen with probability 1

k ) and his task is to use the signals on the sensors to select
the correct hypothesis (H1, . . . ,Hk) for the distribution being B1, . . . ,Bk. The utility
of the side-channels to extract this information can then be measured in terms of
the success probability achieved by the adversary as a function of the number of
invocations L.

14.3.2 Maximum Likelihood and Best Attack Strategy

Assume that an adversary acquires L statistically independent sets of sensor sig-
nals Oi, i = 1, . . . ,L. These L sets of signals may correspond to L invocations of an
operation on the target device. Also assume that there are K equally likely hypothe-
ses Hk, k = 1, . . . ,K, on the origin of these signals. Let p(O|H) be the probability
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distribution of the sensor signals under the hypothesis H. Under these assumptions,
the maximum likelihood hypothesis test [15] is optimal and it decides in favor of the
hypothesis Hk, if for all j, where 1 ≤ j ≤ K

L

∏
i=1

p(Oi|Hk) ≥
L

∏
i=1

p(Oi|Hj) (14.1)

i.e., Hk is the hypothesis under which the actual observations have the highest prob-
ability of occurring.

While the maximum likelihood test is optimal, it is usually impractical as an
exact characterization of the probability distribution of the sensor signals O may be
infeasible. Such a characterization has to capture the nature of each of the sensor
signals and the dependencies among them. This could further be complicated by
the fact that, in addition to the thermal noise, the sensor signals could also display
additional structure due to the interplay between properties of the device and those
of the distributions of the relevant states.

It turns out that in practice one can obtain near-optimal results by making the
right assumptions about the sensor signals. Such assumptions greatly simplify the
task of hypothesis testing by requiring only a partial characterization of sensor
signals.

14.3.3 Gaussian Assumption

One such widely applicable assumption is the Gaussian assumption which states
that under the hypothesis H, the sensor signal O has a multivariate Gaussian dis-
tribution with mean μH and a covariance matrix ΣH [15]. A multivariate Gaussian
distribution p(·|H) has the following form:

p(o|H) =
1√

(2π)n|ΣH |
exp(−1

2
(o− μH)T Σ−1

H (o− μH)), o ∈ Rn (14.2)

where |ΣH | denotes the determinant of ΣH and Σ−1
H denotes the inverse of ΣH .

The Gaussian assumption holds for a large number of devices and hypotheses
encountered in the practice. It can be shown that under the Gaussian assumption, the
maximum likelihood hypothesis testing for a single observation O and two equally
likely hypothesis H0 and H1

1 simplifies to the following comparison:

(O− μH0)
T Σ−1

H0
(O− μH0)− (O− μH1)

T Σ−1
H1

(O− μH1)≥ ln(|ΣH1 |)− ln(|ΣH0 |)
(14.3)

where a decision is made in favor of H1 if the above comparison is true, and in favor
of H0 otherwise.

1 Generalizations to multiple observations and more than two hypotheses are straightforward.
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In signal processing it is common to treat the observed trace O as consisting of
a mean signal component that depends purely on the operation being performed on
the device and is fixed across multiple invocations and a noise component which can
differ on each invocation. Noise is best modeled as a random sample drawn from a
noise probability distribution having a mean of zero. In the equations above, if hy-
pothesis H was correct then the mean signal component would be μH and the noise
component in each sample, i.e., O− μH , would also have a multivariate Gaussian
distribution with mean 0 and the same covariance matrix ΣH . Thus the Gaussian
assumption made here in the context of the signal characterization is often alterna-
tively referred to as the Gaussian noise assumption.

In many cases of practical interest, noise in the sensor signals does not depend on
the hypothesis, that is, ΣH0 = ΣH1 = ΣN . In such cases, the following well-known re-
sult from statistics gives the probability of error in maximum likelihood hypothesis
testing [15]:

Fact 1 For equally likely binary hypotheses, the probability of error in the maxi-
mum likelihood testing is given by

Pε =
1
2

erfc
( Δ

2
√

2

)
(14.4)

where Δ 2 = (μH1 − μH0)
T Σ−1

N (μH1 − μH0) and erfc(x) = 1− erf(x), where

erf(x) =
2√
π

∫ x

0
e−t2

dt

is the error function. Note that Δ 2 has a nice interpretation as the optimal signal-
to-noise ratio that an adversary can achieve under the Gaussian assumption.

In the rest of this chapter we will describe multiple applications of this charac-
terization of side-channels and their leakage.

14.4 Template Attacks

The motivation behind the development of template attacks was that in several in-
stances only a single (or a few) side-channel sample is available for carrying out an
attack against a device. This situation arises naturally in the case of stream ciphers
where the internal secret state keeps changing as the key stream is generated and in
protocols where ephemeral keys are used. In addition, there are some system-level
countermeasures that try to limit side-channel exposure by limiting the use of a par-
ticular key [9]. In such cases, the implementations can be easily made to be secure
against traditional simple/differential attacks since typically the differences between
signal levels with different keys/data is usually lower than the level of noise. This
noise cannot be eliminated by averaging since there is only one or a very limited
number of traces available.
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For attacking such implementations we convert the model described in the last
section into an attack technique called template attacks. If an adversary had infinite
resources, the template attack would work using this basic principle: Suppose there
is a crypto implementation on many “identical” devices and the adversary has access
to one such device on which he can perform experiments and he is also given a single
(or few) side-channel sample(s) S from a target device with an unknown key. The
adversary uses the test device to build signal/noise models or templates for side-
channel signals produced by the test device for all possible values of the key and
uses the maximum likelihood to determine which key is used in the target sample.

