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Preface

Cryptography is an ancient art. Chinese, Roman, and Arab cultures often used ci-
phers to protect military and state communications or secret society documents.
Cryptographic engineering, on the other hand, is a relatively new subject. A cryp-
tographic engineer designs, implements, tests, validates, and sometimes reverse-
engineers or attempts to break cryptographic systems. The designers of Enigma, an
electromechanical cipher machine, were cryptographic engineers; so was Alan Tur-
ing who contributed to its cryptanalysis. In our view, anyone who designs and builds
electromechanical, electronic, or quantum-mechanical systems in order to encrypt,
decrypt, sign or authenticate data is a cryptographic engineer. However, in this book
we have narrowed our definition to only electronic systems, specifically, hardware
and software systems.

Cryptographic engineering is a complicated, multidisciplinary field. It encom-
passes mathematics (algebra, finite groups, rings, and fields), electrical engineering
(hardware design, ASIC, FPGAs) and computer science (algorithms, complexity
theory, software design, embedded systems). It is rather difficult to be a master of
all subjects; one usually has to be content with being a master of one. In order to
practice state-of-the-art cryptographic design, mathematicians, computer scientists,
and electrical engineers need to collaborate.

This book was born out of the class notes of the lecturers who have been meeting
since 2002 in Lausanne, Switzerland, at the campus of EPFL, to teach a one-week
course to graduate students, faculty, and researchers from academia, and engineers
from industry. In order to create this book, I compiled the lecture notes together,
wrote some of the material, and also invited other prominent researchers to con-
tribute. This book is intended to constitute a first step towards becoming a crypto-
graphic engineer. We hope that it will successfully serve its purpose.

Istanbul & Santa Barbara Çetin Kaya Koç
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Chapter 1
About Cryptographic Engineering

Çetin Kaya Koç

1.1 Introduction

Cryptographic engineering is the name we have coined to refer to the theory and
practice of engineering of cryptographic systems, i.e., encryption and decryption
engines, digital signature and authentication hardware and software systems, key
generation, distribution, and management systems, and random number generators.
A cryptographic engineer designs, implements, tests, and validates cryptographic
systems. She is also interested in cryptanalyzing them for the purpose of check-
ing their robustness and their strength against attacks, and also building counter-
measures in them in order to thwart such attacks by reducing their probability of
success.

This is a subject barely taught in our undergraduate and graduate schools. Most
courses in cryptography deal with theory, generally introducing mathematically
expressed algorithms without showing (or knowing) how they are realized in ac-
tual software or hardware. As expected, the devil is in the details: The fastest and
most practical implementation of the RSA algorithm requires the implementation of
Montgomery multiplication. However, the last step in this algorithm (the so-called
final subtraction) yields information which allows an attacker capable of observing,
recording, and analyzing the timings of the process to learn some of the private bits.
One cannot deduce this information by looking at a mathematical description of the
RSA algorithm found in a textbook.

Cryptographic engineering material is scattered among many journal and confer-
ence papers, and the practitioners are too busy to write books. A group of us got
together in Lausanne, Switzerland, in 2002, and began to teach short courses to en-
gineers and researchers from industry and academia. The idea of putting our course
notes into a book was born there and then.

City University of Istanbul & University of California Santa Barbara
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Cryptographic engineering is a fast-moving field. Every year in conferences such
as the CHES (Cryptographic Hardware and Embedded Systems) Workshop, new
innovative hardware and software realizations of cryptographic algorithms are in-
troduced or new attacks to cryptanalyze these actual hardware and systems are pro-
posed. This explains the unwillingness of researchers in cryptographic engineering
to write books; we are more interested in designing new cryptographic systems or
breaking the systems designed by our colleagues!

However, people who are new to this exciting field need good introductions. En-
gineers from industry and students from our colleges and graduate schools can use
this book as a first step to cryptographic engineering.

1.2 Chapter Contents

This book has 18 chapters. It can be divided into 4 parts; however, the sections are
intimately interconnected and there is a logical construction of the sections starting
from the first chapter. There are also chapters which can belong to more than one
part, as one might expect.

Chapters 2, 3, and 4 constitute the first part of the book. These chapters investi-
gate and uncover the roles of random numbers in cryptography, and propose evalua-
tion methods and practical designs for random number generators. Random numbers
are used in other sciences; for example, the so-called Monte Carlo methods use ran-
dom numbers to simulate physical or mathematical systems. In cryptography, ran-
dom numbers provide the uncertainty and unpredictability upon which we build the
secrecy of our cryptographic keys. For us, their most important property is require-
ment R2 (see, Chapter 2) which says that the full knowledge of a current bit does
not help us to guess its past or future companions better than 50% chance. Chap-
ter 2 examines the general definitions, requirements, and classifications of random
numbers while Chapter 3 proposes an evaluation criteria for true random number
generators (TRNGs). The ideas behind Chapter 3 produced the world’s first evalua-
tion methodology for TRNGs, called AIS.

Chapter 4, on the other hand, proposes a few practical TRNG designs suitable
for implementation using ASIC and reconfigurable logic blocks. There is no doubt
that, as we improve our understanding of the evaluation of TRNGs, more practical
(low power, small circuit area, etc.) TRNG designs will be produced. I believe we
are just entering this exciting field of TRNG designs, which requires collaboration
by analog and digital circuit designers and cryptographers.

The second part of the book (Chapters 5–9) concentrates on implementation (i.e.,
hardware and software realizations) of public-key cryptographic systems, such as
RSA, Diffie-Hellman, and elliptic curve cryptography, and their underlying arith-
metic which includes large-integer arithmetic, arithmetic in prime fields and binary
extension fields. Chapter 5 gives a general introduction to finite field arithmetic and
describes the basic algorithms. Chapter 6 introduces the so-called unified arithmetic
(which is also called dual-field arithmetic). The unified arithmetic allows one to
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design a single hardware unit with negligible additional cost that performs arith-
metic in both GF(p) and GF(2k).

Chapter 7 introduces a new and compelling research area: the use of discrete
Fourier transforms over finite rings in order to design parallel functional units for
modular arithmetic. While the use of Fourier transforms to perform fast multipli-
cation is well known, this chapter proposes the first spectral algorithm for modular
multiplication.

Chapter 8 provides a high-level, mathematical view of elliptic and hyperelliptic
curve arithmetic; it is also a good introduction to vulnerabilities of and attacks on
elliptic and hyperelliptic curve cryptography. Finally, Chapter 9 provides a detailed
account of instruction set architectures for cryptography, for both secret-key and
public-key cryptographic algorithms. Chapter 8 provides a smooth transition from
public-key cryptography to secret-key cryptography, a topic which we deal with in
the subsequent part of the book.

The third part of the book studies implementation aspects of secret-key crypto-
graphic algorithms, which are in Chapters 10, 11, and 12. The emphasis of these
chapters is that they concenrate on hardware realizations of secret-key ciphers and
their simple (ECB, CBS) and advanced (CCM) modes of operations. Chapter 10
covers both ASIC and FPGA realizations, while Chapter 11 particularly deals with
FPGA implementations, exploiting logic structures more efficiently. Chapter 12, on
the other hand, is a good summary on modes of operation, with special concen-
tration on modern modes. The most important mode seems to be the CCM mode,
which is an authenticated encryption mode used particulary in wireless communi-
cation protocols.

The final and fourth part of the book is the longest part (Chapters 13–18), and
deals with the important topics of side-channel cryptanalysis and countermeasures
against such attacks. Chapter 13 gives a brief introduction to the side-channel analy-
sis. It covers the basic principles of side-channel cryptanalysis and introduces simple
countermeasures to prevent side-channel leakage.

Chapter 14 delves into more advanced topics and shows how only a fraction of
the information obtained from a side-channel can be used to cryptanalyze a practi-
cal system. Chapter 15 explains a particular type of side-channel: electromagnetic
emanations from physical systems can be collected and analyzed by an attacker in
order to capture messages not intended for others to see.

Chapters 16 and 17 show how algorithmic properties can be modeled and utilized
to guess the bits of private keys. Chapter 16 focuses on how Montgomery multipli-
cation leaks information, while Chapter 17 introduces methods to make the job of
the attacker infeasible by using randomized exponentiations.

Finally, Chapter 18 introduces microarchitectural side-channel attacks, which al-
low an attacker to obtain information about cryptographic key bits from a crypto-
process running on a client or server computer, by sneaking an unprivileged spy
process into the same processor. These attacks slightly differ from the classic side-
channel attacks, and are shown to be quite effective. It is very likely that future
processors will have to be designed with hardware countermeasures against these
microarchitectural side-channel attacks.
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1.3 Exercises and Projects

Whenever appropriate, a chapter ends with two sections for the purpose of checking
the reader’s understanding of the chapter’s technical material and leading her into
research by describing a few doable projects. If the book is used in a graduate-level
course, the exercises can be given as homework assignments. On the other hand, the
projects are suitable for small groups (1 or 2 individuals) to implement.
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Chapter 2
Random Number Generators
for Cryptographic Applications

Werner Schindler

2.1 Introduction

A large number of cryptographic applications require random numbers, e.g., as ses-
sion keys, signature parameters, ephemeral keys (DSA, ECDSA), challenges or in
zero-knowledge protocols. For this reason, random number generators (RNGs) are
part of many IT-security products. Inappropriate RNGs may totally weaken IT sys-
tems that are principally strong, e.g., if an adversary is able to determine session
keys.

It is intuitively clear that random numbers should remain unpredictable, even
if an adversary knows a large number of other random numbers (predecessors or
successors of the random numbers of interest) that have been generated with the
same RNG, e.g., from openly transmitted challenges or session keys from messages
that the adversary has received legitimately. Ideally, random numbers should be
uniformly distributed on their range and independent. However, this characterizes
an ideal RNG, which is a mathematical construction.

In Section 2.2 we formulate the general requirements RNGs should have, and in
Section 2.3 we divide the entity of ‘real-world’ RNGs into several classes. The main
classes are deterministic RNGs and true RNGs, the latter falling into two subclasses
(physical and non-physical true RNGs).

The designer of an RNG is faced with two challenges. First he has to develop an
appropriate design and implement it suitably. Especially for true RNGs the second
task is usually even more difficult, namely to prove or at least to give strong evidence
that the chosen design and the concrete implementation are indeed secure.

The main part of this chapter is devoted to deterministic RNGs (Section 2.4). The
basic aspects of true RNGs are addressed in Sections 2.5 and 2.6. Evaluation crite-
ria for physical RNGs are treated intensively in the following chapter. Section 2.7
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addresses important standards and evaluation guidances for RNGs. Sections 2.8 and
2.9 contain exercises and possible implementation projects.

2.2 General Requirements

Many cryptographic applications require random numbers. The protocol usually
only demands ‘generate a 64-bit challenge’, ‘generate a random prime’, ‘gener-
ate a random session key’ etc., but does not specify any requirements these ran-
dom values should have. Intuitively, the matter seems to be clear: Random numbers
should assume all possible values with equal probability and should be independent
from predecessors and successors. However, these (usually unspoken) requirements
are very restrictive and characterize an ideal RNG. Note that even if a real-world
RNG was ideal it is hardly possible to give evidence in a strict sense (cf. the next
chapter).

A closer look at typical applications allows a positive formulation of necessary
requirements. Absolutely inevitable is

• (R1) The random numbers should have good statistical properties.

Requirement (R1) is usually checked with a particular statistical test suite, ide-
ally adjusted to the concrete RNG. For specific applications, as for many challenge–
response protocols or openly transmitted IVs for block ciphers in CBC mode, (R1)
should be fully sufficient. In particular, (R1) shall exclude replay attacks or correla-
tion based attacks.

Unfortunately, (R1) is insufficient for sensitive applications. In Section 2.4.3 we
will treat RNGs that have good statistical properties but allow an adversary to pre-
dict the whole sequence of random numbers from a small, known subsequence. The
assumption that an adversary knows some random numbers is realistic for many ap-
plications. Consider, for instance, the generation of session keys if the same RNG
is also used for challenges that are transmitted openly. Another example is a clas-
sical hybrid protocol where Alice encrypts a confidential message with a randomly
selected session key krnd and sends krnd to the legitimate receiver, using a suitable
key exchange protocol. Of course, the legitimate receiver of particular messages
shall not be able to decrypt other messages. In this context, a legitimate receiver of
a message is principally a privileged attacker since he knows at least one session
key. If Alice represents a public server an adversary may learn millions of random
numbers. This suggests the next requirement, namely.

• (R2) The knowledge of subsequences of random numbers shall not allow one to
practically compute predecessors or successors or to guess these numbers with
non-negligibly larger probability than without knowledge of these subsequences.

In Section 2.4 we will introduce two further requirements that are characteristic
for DRNGs.
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2.3 Classification

Following [1] (which narrows the focus to random bit generators) ‘real-world’
RNGs fall into two main classes. The first class consists of the deterministic RNGs
(DRNGs, aka pseudorandom number generators). Starting with a seed, DRNGs
generate pseudorandom numbers algorithmically. The true RNGs (TRNGs) form
the second class, which falls into two subclasses: physical TRNGs (PTRNGs) and
non-physical TRNGs (NPTRNGs). Physical TRNGs use non-deterministic effects
of electronic circuits (e.g., shot noise from Zener diode, inherent semiconductor
thermal noise, free-running oscillators) or physical experiments (e.g., time between
emissions of radioactive decay, quantum random processes). NPTRNGs exploit
non-deterministic events (e.g., system time, hard disk seek time, RAM content, user
interaction). So-called hybrid RNGs have design elements from both DRNGs and
TRNGs. Roughly speaking, the security of a DRNG essentially depends on the com-
putational complexity of possible attacks (→ practical security), while TRNGs rely
on the unpredictability of their output (→ theoretical security). We will illuminate
this aspect later. Depending on their main ‘security anchor’ we distinguish between
hybrid DRNGs and hybrid TRNGs (Figure 2.1).

Fig. 2.1 RNG classification.

2.4 Deterministic Random Number Generators (DRNGs)

In this section we consider deterministic random number generators. The main part
of this section deals with pure DRNGs but we also consider hybrid DRNGs. We for-
mulate and justify two additional DRNG-specific requirements (R3) and (R4). We
illustrate the general principles by many examples, and we also address stochastic
simulations and Monte Carlo integration.
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Fig. 2.2 Pure DRNG: Generic design.

2.4.1 Pure DRNGs

This subsection considers the generic design and basic properties of pure DRNGs,
and we analyze the security properties of several pure DRNG designs. Figure 2.2
illustrates the generic design of a pure DRNG. After n−1 random numbers

r1,r2, . . . ,rn−1 ∈ R

have been generated, the internal state of the DRNG attains the value sn ∈ S. The
finite sets S and R are called the state space and the output space of the DRNG. The
output transition function ψ : S → R computes the next random number rn from the
current internal state sn. Then sn is updated to sn+1 with the state transition function
φ , i.e., sn+1 := φ(sn). The first internal state s1 is derived from the seed s0, e.g.,
simply s1 = φ(s0), or a more complicated mechanism may be used. Clearly, the
seed s0 determines all internal states s1,s2, . . . and all random numbers r1,r2, . . .. In
order to fulfil requirement (R2) the seed must be selected randomly. A pure DRNG
can be described by a 5-tuple

(S,R,φ ,ψ , pS) (2.1)

where pS defines the probability distribution of the random seed. Note, however,
that the seed generation is performed outside the DRNG boundaries. Usually the
seed is generated by a TRNG.

A drawback of DRNGs (compared to TRNGs) is that the output is completely
determined by the seed, and the future random numbers depend only on the current
internal state. Thus the internal state must be protected even if the device is not ac-
tive. In particular, implementing a pure DRNG on a PC and using its current internal
state in the next session may be dangerous. Typically, DRNGs are implemented on
smart cards. Of course, pseudorandom numbers cannot be truly random. On the pos-
itive side implementing a DRNG is relatively cheap, and unlike for physical RNGs,
no dedicated hardware is needed.

We point out that (R2) demands that the seed entropy must be ‘large’ and that
the state transition function and the output function are sufficiently complex. Pure
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DRNGs can at most provide practical security (computational security). In an infor-
mation theoretical sense already a few random numbers fully determine the seed and
all the generated random numbers completely. In this regard the situation is similar
to that of cryptographic primitives (e.g., to block ciphers). In fact, DRNGs typically
apply cryptographic primitives.

Example 2.1. Consider a linear feedback shift register (LFSR) over GF(2) with t
cells and recursion formula an+t+1 ≡ c1an+t + . . .cnan+1(mod 2) with c1, . . . ,cn ∈
{0,1}. In this example, S = {0,1}t , sn := (an, . . . ,an+t−1),

sn+1 = φ(sn) = (an+1, . . . ,an+t) ,

R = {0,1}, rn = ψ(sn) = an.
For primitive feedback polynomials the output sequence r1,r2, . . . is known to

have good statistical properties unless t is too small. Hence this DRNG should fulfil
(R1). Moreover, LFSRs can be implemented efficiently, and they are very fast. On
the other hand, the random numbers r1,r2, . . . depend GF(2)-linearly on the initial
state of the LFSR. If an adversary knows about t output bits he can easily recover
s1 and hence the whole sequence r1,r2, . . .. Consequently, LFSRs do not fulfil re-
quirement (R2), and they are absolutely inappropriate for sensitive cryptographic
applications.

Example 2.2. Assume that Enc: {0,1}n × {0,1}m → {0,1}n defines a block ci-
pher where {0,1}n and {0,1}m denote the plaintext space (respectively, the cipher-
text space and the key space). Here S = {0,1}n ×{0,1}m and R = {0,1}n. Fur-
ther, sn = (rn,k) where the key k has to be kept secret. Finally, ψ(rn,k) = rn and
sn+1 = (Enc(rn,k),k) for n ≥ 0. For commonly used block ciphers no statistical
weaknesses are known, and hence (R1) should be fulfilled.

Now assume that the adversary knows random numbers ri, . . . ,ri+ j. Since rt+1 =
Enc(rt ,k) the adversary knows j − 1 (specific) (plaintext ciphertext) pairs. Hence
finding ri−1 is at least as difficult as a chosen-input attack on Enc. (Actually, the
situation is even close to a known plaintext attack.) Analogously, the computation
of ri+ j+1 cannot be easier than a chosen plaintext attack on the decryption function
Enc−1. Against strong block ciphers chosen-plaintext attacks on Enc and Enc−1

are not practically feasible. (Otherwise these algorithms would not be viewed as
secure.) Provided that the seeding process guarantees that k cannot be guessed with
non-negligible probability, we may assume that the DRNG fulfils (R2) if Enc=AES
or Enc =Triple-DES, for instance.

Example 2.2 demonstrates a typical security proof for DRNGs where security
properties are traced back to properties of well-studied primitives. Note that re-
quirement (R2) is not fulfilled for Enc =DES, although in the eighties one would
presumably have confirmed this property. This underlines another important prop-
erty of DRNGs, namely that their assessment may change in the course of time.

Assume that an attacker gets knowledge of the current internal state sn, e.g.,
because he has mounted a successful hardware attack on a smart card or has had
interim access to a computer where this DRNG is implemented. Of course, then the
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random numbers rn,rn+1, . . . follow immediately from sn. For many applications it
is desirable that the DRNG additionally meets

• (R3) The knowledge of the internal state shall not allow one to practically com-
pute ‘old’ random numbers or even a previous internal state or to guess these
values with non-negligibly larger probability than without knowledge of the in-
ternal state.

Requirement (R3) demands one-way state transition functions φ : S→ S. We note
that Example 2.2 does not fulfil (R3). Once an adversary knows k he simply decrypts
rn−1 = Enc−1(rn,k), rn−2 = Enc−1(rn−1,k), . . ..

Example 2.3. Let S = R = {0,1}160 while φ and ψ are given by the hash functions
SHA-1 and RIPEMD-160. At this time both SHA-1 and RIPEMD-160 are assumed
to meet the one-way property. As a consequence, this RNG meets (R3) (as well as
(R1) and (R2)).

The next example underlines that not only φ and ψ are relevant but also their
interaction.

Example 2.4. [weak RNG] Let S = R = {0,1}256 and φ = ψ = SHA-256. Obvi-
ously, sn+1 = φ(sn) = ψ(sn) = rn, and rn+1,rn+2, . . . follow from rn. In other words,
this RNG does not meet (R2).

Example 2.5. Appendix 3.2 in [2] specifies the generation of pseudorandom ephem-
eral keys. The ‘core’ of this algorithm defines a DRNG: w0 := f (sn),

s′ := (1 + sn + w0)(mod 2v) ,

w1 := f (s′), sn+1 := (1+ s′+w1)(mod 2v), rn := (w1,w0) with a one-way function
f which is defined in [2] (cf. Exercise 2).

We mention that occasionally even DRNGs proposed by adopted standards may
contain security flaws. Bleichenbacher detected a weakness in the random number
generation specified in the preceding version of [2, 3] which led to a change notice
[33]. The problem was the following: Uniformly distributed random numbers rn on
Z2160 := {0,1, . . . ,2160−1} were transformed to random numbers on Zp by comput-
ing rn(mod p) where p denotes a 160-bit prime. Obviously, the small values in Zp

occur twice as often as the large ones. Although the weakness itself is obvious, the
attack is not. Interestingly, a full paper that describes the attack in detail has never
been published. Reference [4] shows that the DRNG that is used by Windows 2000
does not meet requirement (R3) (see also Section 2.6).

Remark 2.1. Many applications provide implicit information on the generated ran-
dom numbers, e.g., by known (plaintext/ciphertext) pairs that correspond to a ran-
dom session key. Sometimes less complicated formulae also exist that contain in-
formation on the unknown random numbers. For DSA- and ECDSA signatures, for
instance, the adversary knows an underdetermined system of linear equations in the
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signature key and the ephemeral keys. We point out that this aspect may be more
relevant for PTRNGs that aim at security in an information theoretical sense. We
will come back to this issue in the next chapter.

A class of DRNGs which is very interesting from a theoretical point of view are
cryptographically secure RNGs. Their security relies upon intractability assump-
tions (e.g., that factoring large integers is hard). On the basis of this intractability
assumption(s), security properties of the DRNGs, in respect of the random numbers
can be proved.

Unfortunately, the security assertions concern the whole family of DRNGs, and
in a strict sense, it is usually not clear what this means for a concrete member of this
family, i.e., for a fixed DRNG. In this regard, the situation reminds us of DRNGs
that rely on the security of (concrete) block ciphers or hash functions (where, not
even an asymptotic security proof exists). A drawback of cryptographically secure
DRNGs is their low output rate.

Example 2.6. (Blum-Blum-Shub DRNG) Let n = p1 p2 for two m-bit primes p1 and
p2 with pi ≡ 3(mod 4). Starting with a quadratic residue x0 ∈ Z∗

n := {0 ≤ j < n |
gcd( j,n) = 1} (seed) we compute xn+1 ≡ xd

n(mod n) and rn := xn(mod 2t(m)).

The generation of t(m) random bits requires the modular exponentiation of a 2m-bit
integer. It is known that a Blum-Blum-Shub DRNG – or more precisely, a fam-
ily of Blum-Blum-Shub DRNGs – is asymptotically secure if t(m) = O(loglogm).
Roughly speaking, a non-negligible advantage in guessing the next bit (compared
to ‘blind guessing’) enabled an efficient factoring algorithm, contradicting the fac-
toring intractability.

We mention also that RSA- and Rabin RNGs belong to the class of cryptograph-
ically secure RNGs (see [5], Section 5.5, and [6], for instance). We leave this field
and refer the interested reader to the relevant literature.

2.4.2 Hybrid DRNGs

Pure DRNGs compute rn := ψ(sn) and update their internal state by sn → φ(sn).
Hybrid DRNGs allow additional input from a finite set E0. The state transition func-
tion then reads φH : S×E → S with E = E0 ∪{∞} where ∞ means ‘no additional
input’. Formally, any pure DRNG can be viewed as a hybrid DRNG with additional
input ∞ in each step, i.e., E = {∞} (Figure 2.3).

Example 2.7. Consider Example 2.2 with E0 = {0,1}n and

φH((rn,k),en+1) = (Enc(rn ⊕ en+1),k)

for en+1 ∈ E0 and φH((rn,k),∞) = (Enc(rn),k) = φ(sn), and ψH = ψ . (As usual ⊕
stands for the bitwise addition modulo 2.)
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(seed) additional input

additional input

random
number

internal
   state

Fig. 2.3 Hybrid DRNG: Generic design.

Of course, a hybrid DRNG cannot be described by a 5-tuple (S,R,φ ,ψ , pS) (cf.
(2.1)). Instead, we use a 7-tuple

(S,R,E,φH ,ψH , pS,(qn)n∈N). (2.2)

The set E and the sequence (qn)n∈N denote the set of additional input data and the
probability distributions of the additional data. Note that if E = {∞} and qn = ε∞
(Dirac measure, which has its total mass concentrated on ∞) for all n ∈ N (‘never
any additional input’) the 7-tuple describes a pure DRNG.

Clearly, even if the input sequence e1,e2, . . . is constant or completely known by
a potential attacker this does not reduce the security of the hybrid DRNG below the
security of the respective pure DRNG from Example 2.2. Whether the additional
input actually increases the security depends on its randomness and unpredictability
properties. If the additional input is derived from the current time, for instance, the
security gain may be small, depending on the knowledge of the attacker.

For certain applications the following property is desirable, namely when an at-
tacker gets knowledge of the current internal state of the DRNG (e.g., of a software
DRNG implementation on a PC) without being noticed by the user of this DRNG,
which generates further random numbers.

• (R4) Even the knowledge of the internal state shall not allow one to practically
compute the next random numbers or to guess these values with non-negligibly
larger probability than without the knowledge of the internal state.

Of course, pure DRNGs cannot fulfil (R4). Whether (R4) is met depends on the
randomness of the additional input. Regular additional input from a strong TRNG
clearly implies (R4). We will learn more about TRNGs in Sections 2.5 and 2.6 and
in the next chapter.

In Example 2.7 we updated the internal state before applying the seed transition
function φ . In fact, φH may be viewed as a two-step procedure. We note that in the
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first step the mapping rn → rn ⊕ en+1 is injective for any fixed en+1. This has the
pleasant consequence that the security of the hybrid DRNG cannot drop below the
level of the respective pure DRNG, regardless of the nature of the additional input
and the adversary’s knowledge of this input. Much more critical was reseeding,
realized, for example, by φ ′

H((rn,k),e′n+1)= Enc(rn,e′n+1) with e′n+1 ∈E ′ = {0,1}m.
For reseeding, the unpredictability of the additional input is absolutely inevitable.

Remark 2.2. (i) Requirements (R3) and (R4) are specific DRNG requirements. For
TRNGs, (R3) and (R4) are usually ‘automatically’ fulfilled if (R2) is valid.
(ii) In some scenarios the designer may not be able to specify the distributions of
the additional input data. Then no security value can be assigned to the additional
input. For a seed-update in a strict sense only the security level of the respective
DRNG can be assured (provided that ψH(·,e) is injective for each e ∈ E). In case of
reseeding, no security assertions are yet possible.

Example 2.8. ANSI X9.17 DRNG (hybrid DRNG)
Let sn = (rn,k) where k denotes a Triple-DES key while the additional input tn is
a 64-bit representation of the current time. Compute en := Triple-DES(tn;k), rn :=
Triple-DES(sn ⊕ en;k), sn+1 := Triple-DES(rn;k). This DRNG does not fulfil (R3)
if the adversary knows the exact times when random numbers are generated, i.e., if
an adversary knows all values of tn (Exercise 4).

We point out that [1], Annex C, provides several more complex examples of
strong DRNGs which use block ciphers, hash functions, or elliptic curves. Refer-
ence [1] defines several security levels, demanding different parameter sets.

2.4.3 A Word of Warning

Pseudorandom numbers are used in several branches of applied mathematics, e.g.,
for stochastic simulations or Monte Carlo integrations. For these applications only
statistical properties are significant (cf. [7], for instance) while the unpredictability
of pseudorandom numbers is irrelevant. Consequently, pseudorandom numbers that
are suitable for stochastic simulations or Monte Carlo integrations usually are com-
pletely inappropriate for sensitive cryptographic applications. However, the identi-
cal terminology occasionally confuses designers of cryptosystems who have only
limited experience with RNGs.

Linear congruential random number generators are widespread since they are
extremely fast. Assume, for example, that

sn+1 ≡ asn + 1(mod 2m) with a ≡ 1(mod 4). (2.3)

Then xn := sn/2m ∈ [0,1), n = 1,2, . . . gives a sequence of so-called standard random
numbers which are assumed to have similar statistical properties as values taken on
by independent random variables X1,X2, . . . that are uniformly distributed on the
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unit interval. The sequence s0,s1, . . . is periodic with maximum length 2m. The pa-
rameter m = 64 fits perfectly to 64-bit computer architectures. Of course, from sn

a potential attacker can easily determine the whole sequence x1,x2, . . . of pseudo-
random numbers. Moreover, the k least significant bit of sn has period length 2k.
This does not play a role for typical applications of stochastic simulations since
there only the most significant bits of the real numbers x1,x2, . . . are relevant. For
the generation of secret data short periods of particular bits are not tolerable. Even
more, in specific applications short periods might enable correlation attacks. Linear
congruential generators do not even meet the basic requirement (R1).

We point out that linear congruential generators can be strengthened in the sense
of unpredictablity at the cost of throughput, namely by outputting, let’s say, only
the m–k most significant bits of sn, i.e., returning xn := (sn >> k)/2m−k. However,
Knuth found a recovery attack that requires O(22km2t−2) operations if the adver-
sary knows t random numbers x1, . . . ,xt ([8]). We mention also that other moduli
than powers of 2 and generalizations of linear congruential generators have been
studied. We do not delve into this aspect here. We strictly recommend not to use
linear congruential generators or related designs for sensitive cryptographic appli-
cations.

2.5 Physical True Random Number Generators (PTRNGs)

In this section we explain the generic design of Physical TRNGs (PTRNGs) and their
important properties. Moreover, we address the concept of entropy and workload.
For a thorough treatment of evaluation aspects for PTRNGs we refer the interested
reader to the next chapter.

2.5.1 The Generic Design

Just as DRNGs, PTRNGs also are typically implemented in smart cards. Figure 2.4
illustrates the generic design of a physical RNG. The ‘core’ is the noise source,
typically realized by electronic circuits (e.g., using noisy diodes or free-running
oscillators) or by physical experiments (radioactive decay, quantum effects of pho-
tons, etc.) The noise source generates time-continuous analog signals which are (at
least for electronic circuits typically) periodically digitized to binary values at some
stage. We call the digitized values digitized analog signals or briefly das random
number numbers. If the das random numbers are binary-valued we also speak of
das bits. The das random numbers may be algorithmically postprocessed to inter-
nal random numbers in order to reduce potential weaknesses. Note that reducing
weaknesses (and not simply transforming them into others, (e.g., bias into depen-
dencies) requires data compression which in turn lowers the output rate of the RNG.
The algorithmic postprocessing may be memoryless, i.e., it may only depend on the
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Fig. 2.4 Generic design of a physical RNG.

current das bits, or it may combine the current das random numbers with mem-
ory values that depend on the preceding das random numbers (and maybe on some
other, possibly secret parameters). Note that strong noise sources do not necessar-
ily require algorithmic postprocessing. Upon external request the internal random
numbers are output.

The security of a pure DRNG essentially depends on two factors: on the ex-
pected number of guesses to find the seed or any internal state of the DRNG with
non-negligible probability and on the complexity of the state transition function and
the output function, which determine the workload of possible attacks. Typically,
the basic components of DRNGs are cryptographic primitives, and the security of
the DRNG can usually be traced back to well-known properties of these primitives
(cf. Example 2.2). Clearly, DRNGs can at most be practically secure, and their
assessment changes in the course of time when attacks on the primitives have be-
come feasible. Consider, for instance, Enc=FEAL-8, which was introduced in the
late eighties. Some years later Biham showed that only 224 known-plaintexts are
sufficient to recover the 64-bit key. Another prominent example is the change notice
in [2] in response to Bleichenbacher’s attack.

Contrary to DRNGs, TRNGs (physical and non-physical) rely on the unpre-
dictablity of the generated random numbers. In Section 2.5.2 we will learn that this
question is closely related to entropy. Provided, of course, that the entropy estimates
are correct, the expected workload to guess such random numbers remains invariant
over time. Consequently, it is reasonable to use TRNGs at least for the generation
of random numbers that shall protect secrets in the long term. Theoretical secu-
rity bounds, quantified by the expected number of guesses to find (a sequence of)
random numbers, can only be achieved by TRNGs. Unlike for DRNGs, this num-
ber does not decrease in the course of time unless, of course, the evaluator made a
mistake when estimating the entropy per random bit. We will treat the evaluation
of PTRNGs in the next chapter. The following subsection introduces the notion of
entropy and guesswork.
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2.5.2 Entropy and Guesswork

For the remainder of this subsection, X denotes a random variable that assumes
values in the finite set Ω = {ω1, . . . ,ωm}. Without loss of generality, we may assume
that p(ω1) := Prob(X = ω1) ≥ ·· · ≥ p(ωm) := Prob(X = ωm). The most efficient
strategy to guess the outcome of X is clearly to check ω1,ω2, . . . until the correct
value has been found. The work factor

wα(X) = min

{
k :

m

∑
i=1

p(ωi) ≥ α

}
(2.4)

equals the minimum number of guesses to find the correct value of X with probabil-
ity ≥ α . The guesswork quantifies the expected number of guesses that are needed
to find the outcome of an experiment that is interpreted as a realization of X . The
guesswork of X is defined by

W (X) :=
m

∑
j=1

jp(ω j) (2.5)

In [9] Shannon introduced the notion of entropy

H(X) = −
m

∑
j=1

p(ω j) log2(p(ω j)) (2.6)

with 0 · log2(0) := 0. The quantity H(X) is called the Shannon entropy or in short,
entropy. The most general definition of entropy is the Rényi entropy [10], given by

Hα(X) =
1

1−α
log2

(
m

∑
j=1

p(ω j)α

)
, 0 ≤ α ≤ ∞. (2.7)

Obviously, Hα(X) is well-defined for α �= 1. For α = 1 we set H1(X) := limα→1

Hα(X). Using L’Hôpital’s Rule it is easy to show (Exercise 6) that

H1(X) = H(X). (2.8)

Besides α = 1, the limit α → ∞ is also of particular importance, which yields the
so-called min-entropy

H∞(X) = min j≤m{− log2(p(ω j))}. (2.9)

Moreover,

H2(X) = log2 (Prob(X = Y )) (2.10)

with independent, identically distributed random variables X and Y .
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For fixed random variable X , the Rényi entropy Hα(X) decreases monotonically
for α ∈ [0,∞) (Exercise 7), implying that the min entropy is the most conservative
entropy measure.

Example 2.9. Let X denote a binary-valued random variable with Prob(X = 1) =
p ∈ [0,1]. Then H(X) = −(p log2(p)+ (1− p) log2(1− p)), H2(X) = − log2(p2 +
(1− p)2), and H∞(X) = min{− log2(p),− log2(1− p)} = − log2(max{p,1− p}).
For p = 0.5 (uniform distribution) we have H(X) = H2(X) = H∞(X) = 1.

Example 2.10. Assume that X and Y denote binary-valued random variables. For
this example we use the abbreviation qxy := Prob((X ,Y ) = (x,y)). Let q00 = 0.1,
q01 = 0.3, q10 = 0.3, and q11 = 0.3. Elementary computations yield H(X ,Y ) =
log2(10)−0.9log2(3) = 1.895, H2(X ,Y ) = 1.837, and H∞(X ,Y ) = 1.737.

The work factor w 1
2
(X) satisfies the following inequality (cf. [11])

⌊
2−H∞−1⌋≤ w 1

2
≤
⌈(

1−0.5
m

∑
j=1

∣∣∣∣p(ω j)−
1
m

∣∣∣∣
)

m

⌉
. (2.11)

If the random variables X1, . . . ,Xn iid (e.g., describing a memoryless random
source) for large n we have log2(wα(X1, . . . ,Xn)) ≈ nH(X1) for any α ([12], Sec-
tion 2.3). Note that for the uniform distribution on Ω we have H1 = log2(k) = H∞,
and in the vicinity of the uniform distribution H1 and H∞ give similar values.

In the context of PTRNGs, we are usually faced with stationary processes that
assume values in Ω = {0,1}, for which the entropy per random bit is close to 1.
Usually, these processes only have a short-range memory and/or are rapidly mixing.
When guessing long sequences of random bits (e.g., session keys) we obtain the
same relation between work factor and Shannon entropy as in the memoryless case
(cf. Exercise 8).

This justifies the use of the Shannon entropy H(X), which is easier to handle
than the Rényi entropy for parameter α �= 1. This, in particular, concerns the condi-
tional entropy which is relevant when evaluating PTRNGs with dependent random
numbers.

Let Y be a further random variable that assumes values in a finite set ΩY . For any
parameter α

Hα(X | Y = y) =
1

1−α
log2

(
m

∑
j=1

Prob(X = ω j | Y = y)α

)
, (2.12)

defines the conditional entropy if Y = y. (If the random variables X and Y are inde-
pendent, clearly Prob(X = ω j | Y = y) = p(ω j) for any pair (ω j,y).) In particular,
the conditional Shannon entropy (α = 1) equals

H(X | Y = y) = −
m

∑
j=1

Prob(X = ω j | Y = y) log2 Prob(X = ω j | Y = y) (2.13)
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The functional equation of the logarithm function, log(ab) = log(a) log(b), im-
plies

H(X | Y ) = ∑
y∈ΩY

Prob(Y = y)H(X | Y = y), (2.14)

representing the conditional Shannon entropy H(X ,Y ) as a mixture of conditional
entropies (2.13) for which Y = y is fixed. There is no pendant to (2.14) for the min-
entropy.

2.6 Non-physical True Random Number Generators
(NPTRNGs): Basic Properties

Figure 2.5 illustrates the generic design of a non-physical true RNG. The generic
design reminds one of PTRNGs, the entropy source being the pendant of the noise
source. Unlike the noise source of a physical TRNG, the entropy source of an
NPTRNG does not require dedicated hardware but exploits system data (e.g., PC
time, RAM data, thread numbers, etc.) and/or human interaction (e.g., key strokes,
mouse movement). The entropy of these raw bits is usually low, demanding a highly
compressing postprocessing algorithm. Moreover, the entropy source is not under
the designer’s control as it depends on the configuration on the computer used and/or
the user himself. This implies considerable differences in the security evaluation of
PTRNGs and NPTRNGs.

The NPTRNGs are predestined for software implementation on computers. Ex-
ample 2.11 addresses a typical design. The output of the NPTRNG may be used
‘directly’, or it may serve to seed (reseed, update the seed of) a DRNG or as addi-
tional input. At least at the beginning of a session, the internal state of the DRNG
should be updated, which nullifies attacks on the internal state of the DRNG be-
tween the particular sessions. To make attacks on the current internal state (e.g.,
buffer-overflow attacks) inefficient, the internal state of the DRNG should be up-
dated even during the sessions, e.g., periodically after a particular (small) number
of internal random numbers have been output.

random raw bits internal r.n. 

algorithmic
postprocessing

entropy
source

digital data 

external r.n. 

external interface

buffer

(optional)(with or without 
memory)

Fig. 2.5 NPTRNG: Generic design.
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Example 2.11. Assume that the entropy source uses the system time, the time since
system start, several thread numbers and handles, the cursor position and a hash
value over a specified RAM area to generate a raw bit string of 1024 bits. This
raw bit string is algorithmically postprocessed with the SHA-1 hash function which
gives a 160-bit string (internal random number).

Guessing an internal number ‘directly’ affords 2159 trials on average. More inter-
esting is the alternative approach, where the raw bit string is guessed first and then
the SHA-1 function is applied to this guess. Unlike in the blind guessing approach,
an attacker may exploit his insight into the stochastic properties of the particular
components of the raw bit string in order to improve his success probability. We
point out that only the one-way property of the SHA-1 hash function is relevant in
the context (e.g., when an adversary knows some internal random numbers) whereas
collision resistancy is not mandatory. We concentrate on the analysis of a single raw
bit string and do not go into detail, but only give general advice.

The central goal of a security evaluation is to ensure that even for small α the
work factor wα is large enough to make guessing attacks infeasible. (The quanti-
tative meaning of ‘small’ may depend on the intended applications.) To reach this
goal the designer, as well as the evaluator, tries to estimate the entropy of the raw
bit string. If possible, independent subsets should be identified in order to split
the entropy estimation problem into several independent smaller ones. Unlike for
PTRNGs, the environments where NPTRNGs run need not essentially be identical
but may be very different, which may have impact on the entropy of the raw bits.
Unlike for PRTRNGs, it is hardly possible to formulate reliable stochastic models
which allow precise entropy estimates.

If the NPTRNG is called automatically when the the PC is booted, at least the
time since system start or particular thread numbers should be better predictable (at
least for an expert on operating systems) than if the NPTRNG is started on demand.
Of course, the concrete implementation, the operating system, and the programs
that run on the computer also play a role. From the view of security evaluation,
the situation becomes even worse if parts of the raw bit string are derived from
the interaction of the user (key strokes, mouse movement). Generally speaking, for
NPTRNGs the knowledge of the adversary plays an important role. This may con-
cern technical issues such as the operating system or the used configuration of the
attacked system; or the time stamp of an e-mail may provide a rough estimate for
the time when the random number was generated. The best the designer or the eval-
uator of the NPTRNG can do is to determine (and to justify!) a lower entropy bound
that shall be valid for all possible implementations and environments, as also for the
worst case scenario. Since the raw bits are not stationary, the min-entropy should
be the appropriate type of entropy. In practice, normally the Shannon entropy is
still used.

Linux operating systems use /dev/random and /dev/urandom to generate ran-
dom numbers. The function /dev/random may be viewed as a pure NPTRNG while
/dev/urandom ‘extends’ bit strings from the entropy pool, i.e., it may be viewed as
a hybrid DRNG that is seeded (and its seed is updated) by an NPTRNG ([13], see
also [14]).
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We refer the interested reader to [4] which explains a sophisticated attack on
the DRNG that is used by Windows 2000. The authors examined the binary code
of a particular Windows distribution. This DRNG does not fulfil requirement (R3)
since it only requires O(223) operations to get the preceding internal state from
the current one. The internal state is periodically updated with an NPTRNG. Since
these intervals are too large, and due to the way the random number generator is
run by the operating system, a single compromised internal state of the DRNG may
compromise up to 128 KBytes of random numbers.

2.7 Standards and Evaluation Guidances

A number of evaluation guidances and standards are effective, and many of them
have already been well tried in practice [1, 2, 15–20]. These documents define and
explain properties that strong RNGs should have. The evaluation guidances [19] and
[20] are technically neutral. They define the criteria and explain how these criteria
shall be verified. The criteria are generic in order not to exclude appropriate RNGs.
On the other hand, these criteria are clear enough to ensure identical evaluation re-
sults, independent of who performs the evaluation. For DRNGs, [19] defines classes
K1 to K4 with increasing requirements. Simply speaking, class K2 corresponds to
Requirement (R1), while the classes K3 and K4 demand (R1) + (R2) or (R1) −
(R3), respectively. Several evaluation guidances and standards [1, 2, 17, 19] give
approved designs for DRNGs, or at least discuss examples.

For physical RNGs, it is hardly possible to specify approved designs since
secuity-relevant properties depend on the concrete implementation. Of course, par-
ticular RNG designs may be analyzed and central steps of the evaluation process
defined. Finally, the evaluation yet requires measurements on the concrete imple-
mentation. Statistical blackbox tests (as were formulated e.g., in [18, 21]) cannot
ensure the security of an RNG.

2.8 Exercises

1. Assume that Alice uses the DRNG from Example 2.2 with Enc =DES to gener-
ate 512-bit RSA primes. Discuss this application. Is Alice’s choice Enc =DES
appropriate?

2. (a) Describe the DRNG from Example 2.5 in our notion. In particular, define
the state transition function and the output function.
(b) Which of the security requirements (R1 to R3) does this DRNG fulfil?

3. Formulate the describing 5-tuple for the Blum-Blum-Shub DRNG (Exam-
ple 2.6).

4. Example 2.8 describes the ANSI X9.17 hybrid DRNG which has been used in
many applications. Assume that an adversary knows all additional input data en.
Show that this DRNG does not fulfil (R3).
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5. Let X denote a random variable that assumes values in {0,1}128. In partic-
ular, Prob(X = (0, . . . ,0)) = 0.5 while Prob(X = ω) = 2−128 for all strings
ω ∈ {0,1}128 that begin with 1. Compute the work factor w0.5, the guesswork
W (X), the Shannon entropy and the min entropy. Discuss the results.

6. Prove Formula (2.8).
7. Show that the Rényi entropy Hα(X) is monotonically decreasing for α ∈ [0,∞).
8. Assume that X1,X2, . . . define a stationary (but not necessarily independent)

stochastic process such that the vectors (Xa, . . . ,Xb) and (Xc, . . . ,Xd) are in-
dependent if a < b < c < d and c− b > 1. Show that log2(wα (X1, . . . ,Xn)) ≈
H(X1, . . . ,Xn) for any fixed α if n is sufficiently large.

9. Verify Formula (2.14).
10. Consider the NPTRNG from Example 2.11. Assume that the designer adds the

absolute time at system start to the raw bit string. Does this increase the security
of the NPTRNG? Explain your answer.

2.9 Projects

1. Implement a non-physical true random number generator (NPTRNG) on a PC.
Try to state and justify lower entropy bounds. Work out the differences between
Windows and Linux operating systems.

2. Implement the DRNG from Exercise 4 in software and determine the data rate
that is achievable on your computer.
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Chapter 3
Evaluation Criteria for Physical Random
Number Generators

Werner Schindler

3.1 Introduction

In the previous chapter we first addressed general aspects of random number genera-
tors (RNGs) that are used for cryptographic applications. We divided the entirety of
RNGs into two main classes, the deterministic RNGs (DRNGs) and the true RNGs
(TRNGs), the latter falling into two subclasses, the physical RNGs (PTRNGs) and
the non-physical true RNGs (NPTRNGs). Moreover, we distinguished between pure
and hybrid RNGs, the latter deploying features from both, deterministic and true
RNGs.

We formulated four general requirements ((R1) to (R4)). Which of these require-
ments are necessary depends on the concrete application. Inevitable for sensitive
cryptographic applications are

• (R1) The random numbers should have good statistical properties.

and

• (R2) The knowledge of subsequences of random numbers shall not allow one to
practically compute predecessors or successors or to guess these numbers with
non-negligibly larger probability than without knowledge of the subsequence.

For DRNGs, (R3) and (R4) (backward and forward secrecy) are essentially ad-
ditional requirements. For TRNGs, (R3) and (R4) usually follow immediately from
(R2) if we neglect very specific constructions.

In the previous chapter we treated DRNGs in detail, and we addresed basic facts
of PTRNGs and NPTRNGs. The security of DRNGs essentially grounds on the
complexity of the state transition function and the output function. In contrast, the
security of TRNGs is based on ‘true’ randomness as their name indicates. DRNGs
usually apply cryptographic primitives. Consequently, DRNGs can at the most be
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computationally secure, and this assessment may change in course of time if weak-
nesses of the used primitives are detected and/or the computational power of a po-
tential adversary increases. Unless the evaluator has made a mistake in the eval-
uation process, the determined workload to guess ‘true’ random numbers remains
invariant in the course of the years. Consequently, it is reasonable to use TRNGs at
least for the generation of random numbers that shall protect secrets in the long
term. The connection between entropy and guessing workload was discussed in
Section 5.2 of the previous chapter. In the last few years physical RNGs have at-
tracted enormous attention in the scientific community and in the semiconductor
industry. A large number of PTRNG designs have been proposed and analyzed
([4, 5, 7, 13, 25, 26, 42] etc.).

This chapter deals exclusively with the security evaluation of PTRNGs. The main
task of the evaluator (but not his only one) is to determine the entropy per random
bit, or at least a lower entropy bound. The evaluation of physical and non-physical
TRNGs is very different. PTRNGs use dedicated hardware which is essentially iden-
tical for all devices (apart from tolerances of components or ageing effects). This al-
lows a precise stochastic model of the noise source which is the basis of any sound
entropy estimation. In contrast, NPTRNGs are usually implemented on PCs and ex-
ploit system data and/or the user’s interaction. It is hardly possible to formulate a
precise stochastic model that is valid for all implementations of the NPTRNG. Note
that these implementations are not under the control of the designer of the NPTRNG
(cf. Section 6 in Chapter 2).

At first we repeat central definitions and explain briefly the generic design of
a physical RNG. The central goal of any PTRNG evaluation is the estimation of
entropy per random bit. To reach this goal we develop general evaluation crite-
ria and introduce the notion of a stochastic model. We investigate the algorithmic
postprocessing, and online tests are also discussed in detail. Our expositions are il-
lustrated by many examples and exercises. Further, we compare alternative security
paradigms and have a brief look at the standards and evaluation guidances. We close
the chapter with some thoughts on side-channel and fault attacks on PTRNGs.

3.2 Generic Design

Figure 3.1 illustrates the generic design of a physical RNG. The ‘core’ is the noise
source, typically realized by electronic circuits (e.g., using noisy diodes or free-
running oscillators) or by physical experiments (radioactive decay, quantum effects
of photons, etc.) Usually, the noise source generates time-continuous analog sig-
nals which are (at least for electronic circuits usually) periodically digitized at some
stage. We call the digitized values digitized analog signals or briefly das random
number. Binary-valued das random numbers are also denoted as das bits. The das
random numbers may be algorithmically postprocessed to internal random num-
bers in order to reduce potential weaknesses. The algorithmic postprocessing may
be memoryless, i.e., it may only depend on the current das random numbers, or
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Fig. 3.1 Generic design of a physical RNG.

combine the current das random numbers with memory values that depend on the
preceding das random numbers (and maybe some other, possibly secret parame-
ters). Strong noise sources do not necessarily require algorithmic postprocessing.
Upon external request internal random numbers are output (→ external random
numbers).

3.3 Evaluation Criteria for the Principle Design

The primary goal of a PTRNG evaluation is the estimation of the entropy per random
bit, or more precisely, the gain of entropy per random bit. A second task, which yet
is not less important, is the evaluation of the online test (cf. Section 3.6). Depend-
ing on the intended conditions of use (and the concrete PTRNG design) it may be
reasonable to implement explicit countermeasures against fault attacks. Such coun-
termeasures (e.g., shielding) are clearly also part of an overall security evaluation
(cf. Remark 3.10).

In Figure 3.1 three types of random numbers occur: das random numbers, in-
ternal random numbers and external random numbers. The first question is which
of these random numbers should be considered. Of course, finally the quality of
external random numbers is relevant since they are used in applications. However,
the external random numbers are neither under the control of the RNG designer nor
of the evaluator. Fortunately, the external random numbers are usually obtained by
concatenating internal random numbers and hence share their statistical properties.

Unfortunately, entropy cannot be measured as voltage or temperature. Entropy is
a property of random variables and not of sequences of observed values which are
assumed by these random variables. As a first consequence, entropy cannot simply
be guaranteed by applying any collection of statistical blackbox tests. Note that
usually even pseudorandom sequences pass those blackbox test suites (cf. e.g., [27,
31, 32, 38] developed for a different purpose, namely for testing pseudorandom
numbers for stochastic simulations), even if they have been generated by (in our
sense) weak DRNGs.



28 Werner Schindler

Remark 3.1. The adjective ‘universal’ in the title of [28] caused a lot of misunder-
standing and confusion in the past. Maurer’s test segments large-bit streams into
non-overlapping blocks of equal length. If the block size tends to infinity, Maurer’s
test value yields an estimator for the increase of entropy per random bit provided
that the random bits were generated by a stationary binary-valued ergodic random
source with finite memory (cf. also [11]).

If this assumption is not fulfilled Maurer’s test value need not have any relation
to the entropy per block. If the random numbers were generated by an LFSR, for
instance, the increase of entropy per pseudorandom bit is obviously zero while Mau-
rer’s test value will be close to the maximum value. The same is true for Coron’s
test [10].

Instead, to quantify the entropy per random bit we first have to study the distri-
bution of the random numbers, or more precisely, the distribution of the underlying
random variables.

Definition 3.1. Random variables are denoted with capital letters. Realizations of
these random variables, i.e., values assumed by these random variables, are de-
noted by the respective small letters. A binary-valued random variable is said to be
B(1, p)-distributed if the values 1 and 0 are assumed with probability p and 1− p,
respectively. As usual, ‘iid’ abbreviates ‘independent and identically distributed’.

The term H(X) denotes the Shannon entropy of the random variable X while
Hα(X) denotes its Rényi entropy to parameter α .

We interpret the das random numbers r1,r2, . . . as realizations of random vari-
ables R1,R2, . . . and the internal random numbers y1,y2, . . . as realizations of (suit-
ably defined) random variables Y1,Y2, . . ..

Remark 3.2. (i) For simplicity, we speak loosely of the entropy per random number
or per random bit. What we really mean is the entropy of the underlying random
variables.
(ii) In the following we use the term ‘adversary’. This includes potential attackers
but also the evaluator and the designer of an RNG.

In Section 5.2 of Chapter 2 we explained the relation between entropy and guess-
work. We mentioned the min entropy is the most conservative entropy measure,
which can be used to obtain universal lower guesswork bounds. However, if the ran-
dom variables are iid or at least stationary with finite memory, the Shannon entropy
quantifies the average guesswork at least asymptotically, i.e., for ‘long’ sequences
of random numbers (e.g., session keys; cf. Chapter 2, Exercise 7). At least the inter-
nal random numbers are usually stationary with entropy per bit close to 1. Since the
Shannon entropy is easier to handle than the min-entropy (→ conditional entropy)
we will focus on the Shannon entropy in the following. If it is unambiguous we
follow the usual convention and briefly speak of ‘entropy’.

The term
H(Yn+1 | Y1 = y1, . . . ,Yn = yn) (3.1)
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quantifies the entropy of the random variable Yn+1 if the adversary knows the in-
ternal random numbers y1, . . . ,yn. This corresponds to the real-life situation where
an adversary knows a subsequence y1,y2, . . . ,yn of internal random numbers, e.g.,
from openly transmitted challenges or from the session keys of messages which he
has received legitimately. The conditional entropy of consecutive internal random
numbers (e.g., used to generate random session keys) equals

H(Yn+1, . . . ,Yn+t | Y1 = y1, . . . ,Yn = yn) = (3.2)
t

∑
i=1

H(Yn+i | Yn+1, . . . ,Yn+i−1,Y1 = y1, . . . ,Yn = yn).

Remark 3.3. (i) The conditional entropy (3.1) depends on the knowledge of the ad-
versary (expressed by its conditional part) and quantifies his/her uncertainty on the
next random variable.
(ii) For sensitive cryptographic applications (as for the generation of session keys,
signature parameters or ephemeral keys) the conditional entropy per bit should be
close to 1.
(iii) Note that entropy and conditional entropy may differ considerably. Assume, for
instance, that X1 is B(1,0.5)-distributed and X1 = X2 = · · · (total dependency). Then
H(Xn) = 1 but H(Xn+1 | Xn) = 0 for all n ∈ IN.

3.4 The Stochastic Model

The random variables R1,R2, . . . and Y1,Y2, . . . quantify the stochastic behavior of
the das random numbers and the internal random numbers, respectively. These dis-
tributions clearly depend on the noise source and the digitization mechanism for the
Yj also on the algorithmic postprocessing algorithm. Usually, the evaluator is not
able to determine these distributions exactly. Moreover, in a strict sense, the exact
distribution depends on the components of the particular noise source which may
differ to some extent even for PTRNGs from the same production series. Instead,
as explained below, the evaluator shall specify a family of distributions and give
evidence that the true distribution of the random numbers (as well as of specific
auxiliary random variables) is always (i.e., for all copies of this PTRNG and under
all conditions of use) contained in this family.

Example 3.1. (Repeated tossing with the same coin)
We interpret ‘head’ as 1 and ‘tail’ as 0, and we denote the generated (tossed) random
numbers by r1,r2, . . .. For the moment we assume that no algorithmic postprocessing
is applied, i.e., that yi = ri for all i.

Since coins have no memory it is reasonable to assume that the random variables
R1,R2, . . . are iid binomially B(1, p)-distributed with unknown parameter p ∈ [0,1].
This means that the true distribution is contained in a one-parameter family of prob-
ability distributions (products of B(1, p)-distributions).
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For a fixed coin an estimate p̃ of the true parameter p can be achieved by tossing
this coin N times and setting p̃ := #heads/N.

For ‘real-life’ PTRNGs the situation is usually more complicated, and the speci-
fied family of distributions may depend on several parameters. It is usually reason-
able to confirm the specified family of distributions by experiments. In Example 3.1
this may include tests for independency (although in this elementary example ad-
ditional experiments seem to be superfluous). Generally speaking, the better the
analog part of the PTRNG is understood the less experimental verification is neces-
sary.

Our final goal is at least to determine a lower bound for the average entropy per
internal random number. Ideally, the stochastic model of the noise source comprises
the distribution of the internal random numbers, the das random numbers or at least
the distribution of auxiliary random variables which allow one to calculate the en-
tropy of the das random numbers or the internal random numbers, or at least to
verify lower entropy bounds. We point out that a stochastic model is not a physical
model of the noise source and its digitization mechanism.

In Example 3.1 a physical model would comprise the mass distribution within the
coin and maybe complicated formulae that describe the trajectories of tossed coins
(which would be a difficult task). Of course, the stochastic model also depends on
the concrete noise source but considers only the impact on the distribution of the
random numbers. In particular, we cannot expect that the stochastic model provides
an explicit formula for the distribution of the das random numbers (and finally of the
internal random numbers) in dependency of the characteristics of the components of
the analog part of the noise source, which a physical model might achieve. Instead,
we only get a family of distributions that depends on one or several parameters.

To reach our formulated goal, the estimation of entropy, we proceed as follows:

1. Formulate a stochastic model for the concrete PTRNG. Justify this model. Try to
confirm your assumptions experimentally if there is no clear theoretical proof.

2. Use this PTRNG to generate random numbers. Estimate the unknown parameters
that belong to this PTRNG on the basis of these random numbers.

3. Use these parameter estimates to estimate the increase of entropy per random bit.

Example 3.2. (Continuation of Example 3.1)
Recall that for repeated coin tossing the random variables R1,R2, . . . were assumed
to be independent. If the sample size N in Example 3.1 was sufficiently large we
conclude for any history r1, . . . ,rn

H(Rn+1 | R1 = r1, . . . ,Rn = rn) = H(Rn+1) (3.3)

≈−(p̃ log2 p̃+(1− p̃) log2(1− p̃)) := H̄(p̃). (3.4)

For small N (only a few coin tosses) it may be reasonable to determine a confi-
dence interval I(p) for the true parameter p (i.e., an interval that contains p with
probability ≥ 1 − α) and estimate the entropy for the least favorable parameter
p′ ∈ I(p), providing a lower entropy bound for Rn+1 (with probability ≥ 1−α).
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Example 3.3. Assume that the random variables R1,R2, . . . form an ergodic homoge-
neous Markov chain on a finite state space Ω = {ω1, . . . ,ωm} with transition matrix
P = (pi j)1≤i, j≤m ([15], Section XV). As usual, pi j := Prob(Rn+1 = ω j | Rn = ωi).

As R1,R2, . . . is an ergodic Markov chain, regardless of the distribution of R1

the distributions of the random variables R1,R2, . . . converge exponentially fast to a
unique limit distribution ν (the unique left eigenvector of P to the eigenvalue 1). If
pi. denotes the ith row of P

H(Rn+1 | R1, . . . ,Rn) = H(Rn+1 | Rn) =
m

∑
i=1

ν(i)H(pi.), (3.5)

at least in the limit n → ∞. If the PTRNG is in equilibrium state when r1 is
generated, (which should be the case shortly after the start of the PTRNG), the
random variables R1,R2, . . . may be assumed to be ν-distributed, and hence (3.5) is
valid for all n ∈ IN (see also Exercise 1).

Definition 3.2. A sequence of random variables X1,X2, . . . is called stationary if
for any integer r the distribution of the random vector (Xt+1, . . . , Xt+r) does not
depend on the shift parameter t (cf. Remark 3.4). A sequence X ′

1,X
′
2, . . . is said to

be q-dependent if the random vectors (X ′
a, . . . ,X

′
b) and (X ′

c, . . . ,X
′
d) are independent

whenever c−b > q. The term N(μ ,σ2) denotes the normal distribution with mean
μ and variance σ2. The cumulative distribution function of the standard normal
distribution N(0,1) is denoted with Φ(·), i.e., Φ(x) = 1√

2π

∫ x
−∞ e−0.5t2

dt

Remark 3.4. Some authors denote stochastic processes that meet the stationarity
conditions from Definition 3.2 as strictly stationary to distinguish them from weakly
stationary (aka weak-sense stationary or wide-sense stationary) stochastic pro-
cesses. A stochastic process X ′

1,X
′
2, . . . is called weakly stationary if the expectations

E(Xj) and E(XjXj+τ) do not depend on the index j.

For most PTRNG designs it is reasonable to assume that the sequence R1,R2, . . .
is stationary, at least within time intervals that are large relative to the output rate of
the PTRNG. (For example, if the PTRNG generates 1 million random bits per sec-
ond, a minute or even an hour can doubtlessly be viewed as a ‘long’ time interval.)
Long-term shifts of parameters in the life cycle of a PTRNG (e.g., due to ageing ef-
fects) are tolerable if the distribution remains in the acceptable part of the specified
family of distributions. Note that it is usually very difficult to analyze non-stationary
stochastic processes and, in particular, to get numerical results.

The distribution of R1,R2, . . . clearly determines the distribution of Y1,Y2, . . ..
However, complex algorithmic postprocessing may prevent concrete formulae for
the Yj. If the entropy per das random number is already sufficiently large, it may
be sufficient to verify that the algorithmic postprocessing does not reduce the en-
tropy per bit. Recall that in the end we are essentially interested in the entropy
and not necessarily in the exact distribution of the Yj (although the latter is cleary
favorable).
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Example 3.4. Assume that the random variables R1,R2, . . . are iid B(1, p)-distributed
and that the algorithmic postprocessing algorithm encrypts consecutive, non-overlap-
ping blocks of 128 das bits with a secret AES key k.

Since k is unknown, it is infeasible to specify the distribution of the random
variables Y1,Y2, . . .. However, the Yj are iid, and since the postprocessing is injective,

H(Yn+1 | Yn) = H(Yn+1) = 128H(R1). (3.6)

(Of course, unless p = 0.5 the components of the Yn are not independent.)

Although we are finally interested in the distribution (or at least in the entropy)
of the random variables Y1,Y2, . . ., we recommend generally to consider the random
variables R1,R2, . . . first. The impact of the algorithmic postprocessing should be
analyzed in a second step (see also Section 3.5). That is, in a first step we consider
the conditional entropies

H(Rn+1 | R1 = r1, . . . ,Rn = rn) for any r1, . . . ,rn, or at least (3.7)

H(Rn+1 | R1, . . . ,Rn). (3.8)

The term (3.8) is the weighted average of (3.7) over all histories r1, . . . ,rn. Note that
(3.8) is often easier to compute than (3.7). However, if (3.8) is close to the maxi-
mum value log2(range(R j)), (3.7) may differ significantly from the average value
of (3.8) only for a small fraction of histories. If non-negligible differences occur
for different histories (or at least, if one expects such differences) it is reasonable to
apply algorithmic postprocessing (see Section 3.5). This algorithmic postprocessing
should compress the input data or at least ‘mix’ them.

Example 3.5. Figure 3.2 shows an RNG design that was proposed at CHES 2002
([44]). In [42] a stochastic model was developed and analyzed, and a lower en-
tropy bound for the internal random numbers was derived. Numerical examples
were given. In the following section we address the central aspects.

The noise source consists of two independent ring oscillators that clock a 43-bit
LFSR with a primitive feedback polynomial and a 37-bit linear cellular automaton
shift register (CASR), respectively. The frequencies of the ring oscillators are not
controlled and drift with variations in temperatures and voltage. The states of the

Fig. 3.2 Physical RNG presented at CHES 2002 ([44]).
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LFSR and CASR are not reset after power-up. Upon external request k = 32 par-
ticular cells of both the LFSR and CASR are masked out, permutated and XOR-ed,
and this 32-bit XOR-sum is output (internal random number). Even when no ran-
dom numbers are requested the PTRNG is active. In [44] the minimum time between
two consecutive outputs of internal random numbers is specified (LFSR and CASR
should at least be clocked 86, and 74 times respectively).

Internal random numbers are output at times s0 < s1 < .. . where rn is output at
time sn. The das random numbers are given by vectors (r1(1),r1(2)),(r2(1),r2(2)), . . .
where r j(1) and r j(2) equals the number of cycles of ring oscillator 1 and 2, i.e., the
number of clocks of the LFSR, as well as of the CASR, within the time interval
(sn−1,sn].

Since the oscillators are assumed to be independent we may treat them indepen-
dently. (In a ‘real’ PTRNG evaluation the independence assumption requires a the-
oretical justification and eventually also experimental confimation.) Further, let ti(1)
and ti(2) denote the lengths of the ith cycle of ring oscillator 1 and 2, respectively. In
[42] we assumed that the corresponding random variables

T1( j),T2( j), . . . are stationary (3.9)

(but not necessarily independent) for j = 1,2. Further, let zn(i) denote the smallest
index m for which T1(i) + T2(i) + . . .+ Tm(i) > sn. With this notation

Rn(i) = Zn(i)−Zn−1(i) for i = 1,2. (3.10)

Example 3.6. Assume that the output voltage of a Zener diode is filtered, amplified
and then input to a comparator. The comparator switches whenever the input voltage
crosses a specified threshold from below (0-1-crossing). Each switching inverts the
D input of a flip-flop. The flip-flop is latched by an external clock with constant
period length s > 0.

We interpret the number of switchings in time interval ((n− 1)s,ns] as das ran-
dom number rn. In this notation yn = y0 + r1 + · · ·+ rn(mod 2) where y0 ∈ {0,1}
is the internal random number at time s = 0. Let t1, t2, . . . denote the times between
consecutive 0-1-switchings. Using the notation from Example 3.5 we conclude

Rn = Zn −Zn−1. (3.11)

Also, for this example it is reasonable to assume that the random variables T1,T2, . . .
are stationary.

Interestingly, although very different in their technical realization, Examples 3.5
and 3.6 lead to the same type of stochastic model for the das random numbers, and
also an RNG construction with two noisy diodes which is intensively studied in [24]
meets the following equations

T1,T2, . . . are stationary (3.12)

Rn := Zn −Zn−1 for (3.13)

Zn := minm∈N{T0 + T1 + T2 + . . .+ Tm > sn} (3.14)
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where T0 denotes some ‘offset’ (the first switching, end of the first ring oscillator
cycle etc. after time s0). (In [42] we assumed T0 ≡ 0 for simplicity, which had little
impact in that scenario.) Note, however, that even if the stochastic models of two
PTRNGs meet (3.12) to (3.14) the distributions of the random variables T1,T2, . . .
and thus of R1,R2, . . . and Y1,Y2, . . . may yet be very different in both cases. Anyway,
it is worth analyzing (3.12) to (3.14), both for very mild assumptions on the Tj and
for specific classes of distributions (e.g., for iid Tj). We mention some fundamental
results. For proofs, details and further assertions the interested reader is referred to
[42] and [24].

For u ≥ 0 we define

V(u) := inf

{
τ ∈ IN |

τ+1

∑
j=1

Tj > u

}
= sup

{
τ ∈ IN |

τ

∑
j=1

Tj ≤ u

}
. (3.15)

Straightforward considerations lead to

Prob(V(u) = k) = Prob(T1 + · · ·+ Tk ≤ u)−Prob(T1 + · · ·+ Tk+1 ≤ u)
for k ≥ 1

Prob(V(u) = 0) = 1−Prob(T1 ≤ u) , and Prob(V(u) = ∞) = 0. (3.16)

Let μ := E(T1) and σ2
T := Var(T1) < ∞. The term

σ2 = σ2
T + 2

∞

∑
i=2

E ((T1 − μ)(Ti− μ)) (3.17)

denotes the generalized variance of the random variables T1,T2, . . ..
Assume further that E|T 3

1 |< ∞. If the absolute values of the summands in (3.17)
decrease ‘rapidly’ to zero then a version of the Central Limit Theorem for dependent
random variables holds, i.e.,

Prob

(
∑k

j=1 Tj − kμ
√

kσ
≤ x

)
→k→∞ Φ

(
x− kμ√

kσ

)
(3.18)

(for details, see [17, 21], for instance). This is in particular the case if the Tj are q-
dependent since then the summands in (3.17) are identical zero for i > q. For u = vμ
with v >> 1 we get the approximation

Prob
(
V(vμ) = k

)
≈ Φ

(
v− k√

k
· μ

σ

)
−Φ

(
v− (k + 1)√

k + 1
· μ

σ

)
for k ≥ 1 (3.19)

Prob
(
V(vμ) = 0

)
≈ 1−Φ

(
(v−1)

μ
σ

)
. (3.20)

By (3.19) and (3.20) the distribution of the random variableV(vμ) depends only on
the ratios μ/σ and u/μ = v but not on the absolute values of the parameters μ ,σ2,u.
Note that the mass of V(vμ) is essentially concentrated on those k’s with k ≈ v. Since
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range(V(u)) = IN0, we extend the definition of Shannon entropy to countable Ω . For
an IN0-valued random variable X we define

H(X) = −
∞

∑
i=0

Prob(X = i) log2 (Prob(X = i)) . (3.21)

We point out that H(X) = ∞ is possible ([42], Remark 2). In our context, the entropy
is always finite (cf. Lemma 2(ii) in [42] which covers the q-dependent case). In
particular, (3.19) and (3.20) imply

H(V(u)) = −
∞

∑
i=0

Prob
(
V(u)=i

)
log2

(
Prob

(
V(u)=i

))
. (3.22)

Intuitively, one expects that H(V(u)) increases as u increases, although not neces-
sarily monotonously. Note that if σ2 ≈ 0 then H(V(kμ)) ≈ 1 but H(V((k+0.5)μ)) ≈ 0
for small integers k, which explains the second statement. We may yet expect
H(V(u+μ)) > H(V(u)) since the positions of u and u + μ relative to the lattice points
μ ,2μ , . . . are identical but more 0-1-crossings imply a larger variance of V(·). Of
course, this heuristic argumentation is not a strict mathematical proof (we work on
it) but explicit computations for a large number of values u support our conjecture.

Since

Rn := sup

{
τ ∈ IN |

τ

∑
j=1

Tzn−1+ j ≤ sn −
zn−1

∑
j=1

Tj

}
+ 1 (3.23)

the distribution of Rn is closely related to the distribution of the random variables
V(u) considered above. Our goal is to determine (at least a lower bound for) the con-
ditional entropy H(Rn+1 | R1, . . . ,Rn). With regard to the preceding H(V(sn+1−sn))
might be used as an estimate for this conditional probability, at least if the term
(sn+1 − sn)/μ (= expected number of Tj’s within the interval (sn+1 − sn]) is large
and if u �→ H(V(u)) only has little variation within an environment of sn+1 − sn (cf.
Example 3.5 and [42]). Under these conditions one may hope that an eventual influ-
ence of R1, . . . ,Rn on (the first elements of) Tzn+1,Tzn+2, . . . has no significant impact
on the entropy. To be on the safe side, one may try to (over-)compensate these effects
by applying the more conservative entropy estimate

min{H(V(u)) | u ∈ [sn+1 − sn −aμ ,sn+1 − sn]} ·Prob(Wn ≤ a) (3.24)

(with moderate a > 0) instead of H(V(sn+1−sn)) where

Wn := T0 + T1 + · · ·+ Tz(n)− sn > 0 . (3.25)

Ideally, the parameter a should be selected with regard to the distribution of the Tj

(→ dependencies!) and the aimed entropy bound. At least for small ratios μ/s more
sophisticated methods are recommendable that take the concrete distribution of the
random variables Tj into account, since even moderate parameters a waste informa-
tion. This demands larger interval lengths (sn+1 − sn) which in turn decreases the
output rate of the PTRNG.
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For a more sophisticated analysis we concentrate on equidistant instants s0,s1,
s2, . . ., i.e., sn = ns for all n ∈ IN. Recall that the random variables T1,T2, . . . are as-
sumed to be stationary (3.12). (This corresponds to the real-world situation that
the noise source is in equilibrium state, which should be the case shortly af-
ter starting the PTRNG.) Under mild assumptions (essentially, the partial sums
(Tj + · · ·Tj+τ)(mod s) shall be uniformly distributed on [0,s) for ‘large’ τ) it can
be shown that the stochastic processes R1,R2, . . ., Y1,Y2, . . ., and W1,W2, . . . are sta-
tionary, too [24]. In particular, if GW denotes the cumulative distribution function of
Wn then

E((R1 + · · ·+ R j)k) =
∫ js

0
E((V( js−u) + 1)k |W0 = u))GW (du) (3.26)

≈
∫ js

0
E((V( js−u) + 1)k)GW (du) for each k ∈ N. (3.27)

For iid random variables Tj the ≈ sign is in fact = while for dependent Tj the con-
dition ‘W0 = u’ may influence the distribution of the first elements of the T1,T2, . . .
via the conditional random variables (. . . ,T−1,T0 |W0 = u). If the Tj are Markovian,
(T0 | W0 = u) determines the initial distribution of the Markov process T0,T1, . . ..
Anyway, for ‘large’ indices j the influence of the condition ‘W0 = u’ on the integral
should be negligible. Since E(R1 + · · ·+ R j) = jE(R1) applying (3.27) for the pa-
rameters (k = 1, j = 1) and, let’s say, (k = 1, j = 10) may serve as an indicator for
the impact of W0.