Clearly, since key sizes are large, it is infeasible to build templates for all pos-
sible keys. Practical template attacks have to meld this basic attack principle with
the details of the cryptographic algorithm being attacked. Typically this is done in
an iterative fashion, where at each stage, the adversary starts with a small candidate
set of prefixes for the key and ends with another small candidate set of larger-sized
prefixes of the key. At the end of this process, the adversary has a limited set of com-
plete keys that he can exhaustively test. In the beginning the candidate set is empty.
At each step, the adversary uses the test device to identify a small sub-section of
the sample S that depends only on a few unknown key bits. By experimenting with
the test device, he builds signal templates corresponding to his set of candidate key
prefixes extended by all possible value of the unknown key bits. The templates con-
sist of the mean signal and (multivariate Gaussian) noise probability distributions
for each of these extended prefixes of the key. He then compares these templates
with the signal S and uses the maximum likelihood principle to retain only a small
set of those prefixes that match S the best. Thus template attacks essentially use an
extend-and-prune strategy directed by the single sample S to be attacked: the adver-
sary extends candidate key prefixes by all possible values of a limited number of
unknown key bits, builds templates, and uses template classification to prune the set
of choices for these larger key prefixes. The success of this approach depends on the
effectiveness of the pruning strategy in controlling the combinatorial explosion that
occurs during the extension process.

Template attacks are particularly effective on implementations of cryptographic
algorithms due to their contamination and diffusion properties. Contamination refers
to key-dependent leakages which can be observed over multiple cycles in a sec-
tion of computation. Additionally, other variables affected by the key, such as key-
dependent table indices and values, cause further contamination at other cycles. The
extent of contamination controls the success of the pruning of the fresh key bits in-
troduced in the expansion phase. However, it is to be expected that if two keys are
almost the same, that even with the effects of contamination, pruning at this stage
may not be able to eliminate one of them. Diffusion is the well-known cryptographic
property wherein small differences in key bits are increasingly magnified in subse-
quent portions of the computation. Even if certain candidates for key prefixes were
not eliminated by contamination effects, diffusion will ensure that the wrong key
prefixes get pruned rapidly at later stages.

We now provide the details on how such attacks could be carried out in practice
by means of an example.
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14.4.1 Classical Template Attacks: The Case of RC4

Consider an implementation of the stream cipher RC4. While there are cryptanalytic
results on RC4 based on minor statistical weaknesses, none of these are useful for
side-channel attacks. A well-designed system, RC4 implementations are also quite
easy to secure against SPA- and DPA-style attacks. This is because initializing the
256-byte internal state of RC4 with a secret key is simple enough to be implemented
using low leakage instructions in a key-independent manner. This makes SPA un-
likely. After initialization, the only secret is the internal state. However, this secret
state evolves very rapidly as the cipher outputs more bytes. This rapidly evolving
secret state is outside the control of the adversary. This provides inherent immunity
against statistical attacks such as DPA, since the adversary cannot freeze the active
part of the state to collect multiple samples to eliminate the noise. For RC4, the
best that an adversary can hope for is to obtain a single sample of the side-channel
leakage during the key initialization phase and attempt to recover the key from that
single sample.

We now describe how template attacks apply against RC4’s state initialization
routine. RC4 operates on a 256-byte state table T to generate a pseudo-random
stream of bytes that is then XORed with the plaintext. Table T is initially fixed, and
in the state initialization routine, a variable length key (1 to 256 bytes) is used to
update T using the pseudo code below:

i1 = 0
i2 = 0
for ctr = 0 to 255

i2 = (key[i1] + T[ctr] + i2) mod 256
swap_byte(T[ctr], T[i2]);
i1 = (i1 + 1) mod (key_data_len)

endfor

A portion of the corresponding power side-channel signal (plotted in gray) and
the sample noise (plotted in black) for the first six iterations of the loop is shown in
Figure 14.3.

First it needs to be verified that simple side-channel analysis techniques will not
work on this implementation. This can be easily seen in Figure 14.4 which plots the
noise level for the first six iterations in a power sample in gray and plots in black
the difference between the signals for two different keys A and B that differ only
in the first byte. The figure clearly shows that the level of noise in the first iteration
(time 0 to 20μs) far exceeds the differences between the signals for keys A and B
in that iteration; so SPA will not have been able to determine which key byte was
used in the first iteration. In fact, in [6], it was stated that averages of several tens of
samples would be needed to reduce the level of noise below the signal differences.

RC4 is, however, an ideal candidate for a signal classification-based attack. No-
tice from the code snippet above that the key byte used in each iteration influences
the computation (and is part of the relevant state) multiple times within a loop. For
example, loading of the key byte, the computation of index i2, and the use of i2
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Fig. 14.3 Power signal (gray) and noise (black) during first six iterations of RC4 state initialization
loop.
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Fig. 14.4 Sample noise (gray) vs. signal differences (black) between keys A and B in first six
rounds.

in swapping the bytes of the state table T all contaminate the side-channel at dif-
ferent cycles in the iteration. Thus RC4 demonstrates good contamination for the
individual key bytes. Further, the use of i2 and the state in subsequent iterations,
and the fact that RC4 is a well-designed stream cipher, quickly propagates small key
differences to cause diffusion. This analysis is borne out in practice as is shown in
Figure 14.5 which plots the signal for the first six iterations for the key A in gray
and the difference between the signals for key A and key B in black. Keys A and B
differ only in the first byte and a small difference signal is clearly visible in the fig-
ure in the first iteration (0 to 20μs). The important point to note is that even though
the magnitude of the difference signal is small in the first iteration, significant dif-
ferences appear at many different places in the first iteration, which indicates good
contamination. The next point to note is that by the time the fifth iteration is reached,
the difference signal has become quite large, indicating good diffusion.
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Fig. 14.5 Signal for key A (gray) vs. signal differences (black) between keys A and B in first six
rounds.

The template attacks on this RC4 implementation works by building templates
for the signal and noise for around 42 sample points in each iteration of RC4 state
initialization routine that takes an input a fresh (unknown) key byte. These are the
points where significant differences arise for different keys as shown in Figure 14.5.

A first attempt to use a statistical model where the noise at these 42 points was
treated independently (i.e., ΣH is a diagonal variance matrix) to classify the (un-
known) key byte yielded poor results as shown in Table 14.1. The table here shows
the classification rates assuming there were only five possible values of the key byte.
Here the classification errors were as much as 35% for pairs of keys with few bit
differences. Somewhat more encouraging was the fact that even this limited statis-
tical model was fairly good (100% successful) at distinguishing between key byes
that were very different.

Next the full multivariate noise approach was applied. In the experiment, there
were 10 choices for the first key byte, as shown in column 1 of Table 14.2. They
are carefully chosen to be very close and yielded poor results with the univariate
statistics. For each key byte, 2000 side-channel signals were collected and analyzed
at the same 42 points in time. The mean of the 2000 samples was used as the av-
erage signal for that key (μH) and the covariance matrix (ΣH ) was also computed
from these signals. To obtain statistics on how well this approach works, the tem-
plates were used to classify tens of thousands of samples drawn using one of the

Table 14.1 Classification probability of five competing hypotheses using univariate statistics. En-
try (i, j) is probability of classifying samples with key i as one with key j.

Key byte 1111 1110 1110 1110 1101 1110 1011 1110 0001 0000
1111 1110 0.86 0.04 0.07 0.03 0.00
1110 1110 0.06 0.65 0.10 0.20 0.00
1101 1110 0.08 0.16 0.68 0.09 0.00
1011 1110 0.10 0.11 0.08 0.71 0.00
0001 0000 0.00 0.00 0.00 0.00 1.00
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Table 14.2 Percentage of samples for which the correct hypothesis is retained under different ball
sizes with 10 competing hypotheses.

Key byte Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball size c = e24

1111 1110 98.62 99.46 99.88 99.94
1110 1110 98.34 99.82 99.88 99.88
1101 1110 99.16 100.00 100.00 100.00
1011 1110 98.14 99.52 99.82 100.00
0111 1110 99.58 99.76 99.89 99.94
1111 1101 99.70 99.94 99.94 99.94
1111 1011 99.64 99.82 99.82 99.89
1111 0111 100.00 100.00 100.00 100.00
1110 1101 99.76 99.82 99.88 99.88
1110 1011 99.94 100.00 100.00 100.00

Average 99.29 99.81 99.91 99.95

10 choices as the first key byte. Column 2 in Table 14.2 summarizes the results of
the classification experiments for this set of 10 key choices. Since the values were
carefully chosen to reflect the worst case, these results can be extrapolated to the
case of 256 different values of the key byte. Column 2 in Table 14.4 is an extrap-
olation of our results for the case of 256 different templates by making pessimistic
assumptions about the number of “close” keys. In practice the actual results should
be much better.

To iteratively apply the approach a first heuristic would be to retain only the most
likely hypothesis, i.e., with highest likelihood probability. Even with such a drastic
pruning approach, average classification success probability is 99.3% with these 10
hypotheses and worst-case probability was 98.1%. Detailed results are described in
column 2 of Table 14.2. One gets reasonable results even if we use this extreme
pruning strategy in each iteration of the extend-and-prune approach. Extrapolating,
as shown in column 2 of Table 14.4, one can expect the average error probability
of the closest hypothesis approach to be about 5–6% when we consider all 256
possible values, since pessimistically one expects around 50–60 keys to be “close”
to any key. By bounding the error probability over many iterations by the sum of
error in each iteration, it can be seen that when the number of key bytes is small this
can be used to extract all key bytes. For example, one can do better than 50% for
about eight bytes of key material.

With a little more effort, much better results can be obtained by using a ball ap-
proach to pruning. In this approach, a constant c is chosen and if the best hypotheses
has probability P then all hypotheses that have probability P/c are retained. This ap-
proach is analogous to retaining all hypotheses which are a certain radius away from
the top hypothesis and hence the term ball approach. The columns 2, 3, 4, and 5 of
Table 14.2 showing success probability of retaining the correct hypothesis for balls
with different values of c, with column 2 corresponding to c = 1 and retaining only
the most likely hypothesis. When c = e6, the average success probability has im-
proved to better than 99.8% with the worst-case probability being 99.5%. As shown
in Table 14.3 the average number of hypotheses that we retain is still close to 1
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Table 14.3 Expected number of hypotheses retained under different ball sizes for 10 competing
hypothesis.

Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball Size c = e24

1 1.041 1.158 1.842

Table 14.4 Extrapolated results for 256 competing hypotheses.

Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball size c = e24

Success prob. 95.02 98.67 99.37 99.65
Retained hypotheses 1 1.29 2.11 6.89

for balls of size e6 and e12. Again, using an estimate of about 50− 60 close keys,
we can extrapolate these results as done in Table 14.4. For example, choosing the
ball size e6, with good probability we expect to retain at most 1.5 hypotheses on
the average, yet we are guaranteed to retain the correct hypothesis with probability
at least 98.67%. Using this approach independently in each iteration, we can cor-
rectly classify keys of size n bytes with expected probability around (100–1.33n)%
and the number of remaining hypotheses would grow no more than (1.5)k, which is
substantially better than 28k (the entropy of the key).

14.4.2 Single-Bit Templates and Applications

The classical template attack described above suffers from several drawbacks. One
major drawback is that the methodology requires an iterative approach that attempts
to make test device’s computation identical to that of the target device. This makes
the attack tedious, iterative, and online. For example, in the RC4 case 256 tem-
plates for each unknown byte have to be constructed and templates for later bytes
cannot be constructed until the earlier bytes have been attacked. Another drawback
is that classical template attacks cannot handle randomized implementations, since
the attacker cannot force a test device to produce the same randomness as the target
device.

Single-bit template attacks are an attempt to get past these limitations at the cost
of reduced classification accuracy. These attacks are based on an empirical obser-
vation that after a successful DPA attack on an algorithmic bit b, the DPA peaks
themselves could be used to create binary templates to extract the bit b directly
from any signal! This means that once a particular implementation/device has been
attacked using DPA (say using a test card) one can predict the internal bits occurring
within a single trace from an identical implementation/device.

We illustrate the attack by means of an example. Consider an unprotected imple-
mentation of DES on smartcard A. Consider the 32 s-box output bits of the DES
computation in round one. For the unprotected DES implementation, one can easily
perform DPA for each of the 32 output bits. Correspondingly, one can build a pair
of templates for each output bit corresponding to the bit being equal to 0 and 1,
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Fig. 14.6 Improved DPA metric of s-box 1, bit 0 of the test device. Time in μs.

respectively. In order to build these templates, a DPA attack was performed on each
output bit using a DPA metric that we will be describing in Section 14.5.

Figure 14.6 displays the DPA metric of s-box 1, bit 0. The figure reveals several
points in time that clearly correlate with the selected s-box output bit. In the experi-
ments, the 50 highest peaks from this DPA metric were selected to be the points that
were incorporated into the pair of templates (bit = 0 and bit = 1) for that bit. Tem-
plates were built for each s-box output bit using a single set of 1400 side-channel
samples.

To estimate classification success rate, a set of 100 fresh random side-channel
samples were collected from the same device and all 32 s-box output bits were
classified using the templates developed earlier. The classification success rates ηSib j

for the ith s-box and jth bit, 1≤ i≤ 8 and 0≤ j ≤ 3, together with the corresponding
entropy loss are shown in Table 14.5. The classification success rates ranged from
0.72 to 1.00; in the worst case s-box 3, bit 3 and s-box 6, bit 0 were predicted
correctly for only 72 of the 100 samples. From these results, the probability that the
entire 32-bit output of all s-boxes is classified correctly is ∏8

i=1 ∏3
j=0 ηSib j = 0.0154

which although small is still 66 million times higher than a random guess.
These results can also be viewed in terms of entropy loss. For a particular bit, if

the classification success rate is p, then its corresponding entropy loss is given by
1+(1− p) log2(1− p)+ p log2(p). To compute the entropy loss for multiple bits we

Table 14.5 s-Box output bit classification success rates and entropy loss.

s-box 1 s-box 2 s-box 3 s-box 4 s-box 5 s-box 6 s-box 7 s-box 8
bit 0 1.00 0.91 0.88 0.93 0.77 0.72 0.80 0.84
bit 1 0.98 0.88 0.92 0.94 1.00 0.92 0.97 0.77
bit 2 0.75 0.89 0.99 0.92 0.95 0.83 0.90 0.79
bit 3 0.90 0.91 0.72 0.85 0.83 0.86 1.00 0.89

Entropy loss 2.57 2.10 2.13 2.30 2.28 1.50 2.61 1.35
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can add the individual losses (this corresponds to the worst case where classification
of different bits is independent). From this formula, we can see that 16.8 bits of
entropy has been lost from the 48 bits of the DES key used in the first round (out
of a maximum possible loss of 32 bits if the classification was perfect). The loss of
entropy of the keyspace can be translated into reduced expected computational cost
of a guided exhaustive search through the entire keyspace that examines more likely
keys earlier than the less likely keys.

For DES implementations, the attack can be improved substantially. Templates
can be built not just for round 1, s-box output bits but also for other bits such as
the data bits fed to the second round. These templates will further narrow down the
possibilities for the 48 key bits used in the first round. In addition, templates can be
built for the corresponding DPA attacks on the last two rounds of DES (which utilize
another 48-bit size subset of the key) and so on. Depending on the implementation,
single-bit templates can also be built directly for the key bits that are likely to be
highly effective since the same key bits show up in multiple locations in a round
and across multiple rounds.

To summarize, single-bit template attacks are capable of classifying a single bit
from a single side-channel sample with high probability even though the influence
of a single bit on the side-channel signal at a point in time is very small and could
be masked by several sources of noise including variation in adjacent bits. Cryp-
tographic algorithms with high contamination properties such as DES are ideally
suited for single-bit classification. Multiple precomputed single-bit templates can
lead to practical guided keyspace search algorithms using only a single sample from
the target device. Moreover, single-bit attacks when combined with other attacks
can result in much more devastating attacks such as template-enhanced DPA [3]
that use a DPA-like attack technique to overcome the random masking countermea-
sure, provided an adversary can acquire a single test card with a faulty RNG.