The stationarity of R1,R2, . . . implies

E((R1 + . . .+ R j)2) = jE(R2
1)+ 2

j

∑
i=2

( j + 1− i)E(R1Ri). (3.28)

Computing the left-hand side for j = 1,2, . . . with (3.26) or (3.27) yields E(R1)
and E(R1Ri) for i = 1,2, . . ., and finally the autocovariance function and the au-
tocorrelation function of the stationary process R1,R2, . . .. (We point out that the
autocovariance function and the autocorrelation function are important quantities in
the analysis of stochastic processes; cf. [45], for instance.) If the random variables
T1,T2, . . . are iid mathematical renewal theory ([16], Chapter XI) yields a concrete
formula for GW . In particular, if the Tj have a continuous cumulative distribution
function G(·) then GW (·) = (1−G(·))/μ and

H(Rn+1 | R0, . . . ,Rn) ≥
∫ s

0
H(V(s−u))

1
μ

(1−G(u))du. (3.29)

Proofs of the formulae mentioned above and a generalized version of (3.29) for
which G(·) need not be continuous are given in [24], which also contains practical
experiments. We mention that unless the ratio s/μ (as well as the ratio js/μ) is very
small, the approximations (3.19) and (3.20) may be used to evaluate the integrals
(3.26), (3.27) and (3.29).
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Remark 3.5. (i) In the most general case (with not necessarily equidistributed in-
stants sn) the stochastic model consists of a family of distributions that belong to
the auxiliary variables V(u) for u ≥ 0. For any fixed u the parameters μ and σ define
a two-parameter family of distributions. In combination with (3.24) this allows the
coarse estimation of the conditional entropy H(Rn+1 | R1, . . . ,Rn). The conditional
entropy H(Yn+1 | Y1, . . . ,Yn) clearly depends on the algorithmic postprocessing al-
gorithm (see also Examples 3.12 and 3.13).
(ii) If sn = ns for all n ∈ N, the integrals (3.26), (3.27), (3.28) (and also (3.29) if the
Tj additionally are iid) make the stochastic model more precise and comprehensive.
The stochastic model then also comprises the autocovariance function of R1,R2, . . .
and a sharper lower bound for the conditional entropy H(Rn+1 | R1, . . . ,Rn).
(iii) Usually it is easier to derive a stochastic model for PTRNGs that exploit phys-
ical experiments (e.g., radioactive decay or quantum effects) than for PTRNGs that
exploit electronic switchings (as in Examples 3.5 and 3.6). At least for smart cards
the first type of PTRNGs is not relevant.

3.5 Algorithmic Postprocessing

In the last section our focus lay on the das random numbers r1,r2, . . . (or more
precisely, on the underlying random variables R1,R2, . . .). In this section we study
the impact of the algorithmic postprocessing. For strong noise sources algorithmic
postprocessing is not mandatory (cf. Section 3.6). Depending on the postprocess-
ing algorithm, it may provide an additional security anchor. If the entropy per das
random number is yet too low, a data-compressing postprocessing algorithm, which
increases the average entropy per random bit, is an absolute must.

Example 3.7. Figure 3.3 shows a typical PTRNG design. The noise source generates
single das bits r1,r2, . . . per time unit. In Step n bit rn is XOR-ed to the feedback
value of the LFSR, which is clocked synchronously to the digitization of the das
bits. The right-most bit of the LFSR is the current internal random bit yn.

If t denotes the number of LFSR cells for any initial state s0 of the LFSR the
mapping (s0,r1 . . . ,rn) �→ (yt+1, . . . ,yt+n) is injective, implying

Fig. 3.3 An example of physical RNG with postprocessing.
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H(R1, . . . ,Rn) = H(Yt+1, . . . ,Yt+n | s0) (3.30)

for any n∈ IN. Asymptotically, this algorithmic postprocessing does not increase
the average entropy per random bit, even if s0 is unknown. It only transforms even-
tual weaknesses of the das random bits into others (e.g., bias into dependency). In
the case of a total breakdown of the noise source the current state of the LFSR may
serve as an ‘entropy reserve’.

The analysis of the algorithmic postprocessing is more complicated if it shall
increase the average entropy per random bit (data-compressing algorithms). In par-
ticular, its impact depends on the concrete distribution of T1,T2, . . ..

Example 3.8. Assume that the random variables R1,R2, . . . are iid B(1, p)-distributed.
(a) Divide the sequence R1,R2, . . . into non-overlapping pairs (R1,R2),(R3,R4), . . .
and define Yn := R2n−1 +R2n( mod 2). If p = 0.5+0.5ε with ε ∈ [−1,1] elementary
calculations verify that the internal random numbers are iid B(1, p′)-distributed with
p′ = 0.5−0.5ε2. For small ε we have log2(0.5+0.5ε)≈ 1− ε/ log(2) (linear Tay-
lor expansion). Consequently, this algorithmic postprocessing increases the entropy
per random bit from 1− ε2/ log(2) to 1− ε4/ log(2).
(b) (von Neumann transformation; cf. e.g., [30]) Divide the sequence R1,R2, . . .
into non-overlapping pairs (R1,R2),(R3,R4), . . .. Discard the pair (R2n−1,R2n) if
R2n−1 = R2n, otherwise, the output is taken as R2n−1. The internal random num-
bers are iid B(1,0.5)-distributed (ideal RNG!). In particular, H(Yn+1 | Y1, . . . ,Yn) =
H(Yn+1) = 1.

We point out that both postprocessings from Example 3.8 reduce the output rate
of the RNG; Variant (a) by constant factor 2 while Variant (b) reduces the output
by factor p(1− p) ≤ 0.25, depending on the parameter p. Both variants increase
the quality of the random numbers, von Neumann’s transformation even produces
sequences of ideal random numbers provided that the R1,R2, . . . are iid. We refer the
interested reader to Peres’ unbiasing algorithm [34] which exploits the same idea as
von Neumann’s algorithm. At the cost of complexity, Peres’ algorithm increases the
output rate. The following example considers the impact of postprocessing Variant
(a) on Markovian random variables R1,R2, . . . (cf. Exercises 3 and 4).

Example 3.9. We consider the algorithmic postprocessing from Example 3.8(a) but
we assume that the binary-valued random variables R1,R2, . . . form an ergodic ho-
mogeneous Markov chain with transition matrix P = (pi j)0≤i, j≤1 (cf. Example 3.3).
In particular, there exists a stationary limiting distribution ν .
We point out that the random variables Y1,Y2, . . . are in general no longer Markovian,
which complicates the exact analysis of the entropy. If we assume that the random
variables R1,R2, . . . are already in equilibrium state, straightforward considerations
yield

H(Yn+1 | Y1, . . . ,Yn) ≥ H(Yn+1 | R1, . . . ,R2n) = H(Yn+1 | R2n) = (3.31)

H(R2n+1 ⊕R2n+2 | R2n) = H̄(ν(0)p01(p10 + p00)+ ν(1)p10(p11 + p01)) =
2p01 p10/(p01 p10) .
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On the other hand, H(R2n+1 | R2n) = H̄(ν(0)p01 + ν(1)p11). We point out that the
lower entropy bound from (3.31) can be further improved (cf. Exercise 3).

Example 3.10. (One-way postprocessing)
(a) A dedicated hash function Ha(·) with output length m bits (e.g., Ha=SHA-1
with m = 160 or Ha=SHA-256 with m = 256) is applied to non-overlapping blocks
b1,b2, . . . of consecutive (m+k) das bits (k ≥ 0). The hash values are used as internal
random numbers.
(b): As in (a), but the previous internal random number (extended by k zeroes) and
the current das bit block are first XOR-ed to an (m + k)-bit register, and then the
hash function is applied to this register.

At first sight both variants may seem to be equivalent. As far as the PTRNG
generates strong das random numbers this is indeed true. The second variant is yet
preferable if the quality (entropy) of the das random numbers decreases (which yet
should be detected by the online test!, see Section 3.6). Note that even if the PTRNG
produces constant (known) sequences of das random numbers variant (b) still con-
stitutes a strong DRNG which fulfils requirement (R3) (see Chapter 2) provided, of
course, that the (m+ k) bit register may be viewed as uniformly distributed. This is
the case if at least one ‘strong’ das bit block had been added to the register or several
XOR-operations with low entropy blocks have been performed.

Example 3.11. (Continuation of Example 3.10)
It is practically infeasible to characterize the distribution of the internal random
numbers or to calculate its entropy explicitly. On the other hand, hash functions are
commonly assumed to behave in many regards as random mappings. We determine
below the mean entropy for a related scenario where the algorithmic postprocess-
ing algorithm is selected independently and uniformly from the set F(m+k,m) :=
{φ : {0,1}m+k → {0,1}m} for each internal random number. The randomly se-
lected algorithmic postprocessing algorithms are assumed to be publicly known.
For simplicity, we assume that the das random bits are iid B(1,0.5) distributed.
Consequently, the random input blocks B1,B2, . . . are iid uniformly distributed on
{0,1}m+k for both variants. Symmetry implies

E (H(Ha(Bn))) = (3.32)

− 1
|F(m+k,m)| ∑

φ∈F(m+k,m)

∑
y∈{0,1}m

|φ−1(y)|
2(m+k) log2

(
|φ−1(y)|
2(m+k)

)
=

− 2m

|F(m+k,m)| ∑
φ∈F(m+k,m)

|φ−1(y0)|
2(m+k) log2

(
|φ−1(y0)|

2(m+k)

)

where y0 ∈ {0,1}m is arbitrary but fixed. To simplify notation we temporarily use
the abbreviations v := 2m+k and w := 2m. For any fixed subset J ⊆ {0,1}m+k the
probability of being the pre-image of a uniformly selected mapping φ ∈ F(m+k,m)

clearly is (w−1)|J|(1−w)v−|J|. Hence the last term of (3.32) equals
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−w
v

∑
j=0

(
v
j

)(
1
w

) j(w−1
w

)v− j( j
v

)
log2

(
j
v

)
= (3.33)

−w
v

[
v

∑
j=0

(
v
j

)(
1
w

) j(w−1
w

)v− j

j log2( j)− log2(w)
v

∑
j=0

(
v
j

)(
1
w

) j(w−1
w

)v− j

j

]

= log2(w)− w
v

v

∑
j=0

(
v
j

)(
1
w

) j(w−1
w

)v− j

j log2( j).

The second term quantifies the ‘entropy defect’ from the uniform distribution on
{0,1}m. The DeMoivre-Laplace approximation yields

log2(w)− w
v

v

∑
j=0

exp
−( j−v/w)2

2v(1/w)(w−1)/w√
2π(v/w)(w−1)/w

j log2( j) ≈ (3.34)

log2(w)−2−k
v

∑
j=0

exp
−( j−2k)2

2k+1

√
2π2k

j log2( j) ≈

log2(w)− 2−k

log(2)
√

2π2k

∫ ∞

0
exp

−(t−2k)2

2k+1 t log(t)dt.

(For small integer k the Poisson approximation may give better approximations.)

Note that the integrand is ≤ exp
−( j−2k )2

2k+1 t2. Extending the domain of integration
from [0,∞) to (−∞,∞) provides the coarse lower entropy bound log2(w)−1/((1 +
2k) log(2)). Note that any computer algebra system enables the precise evaluation
of (3.34) (Exercise 5).

Example 3.12. (Continuation of Example 3.5)
The stochastic model that was specified in (3.12) to (3.14) fits to the das random
numbers from Example 3.5; see also [42], ‘Justification of the stochastic model’.

The randomness of the internal random numbers follows from the uncertainty
about how often the LFSR and CASR are clocked between successive outputs of
internal random numbers. In contrast, if an adversary knows the number of clocks,
the internal random numbers (and unpublished design parameters), he can form a
system of equations to determine the internal state of LFSR and CASR, comput-
ing the next internal random numbers from the number of cycles between the next
outputs.

The average increase of entropy per internal random number (k bits) is clearly
limited from above by the average increase of entropy per das random number
within this time period. It is yet not obvious how much entropy are really ex-
tracted by XORing k selected bits from the LFSR and CASR. In [42] an up-
per and a lower entropy bound for the internal random numbers is worked out.
For details we refer the interested reader to [42], in particular to Theorems 1
and 2. Numerical results are collected in [42], Table 3.1. For k = 1, μ/σ = 0.01
and time s = 60,000 · μ between successive outputs of internal random numbers.
For instance, we have H(Yn+1 | Y1, . . . ,Yn) ≥ 0.991, while H((Rn+1(1),Rn+1(2)) |
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(R1(1),R1(2)), . . . ,(Rn(1),Rn(2))) = 6.698, providing an upper entropy bound for the
internal random numbers. Note that this upper entropy bound does not provide a
positive result on the question on how large k may be chosen. It yet says that
in no case more than k = 6 bits should be extracted. For s = 10,000 · μ , we ob-
tain H(Yn+1 | Y1, . . . ,Yn) ≥ 0.943 for k = 1, (respectively, we have H ≥ 1.827 and
H ≥ 2.600 for k = 2 and k = 3). The average entropy per das random number (two
ring oscillators) then is 4.209 bit.

Example 3.13. As already pointed out, the stochastic properties of das random num-
bers in Example 3.6 can also be described. with the stochastic model that was speci-
fied in (3.12) to (3.14). The postprocessing is less complicated than in Example 3.12.
Simplify speaking, we essentially have to replace V(s−u) by V(s−u)( mod 2) (see [24]
for details).

Remark 3.6. As already pointed out in Chapter 2, Remark 2.1, for particular cryp-
tographic applications non-complex relations exist that provide information on the
unknown random numbers. For instance, N DSA- or ECDSA signatures yield a
system of N linear equations in N + 1 variables. Any disclosed ephemeral key im-
mediately compromises the signature key x and, similarly, if an adversary knows a
few bits from many ephemeral keys more sophisticated lattice-based methods also
allow one to recover x (see, e.g., [18]). If the signature key x and all ephemeral
keys yet were generated by an ideal RNG, these linear equations would not provide
any additional information on x (neglecting other information as the public key, for
instance (→ discrete log problem)); finding e.g., a DSA-signature key still would
remain a 160 problem. Principally, even a small entropy defect per internal random
bit may violate this ‘theoretical’ security property of the linear equations if N is suf-
ficiently large (neglecting any other information on x), although it should be noted
that no practial attack is known that exploits (in particular, small) entropy defects
that are ‘smeared’ over the randomly selected ephemeral keys. If the das random
numbers, as well as the internal random numbers, are iid, the von Neumann trans-
formation (Example 3.8b) may be applied to eliminate eventual entropy defects. In
the general case, it might be an option to apply an additional strong cryptographic
postprocessing algorithm on the internal random numbers for applications of this
type, providing a second security anchor (cf. Section 3.7).

3.6 Online Test, Tot Test, and Self Test

In Sections 3.3, 3.4, and 3.5 we discussed intensively how to estimate the entropy
per random number. We introduced the concept of a stochastic model and illus-
trated the evaluation process by several examples. We specified and analyzed several
parameter-dependent families of distributions (→ stochastic model), and we consid-
ered the impact of the algorithmic postprocessing. If a single PTRNG is concerned,
the parameter(s) are estimated from random number sequences that were generated
with this device. When evaluating a PTRNG design that is implemented on millions
of smart cards the parameter(s) are estimated only for a few PTRNGs.
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However, a concrete PTRNG in operation may generate random numbers that
are much weaker than those of the carefully investigated prototypes in the labora-
tory. This may have several reasons, e.g., tolerances of components, ageing effects,
external influences (fault attacks) or even a total failure of the noise source.

Requirement (O1) characterizes the task of a tot test (‘tot’ stands for ‘total fail-
ure’, not for the German adjective tot (=dead)).

• (O1) The tot test should detect a total breakdown of the noise source almost
immediately.

More precisely, the tot test shall detect a total breakdown before any internal
random number can be output that was influenced by das random numbers which
were generated after a total failure of the noise source. (A total failure reduces the
entropy of the following das random numbers to 0.) This requirement may be re-
laxed for memory-dependent algorithmic postprocessing algorithms since the his-
tory variables constitute an ‘entropy reserve’ (cf. Example 3.7) In the best case a
total breakdown causes a constant sequence of das random numbers, which can eas-
ily be detected. Depending on the noise source more complicated pseudorandom
patterns may occur; consider for instance the stochastic model specified in (3.12)
to (3.14). The reduction of the generalized variance σ2 to zero implies the gener-
ation of non-constant pseudorandom sequences. The tot test may be realized by a
statistical test or by measurements of technical parameters such as electrical current,
capacity, etc.

A self test should be applied after each start of the PTRNG, just to check the
functionality in a qualitative sense. Self tests need not meet specific requirements.

The task of the online test is most critical. It shall detect any non-tolerable weak-
nesses of the random numbers while the RNG is in operation. The next section is
exclusively devoted to online tests.

Besides the entropy analysis of the concrete design (inclusive the algorithmic
postprocessing), the evaluator also has to verify the effectiveness of the online, tot
and self tests. This also comprises the specified consequences of noise alarms, i.e.,
when a statistical test fails.

Remark 3.7. The literature does not consistently distinguish between online test, tot
test and self test. Some authors speak of online tests or health tests, which include
the tasks of the tot test and the self test. In our understanding, these tests should
be distinguished at least from a logical point of view since their tasks are different.
However, in concrete implementations, a single test may cover all aspects simulta-
neously.

3.6.1 Online Tests

The first question clearly is which random numbers should be tested. Since the ex-
ternal random numbers are not under the designer’s control we only have the choice
between the das random numbers and the internal random numbers.
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Let us reconsider Example 3.7. In the worst case the noise source totally breaks
down, generating a constant sequence of das bits. For a constant sequence . . . ,0,0, . . .
of das random numbers the PTRNG is equivalent to a free-running LFSR which is
a weak DRNG; the internal random numbers are then deterministic, having entropy
0. However, if the LFSR is not too short, the internal random numbers y1,y2, . . . will
pass almost any collection of statistical blackbox tests unless specific characteris-
tics of LFSR output sequences (as the linear complexity profile) are tested. Serious
weaknesses of the noise source (though not a total breakdown) can hardly be de-
tected by statistical tests. Testing the das bits would reveal at least a total breakdown
immediately.

This elementary example points to a general rule, namely that usually the das
bits should be tested if the RNG permits access. We point out that in very specific
situations it may also be reasonable to test the internal random numbers instead. This
may be the case if the das random numbers only possess low entropy and if their
distribution may assume very different set parameters, e.g., if we consider a whole
production series. Of course, effective tests for internal random numbers demand
precise stochastic models of the internal random numbers, which seems feasible
at the most for simple postprocessing algorithms (cf. Example 3.8). In contrast,
Example 3.10 provides a typical counterexample. Even low entropy input causes
statistically inconspicious output random numbers.

We point out that there do not exist statistical tests that are universally strong
for any PTRNG design. For iid B(1, p)-distributed R1,R2, . . . (cf. Example 3.1),
for instance, a monobit test which simply counts the number of zeroes and ones
within a sample, is clearly appropriate. On the other hand, weaknesses of the type
. . . ,0,1,0,1, . . . will not be detected by a monobit test.

Instead, statistical tests should be tailored to the stochastic model of the das ran-
dom numbers or the internal random numbers (cf. Example 3.14). The distribution
of R1,R2, . . ., as well as of Y1,Y2, . . ., and of auxiliary random variables shall re-
main in the class of distributions that was specified in the stochastic model under all
circumstances, in particular, if non-tolerable weaknesses of the R j occur.

Requirement (O2) to requirement (O4) formulate generic properties that online
tests should fulfil.

• (O2) Non-tolerable statistical weaknesses of the das random numbers should be
detected sufficiently fast.

• (O3) If the weaknesses of the random numbers are tolerable (i.e., if the ‘dis-
tance’ of the respective random variables from iid uniformly distributed random
variables (→ ideal RNG) is small) the probability for a noise alarm should be
(almost) negligible.

• (O4) The online test should run fast and require only a few lines of code and little
memory.

Remark 3.8. ‘Real-world’ PTRNGs are hardly optimal, at least not in a strict sense.
However, certain deviations from an ideal RNG are tolerable. To ensure function-
ality, the online test should be passed with overwhelming probability if the weak-
nesses are tolerable (→ (O3)).
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Example 3.14. (i) In Example 3.1 we assumed that the das random numbers are iid
B(1, p)-distributed. For this stochastic model, a monobit test would be appropriate.
(ii) Example 3.3 we considered a two-parameter family of distributions which may
be parametrized by the transition probabilities p01 and p10. Equality p01 = p10 ∈
(0,1) implies ν = (0.5,0.5). Although the random variables R1,R2, . . . may be far
from being independent (if p01 = p10 = 0.8, for instance) it is very likely that the
monobit test will be passed. Hence the monobit test is not effective for this PTRNG.
Effective online tests should consider transition probabilities (see Exercise 6).
(iii) In Examples 3.5 and 3.12 (as well as in Examples 3.6 and 3.13) the situation
is more complicated. An effective test of the internal random numbers seems to
be hardly possible. Instead, the das random numbers should be tested. For time
intervals with given length u, the increase of entropy essentially depends on μ and
σ2. Hence it is natural to check the arithmetic mean and the empirical variance of
the number of clock cycles (as well as switchings) within time intervals of fixed
length (→ Exercise 7).

Statistical tests with extremely small rejection probabilities are widely spread in
practice. The following example illustrates the disadvantages of those approaches.
For details we refer the interested reader to [40], Section 4.

Example 3.15. The binary-valued das random numbers r1, . . . ,r320 are grouped into
80 non-overlapping 4-bit words which are identified with integers from 0 to 15. A
χ2-goodness-of-fit test on these 4-bit words (aka poker test) is applied

c :=
15

∑
i=0

( f r(i)−5)2

5
(3.35)

where f r(i) denotes the number of i’s within the eighty 4-bit words ([22], p. 69).
The test is passed if the test value c ≤ 65.

If the R1,R2, . . . are iid B(1,0.5)-distributed the χ2-test variable C is multinomi-
ally distributed. If the sample size tends to infinity the distribution of C tends to the
χ2-distribution with 15 degrees of freedom, χ2

15. For moderate rejection probabili-
ties this approximation is fully appropriate. However, Prob(X > 65.0) = 3.4 ·10−8

for a χ2
15 distributed random variable X , while exact computations yield Prob(C >

65.0) = 3.8 · 10−7. Although the absolute error is small the relative error is not,
namely

|Prob(T > 65.0)−Prob(X > 65.0)|
Prob(X > 65.0)

≈ 10.1 . (3.36)

Note that for the rejection boundary 30.6, for instance, the relative error is only
≈ 0.03.

This example points to a general problem: Often, only the limit distribution of
the test variable is known (i.e., when the sample size of the statistical test converges
to infinity), usually only for one specific distribution (typically for iid uniformly
distributed random variables). The relative approximation error at the tails of the
distribution is usually considerably large. In Example 3.15 even for an ideal RNG,
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10 times more online tests would fail than the designer expects if he relies upon the
χ2-approximation. This is not a security problem but may affect functionality. Other
statistical tests may show the opposite behavior, i.e., less failures of the online test
may occur than expected, which might induce security problems.

Another relevant question is the failure probability of the online test for random
numbers that are not ideal. The limit distribution does not give an answer even for
moderate rejection probabilities α (e.g., α ≈ 10−3). However, moderate α allows
approximations by stochastic simulations ([40], Section 7; see also Chapter 2, Sec-
tion 4.3). According to a specified distribution (which is relevant for the PTRNG
in evaluation), pseudorandom numbers b̃1, b̃2, . . . are generated. For example, iid
B(1,0.485)-distributed random variables or a Markov chain with a particular transi-
tion matrix P may be simulated. The statistical test is applied to the pseudorandom
numbers in place of the das random numbers, as well as of the internal random num-
bers. Repeating this process many times gives an empirical cumulative distribution
which provides estimates for particular rejection probabilities under the specified
distribution (e.g., Prob(C > 30.6) in Example 3.15 for iid B(1,0.485)-distributed
random variables). To obtain reliable estimates for the unknown rejection probabili-
ties, as a rule of thumb we recommend to repeat the simulations at least M ≥ 100/α
times where α denotes the true but unknown rejection probability of interest. (Some-
what more than 100 failures of the basic test indicate that this number M should
be reached.) Extremely small rejection probabilities as 10−9, for instance, require
gigantic workload which is a further argument to consider moderate rejection prob-
abilities.

The key idea is to apply an elementary statistical test (→ (O4)) to the random
numbers but to exploit the test value by different rules which cover the requirements
formulated in (O1) to (O3) above. We sketch the procedure that was introduced in
Ref. [40]. We recommend the interested reader to study this reference.

At first the designer selects a statistical test, the so-called basic test, with regard
to the specific PTRNG (as well as with regard to its stochastic model). This might be
a monobit test (→ Example 3.1), a test that considers one-step transition frequencies
(→ Example 3.3) or a χ2 goodness of fit test, for example, provided that the required
memory, the lines of code and the execution time are acceptable for the device used
and the intended applications. Note, however, that the particular choice of the basic
test does not affect the general principle of the online test procedure.

A test suite consists of at the most N basic tests. The basic test values are de-
noted with c1,c2, . . . while hc0,hc1,hc2, . . . denote the history variables. We start
with hc0 := E0,r(C), the expectation of the basic test for ideal RNGs, rounded to
a multiple of 2−c. In Step j ∈ {1, . . . ,N} a basic test is performed, and hc j :=
(1− β )hc j−1 + β c j is computed (with β = 2−b � 1) and rounded to a multiple
of 2−c where c denotes a fixed integer (typically c ∈ {5,6}). Since β is a power of
2, updating the history variable only needs integer arithmetic. In Step j the following
decision rules are applied:

(A): if c j �∈ S(A) ⇒ stop the test suite + noise alarm
(B): if c j−k+1, . . . ,c j �∈ S(B) ⇒ stop the test suite + noise pre-alarm
(C): if hc j �∈ S(C) ⇒ stop the test suite + noise pre-alarm
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If no noise alarm or noise pre-alarm occurs within the steps 1, . . . ,N a new test suite
begins. After a noise pre-alarm a new test suite begins. Noise pre-alarms in x ≥ 1
consecutive test suites induce a noise alarm. The designer of the PTRNG should
specify the consequences of a noise alarm in the user’s manual of the PTRNG (if
there is any). The consequences should be adjusted to the concrete PTRNG design,
the basic test, the decision rules (A) to (C), the type of application, etc. The most
restrictive consequence is to stop the generation of the random numbers forever.
Alternatively, the generation of further random numbers may be accepted after a
specific test procedure has been passed, or a manual restart of the TRNG may be
permitted. In these cases, noise alarms should be logged.

Criterion (A) covers the tot test functionality. The set S(A) is selected that a fail-
ure of criterion (A) is extremely unlikely for any acceptable distributions of the
random numbers. Criterion (B) combines several consecutive failures of the basic
test, each of them occurring with probability between 10−3 and 10−2 (to give a rule
of thumb). The history variables hc1,hc2, . . . shall detect if the mean value of the test
values c1,c2, . . . drifts too far from E0,r(C) without increasing the sample size of the
basic test (for details see [40]). Note that single statistical tests may be viewed as a
special case where the complements of S(A) and S(C) are empty (i.e., no condition)
and k = 1.

In order to select appropriate sets and parameters the range of possible distribu-
tions (→ stochastic model) of the das random numbers, as well as of the internal
random numbers, and of auxiliary random variables, shall be divided into three sub-
sets, possibly under consideration of the intended applications: the subset of distri-
butions which are fully agreeable, the subset of non-tolerable distributions and the
complement of these two subsets. If the distribution of the random numbers lies in
the first subset a noise alarm should occur only with negligible probability, while
a noise alarm should occur as soon as possible if the distribution lies in the second
subset. If the true distribution is contained in the third set a noise alarm should occur
sooner or later.

Example 3.16. In Example 3.1 we assumed that the das random numbers were iid
B(1, p)-distributed. Assume that the set of tolerable and non-tolerable distributions
are given by the intervals p ∈ [0.49,0.51] and p ∈ [0.0,0.47]∪ [0.53,1.0], respec-
tively.

If the algorithmic postprocessing from Example 3.8(a) is applied, p ∈ [0.5−√
0.02,0.5 +

√
0.02] and p ∈ [0.0,0.5−

√
0.06]∪ [0.5 +

√
0.06,1.0] define corre-

sponding sets. For von Neumann’s algorithmic postprocessing, these conditions may
be even further relaxed. As long as the true distribution of the random numbers is
contained in the specified family (here, if the respective random variables remain
iid) only performance reasons may enforce a noise alarm. (Note that the output rate
shrinks with increasing bias.)

Time intervals or events have to be specified when a basic test shall be executed,
e.g., always, one basic test per second, one basic test after each external call for
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random numbers, permanent testing within the idle time of the device (if the PTRNG
is part of a larger cryptographic system), etc.

If the internal random numbers can be buffered it may be reasonable to apply
the following test strategy: If the number of tested internal random numbers in this
buffer (i.e., internal random numbers that are ready to be output) falls below a spec-
ified bound the buffer is filled up with new internal random numbers. These new
internal random numbers or the das random numbers that are generated at the same
time form the beginning of a sample to which the online test is applied to. When the
online test has been passed also the new random numbers are ready to be output.
Otherwise these numbers are deleted.

Alternatively, the online test may be applied after the buffer has been filled with
new internal numbers. The advantage of this variant is that an adversary has abso-
lutely no information on the stored internal random numbers. We will come back to
this topic in Section 3.8 in the light of side-channel attacks and fault attacks.

With regard to the intended applications, a reasonable upper bound for the av-
erage number of noise alarms per year should be specified. Assume, for instance,
that for a specific smart card ≤ 0.00002 noise alarms per year occur on average if
the true distribution of the random numbers is acceptable. If the smart card is set
mute after a noise alarm about 20 smart cards per million have to be exchanged
unnecessarily per year.

To select appropriate parameters, the designer should be able to compute the
probability for a noise alarm within a test suite. Depending on the application
and on the applied test strategy (→ expected number of basic tests per year) this
implies the expected number of noise alarms per year. Since each basic test re-
quires many random numbers, it is reasonable to assume that the random variables
C1,C2, . . . are iid. Consequently, (HC0 = E0,r(C),n0 = 0),(HC1,n1),(HC2,n2), . . .
forms a homogeneous absorbing Markov chain on the finite state space Ω =
{ j2c | j2c ∈ S(C)}×{0,1, . . . ,k− 1}∪{∞}. The number n j is maximum such that
c j,c j−1, . . . ,c j−n j+1 �∈ S(B). The absorbing state ∞ is attained if criterion (B) or (C)
is violated. (Recall that criterion (A) is violated only with negligble probability un-
less the PTRNG has at least (almost) totally broken down.) For details the interested
reader is referred to Ref. [40], Section 6.

Example 3.17. The basic test is a χ2 test on 128 four-bit words while S(A) =
[0.0,200.0], S(B) = [0.0,26.75] and S(C) = [13.0,17.0]. Further, β = 2−6, c = 5,
k = 3 and x = 3. With regard to the application and the specified test strategy we
expect 530,000 basic tests per year. The stochastic model indicates that the ran-
dom numbers are iid B(1, p)-distributed. Table 3.1 collects some numerical results.
The term pnpa quantifies the probability of a noise pre-alarm within a particular test
suite. These figures indicate that for |0.5− p| > 0.025 a noise alarm should occur
soon while for |0.5− p| ≤ 0.01 noise alarms are relatively rare events. Note, how-
ever, that for typical smart card applications smaller noise alarm probabilities for
acceptable distributions are necessary, at least if the consequence of a noise alarm
is to shut the PTRNG down forever.
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Table 3.1 Numerical example.

p pnpa E
(

# noise alarms
year

)

0.500 0.0162 0.004
0.495 0.0184 0.006
0.490 0.0289 0.024
0.485 0.0745 0.396
0.480 0.2790 16.6
0.475 0.7470

Remark 3.9. (see [40], Section 9)
(i) The number N should be a power of 2 to save unnecessary matrix multiplications
with large matrices. This minimizes the computation time and reduces round-off er-
rors when computing the probability pnpa.
(ii) The smaller β := 2−b the smaller is the influence of single basic test values on
the history variables hc1,hc2, . . ..
(iii) The history variables HC0,HC1, . . . may be interpreted as a ‘weighted’ random
walk on S(C)∩{ j2−c | j ∈ Z} with absorbing state ∞. The smaller c the more ‘inert’
is this random walk and the smaller is pnpa.
We recommend to choose b,c ∈ {5,6}. (Recall that the transition matrix P has
|Ω |2 = (k · |S(C)∩{ j2−c | j ∈ Z}|+ 1)2 entries.).
(iv) Although it is relevant, the meaning of the sample size m of the basic test
is often neglected. Consider, for instance, a monobit test with sample size m and
S(B) = [0.5m − α

√
m,0.5m + α

√
m] for fixed α . For an ideal RNG, Prob(Cj ∈

S(B)) = Φ(2α)−Φ(−2α) regardless of m (provided that m is not extremely small).
If the random numbers are iid B(1, p)-distributed with p �= 0.5 this is yet no longer
true. For p = 0.49, for instance, the rejection probability is almost the same as for
p = 0.5 if m is small but almost 1 for very large m (see also Exercise 8).

The next remark addresses important aspects which have not been discussed
in this chapter. Remark 3.10(i) refers to fault attacks which will be treated in
Section 3.8.

Remark 3.10. (i) Primarily, online and tot tests shall detect unintended weaknesses
of the noise source (ageing effects, tolerances of components, total breakdown of
the noise source). However, the designer should also consider possible active at-
tacks (fault attacks). Such attacks should either be prevented or detected by physical
countermeasures, or at least the distribution of the random numbers should remain
in the specified class of distributions (→ stochastic model), moving to the subset
of unacceptable distributions if the quality (entropy) of the random numbers goes
down (cf. Section 3.8).
(ii) In this section we only considered eventual misbehavior of the analog part of
the PTRNG. However, the algorithmic parts of the RNG might be implemented



3 Evaluation Criteria for Physical Random Number Generators 49

incorrectly, or particular components (e.g., an LFSR or a buffer) may become de-
fective Such failures could be detected with known-answer tests (see [20]).

3.7 Alternative Security Philosophies

In this chapter we treated stochastic models and effective online tests. As already
pointed out, this shall ensure theoretical security, or more precisely, quantify the
average workload to guess random numbers with a non-negligible probability if
the adversary has maximum knowhow and unlimited computational power. A re-
liable stochastic model and effective online tests are mandatory for a successful
evaluation with regard to the evaluation guidance AIS 31 ([2, 23]), which has been
effective in the German certification scheme (→ Common Criteria, [8, 9]) since
2001. A large number of certification processes have verified the applicability of
the AIS 31 to very different PTRNG designs. The Common Criteria themselves do
not provide evaluation rules for RNGs. We point out that the AIS 20 and AIS 31
are currently updated. In particular, DRNGs and PTRNGs will be treated in a joint
document.

We note that alternative security paradigms exist. The security of a PTRNG may
essentially be grounded on a strong cryptographic postprocessing algorithm with
memory, so that even a total breakdown of the noise source leaves a DRNG that ful-
fils requirements (R1) and (R2) or even (R1), (R2) and (R3). In other words, even if
the entropy of the das random numbers decreases to 0 the postprocessing still guar-
antees computational security provided that the entropy of the memory buffer was
maximum at some instant, which should be the case if the noise source had worked
properly for some time. This reduces the requirements on the understanding of the
noise source and the effectiveness of the online tests considerably. On the negative
side, this does not ensure theoretical security, and (time-consuming) cryptograph-
ically strong postprocessing is mandatory. In our understanding, this construction
is essentially a hybrid DRNG. The ISO standard 18031 [20] allows both alterna-
tives, namely a (security-proofed) strong noise source with effective online tests,
but also a not necessarily strong noise source with a not necessarily effective on-
line test (aka health test) combined with a cryptographically strong postprocessing
algorithm.

We note that a combination of both security paradigms, a strong noise source with
effective online tests and a (possibly additional) strong cryptographic postprocess-
ing with memory, provides two security anchors, one aiming at theoretical security,
the other on practical security. A further advantage of such hybrid PTRNGs is that
they may be operated in different modes, depending on the security and functional
requirements of the application: as a pure PTRNG (skipping the cryptographic post-
processing), as a hybrid PTRNG (applying the cryptographic postprocessing), or as
a pure/hybrid DRNG (without updating the memory of the cryptographic postpro-
cessing algorithm continuously). The third mode might be necessary to achieve high
output rates, e.g., to generate blinding or masking values (as a protection against
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side-channel attacks) for high-speed encryption. Hybrid RNGs will explicitly be
considered in the updated versions of the AIS 20 and AIS 31.

3.8 Side-channel Attacks and Fault Attacks

In the last decade, side-channel attacks and fault attacks have attracted enormous
attention in both the scientific community and smart card industry. Unless a cryp-
tographic device is operated in a secure environment side-channel and fault attacks
constitute serious threats to any security-relevant operation. Although it is part of
the overall security evaluation of the device we briefly address some aspects that
concern the PTRNG, comprising the noise source, the algorithmic postprocessing
algorithm and the online (tot, self) test.

Of course, the noise source (or more precisely, the das bits) should be resistant
against side-channel attacks (in particular against electromagnetic radiation attacks).
If the noise source is not properly shielded or sensors do not detect possible fault
attacks, the duties of the online test also comprise the detection of non-tolerable
weaknesses of the das random numbers (as well as of the internal random numbers)
that might be induced by successful fault attacks (cf. Remark 3.10(i)). In [24] an
RNG design similar to that in Example 3.6 is discussed with two noisy diodes in-
stead of one, where the difference of the output voltages of both diodes is exploited.
The basic idea is to prevent fault attacks since external influences should affect
both diodes in the same way. We mention that one has to take care that the output
voltages are not too different, which might lower the output rate substantially. The
postprocessing algorithm should also be protected. If realized by algorithms from
the cryptolibrary, effective solutions should have been developed in connection with
the protection of these cryptographic algorithms anyway.

In Section 3.6 we discussed two application schemes for the online test. In the
first scheme (here denoted as scheme A) the designated output data themselves are
part of a sample to which the online test is applied, while in the second scheme (here
denoted as scheme B) the designated output data are buffered first before the online
test is applied. Assume the worst case scenario for the moment, namely, that the
implementation does not prevent side-channel and/or fault attacks. For scheme A a
(maximum) successful side-channel attack might reveal the tested random numbers,
and a successful fault attack (applied to the before-buffered random numbers) might
fool scheme B. (Note that this fault attack violated the stationarity assumption.)
Vice versa, a fault attack on scheme A should cause a noise (pre-)alarm whereas in
scheme B a side-channel attack on the online test does not reveal the buffered data.

If this is necessary for the concrete device and the intended conditions of use one
might consider a combination of both schemes, hoping that external manipulations
cannot be switched on and off at very short intervals. In the easiest case, the das ran-
dom numbers and the internal random numbers are iid. Then the random numbers
may be transmitted alternately over two separate lines, applying scheme A on line
1 and scheme B on line 2. The designated output values are stored in intermediate
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buffers. If both online tests have been passed, the content of the intermediate buffers
are XOR-ed.

3.9 Exercises

1. Consider Example 3.3 with m = 2 (binary-valued random variables) and transi-
tion matrix P = (pi j)0≤i, j≤1.
(i) Determine H(Rn+1 | Rn) if the RNG is in equilibrium state. In particular, com-
pute the numerical values for the special cases (p01 = p10 = 0.5), (p01 = p10 =
0.6), (p01 = 0.6, p10 = 0.4) and (p01 = 0.45, p10 = 0.51).
(ii) Compute H(Rn+1 | Rn = i) and H∞(Rn+1 | Rn = i) for the parameter values
from (i) for i = 0,1.
(iii) Compare and discuss the results from (i) and (ii).

2. Consider a high-frequency oscillator that provides the D-input of a flip-flop. The
flip-flop is latched by a low frequency oscillator. Formulate a stochastic model
and try to analyse this model. Does this model remain valid if both oscillators are
realized as ring oscillators?

3. Improve the lower entropy bound (3.31) in Example 3.9. Hint: Consider the con-
ditional entropy H(Yn+1 | Yn,R2n−2).

4. Derive a lower entropy bound for Example 3.9 if the von Neumann postprocess-
ing is applied.

5. Consider Example 3.11.
(a) Evaluate the right-hand integral in (3.34) for k ∈ {3,4,5,6}, e.g., by numeri-
cal integration or with a computer algebra system. Compare the exact value with
the coarse lower bound given in Example 3.11.
(b) Try to estimate the entropy per internal random number for other distribu-
tions than iid B(1,0.5)-distributed das random numbers, e.g., if the das random
numbers are B(1, p)-distributed with arbitrary p.

6. Propose an effective online test for Example 3.14(ii). Justify your answer.
7. Propose an effective online test for Example 3.14(iii). Justify your answer.
8. Consider Remark 3.9. Determine Prob(Cj ∈ S(B)) for several parameter values

(p,α,m).

3.10 Projects

1. Implement a PTRNG on an FPGA. If you exploit more than one noise source, are
these noise sources independent? Try to formulate, justify and analyze a stochas-
tic model.

2. Implement the circuit from Exercise 2 with CMOS chips. Implement both oscil-
lators as ring oscillators. The stochastic model determined in Exercise 2 contains
parameters. Use your hardware implementation to determine numerical values
for these parameters.
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Chapter 4
True Random Number Generators
for Cryptography

Berk Sunar

4.1 Introduction

Random numbers and randomization techniques are critical for modern-day cryp-
tography. Random numbers are used to initialize key bits for secret- and public-key
algorithms, seed pseudo-random number generators, provide challenges, nonces,
padding bits, as well as initialization vectors in cryptographic primitives and pro-
tocols. For cryptographic applications it is crucial to generate pseudo-random bits
which will be unpredictable to the adversary even at the exposure of partial infor-
mation. The literature is filled with protocols that are built around state-of-the-art
cryptographic primitives, yet fail in practice, due to a weak random number genera-
tor (cf. [1]).

In this chapter, we focus on practical TRNG designs that are suitable for man-
ufacturing on common ASIC silicon process or to be implemented on reconfig-
urable logic platforms (e.g., FPGA, CPLD, etc.). Hence, esoteric designs and soft-
ware TRNGs (e.g., TRNGs that use randomness in RAM or Disk access times [2])
are not discussed. Unfortunately, the literature of TRNG designs is rather scattered.
Some designs appear in academic articles fragmented into a number of fields which
specialize in digital design techniques, integrated circuits, and even physics. Many
designs are simply patented and otherwise not published. Therefore, our survey of
TRNG design will be incomplete. We survey a number of selected designs and dis-
cuss them in terms of their performance, weaknesses, scalability, and versatility.

In the remainder of this chapter we first discuss the building blocks of common
TRNGs. We then present a potpouri of TRNG designs; incomplete, yet chosen to
expose the diversity in design techniques. This is followed by a survey of post-
processing techniques. Finally, we present several new research problems motivated
by real-life needs.
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4.2 TRNG Building Blocks

A true random number generator (TRNG) is a device that utilizes physical processes
to generate a random bit stream. Although there is a zoo of TRNGs available, the
most popular and useful ones are commonly built from the following three compo-
nents:
Entropy Source: Numerous TRNG designs have been proposed in the literature for
collecting randomness from physical processes such as thermal and shot noise in
circuits, jitter and metastability in circuits, Brownian motion, atmospheric noise, or
even nuclear decay. The entropy source is perhaps the most critical component as it
determines the available entropy. On the other hand, it should be clear that sources
such as atmospheric noise [3] and nuclear decay are not viable except for fairly
restricted applications or online distribution services. Furthermore, some sources
exhibit biases which should be eliminated in the collection or postprocessing steps.
Quantification of the available entropy and its exact statistical properties is another
significant design task. Another issue is considering long-term effects which may
cause the breakdown in the entropy source. Active monitoring techniques for de-
tecting total breakdown are available. However, more subtle failures are difficult to
detect in practice.
Harvesting Technique: The entropy source is tapped using a harvesting technique
that ideally does not disturb the physical process above, yet collects as much entropy
as possible. A large number of designs have been proposed to realize this step. Since
blackbox analysis of TRNGs other than statistical tests and simple true randomness
tests (Tot and restart1) are impossible, the harvesting mechanism should come with
rigorous justification.
Postprocessing: Although this component is not needed in all designs, good design
practice dictates the use of a postprocessor. The goal is to make the TRNG de-
sign more robust by postprocessing the output bits. A postprocessor may be applied
to hide or eliminate biases and/or dependencies in the entropy source or harvest-
ing mechanism. A secondary goal, which has gained quite a bit of importance due
to active fault and side-channel attacks, is to provide resilience to environmental
changes and to tampering by adversaries. A postprocessor may be as simple as a
von Neumann corrector [4] or may be as complicated as an extractor function [5] or
a one-way hash function such as SHA-1 [6]. Although one-way hash functions such
as SHA-1 or MD5 provide a safety net when used for postprocessing, they make the
analysis of the output distribution very difficult.

Finally, we would like to note that postprocessing algorithms do not merely im-
prove the output distribution and make the design more robust but also bring a
degree of flexibility into the design. For instance, postprocessing techniques with

1 Briefly stated, Tot tests check for a total breakdown of the entropy source of an RNG usually
caused due to material ageing effects or extreme fluctuations in the operating conditions. Restart
tests verify generation of randomness by restarting the RNG from nearly identical operating con-
ditions.
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quantifiable properties allow trade-offs to be made between the quality of the output
bits and the throughput of the TRNG.

4.3 Desirable Features

Thus far a large number of TRNG designs have been proposed. These designs vary
significantly according to their entropy sources and the harvesting techniques they
employ. Each design has its strengths and weaknesses. Some of these properties are
related to performance and some are related to security and robustness. We summa-
rize below some of the features we would like TRNGs to have.

• From a practical standpoint it is essential that TRNGs are built using a commonly
available cheap silicon process. Moreover, it is highly desirable to implement
TRNGs using purely digital design technique. This allows for easier integration
with digital microprocessors, and also makes it possible to implement TRNGs
on popular reconfigurable platforms (i.e., FPGAs and CPLDs).

• Compact and efficient design with high throughput per area and energy spent.
Use of amplifiers or other analog components should be avoided, if possible.
Analog components tend to consume more energy and make the analysis diffi-
cult. Note that, since we are not allowing analog components, we have to sample
variations in the time domain (such as the design in [7] does) rather than the
variations in the voltage levels. If strictly followed, this criterion also means that
we should avoid complicated postprocessing schemes (e.g., SHA-1) or at least
implement them in the software.

• It is desirable to have a mathematical justification of the entropy collection mech-
anism, with all assumptions empirically verified. The design should be suffi-
ciently simple to allow rigorous analysis. To validate the output of TRNGs the
DIEHARD [8] or NIST Test Suites [9] are commonly employed. These statisti-
cal tests are necessary but not sufficient. Recently, Schindler and Killman [10]
sketched a methodology for evaluating true random number generators and out-
lined the pioneering standardization efforts of the BSI as described in [11]. They
advocate rigorous testing of TRNGs and note that a statistical blackbox testing
strategy may not be employed for this purpose. The AIS document provides clear
evaluation criteria for TRNGs and also allows TRNG designers to present their
own criteria.

4.4 Survey of TRNG Designs

In this section we present a survey of TRNG designs. The survery is certainly not
exhaustive and there are many other interesting designs available. Considering that
a large number of designs first appeared in patents and not in academic articles, it
is also likely that many innovative designs are simply kept as trade secrets. In any
case, we find it useful to present chosen representative designs to expose alternative
TRNG construction techniques.
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4.4.1 Baggini and Bucci

The early design introduced by Baggini and Bucci [12] as shown in Figure 4.1 uses
a combination of analog and digital components for amplification and sampling
of white noise. The design is build to resist variations in operating conditions and
component behavior. Reference [12] gives an analytical model for the TRNG which
captures the relationship between the maximum bit correlation to the output bit-rate
and therefore claims that it is unnecessary to use statistical testing. The reference
does not report any implementation results.
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Fig. 4.1 The Baggini and Bucci TRNG Design.

4.4.2 The Intel TRNG Design

The Intel TRNG Design shown in Figure 4.2 was discussed in [6]. The entropy
source of the design is thermal noise on a junction. The design uses two resistors
in differential configuration to make the design more robust against power supply
and environmental variations. The differential thermal noise is amplified and used
to drive a voltage controlled oscillator (VCO). The VCO is then sampled by another
oscillator. The output sequence is postprocessed using the von Neumann corrector
and then hashed using SHA-1. As an added safety measure, the software driver that
interfaces with the TRNG, implements the NIST 140-1 randomness tests monobit,
runs, and poker. Jun and Kocher in [6] who have analyzed the TRNG output using 16
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Fig. 4.2 The Intel Random Number Generator.
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specialized tests and the NIST FIPS 140-1 test suite report that no weaknesses were
found in the TRNG output before processing with SHA-1. The reference, however,
notes that the von Neumann postprocessing technique is essential for eliminating
biases in the output stream.

Since reference [6] gives only details of the security analysis we know nothing
about the performance of the design, i.e., footprint, throughput, and power con-
sumption. We may speculate that the footprint will be low due to the simplicity of
the design since SHA-1 is implemented on the software side. With respect to secu-
rity, we only have the blackbox analysis of Jun and Kocher. On the other hand, since
the design is relatively simple, by modeling the junction noise and the oscillator jit-
ter, one should be able to analyze the quality and performance of the TRNG output.
Finally, the design has analog components, i.e., noise amplifier and voltage con-
trolled oscillator, and therefore does not lend itself for implementation on a recon-
figurable platform.

4.4.3 The Tkacik TRNG Design

The innovative design introduced in [7] randomly samples the XOR of bits chosen
from a linear feedback shift register (LFSR) and a cellular automata shift register
(CASR). The randomness comes from the jitter in the two free-running oscillator
circuits which are used to clock the two deterministic circuits. The design is shown
in Figure 4.3. The TRNG outputs 32 bits at a time. The author states that it is used
with minor variations at Motorola for a number of years.

A positive aspect of the design is in its diversification. The output stream is
verified using the DIEHARD [8], NIST 140-1 [9] and the Crypt-X suites [13].
The author shows that the output of the entire design has far better statistical be-
havior when compared to the LFSR or CASR output alone. There are no details
given with regard to the performance aspects of the design. In [14] Dichtl outlines
an attack on this particular TRNG construction based on two weaknesses of the
design:

32−bit SelectOSC

OSC

43−bit LFSR

37−bit CASR 32−bit Select

Fig. 4.3 The Tkacik TRNG Design.
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• The source of entropy is fairly limited (only two oscillators are used). In fact, the
LFSR and the CASR act as a pseudo-random number generator seeded with only
two low-entropy oscillators.

• The design uses linear components (e.g., LFSR), and therefore the attacker can
build a linear model and solve it.

The attack allows an adversary to predict the output bits assuming he/she had ac-
cess to earlier bits. The treatment is theoretical and thus it is unclear if the attack
would work in practice. Also, the assumption that the attacker knows some of the
previously generated bits will make it impractical for many applications. On the
other hand, the attack points to a dependency between output bits, and casts serious
doubts about the reliability of the Tkacik TRNG. Finally, the design can be made
robust by significantly lowering the output rate and/or including non-linear com-
ponents. In [15] Schindler further analyzes the Tkacik design under a formulated
stochastical model and develops lower and upper entropy bounds on the random
output bits. Schindler also shows that the output bits carry sufficient entropy when
the output is sampled 60,000 times more slowly than suggested in [7].

4.4.4 The Epstein et al. TRNG Design

In [16], a simple architecture based on bi-stable circuits is proposed. Figure 4.4
shows the basic component of the TRNG design which simply lays out many such
units and computes the XOR of their output bits. A unit consists of two multiplex-
ers and two inverters put together in a configuration that gives a metastable circuit.
Note that if the select input is logic 0, then the circuit reduces to two separate single
inverter oscillator rings. Alternatively, if the select input is set to logic 1, the circuit
becomes functionally identical to two cascaded inverters. In the first mode, we have
two free-running oscillators and in the second mode a stable circuit with no switch-
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Fig. 4.4 Bi-stable memory component of the Epstein et al. TRNG design.
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ing activity. Now, consider the case when the select input transitions from logic 0
to 1. Then, the two free-running oscillators may not be in the same phase and we
obtain a bi-stable circuit with uncertainty in the output signal until the transitions
settle.

The TRNG design which was composed of 15 instances of the components
shown in Figure 4.4 and an additional 14 XOR gates was manufactured using a
0.18μ CMOS technology. All output sequences passed the DIEHARD tests after
being postprocessed by the von Neumann corrector. Being constructed only from
digital components, the design could be implemented on reconfigurable logic as
well. Also, the design is fairly compact and should be power efficient as well. Un-
fortunately, reference [4] gives no information about the performance of the design.
The output is verified using statistical tests. A security analysis is not provided.

4.4.5 The Fischer–Drutarovský Design

The design introduced by Fischer and Drutarovský [17] samples the jitter in a phase
locked loop (PLL) on a specialized reconfigurable logic platform. The design is
unique in the sense that it was the first TRNG proposal targeting FPGAs. The ref-
erence implementation targeted a particular Altera field programmable logic device
family that comes with a PLL (e.g., APEX E and APEX II families) as shown in
Figure 4.5. The jitter of the clock signal generated by the on-chip PLL is sampled
via delay cascaded samplers organized in the configuration shown in Figure 4.6.
The key idea is to use multiple samplers to be able to sample near the transition
zone that is influenced by the jitter which according to [17] is of the order of only
several tens of picoseconds. The multiple samples taken at regular intervals which
are then XOR-ed together gives a sample from an area of the waveform that has
the desired uncertainty. Finally, the output of the XOR is then downsampled using
a decimator. The authors of [17] give a fairly detailed summary of the actual imple-
mentation and the design choices made. For instance, the authors note that resources
need to be locked in place in the FPLD to obtain the desired routing configuration.
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Fig. 4.5 Architecture of the programmable PLL used as the entropy source in the Fischer–
Drutarovský TRNG design.
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Fig. 4.6 The Fischer–Drutarovský TRNG Design.

This is especially important for the delayed samplers. The reported implementation
yielded a bit-rate of nearly 70 Kbits/s. However it is not clear whether this was the
upper limit of reliable operation, or whether this is merely a design choice. The
generated random bit sequence was verified for statistical behavior using the NIST
tests.

All in all, the Fischer–Drutarovský is important in the sense that it highlights
the importance of TRNGs for reconfigurable platforms. The authors introduce the
novel cascaded delayed sampler and also provide a mathematical model that allows
them to pick operating points to increase the likelihood of collecting bits near the
transition zones.

4.4.6 The Golić FIGARO Design

The Fibonacci oscillator [18] is shown in Figure 4.7. Basically, the structure is iden-
tical to an LFSR except for the delay elements being replaced by inverters. The
feedback positions are labeled by switch values fi. If fi = 1 then the switch is closed
and otherwise it is open. The switch values can be represented more conveniently in
terms of the feedback polynomial which is given as follows.

...

Output

Oscillator

f1 f2 fr−1

Fig. 4.7 The Fibonacci Oscillator Design.
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f (x) =
r

∑
i=0

fix
i where f0 = fr = 1.

It is important that the oscillator is not stuck in a single fixed state. The necessary
and sufficient conditions are given in Theorems 4.1 and 4.2.

Theorem 4.1 ([18]). A Fibonacci ring oscillator does not have a fixed state if and
only if

f (x) = (1 + x)h(x) and h(1) = 1 .

Theorem 4.2 ([18]). A Galois ring oscillator does not have a fixed state if and only
if

f (1) = 1 and r is odd.

Furthermore, for both kinds of oscillators, if h(x) is chosen to be a primitive poly-
nomial, we are guaranteed to have two cycles: a short cycle of only 2 states and a
long cycle which includes the remaining 2r − 2 states. The Galois configuration of
the oscillator ring is shown in Figure 4.8. The FIGARO (Fibonacci-Galois-Ring-
Oscillator) TRNG design simply XORs the output of a Figaro oscillator with the
output of a Galois oscillator and samples the XOR output. To eliminate local corre-
lations and biases the author also proposes to use a self-controlled LFSR for post-
processesing of the output. Later on the performance was analyzed by Dichtl and
Golić (see Section 4.4.12).

4.4.7 The Kohlbrenner–Gaj Design

Similar to earlier design the Kohlbrenner–Gaj design [19] uses jitter in ring oscilla-
tors as the entropy source. What makes this design different is that, it is designed to
perfectly match the CLB architecture of a Xilinx Virtex-II FPGA. The oscillator, for
instance, is build into a CLB. The oscillator signal passes twice through the CLB
structure and is flipped in only one of the passes (in LUT1) as shown in Figure 4.9.
For clarity the clk and reset signals are not shown in the figure. The oscillation fre-
quency is determined by the delay elements on the oscillator path, i.e., two lookup
tables, four multiplexers, and two memory cells. Kohlbrenner notes that, this partic-
ular configuration gives a sufficiently stable 130 MHz oscillator signal. The TRNG
samples one such oscillator with another one.

Output
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...
Oscillator

Fig. 4.8 The Galois Oscillator Design.
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Fig. 4.9 Oscillator/CLB structure of the Kohlbrenner–Gaj Design.

The TRNG output is also postprocessed with a simple succesive XOR scheme, to
eliminate biases. The reported bit-rate is of the order of several hundred kilobits/s.
The exact rate depends on the strength of the XOR postprocessing scheme. Although
the rate is relatively low, the design is fairly compact and its bit-rate will be sufficient
in many applications. The output sequence was statistically verified using the NIST
140-1 test suite.

4.4.8 The Bucci–Luzzi Testable TRNG Design Framework

Bucci and Luzzi [20] made the observation that it is difficult, and perhaps impos-
sible, to test the quality of TRNG outputs after complex postprocessing techniques
have been employed. The authors propose to augment the designs with reset circuits
that clear the state of the TRNG. This is done to support a so-called certification
mode which establishes whether the TRNG is trustworthy. In the certification mode,
the TRNG is restarted before the collection of each output bit. The objective be-
hind the restart is to eliminate any dependencies between the collected bits. Then
the output of the TRNG is either stuck in a fixed bit and no entropy is generated, or
it generates independent bits. The former can be checked via a scheme that simply
counts the transitions. If the transition rate is as expected, then biases in the output
may be eliminated by using a stateless postprocessor. The stateless postprocessor
preserves the independence among output blocks. In principle, the proposed restart
approach is applicable mainly to any entropy source that permits a restart. The key
point though is that the output diverges quickly from the start state into an unpre-
dictable state. Hence, the amount of time required for an entropy source to produce
diverging outputs after reset may be used as a metric.

An important side benefit of the stateless TRNG approach is that it makes de-
tection of forcing attacks much easier when stateless linear postprocessors are used.
A non-(pseudo) random bias introduced by the the attacker will be visible at the
output due to the independence of the output bits and the linearity of the post-
processor.
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4.4.9 The Rings Design

The rings design shown in Figure 4.10 was proposed by Sunar, Martin and Stinson
in [21]. The design is very simple. Basically, free-running ring oscillator outputs
are combined together via an XOR operation and then sampled. The source of ran-
domness, is phase jitter. The main idea is to populate the output waveform with
transition zones and then to sample randomly. The authors provide a mathematical
framework and rigorous analysis of the quality of the output of the TRNG based on
a set of assumptions at the input. Furthemore, to reduce the number of rings, the au-
thors propose to use a resilient function for postprocessing of the TRNG output. By
keeping the degree of the resilient function high, the TRNG develops a quantifiable
tolerance against active adversaries. The rings design has two main contributions:
the analysis framework and the introduction of resilient functions for postprocess-
ing. The analysis builds a simple jitter model, and computes the minimum number of
rings that need to be included in the design to achieve a certain fill-rate in the sam-
pling window, at a certain confidence level. The deterministic bits collected from
the unfilled portion of the sampling window are eliminated by a resilient function of
appropriate strength.

An initial reference implementation of the Rings design was provided by
Schellekens et al. in [22] on a Xilinx Virtex-II FPGA. The implementation pro-
duced a stream at a 2.5 Mbps bit-rate with a sampling frequency of 40 MHz and us-
ing 110 rings with 13 inverters and the resilient function constructed from the linear
cyclic code (256,16,113). The output sequence was verified using the DIEHARD
and NIST tests. Schellekens et al. also observed that the Rings design is stateless
and uses a linear stateless postprocessing technique (a resilient function constructed
from a linear code) and therefore satisfies the criteria for testability introduced ear-
lier by Bucci and Luzzi [20].

Finally, we should note that the Rings design received criticism in several aspects
from Dichtl and Golić [23]. Among the criticisms are the independence assumption
of the ring oscillators and the sampling rate. While the sampling rate may be easily
reduced, it is more difficult to verify the independence of the ring oscillators when
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Fig. 4.10 The ring oscillators design.
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a large number of rings are used. For a smaller number of rings, careful place and
routing may sufficiently isolate the rings from interacting with each other. A much
simpler solution is to collect only one sample from one oscillation period. In this
case, ring independence is not required. It suffices to check against phase interlock
which would reduce the fill-rate.

4.4.10 The PUF–RNG Design

An RNG design based on physically unclonable functions (PUFs) was proposed by
O’Donnel et al. in [24]. The RNG design is build around a PUF circuit as shown
in Figure 4.11. Under normal operation the output of the PUF circuit is determined
by the subtle imprecisions in the delay paths created during the manufacturing pro-
cess along with the challenge value supplied. Alternatively, for a particular set of
challenges the delays will be closely matched and the sampling circuit will enter a
meta-stable state. Hence, the output of the device will be unpredictable. While this
is good news, a challenge that gives rise to metastability does so only temporarily
due to temperature and voltage variations.

Hence, the PUF–RNG design searches for meta-stable challenges by repeatedly
applying a challenge and checking if a sufficiently unstable output is obtained.
Roughly stated, the same challenge is fed to the PUF circuit a fixed number of
times with a fixed window length, with the hope of obtaining nearly uniform dis-
tribution at the PUF output in one window. If this is not achieved after trying a
fixed number of windows, a new challenge is generated with the help of a pseudo-
random number generator. When a meta-stable challenge is found, it is used to
generate an output string which is further postprocessed using the von Neumann
corrector.

The reference reports an implementation based on the PUF integrated into the
AEGIS secure processor [25]. The PRNG, as well as the metastable challenge
searching technique, is implemented in the software. The output of the RNG is ver-
ified using the NIST test suite. Unfortunately, the throughput rate is not given. The
primary advantage of this design is that it makes use of an existing PUF component.

C1 C2 Cn

latch

Fig. 4.11 A delay-based PUF design.
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PUF circuits have become a popular tool for IC identification and for achieving
tamper-resilience. Therefore, it is quite likely that a security device comes with an
integrated PUF device.

4.4.11 The Yoo et al. Design

The practical aspects of the Rings design including IC routing effects, and the effects
of power supply and temperature variations were investigated in [26]. The authors
first note that if the signal is subsampled, then there is a chance especially at low
fill-rates that the sampler may end up being stuck in an deterministic portion of
the sampling window. The authors therefore recommend sampling at a frequency
that is relatively prime to the oscillation frequency. The authors note that IC level
effects such as phase interlock, narrow signal rejection in the XOR tree, and narrow
signal attenuation affects will limit the scalability and performance of the Rings
TRNG design. Furthermore, the same reference shows via experiments performed
on an FPGA implementation that by changing the temperature and supply voltage,
the oscillation frequency may be shifted to invalidate the relatively prime condition.
Hence, the Rings TRNG may be vulnerable to non-invasive temperature and supply
voltage variation attacks. Finally, to make the design robust against such attacks,
the authors propose to use more than one ring length in the design. A design that
features two ring lengths is proposed. The design passes the DIEHARD and NIST
tests and delivers a throughput of 67 Mbps at a power consumption less than 300
mW with an area of less than 1000 LUTs. The design is also shown to be robust to
temperature and power supply variations.

4.4.12 The Dichtl and Golić RNG Design

Dichtl and Golić investigated Fibonacci and Galois ring oscillators in [23]. Their
analysis is primarily based on the restart technique. By restarting the oscillators
from the same initial conditions they measure the time it takes to observe a bit
change in the otherwise pseudo-random bitstream. Hence, the time it takes to ob-
serve a random bit determines the sampling rate and throughput of the RNG. In the
same reference, the authors report an FPGA implementation of a Fibonacci ring that
achieves a troughput of 6.25 Mbps.

Based on their experiments, Dichtl and Golić claim much higher entropy rates
than that of traditional ring oscillators. The authors also note that the restart tech-
nique may be used as a mode of operation for the RNG and that the restart approach
allows testability. Another contribution of this work is a novel two-level sampler
design which reduces the bias introduced by the sampling flip-flop. With its small
footprint the design seems to be ideal for embedded systems. The authors provide
some preliminary justification for the performance improvement.
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4.5 Postprocessing Techniques

There are several postprocessing techniques used in practice. Here we present the
most popular ones.

• Cryptographic Hash Functions: Perhaps the most popular and most robust
postprocessing technique is to run the output of a TRNG design through a cryp-
tographically strong hash function such as SHA-1 or MD5. For instance, the
Intel RNG makes use of SHA-1. From a performance perspective, implement-
ing a full hash function for a TRNG seems like an overkill. However, from a
security perspective, if properly implemented it has the important side-benefit
of falling back to a pseudo-random number generator if a total breakdown oc-
curs in the randomness source. Furthermore, the non-linearity of the hash func-
tion becomes useful if a weakness in the collection mechanism is found. A
good strategy would be to implement the one-way function as the last step in
software.

• Von Neumann Corrector: The von Neumann corrector is one of the oldest and
best known postprocessing techniques and is used to eliminate localized biases.
It takes pairs of bits from the random bit stream. If they are of identical value
(i.e., both ‘0’ bits or both ‘1’ bits) it removes them from the random bit stream. If
they are different, it uses one of the bits, e.g., the first bit. On average, the bit-rate
will be reduced to only about 1/4 of the input bit-rate. The big advantage of the
von Neumann corrector is that it is very easy to implement.

• Extractor Functions: The use of extractor functions was proposed by Barak,
Shaltiel and Tomer in [5] with the purpose of making TRNG designs robust
against changing environmental conditions. Extractor functions are powerful
stateless functions with quantifiable properties originally developed as a tool for
complexity theory. The authors develop a mathematicl model to capture an ad-
versary’s influence on the randomness source and give an explicit construction
based on universal hash functions which is proven for its output properties even
if non-local correlations exists in the input source. We give several definitions
relevant to extractor functions as follows.

Definition 4.1. The statistical distance between two distributions X and Y is de-
fined as

ε =
1
2 ∑

a
|ProbX = a−ProbY = a| .

In practice, we say that X is ε-close to Y and vice versa.

Definition 4.2 (Min-Entropy). A distribution X on {0,1}n is said to have min-
entropy k, if for all x ∈ {0,1}n ProbX = x ≤ 2−k.

In general, an extractor is a function characterized with respect to its input-
output behavior. An extractor is viewed as taking an input with a certain level
of min-entropy k, and guarantees an output distribution that is ε close to uni-
form distribution. In [5] the authors provide an extension to this definition. The
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authors define a function E : {0,1}n �→ {0,1}m which is fixed by the choice
of a public parameter. They allow an adversary to choose from 2t distributions
D1,D2, . . . ,D2t over {0,1}n such that the min-entropy of each Di is greater than
k for all i = 1,2, . . . ,2t . A public parameter π is chosen at random and indepen-
dently of the choices of Di. The adversary chooses one of the distributions, i.e.,
Du. The user evaluates the extractor function using the public parameter π and a
value drawn from the chosen distribution Du. A t-resilient extractor function is
defined as follows:

Definition 4.3 (t-Resilient Extractor Function, [5]). Given m, k, ε , and t, an
extractor E : {0,1}n �→ {0,1}m is t-resilient if with probability at the most 1− ε
over the choice of the public parameter π , the statistical distance of the output
distribution of Eπ(X) to the uniform distribution is at the most ε .

In a practical setting, this means that the adversary is assumed to have control
over t binary values (or 2t internal states) of the TRNG through control of volt-
age, temperature, operating frequency, etc. Despite the adversary’s ability, the
output distribution is biased away from the uniform distribution by at the most ε .
This construction gives great power to TRNG designers, since it implicitly cap-
tures any kind of influence by the adversary. On the other hand, from a design
point of view, it is not clear how to quantify the advery’s abilities and therefore
it is difficult to choose design parameters for the extractor (or for the underlying
universal hash function family).

• Resilient Functions: Resilient functions were proposed by Sunar, Martin, and
Stinson in [21] as the postprocessing step for the Rings Design. The goal was to
filter any deterministic bits by using the resilient function. Treating bits effected
by the adversary as deterministic bits, enables one to study the tolerance proper-
ties of resilient functions against active adversaries. The reference recommends
using higher resiliency degrees than necessary to remove deterministic bits. The
difference between the degree of the resilient function and the number of de-
terministic bits expected in a sampling window quantifies the tolerance (in bits)
of the TRNG to active adversaries. Resilient functions are formally defined as
follows:

Definition 4.4 (t-Resilient Function). An (n,m,t)-resilient function is a
function

F(x1,x2, . . . ,xn) = (y1,y2, . . . ,ym)

from Z
n
2 to Z

m
2 enjoying the property that, for any t coordinates i1, . . . , it , for any

constants a1, . . . ,at from Z2 and any element y of the codomain

ProbF(x) = y|xi1 = a1, . . . ,xil = al =
1

2m .

In the computation of this probability, all xi for i �∈ {i1, . . . , it} are viewed as inde-
pendent random variables each of which takes on the value 0 or 1 with probability
0.5.
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In more informal terms, if up to any t of the input bits are deterministic and the
remaining bits are random, the output of the resilient function will be perfectly
random (or unpredictable). From a cryptographic viewpoint, knowledge of any
t values of the input to the function does not allow one to make anything better
than a random guess at the output. Resilient functions are used in a number of
cryptographic applications where the adversary is assumed to have captured or
determined a number of of the key bits.
A simple technique for constructing resilient functions is given in the following
theorem:

Theorem 4.3. (e.g., [27]) Let G be a generator matrix for an [n,m,d] linear code
C. Define a function f : {0,1}n �→ {0,1}m by the rule f (x) = xGT . Then f is an
(n,m,d −1)-resilient function.

For more information on resilient functions, and their connections to codes and
designs see [28] and [29].
When compared to extractor functions, resilient functions appear to be much
more limited in their capabilities of eliminating the effects of active adversaries
on the output stream. The reason for this is that resilient functions are defined
to work on either perfectly random or perfectly deterministic bits. In contast, ex-
tractor functions assume only a specific min-entropy at the input. On the positive
side, resilient functions give perfect output distribution (ε = 0) and are easily
constructed from codes. When linear codes are used for the construction the re-
silient function is also linear and therefore allows testability of the TRNG design
in the sense of Bucci and Luzzi [20].

4.6 Exercises

Whenever a TRNG is to be built, several questions come to mind. Here we give
an incomplete list of these questions. The reader should extend the list further by
considering the context of the implementation, the platform, and development envi-
ronment.

1. How small can we build it? Low footprint TRNGs are crucial for constrained
applications such as RFIDs, smartcards and sensor networks. Usually only a tiny
fraction of the chip area is available for the TRNG.

2. Does it scale? Trade-offs between throughput and the quality of the TRNG output
are important to optimally meet application requirements at a wide variety of
design points.

3. Is it robust? Robustness is an important issue especially in embedded applica-
tions, e.g., smartcards, where the user (potential attacker) has full access to the
device.

4. Will we know when it fails? There is a great need for online tests. Robustness of
the test circuit is also important.
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Workshop on Cryptographic Hardware and Embedded Systems—CHES 2002,
pp. 415–430, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2523.
Springer-Verlag Berlin Heidelberg, 2003.
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Chapter 5
Fast Finite Field Multiplication

Serdar Süer Erdem, Tuǧrul Yanık, and Çetin Kaya Koç

5.1 Introduction

Finite fields are the most commonly used arithmetical structures in cryptography
[14, 16] and coding [3, 19, 21]. Many algorithms in cryptographic and coding appli-
cations are defined in terms of finite field arithmetic operations. The elliptic curve
cryptosystems [11, 17] and the Diffie-Hellman key exchange [8] algorithm are im-
portant examples of such cryptographic applications. Also, common error control
codes such as Reed-Solomon and BCH codes are based on finite field theory [4, 21].

An algebraic field consists of a set and two operations defined over this set. The
real numbers, the rational numbers, and the complex numbers under addition and
multiplication are examples of algebraic fields. In fact, algebraic fields are the gen-
eralization of these usual number systems as described below.

• One of the field operations satisfies the general properties of the usual addition.
For this operation, an identity element exists and each element has an inverse.
This identity element is called additive identity or zero element.

• The other field operation satisfies the general properties of the usual multiplica-
tion. For this operation, an identity element (multiplicative identity) exists and
each element, except the zero element, has an inverse. Also, this operation dis-
tributes over the first operation like the usual multiplication distributes over the
usual addition.

Finite fields are algebraic fields with finite number of elements. These fields take
the place of the familiar fields like the real numbers in cryptography and coding.
Because they have finite number of elements, the operations on them cannot produce
infinitely large results. Also, the finite field operations always produce exact results,
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not approximate results. Thus, they do not suffer from truncation errors like the
floating point operations.

The fast implementation of the finite field multiplication is essential in crypto-
graphic and coding applications. This is because the finite field addition and mul-
tiplication are the most frequently used operations in these applications. The finite
field addition is relatively simple, compared to the multiplication. On the other hand,
the finite field multiplication is a substantially time-consuming operation in hard-
ware and software implementations.

In this chapter, the efficient finite field multiplication methods are discussed after
giving some preliminary facts about finite fields. The discussion is handled sepa-
rately for the three main classes of finite fields (prime fields, binary extension fields,
and general extension fields).

5.2 Finite Fields

A finite field with q elements is denoted by Fq. Such a field exists, if and only if
q = pm for some prime p and a positive integer m. Fq is unique up to isomorphism.
That is, every field with q elements is isomorphic to Fq.

• Fp has a prime number of elements, and thus it is called prime field.
• Fpm denotes its extension field with pm elements.
• F2m is a special case of Fpm and is called binary extension field.

The prime field Fp can be constructed by using integer modular arithmetic. In this
construction, the field elements are represented by the set of integers {0,1,2, . . . , p−
1}. And, the field operations are defined as integer addition and multiplication mod-
ulo p.

The extension field Fpm can be constructed by using polynomial modular arith-
metic. In this construction, the field elements are represented by the polynomials
over Fp of degree less than m. And, the field operations are defined as polynomial
addition and multiplication modulo a degree m irreducible polynomial over Fp.

The construction of the extension fields using polynomials over the prime fields
is possible due to the fact that the extension field Fpm is an m-dimensional vec-
tor space over the prime field Fp. As an immediate result of this fact, a basis
{α0,α1, . . . ,αm−1} always exists in Fpm such that each element a ∈ Fpm can be
given by a = a0α0 + a1α1 + · · ·+ am−1αm−1 for a unique set of ai ∈ Fp. According
to the theory of finite fields,

• A degree m irreducible polynomial over Fp always exists. The roots of these
irreducible polynomials are in Fpm .

• Let α ∈ Fpm be some root of a degree m irreducible polynomial ω(x). Then,
{1,α,α2, . . . ,αm−1} constitutes a basis for Fpm where 1 denotes the multiplica-
tive identity. Such a basis is called polynomial basis.

In conclusion, when α is a root of an irreducible ω(x), ω(x)|x=α = 0 and each el-
ement of Fpm can be given by (am−1xm−1 + · · ·+ a1x + a0)|x=α for a unique set of
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ai ∈ Fp. This is why the extension field elements can be represented by the poly-
nomials over Fp. However, since ω(x) = 0 for x = α , all arithmetic operations are
performed modulo ω(x) in this representation.

As can be understood from the discussion so far, finite field arithmetic is based
on modular arithmetic, and thus requires modular reductions. Modular reduction
operation is essentially computing the remainder of a division. Thus it is a costly
operation unless

• A special modulus is chosen to ease the division, or
• A precomputation based on the chosen modulus is used.

The Barrett and the Montgomery algorithms are two modular reduction algo-
rithms using precomputation. Because of the precomputation overhead, these al-
gorithms are used if a large number of modular reductions need to be performed.
Also, the Montgomery algorithm requires a domain transformation, while the Bar-
rett algorithm does not. This domain transformation is thus a slight drawback for
the Montgomery algorithm.

5.3 Multiplication in Prime Fields

The prime field Fp elements are represented by the set of the integers {0,1,2, . . . , p−
1}. Let a and b be two elements in Fp. Let c be their product in Fp. Then, c is defined
as follows.

c = a×b mod p .

As a result, the prime field multiplication needs two arithmetic operations:

• Integer multiplication, and
• Integer modular reduction.

The algorithms used in the modular multiplication of the integers will be studied
in this section. However, the multiple precision representation, the addition, and the
subtraction of the integers need to be be discussed first.

In practice, a hardware or software implementation supports a fixed w-bit word
size. Each w-bit word stores an integer digit and integers are represented in the base
β = 2w. Let a be an integer in Fp and ai be its ith digit. Then, the multiple precision
representation for a is

a = (an−1, . . . ,a2,a1,a0)β .

Naturally, the number of digits n in this representation must satisfy p ≤ β n so that
all the integers in the set {0,1,2, . . . , p−1} can be represented.

To perform the integer addition c = a+b, the corresponding digits of a and b are
added from the least to the most significant as follows.

(εi+1,ci) = ai + bi + εi, i = 0,1,2, . . . (5.1)

Here, ε0 = 0 and εi+1 is the carry due to the addition of the ith digits.
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Similarly, the integer subtraction c = a−b is performed as follows.

(εi+1,ci) = ai −bi− εi, i = 0,1,2, . . . (5.2)

Here, ε0 = 0 and εi+1 is the borrow due to the subtraction of the ith digits.
As seen, these digit-by-digit operations involve carry and borrow propagations

which can be handled in hardware easily. Also, the general purpose processors have
always the instructions “add with carry” and “subtract with borrow”, which are help-
ful for the carry and borrow propagations.

5.3.1 Integer Multiplication

The standard way of multiplying two integers is to multiply each digit in the first by
each digit in the second and combine the resulting partial products. It is easy to see
that this computation requires O(n2) digit operations for n-digit integers. Algorithm
1 and Algorithm 2 illustrate two different implementations of the standard integer
multiplication [6, 15].

Let β be the integer base. Algorithm 1 finds a×b using the fact that

d = a×b = ∑n−1
i=0 aib β i.

Algorithm 1 computes aib for each ai, then appropriately shifts and combines the
results. The inner loop starting at Step 5 scans the second operand digits b j and
computes A×b j = ai ×b j. The result is stored into two-digit integer (H,L) in Step
6, where H and L are the higher and lower digits respectively. The previous values of
the higher digit H and the running product digit di+ j are also added to (H,L). Note
that (H,L) can hold the result in Step 6 without any overflow because the digits
A,b j,H,di+ j ≤ β −1, and thus

A×b j + H + di+ j ≤ (β −1)(β −1)+ 2(β −1) < β 2.

Algorithm 1: Integer multiplication (by operand scanning)

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. for i = 0 to n−1 do di = 0
2. for i = 0 to n−1 do
3. H = 0
4. A = ai

5. for j = 0 to n−1 do
6. (H,L) = A×b j + H + di+ j

7. di+ j = L
8. di+n = H
9. return(d)
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Algorithm 2 computes the digits of d = a×b one by one, from the least signifi-
cant to the most significant. Algorithm 2 uses the fact that

d = ∑2n−2
k=0 β k

(
∑i∈I

aibk−i

)
, I = {i | 0 ≤ i,k− i < n}.

For each k, the sum ∑i∈I aibk−i is computed and stored into the three-digit integer
(U,H,L) in Step 6, where U and L are the most and the least significant digits
respectively. Step 7 determines the kth digit of the product d as dk = L. Then, Step
8 removes the digit L by shifting (U,H,L) one digit right. The remaining more
significant digits U and H are used to compute the more significant digits of the
product d.

Algorithm 2: Integer multiplication (by product scanning)

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. (U,H,L) = (0,0,0)
2. for k = 0 to 2n−2 do
3. if k < n I = {i | 0 ≤ i ≤ k}
4. if k ≥ n I = {i | n > i > k−n}
5. for every i ∈ I
6. (U,H,L)+= ai ×bk−i

7. dk = L
8. (U,H,L) = (0,U,H)
9. d2n−1 = L

10. return(d)

To compare the efficiencies of Algorithms 1 and 2, the inner loops of these algo-
rithms must be considered. The inner loops of both the algorithms repeat n2 times
to perform n2 different digit multiplications. The operations in the inner loop of
Algorithm 1 are equivalent to

(H ′,L) = A×b j, (H,L) = (H ′,L)+ (0,H)+ (0,di+ j), di+ j = L.

These operations require four w-bit additions, two data reads (b j,di+ j), and one data
write (di+ j). The operations in the inner loop of Algorithm 2 are equivalent to

(H ′,L′) = ai ×bk−i, (U,H,L) = (U,H,L)+ (0,H ′,L′).

These operations require three w-bit additions and two data reads (ai,bk−i). Also,
note that the inner loops of the algorithms require multiprecision additions. These
additions are performed as shown in (5.1).

Though Algorithm 1 is more straightforward to implement in hardware, Algo-
rithm 2 is more advantageous in software. This is because Algorithm 2 requires
fewer digit additions, data reads, and data writes. Here, it is assumed that the tem-
porary variables (A, U , H, L, H ′, L′) are held in the registers of the underlying
processor; thus accessing them does not increase the data reads and writes.
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5.3.2 Integer Squaring

Algorithm 3 computes the square of an integer. This algorithm is just a simplification
of Algorithm 2 for the case that the multiplicands a and b are equal. Since a = b,
the cross products satisfy aib j = a jbi = aia j. Thus, the number of the required digit
products reduces roughly by half.

Algorithm 3 computes not all but half of the cross products using the fact

∑
i∈I

i�=k−i

aiak−i = 2 ∑
i∈I

i>k−i

aiak−i = 2 ∑
i∈I

i<k−i

aiak−i

where I = {i | 0 ≤ i,k− i < n}. Note that this can also be written as follows

∑
i∈I

i�=k/2

aiak−i = 2 ∑
i∈I

i>k/2

aiak−i = 2 ∑
i∈I

i<k/2

aiak−i .

Algorithm 3: Integer squaring

Input: n-digit integer a.
Output: 2n-digit integer d = a2.

1. (U,H,L) = (0,0,0)
2. for k = 0 to 2n−2 do
3. if k < n I = {i | 0 ≤ i < k/2}
4. if k ≥ n I = {i | n > i > k/2}
5. for every i ∈ I
6. (U,H,L)+= ai ×ak−i

7. if k is even (U,H,L) = 2(U,H,L)+ a2
k/2

8. if k is odd (U,H,L) = 2(U,H,L)
9. dk = L

10. (U,H,L) = (0,U,H)
11. d2n−1 = L
12. return(d)

5.3.3 Integer Modular Reduction

This section discusses the following methods for the reduction d mod p :

• The algorithms for moduli of special form
• The Barrett and the Montgomery algorithms using a precomputation based on

the modulus p.

The output of the modular reduction is nothing else than the remainder of the
division d/p. When the quotient calculation is omitted, the division turns into mod-
ular reduction. The multiple precision division for an arbitrary base β is a costly
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operation. References [10, 15] give a good discussion of the multiple precision di-
vision and Ref. [5] presents a multiple precision modular reduction algorithm based
on division.

The computation d mod p in the base β = 2 is rather straightforward. In this
case, the integer d is reduced bit by bit modulo p. Let 2m > p ≥ 2m−1 and p ≤
d = (dk−1, . . . ,d1,d0)2. Then, dk−12k−1 > dk−12k−1−mp ≥ dk−12k−2 and d can be
reduced as follows.

d = d−dk−12k−1−m p.

To find d mod p, the bit reductions are performed iteratively until d < p. Also,
d mod p can be computed by using the integer p̂ = 2m mod p. Then, dk−12k−1 ≡
dk−12k−1−m p̂ mod p and d can be reduced as follows.

d = (dk−2, . . . ,d0)2 + dk−12k−1−m p̂.

Algorithm 4 implements the integer modular reduction using this method.

Algorithm 4: Bit level integer modular reduction

Input: Integers d = (dk−1, . . . ,d0)2 and p̂ = 2m mod p where 2m > p ≥ 2m−1.
Output: d mod p.

1. while k > m do
2. while dk−1 �= 0 do
3. d = (dk−2, . . . ,d0)2 + 2k−1−mp̂
4. k = k−1
5. return(d)

5.3.3.1 Using Special Modulus

The commonly used base to represent the integers in processors is β = 232. Thus,
it is easier to perform reduction modulo a prime number which can be written as a
simple sum of the powers of 2 or 232, in software and hardware implementations.
The following numbers are prime and have this property,

2192 −264 −1 = β 6 −β 2 −1,

2224 −296 + 1 = β 7 −β 3 + 1,

2256 −2224 + 2192 + 296 −1 = β 8 −β 7 + β 6 + β 3 −1,

2384 −2128 −296 + 232 −1 = β 12 −β 4 −β 3 + β −1,

2521 −1.

Here, β = 232. Fast modular reduction methods can be developed for these primes
[20]. Consider the prime p = 2192 −264 −1 as an example. For β = 232,

β 6 ≡ β 2 + 1 mod p
β 7 ≡ β 3 + β mod p

β 8 ≡ β 4 + β 2 mod p
β 9 ≡ β 5 + β 3 mod p

β 10 ≡ β 4 + β 2 + 1 mod p
β 11 ≡ β 5 + β 3 + β mod p.
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Let d = (d11,d10,d9,d8,d7,d6,d5,d4,d3,d2,d1,d0)β . Then, the high digits of d can
be reduced efficiently as follows.

d7β 7 + d6β 6 = (0 , 0 ,d7,d6,d7,d6)β ,

d9β 9 + d8β 8 = (d9,d8,d9,d8, 0 , 0 )β ,

d11β 11 + d10β 10 = (d11,d10,d11,d10,d11,d10)β .

Algorithm 5 implements this fast modular reduction method.

Algorithm 5: Integer modular reduction for p = 2192 −264−1

Input: Integer d = (d11, . . . ,d0)232 < (2192 −264 −1)2.
Output: c = d mod (2192 −264−1).

1. Define the 6-digit integers in the base β = 232 :
e = (d5,d4,d3,d2,d1,d0)β , f = (0 , 0 ,d7,d6,d7,d6)β ,
g = (d9,d8,d9,d8, 0 , 0 )β , h = (d11,d10,d11,d10,d11,d10)β .

2. c = e + f + g + h mod (2192 −264−1)
3. return(c)

5.3.3.2 Barrett Modular Reduction

The Barrett method computes c = d mod p for two integers d and p using a precom-
putation based on the chosen modulus [2]. The integer c = d mod p is the remainder
of the division d/p. Thus,

c = d − pq

for the quotient q = �d/p�. The Barrett method first finds an estimate of the quotient
q using some precomputation. Let q̂ denote this estimate. Then, the Barret method
computes c′ = d − pq̂. As shown later in the text, q− 2 ≤ q̂ ≤ q. Thus, the Barrett
method actually computes c′ = d− (q−ε)p = c+ε p where ε ∈ {0,1,2}. Thus, the
subtraction of the modulus p from the final result one or two times may be needed
for correction.

Quotient Estimation:

The Barrett method exploits the simple fact that

d
p

=
(

2k

p

)(
d

2k′

)(
1

2k−k′

)

for the arbitrary integers k and k′. The divisions 2k/p and d/2k′ can be written in
terms of their quotients and remainders as follows.

d
p

=
(
�2k/p�+

2k mod p
p

)(
�d/2k′�+

d mod 2k′

2k′

)(
1

2k−k′

)
.
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Let r(1) = 2k mod p and r(2) = d mod 2k′ . Then, after some rearrangement,

d
p

=
�2k/p��d/2k′�

2k−k′
+

�2k/p�r(2)

2k +
�d/2k′�r(1)

p2k−k′
+

r(1)r(2)

p2k . (5.3)

The Barrett algorithm estimates the quotient q of the division d/p as

q ≈ q̂ =

⌊
�2k/p��d/2k′�

2k−k′

⌋
, (5.4)

i.e., the quotient of the first term in (5.3). Note that the divisions by powers of two in
this estimation can be handled in software and hardware without any cost. However,
the division 2k/p must be precomputed for efficiency.

Estimation Error:

The quotient estimation in (5.4) will be accurate if the integers k and k′ are chosen
so that the last three terms in (5.3) are rational numbers less than one. In this case,
the sum of the last three terms will be less than three. Let ε be the integer part of
this sum. Then, ε ≤ 2 and q−2 ≤ q̂ ≤ q.

In order that the last three terms in (5.3) are less than one, the denominators must
be larger than the numerators. Then,

�2k/p�(d mod 2k′) ≤ �2k/p�(2k′ −1) < 2k,

�d/2k′�(2k mod p) ≤ �d/2k′�(p−1) < p2k−k′ ,

(d mod 2k′)(2k mod p) ≤ (2k′ −1)(p−1) < p2k.

The inequalities above always hold, if 2k′ ≤ p, d ≤ 2k, and k′ ≤ k. Then, for p ≤ d,
the parameters k and k′ can be chosen as

k ≥ log2 d, k′ ≤ log2 p.

Barrett Algorithm:

Algorithm 6 implements the Barrett algorithm.

Algorithm 6: Barrett modular reduction

Input: The integers d and p.
Output: c = d mod p.

1. Precompute p̂ = �2k/p� where k ≥ log2 d.

2. u = �d/2k′� where k′ ≤ log2 p.

3. q̂ = �p̂u/2k−k′�
4. c = d− q̂p

5. while(c ≥ p) c = c− p

6. return c
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Multiprecision Implementation:

Let d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β where p ≤ d and β is a power of
two. The integers k and k′ can be chosen as

k = l log2 β ≥ log2 d, k′ = (n−1) log2 β ≤ log2 p.

Algorithm 7 implements the Barrett algorithm for 2k = β l and 2k′ = β n−1.

Algorithm 7: Multiprecision Barrett modular reduction

Input: Integers d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β > β n−1.
Output: c = d mod p.

1. Precompute p̂ = (p̂l−n, . . . , p̂0)β = �β l/p�.
2. u = (ul−n, . . . ,u0)β = (dl−1, . . . ,dn−1)β
3. v = p̂u
4. q̂ = (q̂l−n, . . . , q̂0)β = (v2(l−n)+1, . . . ,vl−n+1)β
5. c = (cn, . . . ,c0)β = d− q̂p
6. while(c ≥ p) c = c− p
7. return(c)

• Step 2 computes the integer u = �d/β n−1�.

• Step 3 computes the product v = p̂u, which can be approximated as

v ≈ v′ = ∑i+ j≥l−n−1 p̂iu jβ i+ j.

Note that the error due to the ignored terms is

v− v′ = ∑0≤i+ j≤l−n−2 p̂iu jβ i+ j ≤ ∑0≤k≤l−n−2(k + 1)(β −1)2β k .

It can be shown that v− v′ ≤ β l−n−1((l −n−1)β − l + n)+ 1. Moreover,

v− v′ < β l−n+1

for β ≥ (l −n−1).

• Step 4 finds the estimate q̂ = �v/β l−n+1�. q̂ can be approximated as �v′/β l−n+1�.
The resulting error will be less than one as shown below.

�v/β l−n+1�−�v′/β l−n+1� ≤ 1 .

• Step 5 finds (d mod p + ε p) where ε = q− q̂. Since p < β n and ε is a small
number, the result of Step 5 will not be more than n digits in the worst case.
Thus, only the lower n digits of the product q̂p need to be computed in this step.
Step 6 removes ε p.
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5.3.3.3 Montgomery Modular Reduction

The Montgomery modular reduction computes dθ−1 mod p for two integers d and
p [13, 18]. Here, θ is preferably a power of two such that gcd(p,θ ) = 1 and pθ > d.
The Montgomery method requires some precomputation and domain transforma-
tion.

The Montgomery method is used to reduce the products of the integers rep-
resented in the Montgomery residue domain. Let a′ and b′ be two integers. Let
c′ = a′b′ mod p be their modular product. In the Montgomery residue domain, these
integers are represented by

a = a′θ mod p , b = b′θ mod p , c = c′θ mod p .

Let d = ab be the product of the integers in the residue domain. Then, the Mont-
gomery modular reduction dθ−1 mod p yields their product in the residue domain
c as shown below.

dθ−1 mod p = (a′θ mod p)(b′θ mod p)θ−1 mod p
= a′b′θ mod p
= c′θ mod p
= c.

The Montgomery method computes c = dθ−1 mod p as follows.

c =
d− (d p−1 mod θ )p

θ
− ε p (5.5)

where d < pθ and ε ∈ {0,1}. This computation leads to an efficient modular reduc-
tion algorithm when θ is a power of two and p−1 mod θ is precomputed.

The correctness of the Montgomery modular reduction method can be shown by
using the Bezout’s identity. Because θ and p are relatively prime,

θ θ̂ + pp̂ = gcd(θ , p) = 1

where θ̂ = θ−1 mod p and p̂ = p−1 mod θ . Then, d = dθ θ̂ + d pp̂. Since d < pθ ,

d = dθ θ̂ + d pp̂ mod pθ
= (dθ θ̂ mod pθ )+ (d pp̂ mod pθ )+ ε pθ

where ε ∈ {0,1}. Moreover, it can be written that

d = (dθ̂ mod p)θ +(d p̂ mod θ )p + ε pθ
= (dθ−1 mod p)θ +(d p−1 mod θ )p + ε pθ
= cθ +(d p−1 mod θ )p + ε pθ
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using the rules of modular arithmetic. See that Equation (5.5) can be obtained by
rearranging the above equation.

Montgomery Algorithm and its Multiprecision Implementation:

Let d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β where β is a power of two. The
integer θ can be chosen as θ = β l−n. Then, Equation (5.5) is given by

c =
⌊

d
β l−n

⌋
−
⌊

(d p̂ mod β l−n)p
β l−n

⌋
− ε p

where gcd(β , p) = 1, p̂ = p−1 mod β l−n, and d < pβ l−n.

Algorithm 8 implements the Montgomery algorithm.

Algorithm 8: Multiprecision Montgomery modular reduction

Input: Integers d = (dl−1, . . . ,d0)β and p = (pn−1, . . . , p0)β such that gcd(β , p) = 1
and d < pβ l−n.
Output: c = dβ−(l−n) mod p.

1. Precompute p̂ = (p̂l−n−1, . . . , p̂0)β = p−1 mod β l−n.

2. u = (ul−n−1, . . . ,u0)β = d p̂ mod β l−n

3. v = up
4. c = (dl−1, . . . ,dl−n)β − (vl−1, . . . ,vl−n)β
5. while(c ≥ p) c = c− p
6. return(c)

• Step 2 computes the (l −n)-digit integer u = d p̂ mod β l−n as follows.

u = (∑i+ j<l−n di p̂ jβ i+ j) mod β l−n

= ∑i+ j<l−n−1 di p̂ jβ i+ j +(∑i+ j=l−n−1 di p̂ j mod β )β l−n−1.

• Step 3 computes the product v = up, which can be approximated as

v ≈ v′ = (∑l−n−2≤i+ j ui p jβ i+ j).

Note that the error due to the ignored terms is

v− v′ = ∑0≤i+ j≤l−n−3 p̂iu jβ i+ j ≤ ∑0≤k≤l−n−3(k + 1)(β −1)2β k .
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It can be shown that v− v′ ≤ β l−n−2((l −n−2)β − l + n + 1)+ 1. Moreover,

v− v′ < β l−n

for β ≥ (l −n−2).
• Step 4 computes

c = �d/β l−n�−�v/β l−n� ≈ �d/β l−n�−�v′/β l−n� .

Note that, when v is approximated by v′, the error in c is less than one since
v− v′ < β l−n.

• After Step 4, c = d mod p + ε p for a small number ε . Step 5 removes ε p.

5.4 Multiplication in Binary Extension Fields

The binary extension field F2m elements are represented by the set of the polynomi-
als of degree less than m with coefficients in F2. That is

F2m = {a(x) | a(x) = am−1xm−1 + · · ·+ a1x + a0, ai ∈ F2} .

Let a(x) and b(x) be two elements in F2m . Let c(x) be their product in F2m . Then,
c(x) is defined as follows.

c(x) = a(x)×b(x) mod ω(x)

where ω(x) is a degree m irreducible polynomial over F2. As a result, the binary
extension field multiplication needs two arithmetic operations:

• Polynomial multiplication over F2, and
• Polynomial modular reduction over F2.

The algorithms used in the modular multiplication of the polynomials over F2

will be studied in this section. However, the multiple precision representation, the
addition, and the subtraction of the polynomials over F2 need to be discussed
first.

Let a fixed w-bit word size be supported in a hardware or software implemen-
tation. Each w-bit word can store w polynomial coefficients since the polynomial
coefficients are in F2 and represented by the integers {0,1}. Let a(x) be a polyno-
mial over F2 and ai be its ith coefficient. Let Ai = ∑w−1

k=0 aiw+kxk. Then, each Ai is a
w-coefficient polynomial stored in a single word and the multiple precision repre-
sentation for a(x) is

a(x) = An−1x(n−1)w + . . .+ A2x2w + A1xw + A0 . (5.6)
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In this representation, n is the number of the single word polynomials Ai. Naturally,
n must satisfy the inequality xm ≤ xwn so that all the polynomials of degree less than
m over F2 can be represented.

To perform the polynomial addition c(x) = a(x)+ b(x) and the polynomial sub-
traction c(x) = a(x)−b(x), the corresponding coefficients of a(x) and b(x) must be
added and subtracted in F2 respectively. The binary-valued elements of F2 {0,1}
are added or subtracted modulo 2. As a result, the addition and the subtraction in
F2 are just equivalent to XOR operation. Thus, c(x) = a(x)±b(x) are performed by
bitwise XORing the corresponding words as follows.

Ci = Ai XOR Bi, i = 0,1,2, . . . (5.7)

The bitwise XOR operation is ubiquitously found in hardware and software imple-
mentations.

5.4.1 Polynomial Multiplication over F2

Let d(x) = a(x)b(x). If a(x) and b(x) are represented as shown in (5.6),

d(x) = (∑n−1
i=0 Aixiw)b(x)

= ∑n−1
i=0 (∑w−1

k=0 aiw+kxk)xiwb(x)

= ∑w−1
k=0 xk ∑n−1

i=0 aiw+kxiw(∑n−1
j=0 B jx jw)

= ∑w−1
k=0 xk ∑n−1

i=0 aiw+k ∑n−1
j=0 B jx(i+ j)w .

This discrete summation formula leads to the right-to-left and the left-to-right mul-
tiplication methods implemented in Algorithms 9 and 10 for the polynomials over
F2, respectively.

Algorithm 9: Right-to-left comb method

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw.
Output: d(x) = a(x)b(x).

1. for i = 0 to 2n−1 do Di = 0
2. for k = 0 to w−1
3. for i = 0 to n−1
4. if the kth bit of Ai is 1
5. for j = 0 to n
6. Di+ j = Di+ j + B j

7. if k �= w−1 then b(x) = ∑n
l=0 Blxlw = xb(x)

8. return(d(x))
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Algorithm 10: Left-to-right comb method

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw.
Output: d(x) = a(x)b(x).

1. for i = 0 to 2n−1 do Di = 0
2. for k = w−1 downto 0
3. for i = 0 to n−1
4. if the kth bit of Ai is 1
5. for j = 0 to n−1
6. Di+ j = Di+ j + B j

7. if k �= 0 then d(x) = ∑2n−1
l=0 Dlxlw = xd(x)

8. return(d(x))

Algorithm 11 is a faster implementation of the left-to-right comb method given
in Algorithm 10. However, this implementation requires more memory. Algorithm
11 computes all the possible products b(x)u(x) where u(x) is a polynomial of degree
less than four and stores the resulting polynomials into the local variable space as a
lookup table.

Algorithm 11: Left-to-right comb method with 4-bit window

Input: Polynomials over F2 a(x) and b(x) of degree less than m ≤ nw−3.
Output: d(x) = a(x)b(x).

1. Compute f (u(x)) = b(x)u(x) for all u(x) with deg(u(x)) < 4.

2. for i = 0 to 2n−1 do Di = 0

3. for k = 4�(w−1)/4� downto 0 by 4

4. for i = 0 to n−1

5. u(x) = �Ai/xk� mod x4

6. b′(x) = ∑n−1
l=0 B′

lx
lw = f (u(x))

7. for j = 0 to n−1

8. Di+ j = Di+ j + B′
j

9. if k �= 0 then d(x) = ∑2n−1
l=0 Dlxlw = x4d(x)

10. return(d(x))

Note that the polynomial u(x) has 24 = 16 different possible values and the prod-
uct b(x)u(x) has m+3 coefficients. Thus, the required memory space for the lookup
table is 16(m + 3) bits. Algorithm 11 multiplies each four consecutive polynomial
terms of a(x) by b(x) using the lookup table. The window size four can be increased,
but then a larger lookup table will be needed and the overhead of the lookup table
computation will increase.
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5.4.2 Polynomial Squaring over F2

Let a(x) = am−1xm−1 + am−2xm−2 + · · ·+ a1x + a0 be a polynomial over F2. The
square of a polynomial is given by

a(x)2 = ∑m−1
i=0 aix2i + ∑0≤ j<i<m 2ai+ jx

i+ j︸ ︷︷ ︸
0

.

As shown above, multiplication by 2 yields zero result in a characteristic 2 field.
Thus, the cross products are zero and

a(x)2 = ∑m−1
i=0 aix2i = am−1x2(m−1) + · · ·+ a1x2 + a0 .

Algorithm 12 computes the square of the polynomials over F2 where the word
size w is divisible by 8. This algorithm precomputes and stores the square of all
possible polynomials of degree less than 8 in a lookup table. Then, it computes the
square of each consecutive eight terms of the input polynomial using the lookup
table. The lookup table contains 28 polynomials of degree less than 16, and thus is
of size 512 bytes.

Algorithm 12: Squaring of Polynomials over F2 where 8 | w

Input: A polynomial over F2 a(x) of degree less than m ≤ nw.
Output: d(x) = a(x)2.

1. Precompute f (u(x)) = u(x)2 for all u(x) with deg(u(x)) < 8.
2. for i = 0 to n−1

3. C2i = 0

4. for k = 8�(w/2−1)/8� downto 0 by 8

5. u(x) = �Ai/xk� mod x8

6. C2i = C2i + f (u(x))x2k

7. C2i+1 = 0

8. for k = 8�(w−1)/8� downto 8�w/16� by 8

9. u(x) = �Ai/xk� mod x8

10. C2i+1 = C2i+1 + f (u(x))x2k

11. return(d(x))

5.4.3 Polynomial Modular Reduction over F2

This section discusses the following methods for the modular reduction of the poly-
nomials d(x) mod ω(x):
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• The algorithms for moduli of special form
• The Barrett and the Montgomery algorithms using a precomputation based on

the modulus ω(x).

In general, d(x) mod ω(x) over F2 can be performed as follows.

d(x) = d(x)+ dkxk−mω(x)

where k = deg(d(x)) and m = deg(ω(x)). To find d(x) mod ω(x), the coefficient
reductions are performed iteratively until d(x) < ω(x). Algorithm 13 implements
the integer modular reduction using this method.

Algorithm 13: Polynomial modular reduction over F2

Input: Polynomials d(x) and ω(x) where deg(d(x)) = k and deg(ω(x)) = m.
Output: d(x) mod ω(x).

1. while k > m do
2. if dk �= 0 do
3. d(x) = d(x)+ xk−mω(x)
4. k = k−1
5. return(d(x))

5.4.3.1 Using Special Modulus

It is easy to see that Algorithm 13 can be optimized when the modulus ω(x) is a
sparse polynomial. In practice, ω(x) is used to construct the field F2m and must be
irreducible. Irreducible polynomials with the minimum number of terms are trino-
mials and pentanomials. A trinomial is a polynomial with only three terms, while
a pentanomial is a polynomial with only five terms. A trinomial or a pentanomial
always exists for any field size m < 1000 [9].

The following irreducible trinomials and pentanomials are recommended in the
FIPS 186-2 standard by NIST:

x163 + x7 + x6 + x3 + 1 ,

x233 + x74 + 1 ,

x283 + x12 + x7 + x5 + 1 ,

x409 + x87 + 1 ,

x571 + x10 + x5 + x2 + 1 .

The general form ω(x) = xm +xm1 +xm2 +xm3 +1 can be assumed for trinomials
and pentanomials. Algorithm 14 performs fast modular reduction for a modulus in
this special form.
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Algorithm 14: Polynomial modular reduction for pentanomials

Input: Polynomials d(x) and ω(x) = xm + xm1 + xm2 + xm3 + 1.
Output: d(x) mod ω(x).

1. Set κ = �m/w� and κi = �(m−mi)/w�.
2. Set λ = m mod w and λi = (m−mi) mod w.
3. for i = �deg(d(x))/w� downto n
4. Di−κ1 += Di � λ1, Di−κ1−1 += Di � (w−λ1)
5. Di−κ2 += Di � λ2, Di−κ2−1 += Di � (w−λ2)
6. Di−κ3 += Di � λ3, Di−κ3−1 += Di � (w−λ3)
7. Di−κ += Di � λ , Di−κ −1 += Di � (w−λ )
8. i = n−1
9. Di−κ1 += Di � λ1, if(i > κ1) then Di−κ1−1 += Di � (w−λ1)

10. Di−κ2 += Di � λ2, if(i > κ2) then Di−κ2−1 += Di � (w−λ2)
11. Di−κ3 += Di � λ3, if(i > κ3) then Di−κ3−1 += Di � (w−λ3)
12. Di−κ += Di � λ , if(i > κ ) then Di−κ −1 += Di � (w−λ )
13. return(d(x))

This algorithm uses the following equivalance relations for fast modular
reduction.

xm ≡ xm1 + xm2 + xm3 + 1 mod ω(x) ,

1 ≡ x−(m−m1) + x−(m−m2) + x−(m−m3) + x−m mod ω(x) ,

1 ≡ x−κ1w−λ1 + x−κ2w−λ2 + x−κ3w−λ3 + x−κw−λ mod ω(x) .

Here, the parameters κ = �m/w�, κi = �(m−mi)/w�, λ = m mod w, and λi = (m−
mi) mod w.

5.4.3.2 Barrett Modular Reduction

The Barrett method for integers can be adapted to the polynomials over F2 to com-
pute c(x) = d(x) mod ω(x) efficiently [7].

Quotient Estimation:

For the arbitrary integers k and k′, the following equality always holds

d(x)
ω(x)

=
(

xk

ω(x)

)(
d(x)
xk′

)(
1

xk−k′

)
.

This equality leads to a result similar to (5.3)
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d(x)
ω(x)

=
�xk/ω(x)��d(x)/xk′ �

xk−k′
+

�xk/ω(x)�r(2)(x)
xk

+
�d(x)/xk′�r(1)(x)

ω(x)xk−k′
+

r(1)(x)r(2)(x)
ω(x)xk

(5.8)

where r(1)(x) = xk mod ω(x) and r(2)(x) = d(x) mod 2k′ .
Then, the quotient q(x) of the division d(x)/ω(x) is estimated as

q(x) ≈ q̂(x) =

⌊
�xk/ω(x)��d(x)/xk′ �

xk−k′

⌋
. (5.9)

Note that this estimation for polynomials is the same as the one for integers in (5.4),
except the powers of two are replaced with the powers of x.

Estimation Error:

The quotient estimation in (5.9) will be exact, if the integers k and k′ are chosen so
that the last three terms in (5.3) are rational functions whose denominator degrees
are greater than their numerator degrees. For this case, the quotients of the last three
terms in (5.3) are zero and the quotient of the first term q̂(x) = �d(x)/ω(x)�= q(x).

The denominators of the last three terms in (5.3) are greater than their numera-
tors, if

deg(�xk/ω(x)�)+ deg(r(2)(x)) < deg(xk) ,

deg(�d(x)/xk′ �)+ deg(r(1)(x)) < deg(ω(x))+ deg(xk−k′) ,

deg(r(1)(x))+ deg(r(2)(x)) < deg(ω(x))+ deg(xk) .

Let deg(d(x)) ≥ deg(ω(x)). The inequalities above always hold, if

k ≥ deg(d(x)) , k′ ≤ deg(ω(x)) .

Barrett Algorithm:

Algorithm 15 implements the Barrett algorithm. This algorithm is very similar to
Algorithm 6. However, the powers of two are replaced with the powers of x. Also,
the final correction step after Step 4 is omitted since the quotient estimation is
exact.

Algorithm 15: Barrett modular reduction in F2[x]

Input: Polynomials over F2 d(x) and ω(x).
Output: c(x) = d(x) mod ω(x).

1. Precompute ω̂(x) = �xk/ω(x)� where k ≥ deg(d(x)).
2. u(x) = �d(x)/xk′ � where k′ ≤ deg(ω(x)).
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3. q̂(x) = �ω̂(x)u(x)/xk−k′ �
4. c(x) = d(x)+ q̂(x)ω(x)
5. return c(x)

Multiprecision Implementation:

The multiprecision Barrett implementation for integers in Algorithm 6 can be
adapted for polynomials over F2 simply by replacing the powers of two with the
powers of x.

Let d(x) and ω(x) be polynomials such that deg(d(x)) < lw and (n − 1)w <
deg(ω(x)) ≤ nw. Then, the integers k and k′ in the Barrett method can be chosen as

k = lw ≥ deg(d(x)), k′ = (n−1)w ≤ deg(ω(x)).

to compute d(x) mod ω(x). Algorithm 16 gives the resulting Barrett algorithm using
the notation in (5.6).

Algorithm 16: Multiprecision Barrett modular reduction in F2[x]

Input: d(x) and ω(x) in F2[x] where d(x) < xlw and x(n−1)w < ω(x) ≤ xnw.
Output: c(x) = d(x) mod ω(x).

1. Precompute ω̂(x) = ∑l−n
i=0 Ω̂ixiw = �xlw/ω(x)�.

2. u(x) = ∑l−n
i=0 Uixiw = �d(x)/x(n−1)w�

3. v(x) = ∑l−n≤i+ j≤2(l−n) Ω̂iUjxi+ j

4. q̂(x) = ∑l−n
i=0 Q̂ixiw = �v/xl−n+1�

5. c(x) = ∑n−1
i=0 Dixi + ∑i+ j<n Q̂iΩ jxi+ j mod xnw

6. return(c(x))

Note that only the required terms of v(x) in Step 3 are computed. But this does not
cause any approximation error since there is no carry propagation in the polynomial
arithmetic. Step 5 is performed modulo xnw since the quotient estimation is exact,
and thus c(x) = d(x) mod ω(x) < xnw in this step.

Algorithm 17 illustrates a w-bit Barrett modular reduction scheme presented in
the work in [7]. In this scheme,

k = deg(ω(x))+ w−1, k′ = deg(ω(x)),

and �d(x)/ω(x)� < xw.

Algorithm 17: w-bit Barrett modular reduction in F2[x]

Input: d(x) and ω(x) in F2[x] such that nw≥ deg(ω(x))> (n−1)w and �d(x)/ω(x)�
< xw.
Output: c(x) = d(x) mod ω(x).
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1. Precompute Q(1) = �xk/ω(x)� where k = deg(ω(x))+ w−1.

2. Find Q(2) = �(Dnxw + Dn−1)/xk′ mod w� where k′ = deg(ω(x)).
3. Q̂ = �Q(1)Q(2)/xw−1�
4. c(x) = ∑n−1

i=0 Di + ∑n−1
i=0 Q̂Ωi mod xnw

5. return c(x)

5.4.3.3 Montgomery Modular Reduction

The analog of the Montgomery modular reduction for polynomials in F2[x] is pro-
posed in [12]. The Montgomery modular reduction for polynomials is given by
d(x)θ−1(x) mod ω(x) where gcd(ω(x),θ (x)) = 1 and ω(x)θ (x) > d(x). For an ef-
ficient computation, θ (x) is chosen as a power of x preferably.

The Montgomery reduction c(x) = d(x)θ−1(x) mod ω(x) is given by

c(x) =
d(x)+ (d(x)ω(x)−1 mod θ (x))ω(x)

θ (x)
(5.10)

where d(x) < ω(x)θ (x). This computation leads to an efficient modular reduction
algorithm when θ (x) is a power of x and ω(x)−1 mod θ (x) is precomputed.

Equation (5.10) is similar to the Montgomery computation in (5.5) given for
integers, except, there is no need for an extra subtraction with modulus. This is
because no carry propagation occurs in the polynomial arithmetic. Thus, ε = 0 in
the following equation is obtained by using the Bezout’s identity.

d(x) = d(x)θ (x)θ̂ (x)+ d(x)ω(x)ω̂(x) mod ω(x)θ (x)

= (d(x)θ (x)θ̂ (x) mod ω(x)θ (x))+
(d(x)ω(x)ω̂(x) mod ω(x)θ (x))+ εω(x)θ (x) .

As a result, a derivation similar to the integer case yields Equation (5.10).

Montgomery Algorithm:

Let d(x) and ω(x) be polynomials in F2[x] such that d(x) < xw(l−n)ω(x) and
gcd(ω(x),x) = 1.

The polynomial θ can be chosen as θ = xw(l−n). Then, Equation (5.10) is given
by

c(x) =
⌊

d(x)
xw(l−n)

⌋
+

⌊
(d(x)ω̂(x) mod xw(l−n))ω(x)

xw(l−n)

⌋

where ω̂(x) = ω(x)−1 mod xw(l−n).
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5.5 Multiplication in General Extension Fields

The extension field Fpm elements are represented by the set of the polynomials of
degree less than m with coefficients in Fp. That is

Fpm = {a(x) | a(x) = am−1xm−1 + · · ·+ a1x + a0, ai ∈ Fp} .

Let a(x) and b(x) be two elements in Fpm . Let c(x) be their product in Fpm . Then,
c(x) is defined as follows.

c(x) = a(x)×b(x) mod ω(x)

where ω(x) is a degree m irreducible polynomial over Fp. As a result, the extension
field multiplication needs two arithmetic operations:

• Polynomial multiplication over Fp, and
• Polynomial modular reduction over Fp.

The algorithms used in the modular multiplication of the polynomials over Fp

will be studied in this section. However, the multiple precision representation, the
addition, and the subtraction of the polynomials over Fp need to be discussed
first.

Let a fixed w-bit word size be supported in a hardware or software implementa-
tion. Each w-bit word can store a single polynomial coefficient in Fp, if p < 2w. Let
a(x) be a polynomial over Fp and ai be its ith coefficient. Then, each ai is an integer
stored in a single word and a(x) is represented by an m-word array.

To perform the polynomial addition c(x) = a(x)+b(x) or the polynomial subtrac-
tion c(x) = a(x)− b(x), the corresponding coefficients of a(x) and b(x) are added
or subtracted in Fp respectively. The coefficient additions and subtractions can be
handled by single-word addition and subtraction operations ubiquitously found in
the hardware and software implementations.

The previous section focuses on arithmetic in binary extension fields F2m , which
is a special case of the general extension field Fpm . The binary extension fields
are preferred in hardware implementations due to the fact that subfield elements
are easily representable using the signals logic zero and logic one. Also, the bi-
nary circuit technology makes the implementation of arithmetic operations rather
straightforward. The addition and subtraction in the binary extension field can be
performed simply by XOR operation and the multiplication involves shift and XOR
operations.

Because the bit operations are slower in the general purpose processors, bi-
nary extension fields are not so great from the software point of view. The gen-
eral purpose processors perform word level operations faster. Thus, some special
classes of Fpm called OEF are proposed to exploit this fast word level operation
capability [1].

Let w denote the word size supported by the underlying system. An optimal
extension field (OEF) is a finite field Fpm where
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• p = 2w−1 ±α is a pseudo-Mersenne prime such that log2 α ≤ � 1
2 w�.

• An irreducible bionomial ω(x) = xm −λ exists over Fp.

In an OEF, elements are represented as degree m−1 polynomials as follows:

a(x) = am−1xm−1 + · · ·+ a1x + a0

where ai ∈ Fp. Addition of the two elements a(x) and b(x) is given by

a(x)+ b(x) =
m−1

∑
i=0

cix
i,

where ci = (ai +bi) mod p. To add two OEF elements we need at the most m coeffi-
cient subtractions where p is the subtrahend. Subtraction is done similarly. Choosing
the prime p close to but smaller that the word size of the underlying hardware archi-
tecture makes it possible to use the efficient integer arithmetic instructions supported
by the hardware. With such a choice, the result of a coefficient multiplication will
fit into a double word, where it can be accessed and reduced efficiently.

5.5.1 Field Multiplication in OEF

The two steps of the field multiplication in OEF are as follows:

• The OEF elements a(x) and b(x) are multiplied.

d(x) = a(x)b(x) = d2m−2x2m−2 + · · ·+ d1x + d0

where di ∈ Fp. The polynomial d(x) is calculated by m2 coefficient multiplica-
tions and (m−1)2 coefficient additions.

• The reduction c(x) = d(x) mod ω(x) is performed where ω(x) = xm −λ is an
irreducible binomial over Fp. Since the binomial ω(x) has only two terms, re-
duction with ω(x) can be done efficiently. The terms of d(x) with degree greater
than m−1 can be given by dm+ixm+i for i ≥ 0. These terms can be reduced by

dm+ix
m+i = λ dm+ix

i mod ω(x)

for i = 0,1, · · · ,m−2.

Since the degree of d(x) is at most 2m−2, we need at most m−1 multiplications
by λ and m−1 coefficient additions to obtain the reduced polynomial c(x) where

c(x) = dm−1xm−1 +[λ d2m−2 + dm−1] xm−2 + · · ·+

[λ dm+1 + d1] x +[λ dm + d0] mod ω(x).

The following algorithm integrates the reduction into the multiplication steps
without focusing on the coefficient arithmetic operations.
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Algorithm 18: OEF Modular Multiplication Algorithm

Input: OEF elements a(x),b(x) with degree at most m−1. ω(x) = xm −λ .
Output: c(x) = a(x)b(x) mod ω(x).

1. for i = 0 to m−1 do ci = 0
2. for i = 0 to m−1
3. for j = 0 to m−1
4. if i+ j ≤ m−1 then ci+ j = ci+ j + bia j

5. else ci+ j−m = ci+ j−m + bia j w
6. return c(x)

In Step 4 and Step 5 of Algorithm 18, we are performing coefficient multiplica-
tions and additions. If we skip the coefficient addition operation for i+ j = 0 in these
steps, we end up with (m−1)2 coefficient additions. The total number of coefficient
multiplications is m2 + m + 1 where m− 1 of them come from the multiplication
by λ . When ω(x) is selected as ω(x) = xw − 2, the coefficient multiplications by
λ become simple right shift operations which can be implemented very fast. OEF’s
with this optimization are called Type II OEF’s.

5.5.2 Coefficient Multiplication and Reductions

The coefficient multiplications and reductions can be calculated efficiently when
p = 2w−1 ±α is a pseudo-Mersenne prime not exceeding the word boundary and
α is a small number. The result of the coefficient multiplication can be stored in a
double word before reduction is performed. The reduction operation will reduce the
result allowing it to fit into a single word. Algorithms that perform this reduction are
reported in the literature. Algorithm 19 performs such a reduction operation where
the α term is fixed to a negative integer.

Algorithm 19: Coefficient Reduction Algorithm

Input: p = 2w−1 −α . Coefficient c < p2.
Output: c mod p.

1. q0 =
⌊
c/2w−1

⌋
, r0 = c−q02w−1

2. r = r0, i = 0
3. while qi > 0
4. qi+1 =

⌊
qiα/2w−1

⌋
5. ri+1 = qiα −qi+12w−1

6. i = i+ 1, r = r + ri

7. while r ≥ p do r = r− p
8. return r
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In Step 1 of Algorithm 19, q0 is initialized with the upper word and r0 is ini-
tialized with the lower word of the input c. We want to reduce the upper word in
one big step by taking out q02w−1. But by doing so we have taken out an extra q0c
value. We need to add this value back to the remainder. In Steps 5 and 6, we can
see this effort. But, before adding this value back we further reduce it with in Steps
4 and 5. Because α is small, Step 4 is executed at the most twice. If α is selected
as 1 the multiplications in Steps 3 and 4 become trivial. An OEF that supports this
optimization is named as Type I.

5.6 Karatsuba–Ofman Algorithm

In this section, the fast multiplication method Karatsuba–Ofman is discussed for
polynomials. This algorithms can also be used in the multiplication of large integers.
In this case, x can be thought as the radix value in the multidigit representation of
the integers.

Let a0 +a1x and b0 +b1x be two polynomials over a ring R. As seen below, their
multiplication using the schoolbook method

(a0 + a1x)(b0 + b1x) = a0b0 +(a0b1 + a1b0)x + a1b1x2

needs the computation of four ring products. The Karatsuba method performs this
multiplication by computing only three ring products as follows

(a0 + a1x)(b0 + b1x) = a0b0 + a1b1x2 +[a0b0 + a1b1 +(a0 −a1)(b1 −b0)]x
= a0b0(1 + x)+ a1b1(x + x2)+ (a0 −a1)(b1 −b0)x.

This method can be generalized for arbitrary degree polynomials. Let y = xn. Let
ai(x) and bi(x) be polynomials with degree at the most n−1. Then,

(a0(x)+ a1(x)y) (b0(x)+ b1(x)y) (5.11)

is a product of the polynomials with degree at most 2n− 1 and can be computed
with the Karatsuba method using the following three half-sized products

a0(x)b0(x), a1(x)b1(x), (a0(x)−a1(x))(b1(x)−b0(x)). (5.12)

Here, ai(x) and bi(x) are the coefficients of the linear polynomials in y in the ring
R[x].

As seen, the Karatsuba method computes a product from three half-sized prod-
ucts. In the same fashion, it computes each of these half-sized products from three
quarter-sized products. This process goes recursively. When the products get very
small, the recursion stops and these small products are computed by the schoolbook
method. This recursive computation constitutes a multiplication method asymptoti-
cally faster than the O(n2) schoolbook method.
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5.6.1 Complexity

It can be shown that the Karatsuba multiplication is O(n1.58) [10]. Let T (n) de-
note the complexity of the multiplying polynomials with degree n− 1. Then, the
complexity of the multiplying polynomials with degree 2n−1 is T (2n). And, if the
Karatsuba method is used in the computation,

T (2n) ≤ 3T (n)+ αn

for some constant α , since the Karatsuba method uses three half-sized products plus
some additions and subtractions. The recursion above implies by induction that

T (2k) ≤ α(3k −2k), k ≥ 1.

Then, T (n) ≤ α(3�log2 n� −2�log2 n�) < α31+log2 n = 3α3log2 n = 3αnlog2 3 ≈ 3αn1.58.

5.6.2 Number of Scalar Multiplications

Let #mul(n) denote the number of the scalar products required for the multiplication
of two degree n−1 polynomials. As can be understood from (5.11) and (5.12), the
Karatsuba method computes a product of degree 2n−1 polynomials from the three
products of degree n−1 polynomials. Thus,

#mul(2n) = 3 #mul(n)

for the Karatsuba method. As a result, if n is a power of two,

#mul(n) = 3log2 n = nlog2 3 ≈ n1.58.

Let n be a power of 2, the number of scalar products

#mul(2n) = 2 #mul(n)+ #mul(n−1)−1.

5.6.2.1 Integer Multiplication

To multiply two n-digit integers a and b with the Karatsuba–Ofman method, these
integers are first split into the half-sized integers

aH = (an−1, . . . ,a�n/2�), aL = (a�n/2�−1, . . . ,a0),
b H = (b n−1, . . . ,b �n/2�), b L = (b �n/2�−1, . . . ,b 0).

(5.13)

The integers above are made up from the higher and the lower digits of a and b.
Thus, a = aL + aHβ �n/2� and b = bL + bHβ �n/2� where β is the integer base. Next,
the three subproducts f = aLbL, g = aHbH , and e = (aL−aH)(bL−bH). Finally, the
results are combined to produce
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d = f + gβ 2�n/2�+( f + g− e)β �n/2�. (5.14)

Notice f + g− e = aLbH + aHbL gives the sum of the cross products. Thus, the
Karatsuba–Ofman method actually computes

d = aLbL + aHbHβ 2�n/2� +[aLbH + aHbL]β �n/2� = a×b.

Algorithm 20 multiplies two integers using Karatsuba–Ofman method. In Step
1, the standard multiplication is used without any recursion, if the inputs are smaller
than a threshold. Otherwise, the remaining steps are executed. First, f + g− e =
aLbL + aHbH − (aL − aH)(bL − bH) needs to be computed from the half-sized
operands. To work with only positive operands, this term can also be computed
as f +g− e = aLbL +aHbH − sasb|aL−aH ||bL−bH | where sa = sign(aL −aH) and
sb = sign(bL −bH).

Algorithm 20: Karatsuba–Ofman multiplication for integers

Input: n-digit integers a and b.
Output: 2n-digit integer d = a×b.

1. if n ≤ nthreshold then d = a×b, return(d)
2. Split a into aH = (an−1, . . . ,a�n/2�) and aL = (a�n/2�−1, . . . ,a0).
3. Split b into b H = (b n−1, . . . ,b �n/2�) and b L = (b �n/2�−1, . . . ,b 0).
4. sa = sign(aL −aH) (Use Algorithm 21.)
5. sb = sign(b L −b H) (Use Algorithm 21.)
6. if sa = +1 then aM = aL −aH else aM = aH −aL

7. if sb = +1 then b M = b L −b H else b M = b H −b L

8. e = sa sb recursive-call(aM,bM)
9. f = recursive-call(aL,bL)

10. g = recursive-call(aH ,bH)
11. h = f + g− e
12. d = f + gβ 2�n/2�+ hβ �n/2�

13. return(d)

The signs sa and sb are obtained by Algorithm 21.

Algorithm 21: Integer comparison

Input: k-digit integer u and l-digit integer v where k ≥ l.
Output: s = sign(u− v).

1. s = +1, i = k
2. while i > l and ui = 0 do i = i−1
3. if i = l then
4. while i ≥ 0 and ui = vi do i = i−1
5. if i ≥ 0 and ui < vi then s = −1
6. return(s)
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Algorithm 20 requires some multiprecision additions and subtractions. These op-
erations are performed as shown in (5.1) and (5.2). The subtractions in Steps 6 and
7 have at the most �n/2�-digit operands and produce a positive �n/2�-digit result.
The addition and the subtraction in Step 11 have at the most 2�n/2�-digit operands.
These operations produce h = aLbH + aHbL. Element h is an (n + 1)-digit positive
integer since the sizes of aLbH and aHbL are �n/2�+ �n/2� = n digits. Also, the
multiplications by the powers of the base β in Step 12 are nothing else than multi-
digit left shifts.

5.7 Exercises

1. As shown in Section 5.2, the elements in Fp can be represented by the inte-
gers {0,1,2, . . . , p− 1} and the field multiplication in Fp can be defined as the
multiplication modulo p in Z. Show that every non-zero field element has a mul-
tiplicative inverse according to this definition. Hint: Use the Bezout’s identity for
integers uû+ vv̂ = gcd(u,v) and investigate the case u = p and 0 ≤ v < p.

2. As shown in Section 5.2, the elements in Fpm can be represented by the poly-
nomials over Fp of degree less than m. Also, the field multiplication in Fpm can
be defined as the polynomial multiplication modulo ω(x) where ω(x) is degree
m irreducible polynomial over Fp. Show that every non-zero field element has a
multiplicative inverse according to this definition. Hint: Use the Bezout’s iden-
tity for polynomials

u(x)û(x)+ v(x)v̂(x) = gcd(u(x),v(x))

and investigate the case u(x) = ω(x) and 0 ≤ deg(v(x)) < m.
3. Use the equality ∑n−1

k=0 kβ k−1(β −1)2 = n(β −1)β n− (β n −1) and show that the
three digit number (U,H,L) in Algorithm 2 does not overflow, if n(β −1) ≤ β 2

where β is the integer base and n is operand size in the number of digits.
4. Use Algorithm 5 as an example and construct an efficient algorithm to reduce the

integers modulo 2224 −296 + 1.
5. As shown in the chapter, the Barret Algorithm for integers estimates the quotient

�d/p� with at most two errors, if the parameters k and k′ satisfy that k ≥ log2 d ≥
log2 p ≥ k′. Let these parameters be chosen such that k ≥ log2 d − u and k′ ≤
log2 p + v where k ≥ k′ still holds. Show that the quotient estimation error will
be at most 2u + 2v.

6. As shown in the chapter, the Barret Algorithm for polynomials over F2 estimates
the quotient �d(x)/ω(x)� without any error, if the parameters k and k′ satisfy
that k ≥ deg(d(x)) ≥ deg(ω(x)) ≥ k′. Let these parameters be chosen such that
k ≥ deg(d(x))−u and k′ ≤ deg(ω(x))+ v where k ≥ k′ still holds. What will be
the error in the quotient estimation?

7. Algorithm 19 fixes the pseudo-Mersenne prime to the form of p = 2w−1 −α .
What changes do you need to make to this algorithm so that it will support
pseudo-Mersenne primes in the form p = 2w−1 ±α .
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5.8 Projects

1. Implement the recursive Karatsuba-Ofman algorithm in C for integer multiplica-
tion and polynomial multiplication in F2.

2. Implement the algorithms given in this chapter in an algebraic computational
system (such as, Maple, Mathematica, or Matlab).
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Chapter 6
Efficient Unified Arithmetic for Hardware
Cryptography

Erkay Savaş and Çetin Kaya Koç

6.1 Introduction

The basic arithmetic operations (i.e., addition, multiplication, and inversion) in finite
fields, GF(q), where q = pk and p is a prime integer, have several applications in
cryptography, such as RSA algorithm, Diffie-Hellman key exchange algorithm [1],
the US federal Digital Signature Standard [2], elliptic curve cryptography [3, 4],
and also recently identity-based cryptography [5, 6]. Most popular finite fields that
are heavily used in cryptographic applications due to elliptic curve-based schemes
are prime fields GF(p) and binary extension fields GF(2n). Recently, identity-based
cryptography based on pairing operations defined over elliptic curve points has stim-
ulated a significant level of interest in the arithmetic of ternary extension fields,
GF(3n).

Even though the aforementioned three popular finite fields are dissimilar math-
ematical structures, their elements are represented using similar data structures in-
side the digital circuits and computers. Furthermore, similarity of algorithms for
basic arithmetic operations in these fields allows a unified module design. For ex-
ample, the steps of the original Montgomery multiplication algorithm [7], which is
one of the most efficient methods for multiplication in finite fields, GF(p) and rings
slightly differ from those of the Montgomery multiplication algorithm for binary ex-
tension fields, GF(2n) given in [8]. In addition, it is almost straightforward to extend
the Montgomery multiplication algorithm for ternary extension fields, GF(3n), by
essentially keeping the steps of the algorithm intact. Similarly, addition or inversion
operations can be performed using similar algorithms that can be realized together
in the same digital circuit.

To summarize, an arithmetic module which is versatile in the sense that it
can be adjusted to operate in more than one of the three fields is feasible, pro-
vided that this extra functionality does not lead to an excessive increase in area
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and dramatic decrease in speed. Quite contrarily, a unified module that is capa-
ble of performing arithmetic in more than one field in the same, unified datap-
ath brings about many advantages, one of which is the improved {area× time}
product.

6.2 Fundamentals of Extension Fields

The elements of the prime finite field GF(p) are the integers {0,1,2, ..., p− 1}
where p is an odd prime. The addition and multiplication operations in GF(p) are
modular operations performed in two steps:

1. Regular integer addition or multiplication, and
2. Reduction by the prime modulus p if the result of the first step is greater than or

equal to the modulus.

The elements of the binary extension field GF(2n) can be represented as binary
polynomials of degree less than n if polynomial basis representation is used. Analo-
gous to the odd prime used in GF(p), a binary irreducible polynomial of degree n is
used to construct GF(2n). The addition in GF(2n) is simply performed by modulo-
2 addition of corresponding coefficients of two polynomials. Since it is basically a
polynomial addition there is no carry propagation and the degree of the resulting
polynomial cannot exceed n− 1. On the other hand, multiplication in GF(2n) is
more complicated and sometimes it is beneficial to use other types of representation
techniques than standard polynomial basis such as Gaussian normal basis [9]. Here,
we always use polynomial basis for GF(2n) because of its suitability to the unified
architecture.

Polynomial basis representation of GF(2n) is determined by an irreducible bi-
nary polynomial p(x) of degree n. Given p(x), all the binary polynomials of degree
less than n, which has the form A(x) = an−1xn−1 + . . .+ a1x + a0, are elements of
GF(2n). Multiplication in GF(2n), similar to multiplication in GF(p), is performed
in two steps:

1. Polynomial multiplication, followed by
2. A polynomial division of the result from Step 1 by the irreducible polynomial

p(x).

Similar to binary extension fields, the elements of ternary extension fields GF(3n)
can be represented as (ternary) polynomials of degree at the most n−1, whose co-
efficients are from the base field GF(3). In order to utilize polynomial basis for
ternary arithmetic, an irreducible ternary polynomial p(x) of degree n is needed.
The addition operation in GF(3n) is polynomial addition where the corresponding
coefficients of two ternary polynomials are added modulo-3 and there is no carry
propagation. The multiplication is also done in two steps: a polynomial multiplica-
tion followed by reduction by the irreducible ternary polynomial p(x).
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6.3 Addition and Subtraction

The most fundamental arithmetic operation in finite fields and rings, on which all
other arithmetic operations are based, is the addition operation. The key point to
an efficient finite field arithmetic is to design fast and lightweight adder circuits. In
many cryptographic applications, in order to balance the speed and area efficiency,
adders utilizing redundant representation are preferred. The most basic form of re-
dundant representation is the carry-save form in which an integer is represented as
the sum of two other integers, namely x = xC + xS where xC and xS are known as
carry and sum components of the integer, respectively. The addition operation for
carry-save representation can then be performed using full adders which have three
binary inputs and two binary outputs. Full adders connected to each other in cas-
caded fashion can perform addition where one of the operands is in redundant form
while the other is in non-redundant form.

It is possible to perform both GF(p) and GF(2n) addition operation using a
so-called dual-field adder (DFA) [10], which is illustrated in Figure 6.1. The DFA
shown in Figure 6.1 is basically a full adder equipped with the capability of per-
forming bit addition both with and without carry. It has an input denoted as fsel that
provides this functionality. When fsel = 1, the dual-field adder circuit performs bit-
wise addition with carry which enables the circuit operating in GF(p)-mode. When
fsel = 0, on the other hand, the output Cout is forced to 0 regardless of the values of
the inputs. Consequently, the output S produces the result of modulo-2 addition of
three binary input values. At most only two of the three binary input values of DFA
can have nonzero values in GF(2n)-mode.

An important aspect of designing a DFA is not to increase the critical path delay
(CPD) of the circuit, which otherwise would have a negative effect in the maximum
applicable clock frequency; a situation which is against the design goal of the unified
modules. However, a small amount of overhead in area can be accommodated. Gate
level realization of DFA shown in Figure 6.1 clearly demonstrates that there is no
increase in the CPD since the two XOR gates dominate the CPD as in the case of a

S

Cout

Cin

xi
yi

fsel

Fig. 6.1 The dual-field adder circuit.
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regular full adder. Area differs slightly due to one extra input, i.e., fsel and additional
gates that are used to suppress the carry out in GF(2n)-mode. However, this increase
in area is very small, and therefore tolerable, compared to two separate adders for
GF(p) and GF(2n) which would incur much more overhead in area if a non-unified
approach were preferred.

As described above, 3 × 2 adder arrays in cascade are in many cases suffi-
cient since addition operation is mostly needed in multiplications where one of the
operands is always in non-redundant form as in [11]. In this case, the carry-save
form is only used during the multiplication for partial product and the result of the
multiplication has to be converted to non-redundant form using a carry-propagation
adder after the multiplication is completed. However, when the two operands are
both in carry-save redundant form, then 3× 2 adder arrays in cascade cannot be
used for unified addition. Instead, 4×2 adder arrays are needed to operate on both
operands of redundant form. Using 4×2 adder arrays eliminates the need for conver-
sion after multiplication, which is especially useful in elliptic curve cryptography,
where there are many addition and subtraction operations in between multiplication
operations.

The classical carry-save redundant representation method has one major draw-
back due to the difficulty of performing subtraction operation. When two’s comple-
ment representation is used to facilitate the representation of negative numbers as
well as subtraction operation, the carry-save representation poses certain difficulties.
For example, during the subtraction of two’s complement operands, a carry overflow
indicates whether the result is negative or positive. Since there can be a hidden carry
overflow in carry-save representation, computationally intensive operations may be
needed to determine the sign of the result, which in turn incurs significant increase
in CPD and area.

Avizienis [12] proposed the redundant signed digit (RSD) representation to over-
come this difficulty. Arithmetic in the RSD representation is almost identical to
carry-save arithmetic. An integer is still represented by two positive integers; how-
ever, this time the integer is now represented as the difference (as opposed to the
sum in carry-save representation) of two other integers. An integer X , therefore, is
represented by x+ and x−, where X = x+ − x−. As can easily be deduced from the
definition of RSD, there is no need for two’s complement representation to handle
negative numbers and subtraction operation. The RSD is, thus, a more natural repre-
sentation when both addition and subtraction operations need to be supported. This
is indeed the case in elliptic curve cryptography and Montgomery multiplication
and inversion algorithms. An additional benefit of RSD representation is the fact
that the comparison operation in GF(p)-mode is now possible and efficient. Integer
comparison in GF(p)-mode can be performed utilizing a subtraction operation. Af-
ter subtracting one integer from the other, a sign test can be performed directly by
checking the first nonzero bit in significant positions of the result. This is in general
an easy method that can be implemented by masking the most significant bits to
determine which number is greater.

Realization of RSD arithmetic is very similar to carry-save arithmetic. RSD arith-
metic needs generalized full adders which are shown in Figure 6.2. As observable
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Logic Symbol

Type

Function

GF–0 GF–1 GF–2 GF–3

x x x xy y y y

z z z z

C C C CS S S S

x+y+z = 2C+S x–y+z = 2C–S –x+y–z = –2C+S –x–y–z = –2C–S

Fig. 6.2 Generalized full adders.

from Figure 6.2, GFA-0 is a conventional full adder. From the realization perspec-
tive, GFA-1, GFA-2 and GFA-3 are equivalent to GFA-0 realization in ASIC and
thus there is no associated overhead in either CPD or area.

The addition of two n-bit RSD integers, X and Y , Z = X +Y , can be done by
cascading two layers of GFAs of types 1 and 2 as shown in Figure 6.3. An additional
circuitry is needed to force the digit instances of (1, 1) to (0, 0) since 1− 1 = 0.
Subtraction of two n-bit integers, T = X −Y can be realized using the same addition
circuit in Figure 6.3 by swapping y+ and y−. The adder (or subtractor) circuit which
is originally designed for GF(p) arithmetic can easily be converted into a dual-field
adder (or subtractor) by forcing the carry output of each GFA into 0 in GF(2n)-
mode.

One of the side benefits of RSD representation and associated adder structures
is their suitability to a full unified arithmetic that incorporates addition/subtraction
in three major finite fields, namely GF(p), GF(2n) and GF(3n). Given below is the
RSD representation of elements of these three fields:

1. Prime field GF(p): Elements of prime fields can be represented as integers in
binary form. Assuming that the digits are signed, the values that digits have and
their corresponding representations are {0,1,−1} and {(0,0),(1,0),(0,1)}.

2. Binary extension field GF(2n): A common practice is to consider elements of
binary extension field as polynomials with coefficients from GF(2). This allows
one to represent GF(2n) elements by simply arranging the coefficients of the
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Fig. 6.3 Addition circuit with GFAs for two n-bit operands in RSD form.
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polynomial into a binary string. A digit in GF(2n)-mode can take the values of 1
and 0, that can be represented as {(0,0),(1,0)}.

3. Ternary extension field GF(3n): Elements of ternary extension fields can be
considered as polynomials whose coefficients are from GF(3). Thus, each coef-
ficient can take the values −2,−1,−,1,2. The digit values −2 and 2 are congru-
ent to 1 and −1 modulo 3, respectively. Therefore, the RSD representations for
possible coefficient values of 0, 1, and −1 are {(0,0),(1,0),(0,1)}.

A unified adder that operates in three fields can be derived from the addition
circuit in Figure 6.3. When compared to GF(p)-only adder, the unified adder circuit
has only marginally higher CPD while the overhead in area can be higher. However,
when the area cost of three non-unified adders implemented in separate datapaths
far outweighs this overhead in the unified design as shown in [13].

6.4 Multiplication

In this section, we first provide the original unified Montgomery multiplication al-
gorithm in [10], which operates only in GF(p) and GF(2n). We then present a dual-
radix unified multiplier in [14] where the multiplier calculates faster in GF(2n)-
mode than in GF(p)-mode. We finally discuss the support in the unified multiplier
for multiplication in GF(3n).

6.4.1 Montgomery Multiplication Algorithm

In Ref. [7], Montgomery described a modular multiplication method which proved
to be very efficient in both hardware and software implementations. An obvious
advantage of the method is the fact that it replaces division operations with simple
shift operations. The method adds multiples of the modulus rather than subtract-
ing it from the partial result. And opposite to the subtraction of modulus in the
regular modular multiplication, which can be performed after all the digits of the
multiplicand are processed, the addition operation can start immediately after the
least significant digit of the multiplicand is processed. Especially, the second fea-
ture accounts for the inherent concurrency in the algorithm. Refer to [7, 15, 16] for
a detailed explanation of the algorithm.

Given two integers a and b, and a prime modulus p, the Montgomery multipli-
cation algorithm computes c̄ = MonMult(a,b) = a ·b ·R−1 (mod p) where R = 2n

and a,b < p < R and p is an n-bit prime number. The Montgomery multiplication
does not directly compute c = a ·b (mod p), therefore certain transformation oper-
ations must be applied to the operands a and b before the multiplication and to the
intermediate result c̄ in order to obtain the final result c. These transformations are
applied as in the following example:
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ā = MonMult(a,R2) = a ·R2 ·R−1 (mod p) = a ·R (mod p),

b̄ = MonMult(b,R2) = b ·R2 ·R−1 (mod p) = b ·R (mod p),

c = MonMult(c̄,1) = c ·R ·R−1 (mod p) = c (mod p).

Provided that R2 (mod p) is precomputed and saved, we need only a single Mon-
Mult operation to carry out each of these transformations. However, because of
these transformation operations, performing a single modular multiplication using
MonMult might not be advantageous even though there is an attempt to make
it efficient for a few modular multiplications by eliminating the need for these
transformations [17]. Its advantage, on the other hand, becomes obvious in appli-
cations requiring multiplication-intensive calculations such as modular exponenti-
ation, elliptic curve point operations, and pairing calculations over elliptic curve
points.