14.5 Improved DPA/DEMA Metric

In Section 14.4, when discussing template attacks, we assumed that the adversary
had access to a test device identical to the target device and that he could carry out a
profiling stage using the test device. In many circumstances, access to a test device
may not be possible. In such cases, a DPA-style attack is preferred since it assumes
no prior knowledge of device characteristics or implementation. In this section, we
apply theory from Section 14.3 to optimize the analysis of existing single-channel
DPA attacks.

14.5.1 Improving DPA

In the traditional DPA attack, an adversary collects a set of N signals, Oi, i = 1, . . . ,N
emanating from a given channel. Assume that the signals are normalized to have
zero sample average over all N signals. For each hypothesis H under consideration,
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the N signals are divided into two bins, termed the 0-bin and the 1-bin, with NH,0

and NH,1 samples, respectively. Let μH,0[ j] and μH,1[ j] be the sample means of
signals in the 0-bin and the 1-bin, respectively, for the hypothesis H. The next step
in the DPA attack consists of computing the differences of sample means μH [ j] =
μH,0[ j]− μH,1[ j] for all hypotheses and deciding in favor of the hypothesis Hi if
|μHi [ j]| has the largest peak among all differences of means. In other words, the
decision metric for the hypothesis H at time j is given by

MH [ j] =
(

μH,0[ j]− μH,1[ j]
)2

(14.5)

and the decision is made in favor of the hypothesis Hi if for some value of j, say j0,
MHi [ j0] >= MH [ j] for all H and j.

The traditional DPA attack and its variations have been successfully applied to
attack several cryptographic implementations. However, by using the theory devel-
oped in Section 14.3, the effectiveness of traditional DPA can be increased signifi-
cantly.

Before proceeding further, assume a void hypothesis Hv which corresponds to a
random bifurcation of the N signals into the 0-bin and the 1-bin. Using the Gaussian
assumption and Equation (14.3), the metric of a hypothesis Hi with respect to the
null hypothesis at time j is given by

MHi [ j] =

(
μHi [ j]−E[μHv [ j]]

)2

V [μHv [ j]]
−

(
μHi [ j]−E[μHi [ j]]

)2

V [μHi [ j]]
− ln
(V [μHi [ j]]

V [μHv [ j]]

)
(14.6)

In order to compute this metric, we need the values of the following parameters:
E[μHv [ j]], V [μHv [ j]], E[μH [ j]], and V [μH [ j]]. Since in the DPA attack, the adversary
skips the profiling phase of the attack, Equation (14.6) is not directly applicable.
In such cases, the theory suggests that unknown parameters of the test equation
be estimated directly from the collected signals. If the adversary uses a maximum
likelihood estimate of these parameters, then the resulting test is referred to as the
generalized maximum likelihood testing.

For the DPA attack, calculating the maximum likelihood estimate of the test pa-
rameters involves solving a set of nonlinear coupled equations. Therefore, instead
of using the maximum likelihood estimates of these parameters, we use sample es-
timates as follows: Let σ2

H,0[ j] and σ2
H,1[ j] be the sample variances of the signals

in the 0-bin and the 1-bin, respectively, at time j for hypothesis H. We propose the
following sample estimators2 of parameters in Equation (14.6):

E[μH [ j]] = μH [ j]

V [μH [ j]] =
σ2

H,0[ j]
N0

+
σ2

H,1[ j]
N1

(14.7)

2 We omit the derivation of these estimators as the derivation is tedious and follows from straight-
forward algebraic manipulations.



14 Improved Techniques for Side-Channel Analysis 397

Substituting these in Equation (14.6), we get the following formula for the metric:

MHi [ j] =

(
μHi [ j]− μHv [ j]

)2

σ 2
Hv,0[ j]

N0
+

σ 2
Hv,1[ j]
N1

− ln
( σ 2

Hi,0
[ j]

N0
+

σ 2
Hi,1

[ j]
N1

σ 2
Hv,0[ j]
N0

+
σ 2

Hv,1[ j]
N1

)
(14.8)

Table 14.6 shows the results of applying this method to attacking the s-box
lookup for a DES implementation. The first column shows the bit being predicted,
the second shows the number of samples required for the correct key hypothesis
to emerge as the winner under the traditional DPA metric, while the third column
shows the number of samples needed with the new metric. Clearly by using a better
metric, our improvement in the DPA attack reduces the number of signals needed
by a factor of 1.4–3.

Table 14.6 DPA results, mean difference vs. approximate generalized maximum likelihood.

S-box hyp. Min samples (mean diff.) Min samples(Max. Likl.)
S1,B3 640 350
S2,B3 630 210
S7,B3 110 40
S8,B3 130 90

14.6 Multi-Channel Attacks

As we have seen, there are several side-channels including power and multiple
EM channels that carry somewhat different information. Given this multitude of
information-bearing signals, a natural question to ask is how these multiple leak-
ages could be combined to enable better attacks. In addition, since each additional
sensor and side-channel signal used for analysis raises the cost and complexity of
an attack, another important question is how a resource-limited adversary could best
select the sensors and side-channels to mount an attack. In addition, system design-
ers would like to know how much information could leak to an adversary who is
able to place a set of side-channel sensors to capture information from the device.
In this section we will use the theory developed in Section 14.3 to answer all these
questions.