The Montgomery multiplication algorithm with radix-2k for GF(p) can be given
as in the following:

Algorithm A
Input: a,b ∈ [1, p−1], p, and m
Output: c ∈ [1, p−1]
Step 1: c := 0
Step 2: for i = 0 to m−1
Step 3: q := (c0 + ai ·b0) · (p′0) (mod 2k)
Step 4: c := (c + ai ·b + q · p)/2k

where p′0 = 2k − p−1
0 (mod 2k). In the algorithm, the multiplier a is written with

base (radix)-2k as an array of digits ai so that a = ∑m−1
i=0 ai · 2k·i, where m is the

number of digits in a and m = �n/k�. In Step 4, the multiplicand b, the modulus p,
and the partial result c enter the computations as full-precision integers. However, in
the real implementations b, p, and c can be treated as multi-word integers in order to
design a scalable multiplier and in each clock cycle one word of these values will be
processed. One may also consider this representation as writing the multiplicand,
the modulus and the partial result with digits b( j), p( j), and c( j) of w bits, so that
b = ∑e−1

j=0 b( j) · 2w· j, p = ∑e−1
j=0 p( j) · 2w· j, and c = ∑e−1

j=0 c( j) · 2w· j where e = �n/w�.
Note that the base-2w used to represent b, p, and c in Step 4 is different from the
radix-2k used to represent the multiplier a in Step 3. Note also that q, c0, b0, and p′0
are all k-bit integers.

In order to avoid a possible confusion due to the usage of two different bases, we
elect to refer the digits of b, p and c as words when implementing Step 4, and use
the term digit exclusively for the multiplier a, and for b0, p′0, and c0 in Step 3 when
they are in the same equation with the digits of a. Digits can be easily distinguished
by the subscript notation (e.g., ai or b0) from the superscript notation of word (e.g.,
b( j)). We will also use the notation xi, j to denote the jth bit in the ith digit of x.

In addition, the radix of the multiplier architecture is determined by the base used
to represent the multiplier a.

The Montgomery multiplication algorithm for GF(2n) is given below:
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Algorithm B
Input: a(x),b(x), p(x), and m
Output: c(x)
Step 1: c(x) := 0
Step 2: for i = 0 to m−1
Step 3: q(x) := (c0(x)+ ai(x) ·b0(x)) · p′0(x) (mod xk)
Step 4: c(x) := (c(x)+ ai(x) · c(x)+ q(x) · p(x))/xk

where p′0(x) = p−1
0 (x) (mod xk). As one easily observes, the two algorithms are

almost identical except that the addition operation in GF(p) becomes a bitwise
modulo-2 addition in GF(2n). Although the operands are integers in the former
algorithm and binary polynomials in the latter, the representations of both are iden-
tical in digital systems. In Algorithm A, there must be an extra reduction step at the
end to reduce the result into the desired range if it is greater than the modulus. On
the other hand, this step is not an essential part of the algorithm and there are simple
conditions that can be added to the algorithm in order to eliminate it [18, 19]; hence
we intentionally exclude it from the algorithm definitions.

One can also observe that the computations performed in Step 3 are of different
nature in the two algorithms and depending on the magnitude of the radix used, the
part of the circuit in charge of implementing them might become very complicated.
However, one can easily demonstrate that these computations can be performed in
a unified circuitry for small radices.

From this point on, we will only use the notation introduced in Algorithm A
for both GF(p) and GF(2n) and leave polynomial notation completely out of our
representation of field elements in GF(2n). Operations will be deduced from the
mode (GF(p) or GF(2n)) in which the module is operated. The elements of both
fields are represented identically in the digital systems.

6.4.1.1 Processing Unit

In this section, we explain the design details of the processing unit (PU) with radix-
2, which is basically responsible for performing Steps 3 and 4 of Algorithm A:

Step 3: q := (c0 + ai ·b0) · (p′0) (mod 2k)
Step 4: c := (c + ai ·b + q · p)/2k

Since we use radix-2 for our unified multiplier for the sake of simplicity (noting
that it is always possible to extend it to higher radices), the least significant bits
(LSB) of the operand digits, ai, b0, and c0 will determine which one of the values in
{0,b, p,b + p} is added to the partial result c. In Figure 6.4, the architecture of the
processing unit (PU) used in the unified multiplier with w = 2 is illustrated. The first
layer of dual-field adder deals with the addition of b to the partial result c while the
second layer deals with the addition of p. The value q (binary for radix-2) calculated
in Step 3 of Algorithm A determines whether the modulus p is added while the value
a determines whether the multiplicand b is added to the partial result.
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Fig. 6.4 Processing unit with radix-2 where word size w = 2.

As can be observed from Figure 6.4, there are flip-flops (FF) to delay some of
the bit values generated during the calculations. The FF right after the first dual-
field adder layer delays the most significant bit of carry from the previous word to
the current word. One can think of this bit as carry-out from the previous word since
the carry part of c is shifted one bit to the left relative to the sum part in the carry-
save form. The particular arrangement of FFs at the output of the second dual-field
adder layer implements right-shift operation in Step 4 of Algorithm A.

The unified architecture consists of one or (generally) more processing units
(PU), identical to the one shown in Figure 6.4, organized in a pipeline. Each PU
takes a digit (k-bits) from the multiplier a, the size of which depends on the radix,
and operates on the words of b, c and p successively starting from the least signif-
icant words. Starting from the second cycle, it generates one word of partial result
each cycle which is communicated to the next PU. After e + 1 clock cycles, where
e is the number of words in the modulus (i.e., e = �n/w�), a PU finishes its portion
of work and becomes free for further computation. When the last PU in the pipeline
starts generating the partial results, the control circuitry checks if the first PU is
available. If the first PU is still working on an earlier computation, the results from
the last PU should be stored in a buffer until the first PU becomes available again.
Refer to [11] for more information about the length of the buffer to store the partial
results when there is no available PU in the pipeline. In Figure 6.5 the execution
graph of the Montgomery multiplication algorithm and dependencies between the
processing units are illustrated.
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Fig. 6.5 Execution graph of Montgomery multiplication algorithm [11].

Each column in the dependency graph represents the computation which is un-
dertaken by a PU for one digit of the multiplicand a while each circle represents
the operations for one word of p, b and c. The time advances from the top to the
bottom where the operation represented by a circle takes exactly one clock cycle.
An example of pipeline organization with t PUs is shown in Figure 6.6.

A redundant representation (carry-save) is used for the partial result in the archi-
tecture. Thus, for the partial result we can write c = cc + cs, where cc and cs stand
for the carry and sum part of the partial result, respectively. In addition, one must
note that the length of the register for partial result, c in Figure 6.6 is twice wider
than the other registers.
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Fig. 6.6 Pipeline organization with two processing units.

Given that carry-save notation is used for the partial result and that each iteration
is executed on word-by-word basis, the Algorithm A can be expressed as follows:

Algorithm A (modified)
Input: a,b ∈ [1, p−1], p, and m
Output: c ∈ [1, p−1], where c = (cc,cs)
Step 1: cc := 0,cs := 0
Step 2: for i = 0 to m−1
Step 3: q := (c0 + ai ·b0) · (p′0) (mod 2k)
Step 4: for j = 0 to e−1
Step 5: (cc( j),cs( j)) := (cc( j) + cs( j) + ai ·b( j) + q · p( j))/2k

The proposed architecture allows designs with different word lengths and pipeline
organizations for different values of operand precision. In addition, the area can be
treated as a design constraint. Thus, one can adjust the design to the given area, and
choose appropriate values for the word length and the number of pipeline stages, in
accordance with it.

The propagation delay of PU is independent of word size w when w is relatively
small (it increases only slightly for larger values of w due to carry-free arithmetic),
and thus we assume that the clock cycle is the same for all word sizes of practical
interest. The area used by registers for partial sum, operands and modulus does not
change with the word or digit sizes.

The proposed scheme yields the worst performance for the case w = m, since
some extra cycles are introduced by the PU in order to allow word-serial computa-
tion, when compared to other full-precision conventional designs. On the other hand,
using many pipeline stages with small word size values brings about no advantage
after a certain point. Therefore, the performance evaluation reduces to finding an
optimum organization for the circuit.
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ASIC standard cell realizations of both unified and non-unified (GF(p)-only)
designs demonstrate that area overhead of the unified multiplier is only 2.75% and
that there is no overhead in critical path delay [10]. Therefore, the saving in the area
is significant when the unified design is compared to a hypothetical architecture
that has two separate datapaths for GF(p) and GF(2n) multipliers. Furthermore,
this saving in area does not bring about a penalty in time performance, therefore
improvement in area is identical to the improvement in metric of {area × time}.

6.4.2 Dual-Radix Multiplier

The original unified multiplier in [10] uses radix-2 design and offers an equal perfor-
mance for both GF(p) and GF(2n) of the same precision in terms of clock count.
For this very reason, however, the original design is not optimized since it does
not take the advantage of using GF(2n), which is, in general, more efficient than
GF(p) in hardware implementations. Our first observation is that this situation can
be remedied by putting to use the part of the circuitry which is underutilized in
GF(2n) mode. This allows us to run the multiplier module in higher radix values for
GF(2n) than those for GF(p) at the expense of using some amount of extra gates
without significantly increasing the signal propagation time.

In this section, we present the radix-(2,4) multiplier architecture introduced in
[14], where the multiplier uses radix-2 in GF(p)-mode while it uses radix-4 in
GF(2n)-mode. The radix-(2,4) multiplier is in fact the first member of the dual-
radix multiplier family, which also includes radix-(4, 8) and radix-(8, 16) [14]. We
only include the radix-(2,4) multiplier for the sake of simplicity in explaining.

6.4.2.1 Precomputation in Montgomery Multiplication Algorithm

The dual-radix unified multiplier architecture utilizes a precomputation technique
in order to decrease the critical path delay of the original unified multiplier in [10].
Note that Step 4 of the Algorithm A computes

c := (c0 + ai ·b + q · p)/2k

where division by 2k is simply a right shift by k bits and q is calculated in the
previous step. Depending on the radix value chosen for the multiplier, the k-bit digit
q can be determined by the least significant digits (LSD) of b, p and c, and the
current digit of a. Similarly, the multiple of b that participates in the addition is
determined solely by ai. As a result, the LSDs of the operands, ai, b0, and c0 will
determine which one of the values in {0,b, p,b + p,2p,2b,2b + 2p, . . .} is added to
the partial result c. If one precomputes and stores the value of b+ p, the calculations
in Step 4 can be significantly simplified.

There are two implications of the precomputation technique. Firstly, the precom-
puted value must be stored, implying an increase in the register space. And secondly,



6 Efficient Unified Arithmetic for Hardware Cryptography 117

there must be a so-called selection logic to select which multiples of b and p must
participate in the addition in Step 4. The selection logic can be designed in such
a way that it is parallel to the PU and thus it results in no overhead in the critical
path delay. On the other hand, the precomputation technique also simplifies the de-
sign since Step 4 can be performed with only one addition, once the selection logic
generates its output.

6.4.2.2 Processing Unit

As pointed out earlier, a processing unit (PU) is basically responsible for performing
Steps 3 and 4 of Algorithm A. Since the multiplier uses radix-2 for GF(p), the
LSBs of the operand digits, ai, b0, and c0 will determine which one of the values in
{0,b, p,b+ p} is added to the partial result c. In the case of GF(2n), multiplication is
performed in radix-4. Therefore, the LSDs (least significant digits) of b, p, and c and
of the current digit of a are required in order to determine q. The LSB of p is always
1, then only p0,1, the second least significant bit of the modulus, is included in the
computations. Consequently, ai,1,ai,0,b0,1,b0,0,c0,1,c0,0 and p0,1 determine one of
the following values to be added to the partial result: {0,b, p,b+ p,x ·b,x · p,x · (b+
p)} (Note that ai, j is the jth least significant bit of ith digit of a). Multiplication by
x results in shifting one bit to the left, hence it is identical to multiplication by 2.
Division by xk and 2k are identical operations and the latter is used to denote the
right-shift operation by k bits.

In Figure 6.7, the architecture of the PU used in the dual-radix multiplier is il-
lustrated. The local control logic in Figure 6.7 contains the selection logic which
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Fig. 6.7 Processing unit of dual-radix architecture with radix-2 for GF(p) and radix-4 for GF(2n).
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generates the signals, to determine which multiples of b and p will be in the cal-
culations. For example, the selection signal (1011) indicates that Step 4 will be
c := (c+3b+2p)/2k. The symbols cc0 and cs0 in Figure 6.7 represent the least sig-
nificant digits of carry and sum part of the partial result c, respectively. Note that the
cary part cc of the partial result is always 0 in GF(2)-mode. Similarly, in GF(p)-
mode, the multiplexer on the right-hand side always yields cc( j) since radix-2 is
used in this mode.

6.4.3 Support for Ternary Extension Fields, GF(3n)

The Montgomery multiplication algorithm for GF(3n), which is very similar to Al-
gorithm B, is given below [13]:

Algorithm C
Input: a(x),b(x), p(x), and m
Output: c(x)
Step 1: c(x) := 0
Step 2: for i = 0 to m−1
Step 3: q(x) := (c0(x)+ ai(x) ·b0(x)) · p′0(x) (mod xk)
Step 4: c(x) := (c(x)+ ai(x) · c(x)+ q(x) · p(x))/xk

The only difference is due to the computation of p′0(x), which is p′0(x) = 2 · p−1
0 (x)

(mod xk) (instead of p′0(x) = p−1
0 (x) (mod xk) in Algorithm B).

The original unified multiplier architecture [10] utilizes two layers of (3× 2)
dual-field adder arrays to perform addition operations in Steps 3 and 4 of the Mont-
gomery multiplication algorithm. This is due to the fact that multiplicand (b or b(x))
and modulus (p or p(x)) are assumed to be always in non-redundant form. This as-
sumption can hold for elliptic curve cryptography computations, where many multi-
plications are needed. If the result of a multiplication which is produced in redundant
form (e.g., carry-save representation), is needed for subsequent multiplications, it is
immediately converted to non-redundant representation. In order to eliminate the
need for conversion from redundant to non-redundant representation and the asso-
ciated circuitry, all operands can be kept in redundant form throughout the entire
elliptic curve computations (e.g., elliptic curve scalar point multiplication). This,
however, requires using (4× 2) adder arrays to perform addition(or subtraction) of
two redundant form integers. Although it is laden with area and CPD overhead, one
slice of (4× 2) adder can easily be modified to perform one-digit addition in three
fields GF(p), GF(2n), and GF(3n) as explained in Section 6.3. A multiplier that
can operate in three fields can be designed in the same way the original unified
multiplier [10] is designed. Two important differences of the new unified multiplier
from the original unified multiplier is that it has two control bits (as opposed to one
in the original multiplier) to select the field mode (GF(p), GF(2n), or GF(3n)), and
that the processing unit (PU) has now two layers of (4× 2) modified-adder arrays.
In addition, RSD arithmetic is employed instead of carry-save arithmetic.
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In order to asses the merits of a unified multiplier that performs multiplications of
three fields in the same datapath, one needs to compare the unified multiplier against
a hypothetical architecture which has three separate multipliers for these three fields.
The {area × CPD} metric can be used in order to figure out the balance between
the saving in area and overhead in the critical path delay that the unified multiplier
will have when compared to the hypothetical design. Implementations of both new
unified multiplier and hypothetical design in ASIC standard cell library will demon-
strate that the new unified multiplier considerably improves {area × time} metric
when compared to hypothetical design [13].

6.5 Inversion

In this section, we give multiplicative inversion algorithms, which allow very fast
and area-efficient unified hardware implementations. The presented algorithms are
based on the Montgomery inversion algorithms given in [20]. While there are several
unified inversion units reported in the literature [21–23] that compute in two fields
GF(p) and GF(2n) there has been no unified inversion unit proposed to operate in
three fields. Therefore, we limit our discussion, which is based on the techniques
and algorithms in [23], only to two basic fields, namely GF(p) and GF(2n). It is,
however, straightforward to extend the algorithm and its implementation to support
the inversion in GF(3n).

6.5.1 Montgomery Inversion for GF(p) and GF(2n)

The Montgomery inversion algorithm as defined in [20] computes

b = a−12n (mod p) , (6.1)

given a < p, where p is a prime number and n = �log2 p�. The algorithm consists
of two phases: the output of Phase I is the integer r such that r = a−12k (mod p),
where n ≤ k ≤ 2n and Phase II is a correction step and can be modified as shown
in [24] in order to calculate a slightly different inverse that can more precisely be
called Montgomery inverse:

b = MonInv(a2n) = a−12n (mod p) , (6.2)

Algorithm D
Phase I
Input: a2n ∈ [1, p−1] and p
Output: r ∈ [1, p−1] and k, where r = a−12k−n (mod p) and n ≤ k ≤ 2n

1: u := p, v := a2n, r := 0, and s := 1
2: k := 0
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3: while (v > 0)
4: if u is even then u := u/2, s := 2s
5: else if v is even then v := v/2, r := 2r
6: else if u > v then u := (u− v)/2, r := r + s, s := 2s
7: else v := (v−u)/2, s := s+ r, r := 2r
8: k := k + 1
9: if r ≥ p then r := r− p
10: return r := p− r and k

The second phase of the Montgomery inversion algorithm simply performs 2n−k
left (modular) shifts as a correction step to obtain a−12n (mod p) from a−12k−n

(mod p). The left shift operations are modular in the sense that a modular reduction
operation is performed whenever the shifted value exceeds the modulus.

In a similar fashion, the Montgomery inversion algorithm for GF(2n) can be
given as follows:

Algorithm E
Phase I
Input: a(x)xn and p(x), where deg(a(x)xn) < deg(p(x))
Output: s(x) and k, where s(x) = a(x)−1xk−n (mod p(x))

and deg(s(x)) < deg(p(x))
and deg(a(x))+ 1 ≤ k ≤ deg(p(x))+ deg(a(x))+ 1

1: u(x) := p(x), v(x) := a(x), r(x) := 0, and s(x) := 1
2: k := 0
3: while (u(x) �= 0)
4: if u0 = 0 then u(x) := u(x)/x, s(x) := xs(x)
5: else if v0 = 0 then v(x) := v(x)/x, r(x) := xr(x)
6: else if deg(u(x))≥ deg(v(x)) then

u(x) := (u(x)+ v(x))/x, r(x) := r(x)+ s(x), s(x) := xs(x)
7: else v(x) := (v(x)+ u(x))/x, s(x) := s(x)+ r(x), r(x) := xr(x)
8: k := k + 1
9: if sn+1 = 1 then s(x) := s(x)+ xp(x)
10: if sn = 1 then s(x) := s(x)+ p(x)
11: return s(x) and k

Additions and subtractions in the original algorithm are replaced with additions
without carry in the GF(2n) version of the algorithm. Since it is possible to perform
addition (and subtraction) with carry and addition without carry in a single arith-
metic unit, this difference does not cause a change in the control unit of a possible
unified hardware implementation. Step 6 of the proposed algorithm (where the de-
grees of u(x) and v(x) are compared) is different from that of the original algorithm.
This necessitates a significant change to the control circuitry. In order to circumvent
this problem we propose a slight modification in the original algorithm for GF(p).

Before describing the new inversion algorithm, we first point out an important
difference from the original Montgomery inversion algorithm. In Step 6 of the orig-
inal Montgomery inversion algorithm two integers, u and v, are compared. Depend-
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ing on the result of the comparison it is decided whether Step 6 or Step 7 is to be
executed. We propose to modify Step 6 of the algorithm in a way that, instead of
comparing u and v, the number of bits needed to represent them are compared. As
a result of this imperfect comparisons, u may become a negative integer. The fact
that u might be a negative integer may lead to problems in comparisons in subse-
quent iterations, therefore u must be made positive again. To do that, it is sufficient
to negate r. The proposed modifications can be seen in the modified algorithm given
below. Note that Algorithm F is in fact a unified algorithm and it is reduced to Al-
gorithm E provided that all addition and subtraction operations in GF(p)-mode are
mapped to GF(2n) additions in GF(2)-mode. The variable FSEL is used to switch
between GF(p) and GF(2) modes.

Algorithm F
Phase I
Input: a2n ∈ [1, p−1] and p
Output: s ∈ [1, p−1] and k, where s = a−12k−n (mod p)

and n ≤ k ≤ 2n

1: u := p, v := a2n, r := 0, and s := 1
2: k := 0 and FSEL := 0 // FSEL := 1 in GF(2n)-mode
3: if u is positive then
4: if (bitsize(u) = 0) then go to Step 15
5: if u is even then u := u/2, s := 2s
6: else if v is even then v := v/2, r := 2r
7: else if bitsize(u) ≥ bitsize(v) then u := (u− v)/2, r := r + s, s := 2s
8: else v := (v−u)/2, s := s+ r, r := 2r
9: Update bitsize(u), bitsize(v) and sign of u
10: else (i.e., u is negative)
11: if u is even then u := −u/2, s := 2s r := −r
12: else v := (v + u)/2, u := −u, s := s− r, r := −2r
13: k := k + 1
14: Go to Step 3
15: if sn+2 = 1 (i.e., s is negative)
16: u := s+ p
17: v := s+ 2p
18: if un+2 = 1 then s := v
19: else s := u
20: u := s− p
21: v := s−2p
22: if vn+1 = 0 then s := v
22-a: if sn = 1 and FSEL = 1 then s := s− p
23: else if un = 0 then s := u
24: else s := s
25: return s and k

Changing the signs of both u and r simultaneously has the effect of multiplying
both sides of the invariant p = us + vr by −1. Therefore, the new invariant when
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r < 0 is given as {−p = us + vr.} While u and v remain to be positive integers, s
and r might be positive or negative. Therefore, we need to alter the final reduction
steps to bring s in the correct range, which is [0, p). The range of s is [−2p,2p]. As
a result, we need to use two more bits to represent s and r than the bitsize of the
modulus.

The value u becomes negative as a result of u = (u− v)/2, when bitsize(u) =
bitsize(v) and v > u before the operation. Since u = (u− v)/2 decreases the bitsize
of absolute value of u at least by one independent of whether the result is negative or
positive, u will become certainly less than v after the negation operation. Therefore,
if a negative u is encountered during the operation only Steps 11 and 12 are executed.

Note that the variable FSEL is not needed for GF(p)-mode computations. Fur-
ther, in GF(p)-mode FSEL = 0 and Step 22-a is never executed. This step becomes
relevant in GF(2)-mode when FSEL = 1.

6.6 Conclusions

Unified arithmetic has gained a considerable amount of attention from the re-
searchers and implementors working in applied cryptography. The basic premise
of the unified arithmetic is that it is possible to use the same datapath for perform-
ing arithmetic operations in different fields. In this chapter, we provided the design
principles of the unified arithmetic for three different fields, namely GF(p), GF(2n)
and GF(3n). We also pointed out the advantages of the unified arithmetic using dif-
ferent metrics such as area, critical path delay, operation timing, and time × area
product. Although there is considerable amount of work for unified architectures
for prime GF(p), and binary extension GF(2n) fields, there arises a need for re-
search on unified arithmetic units that can operate in three fields GF(p), GF(2n)
and GF(3n) especially with the advent of pairing-based cryptography.

6.7 Exercises

1. Obtain the truth tables for the four generalized full adders in Figure 6.2.
2. Add an additional layer of logic gates to the output of the RSD adder in Figure 6.3

to force the output (1,1) to (0,0).
3. Modify the one bit of the RSD adder circuit in Figure 6.3 so that it computes

addition in three fields, namely GF(p), GF(2n), and GF(3n).
4. Design (on paper) a unified multiplier of 8 bits that operates in three fields,

GF(p), GF(2n), and GF(3n).
5. Provide a gate level implementation (on paper) of the selection logic in Fig-

ure 6.7.
6. Design (on paper) the processing unit of a dual-radix (4,8) multiplier.
7. Obtain a Montgomery inversion algorithm by modifying the steps of Algo-

rithm E.
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6.8 Projects

1. Provide a gate level implementation of generalized full adders in Figure 6.2.
Realize your implementation using ASIC standard cell library and compare areas
and critical path delays of generalized full adders.

2. Implement Algorithm E in software and provide some statistics such as average
number of total iterations and average number of times Steps 4, 5, 6, and 7 are
executed.

3. Modify the Step 6 of Algorithm E in such a way that u(x) and v(x) are com-
pared as if they are integers. Implement the algorithm in software and check if it
works. Obtain the same statistics you obtained in the previous exercise. Give a
comparison.
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10. E. Savaş, A. F. Tenca, and Ç. K. Koç, A scalable and unified multiplier ar-

chitecture for finite fields GF(p) and GF(2m). In Cryptographic Hardware
and Embedded Systems, Workshop on Cryptographic Hardware and Embed-
ded Systems, pp. 277-292. Springer-Verlag, Berlin, 2000.
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16. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

17. J.-H. Oh and S.-J. Moon. Modular multiplication method. IEE Proceedings,
145(4):317–318, July 1998.

18. C. D. Walter. Montgomery exponentitation needs no final subtractions. Elec-
tronic Letters, 35(21):1831–1832, October 1999.

19. G. Hachez and J.-J. Quisquater. Montgomery exponentiation with no final
subtractions: Improved results. In Cryptographic Hardware and Embedded
Sytems, Lecture Notes in Computer Science, No. 1965, pp. 293–301. Springer-
Verlag, Berlin, 2000.

20. B. S. Kaliski Jr., The Montgomery inverse and its applications. IEEE Transac-
tions on Computers, 44(8):1064–1065, August 1995.

21. A. A.-A. Gutub, A. F. Tenca, E. Savaş, and Ç. K. Koç. Scalable and uni-
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24. E. Savaş and Ç. K. Koç, The Montgomery modular inverse - revisited. IEEE
Transactions on Computers, 49(7):763–766, July. 2000.



Chapter 7
Spectral Modular Arithmetic for Cryptography

Gökay Saldamlı and Çetin Kaya Koç

7.1 Introduction

Most public-key cryptosystems require resource-intensive arithmetic calculations
in certain mathematical structures such as finite fields, groups, and rings. The ef-
ficient realizations of the these operations, including modular multiplication, in-
version, and exponentiation are at the center of research activities in cryptographic
engineering. Note that, being modular, these operations involve sequential reduction
steps.

Spectral techniques for integer multiplication have been known for over a quarter
of a century. Using the spectral integer multiplication of Schönhage and Strassen [1],
large to extremely large sizes of numbers can be multiplied efficiently. Such com-
putations are needed when computing π to millions of digits of precision, factoring,
and also big prime search projects.

A naive way of utilizing the spectral techniques for modular multiplication starts
with computing the multiplication using possibly Schönhage–Strassen and then a
reduction in the time domain follows. This approach is preferable if the input length
is large enough to meet the asymptotic crossover of Schönhage–Strassen, assum-
ing the reduction has a constant cost. Additionally, if the naive method is used for
operations involving consecutive multiplications, because of the costly forward and
backward transformation computations, the asymptotic crossover of these opera-
tions would be similar to what a single modular multiplication has. Unfortunately,
these crossovers are larger than the key sizes of most public-key cryptosystems;
thus, in practice, the naive way is hardly used.

On the other hand, modular multiplication can be performed on the Fourier repre-
sentations of integers. In such a representation, multiplications are readily available
by the convolution property. Therefore, operations involving several modular mul-
tiplications can be computed efficiently.
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In the following section, we start with introducing some preliminary notation and
a formal definition of Discrete Fourier Transform (DFT) over Zq (i.e., the ring of
integers with multiplication and addition modulo a positive integer q). Based on this
new terminology, we describe the main idea of spectral modular arithmetic includ-
ing spectral modular multiplication (SMM) and spectral modular exponentiation
(SME) in Section 7.3.

Section 7.4 describes methodologies for selecting the parameters for SME in
order to apply the algorithm to public-key cryptography and Section 7.5 reveals how
these methods can be extended to extension fields including binary and mid-size
characteristic extensions. In fact, we present suitable spectrum for ECC realizations
both over binary and mid-size characteristic extensions.

The chapter is closed with some final comments and discussions on the current
and future research activities of the presented material.

7.2 Notation and Background

Spectral techniques are widely accepted and used in the field of digital signal pro-
cessing, hence most of its existing notation and concept come from this theory. For
many reasons, the signals and admissible operations on these signals of such a the-
ory are quite different from that of a theory of computer arithmetic. For instance,
when using FFT (or convolution property) for integer multiplication, first we parti-
tion the inputs into words. Note that any small perturbation in the resulting words
would completely change the represented integer. On the other hand, approxima-
tions on the signal components without changing the main characteristics of the
original signal are allowable in digital signal processing.

Therefore, we believe that we need a more clear notation that would permit us to
have a better understanding of spectral methods and their applications to computer
arithmetic-related problems. While doing this, we follow a polynomial represen-
tation instead of the standard sequence representation of digital signal processing.
Such a presentation is necessary for our needs and, moreover, it states the differ-
ent nature of the number-representing signals from a classical signal processing
analysis.

7.2.1 Evaluation Polynomials

We start with building a new terminology that binds the polynomials over Z to their
evaluations. A similar construction can be formulated for polynomials over the rings
other than the ring of integers.

Definition 7.1. Let x and b > 0 be integers. If x(t) is a polynomial in Z[t] such that
x(b) = x, then we say x(t) is an evaluation polynomial of x.
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Remark 7.1. For ease of notation we denote the evaluation polynomials by a pair
(x,x(t)). Sometimes we even simply use x(t); the reader should be aware of poly-
nomials in this text should always be considered with their evaluations.

Remark 7.2. Note that the positive integer b is called the base or radix in the
literature. In order not to have any confusion with the frequent usage of the word
“radix” for another instance in FFT theory, we prefer to use the word “base” for b.

Throughout this text we assume that b is a fixed positive integer and we denote
the set of all evaluation polynomials over Z by B. Observe that if b is fixed, there
exists a natural one-to-one correspondence between B and Z[t] which is given by
(x,x(t)) �→ x(t),

In fact, the base b representation of an integer gives a special evaluation polyno-
mial. We particularly specify these as follows:

Definition 7.2. Let

x(t) = x0 + x1t + . . .+ xd−1td−1 ∈ Z[t]

be an evaluation polynomial of an integer x for a fixed base b. If the coefficients of
x(t) satisfy 0 ≤ xi < b for all i = 0,1, . . . ,d − 1, x(t) is called the base evaluation
polynomial or simply the base polynomial .

Example 7.1. A base 2k,k > 0 representation of an integer x ((x0x1 . . .xd) with
0≤ xi < 2k for i = 0,1, . . . ,d−1) has the base polynomial x(t) = x0 +x1t +x2t2 . . .+
xd−1td−1, where y(t) = (x0 + x1b)+0 · t + x2t2 + . . .+ xd−1td−1 is one of its evalua-
tion polynomials.

As seen in Example 7.1, the evaluation polynomial (or sequence) of an integer x
is not unique. Indeed, the same integer has infinitely many different evaluation poly-
nomials. But note that the base polynomials (i.e., base representations) are unique.

Proposition 7.1. Let B denote the set of all evaluation polynomials; then (B,⊕,⊗)
is a ring with the following operations;

(x,x(t))⊕ (y,y(t)) = (x + y,x(t)+ y(t))

(x,x(t))⊗ (y,y(t)) = (xy,x(t)y(t))

where x(t),y(t) ∈ Z[t] and x,y ∈ Z.

Proof. Since base b is fixed and the structures on the components come from Z

and Z[t], it is easily seen that (B,⊕) is an abelian group and (B,⊗) is closed.
Therefore, all we need to show is that the evaluation map is well defined on the
components. This is trivial because x + y = x(b)+ y(b), and the distribution prop-
erty comes naturally from this observation. Thus, (B,⊕,⊗) is a ring with identity
(1⊕,1⊗) = (0,1).
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Proposition 7.2. The map φ : B → Z[t] sending (x,x(t)) �→ x(t) is a ring isomor-
phism.

Proof. Since b > 0 is fixed, the evaluation x = x(b) is also fixed, which implies that
there exists a natural subjective map from B to Z[t] sending (x,x(t)) �→ x(t) with a
zero kernel.

Definition 7.3. If x(t) and y(t) are evaluation polynomials for the same integer x,
then we write x(t) ∼ y(t) and say x(t) is related to y(t).

Proposition 7.3. x(t) ∼ y(t) is an equivalence relation.

Proof. (i) x(t) ∼ x(t) since x(b) = x(b)
(ii) If x(t) ∼ y(t) then y(t) ∼ x(t) since x(b) = y(b)
(iii) If x(t) ∼ y(t) and y(t) ∼ z(t) then x(t) ∼ z(t) since x(b) = y(b) = z(b)

Proposition 7.4. Let B be the set of all evaluation polynomials; then B/ ∼ is iso-
morphic to the ring of integers.

Proof. Let base polynomials be the representatives of the equivalence classes of
the set B with respect to the relation ∼. Since base polynomials are unique for all
integers x ∈ Z. The map

Z → B/ ∼
x �→ [(x,x(b))]

gives the isomorphism.

Assume that Zq is represented by the least residue classes R= {0,1,2, . . . ,q−
1} ⊂ Z (see Section 7.3.2). Evaluation polynomials defined on least residue set has
a special importance for our terminology.

Definition 7.4. Let d be a positive integer. We define a polynomial frame as

Bd
q = {(y,y(t)) ∈ B : deg(y(t)) < d and yi ∈ R ⊂ Z}

where yi stand for the coefficients of y for i = 0,1, . . . ,d−1.

Observe that
Zq � Bd

q/ ∼

although it is correct to say R is equivalent to ∼= Bd
q/ ∼ as a set.

On the other hand, if the frame Bd
q is considered, Bd

q is closed neither under the
binary operations ⊗ nor ⊕. Thus, we remark that

Bd
q � Zq[t]/(td −1).

However, there exists a one-to-one set map sending (x,x(t)) �→ [x(t)] (recall that
[x(x)] = {y(t) ∈ Z[t] : x(t) ≡ y(t) mod td − 1}). Consequently, we take Bd

q as a
simple subset of B without any structure on it.



7 Spectral Modular Arithmetic 129

7.2.2 Discrete Fourier Transform (DFT)

As computer arithmeticians, we started to build a terminology in the time domain;
we represent signals by polynomials and put emphasis on their evaluations. In this
section, we present the DFT as a map from the polynomial frames to a Fourier ring,
and we start by introducing the Fourier rings.

Definition 7.5. Let R be a ring, the set F d = ⊕d−1
i=0 R of ordered d-tuples

(X0,X1, . . . ,Xd−1)

where Xi ∈ S forms a ring with componentwise addition and multiplication (also
called direct sum of rings). For notation purposes, we denote these d-tuples with
polynomials (i.e., (X1,X2, . . . ,Xd) will be written as X0 + X1t + · · ·+ Xd−1td−1). We
named the ring F d as the Fourier ring over R; moreover the elements are called
spectral polynomials having spectral coefficients .

Remark 7.3. Throughout this text we consider only the Fourier rings over Zq. There-
fore, we add the q subscript to our notation and denote the Fourier ring over Zq by
F d

q .

Now we can define the DFT map.

Definition 7.6. Assume that Bd
q is a polynomial frame and F d

q is a Fourier ring
over Zq. Let ω be a primitive d-th root of unity in Zq. The DFT map over Zq is an
invertible set map

DFT ω
d : Bd

q → F d
q

(x,x(t)) �→ X(t)

defined as follows:

Xi = DFT ω
d (x(t)) :=

d−1

∑
j=0

x jω i j mod q (7.1)

with the inverse

xi = IDFT ω
d (X(t)) := d−1 ·

d−1

∑
j=0

Xjω−i j mod q (7.2)

for i = 0,1, . . . ,d−1. Moreover, we write

x(t) �� DFT �� X(t)

and say x(t) and X(t) are transform pairs where x(t) is called a time polynomial
and sometimes X(t) is named as the spectrum of x(t).
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In the literature, DFT over a finite ring spectrum (7.1) is also known as the Num-
ber Theoretical Transform (NTT) . Moreover, if q has some special form such as a
Mersenne or a Fermat number, the transform is named after this form i.e., Mersenne
Number Transform (MNT) or Fermat Number Transform (FNT) .

Note that, unlike the DFT over the complex numbers, the existence of DFT over
finite rings is not trivial. In fact, Pollard [2] mentions that the existence of primitive
root d-th of unity and the inverse of d do not guarantee the existence of a DFT over
a ring. He adds that a DFT exists in ring R if and only if each quotient field R/M
(where M is maximal ideal ) possesses a primitive root of unity. If R = Zq is taken,
one gets the following corollary:

Corollary 7.1. There exists a d-point DFT over the ring Zq that supports the circu-
lar convolution if and only if d divides p−1 for every prime p factor of q.

Proof. We sketch the proof given in Chapter 6 of Blahut [3]. First, we cover the
case where q is a prime power.

The converse is easier to prove. The DFT length d is invertible in Zq, if d and
q are relatively prime (i.e., dd−1 = 1 + kq for some k). Surely, any common factor
of d and q must be a factor of 1, which is impossible. Moreover, any element ω
having order d relatively prime to q has order that divides the Euler function φ(q) =
(p−1)pm−1. Therefore, a d-point DFT does not exist in Zq unless d divides q−1.

On the other hand, let p be an odd prime (p = 2 is trivial); then the non-units in
Zq form a cyclic group having order φ(q) = (p− 1)pm−1. Let π be the generator

of this group and ω = πbpm−1
for any b dividing p− 1. Since non-units in Zq are

cyclic, ω exists; all that remains is to show that the inverse DFT exists:

d−1 ·
d−1

∑
j=0

Xjω−i j mod q = d−1 ·
d−1

∑
j=0

ω−i j
d−1

∑
j′=0

x′jω
−i j′ mod q

= d−1 ·
d−1

∑
j′=0

x′j
d−1

∑
j=0

ω−i( j′− j).

The sum on i is equal to d if j′ = j, while if j′ is not equal to j, then the geometric
series summation becomes (1−ω−( j′− j)d)/(1−ω−( j′− j)), which is zero since j′ −
j �≡ 0 (mod q). Therefore,

d−1 ·
d−1

∑
j=0

ω−i j mod q = d−1 ·
d−1

∑
j=0

xi(dδ j j′) mod q = xi

as desired.
Now, let q = pm1

1 pm2
2 . . . pmr

r . The use of the Chinese remainder theorem guaran-
tees the existence of a d-point DFT in Zq if and only if d-point DFT exists in each
factor ring, which is equivalent to, say, d divides pi −1 for all i = 1,2, . . . ,r.

Example 7.2. In general, longer length DFTs are of utmost importance in many ap-
plications. Obviously, Corollary 7.1 states that DFTs over integer rings mostly suffer
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from short lengths. For instance, in the fairly large ring Z231+1, one can only define
a 2-point transform since 231 + 1 = 3 ·715827883, though, in Section 7.4.2 we de-
scribe some solutions to overcome such problems.

7.2.3 Properties of DFT: Time–frequency dictionary

In the previous section, we relate the time and spectral polynomials by the DFT
map; it is also possible to relate operations (formally we mean functions) in a sim-
ilar manner. In other words, we relate a pair of maps φ and Φ defined on time and
spectral polynomials respectively, if DFT map commutes with them. The next defi-
nition prepares a formal setup for this discussion.

Definition 7.7. Let φ and Φ be operations on time and spectral domains, respec-
tively. We write

φ �� DFT �� Φ

and say φ and Φ are transform pairs on x(t) and sometimes declare that the map
DFT ω

d respects the operation φ on a point x(t) if the following diagram commutes

Bd
q

φ
��

DFT �� F d
q

Φ
��

B �� IDFT
F d

q

Equivalently, if the following equation is satisfied

φ(x(t)) = IDFT ω
d ◦Φ ◦DFT ω

d (x(t)). (7.3)

Theorem 7.1. (Fundamental) Let φ and Φ be operations on time and spectral do-
mains respectively. The condition

φ(x(t)) ∈ Bd
q

is necessary and sufficient for functions φ and Φ to be transform pairs on a point
x(t) ∈ Bd

q . We say an overflow occurs for those cases in which φ(x(t)) �∈ Bd
q .

Proof. Let there exists a DFT map DFT ω
d : Bd

q → F d
q . By definition, IDFT ω

d ◦
Φ ◦DFT ω

d (x(t)) is an element of Bd
q , hence φ(x(t)) must be an element of Bd

q .

In general, not having a nice domain, DFT does not globally commute with such
function pairs. However, DFT respects various operations locally. Linearity, convo-
lution and time–frequency shifting are some of these operations.

In the literature, such operations which are referred as the properties of DFT are
essential for a better understanding of the nature of the transform. In fact, because of
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these properties, the Fourier transform becomes a powerful tool for applied sciences.
We refer the reader to [4] for a general review of these properties.

In a finite ring setting, the existence conditions of these properties are quite dif-
ferent from a theory over complex numbers. In here, we present various properties
and further state the existence conditions of the two most important, namely, linear-
ity and convolution. We start with some notations:

Notation 1 Let ω be a principal d-th root of unity, and Γ (t) and Ω(t) be the spec-
tral polynomials with coefficients consisting of negative and positive powers of ω
respectively, as follows

Ω(t) = 1 + ω1t + ω2t2 + . . .+ ω(d−1)t(d−1) ,

Γ (t) = 1 + ω−1t + ω−2t2 + . . .+ ω−(d−1)t(d−1) .

Notation 2 Let a ∈ Z be a constant number, a degree d polynomial with all of its
coefficients equal to a (i.e., a(t) = a + at + at2 + . . .+ atd) is denoted by a(t).

Time and frequency shifts: Time and frequency shifts correspond to circular
shifts when working with finite-length signals. Let x(t) = x0 + x1t + . . .+ xd−1td−1

and X(t) = X0 +X1t + . . .+Xd−1td−1 be a transform pair. The one-term right circu-
lar shift is defined as

x(t) � 1 := xd−1 + x0t + . . .+ xd−2td−1
��

DFT
��

X(t)�Ω(t)

where � stands for componentwise multiplication. Similarly, one performs the one-
term left circular shift by multiplying the coefficients of X(t) with negative power
sequence of the principal d-th root of unity:

x(t) � 1 := x1 + x2t + . . .+ xd−1td−2 + x0td−1
��

DFT
��

X(t)�Γ (t)

An arbitrary circular shift can be obtained by applying consecutive one-term
shifts or using a proper ω power sequence. For instance, s-term circular left shift
(0 ≤ s ≤ d − 1) is achieved by multiplying X(t) with Γs(t) = 1 + ω−st + ω−stt2 +
. . .+ ω−s(d−1)td−1, componentwise.

Sum of sequence and first value: The sum of the coefficients of a time polyno-
mial equals the zeroth coefficient of its spectral polynomial. Conversely, the sum of
the spectrum coefficients equals d−1 times the zeroth coefficient of the time poly-
nomial (i.e., x0 = d−1 ·∑d−1

i=0 Xiω−i and X0 = ∑d−1
i=0 xiω i as seen in Figure 7.1).



7 Spectral Modular Arithmetic 133

(x0, x1, …, xd–1 () X0, X1, …, Xd–1)
DFT

sum equals to X0

sum multiplied by d–1

equals to x0

Fig. 7.1 Sum of coefficients and first coefficient.

Left and right logical shifts. Using the above properties, it is possible to achieve
the logical left and right digit shifts. We begin with the one-term left shift operation.
Let x0(t) be equal to x0 + x0t + . . .+ x0td−1 (see Notation 2) then

x(t) � 1 = (x(t)− x0)/t = x1 + x2t + . . .+ xd−1td−2
��

DFT
��

(X(t)− x0(t))�Γ (t)

The right shifts are similar, where one then uses the Ω(t) polynomial instead of
Γ (t).

Using the fundamental Theorem 7.1, it is easily seen that time–frequency shifts
and right/left shifts are globally respected by the DFT map. On the other hand,
linearity and convolution properties are respected locally. We start by giving an
example of overflow and then turn our attention back to state the conditions when
these two properties are satisfied.

Example 7.3. Let φy be an operation such that

φy : x(t) �→ x(t)+ y(t) for all x(t) ∈ B4
5

where y(t) = 3 + t + t2 + 4t3 is a base b = 2 evaluation polynomial for y = 19.
Assume that the DFT map is a 4-point map over Z5, i.e., DFT ω

4 : Bd
q → F d

q .
Notice that the addition operation over the Fourier ring,

Φy : X(t) �→ X(t)+Y(t) for all X(t) ∈ F 4
5

is a transform pair of φy on points x(t) where

φy(x(t)) = x(t)+ y(t) ∈ B4
5 ⊂ B. (7.4)

Obviously, not all x(t) ∈ B4
5 satisfies Equation (7.4); for instance, if x(t) = 3 +

t2 + t3 is an evaluation polynomial for x = 15, φy(x(t)) = x(t)+ y(t) = 6+ t +2t2 +
5t3 gives an evaluation polynomial for 56 but

DFT ω
d ◦Φ ◦DFT ω

d (x(t)) = 1 + t + 2t2 �= φy(x(t)).
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Therefore, we say φy and Φy are not transform pairs on x(t) = 3 + t2 + t3.

Observe that one gets the linearity property if the DFT map respects all the ele-
ments of the set {φy : for all y(t)∈Bd

q} and its λ scaling for some λ ∈ Zq. Although
the DFT map is a global group homomorphism over the additive group of complex
numbers, it does not respect addition over finite-ring spectrum. The next proposition
states that on a convex or a more regular subset of Bd

q the DFT map respects the
single addition operation.

Proposition 7.5. Let D be a subset of Bd
q such that D = {x(t) : xi < q/2} and φy be

an addition operation on D for any y ∈ D. The DFT map respects φy on D.

Proof. Let φy : D �→ F d
q be the addition map for any y ∈ D. Since φy(x(t)) = x(t)+

y(t) ∈ Bd
q for all x(t) in D, using Theorem 7.1, DFT respects φy.

Next, we formally state when a DFT map respects the convolution operation. We
start with a lemma:

Lemma 7.1. Suppose that (x(t),x) and (y(t),y) are base b polynomials in the frame
Bs

b with s = �d/2�. The product (z(t),z) = (x(t),x)⊗ (y(t),y) belongs to Bd
q where

q > sb2.

Proof. Let x(t) = x0 + x1t + . . .+ xd−1td−1 and y(t) = y0 + y1t + . . .+ yd−1td−1 be
polynomials such that deg(x(t))+ deg(y(t)) < d and 0 ≤ xi,yi < b for some b > 0.
Without loss of generality, assume deg(x(t))≥ deg(y(t)). If z(t) = x(t)y(t), then the
coefficients of z(t) can be written as follows:

zk = ∑
k=i+ j

xiy j, k = 0,1,2, . . . ,d−1.

Notice that zk can be found by adding at the most deg(y(t))+ 1 nonzero terms, but
since deg(y(t))+ 1 ≤ �d/2�, letting s = �d/2� gives

zk ≤ (deg(y(t))+ 1) ·b ·b≤ s ·b2

Thus, choosing q > s ·b2 gives the result.

The following result gives the condition when the d-point DFT map respects the
convolution of two elements of a frame Bd

q .

Theorem 7.2. Let DFT ω
d : Bd

q → F d
q be a d-point DFT map and D = Bs

b be a
subset of Bd

q such that s = �d/2� and b2s < q for an integer b > 0. The DFT map
respects the convolution map φy on y(t) for any y(t) in D where

φy : x(t) �→ x(t) · y(t) for all x(t) ∈ D

Proof. Let φy : D �→ F d
q be the multiplication map for some y(t) ∈ D. By Lemma

7.1, the product φy(x(t)) = x(t) ·y(t) ∈ Bd
q for all x(t) in D. Therefore, using Theo-

rem 7.1, DFT respects φy.
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7.3 Spectral Modular Arithmetic

7.3.1 Time Simulations and Spectral Algorithms

In the previous section, we stated the conditions when the convolution and addition
properties are respected by the DFT map over a finite ring spectrum. Since an algo-
rithm is a combination of some primitive operations, starting with an example, we
bring up the notion of algorithm pairs that are respected by DFT maps.

Example 7.4. Consider an algorithm in time domain performing the following oper-
ations:

Input: x(t),y(t) ∈ Z[t] polynomials of degree d
Output: z(t) := x(t)(5y(t)+ x(t))−3x(t)

1: z(t) := x(t)+5y(t)
2: z(t) := x(t) · z(t)
3: z(t) := z(t)−3x(t)
4: return z(t)

Whenever the DFT map respects the above algorithm, a dual algorithm operating
in the spectrum can be furnished as follows:

Input: X(t),Y (t) ∈ Z[t] polynomials of degree d
Output: Z(t) := X(t)� (5Y (t)+X(t))−3X(t)

1: Z(t) := X(t)+5Y (t)
2: Z(t) := X(t)�Z(t)
3: Z(t) := Z(t)−3X(t)
4: return Z(t)

Once again we can relate these two objects using the DFT map and write

Algorithm 1 �� DFT �� Algorithm 2

Observe that when the inputs of Algorithm 7.4 and 7.4 agree, a parallel run produces
the agreeing intermediate and final results. We name Algorithm 7.4 as the time
simulation of the spectral algorithm (i.e., Algorithm 7.4).

Note that our primary interest in spectral techniques is to make use of the con-
volution property for calculating modular multiplications. An algorithm involving
several multiplications benefits most from such a motivation. For instance, the en-
cryption algorithm RSA [5] over some integer ring has such a nature but since these
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multiplications are modular, one has to deal with reductions. In the following sec-
tions, first, we describe a time simulation for modular reduction. Secondly, we trans-
late the time simulation into a finite ring spectrum using the properties of DFT and
finally, we analyze the minimal domains (i.e., smallest rings) in which our spectral
algorithms work.

7.3.2 Modular Reduction

Before introducing the notion of spectral reduction, we need to make a few points
clear about the modular arithmetic over the ring of integers;

In calculations of integers involving division it often happens that we are in-
terested in the remainder, but not in the quotient. Those numbers having the same
remainder when divided by a fixed number n are called congruent, to be more for-
mal:

Definition 7.8. Let n > 0 be a fixed integer. We say x is congruent to y modulo n
and write

y ≡ x mod n if n divides (y− x). (7.5)

From the division algorithm we know that for each x ∈ Z there is an equation

x = nq + r, for some q ∈ Z and 0 ≤ r ≤ n

This means that each x ∈ Z can be assigned to one of the elements of the set
{0,1,2, . . . ,n− 1}. This set is called the least residues mod n and it is clear that
no two of the elements are congruent to each other mod n. We define the modular
reduction as follows:

Definition 7.9. Let n > 0 be a fixed integer. We say y is the modular reduction of x
modulo n and write

y = x mod n

where y is a least residue mod n.

Remark 7.4. The expressions “y = x mod n” and “y≡ x mod n” have different mean-
ings. Observe that the first one with “=” states that y is in the range [0,n−1].

The equivalence on Z defined by the relation (7.5) partitions Z into n blocks,
called the residue classes of Z modulo n. In fact, Zn := Z/nZ is the set of these
residue classes. If we denote the residue class modulo n containing y by ȳ, then the
Zn can be seen as the ring having the following n elements 0̄, 1̄, . . . ,(n−1). For
instance, when n = 2, the residue classes are the set of even and odd numbers.

While performing computations such as modular exponentiation, in order to have
some computational advantage, sometimes exact modular reduction calculations can
be postponed for the intermediate values [6]. As long as these values belong to
the correct residue classes, such modifications do not tend to misleading modular
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reductions. Now, we stretch the definition of the modular reduction for ease of our
construction.

Definition 7.10. Let ε > 0 be an integer We call the set

F(ε) = {y ∈ Z : 0 ≤ y < ε}

the integer frame of radius ε .

Definition 7.11. Let x,n > 0 and ε ≥ n be integers. Then the elements of the set

{y : y ∈ F(ε) and y ≡ x mod n}

are called as the almost modular reductions of x with respect to the modulus n.

Example 7.5. Let ε = 12 then F(ε) = [0,12) and the set of almost modular reduc-
tions of x = 1 with respect to modulus n = 3 is {1,4,7,10}.

The choice of the radius ε completely depends on the nature or needs of the prob-
lem. Most of the time, the reductions are followed by a squaring or a multiplication.
Therefore, as ε gets larger the operand sizes of the succeeding operations increase.
Obviously ε = n is the optimal choice in this sense. But, as we pointed out earlier,
we are after some approximations of the optimal solution for some obvious reasons.
In other words, we are looking for some small ε such that, after finding an element
of almost modular reduction set, deducing the exact modular reduction has to be
simple. Indeed, that is why it is appropriate to use the adjective “almost” to describe
the elements of this set.

7.3.3 Spectral Modular Reduction

In this section, we give a formal definition for the spectral modular reduction and
build up the necessary terminology for a better understanding of the algorithms in
the spectrum. We return to our main objects: the set of evaluation polynomials, B,
and its subsets.

Proposition 7.6. The evaluations of the polynomials in Bd
r form an integer frame

F(ε) in Z where ε = (r−1)+ (r−1)b +(r−1)b2+ . . .+(r−1)bd−1.

Proof. It is easily seen that the polynomial x(t) = (r − 1)+ (r− 1)t + (r− 1)t2 +
. . .+(r−1)td−1 ∈ Bd

r attains the maximum evaluation value at base b which is the
integer (r−1)+(r−1)b+(r−1)b2+ . . .+(r−1)bd−1. The evaluation of the zero
polynomial obviously gives the minimum value.

Definition 7.12. Let n(t) be a base b polynomial of n with degree d −1 and Bd
r be

a polynomial frame for some r ≥ b. The elements of the set
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A = {(y,y(t)) : y ≡ x mod n and y(t) ∈ Bd
r }

are called almost spectral reductions of the evaluation polynomial (x,x(t)) with
respect to (n,n(t)).

Lemma 7.2. Let A be the set of all the almost spectral modular reductions of
(x,x(t)) with respect to (n,n(t)). If y(t) is the base polynomial for y = x mod n,
then (y,y(t)) ∈ A .

Proof. If y(t) = y0 + y1t + . . . + yd−1td−1 is the base polynomial for y = x mod n,
then 0 ≤ yi < b for all i = 0,1, . . . ,d − 1. Since r ≥ b, y(t) ∈ Bd

b ⊂ Bd
r ⇒

(y,y(t)) ∈ A .

Definition 7.13. We call the base polynomial y(t) of y = x mod n as the spectral
(modular) reduction of (x,x(t)) with respect to (n,n(t)) and we simply write

y(t) = x(t) mods n(t).

Moreover the expression
y(t) ≡ x(t) mods n(t)

mean n divides the evaluation of (x(t)− y(t)) at base b.

The spectral reduction defined in the time domain can be viewed as a projection
of the usual modular operation in Z to the set of (evaluation) polynomials. Clearly,
it is defined over the polynomials but it is different from the standard modular re-
duction in Z[t]. To indicate this difference, in place of “mod” we choose to use
“mods”.

Similar objects can be defined for spectral polynomials; however, we note that
unlike time polynomials, evaluation of spectral polynomials do not have any special
meaning that serves our needs. To be specific, for a spectral polynomial X(t), X(b)
does not have a special meaning, where x(b) mostly represents a meaningful integer
data. Therefore, our derivation for spectral polynomials is a notational continuation
of the notation that is developed for time polynomials.

Definition 7.14. Let x(t) be a base polynomial for b > 0 of an integer x. We call the
spectral polynomial X(t), the transform pair of x(t), the spectral base polynomial.

Definition 7.15. Let y(t) be an almost spectral reduction of x(t) with respect to n(t)
in some frame Bd

r . The spectral polynomial Y (t), transform pair of y(t), is called
the almost spectral reduction of X(t) with respect to N(t), where (X(t), x(t)) and
(N(t), n(t)) are transform pairs.

Definition 7.16. We call the base polynomial Y (t) in the spectrum the spectral
modular reduction of X(t) with respect to N(t) and we write

Y (t) = X(t) mods N(t).
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Moreover the expression
Y (t) ≡ X(t) mods N(t)

means n divides the evaluation of IDFT((X(t)−Y(t)) at base b.

7.3.4 Time Simulation of Spectral Modular Reduction

The spectral reduction can easily be achieved by deducing the base polynomial of
the usual modular reduction (i.e., y = x mod n) but with such an approach one needs
to perform classical modular reduction routines, which do not have simple spectral
meanings. Our next step is to give a description of an algorithm that computes an
almost spectral reduction of an evaluation polynomial.

Instead of a direct reduction method, here we present an algorithm of Mont-
gomery type [7], which allows efficient implementation of modular arithmetic op-
erations without explicitly carrying out the classical modular reductions. In fact, it
replaces the modular reduction by a multiplication and some trivial shifts. The trick
is, instead of attacking to compute “x mod n” directly, it proposes to derive it after
performing a related computation

x · τ−1 mod n

for τ > n and gcd(n,τ) = 1. At first glance, this seems computationally pointless
because of the inversion involved but the selection of τ changes this first impression
drastically. After giving some related notation, with Algorithm 7.3.4, we employ
such a methodology.

Notation 3 The polynomial product x(t) · te is denoted by xe(t), so in this context,

x−e(t) := x(t) · t−e

Time Simulation of Spectral Reduction Algorithm
Suppose that n and b are positive numbers with gcd(b,n) = 1, (n,n(t)) is the base evaluation
polynomial of degree d −1 and (x,x(t)) ∈ Be

u where e ≥ d and u ≥ 0.
Input: x(t) and n(t).
Output: y(t), an almost spectral reduction of x−e(t) with respect to n(t).

1: Compute n = δ n where n0 = 1 and |ni| < b/2
2: y(t) := x(t)
3: α := 0
4: for i = 0 to e−1
5: β := −(y0 +α) rem b
6: α := (y0 +α +β ) div b
7: y(t) := y(t)+β ·n(t) mod q
8: y(t) := (y(t)− y0)/t
9: end for
10: y(t) := y(t)+α(t), for base polynomial (α ,α(t))
11: return y(t)



140 Gökay Saldamlı and Çetin Kaya Koç

0

Step 6: a 
multiple of ( )
is added to ( )

Step 5 & 7: 
carry is
stored and set 

= 0 

Step 8: 
shifting ( )

Fig. 7.2 Illustration of the reduction of a single coefficient.

In Figure 7.2, we demonstrate the reduction of a single coefficient. Once the
parameters α and β are calculated from the least significant coefficient, a β multiple
of the modulus n(t) is added to the sum; carry passed to the next coefficient and
finally the sum is shifted.

Algorithm 7.3.4 reduces the degree while reducing the radius (i.e., the magnitude
of the coefficients). In fact, one can clearly compute the bound for the coefficients
of the intermediate values. This gives us an opportunity to define a dual algorithm
in the spectrum working properly with respect to a specific DFT map. We present
these arguments formally in the next theorem.

Theorem 7.3. Algorithm 7.3.4 computes an almost spectral reduction y(t)≡ x−e(t)
mods n(t) such that the output signal y(t) ∈ Bd

r where r = b2d + b. Moreover, the
coefficients of the intermediate values satisfy 0 ≤ yi < u+b2d for i = 0,1, . . . ,d−1.

Proof. First of all, the algorithm computes an evaluation polynomial y(t) such that
y(t) ≡ x(t) · t−e mods n(t). This can be seen as follows: The value of y(t) is ac-
cumulated either by adding a multiple of n(t) or a term shift (i.e., Steps 7 and 8).
Obviously, either adding a multiple of n(t) or dividing when the least significant
coefficient is zero does not change the residue class that y(t) belongs to. Therefore,
the result naturally follows because of shifting exactly e times.

Now, lets examine how big the coefficients get: by Definition (7.4), (x,x(t))∈Be
u

implies that 0 ≤ xi < u for all i = 0,1, . . . ,e − 1. Since deg(nd(t)) = d at every
accumulation of the loop, 0 ≤ yi < u for i ≥ d. In particular, at the last d run yi = 0
for i > d and 0 ≤ yd < b2.

On the other hand, when i < d the coefficients of yd−i satisfies

0 ≤ yd−i < β ·nd(i+ 1)+ u < b2(i+ 1)+ u .
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Observe that, a bound for yd−i given by 0 ≤ yi < b2d + u for i = 0,1, . . . ,d − 1 is
attained when i = d−1. The last d run is again special, since the reduction eliminates
the u value from yd at every accumulation. Therefore the final output satisfies

0 ≤ yi < (d − i)b2 + b (7.6)

< r = b2d + b =⇒ y(t) ∈ Bd
r

where the b factor comes from the last α(t) addition of Step 10 (note that, we as-
sumed deg(α) < d−1).

Note that Algorithm 7.3.4 describes a reduction routine of an arbitrary evaluation
polynomial having degree e− 1 larger than or equal to the degree of the modulus
d−1. In fact, this does not really address the situation in a multiply–reduce method-
ology in which degrees are related. We give a corollary to Theorem 7.3 which co-
operates with this situation.

Corollary 7.2. Let n(t) be a base b polynomial with degree s − 1 such that s =
�d/2� and let x(t)∈Bd

r where r = sb2. Algorithm 7.3.4 computes an almost spectral
reduction, y(t)≡ x(t)·t−d mods n(t) in the polynomial frame Bs

r′ where r′ = b2s+b.
Moreover, coefficients of all the intermediate values do not exceed 2b2s.

Proof. Let n(t) be a base b polynomial with degree s−1 such that s = �d/2� and let
x(t)∈Bd

r where r = b2s. Observe that the coefficients of x(t) satisfy 0≤ xi < r = b2s
for all i = 0,1, . . . ,d −1 (note that we take x(t) with the maximum degree d −1 in
order to find the upper bounds). The algorithm drops the deg(x(t)) to deg(n(t) =
s−1 and computes the almost spectral reduction of x−d(t) = x(t) · t−d in the frame
Bs

r′ . The radius r′ = b2s + b can be deduced using Theorem 7.3. Moreover, since
0 ≤ xi < b2s, the intermediate values are bounded by

0 ≤ yi < b2s+ r = b2s+ b2s = 2b2s.

7.3.5 Spectral Modular Reduction in a Finite Ring Spectrum

In this section, we translate the time simulation (i.e Algorithm 7.3.4) into the spec-
trum. We perform a line-by-line translation using the properties of DFT.

Our next step is to prove that Algorithm 7.3.4 and 7.3.5 agree; in other words
there exists a DFT relation between the intermediate and output values in two do-
mains at all times.

Theorem 7.4. Algorithm 7.3.5 computes the almost spectral reduction, Y (t) ≡
X−e(t) mods N(t) such that the inverse of the output signal Y (t) gives y(t) ≡ x−e(t)
mods n(t) (i.e., the output of the Algorithm 7.3.4).

Proof. Let (x(t), X(t)) and (n(t), N(t)) are transform pairs. In Step 4, we start with
computing the last significant coefficient, y0 of the time polynomial y(t) using the
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Spectral Reduction Algorithm (in a finite ring spectrum)
Suppose that there exists a DFT map DFT ω

d : Be
q → F e

q and

x(t) �� DFT �� X(t), n(t) �� DFT �� N(t)

where (x(t),x) ∈ Be
r for r < q−b2d and (n(t),n) ∈ Bd+1

b such that deg(n(t)) = d ≤ e and n is a
multiple of modulus n with n0 = 1 (we assume gcd(b,n) = 1).
Input: X(t) and N(t), spectral polynomials
Output: Y (t) ≡ X−e(t) mods N(t),

1: Y (t) := X(t)
2: α := 0
3: for i = 0 to e−1
4: y0 := e−1 · (Y0 +Y1 + . . .+Yd) mod q
5: β := −(y0 +α) mod b
6: α := (y0 +α +β ) div b
7: Y (t) := Y (t)+β ·N(t) mod q
8: Y (t) := Y (t)− (y0 +β )(t) mod q
9: Y (t) := Y (t)�Γ (t) mod q
10: end for
11: Y (t) := Y (t)+A(t),
12: return Y (t)

where A(t) is the DFT pair of the base polynomial of α .

shifting property of DFT. Note that in Algorithm 7.3.4, y0 comes for free. Once y0

is computed, in Steps 5 and 6, the parameters β and the next carry α are generated.
In Step 7, a β multiple of N(t) is added to Y (t), which updates Y (t) such that

y0 = 0 mod b. By linearity, this step is equivalent to Step 6 of Algorithm 7.3.4.
Now, a division by t can be performed but before this shift, we need to eliminate

the contribution of y0 to the spectral polynomial Y (t) completely. Since Step 7 up-
dates y0 to y0 +β , the computation of (Y (t)− (y0 +β )(t)) in Step 8 sets zeroth time
term of Y (t) to zero (observe that (y0 +β ) ∈ Z is a constant so (y0 +β )(t) is a fixed
term polynomial, see Notation 2). If this is followed by the componentwise multi-
plication with Γ (t) polynomial, Steps 8 and 9 together implement a logical circular
shift (see Section 7.2.3).

Hence, we conclude that Algorithm 7.3.5 working in the spectrum agrees with
Algorithm 7.3.4. However, we still need to find the domain for which these algo-
rithms agree. We assume deg(x(t)) = e for x(t) ∈ Be

r which implies that 0 ≤ xi <
r = (q−b2d) for i = 0,1, . . . ,e−1. Since n is a multiple of modulus n with n0 = 1,
we conclude by Theorem 7.3 that the intermediate values and the output y(t) of the
time simulation bounded by

0 ≤ yi < r + b2d = q−b2d + b2d = q

Therefore, no overflows occur, Algorithms 7.3.4 and 7.3.5 generate the transform
pair y(t) and Y (t). As Algorithm 7.3.4 computes y(t)≡ x−e(t) mods n(t), Algorithm
7.3.5 performs Y (t) ≡ X−e(t) mods N(t).
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With Algorithm 7.3.5 we have completed our primary discussion on spectral
modular reduction. We leave the improvement-related comments to Section 7.4.
Notice that our presentation so far targets the reduction of an arbitrary evaluation
polynomial of degree e with respect to a base polynomial of degree d < e. In the
next section, we change this routine and target to reduce an evaluation polynomial
which is a result of a convolution. After this, we introduce the spectral modular
multiplication.

7.3.6 Spectral Modular Multiplication (SMM)

Convolution and the SMR algorithm can easily be combined to harvest a spectral
modular multiplication algorithm in a finite ring spectrum. In order to have a clear
presentation we divide our presentation into 3 subprocedures as seen in Figure 7.3.
Note that the initial and final stages consist of some data arrangements where the
Spectral Modular Product (SMP) procedure consists of the actual multiplication
and reduction steps (i.e., convolution and spectral reduction). Later, while presenting
the spectral exponentiation algorithm, SMP is going to be the basic building block
again. The SMP procedure and SMM are given as follows:

Since we operate in a finite ring spectrum, once again we need to deal with the
overflows that might occur during the computations. In fact, Algorithm 7.3.6 gives
a correct result if the intermediate values stay bounded. As a next step, we state the
condition when overflows do not occur starting with two lemmas.

Lemma 7.3. SMP(Xd(t),Y (t)) ≡ X(t)�Y(t) mods N(t)

Proof. Since SMP(Xd(t),Y (t)) computes the spectral coefficients of almost modu-
lar reduction, Z(t) ≡ (Xd(t)�Y−d(t)) mods N(t), hence taking the inverse trans-
form gives

xd(t)y−d(t) = x(t) · tdy(t) · t−d = x(t) · y(t) mods n(t) .

Lemma 7.4. Procedure 7.3.6 computes Z(t) ≡ (X(t)�Y−d(t)) mods N(t) if the
parameters b,q and s satisfies the following inequality

2sb2 < q (7.7)

Init SMP Final

n

x

y z

Fig. 7.3 Spectral Modular Multiplication.
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Spectral Modular Product
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q , and X(t),Y (t) and N(t) be transform
pairs of x(t),y(t) and n(t) respectively where (x(t),x) and (y(t),y) are evaluation polynomials in
the frame Bs

r with r > 0 and s = �d/2�, and (n(t),n) ∈ Bs+1
b such that deg(n(t)) ≤ s and n is a

multiple of modulus n with n0 = 1 (we assume gcd(b,n) = 1).
Input: X(t),Y (t) and N(t); spectral polynomials
Output: Z(t) ≡ (X(t)�Y−d(t)) mods N(t),
procedure SMP(X(t),Y (t))

1: Z(t) := X(t)�Y (t)
2: α := 0
3: for i = 0 to d −1
4: z0 := d−1 · (Z0 +Z1 + . . .+Zd) mod q
5: β := −(z0 +α) mod b
6: α := (z0 +α +β )/b
7: Z(t) := Z(t)+β ·N(t) mod q
8: Z(t) := Z(t)− (z0 +β )(t) mod q
9: Z(t) := Z(t)�Γ (t) mod q
10: end for
11: Z(t) := Z(t)+α(t)
12: return Z(t)

Spectral Modular Multiplication
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q . Let n(t) be a base b polynomial for n
where deg(n(t)) = s−1, s = �d/2� and gcd(b,n) = 1.
Input: A modulus n > 0 and x,y < n
Output: An almost modular reduction z ≡ xy mod n

1: Compute n = δ ·n such that the base polynomial
n(t) has degree d and n0 = 1

2: N(t) := DFTω
d (n(t))

3: Compute the base polynomial λ (t), λ = bd mod n.
4: Compute the base polynomial xd(t) = x(t) · td

for x ·λ mod n.
5: Xd(t) := DFTω

d (xd(t))
6: Y (t) := DFTω

d (y(t))
7: Z(t) := SMP(Xd(t),Y (t))
8: z(t) := IDFTω

d (Z(t))
9: return z(b)

Proof. In the previous sections, we described the action of the convolution and how
the steps of reduction work. Here, we concentrate on driving the Inequality (7.7).
Assuming that the conditions of SMP are satisfied, we investigate the time simula-
tion of the algorithm in order to trace the overflows.

Using Theorem 7.3, observe that after convolution at Step 1, the time polyno-
mial z(t) doubles its degree to 2s− 2. Moreover, the magnitude of its coefficients
cannot exceed sb2 since x(t) and y(t) are base b polynomials (i.e., z(t) ∈ Bd

r where
r = sb2).
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When it comes to analyzing the reduction steps, applying Corollary 7.2 assures
that the output z−d(t) belongs to Bd

r′ where r′ = b2s + b and coefficients of all the
intermediate values do not exceed 2b2s. Therefore, if q is chosen as max(2b2s,b2s+
b) = 2b2s < q, no overflow is generated and SMP computes the desired result. Note
here that the carry added in Step 12 is no longer large because of working with
a convolution output, hence we take it as a constant rather than breaking it into
words.

Theorem 7.5. Algorithm 7.3.6 computes an almost modular reduction, z ≡ xy mod
n, if the parameters b,q and s satisfy 2sb2 < q.

Proof. Notice that in the initialization steps of Algorithm 7.3.6, before calculat-
ing the Fourier coefficients, we compute xbd mod n (i.e., xd(t) mod n(t)). Using
Lemma 7.3, one can see that Step 7 computes the product x(t)y(t) mods n(t) unless
overflows occur.

Since the initialization and finalization parts do not change the coefficient bounds,
one can get the minimal domain for the core SMP as 2sb2 < q using Lemma 7.4.

7.3.7 Spectral Modular Exponentiation

In general, a single classical modular multiplication is faster than a single SMM;
however, spectral methods are very effective when several modular multiplications
with respect to the same modulus are needed. An example is the case when one
needs to compute a modular exponentiation, i.e., the computation of me mod n,
where m,e and n are positive integers. Such a setup needs a consecutive use of SMM;
it also means a consecutive use of DFT and IDFT operations (obviously redundant
computations as seen in Figure 7.4). Therefore, if the data is kept in the Fourier do-
main at all times, the backward and forward transforms are bypassed. Consequently,

n
c

DFT DFTIDFTSMP

m
e

SMP DFT SMP IDFTIDFT

c

DFT SMP SMP SMP IDFT

n

m
e

Fig. 7.4 Spectral Modular Exponentiation.
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this approach decreases the asymptotic crossovers of the spectral methods to cryp-
tographic sizes while computing the modular exponentiation.

There are many methods for carrying out general exponentiation. Mostly, effi-
ciency comes from two resources; one is to decrease the time to multiply; the other
is to reduce the number of multiplications. In practice one does both. Notice that,
until now our objective was reducing the modular multiplication which is catego-
rized in the first category. For the rest of this study, we keep this goal and simply
consider using the binary method (see [8]) for the rest of our presentation.

The binary method scans the bits of the exponent either from left to right or from
right to left. A squaring is performed at each step, and depending on the scanned bit
value, a subsequent multiplication is performed. We describe the spectral modular
exponentiation algorithm by using a left-to-right binary method below.

Remark 7.5. Since the SME algorithm computes an almost modular reduction of
c ≡ me mod n, a final reduction may be needed if the output is desired in the range
[0,n−1].

Spectral Modular Exponentiation
Suppose that there exists a DFT map DFT ω

d : Bd
q → F d

q . Let n(t) be a base b polynomial for n
where deg(n(t)) = s−1, s = �d/2� and gcd(b,n) = 1.
Input: A modulus n > 0 and m,e < n
Output: An almost modular reduction, c ≡ me mod n.

1: Compute n = δ ·n such that the base polynomial
n(t) has degree d and n0 = 1

2: N(t) := DFTω
d (n(t))

3: Compute the base b polynomial (λ ′,λ ′(t)) where
λ ′ = b2d mod n.

4: Λ ′(t) := DFTω
d (λ ′(t))

5: M(t) := DFTω
d (m(t))

6: M(t) := SMP(M(t),Λ ′(t))
7: C(t) := SMP(1(t),Λ ′(t))
8: for i = j−2 downto 0
9: C(t) := SMP(C(t),C(t))
10: if ei = 1 then C(t) := SMP(C(t),M(t))
11: C(t) := SMP(C(t),1(t))
12: c(t) := IDFTω

d (C(t))
13: return c(b)

Once again, we need to guarantee that overflows do not occur; in other words, the
coefficients of intermediate or final results should not be winding over q. We start
with a lemma, stating how big the coefficients of a special polynomial get after a
convolution, then, using this result we comment on how q has to be chosen to avoid
overflows.

Lemma 7.5. Let s > 0 and x(t) = 1 + 2t + 3t3 + . . .+ sts−1, then the coefficients of
z(t) = (x(t))2 are bounded by
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B(s) =
−2s3

3
− s2 + 2s2r1 −

s
3

+
r1

3
+ 2sr1 (7.8)

where r1 = −2 +
√

3+18s2+18s
9 .

Proof. Let x(t) = 1+2t +3t3 + . . .+sts−1 be a polynomial of degree s−1. Observe
that if the convolution z(t) = (x(t))2 is computed, the coefficients of z(t) satisfies
the following recurrence:

z0 = 1

z1 = 22

z2 = 32 + z0

...

zs−1 = s2 + zs−3

zs = (s−1)(s+ 1)+ zs−2

zs+1 = 2(s−2)(s+ 1)+ zs−3

...

zs+i−1 = i(s− i)(s+ 1)+ zs−i−1

...

z2s−2 = (s−1)(s+ 1)+ z0

If these coefficients are examined carefully one realizes that the coefficients up to
the (s − 2)th are monotonously increasing and zs > zs−2 for s > 1. Therefore, a
maximum magnitude which also decides the bound has to be located somewhere in
between coefficients s−1 and 2s−2.

Observe that zi is a telescoping sequence for r < s, in other words,

zr+1 + zr = 12 + 22 + . . .+(r + 2)2 =
r+2

∑
i=1

i2 .

This sum can be written as

zr+1 + zr =
(B +(r + 2)+ 1)3−B3

3
(7.9)

where Bi stands for the ith Bernolli number (i.e., B0 = B0 = 1,B1 =−1/2,B2 = 1/6
and B3 = 1/30. Plugging Bernolli numbers to the Equation (7.9) gives

zr+1 + zr =
1
6
(2r3 + 15r2 + 37r + 30).
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Here, if r + 1 is even, then zr+1 and zr can be found as

zr = z1 + z3 + . . .+ zr =
1
6
(r3 + 6r2 + 11r + 6)

zr+1 =
1
6
(r3 + 9r2 + 26r + 24)

and, in case r + 1 is odd, one would get

zr+1 = z1 + z3 + . . .+ zr+1 =
1
6
(r3 + 9r2 + 26r + 24)

zr =
1
6
(r3 + 6r2 + 11r + 6).

Therefore, in either case, zr can be written as 1
6 (r3 +6r2 +11r+6) and a general

term of the recurrence would be found by plugging zr into the system after replacing
the index s+ i−1 by r,

zr =

⎧⎪⎨
⎪⎩

1
6(r3 + 6r2 + 11r + 6) if r < s

− 2s3

3 + s2r + 5s
3 −

r3

6 − 11r
6 + s2 + sr− r2 −1 if s ≤ r < 2s−1

In order to find the maximum value of the zr function, we substitute the roots
of the derivative ∂ zr

∂ r into the equation of zr. Observe that the root r1 = −2 +√
3+18s2+18s

9 gives the local maximum in the range s≤ r < 2s−1 and if r1 is plugged
into zr, one would get the bound B(s) as a function of s

B(s) =
−2s3

3
− s2 + 2s2r1 −

s
3

+
r1

3
+ 2sr1,

which in fact gives the desired bound.

Theorem 7.6. Algorithm 7.3.7 computes c ≡ me mod n if the parameters b,q and s
satisfy the following inequality

(b2 + b)2B(s)+ b2s < q (7.10)

where B(s) is given by Equation (7.8).

Proof. First of all, SME implements the binary exponentiation method with a Mont-
gomery type multiplier SMP all working in the spectrum. Thus, the algorithm works
as long as a nice domain is chosen for all intermediate values and output causing
no overflows. Recall by Theorem 7.3 that if the inputs of SMP are spectral base b
polynomials, the output of SMP algorithm is a spectral polynomial having a time
pair fitting into the frame Bs

r with r = b2s+b. However, in the case of a consecutive
SMP usage, the output of the second SMP would have larger time coefficients. For
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instance, in Steps 9, 10 and 11 the input C(t) is a spectral polynomial with time
coefficients larger than b. If these steps are examined further, one understands that
maximum magnitudes are attained from the computation of SMP(C(t),C(t)) in Step
9, since for both Steps 10 and 11, M(t) and 1(t) are spectral base b polynomials.

Now, we investigate how big the coefficients of the time polynomial get after
Step 9. In order to have a better analysis, we look at the distribution of the coeffi-
cients of the time polynomial after applying SMP. In Theorem 7.3, we showed that
after a reduction c(t) ∈ Bs

r has the form

c(t) = c0 + c1t + c2t2 + . . .+ cs−1ts−1,

where ci < (s− i)b2 +b for i = 0,1, . . . ,s−1. Since ci < (s− i)b2 +b < (s− i)(b2 +
b), we write

c(t) < (b2 + b)y(t),

where y(t) = s+(s−1)t +(s−2)t2 + . . .+ 1ts−1. If (c(t))2 is computed as seen in
Step 9, we have

(c(t))2 < (b2 + b)2(y(t))2,

and using Lemma 7.5, we guarantee that the coefficients of (y(t))2 are bounded by
B(s) 1, which implies that (b2s + b)2B(s) bounds the coefficients of (c(t))2. When
it comes to the intermediate values, because of the reduction steps, coefficients get
slightly larger which is given by Theorem 7.3 as (b2 +b)2B(s)+b2s. Therefore, if q
is chosen larger than this final bound, no overflow is generated and the DFT respects
SME over the ring Zq.

Inequality (7.10) is very centric as it gives the relation between the parameters
b,s and q in a consecutive use of SMP algorithm. In practice, these parameters are
generated in two different ways: the first one is picking s and b and then finding a
suitable ring Zq that admits a DFT of size d, while the second one is picking a ring
with q elements, decide on s, and then find out the base b. We discuss the parameter
selection-related issues in the next chapter after giving an illustrative example.

We conclude that q > 131845.0 > 217. Thus we need to search for a Fermat or
Mersenne ring with q ≥ 218 − 1 that admits a DFT with length d = 7 or d = 8 for
ω equal to a power of two. It turns out that the ring Z220+1 satisfies these conditions
with ω = 32.

7.3.8 Illustrative Example

In this section, we present the temporary values and the final result of an exponen-
tiation computation (i.e., c = me (mod n)) using the SME method with the input
values as m = 2718, e = 53, and n = 3141.

1 c(t) of Lemma 7.5 is the mirror image of y(t)
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If we select the parameters b = 23 and s = 4, Inequality (7.10) assures that SME
works correctly in a ring having q > 131845 elements. In order to have some com-
putational convenience, we chose the Fermat ring Z220+1 which admits a DFT with
length d = 7 for ω = 32.

With these selections we compute d−1 mod q and Γ (t) as

d−1 = 8−1 (mod 220 + 1) = 917505 .

and

Γ (t) = 1 + w−1t + w−2t2 + w−3t3 + w−4t4 + w−5t5 + w−6t6 + w−7t7

= 1 + 1015809t+ 1047553t2+ 1048545t3 + 1048576t4 +
32768t5 + 1024t6 + 32t7 .

We start with writing m and n in polynomial representation

n(t) = 5 + 0 · t + 1t2 + 6t3 ,

m(t) = 6 + 3t + 2t2 + 5t3 .

Note that deg n(t) = s−1 = 3 and gcd(n,b) = 1.
The steps of the SME method computing this modular exponentiation are de-

scribed below.

1. Given n = 3141, we have n0 = 5. Finding the inverse of n0 modulo b gives δ
which is mostly achieved by Extended Euclidean algorithm:

δ = n−1
0 mod b = 5 mod 8 .

Thus, n = δn = 5 ·3141 = 15705 which is equal to

n(t) = 1 + 3t + 5t2 + 6t3 + 3t4

in polynomial representation. Recall that deg(n(t)) = s = 4 and n0 = 1
2. The computation of n(t) = DFT[n(t)] can be accomplished by a matrix multipli-

cation or, for more efficiency, some FFT can be employed. We obtain the result
of the DFT as

N(t) = 18 + 201822t+ 1045504t2 + 93374t3 + 856991t5 + 3071t6 + 944959t7

Recall that we work in the finite ring Zq with q = 220 +1 = 1048577 represented
by the least residue set; thus, the coefficients of the polynomial N(t) are in the
range [0,220).

3. After computing λ ′ = 22d mod n = 816 mod 3141 = 415, the polynomial repre-
sentation of λ ′ is found

λ ′(t) = 7 + 3t + 6t2 .
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Furthermore, we obtain the spectral coefficients of Λ ′(t) using the DFT as

Λ ′(t) = 16+6247t+3073t2 +92167t3 +10t4 +6055t5 +1045506t6+944136t7

4. Given m(t), we obtain its spectral representation M(t) using the DFT as

M(t) = 16 + 165990t+ 1046533t2+ 96422t3 + 886695t5 + 2052t6 + 948071t7

5. The SMP algorithm is used to compute M(t) = SMP[M(t),Λ ′(t)] with inputs

M(t) = 16 + 165990t+ 1046533t2+ 96422t3 + 886695t5 + 2052t6 + 948071t7

Λ ′(t) = 16 + 6247t + 3073t2 + 92167t3 + 10t4 + 6055t5 + 1045506t6+ 944136t7

We then use the SMP to find the resulting polynomial M(t) given the inputs M(t)
and Λ ′(t). First we execute Step 1 in the SMP method, and obtain the initial value
of Z(t) using the rule Zi = Mi ·Λ ′

i mod q for i = 0,1, . . . ,7 as

Z(t) = 256+945454t +10250t2+236399t3+223985t5+1038347t6+691376t7

In Step 2 of the SMP method, we assign the initial value of α = 0, and start the
loop for i = 0,1, . . . ,7. We illustrate the computation of the instance of the loop
for i = 0 in Table 7.1. The for loop needs to execute the remaining values of i as
i = 1,2, . . . ,7 in order to compute the resulting product M(t) given by

M(t) = 135 + 324054t+ 36891t2 + 398677t3 + 27t4 +
779927t5 + 1011740t6 + 594712t7 .

Table 7.1 The SMP for loop instance i = 0.

Step Operation and Result

4: z0 = d−1 · (Z0 +Z1 +Z2 +Z3 +Z4 +Z5 +Z6 +Z7) (mod q)
z0 = 917505 · (256+945454+10250+236399+223985+

1038347+691376) (mod 1048567) = 42

5: β = −(z0 +α) (mod b) = −(42+0) (mod 16) = 6

6: α = (z0 +0+β )/b = (42+6)/16 = 3

7: Zi = Zi +β ·Ni (mod q)
Z(t) = 364+59232t +1040389t2 +796643t3+

123046t5 +8196t6 +69668t7

8: Zi = Zi − (z0 +β ) = Zi −48 (mod q)
Z(t) = 316+59184t +1040341t2 +796595t3 +1048529t4+

122998t5 +8148t6 +69620t7

9: Zi = Zi ·Γi (mod q)
Z(t) = 316+526138t +45048t2 +723385t3 +48t4+

717053t5 +1003513t6 +130686t7
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6. In this step, the SMP method is used to compute C(t) = SMP[1(t),Λ ′(t)] with
inputs

1(t) = 1 + t + t2 + t3 + t4 + t5 + t6 + t7 ,

Λ ′(t) = 16 + 6247t + 3073t2 + 92167t3 + 10t4 + 6055t5 + 1045506t6+ 944136t7

We will not give the details of this multiplication since it is similar to the previous
one. The result is obtained as

C(t) = 106 + 13591t+ 39979t2 + 217142t3 + 28t4 +
11095t5 + 1008684t6+ 806969t7 .

7. Exponentiation Loop: The loop starts with the values of M(t) and C(t) com-
puted above as

M(t) = 135 + 324054t+ 36891t2 + 398677t3 + 27t4 +
779927t5 + 1011740t6 + 594712t7 ,

C(t) = 106 + 13591t+ 39979t2 + 217142t3 + 28t4 +
11095t5 + 1008684t6+ 806969t7 .

Given the exponent value e = (53)10 = (110101)2, the exponentiation algorithm
performs squarings and multiplications using the SMP method. Since j = 6, the
value of i starts from i = 5 and moves down to zero, and computes the new value
of C(t) using the binary method of exponentiation as described. The steps of the
exponentiation and intermediate values of C(t) are tabulated in Table 7.2. The
final value is computed as

C(t) = 174 + 327348t+ 43062t2 + 592243t3 + 54t4 +
782837t5 + 1005623t6 + 395062t7 .

8. After the exponentiation loop is completed, we have the final value C(t). In this
step, we have an SMP execution followed by an inverse DFT calculation.

9. We obtain C(t) from C(t) = SMP[C(t),1(t)] using the inputs

C(t) = 174 + 327348t+ 43062t2 + 592243t3 + 54t4 +
782837t5 + 1005623t6 + 395062t7 .

1(t) = 1 + t + t2 + t3 + t4 + t5 + t6 + t7 .

This computation finds C(t) as

C(t) = 169 + 438168t+ 48142t2 + 842167t3 + 27t4 +
696537t5 + 1000463t6 + 120506t7 ,
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Table 7.2 The steps of the exponentiation loop.

i ei Operation C(t)
Start 106+13591t +39979t2 +217142t3+

28t4 +11095t5 +1008684t6 +806969t7

C(t) =SMP[C(t),C(t)] 127+13519t +36931t2 +118862t3+
5 55t4 +11215t5 +1011780t6 +905297t7

1 C(t) =SMP[C(t),M(t)] 135+324054t +36891t2 +398677t3+
27t4 +779927t5 +1011740t6 +594712t7

C(t) =SMP[C(t),C(t)] 127+118020t +35890t2 +178339t3+
4 45t4 +967557t5 +1012787t6 +833510t7

1 C(t) =SMP[C(t),M(t)] 175+434919t +42016t2 +648646t3+
45t4 +693672t5 +1006625t6 +320201t7

C(t) =SMP[C(t),C(t)] 119+526344t +16391t2 +982536t3+
3 27t4 +589897t5 +1032200t6 +1047114t7

0 119+526344t +16391t2 +982536t3+
27t4 +589897t5 +1032200t6 +1047114t7

C(t) =SMP[C(t),C(t)] 202+128046t +60499t2 +955597t3+
2 72t4 +976047t5 +988244t6 +37904t7

1 C(t) =SMP[C(t),M(t)] 192+628407t +33843t2 +586390t3+
54t4 +494072t5 +1014836t6 +388633t7

C(t) =SMP[C(t),C(t)] 265+755301t +60454t2 +460547t3+
1 63t4 +422502t5 +988199t6 +459208t7

0 265+755301t +60454t2 +460547t3+
63t4 +422502t5 +988199t6 +459208t7

C(t) =SMP[C(t),C(t)] 296+546702t +74843t2 +734828t3+
0 90t4 +606607t5 +973916t6 +209585t7

1 C(t) =SMP[C(t),M(t)] 174+327348t +43062t2 +592243t3+
54t4 +782837t5 +1005623t6 +395062t7

10. We obtain c(t) using the inverse DFT function c(t) = IDFT[C(t)], which gives

c(t) = 56 + 59t + 42t2 + 12t3 .

Thus, the final value becomes c(b) = 9360 ≡ 3078 mod 3141, which is equal to

3078 = 2271853 mod 3141

as required.

7.4 Applications to Cryptography

Modular exponentiation is one of the most important arithmetic operation in modern
cryptography. For example, the RSA algorithm requires exponentiation in Zn for
some positive integer n, whereas Diffie-Hellman key agreement and the ElGamal
scheme use exponentiation in some large prime fields (see [9]).



154 Gökay Saldamlı and Çetin Kaya Koç

In this chapter, we describe the methodologies of selecting the parameters for
SME in order to use the method in public-key cryptography. We carefully investigate
suitable rings and structures that makes spectral techniques available for modular
arithmetic. In particular, the Inequality (7.10) presents a solid basis for the relation
between the parameters b,q and s.

7.4.1 Mersenne and Fermat rings

An integer ring for which q is of the form 2v ± 1 is the most suitable for the
SME computation since the modular arithmetic operations for such q are simplified.
Moreover, if the principal root of unity is chosen as a power of 2, spectral coeffi-
cients are computed only using additions and circular shifts. The rings of the form
2v−1 are called the Mersenne rings , while the rings of the form 2v +1 are called the
Fermat rings . In Table 7.3, we tabulate some suitable Fermat and Mersenne rings
for SME function. Furthermore, we also tabulate a root of unity and the DFT length
for each ring.

Observe that, it is possible to attain larger transform lengths; however, such a
principal root of unity brings some further complexity to the computations. To be
specific, multiplications with roots of unity involve additions as well as cyclic shifts.
Some cases such as ω = ±

√
2 can be tolerable for longer transform sizes but other

choices could be very costly. For instance, in Z220+1, ω = 4100 is not a power of 2,
hence every single multiplication with roots of unity is a 20-bit by 20-bit multipli-
cation and not tolerable for our purposes.

Table 7.3 Parameters of NTT for 216 < q < 281.

ring Zq prime factors (ω , NTT length)

216 +1 65537 (4,16) (2,32)
217 −1 131071 (2,17) (−2,34)
219 −1 524287 (2,19) (−2,38)
220 +1 17 ·61681 (32,8) (4100,16)
223 −1 47 ·178481 (2,23) (−2,46)
224 +1 97 ·257 ·673 (8,16) (

√
8,32)

229 −1 233 ·1103 ·2089 (2,29) (−2,58)
231 −1 2147483647 (2,31) (−2,62)
232 +1 641 ·6700417 (4,32) (2,64)
237 −1 223 ·616318177 (2,37) (−2,74)
240 +1 257 ·4278255361 (32,16) (

√
32,32)

241 −1 13367 ·164511353 (2,41) (−2,82)
264 +1 274177 ·67280421310721 (4,64) (2,128)
279 −1 2687 ·202029703 ·1113491139767 (2,79) (−2,158)
280 +1 414721 ·44479210368001 (32,32) (

√
32,64)
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In general, the transform lengths tabulated above are considered too short for
most of the digital signal processing applications. On the other hand, these lengths
seem reasonable for cryptographic applications and our purposes.

7.4.2 Pseudo Number Transforms

The Mersenne and Fermat rings are not the only suitable rings for efficient arith-
metic, if m (not necessarily a prime) is a small divisor of n. The rings of the form
Zn/m are also quite useful.

Definition 7.17. Let n and m be positive integers and m divides n. The NTT defined
over Zn/m is called a pseudonumber transform (PNT) .

In general, arithmetic in Zn/m is difficult; however, since m is a factor of n,
the arithmetic modulo (n/m) can be carried in the ring Zn. By selecting Zn as a
Mersenne or Fermat ring one simplifies the overall arithmetic. The next theorem
makes the importance of PNT more clear.

Theorem 7.7. Let n = n1n2 . . .nl = me1
1 me2

2 . . .mel
l , where ni = mei

i for i = 1,2, . . . , l
for distinct primes mi and positive integers ei and l. Let R be a proper subset of the
set {n1,n2, . . . ,nl} and R′ = {mi −1 : mei

i ∈ R}. If S = {m1 −1,m2 −1, . . . ,ml −1},
then gcd(S) ≤ gcd(R′) =: d′ and a PNT of length-d′ can be defined over Zn/m for
m = ∏ni �∈R ni.

Proof. First, R � S ⇒ gcd(S)≤ gcd(R′). For the second part, let R be a proper subset
of the set {n1,n2, . . . ,nl} such that n/m = ∏ni∈R ni . Using Corollary 7.1, there exists
an NTT with length d′ = gcd({mi−1 : mei

i ∈ R}) over Zn/m.

Example 7.6. In Z215−1, Corollary 7.1 states that the maximum transform length is
gcd(6,30,150) = 6. This MNT length is very short if the size of the ring is con-
sidered. On the other hand, if a PNT is employed in the ring Z(215−1)/7, we get the
transform lengths up to gcd(30,150) = 30.

At first glance, the arithmetic in the ring Z(215−1)/7 seems difficult; however, it is
possible to perform the actual computation in the ring Z(215−1) with a final reduction

to modulo (215 −1)/7.

Remark 7.6. Observe that PNT tailors the rings in a way that larger length trans-
forms are possible. But while doing that, the size of the ring shrinks. The most
interesting PNTs are the ones which enlarge the lengths with minimal shrinkage.
The effective size of the decreased ring has to be concerned when PNTs are used.

In Table 7.4, we present parameters of some suitable pseudo-Mersenne and Fer-
mat rings. If Tables 7.3 and 7.4 are combined, it is seen that for almost every v
(recall that n = 2v ± 1) in between 16 and 41 there exists some sets of parameters
for a nice NTT. Therefore, PNTs enrich the possible design choices which equip us
to meet the marginal needs of particular applications.
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Table 7.4 Suitable NTTs with ω and d values, � shows that n/m is a prime.

Ring PNT Modulus ω d ω d

n n/m

217 +1 (217 +1)/3� −2,4 17 2 34

220 +1 (220 +1)/17� 4 20 2 40

223 −1 (223 −1)/47� 2 23 −2 46

223 +1 (223 +1)/3� −2,4 23 2 46

225 −1 (225 −1)/31 2 25 −2 50

227 −1 (227 −1)/511 2 27 −2 54

228 +1 (228 +1)/17� 4 28 2 56

229 +1 (229 +1)/3 −2,4 29 2 58

231 +1 (231 +1)/3� −2,4 31 2 62

234 −1 (234 −1)/3 2 34 −2 68

234 +1 (234 +1)/5 4 34 2 68

237 +1 (237 +1)/3 −2,4 37 2 74

239 −1 (239 −1)/7 2 39 −2 78

239 +1 (239 +1)/9 −2,4 39 2 78

7.4.3 Parameter Selection for RSA

In this section, we tabulate some SME parameters for modular exponentiation cal-
culation suitable for RSA cryptosystems. Once the underlying ring, the DFT length
and the principal root of unity are selected, the maximum modulus size used in the
SME method is computed by finding the base b = 2u. The relation between these
parameters is computed after determining the maximum b satisfying the Inequality
(7.10).

In Table 7.5, some sample rings with DFT parameters are given. We give an
example to show how we get these figures. We first select a ring, for instance, let

Table 7.5 SMP parameter selection for SME.

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

513 (257 −1)/7 114 -2 9 57

518 273 −1 73 2 14 37

704 264 +1 128 2 11 64

1,185 279 −1 158 -2 15 79

2,060 (2103 +1)/3 206 2 20 103

2,163 2103 −1 206 -2 21 103

3,456 (2128 +1) 256 2 27 128

4,260 (2142 +1)/5 284 2 30 142
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us take q = 279 −1. This comes with the principal root of unity ω = −2, the length
d = 158 and s = �d/2�= 79. Plugging these values into the Inequality (7.10) gives

138754.3b4 + 277508.7b3+ 138833.3b2 < 279 −1

and then, by inspection, b = 215 ⇒ u = 15 is found. Therefore, we may perform an
exponentiation of maximum operand size equal to k = s · u = 79 · 15 = 1185 using
SME with the specified parameters.

7.4.4 Parameter Selection for ECC over Prime Fields

An elliptic curve E over a prime field GF(p), p odd prime, is determined by param-
eters a,b ∈ GF(p) which satisfy 4a3 + 27b2 �= 0. The curve consists of the set of
solutions or points p = (x,y) for x,y ∈ GF(p) to the equation

y2 ≡ x3 + ax + b mod p (7.11)

together with an extra point o called the point at infinity. The set of points on
E forms a group under the following addition rule: Let (x1,y1) ∈ E(GF(p)) and
(x2,y2) ∈ E(GF(p)) be two points such that x1 �= x2. Then, we have (x1,y1) +
(x2,y2) = (x3,y3), where

x3 = λ 2 − x1 − x2 ,

y3 = λ (x1 − x3)− y1 ,

where λ = y2−y1
x2−x1

.
Observe that all computations are performed within the finite field GF(p). There-

fore, spectral modular algorithms of the previous sections can be used for field op-
erations. In particular, SMP can be used for multiplications.

The security provided by ECC is guaranteed by the difficulty of the discrete
logarithm problem in the elliptic curve group. The discrete logarithm problem is
the problem of finding the least positive number, e, which satisfies the equation

q = e×p= p+p+ · · ·+p︸ ︷︷ ︸
e times

,

where p and q are points on the elliptic curve. Naturally, the basic computation
(called point multiplication ) in ECC is finding the eth (additive) power of an el-
ement p in the group. This involves additions, multiplications, and inversions of
integers which are in the coordinates of the points. That is, it relies completely upon
calculations in the underlying field, GF(p).

Therefore, the elliptic point multiplication operation can be performed using the
SMP consecutively. Once again, Inequality (7.10) helps us to find parameters for
ECC use. In Table 7.6, some sample rings with DFT parameters are given.
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Table 7.6 SMP Parameter selection for ECC use.

Bits Ring DFT Root Wordsize Words

k Zq d ω u s

513 (257 −1)/7 114 -2 9 57

518 273 −1 73 2 14 37

704 264 +1 128 2 11 64

1,185 279 −1 158 -2 15 79

2,060 (2103 +1)/3 206 2 20 103

2,163 2103 −1 206 -2 21 103

3,456 (2128 +1) 256 2 27 128

4,260 (2142 +1)/5 284 2 30 142

7.5 Spectral Extension Field Arithmetic

Spectral methods can be be applied to extension fields. Since binary and mid-size
characteristic extensions are mostly of interest in practice, we breifly discuss these
cases.

7.5.1 Binary Extension Fields

The most essential point of applying the spectral methods to binary field arithmetic
is to find some suitable DFT domains having acceptable transform lengths for cer-
tain principal roots of unity. Unfortunately, if p is small, Zp admits very short trans-
form lengths (e.g., Z2 allows only a transform of length two). One way to overcome
this problem is to use some polynomial rings over Zp as the domain of DFT allows
longer transform lengths because of their larger cardinality.

7.5.1.1 Suitable Polynomial Ring Spectrums

Spectral methods generally partition bigger problems into small pieces and then
process the pieces in a parallel fashion. Notice that the computations in these pieces
are carried in the ring, R = Z2[γ]/(g(γ)), hence for a proper g(γ) selection, spectral
methods benefit the most.

The most convenient choice of g(γ) is a binomial. Moreover, if the principal
root of unity, ω is chosen as a power of γ , the spectral coefficients are computed
only using XORs and circular shifts. However, DFTs over polynomial rings having
defining binomials suffer from the short transform lengths. For instance, γn + 1 has
the linear factor Φ1(γ) = γ + 1 for all n, and by Theorem 1 of Pollard [2], only a
transform length of two can be defined over these rings. Nevertheless, it is possible
to overcome such restrictions using pseudotransforms (PT).
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Pseudonumber transforms (PNT) are initially defined over subrings of Mersenne
or Fermat rings. They support longer transform lengths and benefit the simplified
arithmetic of the parent Mersenne or Fermat rings [10]. A similar approach can
possibly be used for constructing pseudotransforms over polynomial rings. If g(γ) =
γn + 1 is considered, a nice transform with a longer length can be grasped in a
subring defined by a proper factor of g(γ).

In general, factoring γn + 1 is not an easy problem which is closely related to
the cylotomic polynomials. Since we are interested in binomials having fairly small
degrees, even using a general purpose computer algebra system is satisfactory for
our needs. Nevertheless, we present some pleasant arguments for the factors of cy-
lotomic polynomials.

Definition 7.18. Let n be a positive integer, and let ω be primitive nth root of unity.
The polynomial

Φn(t) = ∏
gcd(n,k)=1

(t −ωn) for 1 ≤ k < n,

is called the nth cyclotomic polynomial .

The nth cyclotomic polynomial Φn(t) has degree ϕ(n), where ϕ is the Euler’s
quotient function. These polynomials are irreducible over the rational numbers for
every positive integer n but when they are considered over finite fields, this is no
longer correct in general.

Since cyclotomic polynomials are minimal polynomials of the roots of unity,
g(γ) = γn ± 1 factor into cyclotomic polynomials. Consequently, the polynomial
γn −1 can be written as

γn −1 = ∏
d|n

Φd(t).

Note that the above factorization is not necessarily prime over finite fields. For
instance, γ5 −1 = φ1(γ)φ4(γ) but φ4(γ) = (t +1)2 over GF(2). Letting p be an odd
prime, some interesting examples over GF(2) are as follows;

t p + 1 = Φ1(t)Φp(t),

t2p + 1 = Φ1(t)Φ2(t)Φp(t)Φ2p(t),

t4p + 1 = Φ1(t)Φ2(t)Φp(t)Φ2p(t)Φ4p(t),
...

One finds the first few remaining values of n as t +1 = Φ1(t), t2+1 = Φ1(t)Φ2(t),
t4+1 = Φ1(t)Φ2(t)Φ4(t), t8 +1 = Φ1(t)Φ2(t)Φ4(t)Φ8(t) and t9+1 = Φ1(t)Φ3(t)Φ9(t).

Remark 7.7. In general, arithmetic in the factor rings is harder than the one in R,
but being defined over a subring, PT calculations can be carried modulo γn + 1 for
intermediate values and then the results are transformed to the factor ring by a final
reduction. Such an approach simplifies the overall computation.
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Example 7.7. Let us consider the DFT over R = Z2[γ]/(γ7 + 1) with the principal
root of unity ω = γ . Since γ7 + 1 has the following factorization

γ7 + 1 = (γ + 1)︸ ︷︷ ︸
Φ1(γ)

(γ3 + γ2 + 1)(γ3 + γ + 1)︸ ︷︷ ︸
Φ7(γ)

,

the ring R admits transform of lengths at the most two but if the ring R′ =
Z2[γ]/(Φ7(γ)), we get a 7-point DFT satisfying the convolution property over the
ring R′. Besides that, one needs a Φ7(γ) reduction while working in R′ which is
obviously harder than the arithmetic in R. However, since R′ is a subring of R, all
calculations can be carried over R with a final Φ7(γ) whenever necessary.

In Table 7.7, we present the parameters for some suitable pseudotransform rings.
One can find an appropriate g(γ) by simply examining the transform length d in
order to meet the marginal needs of a particular application.

Table 7.7 Suitable Polynomial Rings for an odd prime d.

Ring, g(γ) ω lenght

(γd +1)/(γ +1), (γ2d +1)/(γ2 +1) γ d

(γd2
+1)/(γd +1), (γ2d2

+1)/(γ2d +1) γ d2

Remark 7.8. While embedding the input to the pseudotransform domain, the size of
the subring should be considered rather than the size of ring R. In fact, the most inter-
esting pseudotransforms are the ones enlarging the lengths with minimal shrinkage
in size. For further discussion we refer the reader to [11].

7.5.1.2 Suitable Finite Field Spectrums

We discuss the arithmetic simplifications when the factor rings are finite fields (i.e.,
defining polynomials are irreducible).

Note that binary extension fields can be seen as n-dimensional vector spaces
over GF(2): if {α1, . . . ,αn} is taken as the basis set, each element of GF(2n) can be
represented as a linear combination of the elements of this basis set. Among various
bases, there are two special types having particular importance. The first one is the
canonical polynomial basis {1,α,α2, . . . ,αn−1}, made up of powers of a defining
(mostly primitive) element α of GF(2n). The second one is the normal basis of the
form

N = {α,αq, . . . ,αqn−1} (7.12)

and consists of a normal element α ∈ GF(qn) and its conjugates with respect to
GF(2).

For every finite field there exists a normal basis, in fact, several such bases may
exist for the same field. Those bases having the minimal complexity while multiply-
ing field elements are the most important ones for computations (also called optimal
normal bases (ONB) ).
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For our purposes type I ONBs have the utmost importance in which the element
α is taken as the principal root of unity. Observe that this is the case where the basis
(7.12) and the set of roots of unity (i.e., {1,ω ,ω2, . . . ,ωn−1}) become set equivalent
(not necessarily equal as ordered sets); hence, one can change the basis from normal
to polynomial or vice versa by simply ordering the terms. Unfortunately, not all the
finite fields have type I ONB; the following proposition gives a condition for their
existence.

Proposition 7.7. Suppose n + 1 is a prime and q is primitive in Zn+1, where q is
a prime or prime power. Then the n nonunit (n + 1)th roots of unity are linearly
independent and they form an ONB of GF(qn) over GF(q).

Proof. See Mullin et al. [12]

Using the above result, one can get that for k = 4,10,12,18,28,36,52, 58,60, . . .
the binary extension field GF(2k) has type I ONB.

In a normal basis representation, squaring a field element corresponds to a simple
circular shift which seems well-suited for the realizations of public-key cryptosys-
tems employing some form of repeated square and multiply methods, but in general,
these representations mostly suffer from the complicated bases conversions and field
multiplications. Eventually, type I ONB are optimal by giving the simplest conver-
sion and multiplication realizations. Therefore, they initially favor a great interest in
realizations of ECC but because of some security concerns, the use of elliptic curves
over composite fields (type I ONB only exist in these extensions) is explicitly ex-
cluded from standards such as ANSI X9.63 [13].

Remark 7.9. We tend to choose a field having a type I ONB for transform do-
main. Observe that such a selection is implementation-related that does not change
any ECC parameter, hence it never jeopardizes the security of the crypto- system.

7.5.1.3 Parameter Selection for ECC over Binary Fields

The size of the underlying structure (which also defines the key length) is a common
security measure for public-key cryptosystems. After discarding the weak family of
elliptic curves, standard documents [13] and [14] recommend some curves serving
different needs of security levels. Referencing to the key sizes of these curves, in
Table 7.8, we tabulate some suitable polynomial rings that admit nice DFT struc-
tures. Note that unlike SMM, when SMP is used for ECC, the word size u ≈ v/4 as
a result of successive SMP usage. In fact, a modification of SMP may give a much
better u, (see the research project 1 of Section 7.8).

7.5.2 Midsize Characteristic Extension Fields

The ideas of the previous sections could be applied to the polynomial rings having
midsize characteristics. In particular, extension fields GF(q) with q = pk, p an odd
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Table 7.8 Standard Parameter Selection for SMP; † shows the domains having Type I ONB.

Bits PT ring DFT Root Wordsize Words

k g(γ) d w u s

171 (γ37 +1)/(γ +1)† 37 γ 9 19

210 (γ41 +1)/(γ +1) 41 γ 10 21

242 (γ43 +1)/(γ +1) 43 γ 11 22

288 (γ47 +1)/(γ +1) 47 γ 12 24

450 (γ59 +1)/(γ +1)† 59 γ 15 30

578 (γ67 +1)/(γ +1)† 67 γ 17 34

special prime, are good study cases. As we have seen in Section 7.5.1, when p is a
small prime, DFTs suffer from short transform lengths. On the other hand, taking p
such that p ∈ [25,232] gives great opportunities. Moreover, since the elements of the
GF(q) could be represented by polynomials modulo p, one does not need to worry
about the carries or coefficient overflows. In fact, this considerably simplifies SMP
and any related computation. Let us start by giving the simplified SMP algorithm,
and then we continue with further discussions.

7.5.2.1 Irreducible Binomials and Trinomials

As we mentioned in Section 7.5.1, the cryptosystems designed over extension fields
give us the opportunity of choosing the parameter p and f (t) freely. Certainly, we
picked p as a Mersenne or Fermat prime or a large divisor of non-prime such num-
bers, and tend to choose f (t) as a low hamming weight polynomial such as a bino-
mial or a trinomial. Moreover, we insist on fixing the coefficients to powers of two,
so that multiplications on the coefficients enjoy shifts instead of full multiplications.

We discussed the suitability of Mersenne and Fermat numbers earlier. Here, we
start by giving the existence characterization of irreducible binomials. The next the-
orem is due to [15];

Spectral Modular Product
Assume that there exists a DFT map DFT ω

d : Z
d
p → F d

p, and X(t),Y (t) and F(t) are transform
pairs of x(t),y(t) and f ′(t) respectively, wherein, x(t) and y(t) are in the frame Z

s
p with s = �d/2�,

and f ′(t) is a multiple of the defining polynomial f (t) in Z
s+1
p and f ′0 = 1.

Input: X(t),Y (t) and F(t); spectral polynomials
Output: Z(t), spectral modular reduction of x(t) · y(t) mod f (t),
procedure SMP(X(t),Y (t))

1: Z(t) := X(t)�Y (t)
2: for i = 0 to d −1
3: z0 := d−1 · (Z0 +Z1 + . . .+Zd) mod p
4: Z(t) := Z(t)− z0 ·F(t) mod p
5: Z(t) := Z(t)�Γ (t) mod p
6: end for
7: return Z(t)
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Theorem 7.8. Let l ≥ 2 be an integer and a ∈ GF∗(q). Then the binary polynomial
tl −a is irreducible in GF(q)[t] if and only if the following conditions are satisfied:
(i) each prime factor of l divides the order e of a in GF∗(q) but not (q− 1)/e; (ii)
q ≡ 1 mod 4 if l ≡ 0 mod 4.

Proof. See pages 124–125 of [15].

As a corollary we specify the existence of irreducible binomials over Mersenne
fields.

Corollary 7.3. Let q = 2r−1 be a Mersenne prime and ω =±2, the binomials, tr−
ω i are irreducible in GF(q)[t] if and only if r2 does not divide q−1 and gcd(r, i) = 1
for i = 1,2, . . . ,2r.

Proof. We simply check whether the conditions of Theorem 7.8 are satisfied or not.
We start with condition (ii); r has to be odd in order that q be a prime. Hence, r does
not divide 4 and condition (ii) is always satisfied.

For condition (i), the order of ω i surely divides the order of ω which is |ω | = r
or 2r. Since the set of roots of unity forms a cyclic subgroup of order r or 2r , those
elements with power relatively prime to r or 2r have order equal to r or 2r; others
are proper divisors.

As an example; by using Corollary 7.3, the irreducible binomials in GF(q)[t] for
q = 213 − 1 that interest us most are given simply the form t13 − 2i for i �= 13 and
i ∈ {1,2, . . . ,25}.

When trinomials are considered, it is hard to characterize the conditions com-
pactly. Therefore, once again we refer the reader to [15] for further reading. In fact,
since we are interested in relatively small degree polynomials and these polynomi-
als are comparably dense in GF(p)[t], searching methods are suitable for finding
such polynomials. In order to give some samples, we tabulate such polynomials in
Table 7.9.

7.5.2.2 SMP with Binomials or Trinomials

If special irreducible binomials or trinomials are used for SMP algorithms, a signif-
icant improvement is possible. To be more specific, in Step 3 of SMP method we

Table 7.9 Some irreducible trinomials in GF(q)[t] for q = 213 −1.

t13 + t +2 t13 + t +210 t13 + t +219

t13 + t +22 t13 + t +211 t13 + t +220

t13 + t +23 t13 + t +212 t13 + t +221

t13 + t +24 t13 + t +213 t13 + t +222

t13 + t +25 t13 + t +214 t13 + t +223

t13 + t +26 t13 + t +215 t13 + t +224

t13 + t +27 t13 + t +216 t13 + t +225

t13 + t +28 t13 + t +217 t13 + t +226

t13 + t +29 t13 + t +218
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subtract the z0 multiple of F(t) from the partial sum. If f (t) is a random irreducible
polynomial, this multiplication corresponds to a v× v multiplication but with the
special trinomials or binomials this multiplication is performed by simple shifts.

Let f (t) = tm + ω−s0 with an integer s0 be an irreducible binomial, f ′(t) simply
equals f ′(t) = 1 + ωs0tm. If the transform pair of f ′(t) is computed, one gets

F(t) = 1 + ωs0 +(1 + ωs0+m)t + · · ·+(1 + ωs0+m(d−1))td−1.

Hence it is easily seen that the Step 3 of SMP follows

z0 ·Fi = z0(1 + ωs0+mi)
= z0 + z0ωs0+mi

for i = 0,1, . . . ,d − 1. Observe that all the z0ωs0+mi are computed by simple shifts
because ω = 2. Similarly, if f (t) is a trinomial, another shift-add has to be per-
formed.

7.5.3 Parameter Selection for ECC over Extension Fields

Spectral multiplication can be extremely efficient for extension fields having medium
characteristics. By “medium” we mean the typical wordsize of today’s architectures.
For instance, if the field GF(pk) is considered we assume 27 < p < 232.

In the literature, the security of an ECC employment is given according to the
length of the key sizes. These key sizes are determined according to the complexi-
ties of the best-known algorithms known for solving the discrete logarithm problem
in elliptic curve groups over the fields GF(pk). In Table 7.10, we tabulated the pa-
rameter selection of some nice Mersenne and Fermat fields that target some popular
key sizes.

As mentioned in Section 7.4.2, psuedotransforms are also very convenient for
employing spectral algorithms. In this context, if the prime p is chosen to be a

Table 7.10 Parameter Selection for ECC over GF(pk).

Bits GF(pk) DFT Root Wordsize Words

s ·u p d ω v s = k

153 217 −1 17 2 17 9

169 213 −1 26 -2 13 13

190 219 −1 19 2 19 10

256 216 +1 32 2 16 16

289 217 −1 34 -2 17 17

361 219 −1 38 -2 19 19

496 231 −1 31 2 31 16

512 216 +1 64
√

2 16 32

961 231 −1 62 -2 31 31
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Table 7.11 Parameter Selection for ECC over GF(pk) using PNTs.

Bits GF(pk) DFT Root Wordsize Words

s ·u k d ω u s

150 (220 +1)/17 20 4 15 10

170 (219 +1)/3 19 4 17 10

255 (217 +1)/3 34 -2 15 17

323 (219 +1)/3 38 -2 17 19

352 (232 +1)/641 32 4 22 16

464 (231 +1)/3 31 4 29 16

483 (223 +1)/3 46 2 21 23

644 (228 +1)/17 56 2 14 23

899 (231 +1)/3 62 2 29 31

divisor of the psuedo-Mersenne or Fermat number, one gets the parameters in Ta-
ble 7.11 for efficient implementations. Although arithmetic modulo p might be dif-
ficult, the actual computation is carried in the chosen Mersenne or Fermat ring with
a final modulo p reduction.

7.6 Notes

In this chapter new techniques of performing modular multiplication and exponenti-
ation are proposed. Especially, modular exponentiation is one of the most important
arithmetic operations for methods of modern cryptography, such as the RSA and
Diffie-Hellman algorithms. The proposed methods use the Discrete Fourier Trans-
form over finite rings, and relies on new techniques to perform the modular reduc-
tion operation.

The wonders of the convolution property has been known over decades. Obtain-
ing modular arithmetic algorithms fully working in the spectrum would benefit the
convolution property to the maximum extent. For carrying modular arithmetic, one
need obviously has to deal with the concept of modular reduction. In [10] and later
in a more compact text [16], after defining the spectral reduction and related con-
cepts, a spectral reduction algorithm is introduced using the linearity and shifting
property of DFT. Spectral modular multiplication (SMM) and spectral modular ex-
ponentiation (SME) come quite naturally once a reduction is defined.

When it comes to the practicability of the proposed methods, there were many
directions to go because of the richness of the spectral theory. A first experiment
could possibly work in a complex spectrum but, because of massive computations
in the spectrum, the round-off errors could be hard to control (but still an analysis is
needed). Therefore, a smart move is to employ the finite ring spectrums for not ad-
mitting the round-off errors in the computations. Additionally, from a computational
point of view, calculations in some special rings such as Fermat and Mersenne can
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exploit the special arithmetic. In fact, there are excellent references [17], [18], [19]
and [20] demonstrating efficient arithmetic in these rings. Moreover, one can check
[4] for arithmetic in pseudotransform arithmetic.

The ideas utilized for modular operations of large integers are extendable to poly-
nomial rings. The extension to the rings having mid-size characteristic is the easiest
by simply using the underlying ring as the domain of the DFT. In fact, because of
this simplicity, one does not need to worry about the carries or coefficient overflows
and can have a very convenient method for the ring arithmetic. The method is inde-
pendently proposed in [21] and [22]. Later a coprocessor [23] based on the method
is introduced.

On the other hand, because of very short transform lengths (e.g., the ring Z2

allows only a transform two length of) using the spectral methods for binary or
small characteristic ring extensions is a little cumbersome. One way to overcome
this problem is to use some polynomial rings over Zp as the domain of DFT allowing
longer transform lengths [11] because of their larger cardinality.

Because of working in the spectrum, there exists a vast amount of parallelism
potential in computations. Therefore, these methods have the chance of yielding
efficient and highly parallel architectures especially for hardware implementations.
Although we do not discuss implementation aspects in this text, the reader could find
architectures and unit-gate analysis of the described methods in [10], [16], [11], [21]
and [23].

7.7 Exercises

1. What is the maximum DFT lenght that can be defined over the ring Z220+1,
Z231−1 and Z279−1? What will be this maximum if the principle root of unity
is an integer power of two?

2. What are the best pseudotransform rings for Z220+1, Z225−1 and Z239+1 maximiz-
ing the DFT length? What will be these maximum lengths if the principle root of
unity is an integer power of two?

3. What is the maximum modulus size that can be used for SME over the ring
Z220+1? What will be this maximum if the principle root of unity is an integer
power of two?

4. Assume that we want to use SME for an RSA system having a 1100 bits modulus.
What is the smallest Mersenne and Fermat ring for the DFT such that SME works
without overflows, if the principle root of unity is chosen as integer power of two.

5. Calculate c = me (mod n) for m = 2718, e = 53, and n = 3141 using SME over
the ring Z219−1.

6. What is the maximum DFT length (and relative the principal root of unity) that
can be defined over the ring R = Z2[γ]/(g(γ)) where g(γ) = (γ29 + 1), g(γ) =
(γ29 +1)/(γ +1), g(γ) = (γ49 +1) and g(γ) = (γ49 +1)/(γ7 +1)? What will be
this maximum if the principal root of unity is power of γ?
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7. What is the biggest binary field which its arithmetic can be carried using DFT
over the ring R = Z2[γ]/(g(γ)), where g(γ) = (γ19 + 1)/(γ + 1)? What will be
this field if the principal root of unity is a power of γ?

8. In characteristic three rings, DFT also suffers from short lengths. However, spec-
tral methods can be applied similar to binary extensions. What is the maximum
DFT length (and relative the principal root of unity) that can be defined over
the ring R = Z3[γ]/(g(γ)), where g(γ) = (γ23 + 1), g(γ) = (γ23 + 1)/(γ + 1),
g(γ) = (γ31 + 1) and g(γ) = (γ49 − 1)/(γ7 − 1)? What will be this maximum if
the principal root of unity is power of γ?

9. Assume that we want to employ a DFT for arithmetic in GF(pk) What is the max-
imum DFT length that can be defined over the ring Z213+1, Z213−1 and Z279−1?
What will be this maximum if the principal root of unity is an integer power of
two?

10. Let m(t) = 6+3t +2t2 +5t3 ∈ GF(pk) for p = 27 −1 and k = 7. If f (t) = t7 −2
is the defining polynomial for GF(pk) then calculate c(t) = (m(t))e ∈ GF(pk)
for e = 53.

7.8 Projects

1. If the SMP (i.e., Algorithm 7.5.2.1) is considered, notice that our bound analysis
depends heavily on β ·N(t) multiplication of Step 7. In fact, it is possible to
replace this multiplication by a multioperand addition at a cost of some pre-
computations and extra memory.
To be more specific, let b = 2u and ni(t) be the polynomial representation of an
integer multiple of n such that the zeroth coefficient of ni(t) satisfies (ni)0 = 2i−1

for i = 1,2, . . . ,u (note that n(t) = n1(t)). We can now write β ·N(t) as

β ·N(t) =
u

∑
i=1

βi ·Ni(t) , (7.13)

where βi is a binary digit of β and Ni(t) = DFTω
d (ni(t)) for i = 1,2, . . . ,u. Note

that β < b and βi = 0 for i ≥ u.
Plugging the Equation (7.13) into the Algorithm 7.5.2.1 gives a modified spectral
modular product (MSMP) algorithm. Observe the benefit of this approach since
this replacement gives a reasonable amount of radius shrinkage. Calculate the
new bound with respect to this modified algorithm.

2. In many situations it is desirable to break a congruence mod n into a system of
small congruences modulo factors of n. Once necessary computations are per-
formed in the small factor rings, using CRT , the resultant system of congruences
is replaced by a single congruence under certain conditions.
When spectral algorithms are considered, CRT can be used in two different ways.
The first one is for degree that can be adopted from Quisquater and Couvreur [24]
where the second one is for radius that is based on the ideas proposed for integer
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multiplication by J. M. Pollard [25], and independently by A. Schönhage and V.
Strassen [1].
Examine these two utilizations and present algorithms for both methods. Give a
boundary anaylsis for both of the algorithms. Give a parameter selection table
for popular RSA sizes using SMP and MSMP.

3. Note that Mersenne arithmetic corresponds to one’s complement arithmetic
whereas Fermat arithmetic may be implemented in different fashions. Research
on efficient Fermat ring arithmetic ([20] and [17] could be two decent starting
articles), then design parallel and digit serial Mersenne and Fermat multipliers
for Z213−1 and Z224+1 respectively. Plot the relation between the area and digit
size.

4. Consider the Fermat ring Z224+1. If ω = 8 is taken, one gets a DFT having length
16. Calculate the parameters u and b in order to determine the maximum sup-
ported RSA length. Design a hardware architecture for SMP over the Fermat
ring Z224+1.

5. Consider the Mersenne ring Z213−1. If ω = −2 is taken, one gets a DFT having
length 26. Design a an SMP architecture over the ring Z213−1 performing GF(pk)
arithmetic for p = 213 −1, k = 13 and f (t) = t13 −2 is the defining polynomial.
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Chapter 8
Elliptic and Hyperelliptic Curve Cryptography

Nigel Boston and Matthew Darnall

8.1 Introduction

Suppose two parties, Alice (A) and Bob (B), want to send messages between them-
selves without an eavesdropper Eve (E) reading the messages. Private-key (sym-
metric) cryptography relies on establishing a known secret between A and B before
they can communicate. The term symmetric describes the fact that the information
known to A and B is the same, namely the private key. We have seen an example of
a private-key system, advanced eneryption standard (AES), in chapter 1. What if, as
often happens in practice, it is infeasible for A and B to have a prearranged secret?
In the development of cryptography it became apparent that a mechanism for A and
B to agree upon a private key over an insecure channel would be important.

The area of cryptography devoted to the ways Alice and Bob can share informa-
tion without a prearranged secret is called public-key (or asymmetric) cryptography.
The term public key refers to the fact that in all current systems, some public piece
of information is needed for the encryption to occur. Examples of this public infor-
mation are the modulus in the famous RSA algorithm [46] or the group generator
raised to a power for Diffie – Hellman, described later. The term asymmetric means
that the private information known to A and B is different, i.e., A and B each start
with information the other does not know. Public-key cryptography was introduced
to the world at large in the seminal paper [10] of Whitfield Diffie and Martin Hell-
man in 1978, although shortly before then these ideas were known to the researchers
at the British intelligence agency GCHQ∗. Many other methods of public-key cryp-
tography have since been introduced and current research is still searching for better
protocols for the exchange of private keys.
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8.2 Diffie – Hellman Key Exchange

Though it was the first method of public-key cryptography known, the Diffie –
Hellman key exchange protocol is still used widely and makes up the basis for
both elliptic and hyperelliptic curve cryptography. Let G be a finite cyclic group
of order n with generator g. The discrete logarithm problem (DLP) for the group
G is to determine a given ga, where a is a positive integer less than n. The simple
idea observed by these researchers is that, if there is a group where performing the
group operation is computationally easy, but solving the DLP is hard, then a secret
between two parties can be shared. A and B come up with private keys kA and kB re-
spectively – these are positive integers less than n. A publishes gkA and B publishes
gkB . The shared secret between A and B is gkAkB , which A computes as (gkB)kA and
B computes as (gkA)kB . Since Eve apparently cannot get kA or kB without solving a
DLP, obtaining the shared secret is hard. It is widely believed that solving the DLP
is equivalent to determining gkAkB given g,gkA ,gkB , although this is not known.

The groups originally considered for Diffie–Hellman Key Exchange were large
cyclic subgroups of multiplicative groups of finite fields. As seen in Chapter 7, the
multiplication in finite fields can be efficiently computed. Unfortunately, the DLP
in this case can be solved in time subexponential in the size of the group using an
index calculus attack. A result of Victor Shoup [52] says that for an arbitrary group
of order n, computing a discrete log will take

√
p group operations, where p is the

largest prime divisor of n. This result assumes that no structure of the group can
be taken advantage of, so groups attackable only in exponential time should exist.
Currently, the most suitable groups that provide quick encryption and for which only
exponential time attacks are known, come from elliptic and hyperelliptic curves.

8.3 Introduction to Elliptic and Hyperelliptic Curves

Elliptic curves have been studied by mathematicians for centuries. Neal Koblitz and
Victor Miller independently discovered that their rich structure makes them useful
for a wide range of cryptographic applications [26], [38]. This structure can also
lead to several attacks, so care must be taken by any would-be cryptographer.

Let k be a field. An elliptic curve E, over k, is a non-singular projective curve of
genus 1. For an arbitrary field k, E can be thought of as the set of points (X ,Y ) ∈ k2

that satisfy an equation of the form:

Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

where the coeffients ai are in k, together with a “point at infinity,” P∞. We must also
assume that the curve defined by the equation is non-singular, which is equivalent
to having the partial derivatives of the equation never vanish simultaneously. If the
characteristic of k is not 2 or 3, we can perform a change of variables to get an
equation to the form
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Y 2 = X3 + aX + b

Here the non-singular condition just says that the cubic X3 + aX + b must have
distinct roots.

A hyperelliptic curve is a special type of non-singular, projective curve. For our
purposes, a hyperelliptic curve, of genus g ≥ 1 over k is the set of points (X ,Y ) ∈ k2

that satisfy
y2 + h(X)Y = f (X)

where h and f are polynomials in k[X ] with deg( f ) = 2g + 1, deg(h) ≤ g, together
with a point “at infinity”, P∞. An elliptic curve is just a hyperelliptic curve of genus
1.

To understand why there is a point at infinity, notice that the definition of elliptic
or hyperelliptic curves includes the word ‘projective’. We consider the curves as
living in projective space, say with coordinates (X : Y : Z). The point at infinity is
the unique point where the projective curve defined by homogenizing our equation
intersects the line Z = 0. If the reader has no background in projective geometry,
simply think of the point P∞ as a point infinitely far up the Y -axis that ‘compactifies’
the curve.

8.4 The Jacobian of a Curve

A priori, a hyperelliptic curve over a field k, is a set of points in k2 with a spe-
cial point at infinity. A beautiful fact noticed a long time ago by algebraic geome-
ters is that a group can be attached to each curve. These groups are “made up” of
collections of points on the curve and the group law can be performed using only
operations in the field k. For an elliptic curve, the group consists of the points on
the elliptic curve, and the group law can be viewed geometrically. For hyperellip-
tic curves, the group consists of g-tuples of points on the curve. For both kinds of
curves, the DLP is in general very hard to solve.

The group associated to a hyperelliptic curve, C, is a quotient of the larger group
called the degree zero divisor group of C, denoted Div0(C). This group is made up
of elements, D, called divisors, of the form:

D = ∑
P∈C

nPP

where:

1. The formal sum is over points P = (xP,yP) on C with coordinates xP, yP in k̄, an
algebraic closure of k. Here P∞ is included as a point on C.

2. nP is an integer for each P, with all but finitely many nP = 0.
3. If there is an element σ of the Galois group of k̄ over k such that σP :=

(σ(xP),σ(yP)) = (xQ,yQ) = Q, then nQ = nP.
4. deg(D) = ∑P nP = 0.
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For readers unfamiliar with Galois groups, an element σ , of the Galois group of
k̄ over k is an automorphism of k̄ that fixes k. Thus, for any a,b ∈ k̄, we have
σ(a + b) = σ(a)+ σ(b) and σ(ab) = σ(a)σ(b). We also have that σk = k for any
k ∈ k.

We add two divisors by adding the coefficients corresponding to each point:

∑
P

mPP+∑
P

nPP = ∑
P

(mP + nP)P

Notice that the new divisor still satisfies the conditions above.

8.4.1 The Principal Subgroup and Jac(C)

Let F(X ,Y ) = Y 2 + h(X)Y − f (X) be the polynomial defining the curve C. Let
p(X ,Y ) ∈ k[X ,Y ] be a polynomial in X and Y with coefficients in k that is not divis-
ible by F . We shall get a divisor, div(p) ∈ Div0(C) from this polynomial. For every
point P = (xP,yP), we define ordp(P) to be the order at which p vanishes at P. This
order has a rigorous definition that is beyond the scope of the book. Loosely speak-
ing, at each point P, we can define something analogous to the Taylor expansion of
the function p on C. The order, ordP(p), at which p vanishes at P is then the smallest
exponent in the ‘Taylor expansion’ with a nonzero coefficient. Thus, ordP(p) = 0 if
and only if p(xP,yP) �= 0. The order of a function can also be computed at P∞, and
in fact ordP∞(p) is the unique integer such that ∑P∈C ordP(p) = 0.

Definition 8.1. The divisor div(p) associated to a polynomial p(X ,Y ), p not divisi-
ble by F , is:

∑
P

ordp(P)P

This divisor satisfies the conditions above to be an element of Div0(C).

We call a divisor principal if it can be written as div(p)− div(q) for two poly-
nomials p,q as above. The set of principal divisors forms a subgroup of Div0(C),
denoted Prin(C).

Definition 8.2. The quotient group Div0(C)/Prin(C), is called the Jacobian of C
and is denoted Jac(C).

If k is a finite field, as it will be for our purposes, then Jac(C) is finite. It is this
group that we use for our Diffie – Hellman key exchange.

8.5 Computing on Jac(C)

By the celebrated theorem of Riemann-Roch, which is beyond the scope of this
book, we know a lot about the structure of Jac(C). Namely, if C has genus g, every
element of Div0(C) is equivalent in Jac(C) to exaclty one divisor of the form:
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m

∑
i=1

Pi −mP∞

where Pi = (xi,yi), m ≤ g, and Pi �= (x j,−y j −h(x j)) = −Pj for i �= j. When m = 0,
we get the identity element of the group, the divisor with all coefficients equal to
zero. Divisors of the above form are called reduced divisors. This gives us a method
for representing points in Jac(C) as unordered g-tuples of points on the curve over
k̄. The condition that nP = nQ for Galois conjugates P and Q ensures that every
point occurring in a reduced divisor of Jac(C) has coordinates in at most a degree
g extension of k. Thus, when g = 1 and we have an elliptic curve E , then the group
Jac(E) consists of the points on the curve E over k.

It is easy to see that, if we add two reduced divisors D1 and D2 in the fashion
described above, we are not guaranteed that the new divisor D1 +D2 will be reduced.
We need a method for finding the unique reduced divisor corresponding to D1 +D2.
To do this, we use a different representation for a divisor than the one given above.
As before, let Y 2 + h(X)Y = f (X) be the defining equation for C.

Definition 8.3. The Mumford representation of a reduced divisor ∑m
i=1 Pi −mP∞,

Pi = (xi,yi) is the unique pair of polynomials [u(x),v(x)] in k[x] that satisfy the
following:

1. u(x) = ∏m
i=1(x− xi).

2. deg(v) < deg(u) = m.
3. v(xi) = yi.
4. u(x) divides v(x)2 + h(x)v(x)− f (x).

The fact that the Mumford representation is unique follows from the fact that the
m coefficients defining v can be determined uniquely by conditions 3 and 4. When
m = 0, we have the identity element, and the Mumford representation is [1,0]. Also
every pair of polynomials [u(x),v(x)] in k[x] satisfying

1. deg(u)≤ g and deg(v) < deg(u),
2. u(x) divides v(x)2 + h(x)v(x)− f (x),
3. u(x) is monic,

corresponds to a unique reduced divisor D. If u(x) = ∏m
i=1(x− xi), then the points

that make up D are Pi = (xi,v(xi)). Condition 2 will guarantee that that these points
are on the curve C.

The benefit of using the Mumford represention for reduced divisors is the fol-
lowing algorithm for computing the sum of two reduced divisors. The algorithm is
originally due to Cantor [5] for h(X) = 0, and in its most general form it is due to
Koblitz [27]. The proof of the correctness of the algorithm, which we do not cover,
can be found in [36].
Algorithm
Input: Two reduced divisors D1 = [u1,v1] and D2 = [u2,v2] given in Mumford rep-
resentation.
Output: A reduced divisor D = [u,v] in Mumford representation that satisfies D =
D1 + D2 in Jac(C).
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1. d1 ← gcd(u1,u2) = e1u1 + e2u2

2. d ← gcd(d1,v1 + v2 + h) = c1d1 + c2(v1 + v2 + h)
3. s1 ← c1e1, s2 ← c1e2, s3 ← c2

4. u ← (u1u2)/d2

5. v ← (s1u1v2 + s2u2v1 + s3(v1v2 + f ))/d mod u
6. DO
7. u′ ← ( f − v f − v2)/u
8. v′ ← (−h− v) mod u′

9. u ← u′ and v ← v′

10. WHILE deg(u)≤ g
11. make u monic by dividing by the leading coefficient
12. return [u,v]

A key fact to notice is that all the operations involved in adding the two reduced
divisors can be reduced to multiplication, division and addition of polynomials in
k[x]. Thus, using the techniques for finite field arithmetic given in the previous chap-
ters, we can perform the group operations on Jac(C) quickly. Cantor’s algorithm
given above is completely general; it works for any hyperelliptic curve over any
field. In a practical implementation, properties of the curve and field are used to
speed up the algorithm.

8.6 Group Law for Elliptic Curves

Computations in the Jacobian of an arbitrary hyperelliptic curve can be complicated.
In this section, we give a simple geometric interpretation of the group law for elliptic
curves. We give explicit algorithms for adding two points on an elliptic curve. The
following chapter covers the various speedups and optimizations in more detail. The
reader interested in implementation specifics should consult that chapter.

Let E be an elliptic curve over a field k. We assume that the field k has charac-
teristic not equal to 2 or 3, so that we can make a change of coordinates to make the
defining equation for E of the form

Y 2 = X3 + aX + b

with a, b ∈ k. Elliptic curves over characteristic two fields are important for crypto-
graphic uses, but for the geometric description of the group law it is easier to assume
char(k) > 3.

The map that sends a point P to the reduced divisor P−P∞ is a bijection between
the points on E and Jac(E), the Jacobian of E . We use this bijection and the defi-
nition of Jac(E) to give a geometric meaning to the sum of two points. Recall that
two divisors D1 and D2 are equivalent if D1 = D2 +div( f )−div(g), where f and g
are polynomials in k[X ,Y ] not divisible by Y 2 −X3 −aX −b.

For two constants m, c ∈ k, consider the line Y = mX + c in the same plane as
the elliptic curve E . By Bezout’s theorem, we know that the line intersects E in
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exactly three points, if we count the points with appropriate multiplicity. So the
function f (X ,Y ) = Y −mX −c has three (not necessarily unique) points on E where
it vanishes. We can then write the divisor of f as

div( f ) = P1 + P2 + P3−3P∞

where P1, P2 and P3 are the three (not necessarily unique) points where the line
intersects E . The three points can be non-unique in only certain examples, such as
when the line lies tangential to the curve E . In this case, the line intersects the curve
E in only two actual points, though the tangential point has multiplicity 2. In analogy
with the Taylor series, this is because at the tangential point, f and Y 2−X3−aX−b
not only have the same value, they also have the same first derivative.

Since P1 + P2 + P3 − 3P∞ = (P1 −P∞)+ (P2 −P∞)+ (P3 −P∞) is the divisor of
a function, it represents the identity in the group Jac(E). Using the given bijection
with E , we see that

Lemma 8.1. The sum of two points P1 and P2 on E is equal to −P3, where P3 is the
unique other point on E that intersects the line through P1 and P2.

The question remains of what −P3 means, i.e., what is the inverse of a point on
E? We first notice that our bijection with Jac(E) sends P∞ to the divisor P∞ −P∞,
which is the identity of Jac(E). Thus, P∞ is the identity of E . Now, let P = (xP,yP)
be a point on E . Consider the function X − xP. This function intersects the curve E
at the points P = (xP,yP), Q = (xP,−yP), and P∞. The first two interesect points are
easy to see, the last one follows from looking at the projectivization of the curve and
the line. Thus, in Jac(E), the divisor P + Q− 2P∞ equals the identity, so Q = −P
on E .

The work above gives us the following algorithm for adding two points, P1 and
P2. We simply take the unique line through P1 and P2, find the unique other point,
(x,y), that is on the elliptic curve and the line, and return P = (x,−y). Remember
that if P1 = P2, the line through the point should have the same slope as the defining
equation for E .
Algorithm
Input: Two points P1 = (x1,y1) and P2 = (x2,y2) on the curve E defined by Y 2 =
X3 + aX + b.
Output: The point P = (x,y) = P1 + P2.

1. IF P1 or P2 = P∞ THEN P ← P2 or P1.
2. IF P1 = P2

3. IF y1 = 0 THEN P ← P∞
4. λ ← (3x2

1 + a)/2y1

5. x ← λ 2 −2x1

6. y ← λ (x1 − x3)− y1

7. IF P1 �= P2

8. λ ← (y1 − y2)/(x2 − x1)
9. x ← λ 2 − x1 − x2

10. y ← λ (x1 − x3)− y1
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8.7 Techniques for Computations in Hyperelliptic Curves

Optimization of hyperelliptic curve arithmetic is a current area of research with
several papers appearing each year in the top cryptography conferences. This section
gives a brief survey of the techniques and ideas behind them. The reader interested in
implementing one of the methods should consult the references given. As the genus
gets larger, the computational costs rise significantly. This computational cost, as
well as the existence of subexponential time index calculus attacks on high genus
hyperelliptic curves, makes low genus curves the most practical for cryptography.

8.7.1 Explicit Formulae

As we showed with elliptic curves, the group law can be implemented using only
additions, multiplications and inversions in the base field, k. To improve the run-
time of Cantor’s algorithm, it helps one to have exact formulae for the computations
in Cantor’s algorithm, i.e., a description of the algorithm in terms of only addi-
tions, multiplications and inversions in k. Explicit formulae have been completed
for genus 2, 3 and 4 hyperelliptic curves. In genus 2 , the first work was done by
[57], though improved methods have been found by Harley [22], Lange [29], Mat-
suo, Chao and Tsujii [34], Takahashi [58], and many others. In genus 3, Pelzl
et al. [41] generalized work by Kuroki et al. [28] to give the first explicit formulae
that work in all positive characteristic. The paper [41] also gives improvements on
implementations of genus 2 hyperelliptic curves. A full description of genus 3 for-
mulae can be found in Wollinger’s PhD thesis [62]. For genus 4, Pelzl, Wollinger,
and Paar gave the first explicit formulae in [42]. Their computations show that genus
4 arithmetic can compete with lower genus curves as far as computation costs are
concerned.

8.7.2 Projective Coordinates

The operation of inverting elements in a finite field is much more costly than addi-
tion or multiplication. This has initiated research into finding ways to trade inver-
sions for extra multiplications, additions, and storage in elliptic and hyperelliptic
curve cryptography. If we wanted to compute nP for some element P ∈ Jac(C)
and n ∈ Z using the standard double-and-add method, we would be forced to use
O(logn) inversions. By introducing another variable, Z, it is possible to delay per-
forming inversions until the last step of the algorithm. For elliptic curves, this extra
coordinate Z is equivalent to storing the point in projective coordinates. For higher
genus this is no longer the case, but we still call these coordinates projective, due to
the similarity with elliptic curves. Projective coordinates for elliptic curves will be
covered in the following chapter of this book. Miyamoto et al. [39] first described
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an algorithm for projective coordinates on genus 2 curves. This work has been im-
proved by Lange [31] and others. Projective coordinates have also been described
by Fan, Wollinger, and Wang [13] for genus 3 curves.

8.7.3 Other Optimization Techniques

Due to the rich structure of hyperelliptic curves, many other techniques exist for per-
forming the group operation. Lange [30], has expanded upon projective coordinates
for genus 2 curves in characteristic 2 to give better results. This work introduces sev-
eral new variables to save on inversions, combining them to also save on other costs.
Using special curves can also give remarkable speedups. Certain elliptic curves can
be transferred to the Montgomery form, which aids considerably in computations.
Gaudry has given a similar form for certain hyperelliptic curves in [19]. In Ref. [2]
Bernstein and Lange showed that genus 2 hyperelliptic curves in Gaudry form can
even outperform elliptic curves. The fact that hyperelliptic curves need smaller fields
to obtain cryptographically secure group sizes is what potentially gives hyperelliptic
curves the edge over elliptic curves. Koblitz curves provide another useful way of
saving on implementation costs. A nice description of this theory for hyperelliptic
curves can be found in [32], while the original idea can be found in Koblitz’s work
[27]. Additional methods for implementing the hyperelliptic curves will continue
to be developed as cryptography in smaller, resource-constrained environments be-
comes necessary.

8.8 Counting Points on Jac(C)

In this section, we introduce methods for counting how many points there are on a
given (hyper)elliptic curve over k = Fq. We begin with Schoof’s method [50] for
elliptic curves, which reduces the time taken from O(q1/4+ε) to O(log8(q)). Refine-
ments of this due to Elkies and Atkin [11], [1] reduce this further to O(log6(q)).

Let E be an elliptic curve defined over Fq. By Hasse’s theorem [53], the number
of points n on it is q + 1− t, where |t| ≤ 2

√
q. Define �0 to be the smallest prime

such that

∏� > 4
√

q

where the product is over primes≤ �0. Schoof’s idea is to find t (mod �) for all these
primes, in which case the Chinese remainder theorem determines t (mod ∏)� and
so t (and hence n) exactly, since ∏� is larger than the range t is confined to. By the
Prime Number theorem, �0 = O(log(q)).

If � = 2, n ≡ 1 (mod 2) if and only if E has no point of order 2, which is easy to
check. For example, if the curve has equation Y 2 = f (X), then the points of order 2
correspond to roots of f , so n ≡ 1 (mod 2) if and only if f is irreducible over Fq,
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which happens if and only if gcd( f (X),Xq −X) = 1. Likewise, for each �, there is
a polynomial f�(X) whose roots are the X-coordinates of points of order �.