14.6.1 Multiple Channel Selection

Consider a resource-limited adversary who can select at most M channels for an
attack. When viewed in terms of our model, this problem conceptually has a very
simple solution: The adversary should choose those M channels that minimize his
probability of error in the maximum likelihood testing.
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This apparently simple technique can be quite subtle and tricky in practice.
Clearly, in situations where a well-prepared adversary has nicely characterized and
approximated signals from each of the channels under each hypothesis and the cor-
responding joint noise probability distribution between all the channels, the adver-
sary can also calculate the error probability for each possible choice of M channels,
at least for small M. For example, if the noise is Gaussian and independent of the
hypothesis, then from Equation (14.4), since erfc(·) decreases exponentially with Δ ,
the goal of an adversary limited to just two channels would be to choose channels
in such a manner as to maximize the output signal-to-noise ratio Δ 2.

If instead of a rigorous approach, channels are selected by heuristic techniques,
then the resulting selection could be sub-optimal for various subtle reasons. First,
different side-channels could leak different aspects of information relative to the
hypotheses being tested and sometimes there could be value in combining channels
which provide widely dissimilar information rather than combining those which
provide similar but partial information. Second, even if many channels provide the
same information, picking multiple channels from this set could still be valuable
since that may be almost as good as having the ability to make multiple invoca-
tions of the device with the same data and collecting a single side-channel. Even
for the case where only two side-channels can be selected, the optimal choice is
quite tricky and subtle as shown by the example below where the naive approach
of choosing the two signals with best signal-to-noise ratios is shown to be sub-
optimal.

Example 14.1. Consider the case where an adversary can collect two signals [O1,O2]T

at a single point in time, such that under the hypothesis H0, Ok = Nk for k = 1,2 and
under the hypothesis H1, Ok = Sk + Nk. Assume that Ni = (N1,N2)T has zero mean
multivariate Gaussian distribution with

ΣN =
(

1ρ
ρ 1

)

Note that O1 and O2 have signal-to-noise ratios of S2
1 and S2

2, respectively. After
some algebraic manipulations, we get

Δ 2 =
(S1 + S2)2

2(1 + ρ)
+

(S1 −S2)2

2(1−ρ)
(14.9)

Now, consider the case of an adversary who discovers two AM-modulated carrier
frequencies which are close and carry compromising information, both of which
have very high and equally good signal-to-noise ratios (S1 = S2) and another AM-
modulated carrier in a very different band with a lower signal-to-noise ratio. An
intuitive approach would be to pick the two carriers with high signal-to-noise ratios.
In this case S1 = S2 and we get Δ 2 = 2S2

1/(1+ρ). Since both signals originate from
carriers of similar frequencies, the noise that they carry will have a high correlation
coefficient ρ , which reduces Δ 2 at the output. On the other hand, if the adversary
collects one signal from a good carrier and the other from the worse quality carrier
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in the different band, then the noise correlation is likely to be lower or even 0. In
this case

Δ 2 =
(S1 + S2)2

2
+

(S1 −S2)2

2
= S2

1(1 + S2
2/S2

1) (14.10)

It is clear that the combination of high and low signal-to-noise ratios would be a
better strategy as long as S2

2/S2
1 > (1−ρ)/(1 + ρ). For example, if ρ > 1/3, then

choosing carriers from different frequency bands with even half the signal-to-noise
ratio results in better hypothesis testing. #$

14.6.2 Multi-Channel Template Attacks

Just as the template attack is the optimal attack strategy for the single-channel case,
a multi-channel template attack is the optimal strategy for the multi-channel case.
Expanding the template approach to multiple channels is straightforward. For multi-
ple channels, the template attack is identical except that the signals from the multiple
channels are concatenated together to yield a larger signal, i.e., for each invocation,
a combined signal is created by concatenating the signals from the individual ob-
served channels. Notice that the process of identifying the time instances and sample
points could end up selecting somewhat different time slices for each channel, de-
pending purely on the nature of leakage in each channel. The maximum likelihood
testing will pick up information from all channels (possibly at different times) for
classification.

To show that multiple channels help the classification process, we invoke an op-
eration on the smart card S with two different input bytes and look at just three
cycles during which the input was first processed. We collected EM and power
samples simultaneously and evaluated how well the template attack could clas-
sify a single EM/power trace into the two hypotheses H0 and H1 for the input
byte. We did this classification first using exactly one of the power/EM chan-
nels and then performed the classification using both channels simultaneously.
Figure 14.7 shows the mean EM and power signals for these hypotheses during

7390 7400 7410 7420

−200

0

200

400

600

7400 7410 7420 7430 7440 7450
−100

0

100

200

300

400

500

600

Fig. 14.7 Mean power and EM signals during three cycles for two hypothesis.
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Table 14.7 Signal classification error using power, EM, and combination of power and EM.

Correct hypothesis Error (Pwr) Error (EM) Error (EM+Pwr)
H0 9.5% 15.1% 2.8%
H1 20.1% 15.2% 6.6%

these three cycles side by side.3 Table 14.7 shows the error rate of our classifica-
tion effort for inputs belonging to each hypothesis. One can clearly notice that using
both channels simultaneously results in better classification compared to any single
channel.

14.6.3 Multi-Channel DPA

Multi-channel DPA attack is a generalization of the single-channel DPA attack.
In this case, the adversary collects N signals, Oi, i = 1, . . . ,N. In turn, each of
the signals Oi is a collection of L signals collected from L side-channels. Thus,
Oi = [O1

i , . . . ,O
L
i ]

T , where Ol
i represents the ith signal from the lth channel. Note

that all DPA-style attacks treat each time instant independently and leakages from
multiple channels can only be pooled together if they occur at the same time. Thus,
in order for multi-channel DPA attacks to be effective, the selected channels must
have very similar leakage characteristics.