Suppose � > 2. We consider the Frobenius mapping φ on the points of E over k̄
defined by φ(x,y) = (xq,yq) and sending P∞ to itself. The proof of Hasse’s theorem
establishes that

φ2(P)− tφ(P)+ qP = P∞

Let q� = q (mod �) and t� = t (mod �). For each τ ∈ {0,1, ..., �−1}, we compute
the x-coordinates of both (xq2

,yq2
)+ q� and τ(xq,yq). Thanks to f�, these are both

rational functions of x and y. Clearing denominators and using the equation of the
curve to eliminate any nonlinear powers of y yields an equation of the form a(x)−
yb(x) = 0. Substituting this into the curve equation produces a polynomial equation
h just in x. Since we are seeking a point of order �, all these calculations, so in
particular h, can be taken (mod f )�, which has degree O(�2).

To check if h has a solution that is a point of order �, gcd(h, f�) is computed.
Only if it is nontrivial do we get a viable value of τ , i.e., τ = ±t�. Either sign is
possible since the x-coordinates are the same. A similar analysis of the y-coordinates
determines which. This also means that τ only need run as far as (�− 1)/2. Most
of the work is in computing xq,yq,xq2

,yq2
(mod f�) and, since f� is O(�2) and � is

O(log(q)), the complexity is polynomial in log(q), namely O(log8(q)).
When t2−4q is a square (mod �), the Frobenius map has an eigenvalue in F�, in

which case a factor of degree (�−1)/2 of f� can be used, as noted by Elkies. Atkin
found a similar method in the case that t2−4q is not a square (mod �), and together
these yield the SEA (Schoof–Elkies–Atkin) algorithm with complexity O(log6(q)).

Now, let C be a hyperelliptic curve of genus g defined over Fq. The theory of zeta
functions tells us that there exist g complex numbers α1, ...,αg with absolute value√

q such that, if Nr is the number of points on C(Fqr , then

Nr = qr + 1−αr
1 −α1

r − ...−αr
g −αg

r

Note that when g = 1 and t = α1 + α1, we get Hasse’s inequality.
In general, N1, ...,Ng determine α1, ...,αg (and so Nr for all r). They also deter-

mine the order of the group Jac(C), which turns out to be ∏g
1(1−αi)(1−αi) =

∏g
1(1 + q−αi−αi).
Over finite fields with small characteristic, Satoh’s p-adic approach [48] is

asymptotically faster than the SEA algorithm. It was extended to Characteristic 2 by
Skjernaa [55] and Fouquet, Gaudry, and Harley [14] with a memory-efficient ver-
sion introduced by Vercauteren [61]. Mestre’s AGM (arithmetic-geometric mean)
method [37] gave the same asymptotic behavior but with a better constant, while
Satoh, Skjernaa, and Taguchi [49] gave a quicker method if one allows precompu-
tations.

As regards higher genus curves, Pila [43] gave an impractical generalization
of Schoof’s algorithm. Satoh’s approach does not work well since the Serre–Tate
canonical lift of the Jacobian need not be a Jacobian. Mestre’s AGM method is only
practical in genus ≤ 2.
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This led to the introduction of new techniques. Kedlaya [25] used Washnitzer–
Monsky cohomology to count points in small, odd characteristic in time

O(g4+ε log3+ε(q)) .

This was extended to characteristic 2 by Denef and Vercauteren [7] and Ver-
cauteren [60]. Using Dwork cohomology, Lauder and Wan [33] produced a prac-
tical method to count points on Artin–Schreier curves. Both these approaches take
(g5+ε log3+ε(q)) time.

8.9 Attacks

Having introduced elliptic and hyperelliptic curve cryptography, we now consider
potential vulnerabilities of these systems. Over time, researchers have discovered
several possible attacks on ECC and HCC that someone looking to implement these
systems should be aware of. Avoiding them informs our choice of suitable (hy-
per)elliptic curve. In general, Shanks’ baby-step giant-step method and Pollard’s
methods (see Sections 9.1 and 9.2) improve on sheer brute force attack by exploit-
ing an idea called the birthday attack to solve discrete logarithm problems in any
abelian group. These take on the order of

√
n operations, where n is the size of

the group (so about qg/2 in the case of a curve of genus g over Fq). Certain (hy-
per)elliptic curves are vulnerable to other methods, described later in this section,
and any user of ECC or HCC should avoid this choice of curve.

8.9.1 Baby-Step Giant-Step Attack

Shanks’ baby-step giant-step algorithm [3] works for any abelian group G. Let us
assume G has prime order n (as is recommended by the results in the next subsec-
tion) and that we wish to solve the discrete logarithm problem Q = mP for m. Write
m = a�

√
n�+ b with 0 ≤ a,b < �

√
n�. Then Q− bP = a�

√
n�P. We make a table

of baby steps Q−bP,b = 0,1, ...,�
√

n�−1, and we then start computing giant steps
a�√n�P,a = 0,1, ...,�√n�−1. Once we find a point that also occurred in one of our
baby-step tables, we have found a,b and so have solved the DLP.

It should be noted that an exact value for n is not needed, just an upper bound –
in fact the method can be adapted to yield n assuming G is cyclic [12]. A drawback
of the baby-step giant-step method is the large amount of memory required if n is
large (about

√
n entries of length logn).

8.9.2 Pollard Rho and Lambda Attacks

Pollard’s rho method [45] avoids this by employing a single random walk that
eventually self-intersects solving the problem (and that looks like the Greek letter
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rho). Pollard’s lambda method (or tame kangaroo/wild kangaroo method) uses two
random walks, the goal again being to find a collision, but this time with the tame
kangaroo laying traps for the wild kangaroo (so that they produce the Greek letter
lambda). Various authors [4], [59] have experimented with the parameters of this
method. In particular, van Oorschot and Wiener [40] provide a significant speedup
by using several kangaroos in parallel.

The main idea is as follows. Let P,Q be points in G, an abelian group of order n,
such that Q = mP. Let f : G → {1, ...,s} be a function equidistributed in the sense
that

s

∑
i=1

|| {g ∈ G : f (g) = i} | −n/s |= O(
√

n)

Given a starting point g0 ∈ G, we define a random walk gk = F(gk−1), where F(g) =
g + Mf (g). Here Mi = aiP + biQ for i = 1, ...,s is a set of multipliers. Teske [59]
found that s approximately 20 worked best. You set off two kangaroos performing
these jumps.

Applying this to two kangaroos, you reach a collision so that xi1P+xi2Q = y j1P+
y j2Q, so that (xi1−y j1)P = (y j2−xi2)Q = (y j2−xi2)mP. Since gcd(xi1−y j1,n)= 1,
this can then be solved for m.

8.9.3 Pohlig–Hellman Attack

The Pohlig–Hellman algorithm [44] reduces the discrete logarithm problem in any
abelian group to a subgroup of prime order. Thus, the order of the group we choose
(the number of points on the elliptic curve or Jacobian of the hyperelliptic curve)
should have a very large prime divisor and we will take our generating point P to be
of that order.

To see this, suppose that the order of the group n = ∏r
i=1 pki

i and that we wish to

solve the problem Q = mP for m. Letting n′ = n/pk1
1 and m1 = m (mod p1), we can

solve Q′ = n′Q = m1P′ where P′ = n′P is a point of prime order p1 to get m1. Then
mi = (mod pi

1), i = 2,3, ... are successively computed as follows. Say mi is known
and m = mi + cpi

1. Then we know Q−miP = cpi
1P = cR and R, which has order

ni = n/pi
1. So c (mod p1) is found and we have mi+1. Once m (mod pki

i ) is known
for all i, the Chinese remainder theorem determines m.

8.9.4 Menezes–Okamoto–Vanstone Attack

The Menezes–Okamato–Vanstone (MOV) attack [35] uses the Weil pairing to em-
bed the group of points on an elliptic curve over Fq in the multiplicative group of
a larger finite field. If this finite field is only a small degree extension of Fq, then
we will be vulnerable to index calculus or number field sieve attacks on the discrete
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logarithm problem in the multiplicative group of the extension field. This happens
in particular with supersingular elliptic curves, where the degree is at the most 6.
These curves were favored because addition in them involves fewer operations, but
now should be avoided. For supersingular hyperelliptic curves of genus 2, the ex-
tension degree is at the most 30 [18].

The way the MOV attack works is as follows. Suppose we wish to solve Q = mP
for m, where because of the Pohlig–Hellman attack we are assuming P has prime
order n. Let e be the smallest positive integer such that qe ≡ 1 (mod n). This ensures
that Fqe contains primitive nth roots of 1. For supersingular curves, Menezes [35]
showed with case-by-case consideration that e ≤ 6. Curves of trace 2 are also bad
since n = q + 1−2 = q−1 and so e = 1.

Say e > 1. The Weil pairing is a pairing

E(Fqe)/nE(Fqe)×E[n]→ F∗
qe/(F∗

qe)n

This injects < P > into a subgroup of F∗
qe/(F∗

qe)n and so maps the discrete log-
arithm problem over to the multiplicative group of a finite field, where subexpo-
nential methods can be used if e is reasonably small. This includes index calculus
methods where a set of elements is chosen to act as a factor base. Enge [12] has a
form of index calculus for attacking elliptic curve cryptosystems directly, but these
are ineffective for large field sizes. The case e = 1 is similar but runs into a small
technicality involving non-degeneracy of the Weil pairing [3]. Frey and Rück [16]
introduced a similar method that uses the Tate pairing.

8.9.5 Semaev, Satoh-Araki, Smart Attack

An anomalous elliptic curve is one with exactly q points. The Semaev, Satoh-Araki,
and Smart attack [51], [47], [56] maps the group to the additive group of Fq,
yielding a polynomial-time attack (the other attacks listed here are at best subex-
ponential). The main idea is as follows. Suppose we wish to solve Q = mP in the
elliptic curve E over Fq. There is a unique smallest complete local ring of charac-
teristic zero, Zq, the q-adic integers, and by Hensel’s lemma we can lift P and Q to
points defined over Zq, say P̃ and Q̃. Then qE(Zq)/q2E(Zq)∼= Fq and denoting this
map by log we have that log(qP̃) = m log(qQ̃). Then solving the discrete logarithm
problem in the additive group of a field is trivial, using Euclid to invert log(qQ̃).

8.9.6 Attacks employing Weil descent

More recently, Weil descent has been used for some special finite fields. In 2000,
Gaudry, Hess, and Smart [20], extending the work of Frey [15] and Galbraith [17],
showed how to reduce a discrete logarithm problem in E(Fqe) to a discrete logarithm
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problem in Jac(C)(Fq) where C is a hyperelliptic curve. The idea is to use the Weil
restriction of E , which is an e-dimensional abelian variety over Fq, and intersect it
with e− 1 hyperplanes to obtain C. For example, if q = 231 and e = 5, we obtain
a curve C of genus at most 16, so it is possible to attack many elliptic curves over
2155 this way. The GHS attack has yet to be shown to be effective in practice – in
particular none of the ten elliptic curves in the standards is vulnerable to it. Thanks
to the work of Gaudry, and later Diem [8], elliptic curves over fields Fpn , where
both p and n are large, are vulnerable to this method. Diem and Thomé [9] have
also introduced an index calculus method for non-hyperelliptic curves of genus 3.

8.10 Good Curves

Putting together the attacks from the previous section leads to design criteria for
the underlying elliptic or hyperelliptic curve. To set up an ECC, we should use an
elliptic curve over Fq and a subgroup of order n where:

(i) n should be prime (Pohlig-Hellman);
(ii) q should be of the order of 1000 bits to be truly considered secure, but in practice

160 bits is considered equivalent to about 1024-bit RSA and 190 bits to 2048-bit
RSA. Thanks to baby-step giant-step and Pollard’s methods, these are considered
equivalent to 80-bit and 95-bit symmetric cryptosystems respectively;

(iii) the curve should not be anomalous, so n should not equal q (Semaev, Satoh-
Araki, Smart);

(iv) the smallest positive integer e such that qe ≡ 1 (mod n) should be large so the
curve should not be of trace zero or two nor supersingular (Menezes–Okamoto–
Vanstone);

(v) certain ground fields, e.g., F2155 , should be avoided (Weil descent).

The standards provide suitable curves. For example, FIPS 186-2 lists 10 fields
and methods to choose elliptic curves that will produce secure cryptosystems.

8.11 Exercises

1. Prove that for an elliptic curve, the “chord and tangent” addition rule described
in Section 8.6 is the same as the one given in Cantor’s algorithm.

2. If the characteristic of k is not 2, show that any hyperelliptic curve C1 with equa-
tion:

Y 2 + h1(X)Y = f1(X)

is isomorphic to a hyperelliptic curve C2 with equation:

Y 2 = f2(X)

An isomorphism between hyperelliptc curves is a linear map (X ,Y ) → (aX +
bY,cX + dY) such that the points on C1 are mapped to the points on C2.
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3. Let E be the elliptic curve y2 = x3 +81x+103 defined over F1013. Show that it has
962 points. Since 962 factors as 2×13×37, you can use Pohlig–Hellman to solve
the following discrete logarithm problem. Let P = (1,728) and Q = (769,175).
Find an integer m such that Q = mP.

4. Let E be the same elliptic curve as in Question 3. Find the smallest positive inte-
ger e (embedding degree) such that with q = 1013 and n = 962, qe ≡ 1 (mod n).
Convert the discrete logarithm problem of question 1 into one in Fqe and estimate
how long it will take to solve using index calculus methods.

5. Let E be the elliptic curve y2 = x3 + 141x + 30 defined over F1013. Show that
this curve is anomalous. Construct an explicit isomorphism between this and the
additive group of F1013. Using this, if P = (1,292) and Q = (316,412), find an
integer m such that Q = mP.

6. Suppose E is an elliptic curve with equation y2 = x3 +ax over prime field Fp with
p ≡ 3 (mod 4). Show that it has exactly p + 1 points. [Hint: how many points
do x and −x together contribute?]. What is the embedding degree? Show how
one can map arbitrary ID-strings to points on E(Fp) (so that it can be used in
identity-based cryptography).

8.12 Projects

1. To show why Elliptic Curve Cryptography has had such an impact, implement
both ECC and RSA and compare their timings. For details on RSA, consult [46].
Remember that for similar security, a key size of 160 bits in ECC is equivalent
to 1024-bit RSA. Thus, even if the speed of RSA is better, transmission and
storage costs for ECC are lower. For previous results on RSA vs ECC for 8-bit
processors, see [21].

2. Consider the curve x2 + y2 = a2(1 + x2y2), where a5 �= a. Show that this de-
fines an elliptic curve and that every elliptic curve is, possibly over an exten-
sion field, isomorphic to such a curve. Figure out explicit rules for addition and
point-doubling. A very recent article by Harold Edwards in the Bulletin of the
AMS (July 2007) carries out these calculations and more. Bernstein and Lange
have suggested that this form could be very good for ECC, ensuring it is better
than genus 2 HCC. Test out this claim in practical implementations, comparing
this ECC with state-of-the-art HCC as found in papers on Gaudry’s and Lange’s
websites.
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Chapter 9
Instruction Set Extensions
for Cryptographic Applications

Sandro Bartolini, Roberto Giorgi, and Enrico Martinelli

9.1 Introduction

Instruction-set extension (ISE) has been widely studied as a means toimprove
the performance of microprocessor devices running cryptographic applications. It
consists, essentially, in endowing an existing processor with a set of additional in-
structions that can be useful for speeding up specific cryptographic computations.
Recently, researchers became aware of the following: “The efficiency of an imple-
mentation algorithm often depends heavily on the details of the target platform, e.g.,
on the instruction set or the pipeline of a processor. Hence, theoretical complexity
measures, such as the bit complexity, can be misleading in practice” ([47]).

In this chapter, we will analyze the implications of designing and deploying an
ISE for a microprocessor. We will give details on existing research proposals for
various cryptographic applications, highlighting the associated benefits and limita-
tions, and we will show the ISEs that are available in some market products and are
proposed in research studies.

9.1.1 Instruction Set Architecture

Instruction-set extension can be better understood only after having a clear idea of
what an instruction-set is. At the higher level, an instruction-set (or instruction-set
architecture – ISA) can be defined as the pool of instructions made available by a
processor to the assembler programmer, or to the compiler.

In this sense, the ISA defines a significant quote of the programming interface of
the processor: the basic operations that the outside world can ask the processor to
do. The whole programming interface of a processor is surely wider than the sole
ISA and, in brief, it encompasses also the structure and features of the processor
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registers, the organization of the memory space, as it is perceived by the programmer
(e.g., virtual memory, permissions), and the features of the I/O (input/output) space.
All this information is needed to take full advantage from the features exposed by a
microprocessor.

Anyway, instructions cannot be arbitrarily complex: a trade-off has to be done
in order to have fast circuits behind the implementation, and the RISC approach
(simple, modular, efficient instructions, e.g., MIPS, SPARC, PowerPC) versus the
CISC approach (many powerful instructions, e.g. Intel x86) has characterized the
main microprocessors on the market.

For instance, we will briefly outline some of the features of the ISA of Intel�

processors and its evolution through specific extensions during the years.
The base ISA of the Intel Pentium-4 class processors [31] is almost the same

since the old 386-class processor and is named x86 instruction set. It comprises
hundreds of instructions, operating on eight 32-bit general-purpose registers. They
can be seen also as the sole 16-bit lower part and four of them even allow using
their 16-bit lower part as two 8-bit registers (e.g., AH and AL are 8-bit registers
that, together, form the AX 16-bit register, which is the lower part of the 32-bit reg-
ister EAX). Specific instructions for integer arithmetic, bitwise operations, move-
ment among registers, and between registers and memory or I/O space can use
8-, 16-, or 32-bit registers. Other instructions manage the program control flow
at various levels: jumps, calls and loops, up to interrupt service routine manage-
ment. This 32-bit ISA has been extended to a 64-bit backward compatible ISA
(x86-64) in 2004, after that a similar proposal was done in 2002 by AMD. This
extension was motivated by the need to access wide memory regions (i.e., be-
yond 2–4 GB, according to the available operating system) easily, and to support
an increased word-level parallelism which was needed by a number of high-end
applications.

Since some versions of the 486 model, the processor was extended to natively
support floating-point operations, without the need of an external coprocessor. In
this way, the programmer sees some additional configuration registers and eight
80-bit registers for working on floating-point operands. Specific instructions move
the operands to/from the floating-point register set and trigger floating-point com-
putations. Specific circuits implement the register file and the operations that are
performed upon instruction execution.

Another class of extensions have been proposed, in steps, for vector-like opera-
tions which are motivated by the need of supporting efficiently a variety of multi-
media applications such as 2-D and 3-D graphics, motion video, image processing,
speech recognition, audio synthesis, telephony, and video conferencing. Beginning
with the Pentium II and Pentium with Intel MMX technology processor families,
a number of incremental extensions have been introduced into the IA-32 architec-
ture to permit IA-32 processors to perform single-instruction multiple-data (SIMD)
operations. These extensions include the MMX technology, SSE, SSE2, SSE3, and
SSE4 extensions. Each of these extensions provides a group of instructions that per-
form SIMD operations on packed integer and/or packed floating-point data elements
contained in specific registers (64-bit MMX or 128-bit XMM registers).
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Multimedia extension allows the programmer to see eight 64-bit registers which
can be used as groups of eight packed bytes, four packed 16-bit words, or two
packed 32-bit doublewords. In this way, specific instructions can operate on such
vector-like operands more efficiently (e.g., parallel saturating addition on all packed
elements) and other instructions are provided for loading/storing values from/to
MMX registers. Architecturally, specific circuits for parallel elaboration of SIMD
operations are added to the processor, while the MMX register file is shared with the
floating-point unit. In this way, no additional storage for MMX registers was needed
but, as a drawback, great attention has to be taken when using in the same time both
floating-point and MMX instructions.

The SSE extension introduces a separate set of eight 128-bit registers (XMM)
for SIMD operations, which are intended to support floating-point SIMD operations
too. With a dedicated register file, the conflicts with other internal resources, as in
the case of the floating-point register file used by MMX, are reduced. In particular,
each XMM register can be seen by the programmer as four 32-bit single-precision
floating-point values. The SIMD operations on such values can help in supporting
advanced media and communications applications, for which MMX integer/fixed-
point SIMD operations are limiting. Move and conversion instructions too are pro-
vided for the interaction of XMM registers with memory, MMX and general-purpose
registers.

The SSE2 extension increases flexibility in using XMM registers as additional
floating-point packed values, and introduces the support for packed integers too. In
fact, each XMM register can be used also as two packed 64-bit double-precision
floating-point values, 16 packed bytes, eight packed 16-bit words, four packed 32-
bit doublewords, and two packed 64-bit quadwords. Operations on packed integers
into SSE registers allow double parallelism than using MMX and avoid conflicts
with the floating-point unit. Additional instructions are provided to operate on this
variety of operand types.

The SSE3 extension enhances the previous instruction set with only 13 instruc-
tions that accelerate some SSE, SSE2, and floating-point capabilities. For instance,
an optimized floating-point to integer conversion instruction is provided, as well
as an unaligned 128-bit load instruction for integer operands, and additional SIMD
operations. This highlights the importance of easying the interaction between the
existing processor data formats (e.g., integers and float values) and hardware mod-
ules from one side, and the extended circuitry (e.g., registers) and operands (e.g.,
float or integer packed values) on the other side, in order to boost programmability
and performance.

The SSE4 [32] extension was recently proposed with the Intel� CoreTM pro-
cessor family and further improves SSE capabilities. Essentially, it improves the
flexibility of SSE in supporting compiler vectorization and significantly increases
the available packed doubleword computations.

This brief story of ISA extensions in Intel� processors highlights that the study
of the interaction between special hardware resources (e.g., registers, circuits) and
the set of available instructions is crucial for accelerating specific computations and
thus for the final performance of an ISA extension.
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It is very interesting to highlight here the implications of ISA extensions towards
an operating system (OS). This occurs mainly when an OS, even minimal, is em-
ployed to enable multiprogramming through processor virtualization. In fact, in a
multiprogrammed system, the physical processor is assigned by the OS to the dif-
ferent processes (i.e., running programs) that are contemporarily in execution so that
each one is able to execute, even if in an intermittent fashion. The OS switches the
process–processor association according to the time spent by the running process
(e.g., round-robin) or when the latter blocks(e.g., wait for an external event). When
a process P1 leaves the processor to the next process P2 (i.e., a context switch hap-
pens), the complete processor state has to be saved so that it can be restored later
when P1 will be able to continue its execution exactly as if it was never interrupted
at all.

The state of a process comprises, at least, the value of all processor registers,
including the state registers (e.g., flags). Therefore, extending the register organiza-
tion of a processor implies modifications into the OSs in order to properly manage
the machine state. If the OS is not updated upon a context switch, it saves only
the original processor state and it neglects the additional extended registers. In this
way, when the process state will eventually be restored on the processor, a part of
its state can be corrupted and the elaboration can become erroneous. This might be
taken into account when designing a solution based on ISE for a target processor
for which a number of OSs are already present in the market. All of them have to be
updated to support certain ISA extensions.

On this point, note that the Intel MMX extension could be supported without OS
modifications because they relied on the registers already used by the floating-point
unit.

In the following sections, we will analyze various proposals for ISEs for cryp-
tographic application, highlighting, where possible, the motivation for the proposal,
the hardware and software features, as well as the resulting performance benefits.

9.2 Applications and Benchmarks

It has become quite clear that a successful cryptographic system needs an under-
standing of the applications that it will run. Moreover, its performance strongly de-
pends on an efficient implementation of its essential operations [47].

Therefore, possible ISEs also depend on the applications that we currently focus
on. At higher level, secure IP (IPSEC), virtual private networks (VPNs), just to give
some examples, are further emphasizing the importance of cryptographic processing
among all types of communications. Also, mobile (cellular phone) systems, like 3G
and beyond, will be using secure methods for payments, digital rights management,
handset, and network authentication.

The above scenarios imply that ISEs will have to consider: (i) appropriate bench-
marks in order to analyze the real demand for new instructions to be supported; (ii)
appropriate platforms (high performance versus embedded systems) for considering
the ISE.
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9.2.1 Benchmarks

Current research [1, 6, 11, 16, 22, 23, 34, 39, 57] is essentially considering as bench-
marks the most-used ciphers for both private-key (3DES, Blowfish, IDEA, Mars,
RC4, RC6, AES) and private-key (RSA, DSA, Diffie-Hellman, El-Gamal, and their
ECC variants).

Benchmark suites, which also highly condition the research on ISE and the
choice of possible platforms, normally include some applications in the security
domain. For example, MiBench [24] includes both applications like PGP [60], the
famous encryption algorithm developed by Phil Zimmermann (relying on RSA or
DSA), ciphers like Blowfish [8], Rijndael/AES [45] and hash calculations like SHA
[46] (used in the well-known MD4 and MD5 hashing functions). Another effort
to provide a reference benchmark suite for security is the Basicrypt benchmark
package [3], which contains standard and elliptic curve code for Diffie-Hellman
key exchange, digital signature algorithm (DSA), El-Gamal, and RSA encryp-
tion/decryption. Standard algorithms can be used with various key lengths (1024,
2048, and 3072), while for elliptic curve variants parameter files are defined accord-
ing to fields and curves recommended by NIST standard FIPS 186-2. Public-key
benchmarks in Basicrypt package were written using MIRACL C [53] procedures
for big integer arithmetic. The MIRACL library consists of over 100 routines that
cover all aspects of multiprecision arithmetic and offer procedures for finite-field
elliptic curve operations.

Other approaches [23, 34] try to derive the most important operations for the ISE
directly from an algorithm implementation.

The two most notable ciphers for private-key cryptography are 3DES and AES
as they are selected as US encryption standards. More recently, AES tends to re-
place 3DES in many applications; we will discuss AES ISEs more in detail in
Section 9.3.2.

For public-key cryptography, RSA continues to be a leader in the implementa-
tion while ECC-based applications are gaining consensus thanks again to the NIST
standardization. RSA is essentially based on modular exponentiation and basic op-
erations are common to other cryptosystems such as ECC. ECC ISEs will be the
object of Section 9.3.3.

9.2.2 Potential Performance

Many of the above symmetric ciphers have little parallelism and few bottlenecks.
For example, Blowfish, 3DES, IDEA, and RC6 can run within 20% of the per-
formance of a pure dataflow machine [57]. There is more headroom for Mars and
Twofish with potential speedups of 29% and 76% respectively. RC4 and AES have
much more parallelism and could be sped up with more capable hardware [57]. Sim-
ilar studies have been performed for ECC in the work of Bartolini et al. [1]. There
are potentials for speeding up ECC, especially considering ISE for polynomial
multiplication.
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9.3 ISE for Cryptographic Applications

In the following sections we will analyze possible ISEs for cryptographic applica-
tions. In particular, each section goes into the details of the extensions specifically
proposed for information confusion and diffusion, AES symmetric block-cipher and
elliptic-curve public-key cryptosystem.

9.3.1 Instructions for Information Confusion and Diffusion

A common operation, especially in symmetric-key algorithms, consists in breaking
a message into blocks and using confusion and diffusion to manipulate blocks of
plaintext and transform it into ciphertext [50]. The goal of confusion is to obscure
the relationship between plaintext and ciphertext by, for example, permuting certain
bits. Cypher algorithms, such as Twofish, employ a series of reversible operations
to implement a process called diffusion. The goal of diffusion is to impress upon
each of the output bits some information from each of the input bits. The diffusion
process is also conditioned by the private key, thus constituting an important step
for increasing the resistance to ciphertext attackers.

Typical operations to support confusion and diffusion consist in permutations,
rotates, substitutions. According to [57], the most common operations of crypto-
graphic kernels such as 3DES, Mars, RC4, Rijndael, Twofish, besides other general
operations of typical programs (such as arithmetic, logical, branches, and memory
operations) are indeed: permutations, rotates, substitutions.

Rotates are easily reversible by rotating the same distance in the opposite direc-
tion and also have good diffusion properties.

The substitution operation can be implemented as a key-based transformation
function using a byte-indexed array called an “SBOX”, as in the Cryptomaniac pro-
cessor [6]. Figure 9.1 illustrates the semantic of an SBOX.

Permutation operations rearrange the bits using a parametrized wire network
called an “XBOX” in the work of [6]. Permutation is very effective in achieving
diffusion [52] and is potentially very powerful and more general than rotates. In
fact, an arbitrary permutation can achieve any one of n! outcomes rather than one of
n outcomes produced by a rotation.

Arbitrary permutation circuits are usually considered complex and have therefore
been avoided in some algorithms such as Rijndael, RC5, RC6, IDEA, Mars, Kasumi.
More recently [27], designs that propose to modify an existing shifter in order to
perform both shift and also advanced operations to ease the permutations have been
presented.

Another operation that has particularly good diffusion properties is modular mul-
tiplication [36]. This operation can be easily reversed with modular multiplication
of the modular inverse. Also, modular addition has relatively good diffusion prop-
erties and it is easily reversed with modular subtraction. Modular operations will be
analyzed in more detail in Section 9.3.3
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SBOX-Table ADDRESS
(REG.<table>)

SBOX-Table INDEX
(REG.<index>)

BYTE NUMBER
(<#bb> OPCODE field)
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4-1   8-bit MUX 
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2

00 SBOX ADDRESS 

SBOX VALUE (to REG.<dest>)

ZER0-EXTEND

32

Fig. 9.1 SBOX semantics from Burke et al. [6].

9.3.1.1 Proposed Instructions

Existing ISAs mostly provide support for basic rotate operations, e.g., Intel, Alpha,
SPARC, but lack support for permutations and substitutions.

A few ISAs such as PA-RISC [37] and IA-64 [30] support more advanced oper-
ations such as extract, deposit and mix, discussed in detail later in this section.

In the work of Burke et al. [6], some potentially useful instructions have been
identified, in particular for substitutions (SBOX) and permutations (XBOX). Their
methodology is also interesting: starting from commonly used cipher algorithms
(such as 3DES, Blowfish, IDEA, Mars, RC4, RC6, Rijndael, Twofish), bottlenecks
are identified, and an average of about 45% of dynamic instructions are identified
as rotates, substitutions, and permutations.

Several instructions have been proposed in that work [6] and in a subsequent
paper describing the Cryptomaniac processor [57], a flexible architecture for secure
communications. Some of the proposed instructions are:

• ROLX <src>, #<rot>, <dest>
• RORX <src>, #<rot>, <dest>

these two instructions respectively perform a rotate left and rotate right for the
specified (#<rot>) number of bits of the source register (<src>), and a final
XOR with another register <dest>. The result replaces the second register in-
put <dest>. Such instructions are useful to speed up Mars and RC6. The timing
analysis performed by the authors of this work indicated that such rotates easily
fit in the cycle time of a small-sized ALU (arithmetic logic unit).

• SBOX.#<tt>.#<bb>.<aliased> <table>,<index>,<dest>



198 Sandro Bartolini, Roberto Giorgi, and Enrico Martinelli

extracts byte #<bb> (0..3) from register <index>and concatenates the result-
ing 8-bit value with register <table> to produce a 32-bit aligned address to
point an SBOX-table (see Figure 9.1). The 32-bit value from the SBOX-table
is zero-extended and loaded into register <dest>. To speed up most SBOX
operations, stores to SBOX-table are not visible by later SBOX instructions un-
til an SBOXSYNC instruction is executed, unless the <aliased> flag is in-
dicated. The instruction operates on a table identified by the table designator
#<tt> (useful for a subsequent SBOXSYNC instruction). SBOX implementa-
tions take advantage of SBOX caches and other quite complex implementation
details, making the implementation quite costly. Anyway, SBOX produces great
benefits for algorithms such as Rijndael (AES), almost doubling the performance
of this algorithm; in particular, having support in hardware for SBOX, reduces
the latency for SBOX-table accesses from three instructions to one and speeds
up from five cycles to two.

• SBOXSYNC.#<tt>
synchronizes SBOX-table #<tt> with memory. This eliminates the need for
SBOX instructions to snoop on store values in the processor core.

• XBOX.<bbb> <srca>, <srcb>, <dest>
performs a partial general permutation of register <srca>, given the bit permu-
tation map in register <srcb>; the result of the permutation is placed in register
<dest>. The permutation map describes where each input operand bit is written
in the destination and contains eight 6-bit indices to address each of the 64-bit
<srca> register bits. The XBOX instruction opcode indicates through <bbb>,
which of the weight bytes in the destination register are permuted. When XBOX
is used, the 32-bit permutations in, e.g., 3DES are completed in 7 instructions
(and executed in 3 cycles), yielding a significant improvement over the baseline
code which requires 39 instructions.

Performance analysis done in the work of Burke [6] indicated a performance im-
provement when using the proposed instructions (plus a modular multiplication with
modulus 33, and some processor refinements, i.e., doubling execution resources
of a baseline aggressive superscalar processor such as Alpha). The improvement
can achieve a 59% speedup over machines with basic rotate instructions and 74%
speedup over machines without rotates.

Applications that take advantage from the speedup of this algorithm include
web servers relying on SSL (or TLS) protocols, disk encryption/decryption, se-
cure network using secure protocols such as IPSEC, and virtual private networks
(VPNs).

In emerging applications such as cryptography (but also imaging and biometrics)
more advanced bit-manipulation instructions are needed.

In the work of Lee et al. [27, 52], several bit-manipulation instructions are pro-
posed:
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• EXTR r1=r2, <pos>, <len>
• EXTR.U r1=r2, <pos>, <len>

extracts and right justifies a single field from r2 of bit length <len> from bit po-
sition <pos>; the high-order bits are filled with the sign bit of the extracted field
(EXTR) or zero-filled (EXTR.U) as in Figure 9.2(a)) and the result is left in r1.

• DEP.Z r1=r2, <pos>, <len>
• DEP r1=r2. r3, <pos>, <len>

deposits at bit position <pos> of single right-justified field from r2 of bit length
<len>; remaining bits are zero-filled (DEP.Z) or merged from second source
register r3 (DEP) as in Figure 9.2(b)).

• MIX.{r,l}.{0,1,2,3,4,5} r1=r2, r3
selects right or left subword from pair of subwords, alternating between source
registers r2 and r3; subword sizes are 2i bits for i=0,1,2, ... ,5 for a 64-bit proces-
sor (see Figure 9.3).

A MIX operation is implemented in the PA-RISC [38] and IA-64 [30].
Another important class of operations for cryptography is permute [27, 52]. In

most current ISAs, permute can be done using logical operations or table lookups
(see XBOX mentioned earlier). This method may suffer memory latencies and cache
misses. A generic n-bit permutation takes O(n) instructions [52]. In the work of Shi
et al. [51], the following simple permute instruction – named ‘group’ – is proposed:

R2

R1

0N–1

N–1

pos+len–1 pos–1

len–1

0   .   .   .

EXTR.U
(a)

0

R2

R1

0len–1

pos+len–1 pos–1 0

N–1

N–1

DEP.Z
(b)

00   .   .   . 0 … 0

Fig. 9.2 (a) EXTR.U r1=r2,<pos>,<len>; (b) DEP.Z r1=r2,<pos>,<len> from
Hilewitz et al. [27].

R2

R1 MIX.r.3

R3

Fig. 9.3 Mix right operation, from Hilewitz et al. [27].
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a b c d e f g h
1 1 0 0 1 0 1 0

c d f h a b e g

Fig. 9.4 An 8-bit group operation from Shi et al. [51].

• GRP rd, rs, rc
permutes its data input rs into its data output rd, by grouping to the right those
bits flagged with a 1 in a configuration input rc, and grouping to the left those
bits flagged with a 0 (see Figure 9.4). A series of log(n) GRP instructions can
generate any permutation.

The CROSS [59] and OMFLIP [58] instructions use a virtual Beneš network or
omega-flip network, respectively, to permute the n data bits. A n-stage Baneš net-
work for permuting n bits is a butterfly network followed by an inverse butterfly
network, each of which has log(n) stages (Figure 9.5). An omega-flip network is
isomorphic to a Beneš network. Since each CROSS or OMFLIP instruction executes
the equivalent of two stages of the network, both can achieve any of the n! permu-
tations in at most log(n) instructions.

• CROSS.m1.m2 rs, rc, rd
executes the operation of the two butterfly stages specified by m1 and m2 that are
characterized by a “butterfly width” of 2m1 and 2m2 respectively. The bits to be
permuted are in rs and the permuted bits are in rd, while rc holds two groups
of configuration bits (the left n/2 configuration bits in rc are for m1 and the right
n/2 configuration bits in rc are for m2. There are n/2 butterflies in each n-bit
stage; each configuration bit in a group specifies if the butterfly will propagate
data into the straight path (0) or into the cross path (1) of each butterfly. By chain-
ing CROSS instructions in sequence, a Baneš network for a desired permutation
can be configured.

• OMFLIP.c rd, rs, rc
The 2-bit subopcode c indicates which two basic operations are used in this in-
struction. For each bit, 0 indicates that an omega operation is used and 1 indicates
that a flip operation is used. There are four combinations of c: omega-omega,
omega-flip, flip-omega and flip-flip. The first basic operation takes the source
register rs and moves the bits in it based on the least significant half of the
configuration register rc to an intermediate result. The second basic operation
moves the bits in the intermediate result according to the most significant half of
rc to the destination register rd.
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(b)(a)
Fig. 9.5 (a) 8-input butterfly network; (b) 8-input inverse butterfly network from Shi et al. [52].

When comparing OMFLIP instructions versus table lookup, Yang et al. [58]
achieved a 1.33 speedup for DES encryption/decryption and 16.55 speedup on DES
key scheduling for a 2-way superscalar architecture with 1 load-store unit and a
cache system similar to Pentium III processor. An omega-flip network can achieve
the same performance as a CROSS instruction with a far smaller hardware imple-
mentation, according to [39].

Other proposed instructions are PPERM [39], SWPERM with SIEVE, BFLY, and
IBFLY. Some fast implementations of these permutation instructions (including
CROSS, OMFLIP, GRP) is proposed in the work of Hilewitz et al. [28]. The GRP can
also be used to perform hardware radix sorting and has strong inherent differential
cryptographic properties, but the implementation is relatively slow. On the other
hand, the BFLY/IBFLY have a relatively fast implementation, as they can perform
their operation in a single cycle.

The PPERM instruction [39] represents an intuitive way to do permutations
(Figure 9.6), where the position of each bit in the destination rd is specified by
a bit configuration register rc, rs being the source. This is similar to the PERMUTE
instruction in the MAX-2 ISA extension [38]:

• PPERM.x rs, rc, rd
permutes its input rs according to an explicit list of indices that are packed (in k
groups) into rc; x = 0,1, . . . ,7 is a byte offset that specifies which k contiguous
bits in rd will receive the source bits given by rs, while the remaining bits in
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64 x 8 CROSSBAR
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88

Fig. 9.6 Diagram flow of bits for PPERM.1 R1,R2,R3; the number in R2 are the bit positions
in R1 [39].

rd are zeroed. Each index in the list rc specifies where in rs to extract each of
the k bits (being k <= n/log(n) for n-bit information, at most n/log(n) indices
are available in each instruction). Therefore, to specify a generic permutation, at
most log(n) instructions are needed.

In a similar way the SWPERMwith SIEVE [42] selects a source bit by its numeric
index.

In the work of Shi et al. [52], the BFLY/IBFLY instructions are proposed. These
can be useful for example in P-box permutation of DES cipher round function. By
cascading these two instructions, a generic n-bit permutation can be achieved. While
the implementation is fast, an ISE issue could be how to supply the configuration
bits for the butterfly network. For n = 64, a 6-stage butterfly network requires 3n
configuration bits, that is n/2 bits for each stage.

• BFLY rd, rs, ar.b1, ar.b2, ar.b3
• IBFLY rd, rs, ar.b1, ar.b2, ar.b3

permute their input rs (and leave the results in rd)using a butterfly and inverse
butterfly circuit, respectively (Figure 9.5). Assuming a 6-stage network, three
extra special registers are needed (ar.b1, ar.b2, ar.b3, which contain
the configuration bits). The configuration bits have similar meaning as in the
CROSS instruction discussed above.
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9.3.2 ISE for AES

Private-key (symmetric-key) cryptosystems are typically devoted to the encryp-
tion/decryption of the bulk of communications between two parties, while public-
key cryptosystems are usually employed for authentication, exchange of the
session key of symmetric algorithms, digital signature and other security opera-
tions involving a limited amount of information. One of the reasons for this is
that public-key approaches are far more computationally expensive than private-
key counterparts. However, as the bulk data encryption/decryption is performed
by private-key algorithms, it is very important to implement these techniques very
efficiently.

Recent research proposals analyzed ISEs, as well as specific coprocessors for
speeding up these cryptosystems. AES [9] and the older DES [13] and triple-DES,
or TDEA [14], block ciphers are and have been widely used for symmetric-key
cryptography. The Rijndael block cipher [9] was accepted in 2000 as the new ad-
vanced encryption standard (AES) by the U.S. government and standardized by
FIPS in 2001 [15]. AES is adopted in an increasing quote of applications and sys-
tems because of its security properties, flexibility and good implementability fea-
tures on a wide range of architectures (e.g., from 8-bit processors and up) both in
hardware and in software. For these reasons we will focus mainly on AES in this
section.

AES is a block cipher that operates on 128-bit blocks and can support 128, 192
and 256-bit keys. The 128-bit block is seen as a 4x4 matrix of bytes (state) and the
encryption/decryption operations work on such a matrix, performing permutations
on the rows, on the columns, and substituting bytes in it according to modular arith-
metic with polynomials. The particular set of elaborations is briefly summarized
in Figure 9.7 as pseudocode. Note that some operations (rounds) are performed a
number of times (e.g., 10 in the case of 128-bit key).

Initially, the state is the input block and then, it represents the intermediate results
of the rounds. At the end, the state represents the encrypted block.

The SubBytes operation updates each byte in the array using an 8-bit S-Box,
which introduces the non-linearity in the algorithm. The S-Box is derived from the
multiplicative inverse over GF(28) and can be calculated directly or through a look-
up table.

The ShiftRows operation rotates the rows of the state cyclically to the left. The
first row is not shifted, the second row is shifted by 1 byte, the third by 2 bytes and
the last row by 3 bytes.

In the MixCol operation, the four bytes of each column of the state are combined
as follows. Each element of a column is considered as a polynomial over GF(28)
and multiplied modulo x4 + 1 with a fixed polynomial c(x) = 3x3 + x2 + x + 2.

The AddRoundKey operation mixes a key, which is derived at each round from
the main key, to the state.

The encryption and decryption steps are very similar and are based on the same
set of base operations. Full details on AES internals can be found in the reference
literature [9, 15].
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AES_encrypt(in, out, w)
byte in[4*4],
byte out[4*4],
word w[4*Nr+1]
{

byte state[4,4];
state = in;

// Initial AddRoundKey
AddRoundKey( state, w[0, 3] );

for round = 1 step 1 to Nr-1 // (Nr-1) rounds
{

SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, w[round*4, (round+1)*3]);

}

// Last round (no MixColumns)
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, w[Nr*4, (Nr+1)*3]);

out = state;
}

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Fig. 9.7 Implementation of the inner loop of schoolbook multiplication in GF(p).

The AES was thought of for easy implementation and execution efficiency on
both 32-bit microprocessors, as well as on small 8-bit microcontrollers. However,
each round of the algorithm requires a significant number of assembler instruc-
tions because of the specific features of the involved operations. This fact limits
the encryption/decryption bandwidth achievable in software. Highly optimized soft-
ware approaches tend to employ look-up tables, which are acceptable for general-
purpose systems but can be inadequate for memory-constrained embedded devices.
However, when high speed is required, software implementations are too inefficient
and ad hoc hardware approaches (e.g., cryptoprocessors) are preferable. However,
a crypto-processor might lack the flexibility to accommodate to different algo-
rithm parameters (e.g., key size) and, typically, is not able to run general-purpose
code.

Using specifically extended instruction-sets and functional unit extensions on
existing processors, significant performance gains are achievable and complete
compatibility with the unmodified general-purpose processor can be maintained,
keeping low the design complexity.
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9.3.2.1 Extended Instructions

Bertoni et al. in [2] propose a word-level ISE for an ARM processor. Given its
generality, the approach could be applicable to almost all 32-bit processors. As a
baseline, they focus on a software implementation which relies on three look-up
tables: two for the values of the nonlinear transformation and its inverse, and one
for storing constants for the key schedule. Based on the execution time profiling of
this software version, the most time-consuming code parts have been moved into
hardware and specific instructions have been added to trigger the new hardware
units.

They propose to include a couple of instructions: SBox and SMix which per-
form S-Box and both S-Box and MixColumns transformations in a single step,
respectively. First, they propose a byte-oriented approach, where the new hard-
ware and the new instructions work on one byte at a time. Then, they extend
their proposal to 32-bit words, modifying both the hardware and the instruc-
tions and exploiting in this way the parallelism of the architecture and of the
algorithm.

The byte-oriented instructions operate on only one byte of the AES status at a
time, as shown in Figure 9.8. As the processor registers are word-oriented, a Selector
block selects the right byte from the register word. After the byte is extracted, the
nonlinear transformation (bytewise S-Box) is applied.

Fig. 9.8 Circuit structure to support SMix and SBox instructions.
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The MixCol module processes the byte and completes the SMix instruction: it
outputs four bytes, representing the different contributes. At every step of the AES,
the polynomial changes but the multiplicative coefficients remain the same. There-
fore, the correct result can be obtained through a reordering step of the bytes. The
Expander on the right in Figure 9.8 is responsible to expand the processed byte to a
word. If X is the input byte, 000X is the output word of the expander. In this way,
its output can be sent to the final Rotator which is able to position the nonzero byte
in the needed position of the result through an XOR. In this way, the four bytes
of an output word (i.e., 000A, 00B0, 0C00, D000) can be produced independently
and XOR-ed together to form the output word (i.e., DCBA). The suggested byte
instructions are:

• SBox Rs, Rd, Index, which performs the nonlinear substitution on a byte. Four
of them are needed to process an entire 32-bit word. Rs indicates the source reg-
ister, Rd represents the destination register, and Index indicates the byte to extract
and configures the Rotator operation. First, the accumulator must be initialized
to “0000” and a load instruction is needed to initialize the source register. This
instruction is used only in the key-scheduling phase and in the last round, where
the MixColumns transformation must be skipped.

• SMix Rs, Rd, Index, which performs both the Sbox and the MixColumns trans-
formations on the selected byte. As in the previous case, Rs indicates the source
register , Rd represents the destination register and Index selects the correct byte.
Here, the Expander is not needed since the output from the MixColumns module
is 32-bit wide. This module can be used to produce all the needed contributes
since the rotator is responsible for their reordering.

The assembler code to perform an AES round using the presented instruction
extensions is shown in Figure 9.9.

Moving to a word-oriented approach, the MixColumns transformation can be
easily extended for producing the new columns, while the ShiftRows transformation
is not straightforward since it works in the orthogonal direction of the state matrix
than the MixColumns one. The authors propose to solve the problem by modifying
four fixed registers of the CPU in order to allow access to a single byte in each
of them in parallel, thus actually retrieving the word exactly as if it was passed
through the ShiftRows transformation. From the implementation point of view, this
implies modifying the register file of the processor and can be more or less difficult,
depending on the internal architecture of the processor.

For the SubWord (S-Box) transformation, a word-level S-Box module is used.
As in the byte-oriented solution, the MixCol module is cascaded to it. The rotator is
still needed for the key-scheduling process. In this step, a word of the key contribute
must be rotated and processed by the S-Box module. The final result is obtained
through an XOR operation in the ALU.

The three word-level instructions needed are:

• SMixW N, Rd, which performs the S-Box and the MixColumns transformation
in sequence. It does not need source registers as operand, since the registers con-
taining the state are fixed due to the changes performed in the register file to
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# Round computation
1: SMix R0, R0, 0 � 1st column
2: SMix R0, R0, 1
3: SMix R0, R0, 2
4: SMix R0, R0, 3
5: Xor R0, R4
6: SMix R1, R1, 0 � 2nd column
7: SMix R1, R1, 1
8: SMix R1, R1, 2
9: SMix R1, R1, 3

10: XOR R1, R5
11: SMix R2, R2, 0 � 3rd column
12: SMix R2, R2, 1
13: SMix R2, R2, 2
14: SMix R2, R2, 3
15: XOR R2, R6
16: SMix R3, R3, 0 � 4th column
17: SMix R3, R3, 1
18: SMix R3, R3, 2
19: SMix R3, R3, 3
20: XOR R3, R7

# Key unroll
1: SBox R10, R4, 3 � word rot. + S-box
2: SBox R10, R4, 0
3: SBox R10, R4, 1
4: SBox R10, R4, 2
5: XOR R10, R8 � Add round const
6: XOR R4, R10 � Calculate words of next

contribute
7: XOR R5, R4
8: XOR R6, R5
9: XOR R7, R6

Fig. 9.9 Implementation of the inner loop of schoolbook multiplication in GF(p).

allow the selection. The arguments are the column index N and the destination
register Rd.

• SubWord Rs, which performs only the S-Box transformation of the incoming
word. It is used in the last round and in the key scheduling.

• KSFW Rs, RCon, which causes the word contained in the register Rs to feed the
SubWord module; after that, it is rotated by one position and summed with the
RCon constant stored in RCon, producing a word of the new key contribute. This
represents the transformation of the first word of the key contribute.

The assembler code resulting from availability of these word-level instructions is
shown in Figure 9.10.

Using the proposed ISE, the performance speedup in AES encryption is about
2.54x for AES-128. In particular, 497 cycles are needed using all the extended word-
level instructions against 727 cycles when using the byte-level ones and 1771 cycles
for the original software version. The speedup is very interesting, especially because
it is obtained on top of a high-performance software implementation employing
various look-up tables.

# Round computation
1: SMixW 0, R10, R4
2: SMixW 1, R11, R5
3: SMixW 2, R12, R6
4: SMixW 3, R13, R7

# Key unroll
1: KSFW R4, R8
2: XOR R5, R4
3: XOR R6, R5
4: XOR R7, R6

Fig. 9.10 Implementation of the inner loop of schoolbook multiplication in GF(p).
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Another approach is proposed by Elbirt [12], who presents an ISE for Galois
Field (GF) constant multiplication within a 32-bit SPARC v8 compatible processor.
The approach can be applied to all the algorithms that use GF constant multiplica-
tion, not only to the AES. As the a central computation of AES rounds is the mod-
ular multiplication of GF(28) elements, the core of the proposal is to adopt an 8x8
matrix circuit that operates on the 8 bits of the input polynomial a(x) and generate
the 8 bits of the multiplication of a(x) for the constant polynomial k(x). The circuit
implements a vector–matrix multiplication, where the 8 bits of a(x) are the vector
and the 64 coefficients of the matrix comprise both the bits of the constant k(x) and
the operations for executing also the modular reduction step. The total number of
gates for such a circuit is about 7200, which is shown to be 18 times smaller than a
look-up table approach.

The cycle count needed to perform an 8-bit modular multiplication comprising
reduction is 1 cycle for the matrix approach, while, for instance, it is 28 cycles in
software for a Pentium-class Intel processor. The authors show that the speedup
over the software version without extension is 1.67x, and further improvements (up
to more than 8x) are achievable if other extensions proposed in literature, like S-Box,
are used together with the matrix extension.

Fiskiran and Lee in [17] analyze a variety of cryptographic algorithms and tech-
niques for mobile devices. They consider symmetric-key, hash, public-key, ECC,
and DSAs and analyze the main features of their software implementations in order
to single out possible extensions to accelerate their execution. For the considered
symmetric-key algorithms (AES, DES/3DES, RC4, Blowfish, MARS, Twofish),
the workload characterization gives the following indications. Six of the 10 ci-
phers use table lookups, and 5 of these spend the largest fraction of their execu-
tion time during these table lookups (e.g., 72% for AES, 58% for RC4). For all
ciphers, tables are small and constant in size. The number of entries per table is 256
for 5 of the ciphers (8 index bits), and the data read is either 8 or 32 bits. Apart
from RC4, tables are accessed only for reading. Moreover, the typical round struc-
ture of the ciphers allows also parallel table lookups. For example, all lookups in
an AES round (16 lookups) can be performed in parallel, given enough hardware
resources.

Based on this analysis, the authors propose an ISE for supporting table lookups
in symmetric-key ciphers. The reference platform used is a PAX architecture, a min-
imalist high-performance cryptographic processor ISA designed at Princeton Uni-
versity [49], which features an ALU, a shift unit, a multiplier, and 8 on-chip tables
(T0–T7). Each table has 256 entries and the size of each entry is equal to the pro-
cessor word size, which may be 32, 64 or 128 bits.

The proposed lookup instruction for 32-bit word size is able to perform up to
4 simultaneous lookups and is named ptlu which is short for parallel table lookup.
The exact format of the instruction is ptlu.subword.table.offset.step Rd, Rs, where
the subword field selects the number of bytes to read from the table (size of data
to read). The table field is 3 bits wide and selects the desired table. The byte-sized
indices used to access the tables are read from the source register Rs, which is 32-bit
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(a) ptlu.4.6.2.0 Rd, Rs (b) ptlu.1.3.0.1 Rd, Rs

Fig. 9.11 A couple of examples of the ptlu instruction for accelerating table lookups.

long and so it can contain up to four byte-sized indices. The 4-bit offset field is used
to select the first byte-sized index in Rs. The 4-bit step field gives the distance (in
bytes) between two consecutive bytes in Rs that are used as indices when multiple
lookups are performed.

For instance, in Figure 9.11 a couple of examples are shown. In 9.11a, a 4-byte
access is shown using the byte 2 of Rs as index of T6, while in 9.11b, four parallel
lookups in table T1 are made to read 1 byte per lookup and using the four bytes of
Rs as indices. Note that the AES key expansion can take full advantage from this
instruction to perform the byte substitution procedure.

The ptlu instruction is assumed to have 1 cycle latency, as it accesses a small
on-chip memory. Using ptlu, the speedup of AES is 2.29x. Table 9.1 also shows
that the other considered algorithms benefit from ptlu and deliver a significant
speedup.

Table 9.1 Algorithm speedup using ptlu.

Algorithm % Speedup
AES 2.29x
DES 1.28x
3DES 1.25x
RC4 1.92x
Blowfish 1.73x
MARS 1.40x
Twofish 1.61x
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The authors highlight a possible advantage of ptlu instruction: its scalability to
processors with different word sizes. In fact, as word size increases, more lookups
can be performed simultaneously. For instance, if the word size is 128-bit, only
4 ptlu are needed to complete the 16 lookups of a single AES round. In case
of 64 and 128-bit word sizes, the speedup for AES reaches 2.85x and 6.10x,
respectively.

Tillich et al. in [55] analyze possible ISEs for AES on a 32-bit processor. Similar
to [2], they propose byte-oriented and word-oriented instructions but with some
differences. They propose byte-level Sbox and MixCol instructions, which calculate
only one byte of the result. A specific immediate value of the instructions allows one
to choose the source byte (Sbox), the destination byte and the encryption/decryption
operation (for both Sbox and MixCol).

The Sbox4 and MixCol4 instructions extend this approach to 32-bit words and
aim to parallelize four byte-operations. As shown in Figure 9.12, the Sbox4 instruc-
tion substitutes all four bytes of the first source register and places them into the
destination register. An optional byte-wise rotation can be performed on the result.
The immediate value selects whether S-Box or inverse S-Box are used and specifies
the rotation distance for the result. In this way, the key expansion step can be effi-
ciently supported through this sbox4 instruction. The mixcol4 instruction calculates
all four result bytes of the MixColumns or InvMixColumns operations, according
to the immediate value.

The performance of the word-oriented ISE is better than the byte-oriented
one but not as much as it could be expected due to the four-fold parallelism

(a) sbox4

(b) mixcol4

Fig. 9.12 Word-level sbox and mixcol instructions.
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increase: 4.86x speedup vs. 1.74x speedup over the pure software implementa-
tion (no ISE). This is because the Shift-Rows AES operation becomes a bottle-
neck. Accelerating the most time-consuming parts of the algorithm caused other
parts of the algorithm to become more important from the performance point
of view.

The authors address this issue and propose a slight modification to the word-
level circuits and instructions, so that they support a pair of input registers instead
of only one. In this way, neglecting the details, the Shift-Rows transformation can be
implicitly performed extracting 2 bytes from each of the two source registers. The
speedup of this slightly improved ISE reaches 7.47x (8.35x with loop unrolling)
over the non-extended software one and this is in line with expectations.

This experience should teach one that the ISE design and tuning is an iterative
process that often has to be fed back from its own effects in order to obtain optimal
results. The proposed approach does not rely on look-up tables and, therefore can be
particularly suitable for constrained devices. The authors show that their ISE causes
an 81% reduction in code size, while the well-known table-lookup approaches in-
crease the code size by about 350–400%.

Tillich et al. in [54], explore the possibility of employing the ISEs for elliptic
curve cryptography (ECC), assumed available on a given processor, to speed up
AES. The considered ISE are:

• g f 2mul A,B: 32-bit word-level polynomial multiplication, which generates a 63-
bit result (A ⊗ B) in the two 32-bit parts of an accumulator register ACC.hi/
ACC.lo.

• g f 2mac A,B: 32-bit word-level polynomial multiply and accumulate, which per-
forms (A⊗B), sums the result to ACC.hi/ACC.lo and accumulates the outcome
back to ACC.hi/ACC.lo.

• shacr A: shifts right the accumulator by 32-bit, so that ACC.lo goes in A register
and ACC.hi goes in ACC.lo.

The MixColumns AES step requires to multiply two polynomials of degree 3
over GF(28), modulo x4 + 1, where one polynomial is constant (specified by the
algorithm) and the other is a column of the state. Essentially, each of such polyno-
mials can be represented on a 4-byte word and the multiplication can be accelerated
using g f 2mul instruction. After that operation, two more steps are needed: reduc-
tion of the polynomial coefficients, which live in GF(28), and polynomial reduction
according to the modulus to obtain the correct 32-bit result.

The first operation can take advantage of g f 2mac, while the second can benefit
from shacr.

Considering that these extensions were not aimed specifically to AES, the per-
formance increase from their usage is significant: +23% and +20% in the case of
precomputed key schedule, for encryption and decryption, respectively.

The reader is highly encouraged to go into the details of the cited paper, as a
useful exercise to fully understand the usage of the proposed approach.



212 Sandro Bartolini, Roberto Giorgi, and Enrico Martinelli

9.3.3 ISE for ECC applications

Elliptic curve cryptography (ECC) was proposed independently by Victor Miller
[44] and Neal Koblitz [33] in 1985 and is gaining interest as a viable alternative to
“standard” public-key methods (like RSA), because of its shorter keys at the same
security level. This can translate into faster implementations and reduced consump-
tion of energy and bandwidth, which are crucial points, especially for embedded
applications on constrained devices.

An elliptic curve for cryptography can be defined over a finite field (FF),
e.g., GF(p), GF(2m), and is the set of points P = (x,y) that satisfy the equation
y2 + xy = x3 +ax2 +b , a,b,x,y ∈ FF,b �= 0, together with a point at infinity O. An
addition operation defined on the curve points allows calculating integer multiples
of a point: given a point P and an integer k, [k]P (i.e., the scalar multiplication
operation) produces another point Q on the same curve. Scalar multiplication
can be naturally implemented through repeated doublings and additions of the
point P, and it has security features similar to exponentiation in discrete-logarithm
cryptosystems.

Elliptic curve point addition and doubling, in turn, can be calculated with a num-
ber of additions, multiplications, squarings, and inversions in the underlying binary
finite field, through formulas operating on the coordinates of the involved points.
For example, Figure 9.13 shows the formulas [43], needed to calculate EC addition
and doubling in affine coordinates.

Handling finite-field elements in software requires multiprecision arithmetic be-
cause typical field sizes are hundreds of bits long. For instance, the sizes of EC
binary fields delivering a security level similar to 1024, 2048 and 3076-bit RSA are
163, 233 and 283-bit, respectively.

Standard processors manage such big values (m-bit) as arrays of w-bit long words
(where w typically is 8, 16, 32 or 64 bits, matching the word size of the processor).
The number of required words is �m/w�.

Finite-field addition can be performed word by word, taking into account the
carry propagation from each word to the immediately more significant one, in the
case of GF(p). This can be tricky using a high-level language because there is no
direct control over the carry propagation. In an assembler, according to the avail-
able ISA, it might be easier to obtain an efficient implementation. For instance, on
Intel x86 processors, ADC instruction sums two operands plus the carry flag set by

x3 = λ 2 +λ +a+ x1 + x2
y3 = λ · (x1 + x3)+ x3 + y1

λ =
{

(y2 + y1)/(x2 + x1), i f P �= Q
x1 + y1/x1, i f P = Q

Fig. 9.13 Elliptic curve point addition and doubling formulas, given P = (x1,y1), Q = (x2,y2) and
P+Q = (x3,y3).
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the previous instruction, allowing straightforward implementation of multiprecision
additions. In case the result of an addition is bigger than the field prime, a reduction
operation must be performed.

In GF(2m), addition is simpler because it becomes a bitwise exclusive-OR and,
therefore, it does not require to manage carries.

Field multiplication is quite expensive because, by nature, it mixes all the words
of the two operands together and outputs a double-sized value. Multiplication can
be done iteratively via repeated shifts and additions/XOR (i.e., one per bit) to the
partial product, as in the well-known schoolbook method for base 10 numbers. In
each iteration, a number of instructions are needed to process the intermediate field
values.

In the case of GF(p) fields, the algorithm can work at word level and be much
more efficient. In fact, it can take advantage from the instructions and circuits avail-
able in the processor for integer multiplication (w-bit operands) so that the m-bit
multiplication can be implemented via a number of w-bit multiplications. In the
case of GF(2m) this is not typically possible because there are almost no processors
that natively support operations (e.g., multiplication) on binary fields.

As a matter of fact, multiprecision modular multiplication, together with the
modular inversion, may take most of the execution time of EC operations imple-
mented in software [4, 25]. Therefore, their performance is crucial for the efficiency
of high-level cryptographic protocols. Inversions are much more expensive compu-
tationally than multiplications but they can be almost totally avoided using a projec-
tive representation of the curve.

Concluding, ordinary processors are not particularly suited for efficient working
on multiprecision operands and can be very inefficient in managing binary field
GF(2m) operations. For these reasons, specific ISEs have been studied to improve
the ECC performance on these platforms.

9.3.3.1 Extended Instructions

Fiskiran and Lee in [16] do an extensive study on the performance of the elliptic
curve public-key cryptosystem and, in particular, on the performance of the binary
field GF(2m) operations needed by ECC. The elements of a binary extension field are
polynomials with coefficients from {0,1}, having high degree (e.g., 162, 192, 232).
They highlight that the main bottleneck of performance is due to the fact that key
arithmetic operations on these polynomials, such as squaring and multiplication, are
not supported by integer-oriented processor architectures. Instead, these are imple-
mented in software, causing a very large fraction of the cryptography execution time
to be dominated by a few elementary operations. For example, more than 90% of the
execution time of 163-bit ECC may be consumed by two simple field operations:
squaring and multiplication. The authors derived these results from an implementa-
tion of ECC on an Intel Pentium-II workstation. They used the Montgomery scalar
multiplication algorithm described by Lopez et al. in [40] and which is the fastest
method that does not require significant precomputations and/or storage.
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They show that typical high-level application benchmarks for security pro-
tocols (EC Diffie-Hellman key-exchange protocol, EC digital signature genera-
tion/verification, and El-Gamal encryption/decryption) spend from about 94% up
to 99% of the time in EC scalar multiplication k[P]. For this reason, the perfor-
mance of this EC operation can be addressed in isolation as a good measure for
overall application performance.

Using an instrumented version, through gprof GNU tool, of the scalar multipli-
cation benchmark, the authors were able to break down the execution time of k[P]
on the Pentium-II into the time components spent in the various code regions. In this
way, it was possible to measure the time spent into squaring (with reduction), multi-
plication (with reduction), inversion and other modular operations. Table 9.2 shows
these results and highlights that modular squaring and multiplication are the most
important as they take 6.33% and 87.25% of the total execution time, respectively.
Therefore, according to Amdahl’s law, modular multiplication is the first target of
possible optimizations for speeding up ECC.

The authors first analyze the intrinsic features of these field operations in order
to understand the limits achievable through more complex processor microarchitec-
tures. Using SimpleScalar [5], a cycle-accurate simulator for computer architecture,
they simulate single-issue and multiple-issue processors (i.e., capable of managing
more than one instruction per cycle due to the parallelism in their pipeline). Re-
sults show that the critical operations (multiplication and squaring) implemented in
software can have a speedup of more than 1.9x for a two-way execution core and
more than 3.4x for a four-way one. This indicates the presence of a good number
of independent instructions close to each other in the dynamic instruction flow of
these benchmarks. The independent instructions are likely to originate from the op-
erations on the various words that make up the field elements (e.g., six 32-bit words
for each 163-bit field element).

In addition, the authors show that adding one more load/store unit, to increase the
memory bandwidth, brings almost no benefits to a two-way issue machine, while it
improves slightly the performance of a four-way issue machine. Obviously, these
results are very biased by the particular software implementation of the field opera-
tions. For instance, software implementations that rely on look-up tables of precom-
puted results are likely to benefit more from memory bandwidth increase. However,
these results show that a relatively complex general-purpose processor can improve
ECC performance significantly compared to a simple one.

Then, the authors investigate the effects of including a specific ISA support for
word-level polynomial multiplication. They propose a bfmul instruction that works

Table 9.2 Execution time quote of finite-field operations in EC scalar multiplication k[P].

Operation % of Total Execution Time
Squaring (including reduction) 6.33
Multiplication (including reduction) 87.25
Inversion 1.51
Other 4.91
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on two 32-bit operands and outputs the 64-bit product on a couple of special 32-bit
registers RH and RL. The speedup of polynomial multiplication using this instruc-
tion on a single issue processor is almost 25x. The authors also analyze a simpler
unit that can write only 32-bits of the result at a time. In this case, even if two in-
structions bfmul.lo and bfmul.hi are needed to obtain the lower and higher word of
the result, respectively, the achieved speedup is still more than 24x. This indicates
that even a narrower interface between the multiplier unit and the existing datapath
is able to be effective.

In addition, the authors highlight that, using a rev instruction, which reverses the
bit order within a word (i.e., the most significant bit becomes the least significant one
and so on), it is possible to substitute the bfmul.hi instruction by three rev instruc-
tions (two of them can be executed in parallel), a bfmul.lo and a shift instruction.
In this way, the circuit can be further simplified because the circuit for bit reversing
is far simpler than the one for bfmul.hi, as it does not need any logic gate but only
wiring. Note that, for a number of DSP processors, the rev instruction comes for
free because it is already part of their standard ISA. This is the code fragment that
can substitute the bfmul.hi instruction:

rev t1, a # t1, t2 are temporary variables
rev t2, b # two rev instructions are independent
bfmul.lo t1, t1, t2
slli t1, t1, 1 # 1-bit logical shift left
rev t, t1

This approach allows a speedup of more than 17x over the single-issue machine,
which is significantly lower than in the case of the other more complex approaches,
but it is still a very good solution for designs where the hardware modifications have
to be kept as small as possible.

In the same paper, the authors also address a possible extension for the the squar-
ing operation in binary fields. Recall that the square of a binary polynomial has the
same bits as the operand, but with zeroes interleaved between each pair of them. This
can be easily accomplished by the shuffle instruction inspired by the DSP world.
Such instruction reads one bit at a time alternatively from the two source registers
and inserts them into the destination register. In this way, if the first register holds
the polynomial coefficients and the second one holds zero, the output result is the
squaring of the polynomial.

Again, some issues might come into the game because of the width of the out-
put. In order to maintain the shuffle instruction with one-word output, it must work
on half-word operands. For instance, shuffle.lo and shuffle.hi instructions could be
provided so that the low and the high half-words could be processed, separately. Ac-
tually, the shuffle.hi can be emulated with a pair of preliminary shifts on the operands
and using the shuffle.lo, reduce the overall circuit complexity.

The speedup of finite field squaring using the shuffle instruction is 3.8x over the
software implementation.

Fiskiran and Lee further investigate the usage of complex processor microar-
chitectures when the above-mentioned extensions are available. A two-way issue
processor, with either one or two load/store units and one or two multiplier units,
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deliver about 1.75x speedup, which is slightly lower, but still in line with the results
of the unmodified processor. In comparison, a four-way issue processor, with one or
two load/store units and one or two multipliers, gives a speedup of about 2.2x, which
is significantly lower than in the case of the software version on the unmodified pro-
cessor. This means that the software that uses the ISE has a lower instruction-level
parallelism (ILP) than the original one and, because of that, complex wide-issue
general-purpose architectures are less beneficial in this case. However, the adoption
of bfmul and shuffle instructions allow one to speed up the application-level bench-
mark (EC point multiplication) by more than 7.5x for a single issue processor and
up to more than 22x for a four-issue processor with four ALUs, two load/store units,
and two multiplier units. The adoption of the simpler variants of bfmul and shuffle
do not affect these results too much.

The possible benefits from the usage of a specific optimized operation for word-
level polynomial multiplication were first highlighted by Koç et al. in [34], where
this operation was named MULGF.

Großshädl et al. in [22] highlight a proposal for fast ECC over binary fields
GF(2m) on a possible 16-bit smart card architecture. The contribution highlights
the difficulty of implementing polynomial multiplication on the limited general-
purpose architecture of a smart card. The authors propose the integration of a word-
level polynomial multiplier unit within the existing datapath of the processor. They
highlight that the overhead in hardware complexity can be very limited because the
polynomial multiplier can share the same circuit as the integer one if a dual-field
adder (DFA) [48] is used.

In fact, the DFA, shown in Figure 9.14 for only one bit addition, can be em-
ployed within the multiplier circuit so that the partial-product accumulation can
be done using integer additions, when fsel=1, or polynomial additions (i.e., XOR
operations), when fsel=0. The authors highlight that the selection logic of a dual-
field adder increases the area and the delay compared to a standard full adder, but
when it works in polynomial mode, two NAND gates are forced to one and only the
two XOR gates contribute to the dynamic power consumption. In this way, if the
power consumption due to leakage is negligible compared to dynamic power, the
DFA consumes significantly less power when working in polynomial mode than in
integer mode.

Given the availability of the word-level multiplier for polynomials, and the corre-
sponding new instruction MULGF2, word-level algorithms for multiprecision mul-
tiplication, squaring and modulo reduction can be employed in place of the bit-
oriented ones. In this way, the machine parallelism can be fully exploited also in
polynomial computations. For instance, as shown in Algorithm 1, the word-level
schoolbook pencil-and-paper method for polynomial multiplication translates into
a number of MULGF2 instructions, marked as ⊗, and word-level XOR instructions,
marked as ⊕. Any iteration of the inner loop carries out an operation of the form
(ũ, ṽ) ← r̃i+ j ⊕ (ã j ⊗ b̃i)⊕ ũ. The tuple (ũ, ṽ) is a double-precision quantity repre-
senting u(t) · tw + v(t) (i.e., a polynomial of degree 2w-1, where w is the processor
word width).
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Fig. 9.14 Structure of a dual-field adder.

Algorithm 1 Pencil-and-paper method.

Input: Binary polynomials a(t) = (ãs−1, ..., ã0) and b(t) = (b̃s−1, ..., b̃0) consisting of s word each
Output: Product r(t) = a(t)⊗b(t) = (r̃2s−1, ..., r̃0).
1: r(t) ⇐ 0
2: for i from 0 by 1 to s−1 do
3: ũ ⇐ 0
4: for j from 0 by 1 to s−1 do
5: (ũ, ṽ) ⇐ r̃i+ j ⊕ (ã j ⊗ b̃i)⊕ ũ
6: r̃i+ j ⇐ ṽ
7: end for
8: r̃s+i ⇐ ũ
9: end for

10: return r(t)

The Comba multiplication method [7] is shown in Algorithm 2. Comba’s method
forms the product r(t) by computing each word r̃i of the result at a time, starting with
the least significant word r̃0. The partial products ã j ⊕ b̃i are processed by columns
instead of by rows as in the schoolbook pencil-and-paper method.

Comba’s method for long integer multiplication can deliver performance advan-
tages on processors having a multiply/accumulate unit (e.g., digital signal processors)
[18] because each word of the result is calculated by repeated multiply/accumulate
(MAC) operations. Another potential advantage of Comba’s method originates from
keeping the running sum (ũ, ṽ) in a register pair because, in this way, no store in-
structions are needed during the multiply/accumulates for computing each result
word. Conversely, each iteration of the inner loop of schoolbook algorithm requires
three memory accesses in order to load the values of ã j and r̃i+ j, and write back the
result to r̃i+ j.