The formulae for computing the metric for multi-channel DPA attack are gen-
eralizations of those for the single channel as described in Section 14.5. The main
difference is that the expected value of sample mean difference at time j under
hypothesis H is a vector of length L, with the lth entry being the sample mean dif-
ference of the lth channel. Furthermore, the variance of the b-bin under hypothesis
H at time j is a covariance matrix of size L×L with the i, jth entry being the cor-
relation between signals from the ith and jth channels. Once again, as in the DPA
attack, the adversary does not have the luxury of estimating these parameters. There-
fore, we substitute sample estimates for these parameters along the same lines as in
Equation (14.7). We skip the cumbersome formulae and directly go to the results of
multi-channel DPA attacks.

Table 14.8 shows sample results of an attack on the s-box lookups in a DES
implementation using the power channel together with an EM channel whose leak-
age is similar to the power channel. The first column shows the bit being predicted,
the second shows the number of signals required for the correct key hypothesis to
emerge as the winner using both channels with the multi-channel metric, the last
two columns show the number of signals needed for the power and EM channels
separately using the new DPA/DEMA metric. From this it is clear that the number
of invocations needed for two-channel attacks can be significantly less compared to
single-channel attacks.

3 The slight offset in time is due to delay of EM signals with respect to the power signal.
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Table 14.8 Multi-channel DPA-style attack using power, EM, and power and EM.

S-box hyp. Min samples (Pwr+EM) Min samples (Pwr) Min samples (EM)
S1,B1 150 170 640
S1,B2 60 (>1000) 340
S1,B3 110 350 160
S2,B2 30 50 230
S2,B3 120 210 340
S4,B0 60 200 340
S6,B1 180 180 190
S7,B3 30 40 520
S8,B3 60 90 140

14.7 Toward Information Leakage Assessment

In this section, we address the following question: Can the information obtained
by combining leakages from several (or even all possible) signals from available
sensors be quantified regardless of the signal processing capabilities and computing
power of an adversary?

We will use maximum likelihood testing to craft a methodology to assess in-
formation leakage from elementary operations in a device. This methodology takes
into account the power signals and all EM signals extractable from all the given
sensors across the entire EM spectrum. Results of such an assessment will en-
able one to bound the success probability of the optimal adversary for any given
hypothesis.

Assume that for a single invocation, the adversary captures the power signal and
emanations across the entire electromagnetic spectrum from all sensors in an obser-
vation vector O. Let Ω denote the space of all possible observation vectors O. Since
the likelihood ratio, Λ(O), is a function of the random vector O, the best achievable
success probability, Ps, is given by

Ps = ∑
O∈Ω

I{Λ(O)>1}pN1(O−S1)+ I{Λ(O)<1}pN0(O−S0) (14.11)

where IA denotes the indicator function of the set A and pN1(O−S1) and pN0(O−
S0) are noise distributions under the hypothesis 1 and 0, respectively.

When the adversary has access to multiple invocations, an easier way of esti-
mating the probability of success/error involves a technique based on moment gen-
erating functions. We begin by defining the logarithm of the moment generating
function of the likelihood ratio:

μ(s) = ln
(

∑
O∈Ω

ps
N1(O−S1)p1−s

N0 (O−S0)
)

(14.12)

The following is a well-known result from information theory:
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Fact 2 Assume we have several statistically independent observation vectors4

O1,O2, . . . ,OL

For this case, the best possible exponent in the probability of error is given by the
Chernoff information:

C
def= − min

0≤s≤1
μ(s) def= − μ(sm) (14.13)

Note that μ(·) is a smooth, infinitely differentiable, convex function and therefore it
is possible to approximate sm by interpolating in the domain of interest and finding
the minima. Furthermore, under certain mild conditions on the parameters, the error
probability can be approximated by

Pε ≈
1√

8πLμ ′′(sm)sm(1− sm)
exp(Lμ(sm)) (14.14)

Note that in order to evaluate Equation (14.11) or (14.14), we need to estimate
pN0(·) and pN1(·). In general, this can be a difficult task. However, by exploiting
certain characteristics of the CMOS devices, estimation of pN0(·) and pN1(·) can be
made more tractable.

14.7.1 Practical Considerations

We will now outline some of the practical issues associated with estimating pN0(·)
and pN1(·) for any hypothesis. The key here is to estimate the noise distribution
for each cycle of each elementary operation and for each relevant state R that the
operation can be invoked with. This results in the signal characterization, SR, and
the noise distribution, pNR(·), which is sufficient for evaluating pN0(·) and pN1(·).

There are two crucial assumptions that facilitate estimating pNR(·): first, on chip-
cards examined by us the typical clock cycle is 270 ns. For such devices, most of
the compromising emanations are well below 1 GHz which can be captured by sam-
pling the signals at a Nyquist rate of 2 GHz. This sampling rate results in a vector of
540 points per cycle per sensor. Alternatively, one can also capture all compromis-
ing emanations by sampling judiciously chosen and slightly overlapping bands of
the EM spectrum. The choice of selected bands is dictated by considerations such
as signal strength and limitations of the available equipment. Note that the slight
overlapping of EM bands would result in a corresponding increase in the number of
samples per clock cycle; however, it remains in the range of 600–800 samples per
sensor.