In other words, Comba’s method eliminates the write-back operation by changing
the order of partial-product generation/accumulation such that each word of r(t) is
computed completely before passing to the next one.

However, possible drawbacks of Comba’s method can originate from the re-
versed addressing of the words of the operands a(t) and b(t), along with the
more complicated loop control. Nevertheless, on processors that support an
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Algorithm 2 Comba’s method for binary polynomials.

Input: Binary polynomials a(t) = (ãs−1, ..., ã0) and b(t) = (b̃s−1, ..., b̃0) consisting of s word each
Output: Product r(t) = a(t)⊗b(t) = (r̃2s−1, ..., r̃0).
1: (ũ, ṽ) ⇐ 0
2: for i from 0 by 1 to s−1 do
3: for j from 0 by 1 to i do
4: (ũ, ṽ) ⇐ (ũ, ṽ)⊕ (ã j ⊗ b̃i− j)
5: end for
6: r̃i ⇐ ṽ
7: ṽ ⇐ ũ, ũ ⇐ 0
8: end for
9: for i from s by 1 to 2s−2 do

10: for j from i− s+1 by 1 to s−1 do
11: (ũ, ṽ) ⇐ (ũ, ṽ)⊕ (ã j ⊗ b̃i− j)
12: end for
13: r̃i ⇐ ṽ
14: ṽ ⇐ ũ, ũ ⇐ 0
15: end for
16: r̃2s−1 ⇐ ṽ
17: return r(t)

auto-increment/decrement addressing mode, the first drawback might be canceled
because the computation of the addresses of ã j and b̃i− j comes for free.

The effects on performance of the memory behavior of Comba’s method depend
on the features and speed of the memory subsystem (i.e., cache, if any, buses and
RAM chips) of the target processor. It is very interesting to observe that the actual
performance of different algorithms can be highly affected by the features of the ex-
ecution platform: the availability of special instructions, as well as, the organization
and speed of the memory system. Therefore, the selection, and the tuning, of the
most performing algorithm must take into account very precisely the architecture of
the system that will be running the specific implementation of the algorithm.

Großshädl et al. in [56] use ECC as a case study for analyzing when ISE can
change algorithm design. The main results of the work are the following. First, ISE
can reverse the relative interest of different algorithm versions. Second, automatic
exploration of the best ISE can be viable for an algorithm designer in this field.
In fact, they show that the considered automatic exploration tool was able to derive
similar results as the ones obtained through manual exploration and simulation, even
if with less accuracy in the performance estimates.

The authors present possible alternative algorithms for polynomial multiplica-
tions both in GF(p) and GF(2m) finite fields and show how, in both cases, specific
ISEs can help to boost performance.

For their experiments, the authors use the MIPS32 architecture, which has a
multiply-and-accumulate integer instruction (MADDU) that can be very useful in
the GF(p) multiplication algorithms. The MADDU instruction was aimed to DSP-
like computations and operates as follows: multiplies two 32-bit words, adds the
product to the 64-bit value in the concatenated HI/LO register pair, and writes back
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L1: lw $t0, 0($t1) #load A[j]
addiu $t1, $t1, 4 #increment A pointer
multu $t0, $t4 #A[j]*B[i]
lw $t2, 0($t3) #load Z[i+j]
maddu $t5, $t7 #add old U to product
maddu $t2, $t7 #add z[i+j] to product
addiu $t3, $t3, 4 #increment Z pointer
mflo $t6 #read V
mfhi $t5 #read U
sw $t6, -4(t3) #write V to Z[i+j]
bne $t1, $t8, L1 #if j!= s branch to L1

Fig. 9.15 Implementation of the inner loop of schoolbook multiplication in GF(p).

the result to HI/LO. Using the MADDU instruction, the core-loop of the school-
book pencil-and-paper method (a · b + z + u, where a,b,z,u are 32-bit values) can
be mapped on only 11 instructions as in Figure 9.15. The main residual problem
in this method is that the two additions of 32-bit values to the 64-bit product might
generate carry bits and so they must be managed as double-precision additions, with
increased complexity.

The authors describe that if the instruction set could be augmented with an in-
struction that is able to perform multiply, accumulate and the two additions (named
MADDL as in [20]), the inner loop could be made even faster. This extension can in-
crease slightly the area and the delay of the circuit but could shrink the code shown
in Figure 9.15 from 11 down to only 7 instructions. Apart from the details that can
be found in [20], if load/stores are assumed to hit in the data cache in both cases,
all instructions can be assumed to run in one cycle. In this way, MADDL instruction
can enable a significant speedup (1.57x) over the code that uses MADDU.

For the inner loop of Comba’s method on GF(p) fields, the MADDU instruc-
tion appears to provide exactly the functionality needed by the concatenated mul-
tiply/accumulate operations. However, multiple accumulations on the 64-bit HI/LO
register pair cannot be done without possible overflow. For this reason, even using
MADDU instruction, the inner loop of Comba’s takes no less than 18 cycles. How-
ever, another simple custom instruction extension could be very beneficial in this
case. If the accumulator of the MADDU (HI/LO pair) is widened, for instance HI
register is extended to 40-bit, up to 256 MADDU could be performed without risk
of overflow. This could be enough for ECC applications and would not increase
significantly the complexity and the delay of the circuit. Großshädl et al. highlight
that a careful implementation of the Comba core loop, employing this modification,
could be run in only 6 clock cycles. In this way, the possibility of customizing the
instruction set according to the algorithm features allows the slowest algorithm with
unmodified ISA (Comba) to be the absolute fastest when a custom-tailored ISA is
employed.

On GF(2m) fields, the authors perform a similar analysis and show that, using the
standard ISA, the inner loop of the polynomial multiplication can execute in only
10 cycles. It seems in line with GF(p), but the difference is huge because the inner
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loop on GF(2m) is performed many more times because of the lack of word-level
instructions for polynomials. The number of iterations is a function of the number
of bits of the operands instead of the number of words, as shown in Algorithm 3 for
the shift-and-XOR multiplication algorithm.

Several improvements on this method have been proposed and, essentially, they
rely on precomputed look-up tables which limit the number of operations. The look-
up table must be calculated online because it contains multiples of a(t) and, there-
fore, the table length has to be tuned taking into account the trade-off between the
pre-computation overhead and the resulting performance benefits. This trade-off is
certainly dependent on the particular processor features. For instance, in [26, 41] the
best trade-off is shown to be a 16-entry table (i.e., 16 multiples of a(t)), which al-
lows it to process b(t) four bits at a time. In this way, only 1/4 of the multiprecision
shifts are needed, where each one is a four-bit shift.

The usage of a look-up table causes the memory traffic to increase in the inner
loop and increases the overall memory footprint of the algorithm.

Algorithm 3 Pencil-and-paper method.

Input: Binary polynomials a(t) = (ãs−1, ..., ã0) and b(t) = (b̃s−1, ..., b̃0) consisting of s words
each

Output: Product r(t) = a(t)⊗b(t) = (r̃2s−1, ..., r̃0).
1: r(t) ⇐ 0
2: for i from 0 by 1 to s−1 do
3: ũ ⇐ 0
4: for j from 0 by 1 to s−1 do
5: (ũ, ṽ) ⇐ r̃i+ j ⊕ (ã j ⊗ b̃i)⊕ ũ
6: r̃i+ j ⇐ ṽ
7: end for
8: r̃s+i ⇐ ũ
9: end for

10: return r(t)

If a word-level approach is also used in GF(2m), the performance of the multipli-
cation algorithm becomes strictly related to the efficiency of the MULGF2 opera-
tion (i.e., multiplication of two 32-bit polynomials, obtaining a 63-bit result), which
must be implemented in software using the standard processor ISA. The authors of
[56], highlight that the sole MULGF2 operation can be emulated in no less than 190
cycles on their MIPS32 processor, in the case of a GF(2191) binary field.

The hardware implementation of the MULGF2 operation is possible on a poly-
nomial multiplier or even on a unified dual-field multiplier [48], able to manage
integers and polynomials at the cost of a small increase in area and delay. The perfor-
mance benefits are impressive because the hardware MULGF2 can be implemented
to run in only one or two cycles, against 190 of the software emulation.

Table 9.3 shows the experimental results of the performance of the multiplication
algorithm, as well as of the EC scalar multiplication operation, for both standard ISA
and algorithm-specific ISE.
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Table 9.3 Execution time (cycles) of the various multiplication algorithms on GF(p) and GF(2m)
for the standard ISA and with algorithm-specific ISE.

Operation GF(p) GF(p) GF(2m) GF(2m)
Schoolbook Comba Shift-XOR Word-level

Field mul. (std ISA) 629 827 2758 7848
Field mul. (with ISE) 485 441 2151 456

Point mul. (std ISA) 2160k 2840k 4050k 10420k
Point mul. (with ISE) 1670k 1470k 3280k 870k

The table shows very interesting results for ECC on both prime and binary fields
at the same security level: GF(p), with p = 2192−264−1, and GF(2191). The fastest
multiplication operation on the field is achieved for GF(p) with the described ISE
(441 cycles), even if the result for GF(2m) and custom ISE is very close to it (456
cycles).

However, the results for the EC scalar multiplication k[P], which is significant at
application level, show a different trade-off. GF(2m) results significantly outperform
GF(p) ones (870 vs. 1470 kilo cycles), indicating the complex interaction between
architectural features of the target system, the instruction set architecture and its
extensions, the field-level, and the EC-level algorithms.

In a previous paper [23], Großshädl et al. highlight the useful ISEs for prime
(GF(p)) and binary (GF(2m)) finite fields and present some additional instructions
to the ones that we have already described. For instance, on GF(p), they propose
M2ADDU Rs, Rt which is a slightly modified multiply-and-accumulate (MADDU)
which doubles the partial product before accumulation. The additional complexity
is negligible because doubling on integers requires only a left shift. This instruction
is very useful in multiple-precision squaring of integers.

The ADDAU Rs, Rt adds the two input registers and accumulates the result on
the HI/LO register pair. This is useful to support multiple-precision addition and
reduction modulo a generalized Mersenne prime.

The SHA performs a 32-bit right shift of the HI/LO accumulator, in order to move
the value in HI into the LO register.

For GF(2m), they propose MULGF2 Rs, Rt and MADDGF2 Rs, Rt, which per-
form the word-level polynomial multiplication and multiply-and-accumulate, re-
spectively.

As a training exercise, the reader is encouraged to study the paper [21], which
presents a study on possible ISEs in the case of optimal extension fields (OEF). The
approach has similarities with the other ones already discussed but has also some
differences originating from the specific features of OEFs.

A similar study has been conducted by Eberle et al. in [10] on an 8-bit AT-
mega128 8 MHz processor. The authors show that simple extensions of the available
datapath suffice to efficiently support ECC over GF(2m) and, in addition, to outper-
form GF(p). The extensions include a dual-field multiplier for both integers and
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polynomials using the carry-save adder (CSA) tree structure. The proposed ISEs
comprise MULX and MULACCX instructions, which are designed so as to maintain
compatibility with existing instructions (i.e., two operands only), and the existing
datapath (i.e., up to two source operands can be read and two destination operands
can be written by a functional unit).

• MULX Rd , Rr instruction performs the polynomial multiplications between Rd

and Rr and puts the doubleword result into the R1:R0 register pair.
• MULACCX Rd , Rr instruction performs a multiply-accumulate operation with

extended carry. In particular, Rd ← bits[7 : 0]((Rr ⊗Rc)⊕XC⊕Rd), and XC ←
bits[15 : 8]((Rr ⊗Rc)⊕XC⊕Rd), where Rc is an implicit architectural register
and XC is a non-architectural register. Note that Rc must be loaded prior to exe-
cuting MULACCX.

Figure 9.16 shows in grey the words that can be fruitfully managed by a MU-
LACCX instruction. In fact, the basic idea is to reuse in the following MULACCX
the XC part of the result obtained by the previous one. In particular, the instruction
would be used in this way: MULACCX Rd , Rr, where Rd = Bn, Rr = cn+p, would
calculate cn+p = (ap⊗bn)⊕(bits[15 : 8](ap⊗bn−1)⊕cn+p), where Rc holds ap and
XC holds bits[15 : 8](ap ⊗bn−1). The example in the figure highlights when p = 1
and n = 3.

Note that the XC register is not explicitly accessible to the programmer. When
XC must be saved and restored, for instance because of a system call, its value can
be retrieved using a dummy MULACCX Rd = 0, Rr = 0 instruction to move XC
value to Rd . The dual operation can be performed by a similar technique (the reader
should look for it as a useful training exercise).

The performance originating from such ISEs are significant: 0.40 and 0.29 sec-
onds for EC scalar multiplication on GF(2163) using MULX and MULACCX ,1

A

C

B

Fig. 9.16 Multiple-precision multiplication in GF(2m). MULACCX instruction can speed up the
management of the data highlighted in grey.

1 executing in one cycle.
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respectively, compared to 4.14 seconds of the unmodified ISA. Moreover, the per-
formance of k[P] for GF(p) on a 160-bit prime is 0.81 seconds.

As a comparison, RSA performance for the same security level (1024-bit), are
0.43 and 10.99 seconds for public-key and private-key operations, respectively.
Moreover, switching to higher security level, 2048-bit RSA and 233-bit ECC, the
speedup given by the ISE over the standard ISA is almost the same (about 14x) but
the performance gap between ECC and RSA widens. In fact, in this case, ECC with
MULX and MULACCX runs in 1.12 and 0.81 seconds, respectively, against 10.98
seconds of the unmodified ISA, while RSA public-key and private-key timings are
1.94 and 83.26 seconds, respectively.

Bartolini et al. in [1] analyze the performance of some ECC applications
(Diffie-Hellman key-exchange, digital-signature algorithm, El-Gamal encryption/
decryption) on a 32-bit ARM-based Intel XScale processor. The performances are
investigated through SimpleScalar, [5] a cycle-accurate simulator of the target pro-
cessor which allows one to analyze the behavior of all internal modules of the pro-
cessor, as well as of the memory hierarchy (i.e., caches, memory bus, RAM). A
specifically modified version of the simulator allowed to highlight the time spent in
each of the finite-field, elliptic-curve and other operations.

Figure 9.17 shows that 32-bit word-level polynomial multiplication (mr mul2)
takes up a significant fraction of the time on the considered benchmarks. In particu-
lar, from 18% in the digital signature benchmarks (ecDSsign and ecDSver), which,
however, spend more than 64% of the time in hash generation and file reading, up
to 54% in Diffie-Hellman key-exchange protocol (ecDH).

Operation mr mul2 is the software procedure that performs a 32-bit word-level
polynomial multiplication, similar to the MULGF2 operation cited by Koç and Acar
in [34]. The procedure is optimized through loop unrolling and by the use of a small
look-up table that speeds up the shift-and-XOR approach. However, on the given
architecture and with the particular library (MIRACL [53]), it takes about 400 dy-
namic instructions (roughly 500 cycles), which correspond to about 12 instructions
per bit. The library is able to support different operand sizes and, therefore, is not
fully optimized for a particular key size.

Apart from mr mul2, the other operations highlighted in Figure 9.17 are:

• reduce2: GF(2m) modulo reduction
• mr sqr2 and square2: word-level and GF(2m) squaring, respectively
• karmul2: manages Karatsuba algorithm for GF(2m) polynomial multiplication
• mr bottom4: a base case of Karatsuba algorithm
• add2: GF(2m) addition, i.e. XOR operation over m-bit polynomials
• numbits: bit count
• hash and file read: hash algorithm and file-reading activities
• other: other functions for the management of finite-field values

The figure highlights that, among the cryptographic operations, the most time-
consuming one is mr mul2, and then, with a notably smaller weight, the modular
reduction, word-level squaring and the multiprecision management of Karatsuba
multiplication.
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Fig. 9.17 Execution time breakdown for various EC benchmarks. Legend items are positioned
clockwise on the pies and the word-level 32-bit polynomial multiplication (mr mul2) is high-
lighted.

The authors evaluate the effects of including a 32-bit word-level polynomial mul-
tiplication instruction, named MULGF, to support mr mul2 in hardware through a
specific multiplier unit. A specific multiplier could be used, simpler than the integer
one, or a dual-field multiplier [48] for both polynomials and integers. The latency
of the multiplier is modeled conservatively, equal to the integer multiplier: three
cycles, which is reasonable because the polynomial multiplication circuit can be
quicker than the integer one because of the lack of carry propagation. The software
procedure for word-level polynomial multiplication was substituted by the MULGF
instruction throughout the ECC library using assembler inlining, and the GCC cross-
compiler was modified for managing the additional MULGF instruction. In this way,
the compiler is able to apply a number of optimizations to the extended instruc-
tion flow (e.g., instruction scheduling, register allocation, generation of machine
code).
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Table 9.4 Effects of the adoption of MULGF instruction on both execution time and on the number
of executed instructions.

Benchmark Execution time % Dyn. instruction %
ecDH -54 -55
ecElGenc -39 -48
ecElGdec -35 -37
ecDSsign -17 -19
ecDSver -17 -19

In this way, the 400 dynamic instructions for executing mr mul2 are collapsed
into only one MULGF instruction and, correspondingly, the 500 cycles of the soft-
ware mr mul2 are distilled into the MULGF latency of three cycles.

For GF(2233), Table 9.4 shows that the resulting improvement in execution time
is more significant for Diffie-Hellman (54% in number of instructions and 55% in
execution time) and El-Gamal algorithms (48% and 37% less instructions for en-
cryption and decryption, respectively, corresponding to 39% and 35% less execu-
tion time), where 32-bit polynomial multiplication is used more. The improvement
for digital signature algorithm is less evident (19% in instruction number and 17%
in execution time for the same key length) because of the included hash time.

Apart from the plain performance speedup, the authors investigate on the ori-
gins of the performance and highlight the effects of the ISE on the instruction-level
parallelism that the processor is able to exploit. Figure 9.18 shows the cycles per
instruction (CPI) performance metric in the case of a 1Byte I-Cache and D-Cache
organization. The CPI is split into the cycles spent for actual execution of the instruc-
tions (CPI-processor) and the cycles spent in waiting for memory (CPI-memory):
operands (load/stores) or instructions (fetch). In addition to reducing the number
of dynamically executed instructions, the ISE allows one to reduce the CPI, which
means that the processor executes the remaining instructions faster. In particular,
the CPI-memory quote is significantly reduced due to a more efficient behavior of
the caches. This is due to the smaller footprint of the algorithm in terms of exe-
cuted instructions (i.e., less instruction fetches) and to the reduced number of spills
from registers to memory in the computation of the mr mul2 operation (i.e., less
load/stores).

Kumar and Paar in [35] evaluate the usage of a 163-bit full-width coprocessor for
performing modular multiplication on a simple 8-bit processor. They propose that
the additional hardware is closely coupled with the ALU of the processor, reducing
the interface circuitry and aiming for efficient implementation. The circuit is de-
signed to deliver high performance on GF(2163) multiplications, but it cannot be as
flexible as word-level ISE approaches, which can easily accommodate to different-
sized fields.

The proposed extension is able to directly access the data-RAM so that the main
processor can avoid transfer of data to/from memory for using the unit. The pro-
posed 163-bit multiplier unit takes 42 cycles to execute, which become 193 cycles
including all the set up and control overhead.
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Fig. 9.18 Cycles Per Instructions (CPI) for the considered EC benchmarks for original and
MULGF extended instruction set.

The unit is managed through an extended instruction which triggers the func-
tional unit to load the operands (21 8-bit words) directly from memory, to exe-
cute the multiplication and to store back the result to memory. The address of the
operands and of the result should be prepared into three fixed processor registers.
During the multiplication, the processor must poll the unit for understanding when
the operation has finished. An alternative is to implement and program the unit to
raise an interrupt upon completion.

The proposal delivers a speedup of more than 30x over the original software im-
plementation and allows the EC scalar multiplication (k[P]) to execute the operation
in 169ms on a 4 MHz 8-bit microcontroller. In addition, the proposed ISE shrinks
down the code and data size of the k[P] to 2048 and 273 bytes, respectively, whereas
the original application required 8208 and 358 bytes, respectively.

Batina et al. in [29] propose to extend an 8-bit 8051 processor with a full-width
multiply-and-accumulate unit for GF(283) which is interfaced toward the processor
through an 8-bit bus. The unit width is suitable for hyper-elliptic curve cryptography
(HECC) on GF(283) binary field.

The unit presented here is equipped with three full-width registers for holding
modular multiplication operands (A, B) and result (C). Such registers are write
(A,B) and read (C) in 8-bit chunks.

The unit is able to perform full-width multiplication and addition operations,
as well as move operations between C and B register. In this way, multiply and
accumulate can be performed in two steps (multiplication and accumulation) reusing
part of the values already present in the unit.

The performance time for executing a modular multiplication with the new unit
is 28.2 K-cycles. Modular addition is again 28.2 K-cycles, even if the plain circuit
takes 83 cycles for a multiplication and 1 cycle for the addition. This is because
much of the time is spent in I/O operations to transfer the operands to/from the
unit. In software, the corresponding results are 650 K-cycles and 38 K-cycles, re-
spectively. The multiply-and-accumulate operation using the new unit takes advan-
tage of the already available multiplication result and runs in only 30.5 K-cycles.
Also, in HECC, modular multiplication is the most time-consuming operation and
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therefore, ISEs for modular multiplication can be very useful, especially in con-
strained devices.

It is interesting to highlight the proposal from Grabbe et al. [19], which is not
exactly an ISE approach but a processor proposal for finite-field arithmetic and ECC.
In fact the authors propose a very long instruction word (VLIW) processor with a
number of full-width units able to work on 233-bit field values: adder, multiplier
and squarer.

The adder takes 1 cycle to process two or three operands. The multiplier latency
is 9 cycles but it is pipelined so that every two cycles a new operand pair can be fed
to the unit. The latency of the squarer is one cycle.

Two independent register files hold four 233-bit registers each. We will not go
into the details of the architecture of the processor here, because it goes beyond the
scope of this chapter, but we want to highlight a design choice that allowed one to
introduce some high-level instructions for ECC.

In fact, the proposed processor is able to manage the high-level EC opera-
tions through specific instructions which are executed via a microcoded approach.
EC point addition, doubling, inversion, and the scalar multiplication are supported
natively.

Obviously, there is no hardware circuit that executes such instructions as a whole.
Each of these instructions is executed through a sequence of finite-field operations,
supported by the processor functional units, which are orchestrated according to a
microprogram stored in a control unit.

In other words, the processor supports two kinds of instructions, the ones directly
executed by a specific unit (e.g., field squaring, multiplication and addition) and
others, more complex, which are executed through a program that uses the available
processor units.

This can be an interesting approach to raise the level of abstraction of the oper-
ations managed by the processor autonomously. Certainly, this also leads to a less
flexible architecture because the microcode that implements the high-level algo-
rithms is fixed.

However, the availability of the lower-level instructions, allows one to program
explicitly alternative algorithms also for EC operations, even if in a less efficient
way than with microcode.

The performance results of this full-width microcoded approach are impres-
sive: 31 and 42 clock cycles to execute 233-bit EC-doubling and EC-addition,
respectively, which translate into about 12 K-cycles for an average EC scalar mul-
tiplication. The microcode implements the EC scalar multiplication using the add-
and-double technique.

9.4 Exercises

1. Discuss the benefits of elliptic curves for public-key cryptography and show
an instruction-set extension suited for a cryptographic system based on this ap-
proach.
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2. Analyze the performances of the pencil-and-paper and Comba’s methods for
polynomial multiplication discussed in Section 9.3.3. The idea is to implement
the algorithms in a high-level language and then inspect the code. Assume that
assignments and additions/subtractions on integers and logic operations (e.g.,
XOR) take 1 cycle, memory accesses (read/writes) take 3 cycles. Then, consider
the following variant: up to 8 integer values (variables) can be maintained in the
processor registers without the need of update/reread the memory location of the
corresponding variable up to when the register has to be reassigned a new value.
This should refine the estimation of the required memory access time.

9.5 Projects

1. Implement a multiprecision addition and multiplication procedure for 1024-bit
integers and measure the performance through repeated random testing: generate
random numbers for the operands, e.g. using the random number generator of the
adopted high-level language (e.g., outputting 32-bits at a time) to fill the 1024-bit
operands.

2. Implement a simple symmetric block-cipher that uses a 128-bit symmetric key
and works as follows. The plain text is encrypted 128-bit (block) at a time doing
an XOR operation with the key. The decryption process is done exactly in the
same way, using the same key. The key for encrypting a block is obtained by the
key of the previous block multiplying it by 3 and getting the result mod 2128. The
first key is the initial key. Small plaintexts and the last block of bigger ones should
be managed properly. Implement the solution in a high-level language and then
try to apply some optimizations using the assembler on the target machine. For
instance, exploit the carry flag and add with carry instructions for multiprecision
additions.

3. Implement the AES block-cipher from the documentation2 using a high-level
language and analyze the performance of the main high-level operations. A pos-
sible way is to evaluate the performance of each of them separately and then
count the number of times they are called in an AES encryption/decryption. In
this way, an estimate can be drawn for the time spent in each operation by AES.
Then, discuss the performance benefits from possible ISEs that accelerate spe-
cific operations.

4. Implement a multiprecision polynomial library GF(2163), adopting the NIST ir-
reducible polynomial (p(x) = x163 +x7 +x6 +x3 +1) and implementing addition
(XOR), reduction, squaring and multiplication. Try to implement the field op-
erations relying on word-level operations (e.g., 163-bit multiplication, fieldMult,
done in 32-bit chunks, wordMult.) which are implemented in specific functions.
Measure the time spent in the various word-level functions when executing the
high-level field operations and analyze the word-level function that take up most

2 see, e.g., http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
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of the time and thus would deserve a specific ISE. Consider the following rela-
tive number of invocations for the high-level library functions, normalized to 100
overall invocations: modular multiplication 20, modular squaring 60 and addition
20 of the time.
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40. J. López and R. Dahab. Fast multiplication on elliptic curves over GF(2m)
without precomputation. In CHES: International Workshop on Cryptographic
Hardware and Embedded Systems, CHES, LNCS, 1999.



232 Sandro Bartolini, Roberto Giorgi, and Enrico Martinelli
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Chapter 10
FPGA and ASIC Implementations of AES

Kris Gaj and Pawel Chodowiec

10.1 Introduction

In 1997, an effort was initiated to develop a new American encryption standard to
be commonly used well into the next century. This new standard was given a name
AES, Advanced Encryption Standard.

A new algorithm was selected through a contest organized by the National Insti-
tute of Standards and Technology (NIST). By June 1998, 15 candidate algorithms
had been submitted to NIST by research groups from all over the world. After the
first round of analysis was concluded in August 1999, the number of candidates was
reduced to final five. In October 2000, NIST announced its selection of Rijndael [7]
as a winner of the AES contest. The official standard was published in November
2001 as FIPS (Federal Information Processing Standard) number 197 [1].

The primary criteria used by NIST to evaluate AES candidates included security,
efficiency in software and hardware, and flexibility. In the absence of any major
breakthroughs in the cryptanalysis of the final five candidates, and because of the
relatively inconclusive results of their software performance evaluations, hardware
efficiency evaluations presented during the third AES conference provided a very
substantial quantitative measure that clearly differentiated AES candidates among
each other [9, 10, 12, 17, 21, 42]. The importance of this measure was reflected
by a survey performed among the participants of the AES conference, in which the
ranking of the candidate algorithms coincided very well with their relative speed in
hardware [16, 18].

The AES evaluation process resulted in the first efficient hardware architectures
for AES. The university groups contributed first implementations of AES based
on FPGAs (field programmable gate arrays) [5, 9, 11, 18]. The National Secu-
rity Agency group and industry groups provided the first implementations targeting
ASICs (application-specific integrated circuits) [21, 42].
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A substantial progress in the development of the new architectures for AES has
been made after the conclusion of the contest, as a result of focusing research efforts
on a single secret-key encryption standard. This progress proceeded in several major
directions.

One direction was the development of high-speed, highly pipelined architec-
tures for non-feedback cipher modes. This direction led to the development of
AES implementations operating with the speeds of tens of Gigabits per second
[22, 23, 25, 26, 29, 32, 34–36, 41]. The second direction was the development
of compact architectures for AES, optimized for the minimum area. This effort
led to the emergence of architectures with 64-, 32-, and even 8-bit data paths
[2, 6, 19, 20, 27, 33, 45].

The third direction was the optimization of basic operations of AES, including
logic-only implementation of SubBytes [3, 4, 28–31, 33, 44] and optimizations and
decompositions of the MixColumns and InvMixColumns transformations [6, 14, 15,
43]. Still, a different direction was the development of new architectures for the
entire encryption/decryption unit [13].

In this chapter, we will review the AES algorithm from the point of view of
knowledge required for efficient hardware implementations. We will then describe
several alternative ways of implementing all basic operations and the entire cipher.
We will conclude with our recommendations regarding the optimum choice of par-
ticular design options and the entire hardware architecture for AES depending on
requirements of a particular application.

10.2 AES Cipher Description

10.2.1 Basic Features

AES is a symmetric-key block cipher. AES operates on 128-bit data blocks and
accepts 128-, 192-, and 256-bit keys. It is an iterative cipher, which means that both
encryption and decryption consist of multiple iterations of the same basic round
function, as shown in Figure 10.1.

In each round, a different round (or internal) key is being used. In AES, the
number of cipher rounds depends on the size of the key. It is equal to 10, 12, or 14
for 128-, 192-, or 256-bit keys, respectively.

Based on the internal structure of a round function, AES belongs to the group
of SP-network block ciphers. This means that the main transformations employed
in this cipher are substitutions and permutations applied to all bits of data block
in every round. Data blocks are internally represented in a square form, called
State, which is shown in Figure 10.2. In this diagram, each field represents one byte
of data.
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Fig. 10.1 Flowchart of a generic iterative cipher.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3S1,0 S1,1 S1,2 S1,3S2,0 S2,1 S2,2 S2,3S3,0 S3,1 S3,2 S3,3

127 0128-bit block of data

State representation

Fig. 10.2 State representation of 128-bit data blocks.

10.2.2 Round Operations

AES encryption round employs consecutively four main operations: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Since Rijndael is an SP-network ci-
pher, it requires an inversed version of all transformations for decryption. These
inverse transformations are called InvSubBytes, InvShiftRows, InvMixColumns, and
InvAddRoundKey. Please note that the last transformation of an encryption round,
AddRoundKey, is equivalent to a bitwise XOR and therefore is an inverse of itself.
The structure of encryption and decryption rounds is shown in Figure 10.3.
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SubBytes

ShiftRows

MixColumns

AddRoundKey

a) encryption round

State'

State

InvSubBytes

InvShiftRows

InvMixColumns

InvAddRoundKey

b) decryption round

State'

State

Fig. 10.3 Structure of AES encryption and decryption round.

10.2.2.1 Operations in the Galois Field GF(28)

Two of the AES round operations, SubBytes and MixColumns, rely on operations
in the Galois field GF(28). Each element of this field can be treated as either an
8-bit string (in the binary or hexadecimal representation) or as a polynomial of de-
gree seven or less, with coefficients in {0,1} (polynomial basis representation). The
coefficients of a polynomial are equal to the respective bits of the binary represen-
tation. For example, {03} in hexadecimal is equivalent to {0000 0011} in binary,
and to

c(x) = 0 · x7 + 0 · x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 1 · x + 1 ·1 = x + 1 (10.1)

in the polynomial basis representation. The multiplication of elements of GF(28) in
AES is accomplished by multiplying the corresponding polynomials modulo a fixed
irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.

For example, multiplying a variable element a = a7a6a5a4a3a2a1a0 by a constant
element {03} is equivalent to computing

b(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0

= (a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0) · (x + 1)
mod (x8 + x4 + x3 + x + 1) (10.2)

After several simple transformations

b(x) = (a7 + a6) · x7 +(a6 + a5) · x6 +(a5 + a4) · x5 +(a7 + a4 + a3) · x4

+(a7 + a3 + a2) · x3 +(a2 + a1) · x2 +(a7 + a1 + a0) · x +(a7 + a0)
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where “+” represents an addition modulo 2, i.e., an XOR operation. Each bit of a
product b can be represented as an XOR function of at most three variable input
bits, e.g., b7 = (a7 + a6) , b4 = (a4 + a3 + a7), etc.

10.2.2.2 SubBytes and InvSubBytes

The SubBytes operation transforms individual bytes of the internal state as shown in
Figure 10.4. Internally, it is composed of two basic operations:

1. Multiplicative inversion in the Galois field GF(28) with the reduction polynomial
m(x) specified by Equation (10.3). Element {00} is mapped onto itself.

m(x) = x8 + x4 + x3 + x + 1 (10.3)

2. Affine transformation over GF(2):

b′i = bi + b(i+4) mod 8 + b(i+5) mod 8 + b(i+6) mod 8 + b(i+7) mod 8 + ci (10.4)

where byte c has value {63} or {01100011}.
Equation (10.5) shows the affine transformations in the matrix form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.5)

The inversed version of SubBytes, called InvSubBytes, employs identical multi-
plicative inversion in GF(28) and an inversed affine transformation. Equation (10.6)
shows the inverse affine transformations in the matrix form:

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

SubBytes

Fig. 10.4 Application of SubBytes to State.



240 Kris Gaj and Pawel Chodowiec⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

b5

b6

b7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.6)

The corresponding equation in GF(2) is given in (10.7) as

b′i = b(i+2) mod 8 + b(i+5) mod 8 + b(i+7) mod 8 + di (10.7)

The internal structure of SubBytes and InvSubBytes is shown in Figure 10.5.

10.2.2.3 ShiftRows and InvShiftRows

The ShiftRows and InvShiftRows cyclically shift three bottom rows of the State by
a different number of positions, one, two, and three, respectively, as shown in Fig-
ure 10.6. Without those operations all-round transformations would be limited only
to the columns of the State.

10.2.2.4 MixColumns and InvMixColumns

MixColumns and InvMixColumns operations are defined over 4-byte words that rep-
resent a column of the State as shown in Figure 10.7. These 4-byte words are con-
sidered as polynomials (of degree of at most 3) with coefficients in K = GF(28),
defined in the ring of polynomials K[X ] modulo M(X) = X4 + 1 and denoted as

Inverse in GF(28)

affine
transformation

inverse affine
transformation

Inverse in GF(28)

SubBytes InvSubBytes

Fig. 10.5 Composition of SubBytes and InvSubBytes.
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S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

ShiftRows

Fig. 10.6 ShiftRows transforming rows of a State.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S'0,0 S'0,1 S'0,2 S'0,3

S'1,0 S'1,1 S'1,2 S'1,3

S'2,0 S'2,1 S'2,2 S'2,3

S'3,0 S'3,1 S'3,2 S'3,3

MixColumns

Fig. 10.7 MixColumns transforming a column of a State.

R = K[X ]/(X4 +1). Addition of these polynomials corresponds to bit-wise XOR of
their coefficients. Their multiplication is reduced modulo M(X) = X4 + 1.

Since X j mod (X4 + 1) = X j mod 4, the operation consisting of multiplication of
a(X) = a3X3 +a2X2 +a1X +a0 by a fixed polynomial c(X) = c3X3 +c2X2 +c1X +
c0 gives a product

B(X) = b3X3 + b2X2 + b1X + b0

= (c3a0 + c2a1 + c1a2 + c0a3)X3

+(c2a0 + c1a1 + c0a2 + c3a3)X2

+(c1a0 + c0a1 + c3a2 + c2a3)X
(c0a0 + c3a1 + c2a2 + c1a3) (10.8)

This operation can be written as a multiplication of a vector [A] by a circular
matrix [C]: ⎡

⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

c0 c3 c2 c1

c1 c0 c3 c2

c2 c1 c0 c3

c3 c2 c1 c0

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.9)

The polynomial M(X) was selected such that it effectively shifts rows of the
State. From the cryptographical point of view, this operation mixes bytes across the
State and creates a strong dependence between all input bytes a0 . . .a3 and an output
byte bi.

The MixColumns transformation multiplies each column of the State by a con-
stant polynomial c(X) in the ring R. The c(X) is defined as follows:
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c(X) = (x + 1)X3 + X2 + X + x (10.10)

The InvMixColumns transformation is the inverse of the MixColumns operation.
InvMixColumns multiplies each column of the State by

d(X) = (x3 + x + 1)X3 +(x3 + x2 + 1)X2 +(x3 + 1)X +(x3 + x2 + x) (10.11)

where d(X) = c−1(X) is the inverse of c(X) in R. Polynomials c(X) and d(X) are
often expressed with coefficients in the hexadecimal format:

c(X) = 03 ·X3 + 01 ·X2 + 01 ·X + 02 (10.12)

d(X) = 0B ·X3 + 0D ·X2 + 09 ·X + 0E (10.13)

Multiplication of one column of the State by c(X) in R (part of the MixColumns
operation) can be written in a matrix form:⎡

⎢⎢⎣
b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.14)

The expression of the InvMixColumns operation in a matrix form is as follows:⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎥⎦ ·
⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.15)

Polynomials representing columns of a State have coefficients which are con-
sidered as polynomials (of degree of at most 7) with coefficients in Galois field
GF(2). A byte a(x) (or a in simplified notation) is a sum a(x) = ∑0≤i≤7 αixi, where
αi ∈ {0,1}. In other words, bytes a are elements of the Galois field K = GF(28)
constructed using the reduction polynomial m(x) = x8 + x4 + x3 + x + 1.

K = GF(2)[x]/(x8 + x4 + x3 + x + 1) (10.16)

Addition of polynomials in K corresponds to simple bit-wise exclusive OR (XOR)
of the polynomial coefficients. Multiplication of polynomials in the field K corre-
sponds to their multiplication modulo irreducible polynomial m(x) from Equation
(10.3). The same polynomial is used in the SubBytes operation for calculation of a
multiplicative inverse.

10.2.3 Iterative Structure

A flowchart describing AES encryption in terms of basic operations—SubBytes,
ShiftRows, MixColumns, and AddRoundKey—is shown in Figure 10.8. Please note
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Fig. 10.8 AES encryption flowchart.

that the number of cipher rounds, Nr, depends on the size of an encryption key. The
first round is preceded by an initial transformation AddRoundKey, in agreement with
a generic structure of an iterative block cipher shown in Figure 10.1. The last round,
number Nr, is slightly different from the remaining Nr − 1 rounds, in that it does
not contain the MixColumns operation.

By a straightforward inversion of the order of operations and by replacing all ba-
sic operations by their respective inverses, we obtain the AES decryption flowchart
shown in Figure 10.9. Simple regrouping of basic operations leads to an equivalent
decryption flowchart, shown in Figure 10.10, which has the same basic structure as
an encryption flowchart. The differences amount to providing round keys in the re-
verse order, replacing all basic operations by their inverses, and swapping the order
of operations one and two, and three and four within each round. The operations
number one and two during each round of encryption, SubBytes and ShiftRows,
can be performed in an arbitrary order, as shown in Figure 10.11a. Similarly, the
operations number one and two during each round of decryption InvShiftRows and
InvSubBytes can be swapped without affecting the result (see Figure 10.11b). By ap-
plying this last change, we obtain the decryption flowchart, shown in Figure 10.12,
which is most often used as a basis of hardware implementation.

10.2.4 Key Scheduling

Key scheduling in AES is a process aimed at generating (Nr + 1) round keys based
on a single external key. This process consists of two phases called KeyExpansion
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Fig. 10.9 AES decryption flowchart obtained by the straightforward inversion of the encryption
flowchart.

Fig. 10.10 AES decryption flowchart after regrouping of basic operations.
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Fig. 10.11 Equivalence between two sequences of basic operations: (a) SubBytes followed by
ShiftRows, (b) InvSubBytes followed by InvShiftRows.

Fig. 10.12 AES decryption flowchart after regrouping of basic operations and swapping InvSub-
Bytes with InvShiftRows.

and RoundKeySelection, as shown in Figure 10.13. Please note that all rectan-
gular fields in this and two subsequent figures correspond to 32-bit words (and not
single bytes).

The pseudocode of KeyExpansion is shown in Figure 10.16. The output ar-
ray of words k[i] is first initialized with the Nk words of the external key, Key.
For majority of subsequent values of i, k[i] is computed by simply XORing an
immediately preceding word k[i-1] with a word Nk positions earlier k[i-Nk],
as shown in Figure 10.14. If an index i is a multiple of Nk, a different transfor-
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Fig. 10.13 Decomposition of key scheduling into KeyExpansion and RoundKeySelection for the
case of Nk = 6 (192-bit key) and Nb = 4 (128-bit data block).

Fig. 10.14 Formula for KeyExpansion for i mod Nk �= 0.

Fig. 10.15 Formula for KeyExpansion for i mod Nk = 0.
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KeyExpansion(byte Key[4*Nk], word k[Nb*(Nr+1)], Nk)
begin

word temp

i=0
while (i < Nk)

k[i] = word(Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3])
i = i+1

end while

i = Nk

while (i < Nb * (Nr+1))
temp = k[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]

else if ((Nk > 6) and (i mod Nk = 4))
temp = SubWord(temp)

end if
k[i] = k[i-Nk] xor temp
i = i + 1

end while

end

Fig. 10.16 Pseudocode for the KeyExpansion phase of KeyScheduling.

mation, shown in Figure 10.15, is used. In this transformation, RotWord is a cyclic
rotation of bytes within a word, SubWord is a SubBytes transformation applied inde-
pendently to each byte of an input word, and Rcon[i] is an array of four constants
defined in GF(28). If (Nk > 6) and (i mod Nk) = 4, a simplified version
of the same transformation is applied.

10.3 FPGA and ASIC Technologies

Cryptographic transformations can be implemented in both software and hardware.
Software implementations are designed and coded in programming languages, such
as C, C++, Java, and assembly language, to be executed, among others, on gen-
eral purpose microprocessors, digital signal processors, and smart cards. Hardware
implementations are designed and coded in hardware description languages, such
as VHDL and Verilog HDL, and are intended to be realized using two major im-
plementation approaches: application-specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs).

Application-specific integrated circuits (ASICs) are designed all the way from
the behavioral description to the physical layout and then sent for a fabrication in
a semiconductor foundry. Field programmable gate array (FPGA) can be bought
off the shelf and reconfigured by designers themselves. With each reconfiguration,



248 Kris Gaj and Pawel Chodowiec

which takes only a fraction of a second, an integrated circuit can perform a com-
pletely different function.

FPGA consists of thousands of universal reconfigurable logic blocks, connected
using reconfigurable interconnects and switches, as shown in Figure 10.17. Addi-
tionally, modern FPGAs contain embedded higher-level components, such as mem-
ory blocks, multipliers, multipliers–accumulators, and even microprocessor cores.
Reconfigurable input/output blocks provide a flexible interface with the outside
world. Reconfiguration, which typically lasts only a fraction of a second, can change
a function of each building block and interconnects among them, leading to a func-
tionally new digital circuit.

In Table 10.1, we collect and contrast features of implementations of crypto-
graphic transformations based on ASICs and FPGAs (hardware) and microproces-
sors (software). The performance characteristics of ASICs and FPGAs are almost
identical, as demonstrated by the first group of features, and substantially differ-
ent from the performance characteristics of general purpose microprocessors. Both
ASICs and FPGAs can make a full use of parallel processing and pipelining and op-
erate on arbitrary size words. In general purpose microprocessors, parallel process-
ing and pipelining are limited by the number and internal structure of the processor
functional units and by the instruction level parallelism. Additionally, all functional
units operate on the fixed-size arguments only.

The primary difference between ASICs and FPGAs in terms of the performance
characteristics is a smaller speed of FPGAs caused by the delays introduced by the
circuitry required for reconfiguration. As a result of this speed penalty, any digital
circuit implemented in an FPGA is typically slower than the same circuit imple-
mented in an ASIC, assuming that both integrated circuits are fabricated using the
same semiconductor technology (in particular, using the same transistor size).

Fig. 10.17 General structure and main building blocks of an FPGA.
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Table 10.1 Characteristic features of implementations of cryptographic transformations in ASICs,
FPGAs, and microprocessors.

ASICs FPGAs Microprocessors

Performance characteristics
Parallel processing Yes Yes Limited
Pipelining Yes Yes Limited
Word size Variable Variable Fixed
Speed Very fast Fast Moderately fast

Functionality
Algorithm agility No Yes Yes
Tamper resistance Strong Limited Weak
Access control Strong Moderate Weak
to keys

Development process
Description VHDL, VHDL, C, C++, Java,
languages Verilog HDL Verilog HDL assembly language
Design cycle Long Moderately long Short
Design tools Very expensive Moderately expensive Inexpensive
Maintenance and Expensive Inexpensive Inexpensive
upgrades

The recent study performed at the University of Toronto [24] quantified the per-
formance differences between the current generation of ASICs and FPGAs. A set
of 23 benchmarks covering applications in the area of cryptography, digital signal
processing, and communications were included in the study. The study concluded
that for circuits containing only combinational logic and flip-flops, the ratio of sil-
icon area required to implement them in FPGAs and ASICs is on average 40. For
circuits that could take advantage of dedicated blocks present in modern FPGAs,
such as multiplier/accumulators and block memories, these blocks reduced the av-
erage area gap significantly to as little as 21. The ratio of critical path delay, from
FPGA to ASIC, was found to be roughly 3–4, with less influence from embedded
memories and embedded logic blocks. The dynamic power consumption ratio was
approximately 12 times and, with hard blocks, this gap generally became smaller.

The common features of FPGAs and microprocessors concern mostly function-
ality and do not affect performance. Both general purpose microprocessors and FP-
GAs can be easily reconfigured in real time to perform a different algorithm. The
disadvantage of this feature is a limited tamper resistance; the contents of an FPGA
can be, at least in theory, modified by an unauthorized user. In practice, the contents
of an FPGA are typically downloaded during the initialization from the read-only
memory, such as EPROM, which cannot be easily tampered with, at least remotely.
The access control to cryptographic keys in FPGAs is also stronger than in software,
but weaker than in ASICs.

The development process in both hardware implementation approaches is very
similar. In both FPGAs and ASICs, the circuit is described using a hardware de-
scription language, verified using a digital circuit simulator, and then tested us-
ing a prototyping board. The primary difference between FPGAs and ASICs is
that FPGAs do not require the physical design (layout), fabrication, and testing for
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physical defects. As a result, the design cycle is significantly shorter and the design
tools and testing much less expensive. The interesting similarity between FPGAs
and software is a possibility of remote maintenance and upgrading, based on elec-
tronic patches.

10.4 Parameters of Hardware Implementations

Hardware implementations of secret-key ciphers can be characterized using several
performance parameters. Below we provide our definitions of major parameters and
derive formulas that demonstrate mutual dependencies among these parameters.

10.4.1 Throughput and Latency

Encryption (decryption) throughput is defined as the number of bits encrypted (de-
crypted) in a unit of time. Typically, the encryption and decryption throughputs are
equal, and therefore only one parameter is reported. A typical unit of throughput is
Mbit/s (megabit per second) or Gbit/s (gigabit per second). It is worth mentioning
that 1 Mbit/s = 106 bit/s, and not 220 bit/s, and 1 Gbit/s = 109 bit/s, and not 230 bit/s.

Encryption (decryption) latency is defined as the time necessary to encrypt (de-
crypt) a single block of plaintext (ciphertext). The typical unit of latency in the
current technology is ns (nanosecond).

The encryption (decryption) latency and throughput are related by

T hroughput =
block size ·number o f blocks processed simultaneously

latency
(10.17)

In applications where large amounts of data are encrypted or decrypted, through-
put determines the total encryption/decryption time and thus is the best measure
of the cipher speed. In applications where a small number of plaintext (ciphertext)
blocks is processed, the total encryption/decryption time depends on both through-
put and latency.

10.4.2 Area

The area required for the cipher implementation is an important parameter for the
following reasons:

• Cost
The area of an integrated circuit is a primary factor determining its cost. It is
traditionally assumed that the cost of an integrated circuit is directly proportional
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to the circuit area. This dependence is not always accurate, especially taking into
account the cost of a package, which is determined by the number of the circuit
inputs and outputs.

• Limit on the maximum area
In certain hardware environments, there exists a limit on the maximum area of a
cryptographic unit. This limit may be imposed by the cost, available fabrication
technology, power consumption, or any combination of these factors. For exam-
ple, in smart cards and microcontrollers, both cost and power consumption limit
the area of the embedded encryption units; in FPGAs, the area is limited by the
available fabrication technology and the cost of a programmable device.

In ASIC implementations, the area required by the cryptographic unit is typically
expressed in μm2. Two related measures are the transistor count and the logic gate
count. Values of all three measures are closely correlated, but not necessarily strictly
proportional to each other. All three measures are reported by the tools used for the
automated logic synthesis of ASICs. In the semi-custom design methodology, these
values are a function of the standard cell library used during logic synthesis.

In FPGA implementations, the only circuit size measures reported by the CAD
tools are the number of basic configurable logic blocks and the number of equivalent
logic gates. It is commonly believed that out of these two measures, the number
of basic configurable logic blocks approximates the circuit area more accurately.
Measuring and comparing circuit area in FPGAs are additionally complicated by the
existence of embedded logic blocks and embedded memories. The specifications of
FPGA devices typically do not provide any information about the relative ratio of
the areas used by embedded blocks and basic reconfigurable logic blocks.

10.5 Hardware Architectures of Symmetric Block Ciphers

10.5.1 Hardware Architectures vs. Block Cipher Modes
of Operation

Symmetric-key block ciphers are used in several operating modes. From the point
of view of hardware implementations, these modes can be divided into two major
categories:

1. Non-feedback modes, such as electronic code book mode (ECB) and counter
mode (CTR).

2. Feedback modes, such as cipher block chaining mode (CBC), cipher feedback
mode (CFB), and output feedback mode (OFB).

In the non-feedback modes, encryption of each subsequent block of data can
be performed independently from processing other blocks. In particular, all blocks
can be encrypted in parallel. In the feedback modes, it is not possible to start en-
crypting the next block of data until encryption of the previous block is completed.
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As a result, all blocks must be encrypted sequentially, with no capability for par-
allel processing. The limitation imposed by the feedback modes does not concern
decryption, which can be performed on several blocks of ciphertext in parallel for
both feedback and non-feedback operating modes.

In the old security standards, the encryption of data was performed primarily us-
ing feedback modes, such as CBC and CFB. Using these standards did not permit to
fully utilize the performance advantage of the hardware implementations of secret-
key ciphers, based on parallel processing of multiple blocks of data. The situation
has been partially remedied by including a counter mode in the NIST recommenda-
tions on the AES modes of operation. Other non-feedback modes of operation are
currently under investigation by the cryptographic community.

10.5.2 Basic Iterative Architecture

The basic hardware architecture used to implement an encryption/decryption unit
of a typical secret-key cipher is shown in Figure 10.18. One round of the cipher is
implemented as a combinational logic and supplemented with a single register and
a multiplexer. In the first clock cycle, input block of data is fed to the circuit through
the multiplexer and stored in the register. In each subsequent clock cycle, one round
of the cipher is evaluated, the result is fed back to the circuit through the multiplexer,
and stored in the register. The two characteristic features of this architecture are

• Only one block of data is encrypted at a time.
• The number of clock cycles necessary to encrypt a single block of data is equal

to the number of cipher rounds, #rounds.

The throughput and latency of the basic iterative architecture,
Throughputiterative and Latencyiterative, are given by

Fig. 10.18 Basic iterative architecture of a block cipher.



10 FPGA and ASIC Implementations of AES 253

T hroughputiterative =
block size

#rounds ·TCLKiterative

(10.18)

Latencyiterative = #rounds ·TCLKiterative (10.19)

where TCLKiterative is a clock period of the basic iterative architecture.

10.5.3 Loop Unrolling

An architecture with partial loop unrolling is shown in Figure 10.19b. The only
difference compared to the basic iterative architecture is that the combinational part
of the circuit implements K rounds of the cipher, instead of a single round. K must
be a divisor of the total number of rounds, #rounds.

The number of clock cycles necessary to encrypt a single block of data decreases
by a factor of K. At the same time the minimum clock period increases by a factor
slightly smaller than K, leading to an overall relatively small increase in the encryp-
tion throughput, and decrease in the encryption latency, as shown in Figure 10.20.
Because the combinational part of the circuit constitutes the majority of the circuit
area, the total area of the encryption/decryption unit increases almost proportionally
to the number of unrolled rounds, K. Additionally, the number of internal keys used
in a single clock cycle increases by a factor of K, which in hardware implemen-
tations typically implies the almost proportional growth in the area used to store
internal keys.

Fig. 10.19 Three hardware architectures suitable for feedback cipher modes: (a) basic iterative,
(b) with partial loop unrolling, (c) with full loop unrolling.
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Fig. 10.20 Throughput vs. area characteristics of hardware architectures suitable for feedback ci-
pher modes.

Architecture with full loop unrolling is shown in Figure 10.19c. The input mul-
tiplexer and the feedback loop are no longer necessary, leading to a small increase
in the cipher speed and decrease in the circuit area compared to the partial loop
unrolling with the same number of rounds unrolled.

In summary, loop unrolling enables increasing the circuit speed in both feedback
and non-feedback operating modes. Nevertheless this increase is relatively small
and incurs a large area penalty. As a result, choosing this architecture can be jus-
tified only for feedback cipher modes, where none other architecture offers speed
greater than the basic iterative architecture, and only for implementations where
large increase in the circuit area can be tolerated.

10.5.4 Pipelining

A traditional methodology for design of high-performance implementations of
secret-key block ciphers operating in non-feedback cipher modes is shown in Fig-
ure 10.21. The basic iterative architecture, shown in Figure 10.21a, is implemented
first and its speed and area determined. Based on these estimations, the number of
rounds K that can be unrolled without exceeding the available circuit area is found.
The number of unrolled rounds, K, must be a divisor of the total number of cipher
rounds, #rounds. If the available circuit area is not large enough to fit all cipher
rounds, architecture with partial outer-round pipelining, shown in Figure 10.21b, is
applied. The difference between this architecture and the architecture with partial
loop unrolling, shown in Figure 10.19b, is the presence of registers inside of the
combinational logic on the boundaries between any two subsequent cipher rounds.
As a result, K blocks of data can be processed by the circuit at the same time, with
each of these blocks stored in a different register at the end of a clock cycle. This
technique of parallel processing of multiple streams of data by the same circuit is
called pipelining. The throughput and area of the circuit with partial outer-round
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Fig. 10.21 Three hardware architectures used traditionally to implement non-feedback cipher
modes: (a) basic iterative, (b) with partial outer-round pipelining, (c) with full outer-round
pipelining.

pipelining increase proportionally to the value of K, as shown in Figure 10.23, the
encryption/decryption latency remains the same as in the basic iterative architec-
ture, as shown in Figure 10.24. If the available area is large enough to fit all cipher
rounds, the feedback loop is no longer necessary and full outer-round pipelining,
shown in Figure 10.21c, can be applied.

An optimized design methodology for implementing non-feedback cipher modes
is shown in Figure 10.22. Before loop unrolling, the optimum number of pipeline
registers is inserted inside of a cipher round, as shown in Figure 10.22b. The en-
tire round, including internal pipeline registers is then repeated K times (see Fig-
ure 10.22c). The number of unrolled rounds K depends on the maximum available
area or the maximum required throughput.

The primary advantage of the latter methodology is shown in Figure 10.23. In-
serting registers inside of a cipher round significantly increases cipher throughput at
the cost of only marginal increase in the circuit area. As a result, the throughput to
area ratio increases until the number of internal pipeline stages reaches its optimum
value kopt . Inserting additional registers may still increase the circuit throughput, but
the throughput to area ratio will deteriorate. The throughput to area ratio remains
unchanged during the subsequent loop unrolling. The throughput of the circuit is
given by

T hroughputpipelined(K,k) =
K ·block size

#rounds ·TCLKinner round (k)
(10.20)
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Fig. 10.22 Four hardware architectures suitable for non-feedback cipher modes: (a) basic iterative,
(b) with inner-round pipelining, (c) with partial inner- and outer-round pipelining, (d) with full
inner- and outer-round pipelining.

Fig. 10.23 Throughput vs. area characteristics of hardware architectures suitable for non-feedback
cipher modes.

where k is the number of inner-round pipeline stages, K is the number of outer-
round pipeline stages, and TCLKinner round (k) is the clock period in the architecture
with the k-stage inner-round pipelining. For a given limit in the circuit area, mixed
inner- and outer-round pipelining shown in Figure 10.22c offers significantly higher
throughput compared to the pure outer-round pipelining (see Figure 10.23).
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Fig. 10.24 Latency vs. area characteristics of hardware architectures suitable for non-feedback
cipher modes.

When the limit on the circuit area is large enough, all rounds of the cipher can be
unrolled, as shown in Figure 10.22d, leading to the throughput given by

T hroughput f ully pipelined(K,kopt) =
block size

TCLKinner round (kopt)
(10.21)

where kopt is the number of inner-round pipeline stages optimum from the point of
view of the throughput to area ratio. The only side effect of our methodology is the
increase in the encryption/decryption latency. This latency is given by

Latency f ully pipelined(K,k) = #rounds · k ·TCLKinner round (k) (10.22)

This latency does not depend on the number of rounds unrolled, K. The increase
in the encryption/decryption latency, typically in the range of single microseconds,
usually does not have any major influence on the operation of the high-volume cryp-
tographic system optimized for maximum throughput. This is particularly true for
applications with a human operator present on at least one end of the secure com-
munication channel.

The input/output timing characteristics of three basic secret-key cipher architec-
tures are shown in Figure 10.25. In the basic iterative architecture, a new block
of data must be fed into the system only once per #rounds clock cycles. In case
of the inner-round pipelining, there are periods of time when the input must be
fed into the cryptographic core every clock cycle, even though an average in-
put/output throughput is much lower (Figure 10.25b). In the full mixed inner- and
outer-round pipelining, input blocks are fed to the encryption unit every clock cycle
(Figure 10.25c).
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Fig. 10.25 Input/output timing characteristics of various architectures: (a) basic iterative architec-
ture, (b) inner-round pipelining, (c) full inner- and outer-round pipelining.

10.5.5 Limits on the Maximum Clock Frequency of Pipelined
Architectures

Throughput of the architecture with the mixed inner- and outer-round pipelining is
directly proportional to the maximum clock frequency for the inner-round pipelin-
ing (see Equation (10.20)). The following factors may limit the maximum clock
frequency,

fCLKinner round (k) =
1

TCLKinner round (k)
(10.23)

in this architecture:

1. delay of a single round divided by k
For small values of k, it is usually possible to divide the combinational portion of
a single round into k stages with equal (or at least approximately equal) delays.
The delay of a single stage, equal to the delay of a single round divided by k,
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determines the minimum clock period of the circuit, TCLKinner round (k), as shown
in Figure 10.26a.

2. delay of the largest indivisible operation
For some ciphers, when the number of internal pipeline stages k increases, it be-
comes more and more difficult to divide the combinational portion of a single
round into stages with equal delays. At certain point, introducing additional in-
ternal registers to the circuit may require dividing an elementary operation of the
cipher, such as an S-box or addition, into several stages. This division may be
difficult to accomplish if the operation is performed using a standard library cell,
look-up table, special carry propagate circuitry, or if the operation is so simple
that it cannot be easily divided into less-complex atomic operations. This case is
shown in Figure 10.26b.

3. delay of the control unit
The control unit determines the data flow in the circuit. This unit is responsi-
ble for generating enable signals for all registers and memories in the circuit
and address inputs for all memories and major multiplexers. The time neces-
sary to generate and distribute these signals, counted from the rising edge of the
clock, may be greater than the time necessary to propagate data between two ad-
jacent registers in the pipeline, as shown in Figure 10.26c. This is especially true

Fig. 10.26 Limits on the minimum clock period in the architecture with inner-round pipelining: (a)
ideal situation, evenly divided round; (b) clock period limited by the largest indivisible operation;
(c) clock period limited by the control unit, i.e., the time necessary to generate and distribute control
signals.
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for control signals with large fanouts distributed globally to every stage of the
pipeline.

4. limit on the maximum latency
Increasing the number of inner-round pipeline stages, k, increases the overall la-
tency of the cipher, by a factor of approximately (k−1) · (tP + tsu), where tP and
tsu denote the propagation delay and the setup time of a register, respectively.
This approximation does not take into account any changes in the routing (inter-
connect) delays. If the specification of the cryptographic system imposes a limit
on the maximum latency, Latencymax, this limit may determine the maximum
possible number of inner-round pipeline stages, kmax.

kmax ≤
(Latencymax −Latencyiterative)

#rounds · (tP + tsu)
(10.24)

5. limit on the maximum input/output bandwidth
We define the input/output bandwidth as a frequency of an external clock used
to control the transmission of data between the integrated circuit and an exter-
nal environment. The input/output bandwidth necessary to sustain the through-
put of the circuit working in the mixed inner- and outer-round pipelining is
given by

Bandwidth =
T hroughput(K,k)

bus width
=

K
#rounds

· block size
bus width

· fCLKinner round (k)
(10.25)

where fCLKinnerr ound (k) is a frequency of the clock for a k-round inner-round
pipelining. The circuit is assumed to have two independent ports of the width
bus width used for input and output, respectively. In case of using the same bus
for both input and output, the bandwidth must be at least twice as high to sustain
the same throughput. The maximum bandwidth may limit the maximum value
of the product K · fCLKinner round (k) and thus the maximum number of inner- and
outer-round pipeline stages.

10.5.6 Compact Architectures with Resource Sharing

For majority of ciphers, it is possible to significantly decrease the circuit area by
time sharing of certain resources (e.g., S-boxes in AES). This is accomplished by
using the same functional unit to process two (or more) parts of the data block in
different clock cycles, as shown in Figure 10.27.

In Figure 10.27a, two parts of the data block, D0 and D1, are processed in par-
allel, using two independent functional units F . In Figure 10.27b, a single unit F
is used to process two parts of the data block sequentially, during two subsequent
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Fig. 10.27 Basic idea of resource sharing: (a) parallel execution of two instantiations of the func-
tional unit F, no resource sharing; (b) resource sharing of the functional unit F.

clock cycles. This technique can be used to reduce the basic datapath in AES from
128 bits to 64 bits, 32 bits, and even 8 bits.

10.6 Implementation of Basic Operations of AES in Hardware

10.6.1 SubBytes and InvSubBytes

10.6.1.1 Look-Up Table

SubBytes is composed of 16 identical 8× 8 S-boxes working in parallel. InvSub-
Bytes is composed of the same number of 8× 8-bit inverse S-boxes. Each of these
S-boxes can be implemented independently using a 256× 8-bit look-up table. A
look-up table is implemented in digital systems using ROM (read-only memory). In
this memory, input to an S-box is connected to the address lines, and the output is
obtained at the data out bus.

Each of the AES SubBytes look-up tables is of the size of 256 bytes = 2048 bits
= 2 kilobits. If encryption and decryption are implemented together within the same
circuit, both uninverted and inverted 256 byte look-up tables can be placed within
one 512 byte memory block. In this case, the most significant bit of an address is a
control bit that distinguishes between encryption and decryption.

If a dual port ROM memory is available, which is often the case in FPGAs, the
same memory can implement two S-boxes working in parallel.

In Xilinx FPGAs embedded memories are typically implemented as memories
with synchronous output. This feature means that the output of the memory does
not change until the next rising edge of the clock. This kind of synchronous ROM
(read-only memory) is equivalent to a regular asynchronous ROM followed by a
register. This feature of Xilinx Block RAMs determines uniquely the location of a
register in the basic iterative architecture of AES.
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10.6.1.2 Look-Up Table and Logic

The total size of the look-up tables necessary to implement both encryption and de-
cryption can be reduced by a factor of two using knowledge of an internal structure
of SubBytes and InvSubBytes, shown in Figure 10.5. In this case, only inversion in
GF(28) is implemented using look-up tables. These look-up tables are shared be-
tween the encryption and decryption units. The affine transformation and the inverse
affine transformation can be implemented easily using an array of XOR gates. Up
to 6-input (4-input) XOR gates are required in order to implement affine (inverse
affine) transformation using one level of gates. If only 2-input XOR gates are avail-
able, up to three (two) layers of such gates might be necessary to implement the
same transformations.

10.6.1.3 Logic Only

The amount of memory required to implement SubBytes and InvSubBytes can be
reduced to zero by utilizing the internal logic structure of inversion in GF(28). This
approach makes particular sense for ASIC implementations, in which memory is
typically costly in terms of the circuit area.

In FPGAs, memory blocks are always present independently whether they are
used or not, but their replacement by logic may be still justified. For example, mem-
ory might be already used to implement some other functions, such as input/output
buffers. Additionally, in case of deeply pipelined architectures (see Section 10.5.4),
memory-based implementation can impose an artificial restriction on the minimum
clock period (as described in Section 10.5.5), while the logic-based implementation
can be further pipelined.

The basic idea of the logic-only implementation is to notice that inversion in
GF(28) can be decomposed into a sequence of operations in GF(24) (including
addition, multiplication, and inversion), as shown in Figure 10.29. Similarly, op-
erations in GF(24) can be expressed in terms of operations in GF(22) (see Fig-
ures 10.30, 10.32, and 10.35) and operations in GF(22) in terms of operations in
GF(2) (see Figures 10.33, 10.34, 10.36, and 10.37). The operations in GF(2) can
be implemented using simple XOR gate (addition) and AND gate (multiplication).
An inverse of 1 in GF(2) is 1, and the inverse of 0 does not exist. Thus, the entire
inversion in GF(28) can be decomposed into a logic circuit composed of XOR and
AND gates only.

The complexity (number of equivalent logic gates) and critical path (delay) of
this circuit depend on the choice of the specific representation for each field GF(22k)
using components of the underlying field GF(2k), for k = 4,2, and 1. The initial
choice of the specific representations was provided by Satoh et al. [33]. This choice
was later examined by Mentens et al. [28]. The authors compared 64 different poly-
nomial basis representations, and found a representation giving a 5% improvement
over [33].
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Canright [3, 4] has extended this comparison to include normal basis representa-
tions of the components of the fields GF(22k). He investigated a total of 432 differ-
ent representation choices and concluded that his best choice gives a 20% improve-
ment in terms of the total gate count compared to [33].

The details of the optimum design are shown in the hierarchical form in
Figures 10.28, 10.29, 10.30, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36 and 10.37.
The top level design of the SubBytes/InvSubBytes circuit is shown in
Figure 10.28.

X is an 8× 8 basis conversion matrix, which changes the Galois field represen-
tation from the optimum representation used for internal computations within the
GF(28) inverter to the standard AES polynomial representation used in the remain-
ing calculations. X−1 is a matrix describing the conversion in the opposite direction.
M is an 8× 8 matrix and b ={63} is an 8× 1 bit vector, where y′ = M · y + b is an
equation describing the affine transformation of SubBytes.

Fig. 10.28 Implementation of SubBytes and InvSubBytes using logic only, according to [3, 4]. The
notation follows conventions introduced in [3]. enc dec is a select signal equal to 0 for encryption
and 1 for decryption. X is an 8×8 basis conversion matrix, M is an 8×8 matrix, and b is an 8×1
bit vector, where y′ = M · y+b, with b ={63}, is an equation describing the affine transformation
of SubBytes.
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Fig. 10.29 GF(28) inverter, GF INV 8. Notation: GF INV 4—GF(24) inverter (see Fig-
ure 10.30), GF MUL 4—GF(24) multiplier (see Figure 10.32), and GF SQ SCL 4—GF(24)
squarer and scaler (see Figure 10.35).

The data path for encryption (see Figure 10.28) includes conversion from the
standard polynomial representation to the internal representation, X−1, inversion
in GF(28), conversion back to the standard representation, X , combined with the
multiplication by matrix M of affine transformation, MX , followed by the addition
of the vector b of the affine transformation. Thus, the entire SubBytes transformation
can be described by the equation

s′ = (MX) · (X−1s)−1 + b (10.26)

The data path for decryption starts from adding the vector b, followed by the
multiplication by M−1 and X−1, combined into a product X−1M−1 = (MX)−1, fol-
lowed by inversion in GF(28), and multiplication by X . Thus, the entire InvSubBytes
transformation can be described by the equation

s′ = X · ((MX)−1(s+ b))−1 (10.27)

In both cases, the convention for the order of bits within vectors s′ and s is as
given below in Equation (10.28).
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Fig. 10.30 GF(24) inverter, GF INV 4. Notation: GF INV 2—GF(22) inverter (see Fig-
ure 10.31), GF MUL 2—GF(22) multiplier (see Figure 10.33), and GF SQ SCL 2—GF(22)
squarer and scaler (see Figure 10.36).

Fig. 10.31 GF(22) inverter, GF INV 2; equivalent to GF(22) squarer, GF SQ 2.

s′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s′7
s′6
s′5
s′4
s′3
s′2
s′1
s′0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s7

s6

s5

s4

s3

s2

s1

s0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.28)



266 Kris Gaj and Pawel Chodowiec

Fig. 10.32 GF(24) multiplier, GF MUL 4. Notation: GF MUL 2—GF(22) multiplier (see Fig-
ure 10.33) and GF MUL SCL 2—GF(22) multiplier and scaler (see Figure 10.34).

Fig. 10.33 GF(22) multiplier, GF MUL 2.
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Fig. 10.34 GF(22) multiplier and scaler, GF MUL SCL 2. It performs multiplication Nxy, where
x, y, N ∈ GF(22), x and y are input variables, and N is a constant.

Fig. 10.35 GF(24) squarer and scaler, GF SQ SCL 4. It performs operation νx2, where x, ν ∈
GF(24), x is an input variable, and ν is a constant, ν = 0 · z + N2. Notation: GF SQ 2—GF(22)
squarer (see Figure 10.31) and GF SCL 2—GF(22) scaler (see Figure 10.37).



268 Kris Gaj and Pawel Chodowiec

Fig. 10.36 GF(22) squarer and scaler, GF SQ SCL 2. It performs operation Nx2, where x, N
∈ GF(22), x is an input variable, and N is a constant.

Fig. 10.37 GF(22) scaler, GF SCL 2. It performs operation Nx, where x, N ∈ GF(22), x is an
input variable, and N is a constant.

The exact forms of matrices X−1, (MX)−1, MX , and X are given by
Equations 10.29–10.32.

X−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.29)
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(MX)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 1 0 1 0 0 1 1
0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 1
1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 0 0 1 1 0 0 1
0 1 1 1 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.30)

MX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.31)

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.32)

As shown in Figure 10.29, the GF(28) inverter can be decomposed into one
GF(24) inverter, three GF(24) multipliers, two GF(24) adders (4-bit XOR gates),
and one GF(24) squarer and scaler. The GF(24) inverter (see Figure 10.30) looks
almost the same as GF(28) inverter, with component operations in GF(24) replaced
by operations in GF(22). The GF(22) does not involve any logic, as it is equiv-
alent to squaring and thus to a circular rotation by one bit position, as shown in
Figure 10.31.

The GF(24) multiplier can be decomposed into two GF(22) multipliers, one
GF(22) multiplier/scaler, and four GF(22) adders (2-bit XOR gates), as shown in
Figure 10.32. The GF(22) multiplier (see Figure 10.33) has the same structure,
with the multipliers and the multiplier/scaler in GF(22) replaced by AND gates
(multipliers in GF(2)).

The GF(24) squarer and scaler, shown in Figure 10.35, is an optimized version
of the circuit that performs squaring in GF(24) followed by multiplication by a spe-
cially chosen constant, ν (see [3] for more information about the optimum choice
of ν). Similarly, the GF(22) multiplier and scaler, shown in Figure 10.34, combines
multiplication of two variables in GF(22) followed by multiplication by a specif-
ically chosen constant N. The GF(22) squarer and scaler, shown in Figure 10.36,
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combines squaring with multiplication by N. The multiplication by a constant N
can be implemented using just one XOR gate, as shown in Figure 10.37.

Without any further optimizations, the GF(28) inverter includes 88 two-input
XOR gates and 36 two-input AND gates, and its critical path passes through 14
two-input XOR gates and 4 two-input AND gates. In an FPGA implementation
based on 4-input look-up tables (LUTs), GF(24) inverter, GF(24) squarer and
scaler, the GF(22) multiplier, and the GF(22) multiplier and scaler can all be im-
plemented using look-up tables, so no lower level operations are required. The to-
tal number of look-up tables (LUTs) required to implement the GF(28) inverter
becomes 58, and its critical path delay is equal to the delay of eight logic levels
(LUTs).