4 For simplicity, this chapter deals with independent elementary operation invocations. Techniques
also exist for adaptive invocations.
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The second assumption, borne out in practice (see [6]), is that for a fixed relevant
state, the noise distribution pNR(·) can be approximated by a Gaussian distribution.
This fact greatly simplifies the estimation of pNR(·) as only about one thousand
samples are needed to roughly characterize pNR(·). Moreover, the noise density can
be stored compactly in terms of the parameters of the Gaussian distribution.

These two assumptions imply that in order to estimate pNR(·) for a fixed rel-
evant state R, we need to repeatedly invoke (say 1000 times) an operation on the
device starting in the state R and collect samples of the emanations as described
above. Subsequently, the signal characterization SR can be obtained by averaging
the collected samples. The noise characterization is obtained by first subtracting SR

from each of the samples and then using the Gaussian assumption to estimate the
parameters of the noise distribution.

The assessment can now be used to bound the success of any hypothesis testing
attack in our adversarial model. For any two given distributions B0 and B1 on the
relevant states, the corresponding signal and noise characterizations

S0,S1, pN0(·), and pN1(·)

are a weighted sum of the signal and noise assessments of the constituent relevant
states SR and pNR(·). The error probability of maximum likelihood testing for a sin-
gle invocation or its exponent for L invocations can then be bounded using Equa-
tions (14.11) and (14.13), respectively.

We now give a rough estimate of the effort required to obtain the leakage as-
sessment of an elementary operation. The biggest constraint in this process is the
time required to collect samples from approximately 1000 invocations for each rel-
evant state of the elementary operation. For an r-bit machine, the relevant states of
interest are approximately 22r; thus, the leakage assessment requires time to per-
form approximately 1000 ∗ 22r invocations. Assuming that the noise is Gaussian
and that each sensor produces an observation vector of length 800, for n sensors
the covariance matrix ΣN has (800 ∗ n)2 entries. It follows that the computation
burden of estimating the noise distribution would be proportional to (800 ∗ n)2.
Such an approach is certainly feasible for an evaluation agency from both a phys-
ical and computational viewpoint, as long as the size of the relevant state, r,
is small.

14.8 Projects

Pre-requisite: Exercises 1–4: A DPA setup for smart cards and sample smart cards.
Exercises 1, 2, and 3 require the following data collection:

Capture a set SA of a few thousand power signals from a smart card with DPA-
countermeasures turned off, operating on some fixed input A. Capture another set
of signals SB (where |SB| = |SA|) from the same smart card operating with another
fixed input B, which is very similar to A (e.g., A and B could differ only on one
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bit). Partition the sets SA and SB into two equal-sized training sets SA1 and SB1 and
two equal-sized testing sets SA2 and SB2, such that SA2 and SB2 contain at least a few
hundred signals each.

1. Single Point Binary Classification: Compute the mean signals μA and μB using
the sets SA1 and SB1. Subtract μA from μB and plot the difference of means signal
to locate the first point in time P where there is a significant difference (or peak).
At this point P, signals in SA1 have a mean μAP and signals in SB1 have a mean
μBP. Use the set SA1 to also compute the variance σ2

AP of these signals at point
P and likewise compute σ2

BP from SB1. Make the assumption that the signals
from SA1 and SB1 are normally distributed at point P (Gaussian assumption, with
n = 1). Next use the maximum likelihood principle and Gaussian assumption
about point P to classify signals from testing sets SA2 and SB2 by just looking at
point P. Compute the fraction of correct/incorrect classification from sets SA2 and
SB2.

2. Multi-Point Binary Classification, Univariate Statistics: Build upon experiment
1 above by considering two other peaks that are located near the first peak P. In
this exercise, compute the means and variances at these three points for inputs
A and B by using the training sets SA1 and SB1. Then use the maximum likeli-
hood principle with univariate Gaussian statistics (i.e., assuming that the noise
co-variance matrix across these three points is diagonal) to classify the test sig-
nals from SA2 and SB2 using these means and variances only. Compute the frac-
tion of correct/incorrect classification from sets SA2 and SB2.

3. Multi-Point Binary Classification, Multivariate Statistics: Repeat experiment 2
above with multivariate statistics, i.e., by computing the covariance between
the noise at the three different points in time and using the maximum likeli-
hood principle and Gaussian assumption to classify the test signals. Compute
the fraction of correct/incorrect classification from sets SA2 and SB2. Compare
the results of experiments 1, 2, and 3 to see how adding additional information
(points) and better analysis (multivariate statistics) improves the classification
accuracy.

4. Comparison of Metrics for DPA: Run a DPA experiment on your smartcard with
the usual DPA metric (Equation 14.5). Run the same experiment with the metric
provided in Equation (14.8). Compare the results in terms of number of signals
needed to obtain the correct result of the DPA analysis.

5. Signal Selection: Suppose you can collect two signals [O1,O2] at a point in time
(see Example 14.1) and use these two signals to determine between two hy-
potheses: H0, Ok = Nk, for k = 1,2, and under the hypothesis H1, Ok = Sk + Nk.
Assume that Ni = (N1,N2)T has zero mean multivariate Gaussian distribution
with

ΣN =

(
1ρ
ρ 1

)

Signal O1 has already been selected and O1 = S1 + N1. You have three choices
for the second signal O2:
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1. Choice 1: S2 = 0.9 ∗ S1, ρ = 0.5.
2. Choice 2: S2 = 0.8 ∗ S1, ρ = 0.2.
3. Choice 3: S2 = 0.65 ∗ S1, ρ = 0.

Which of these signals should you choose for O2 and why?
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