As explained in [3], multiple further optimizations based on resource sharing and
optimum gate type choice can be used to further reduce circuit area. The derivation
of the minimum-area circuit, together with a detailed justification of design choices
can be found in [3, 4]. The appendices of [3] contain the corresponding C program,
which can be used as a source of test vectors, and the manually optimized Verilog
code, which can be used as a starting point for a hardware implementation.

10.6.2 MixColumns and InvMixColumns

10.6.2.1 Basic Implementation

The MixColumns transformation can be expressed as a matrix multiplication in the
Galois field GF(28) as shown in Equation (10.14). Each symbol in this equation
(such as bi, ai, 03) represents an 8-bit element of the Galois field. Each byte of
the result of a matrix multiplication (10.14) is an XOR of four bytes representing
the Galois field product of a byte a0, a1, a2, or a3 by a respective constant. As a
result, the entire MixColumns transformation can be performed using two layers of
XOR gates, with up to 3-input gates in the first layer and 4-input gates in the second
layer. In FPGAs, each of these XOR operations requires only one 4-bit look-up
table.

The InvMixColumns transformation can be expressed as a matrix multiplication
in the Galois field GF(28) as shown in Equation (10.15).

The primary differences, compared to MixColumns, are the larger hexadecimal
values of the matrix coefficients. Multiplication by these constant elements of the
Galois field leads to the more complex dependence between the bits of a variable
input and the bits of a respective product.

The entire InvMixColumns transformation can be performed using two layers of
XOR gates, with up to 6-input gates in the first layer and 4-input gates in the second
layer. Because of the use of gates with larger number of inputs, the InvMixColumns
transformation has a longer critical path compared to the MixColumns transforma-
tion, and as a result, the decryption circuit imposes a limit on the minimum clock
period of the entire encryption/decryption unit.
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10.6.2.2 Implementations with Resource Sharing

Coefficients of d(X) are more complex than coefficients of c(X); therefore, decryp-
tion is always slower than encryption [8]. Moreover, hardware structures implement-
ing InvMixColumns are always larger. To reduce hardware cost, the InvMixColumns
matrix can be decomposed in such a way that some portion of the hardware will be
re-used for MixColumns implementation. Since MixColumns and InvMixColumns
functions are defined on 32-bit words, we will call this decomposition the word-
level resource sharing. There are two possible approaches: parallel and serial In-
vMixColumns decomposition. In addition to word-level sharing, resources can be
shared on a byte level and on a bit level [14].

Parallel InvMixColumns Decomposition

Parallel InvMixColumns decomposition was first proposed by J. Wolkerstorfer in
[43]. It is based on the observation that d(X) can be expressed using c(X) in the
following way:

d(X) = c(X)+ e(X) (10.33)

where e(X) is an extension polynomial defined as

e(X) = x3X3 +(x3 + x2)X2 + x3X +(x3 + x2) (10.34)

or in hexadecimal format

e(X) = {08}X3 +{0C}X2 +{08}X +{0C} (10.35)

Equation (10.15) can thus be written in the form

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦= ([C]+ [E]) ·

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.36)

where

[C] =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦ (10.37)

and

[E] =

⎡
⎢⎢⎣

0C 08 0C 08
08 0C 08 0C
0C 08 0C 08
08 0C 08 0C

⎤
⎥⎥⎦ (10.38)
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When both MixColumns and InvMixColumns have to be implemented in the
same piece of hardware, the matrix [E] from Equation (10.36) is added to the ma-
trix [C] only during decryption, and thus the matrix [C] is shared by both encryp-
tion and decryption processes. Implementation of such a structure in the hardware
can be viewed as implementation of four identical blocks A (see Figure 10.38),
each giving an output of one byte of b(X). Inputs of these blocks are permuted in
the same way as coefficients of the MixColumns (or InvMixColumns) matrix (see
Figure 10.38b).

Serial InvMixColumns Decomposition

MixColumns and InvMixColumns are derived as mutual inverses, and therefore, they
are related such that c(X) ·d(X) = 1. There exists another relationship between c(X)
and d(X): the inverse d(X) of the polynomial c(X) in the ring R is given by the
formula

d(X) = c−1(X) = c3(X) (10.39)

Equation (10.39) suggests that the InvMixColumns operation can be realized by re-
peating MixColumns three times. For hardware implementations, Equation (10.39)
can be expressed as

d(X) = c(X) · c2(X) (10.40)

Fig. 10.38 Resource sharing based on parallel InvMixColumns decomposition: (a) line multiplica-
tion block A, (b) overall structure.
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where

c2(X) = x2X2 + x2 + 1 (10.41)

Therefore, the InvMixColumns function can be implemented using the MixColumns
function and the c2(X) polynomial. The c2(X) polynomial can be expressed with
coefficients in hexadecimal format:

c2(X) = {00}X3 +{04}X2 +{00}X +{05} (10.42)

Following Equation (10.40) the Equation (10.15) can be expressed as

⎡
⎢⎢⎣

b0

b1

b2

b3

⎤
⎥⎥⎦= ([C] · [F]) ·

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ (10.43)

where [C] has the same meaning as in Equation (10.37) and

[F] =

⎡
⎢⎢⎣

05 00 04 00
00 05 00 04
04 00 05 00
00 04 00 05

⎤
⎥⎥⎦ (10.44)

Comparing c(X) and c2(X) we see that c2(X) is much simpler in implementation
than c(X) because two of its coefficients are equal to zero. Multiplication of matrices
represents a serial arrangement of corresponding modules with common input (see
Figure 10.39a) or common output (see Figure 10.39b). Using the same approach
as for the parallel InvMixColumns decomposition, the hardware structure with a
common input can be implemented using four instances of two types of blocks A
and B (see Figure 10.40). This structure implements multiplication of the 4-byte
input by one line of c(X) and c2(X).

Fig. 10.39 Resource sharing based on serial InvMixColumns decomposition with (a) common
input, (b) common output.



274 Kris Gaj and Pawel Chodowiec

Fig. 10.40 Serial InvMixColumns decomposition with common input: (a) line multiplication block
A, (b) line multiplication block B, (c) overall structure.

10.7 Hardware Architectures of a Single Round of AES

10.7.1 S-Box-Based Architecture

The block diagrams of the encryption/decryption unit based on S-boxes in the ba-
sic iterative architecture is shown in Figure 10.41. Only register R1 is present in
the basic iterative architecture. The best placement for this register is either before
or after the combined SubBytes and InvSubBytes transformation, where encryption
and decryption data paths converge. The critical path is located in the decryption
circuit and includes InvShiftRows (interconnects), AddRoundKey (XOR operation),
InvMixColumns, a 3-to-1 multiplexer, and InvSubBytes. In this architecture, 11, 13,
and 15 clock cycles are required in order to process one block of data for 128-, 192-,
and 256-bit keys, respectively.

In Figure 10.42 several registers have been added in order to create an archi-
tecture with two stages of inner-round pipelining. The location of these registers
has been chosen in such a way to divide the critical path into two approximately
equal paths. This way the minimum clock period should be equal to approxi-
mately half of the clock period for the basic iterative architecture, allowing process-
ing of data with approximately twice as high throughput in non-feedback cipher
modes.
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Fig. 10.41 Typical S-box-based AES basic iterative architecture.

Fig. 10.42 S-box-based AES architecture with two stages of inner-round pipelining.
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10.7.2 T-Box-Based Architecture

T-box-based algorithm for implementing AES was first proposed in [7] for a soft-
ware implementation using 32-bit microprocessors. In [13], this approach was
adapted for hardware implementations.

The T-box approach allows the computation of the entire round of AES using
only table look-ups and XOR operations. In Figure 10.43, we show the mathematical
description of AES round operations. This representation leads to the derivation of
the T-box representation of an AES encryption round, as shown in Figure 10.44.
The precomputed tables, called T-boxes, represent the combined application of the
SubBytes and MixColumns transformations. They are defined as follows:

T0[a] =

⎡
⎢⎢⎣

02 ·S[a]
S[a]
S[a]

03 ·S[a]

⎤
⎥⎥⎦ T1[a] =

⎡
⎢⎢⎣

03 ·S[a]
02 ·S[a]

S[a]
S[a]

⎤
⎥⎥⎦ (10.45)

T2[a] =

⎡
⎢⎢⎣

S[a]
03 ·S[a]
02 ·S[a]

S[a]

⎤
⎥⎥⎦ T3[a] =

⎡
⎢⎢⎣

S[a]
S[a]

03 ·S[a]
02 ·S[a]

⎤
⎥⎥⎦ (10.46)

Fig. 10.43 Mathematical description of AES round operations.



10 FPGA and ASIC Implementations of AES 277

Fig. 10.44 Mathematical derivation of the T-box representation of an AES encryption round.

Compared to the S-box tables, which are of the size of 8× 8 bits, the T-box tables
are of the size of 8×32 bits. The entire 32-bit column of an output of a single round
of AES, e j, can be computed using the following formula:

e j = T0[a0, j]⊕T1[a1, j+1]⊕T2[a2, j+2]⊕T3[a3, j+3]⊕Kj (10.47)

where T0, T1, T2, T3 are the precomputed 8× 32-bit look-up tables, and Kj is a jth
word of a round key K. All indices j + 1, j + 2, j + 3 are computed modulo 4. For
example,

e2 = T0[a0,2]⊕T1[a1,3]⊕T2[a2,0]⊕T3[a3,1]⊕K2 (10.48)

In Figure 10.45, we show in a graphical form an example of computing the value of
the column e2 of the encryption round output using T-box approach.

Since MixColumns operation is not performed in the last round of encryption, the
last round needs to be treated in a special way. In this round, S-boxes need to be used
instead of T-boxes. Fortunately, no additional memory space is needed to implement
S-boxes, as 1-byte outputs of the S-box transformation can be easily extracted from
the 4-byte outputs of the T-box transformation corresponding to the same 1-byte
input. For example,

S[a] = byte(1,T0[a]) = byte(2,T1[a]) = byte(3,T2[a]) = byte(0,T3[a]) (10.49)

where byte(n,X) represents the nth byte of a variable X .
In Figure 10.46, a block diagram of the encryption function based on the use of

T-box look-up tables is shown. The encryption input consists of 16 bytes, arranged
as follows:
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Fig. 10.45 An example of computing the value of the column e2 of the encryption round output
using T-box approach.

Fig. 10.46 Block diagram of the T-box-based AES encryption round.

a0,0,a1,0,a2,0,a3,0,a0,1,a1,1,a2,1,a3,1,a0,2,a1,2,a2,2,a3,2,a0,3,a1,3,a2,3,a3,3

(10.50)

Each of these bytes is an input to the appropriate look-up table Ti[ai, j], with an index
the same as a row index of the byte ai, j. Sixteen such look-up tables working in
parallel form a functional block called T tables. Encryption XOR Network is a block
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that based on 16 T-box tables outputs Ti[ai, j] ( j = 0...3, i = 0...3) and four words
of the round key K, Kj ( j = 0...3) computes four 32-bit columns of the encryption
round output e j. The exact dependence between inputs and outputs of this block
is given by Equation 10.47. Finally, the Multiplication Elimination extracts values
of the S-box outputs S[ai, j] based on the values of the T-box outputs Ti[ai, j]. The
operation of this block is given by Equation 10.49, and the block itself does not
involve any logic, just routing.

A similar derivation can be performed in order to represent decryption using a
separate set of inverse T-boxes, T0

−1, T1
−1, T2

−1, T3
−1. These inverse T-box tables

are defined as follows:

T−1
0 [a] =

⎡
⎢⎢⎣

0E ·S[a]
09 ·S[a]
0D ·S[a]
0B ·S[a]

⎤
⎥⎥⎦ T−1

1 [a] =

⎡
⎢⎢⎣

0B ·S[a]
0E ·S[a]
09 ·S[a]
0D ·S[a]

⎤
⎥⎥⎦ (10.51)

T−1
2 [a] =

⎡
⎢⎢⎣

0D ·S[a]
0B ·S[a]
0E ·S[a]
09 ·S[a]

⎤
⎥⎥⎦ T−1

3 [a] =

⎡
⎢⎢⎣

09 ·S[a]
0D ·S[a]
0B ·S[a]
0E ·S[a]

⎤
⎥⎥⎦ (10.52)

The equation describing an output of the decryption round is given below:

d j = T−1
0 [a0, j]⊕T−1

1 [a1, j+3]⊕T−1
2 [a2, j+2]⊕T−1

3 [a3, j+1]⊕ IMC(Kj) (10.53)

where T−1
0 , T−1

1 , T−1
2 , T−1

3 are the precomputed 8×32-bit look-up tables, Kj is a jth
word of a round key K, and IMC is the InvMixColumns transformation. All indices
j + 3, j + 2, j + 1 are computed modulo 4.

In the last round of decryption the InvMixColumns operation is not executed. As
a result, the outputs of the InvSubBytes transformation, S−1[a], must be computed.
In this case, however, the computation of S−1[a] as a function of Ti

−1[a] requires
some extra logic that implements multiplication by a constant in GF(28) [13]. For
example, given the value of T−1

0 [a], S−1[a] can be computed as follows:

S−1[a] = 0E−1 ·byte(0,T−1
0 [a]) = 09−1 ·byte(1,T−1

0 [a])

= 0D−1 ·byte(2,T−1
0 [a]) = 0B−1 ·byte(3,T−1

0 [a])
= E5 ·byte(0,T0[a]) = 4F ·byte(1,T0[a])
= E1 ·byte(2,T0[a]) = C0 ·byte(3,T0[a]) (10.54)

where byte(n,X) represents the nth byte of a variable X . Based on the above equa-
tions, each bit of S−1[a] can be computed using four different equations, each
giving exactly the same value. As a result, for each bit, we can choose an equa-
tion with the smallest number of terms. If we do that, we can express the bits of
S−1[a] = (s−1

7 s−1
6 s−1

5 s−1
4 s−1

3 s−1
2 s−1

1 s−1
0 ) as follows:
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x = byte(0,T−1
0 [a])

y = byte(1,T−1
0 [a])

z = byte(3,T−1
0 [a]) (10.55)

s−1
7 = y7 ⊕ y4 ⊕ y1

s−1
6 = y6 ⊕ y3 ⊕ y0

s−1
5 = y5 ⊕ y2

s−1
4 = y4 ⊕ y1

s−1
3 = z3 ⊕ z2 ⊕ z1

s−1
2 = x6 ⊕ x5 ⊕ x0

s−1
1 = x7 ⊕ x5 ⊕ x4

s−1
0 = y5 ⊕ y2 ⊕ y0 (10.56)

For the computations using outputs from tables T−1
1 , T−1

2 , and T−1
3 , the input

word must be rotated by one, two, and three byte positions, respectively, before
applying the same transformation. This rotation is equivalent to defining variables
x, y, and z as follows:

x = byte(1,T−1
1 [a]) = byte(2,T−1

2 [a]) = byte(3,T−1
3 [a])

y = byte(2,T−1
1 [a]) = byte(3,T−1

2 [a]) = byte(0,T−1
3 [a])

z = byte(0,T−1
1 [a]) = byte(1,T−1

2 [a]) = byte(2,T−1
3 [a]) (10.57)

and then applying transformation given by Equation 10.56. The entire Decryp-
tion Round Circuit is shown in Figure 10.47. The functional block T−1 tables
consists of sixteen 8 × 32-bit look-up tables working in parallel. The operation
of the Decryption XOR Network is given by Equation 10.53 and the operation
of the Inverse Multiplication Elimination is given by Equation 10.55, 10.57, and
10.56.

In Figure 10.48, a circuit capable of performing both encryption and decryption
using T-box approach is shown. The exact location of the register may depend on
specific technology. For example, in Xilinx FPGAs, T tables are likely to be im-
plemented using Block RAMs, which have synchronous outputs. Thus, the register
would need to be placed at the output of the T tables and T−1 tables blocks, in-
side of the encryption and decryption rounds, shown in Figures 10.46 and 10.47,
respectively.

Independently of the exact location of the register, the critical path is likely to
be of the same length for the encryption and decryption circuits and includes two
functional blocks: T/T−1 tables and Encryption/Decryption XOR Network.

Compared to the S-box-based implementation, the T-box-based implementation
requires four times larger memory space, but fewer logic resources. In the T-box
implementation the critical path is longer for encryption, but shorter for decryption,
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Fig. 10.47 Block diagram of the T-box-based AES decryption round.

Fig. 10.48 Block diagram of the T-box-based AES encryption/decryption circuit.

compared to the S-box-based implementation. For example, in [13], the T-box-based
approach was shown to produce a 8% speed-up for decryption, a 22% slowdown for
encryption, and a 22% speed-up for encryption/decryption (a single-clock circuit ca-
pable of performing both operations) vs. equivalent implementations following the
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S-box approach. All compared implementations targeted Altera FPGAs. The exact
ratios of the costs and speeds for both approaches depend on the choice of a specific
technology (FPGA vs. ASIC, specific FPGA family, specific ASIC standard-cell
library, etc.) used for the implementation.

10.7.3 Compact Architectures

The AES round shown in Figure 10.49 reveals a great deal of parallelism. The data
bytes are ordered from the most significant (byte 0) to the least significant (byte F)
assuming big-endian representation. The round is composed of sixteen 8-bit S-boxes
computing SubBytes and four 32-bit MixColumns operations, working independent
of each other. The only operation that spans throughout the entire 128-bit block is
ShiftRows.

It is possible to implement only four SubBytes and one MixColumns in order to
compact the AES implementation. Ideally, the resources should be cut by four, while
execution of one round should take four clock cycles. This approach would result in
approximately four times lower performance than for the basic architecture.

Cutting the resources by 75% may not appear easy. The folded round, as we call
the modified round, still must transform 128 bits, and storage for all 128 bits of the
data block must exist. Another complication is related to the implementation of the
ShiftRows operation. The data bytes processed in the AES round cannot return to
the same positions in the block register because it would not execute the ShiftRows
operation. On the other hand, those same bytes cannot be placed into locations in-
dicated by ShiftRows because those locations are occupied by other bytes that have
not yet been processed. Therefore, additional bits of intermediate results must be
stored, and more logic resources are needed.

One of the possible architectures for a folded implementation is shown in
Figure 10.50a. This architecture requires one 128-bit register, one 96-bit regis-
ter, and one 32-bit-wide 4-to-1 multiplexer on top of the main cipher operations.
The multiplexer becomes even bigger when both ShiftRows and InvShiftRows are

ShiftRows

AddRoundKey

SubBytes

MixColumns

0 1 2 3 4 5 6 7 8 9 A B C D E F Data Bytes

Fig. 10.49 Operations within AES encryption round.



10 FPGA and ASIC Implementations of AES 283

implemented using same logic resources. The execution of one round takes four
clock cycles. The authors believe that this, or very similar architecture, was im-
plemented by A. Satoh et al. [33]. Their results show that the 4-cycle round takes
50% of the resources required by the 1-cycle round and yields four times lower
throughput.

Another possible architecture is shown in Figure 10.50b. The 96-bit register
is implemented as three 32-bit registers inserted into round operations creating a
pipeline. In the case of FPGAs, those 32-bit registers will most likely be placed in
the same Slices as logic operations yielding better resource utilization. The critical
path is also shortened which permits the execution at a higher clock rate; however,
the execution of the entire round requires seven, instead of four, clock cycles. The
authors believe that this architecture was implemented by S. McMillan et al. [27],
but no sufficient details are provided in this chapter. S. McMillan et al. reported only
slight difference of 48 Slices (16%), and large difference of 24 Block RAMs (75%),
between one-round unrolled and folded architecture.

10.7.3.1 Folded Register

The two folded architectures described above are very straightforward and resulted
in small logic savings. In order to create a folded architecture with better parameters,
we need to explore fine details of FPGA devices. Let us arrange data bytes into rows
as shown in Figure 10.51. This data arrangement is consistent with a state introduced
in [8]. The following exercise can now be executed in steps:

1. Read input bytes: 0, 5, A, F; execute SubBytes, MixColumns, and AddRoundKey
on them; write results to the output at locations 0, 1, 2, 3. This step is highlighted
in Figure 10.51.

2. Repeat above operations for input bytes 4, 9, E, 3; write results at output locations
4, 5, 6, 7.

3. Repeat above operations for bytes 8, D, 2, 7; write results at locations 8, 9, A, B.
4. Repeat above operations for bytes C, 1, 6, B; write results at locations C, D, E,

F. Output now becomes input for the next step.

SubBytes

MixColumns +
AddRoundKey

32 SubBytes

MixColumns +
AddRoundKey

32

ShiftRows
ShiftRows

a) b)

Fig. 10.50 Folded architectures (a) by A. Satoh et al. [33]; (b) by S. McMillan et al. [27].
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Fig. 10.51 Data arrangement in the folded architecture. Data bytes involved in the first step of
calculation are highlighted.

In those four steps the entire AES round was executed including ShiftRows op-
eration. At each step only one byte was read from each input row, and one byte
was written to each output row. A similar exercise with identical conclusions can be
executed for decryption transformation. Each row can be viewed as an addressable
8-bit-wide memory. The correct execution of ShiftRows and InvShiftRows is now
resolved to the proper addressing of each of the memories at the consecutive clock
cycles. At the fourth clock cycle output memories become input memories and vice
versa.

10.7.3.2 FPGA Dual-Port RAM-Based Implementation

Each CLB Slice in Xilinx FPGAs contains two look-up tables (LUT), which are the
primary resources for logic implementation. Typically LUTs are configured as small
16×1 ROM tables implementing logic functions of up to four inputs; however, other
configurations are also possible. Two LUTs within the same Slice can implement a
16× 1 dual-port RAM. An 8-bit-wide dual-port RAM can be implemented using
eight CLB Slices. This memory can be divided into two banks, each addressed by
a different port. One port is used for reading data from the memory, while the other
one writes results back to the same memory. The switching between banks can be
achieved by flipping one address bit in both ports every fourth clock cycle.

The dual-port RAM-based solution has major advantages over solutions pre-
sented in Figure 10.50:

• The logic resources required for storing intermediate results are far smaller.
• The multiplexer used before for ShiftRows and InvShiftRows is no longer needed.



10 FPGA and ASIC Implementations of AES 285

• The complicated routing resulting from implementation of ShiftRows and In-
vShiftRows is avoided, yielding better performance.

10.7.3.3 FPGA Shift Register-Based Implementation

A better solution may result from the following observation: all bytes from the out-
put of AddRoundKey are written into consecutive locations in the output memory
in consecutive clock cycles. Therefore, we could use a simple shift register to shift
computed data in without generating any addresses. Fortunately, LUTs can also be
configured as 16-bit shift registers with variable taps, as shown in Figure 10.52.
Four Slices can implement an 8-bit-wide, 16-bit-long shift register. The input of the
shift register is used for shifting results in while the output, selected dynamically by
changing tap address, is used for reading data out. This solution encompasses all of
the advantages of the dual-port RAM-based solution and requires less than half of
the logic resources than the dual-port RAM.

10.7.3.4 Encryption/Decryption Unit

The optimized circuit is capable of performing encryption and decryption. The
AES encryption and decryption rounds substantially differ from the point of view
of hardware implementations. One of the inconveniences arises from the fact that
the AddRoundKey is executed after MixColumns in the case of encryption and be-
fore InvMixColumns in the case of decryption. Therefore, a switching logic is re-
quired to select appropriate data paths, which affect the performance, as shown in
Figure 10.53.

4

input

clock
address

output

LUT

D Q D Q D Q D Q
1

1

Fig. 10.52 Look-up table (LUT) configured as a shift register.

d 

2(x)

Input

Folded
register

SubBytes c(x)

Output
Subkey Subkeyforwarding

Fig. 10.53 Implementation of the encryption/decryption unit.
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10.8 Implementation of Key Scheduling

An AES key scheduling unit can either generate round keys on the fly or it can store
them in an internal key memory during the key setup phase and then read them from
this memory whenever they are required by the encryption/decryption unit.

An AES key scheduling unit can support just one external key size, e.g., 128-bit
key, or it can support all three key sizes described in the standard, i.e., 128-, 192-,
and 256-bit keys. In the latter case, the unit is referred to as a 3-in-1 design.

Both kinds of units can be constructed in such a way that they produce 32 bits
(one word = 1

4 th of a round key), 64 bits (two words = 1
2 of a round key), or 128 bits

(the entire round key) per clock cycle.
In the basic iterative architecture, only the last of these three designs allows

the generation of round keys on the fly. The remaining designs require the key
setup phase, during which the round keys are computed and stored in internal
memory.

As an example, in Figure 10.54, we present a 3-in-1 key scheduling unit that
produces 64-bits (a half of a round key) per clock cycle. The operation of the circuit
is described by formulas given in Figure 10.54b that follow the pseudocode from
Figure 10.16. The unit is capable of computing two 32-bit words of the key material
(ki and ki+1) per one clock cycle, independently of the size of the main key.

Since each round key is 128-bit long (the size of the input block), two clock
cycles are required to calculate each round key. Therefore, this key scheduling unit is
not designed for computing subkeys on the fly. Instead, all round keys corresponding
to the new main key are computed in advance and stored in the key memory. This
computation can be performed in parallel with encrypting data using previous main
key, therefore key scheduling does not impose any performance penalty.

The implementation of the key schedule suitable for a more compact encryp-
tion/decryption architecture supporting only 128-bit AES keys is shown in
Figure 10.55. This architecture computes 32 bits of the key material per clock cycle,
therefore, full key schedule execution for a 128-bit key takes 44 clock cycles. The
computed round keys are stored in RAM.

The key schedule uses SubBytes operation that is identical to the one used
in the encryption circuit. Since key schedule does not have to work simultane-
ously with the encryption unit, it is possible to time share S-boxes between both
circuits.

10.9 Optimum Choice of a Hardware Architecture for AES

The choice of an optimum hardware architecture for AES depends on the following
major factors:

1. Optimization criteria, such as minimum area, minimum power consumption,
maximum throughput, maximum throughput to area ratio, etc.
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Fig. 10.54 The 3-in-1 key scheduling unit of AES: (a) main circuit, (b) formulas describing the
operation of the circuit.

2. Support for feedback modes of operation, such as CBC and CFB, or non-
feedback modes of operation, such as ECB and CTR modes.

3. Support for AES encryption only (e.g., in the block cipher modes of operation
that require encryption only, such as CTR and CFB modes) or encryption and
decryption (e.g., in the modes that require both operations, such as ECB and
CBC).

4. Semiconductor technology of choice, such as ASIC or FPGA.
5. Resistance to side channel attacks, such as differential power analysis, timing

analysis, etc.

In case area and/or power consumption are primary concerns, compact archi-
tectures described in Section 10.7.3 or the basic iterative architecture, described in
Section 10.5.2, should be considered. This choice is independent of the require-
ments for feedback vs. non-feedback cipher modes and encryption only vs. en-
cryption/decryption. S-box-based architectures will be preferred in this case, and



288 Kris Gaj and Pawel Chodowiec

rot

SubBytes

Rcon 3-deep
shift

register

input output

Fig. 10.55 Implementation of the key schedule.

S-boxes may be implemented using logic only (especially in ASIC implementa-
tions). In case both encryption and decryption are required, the resource sharing
between MixColumns and InvMixColumns, based on the parallel or serial InvMix-
Columns, decomposition should be considered, as described in Section 10.6.2.

In case the maximum throughput is of primary concern, the choice of the hard-
ware architecture depends on the operating modes that need to be supported.

As shown in Figure 10.20, the basic iterative architecture of AES assures the
maximum throughput to area ratio for feedback operating modes such as CBC and
CFB. It also guarantees near-optimum throughput and near-optimum area for these
operating modes. Therefore, it is very likely to be commonly used in many prac-
tical implementations of AES targeting feedback cipher modes. In case only en-
cryption needs to be supported (in the operating modes such as CFB), S-box-based
architecture, described in Section 10.7.1, is preferred. In case both encryption and
decryption need to be supported (e.g., in the CBC mode) the T-box-based architec-
ture, described in Section 10.7.2, assures the maximum overall clock speed and data
throughput.

In the non-feedback cipher modes of operation, such as counter mode, the ar-
chitecture with the mixed inner- and outer-round pipelining, described in Section
10.5.4, offers the maximum circuit throughput. The S-box-based architecture with
S-boxes implemented using logic only (see Sections 10.7.1 and 10.6.1) leads to the
highest clock frequency. The throughput in the full mixed inner- and outer-round
pipelining is given by

T hroughput f ull mixed =
block size

TCLKinner round (kopt)
(10.58)

where TCLKinner round (kopt) is the delay of a single pipeline stage for the optimum num-
ber of registers introduced inside of a single round. In FPGA implementations, this
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delay is determined by the delay of a single CLB Slice and delays of interconnects
between CLBs. As a result, the throughput does not depend on the complexity of a
cipher round and tend to be similar for a large number of block ciphers, including
AES. Therefore, the full mixed inner- and outer-round pipelining should be the ar-
chitecture of choice for the implementations of AES targeting the highest possible
throughput.

The choice of a hardware architecture depending on the resistance to side channel
attacks is beyond the scope of this chapter. However, it should be noted that if the
countermeasures against the side channel attacks are introduced at the circuit or
logic levels, as proposed in multiple papers, such as [37–40], then all hardware
architectures presented in this chapter might be equally secure.

10.10 Exercises

1. Using your knowledge about the internal structure of the SubBytes and InvSub-
Bytes transformations, verify the correctness of the following entries of the AES
S-box and AES Inverse S-box:

a. S-box[89] = A7
b. InverseS-box[89] = F2

2. Compute an output of the MixColumns transformation for the following sequence
of input bytes “12 45 78 AB”. Apply the InvMixColumns transformation to the
obtained result to verify your calculations. Change the first byte of the input from
“12” to “02”, perform the MixColumns transformation again for the new input,
and determine how many bits have changed in the output.

3. Compute the first two round keys of AES corresponding to the 128-bit key of all
ones.

4. Draw a block diagram of the modified basic iterative architecture capable of en-
crypting messages in the counter mode using the minimum number of clock cy-
cles. Compute the total time necessary to encrypt a message of the length of 1
MB using hardware implementation of Rijndael with a 128-bit input block and
a 256-bit key, working in the counter mode with the size of a message block k
= 8, assuming the modified basic iterative architecture operating with the clock
frequency of 25 MHz.

5. Compute the total time necessary to encrypt a message of the length of 1 kB
using hardware implementation of Rijndael with 128-bit input block and 192-
bit key, working in the CFB mode with the size of a message block k = 32,
assuming the basic iterative architecture operating with the clock frequency
of 30 MHz.

6. Derive a formula for the contents of the look-up tables T0
−1, T1

−1, T2
−1, T3

−1

used for the decryption in the T-box-based implementation of AES. Compute the
contents of the following components of these tables: T0

−1[1], T1
−1[2], T3

−1[254].
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10.11 Projects

1. Develop and compare three different implementations of the SubBytes InvSub-
Bytes operations using look-up tables, look-up tables and logic, and logic only.

• compare the minimum clock period and use of logic resources (CLB Slices,
Block RAMs, etc.) among the three designs

• pipeline each design in order to obtain
– minimum possible clock period and
– maximum throughput to area ratio
compare the three designs in terms of these parameters.

2. Develop and compare three different implementations of the MixColumns In-
vMixColumns operations using

a. basic implementation
b. compact implementation with parallel InvMixColumns decomposition
c. compact implementation with serial InvMixColumns decomposition

Compare the three designs in terms of the total resource usage, minimum latency
for the MixColumns operation, and minimum latency for the InvMixColumns op-
eration. Determine how suitable is each of the three designs for a hardware ar-
chitecture with deep inner-round pipelining.

3. Develop and compare two different high-level implementations of AES in the
basic iterative architecture

a. based on S-boxes
b. based on T-boxes

Compare both implementations in terms of the maximum throughput, area, and
throughput to area ratio.

4. Develop and compare three different implementations of the AES key scheduling
unit with the number of output bits per clock cycle equal to

a. 32 bits
b. 64 bits
c. 128 bits

Compare all three implementations in terms of the minimum clock period and
area.

5. Develop and compare three different implementations of the compact architec-
ture of AES with the datapath width equal to

a. 8 bits
b. 32 bits
c. 64 bits
d. 128 bits (basic iterative architecture)

Compare all four implementations in terms of the minimum clock period and
area.
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Chapter 11
Secure and Efficient Implementation of
Symmetric Encryption Schemes using FPGAs

François-Xavier Standaert

11.1 Introduction

Due to its potential to greatly accelerate a wide variety of applications, reconfig-
urable computing has gained importance in the industrial development of digital
signal processing systems. This chapter discusses how the particular properties of
field programmable gate arrays (FPGAs) can be exploited for the secure and effi-
cient implementation of symmetric cryptographic algorithms and protocols.

Reconfigurable computing intends to fill the gap between hardware and soft-
ware, achieving potentially much higher performance than software, while main-
taining a higher level of flexibility than hardware. Reconfigurable devices such
as FPGAs contain arrays of computational elements whose functionality is deter-
mined through multiple programmable configuration bits. These elements, some-
times known as logic blocks, are connected using a set of routing resources that
are also programmable. As a consequence, the realization of FPGA designs can be
performed at the user site. Synthesis and implementation tools allow the high-level
description of a hardware design to be translated into the programming file for an
FPGA. The run-time operation of a reconfigurable system consequently occurs in
two distinct phases: configuration and execution. First, the programming file of the
reconfigurable device is directed from a host PC or an on-board memory to the
FPGA. This configuration data are used to define the actual operation of the hard-
ware. Thereafter, during the execution phase, the reconfigurable device acts as a
purpose-built hardware.

The structure of actual computation blocks within the reconfigurable hardware
varies from system to system. Each computation unit, or logic block, can be as
simple as a 3-input function generator (usually denoted as look-up table (LUT)),
or as complex as an 8-bit arithmetic and logic unit (ALU). This difference in the
block size is commonly referred to as the granularity of the logic block. Fine-grain
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blocks are useful for bit-level manipulations while coarse-grain blocks are better
optimized for high-level data manipulations. The granularity of the FPGA also has
a potential impact on the configuration time of the device. A fine-grained array has
many configuration points to perform very small computations, and thus requires
more data bits during reconfiguration. Recent FPGAs such as the one illustrated in
Figure 11.1 usually combine different sizes or types of blocks in order to efficiently
support different kinds of computations. For example, standard logic blocks using
4-input LUTs are combined with embedded RAM blocks, multipliers and micro-
processors. Next to the computational blocks, the interconnections also have a major
impact in the final performance of an FPGA. Recent devices are usually structured
in different lengths of interconnects in order to efficiently deal with close and remote
connections between the different logic blocks.

In the remainder of this chapter, we assume a reader with basic knowledge in
FPGA design and cryptographic algorithms. Rather than providing a general intro-
duction to reconfigurable cryptographic implementations, this chapter aims to put
forward a number of properties of these devices and to discuss how they can be
exploited efficiently and securely. Underlining how FPGA designs differ from stan-
dard integrated circuit designs with this respect is an alternative goal. Due to the
very general nature of this topic, it is not intended to be extensively covered and
our different sections attempt (as far as possible) to redirect the reader toward fur-
ther readings when necessary. As introduction to the following issues, we suggest
[10] for a general report on reconfigurable computing, [22] for detailed descriptions

Fig. 11.1 High-level view of an FPGA.
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on the efficient implementation of cryptographic algorithms on FPGAs, [11] for a
good bibliography on FPGA security issues and [36] for a combined discussion of
implementations and attacks on FPGAs. Additionally, since most of our running ex-
amples are using Xilinx FPGAs, we refer to [37] for a detailed description of these
devices.

The rest of the chapter is structured as follows. Section 11.2 discusses the effi-
cient exploitation of different FPGA features, from low-level facilities of the logic
blocks to high-level architectural features. Section 11.3 details some metrics used
for evaluating the efficiency of a cryptographic implementation. The two last sec-
tions investigate different issues related to the security of reconfigurable devices.
Section 11.4 comments on the applicability of an important class of physical attacks
(denoted as side-channel attacks) to recent FPGAs. Section 11.5 surveys other se-
curity topics, related to fault insertion and bitstream security. Our conclusions are in
Section 11.6. We note finally that most of the examples used in this chapter are bor-
rowed from implementation works of the UCL Crypto Group. Many similar results
can be found in the literature and this chapter does not aim to give an overview of
previously published works.

11.2 Efficient FPGA Implementations

This section considers the exploitation of different features in recent reconfigurable
devices for the efficient implementation of symmetric cryptographic algorithms.
We first investigate the slice structure, then describe the exploitation of additional
embedded blocks and conclude by discussing the possible advantages of higher-
level architectural facilities provided by recent FPGAs, namely embedded micro-
processors and dynamic reconfiguration. We note that most of these features directly
derive from the FPGA datasheets. However, since they are not always optimally (and
automatically) exploited by the synthesis and implementation tools, it is important
to have them in mind already during the high-level description of a cryptographic
design.

11.2.1 Exploiting the Slice Structure

In this first section, we consider a Xilinx Virtex-II FPGA. Such devices embed pro-
grammable logic blocks, RAMs and multipliers. The slice is the logic unit that is
generally used to evaluate an FPGA design’s area requirements. Such a slice, de-
picted in Figure 11.3, is made up of two LUTs, two flip-flops (or registers) and
a few additional gates. According to the user’s choice, any of these LUTs can be
configured in one out of three possible ways: RAM16 that acts like a 24 × 1-bit
RAM storage, SRL16 that implements a 16-bit linear shift register and LUT that
is capable of computing any 4-to-1 boolean function. A more detailed view of half
a slice is given in Figure 11.2. An interesting thing to notice is the fast carry chain
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Fig. 11.2 Top half slice of a Xilinx Virtex-II.

Fig. 11.3 Slice configurations.
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(emphasized on the picture) crossing the slice. It allows the efficient implementation
of carry propagate adders and, as will be shown, can sometimes be used to simplify
the combinatorial cost of some designs.

11.2.1.1 The “Maximum” Pipeline Strategy and Limitations

The first observation from these pictures is that any LUT in a slice comes with its
flip-flop. A consequence is that a straightforward pipelining strategy can be applied
to the hardware design of, e.g., block ciphers in which the number of pipeline stages
equals (or is close to) the design’s logic depth expressed in LUTs. This is in con-
trast with ASICs where every flip-flop has its cost. Such strategies, looking for the
maximum pipeline, generally give rise to very good synthesis results. However, the
implementation (especially the routing task) of block ciphers within certain FPGAs
can then become the bottleneck, due to high data diffusion. As mentioned, e.g.,
in [28], the design of a maximum pipelined advanced encryption standard (AES)
Rijndael exhibits delays with 20% of logic and 80% of routes. It suggests that such
a strategy is not optimum in these contexts. Improved solutions involve either the
use of registers to pipeline the routes (if very high frequencies are to be reached) or
the limitation of the design logic depth to two (or more) LUTs (if high efficiencies
are required).

11.2.1.2 The Slice Multiplexors

Next to the slice LUTs, Xilinx FPGAs provide multiplexors (usually denoted as
multiplexors Fx) allowing to efficiently implement distributed RAM and ROM
within the FPGA. These elements have a strong impact on the implementation effi-
ciency of encryption algorithms using substitution boxes, e.g., the AES Rijndael that
uses a 28×8 S-box. As an illustration, the previously described Virtex-II allows im-
plementing a 28 ×1 ROM with 16 LUTs and consequently, the AES Rijndael S-box
fits in 64 slices. In the recent Virtex-5 family of FPGAs, the 4-input LUTs have been
turned into 6-input LUTs. Using the same additional multiplexors allows to imple-
ment a 28 × 1 ROM with only 4 LUTs and consequently the AES Rijndael S-box
fits into 32 slices.

11.2.1.3 The Shift-Register Slice Structure

A second convenient feature of the Virtex-II slice is the possibility to configure
the LUT as a 16-bit shift register. This feature has a significant impact, e.g., in the
implementation of stream ciphers using linear feedback shift registers. It is worth
noticing that the efficient exploitation of the SRL16 primitives highly depends on
the required taps positions in the stream ciphers. Any time an intermediate value is
extracted from the SRL16 primitives, a new LUT has to be used. As a consequence,
it may happen that a k-bit register with k < 16 occupies a complete SRL16 cell.
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The stream cipher grain implementation in [7] is a good example of a straightfor-
ward (but very efficient) exploitation of these shift register-configured LUTs, with
convenient taps positions.

Another interesting use of the shift register structure occurs when the target
ciphers have an unbalanced structure. As a typical example, the data encryption
standard (DES) has a very light key scheduling algorithm, compared to its round
function. Therefore, the maximum pipeline strategy applied to the round and key
round results in different number of pipeline stages. In a maximum pipeline imple-
mentation with “on-the-fly” round key derivation, several slices will consequently
be “wasted” to pipeline the key schedule (meaning that their corresponding LUT
will not be used). In such a context, the shift register structure can provide up to 16
pipeline stages with one single LUT, which result in a much more efficient imple-
mentation, e.g., in [23].

11.2.1.4 Additional Logic Gates Within the Slice

Finally, configurable logic blocks generally embed additional logic gates that can be
efficiently exploited in certain specific contexts. One classical example is the XOR
gate that is illustrated by the emphasized path in Figure 11.2. Since most symmetric
encryption algorithms make an extensive use of such gates, they are generally use-
ful to cryptographic designers. As an illustration, combining this gate with one LUT
allows implementing a 5-bit XOR operation. In a maximum pipeline AES Rijndael
implementation taking advantage of this 5-bit XOR, the combination of the Mix-
Columns and AddRoundKey operations can consequently fit in only two pipeline
stages, e.g., in [28]. Note that there is generally only one such XOR gate for several
LUTs in a slice, which has to be taken into account during the designing phase (e.g.,
two LUTs can share the same XOR gate, but it has to have the same input).

11.2.2 Exploiting Embedded Blocks

Most recent FPGAs have an hybrid structure combining fine-grain logic blocks with
larger-grain, specialized embedded blocks. Next to the inner structure of the FPGA
logic blocks that was previously discussed, this section investigates how these larger
blocks can be useful in the context of symmetric cryptographic implementations.
For illustration, we selected two frequently available such blocks, namely embedded
memories and multipliers.

11.2.2.1 RAM Blocks

Just as distributed RAM and ROM can implement the S-boxes of a block cipher,
embedded memories can play the same role. However, in order to efficiently exploit
these blocks, it is important to fill them as completely as possible, e.g., with the
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substitution tables defined in the target cipher specifications. As an illustration, the
RAM blocks in the Virtex-E devices are dual-ported 4096-bit synchronous. Since
the AES S-box has 28 × 8 = 2048 bits of memory requirements, it means that two
S-boxes can fit in one such block. By contrast, Virtex-II devices incorporate dual-
port synchronous RAM blocks of 18 Kbit. Storing the Rijndael S-boxes in such
blocks is consequently not an efficient solution. An alternative proposal to exploit
these larger memories is to implement both the S-boxes and the MixColumns oper-
ation as precomputed tables. Namely, let us consider the combination of SubBytes
and MixColumns in Rijndael. An output column of this transform equals

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦×
⎡
⎢⎢⎣

SB(a0)
SB(a1)
SB(a2)
SB(a3)

⎤
⎥⎥⎦ ,

where the bi’s represent the combined transform output bytes and the ai’s its input
bytes to the S-boxes. Therefore, if we define four tables as

T0(a) =

⎡
⎢⎢⎣

02×SB(a)
SB(a)
SB(a)

03×SB(a)

⎤
⎥⎥⎦ , T1(a) =

⎡
⎢⎢⎣

03×SB(a)
02×SB(a)

SB(a)
SB(a)

⎤
⎥⎥⎦ ,

T2(a) =

⎡
⎢⎢⎣

SB(a)
03×SB(a)
02×SB(a)

SB(a)

⎤
⎥⎥⎦ , T3(a) =

⎡
⎢⎢⎣

SB(a)
SB(a)

03×SB(a)
02×SB(a)

⎤
⎥⎥⎦ ,

the combination of SubBytes and MixColumns equals⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦= T0(a)⊕T1(a)⊕T2(a)⊕T3(a).

The size of one Ti table is 28 ×32 � 8 Kbits. It is consequently possible to store the
four tables in two dual-port 18 Kbit RAM blocks, e.g., as in [24]. Similarly, such 18
Kbit memory blocks offer a straightforward solution to implement a masked DES
design to improve the security against side-channel attacks (see Section 4.2 for de-
tails). As the DES S-boxes have 26 × 4 bits of memory requirements, its masked
counterpart has 212 ×4 � 16 Kbit of memory requirements, which just fits into the
Virtex-II RAM blocks [32]. It is finally important to note that due to their fixed posi-
tion within the device, embedded RAM blocks impose stronger routing constraints
than their distributed counterpart of the previous section. It may affect the operating
frequency of a design, specially if a large number of embedded blocks are used.

11.2.2.2 Embedded Multipliers

Although arithmetic operands are more likely to be exploited in asymmetric crypto-
graphic applications, there are examples of symmetric ciphers in which one can also
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take advantage of embedded multipliers. In the IDEA block cipher, integer multi-
plication modulo (2n + 1) is usually the bottleneck for hardware implementations.
Such constraints suit pretty well to FPGAs embedding small multiplier blocks, such
as the Virtex-II family of devices [4].

11.2.3 Exploiting Further Features

The previously described FPGA features related to the logic block structure and the
use of embedded memories and multipliers have been intensively used in a variety
of implementation works. In this section, we briefly describe some more recent (and
less-investigated) trends in the design of reconfigurable systems that can potentially
be exploited in cryptographic applications.

11.2.3.1 Microprocessors and Controllers

Microprocessors and controllers of two shapes can be found in recent reconfigurable
devices. First, hard cores can be discretely embedded in the device, as the previously
described RAM blocks and multipliers. This is typically the case of the PowerPC
microprocessor that is available in recent Xilinx devices, e.g., the Virtex-II-pro. Sec-
ond, micro-controllers can be synthesized and implemented within the FPGA logic
blocks, just as distributed memories. This is typically the case of the MicroBlaze
(32-bit RISC) and PicoBlaze (8-bit RISC) controllers that are freely available as
soft cores from Xilinx.1 In a processor-based FPGA system, customized IP cores
can then be connected to the controllers through various interfaces like the on-chip-
peripheral bus (OPB) or the fast simplex link (FSL). In general, processor-based
embedded systems cannot be compared favorably with specialized cryptographic
designs in which the hardware is optimized and possibly pipelined in order to reach
high implementation efficiencies. However, when the system specifications establish
that a general-purpose processor must be used, the MicroBlaze and PicoBlaze so-
lutions can be suitable. They additionally offer the flexibility of being programmed
with a software language. For example, [13] describes the implementation of vari-
ous block ciphers within a MicroBlaze-based system.

11.2.3.2 Dynamic Reconfiguration

Dynamic reconfiguration refers to the possibility of reconfiguring an FPGA par-
tially, while operating and without compromising the integrity of the application

1 As an illustration, a PicoBlaze core takes less than 200 logic cells in a Spartan-II device and can
run at 76 MHz. A MicroBlaze core takes less than 1000 logic cells in a Virtex-II device and can
run at 125 MHz.
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running. It is sometimes referred to as partial or run-time reconfiguration [18]. From
a theoretical point of view, dynamic reconfiguration allows using more hardware
than physically present in the FPGA which can be used to reduce the size of the
device as well as its overall power consumption. From an application point of view,
the expected benefits include any adaptive change of the FPGA design due to en-
vironmental changes (e.g., a change of algorithm or change of performance con-
straints). However, the exploitation of such techniques pose a number of practical
issues, including the reliability of the design flow and the time required for the re-
configuration. Its exploitation in cryptographic applications is therefore a scope for
further research, although it appears as a promising opportunity to improve systems
flexibility.

11.2.4 Combining the Tricks: The Flexibility Versus
Efficiency Tradeoff

To conclude this section, let us first mention that all the previous tricks only consti-
tute a part of the possibilities offered by recent FPGAs, can be efficiently combined
and generally have to be considered during the high-level modeling stage of a hard-
ware design. For example, the way the inner structure of the slice can be exploited
strongly determines the pipelining strategy to use. Second, it is important to consider
that the optimal exploitation of one specific target FPGA, by designing in function
of the slice structure or available embedded blocks, makes the hardware code less
portable. It also sometimes requires to map some parts of the design by hand into
the FPGA resources. There is consequently a tradeoff to find between the efficient
exploitation of a given device and the possibility to use an IP core in a variety of
systems and products. Note finally that although our illustrative implementation ex-
amples are based on symmetric cryptographic algorithms, the techniques discussed
in this section generally apply for any reconfigurable hardware design.

11.3 Fair Evaluation of a Cryptographic FPGA Design

Before any cryptographic design is implemented always comes the question of the
performance goals to achieve. Stating these goals properly in function of a target
application and determining good metrics for the performance evaluation is there-
fore an important step in the understanding of reconfigurable architectures. Unfortu-
nately, there is no straightforward answer to these questions and the fair evaluation
(or comparison) of a given FPGA implementation is often a matter of taste. This
section aims to illustrate some important questions to consider in such a perfor-
mance assessment. For this purpose, we restrict ourselves to the implementation of
the AES Rijndael. We start by considering the design goals. Then we discuss the
performance evaluation.
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11.3.1 Design Goals

A list of design goals for the FPGA implementation of the AES Rijndael would
typically include (but is not limited to) the following eight questions:

1. Does the application require to develop an encryption/decryption core or just an
encryption only, decryption only core?

2. Is the key scheduling algorithm required to be performed “on-the-fly” or can the
round keys be computed once and stored in memory?

3. Is the block cipher design supposed to run in a specific encryption mode (e.g.,
feedback) that would prevent the use of pipelining?

4. What kind of interface has to be provided to the outside world?
5. Are there specific constraints to be fulfilled by the implementation (e.g., in terms

of hardware cost or throughput)?
6. What is the target FPGA device? With which speedgrade?
7. Are there available embedded blocks in the device (are not they required for

running other applications than cryptographic ones)?
8. What is the datapath size planned for the design (128-bit, 32-bit, etc.)?
9. Are multiple clocks allowed within the reconfigurable system?

11.3.2 Performance Evaluation

Assuming a hardware designer has implemented the AES Rijndael following some
of the design goals in the previous section, its performances could then be mea-
sured with the following metrics: hardware cost (in LUTs, registers, slices, etc.),
operating frequency (in MHz), throughput (in Mbit/sec) and possibly some effi-
ciency measurement, e.g., throughput/hardware cost. For illustration, Table 11.1
lists some exemplary AES Rijndael implementations with selected design goals and
Table 11.2 summarizes their performances according to selected metrics. These ta-
bles typically illustrate the difficulty of performing fair comparisons between dif-
ferent FPGA designs. First, different architectures generally have different design
goals. Second, evaluation metrics can be misleading since they highly depend on
the target device. Comparing the performances of different algorithms raises similar
questions.

Table 11.1 Exemplary AES Rijndael designs with selected design goals.

Index E,D Key Sched. Feedback Device Architecture

1. E only On-the-fly no Virtex-E 128-bit unrolled
2. E only On-the-fly no Virtex-E 128-bit loop
3. E/D Precomputed yes Virtex-II 32-bit loop
4. E/D Precomputed yes Spartan-II 8-bit loop
5. E/D Precomputed yes Spartan-II PicoBlaze
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Table 11.2 Exemplary AES Rijndael designs with selected performance metrics.

Index Ref. LUTs Regs. Slices RAMBs Freq. Throughput
1. [28] 3516 3840 2784 100 92 MHz 11.7 Gbit/sec
2. [28] 3846 2517 2257 0 169 MHz 2 Gbit/sec
3. [24] 288 113 146 3 123 MHz 358 Mbit/sec
4. [14] – – 124 2 67 MHz 2.2 Mbit/sec
5. [14] – – 119 2 90 MHz 710 Kbit/sec

Note that efficiency metrics (e.g., throughput/hardware cost) can be specially
misleading since the hardware cost in FPGAs can be expressed in LUTs, slices,
RAMBs, etc. Some metrics consequently attempt to unify these different resources,
e.g., by expressing the cost of the RAM blocks as distributed RAMS in LUTs,
but this is still device dependent. General observations can nevertheless be high-
lighted. For example, looking at the dependencies between the architecture size and
the throughput in the previous tables, one could state that applications in the multi-
Gbit/sec range should consider 128-bit unrolled architectures, applications in the
Gbit/sec range should consider 128-bit loop architectures, applications in the hun-
dreds of Mbit/sec range should consider 32-bit loop architectures and so on. As
previously mentioned, these tables are far from being a complete survey of existing
implementations of the AES Rijndael nor do they contain the best available results.
For a more detailed list of such implementations, we refer to [15].

11.4 Security of FPGAs Against Side-Channel Attacks

The previous sections mainly cared about efficient FPGA implementations. How-
ever, as far as cryptographic algorithms are concerned, not only their hardware cost,
throughput, etc. are important to a designer but also their security against various
types of physical attacks. Physical attacks on cryptographic devices take advantage
of implementation-specific characteristics to recover the secret parameters involved
in the computations. They are therefore much less general – since specific to a given
implementation – but often much more powerful than classical cryptanalysis and
are considered very seriously by cryptographic device manufacturers. Examples of
physical attacks include the probing of devices [2], the insertion of faults [5] or the
monitoring of side-channel information leakages such as the power consumption
[17] or electromagnetic radiation [1]. Due to the important amount of public work
that has been dedicated to the analysis of side-channel attacks against FPGAs, this
section discusses their specificities. In Section 11.5, we consider other aspects re-
lated to the tamper resistance of reconfigurable devices, including fault attacks and
bitstream security issues. As for the previously discussed efficiency concerns, we
do not aim to present an exhaustive survey of physical attacks on FPGAs but to put
forward a number of their meaningful features. We redirect the reader toward further
readings when needed.
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11.4.1 Applicability of the Attack and FPGA Properties

Side-channel attacks are based on the hypothesis that an exploitable amount of se-
cret information is leaked by an implementation through a physical channel. For ex-
ample, in power analysis attacks, an attacker uses a hypothetical model of the device
under attack to predict its power consumption. These predictions are then compared
to the real measured power consumption in order to recover secret information (i.e.,
secret key bits of block ciphers). In this first section, we aim to illustrate that such
physical information is indeed leaked by FPGA devices and can be exploited, using
simple attack models. For this purposes, we focus on static RAM-based reconfig-
urable devices (like the previously considered Xilinx Virtex family) since they are
the most popular technology in use. In these devices, the storage cells, the logic
blocks and the connection blocks are made of CMOS gates.

11.4.1.1 A Simple Leakage Model Applicable to FPGAs

Static CMOS gates have three distinct dissipation sources [21]. The first one is
due to the leakage currents in transistors. The second one is due to the so-called
short-circuit currents there exists a short period during the switching of a gate while
NMOS and PMOS transistors are conducting simultaneously. Finally, the dynamic
power consumption is due to the charge and discharge of the load capacitance
CL represented by the dotted paths in Figure 11.4. The respective importance of
these dissipation sources typically depends on technology scalings. But the dynamic
power consumption is particularly relevant from a side-channel point of view since
it determines a simple relationship between a device’s internal data and its externally
observable power consumption. It can be written as

Pdyn = CLV 2
DDP0→1 f , (11.1)

where P0→1 is the probability of a 0 → 1 bit transition, f is the operating frequency
of the device and VDD is the voltage of the power supply. Therefore, in practice, a
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Fig. 11.4 Charge versus discharge of a CMOS inverter.
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simple way to model the power consumption of an FPGA is to predict its switching
activity. Let S1 be a large bit register containing the state of all the FPGA cells at
some moment in time t1 and S2 be another register containing the FPGA state one
clock cycle later. The number of bit switches (including both 0 → 1 and 1 → 0
transitions) in the device when moving from state S1 to S2 equals the Hamming
distance between these states, namely HD(S1,S2) = HW (S1 ⊕ S2), where HW is the
Hamming weight operator.

11.4.1.2 Exploiting the Leakages

We illustrate the attack principle with the simple encryption network of Figure 11.5,
which contains the same basic elements as most present block ciphers e.g., the AES
Rijndael. That is, the plaintext is XORed with a secret key, then goes through a layer
of relatively small substitution boxes and is finally sent to a larger permutation (e.g.,
a linear diffusion layer for the AES Rijndael). The same operations are iterated a
number of times. For the purposes of this chapter, it is not necessary to know more
details on these algorithms. The attack proceeds as follows. Let the adversary target
the 4 key bits entering the left S-box of Figure 11.1, denoted as K0[0...3]. Then,
for N different plaintexts, he first predicts the number of transitions at the S-box
output, for every possible value of K0[0...3]. The result of this prediction is a N ×24

prediction matrix P, containing numbers between 0 and 4. In the second part of
the attack, the adversary lets the circuit encrypt the same N plaintexts with a fixed
secret key and he measures the power consumption of the device while the chip is
operating the targeted operation. For each plaintext, he stores a single value for the
power consumption (e.g., the average or maximum value of the target clock cycle).
This results in a N × 1 measurement vector M. Finally, the attacker computes the
correlation2 between the measurement vector and all the columns of the prediction

Target
S-box

S-box S-box S-box S-box S-box

Permutation

S-box S-box S-box S-box S-box S-box

Permutation

K0[0..23]

K1[0..23]

Fig. 11.5 A simple encryption network.

2

C(M,P) =
μ(M.P)−μ(M).μ(P)√

σ 2(M).σ 2(P)
, (11.2)

where μ(M) denotes the mean of the set of measurements and σ 2(M) its variance.
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matrix (corresponding to all the possible key guesses). If the attack is successful, it
is expected that only one value, corresponding to the correct key bits, leads to a high
correlation.

Such attacks have been successfully applied to different algorithms implemented
on a variety of FPGA devices. For example, an attack against the simple design
of Figure 11.5 has been implemented against a Xilinx Spartan-II device and its
results are illustrated in Figure 11.6 in which the correct key candidate is clearly
distinguishable. We note that different statistical tools could be considered to mount
power analysis attacks and the use of the correlation coefficient is not optimal with
this respect. For example, maximum likelihood techniques [9] may yield better re-
sults. However, with the simple power consumption models considered here, cor-
relation attacks provide good results and are extremely easy to manipulate (e.g.,
they do not require any estimation of the noise in the target devices). Note fi-
nally that the same set of measurements can be used to recover all parts of the
key, by changing the prediction matrix (i.e., by applying a divide and conquer
strategy).

11.4.1.3 Exemplary FPGA Properties

To summarize the previous paragraphs, there are two important aspects to take into
account in the analysis of side-channel attacks. First, the target implementation has
to leak some information. With this respect, recent FPGAs are made of CMOS
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transistors, just as smart cards and controllers. They consequently leak information,
just as smart cards and controllers. Second, this information has to be exploitable
by the adversary. With this respect, FPGA implementations offer opportunities to
perform parallel computing and are based on a specific array of logic and routing
cells. These features (among others) lead to specific approaches in the exploitation
of side-channel leakages.

• Parallel computing and target leakage. In power analysis attacks, the leakage
provides an adversary with an image of the computation performed within a
target device. Depending on the implementation context (e.g., see the differ-
ent architectures in Table 11.1), this information relates to 8-bit, 32-bit, 128-bit
(or more) computations. But looking at Figure 11.5, a side-channel adversary
typically targets small parts of the computation one by one, corresponding to
small (e.g., 4-bit) parts of the key. Therefore, the power consumption due to the
untargeted parts of the computation generates what is usually denoted as algo-
rithmic noise. Compared to smart cards and controllers, FPGAs offer the spe-
cific opportunity to design large architectures, with a significant amount of such
noise.

• FPGA structures and leakage models. Even more specific of FPGAs is the array
structure of Figure 11.1. In this structure, the different computational elements
are connected through different types of wires. A consequence is that the dif-
ferent bits in an implementation contribute differently to the overall power con-
sumption, due to different effective capacitances. These different capacitances
have been highlighted, e.g., in [26] for the Virtex-II family of devices. A con-
sequence is that the simple Hamming distance model for the prediction of the
power consumption in reconfigurable devices can be improved according to these
effective capacitances, e.g., by assigning different weights to the switches of dif-
ferent bits within a design. As an illustration, the left part of Figure 11.7 depicts
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the correlation of four parts of a computation in an FPGA and their contribution
to the overall power consumption (measured with a correlation coefficient). The
right part of the figure illustrates that assigning different weights to these compu-
tations allows a better prediction of the overall power consumption [31], which
results in a more efficient side-channel attack.

To conclude this section, the state-of-the-art side-channel attacks against FPGA
devices, e.g., as surveyed in [30], typically illustrate the following three facts: (1)
Side-channel are a threat for FPGAs, as for any microelectronic cryptographic de-
vice. (2) Just as FPGAs offer nice opportunities for efficient implementations, they
have interesting features for secure implementations as well (e.g., the parallel com-
puting opportunity or the ability to design datapaths including the countermeasures
of the following section). (3) Just as the optimal exploitation of the FPGA struc-
ture is useful for efficiency (as detailed in Section 11.2), exploiting the architectural
properties of a given target device (e.g., the effective capacitance of the different
computational parts in a design) is useful for improving the efficiency of an attack.

11.4.2 Countermeasures

Countermeasures against side-channel attacks range among a large variety of solu-
tions. However, in the present state of the art, no single technique allows to provide
perfect security. Protecting implementations against physical attacks consequently
intends to make the adversary’s task harder. In this context, the implementation cost
of a countermeasure is of primary importance and must be evaluated with respect
to the additional security obtained. The exhaustive list of all possible solutions to
protect cryptographic devices from side-channel opponents would deserve a long
survey in itself. In the following, we list four illustrative solutions to improve the
resistance against power analysis that are applicable to FPGAs. Obtaining practical
security usually requires to combine them (possibly with others) in a clever way.

• Noise addition. Adding noise to the side-channel measurements is a very com-
mon technique to reduce the amount of information in the leakages. This can
be achieved in a variety of ways, at different abstraction levels, e.g., physical,
technological, algorithmic. As previously mentioned, the use of large architec-
tures producing a significant amount of algorithmic noise is interesting with this
respect and easy to apply to FPGA designs [29].

• Data randomizations intend to make all the cryptographic computations within
the FPGA dependent on some unknown random values generated on-chip. It
makes the prediction of the power consumption more difficult. Masking is a typ-
ical example of such countermeasures that has been intensively studied in the
literature and applied to FPGAs, e.g., in [20, 32].

• Random pre-charges are another solution to make the side-channel leakage
harder to exploit. If one every two inputs to an encryption design is a random
number generated on chip, an adversary will not be able to predict the transitions
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within the implementation anymore (of course, the random ciphertexts should
not be outputted from the device). As suggested in [31], a solution for the ad-
versary is then to distinguish between 0 → 1 and 1 → 0 bit transitions in the
leakages. But it results in worse leakage models and less-efficient attacks than in
the un-protected Hamming distance model.

• Dynamic and differential logic styles finally intend to make the power consump-
tion within the FPGA independent of the computed data. A logic style is denoted
as differential if the complementary data inputs and outputs are available in the
circuit. The notion of dynamic logic gates refers to the fact that the gate oper-
ation is divided into two phases [21]. First, the output capacitance is charged.
Then, during the evaluation, it is discharged according to the input values. When
combining dynamic and differential logic styles, there are always two capaci-
tances loaded during the pre-charge and one of them is discharged during the
evaluation, regardless of the input sequences. In [34], such a circuit behavior is
proposed for FPGAs.

11.4.3 Measuring Side-Channel Resistance

Countermeasures against side-channel attacks as listed in the previous section usu-
ally involve a significant performance overhead for the encryption algorithms.
Therefore, just as hardware efficiency is a design goal that has to be evaluated with
(hopefully) fair metrics, physical security also has to be evaluated properly. In this
section, we briefly refer to the proposed evaluation methodology introduced in [33]
for these purposes. We use the intuitive picture of Figure 11.8 in which side-channel
attacks are viewed as a communication problem. In summary, there are two impor-
tant aspects to consider in the analysis of side-channel attacks. First, the amount of
information leaked by a target device can be measured with the conditional entropy
(or mutual information). Second, the extent to which an adversary can exploit this
information can be measured with its success rate, just as the bit-error-rate does in
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communication problems. By combining both measurements, one can evaluate both
the quality of an implementation and the strength of a side-channel adversary. Trad-
ing efficiency for security consequently requires to evaluate how the addition of a
countermeasure in a design affects these two metrics.

11.5 Other Security Issues

Side-channels attacks are only a part of the concerns related to the implementa-
tion of cryptographic algorithms within reconfigurable devices. Readback attacks,
cloning of the devices, bitstream reverse-engineering and fault attacks are other con-
cerns that could be considered [36]. In this section, we review some issues related to
the insertion of faults in FPGAs and to their bitstream security. They both constitute
research challenges for future applications.

11.5.1 Fault Attacks

Similarly to side-channel attacks, fault attacks are an intensively studied adversarial
model for cryptographic implementations. However, only a small number of exper-
iments can be found in the literature on the actual possibility to apply such attacks
to FPGAs. Preliminary results as in [8] suggest that fault insertion is feasible (as
for any other SRAM-based device), but could be more difficult to exploit than in
the context of smaller devices like smart cards. The large number of memory cells
present in the logic arrays, determining at the same time the computational state of
a cryptographic algorithm and the configuration of the device (including logic and
routing), implies that different types of faults can occur. “How efficiently can these
faults be exploited?” or “Can they hurt the FPGAs permanently?” are exemplary
open questions. As for side-channel attacks, it is reasonable to expect that security
against such attacks will require to add countermeasures (some of them surveyed
in [19] for block ciphers) and therefore to trade some of a design’s efficiency for
security.

11.5.2 Bitstream Security

Bitstream security is a critical issue for SRAM-based FPGAs. The recovery of bit-
streams (e.g., by applying readback attacks in which the configuration file is read
out of the FPGA) in order to clone an FPGA or their reverse-engineering and also
the digital rights management (DRM) of the intellectual property (IP) cores are im-
portant concerns for the electronic industry. In this section, we survey some of these
questions and describe the (partial) solutions that have been proposed by the indus-
try. We start with a (simplified) description of the different parties in the game. Then,
we discuss the interactions between these parties and the related security problems.
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11.5.2.1 Parties in the FPGA Business

In order to keep our descriptions as simple and straightforward as possible, we
limit our discussions to a three-player game, namely the “end user”, the “system
designer” and the “IP provider”. A more detailed description of the FPGA IP trans-
actions can be found in [16]. The IP provider delivers the hardware description
language (HDL) files (or any other suitable file format such as the netlist for a par-
ticular FPGA) for some specific algorithms, e.g., encryption, image processing. The
system designer creates a complete design for an FPGA chip, making use of one or
more IP cores purchased from IP providers, e.g., a hardware decoder for the digital
cinema [25]. Finally, the end user takes advantage of equipment containing FPGAs.

11.5.2.2 Bitstream Security: System Designer Versus End User

In this interaction, the main goal for the system designer is to prevent readback at-
tacks, cloning of the FPGAs and reverse-engineering of the bitstream. Otherwise
said, the FPGA should appear as black box to the end user. Since the bitstream is
generally stored in an EPROM, an additional issue is to securely connect this exter-
nal memory and the FPGA. For all these purposes, the most frequently considered
solution is the bitstream encryption illustrated in Figure 11.9. In this solution, the
bitstream is encrypted by the CAD tool with user-defined symmetric (secret) keys.
The same keys are stored on the FPGA, e.g., in a volatile memory with an external
battery. During configuration, an on-chip decryption circuit is used to recover the
original configuration file. Readback is not allowed when encrypted bitstreams are
used.

Although this or similar methods are used in several commercial devices, they
suffer from a number of drawbacks. First, it requires an external battery to store
the key. Second, it requires an on-chip decryption circuitry. But most importantly,

CAD tool

bitstream generator

encryption software

EPROM

encrypted
bitstream

FPGA

configuration
memeory

decryption circuit

key storage

external battery

secret keys secret keys

Fig. 11.9 Bitstream encryption in Virtex-II FPGAs.
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the key management of such a solution is tricky. For example, if a single key is
used for all the boards, then a system designer has no opportunity to update the
configuration files for only a part of them. Ideally, it should be possible to update the
symmetric keys remotely. This could be achieved either by the use of a symmetric
master key (but the system security would then depend on this single key) or a
public key mechanism in which each FPGA would come with a private/public key
pair stored in a non-volatile memory.

11.5.2.3 IP Cores DRM: IP Provider Versus System Designer

In this interaction, the situation is even more difficult. First, the IP provider does not
have the FPGA devices in hand which prevents him to store symmetric keys as in
the previous section. Second, the system designer would like to be able to integrate
the IPs in a larger design and to simulate it.

In present devices, a solution for the IP provider to deal with these issues is to
send the system designer an encrypted netlist and simulation model. Xilinx develop-
ment tools allow dealing with such files by embedding a secret key in its software.
But the security of this solution entirely relies on this single key which may conse-
quently be the target of reverse-engineering attempts. In addition, this model only
allows a “per IP core license” business model.

A proposal to allow a “per device license” business model is described in [38].
For this purpose, and for every unit to be built, the IP provider feeds the system
designer with both an IP core and a pre-programmed external security chip. A se-
cret key (chosen by the IP provider) is stored in the encrypted netlist of the IP and
the same key is embedded in the security chip. Before the IP can run on a board,
it checks that the security chip embedding the correct key is properly connected to
the FPGA. The hardware to do this security check is part of the IP core. This solu-
tion allows the IP provider to monitor the number of devices running its design but
suffers from several drawbacks. First, the key management is not easy since the key
is embedded in the netlist. As for the bitfile encryption, key updates could be made
easier by using either a master key or a public key mechanism in the FPGAs. Sec-
ond, the system security does still rely on netlist encryption in the Xilinx software.
If an adversary can decrypt the netlist, he can also disable the security check.

There is consequently a tradeoff to face in the DRM of IP cores. For flexibil-
ity reasons, it is desirable that the security relates to the netlists so that IPs can be
easily simulated and integrated in larger designs (as in the previous proposal). But
for security reasons, the best solution would be to deal directly with bitstreams. For
example, if a non-volatile private key Ks and the corresponding public key Kp were
available in an FPGA, an IP provider could sell a pair [EK(bitstream), EKp(K)] to
protect its design, in a “per device license” business model. But present development
tools do not allow to easily combine different bitstreams which makes this solution
quite unpractical for the system designer’s point of view. Improved solutions (e.g.,
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taking advantage of partial reconfiguration techniques) are consequently required
to improve this setting. Note finally that, whatever the DRM and bitstream secu-
rity mechanisms involved, the underlying cryptographic algorithms may still be the
target of side-channel or fault attacks. It is therefore important to quantify the relia-
bility of these solutions with an appropriate security level.

11.6 Conclusions and Open Questions

This chapter discussed some aspects in the secure and efficient implementation of
symmetric encryption schemes in recent FPGAs. It aims to illustrate both how the
particular properties of these reconfigurable devices can be exploited to improve the
performances of an implementation and how the same properties can be exploited by
malicious adversaries. Our discussions suggest different tradeoffs for cryptographic
designers. First, the flexibility of a design can be traded for performances. That
is, by carefully taking advantage of all the architectural details of a given device,
one can improve performance at the cost of a less-portable hardware code. Second,
the performances of a design can be traded for physical security. That is, resist-
ing against fault or side-channel attacks usually involves overheads in the design
efficiency.

From a technological point of view, open questions in the field relate to the ef-
fect of technology scalings in the future generations of FPGAs, both in terms of
performances and security against physical adversaries. From an application point
of view, and as the capacity of FPGAs increases to millions of equivalent gates, the
protection of IP cores with secure DRM solutions becomes increasingly important.
The development of IP protection schemes that do not harm the flexibility of the de-
velopment tools is therefore an important requirement. It should allow IP providers,
FPGA system designers and end users to interact in a fair and secure business model.
The integration of a public key mechanism by FPGA manufacturers or the exploita-
tion of physically unclonable functions within FPGAs, e.g., as suggested in [27, 35]
appear as promising approaches with this respect.
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11.7 Exercises

Khazad [3] is an iterated 64-bit block cipher with 128-bit keys. It comprises eight
rounds; each round consists of eight 8-bit to 8-bit S-box parallel look-ups, a linear
transformation (multiplication by a constant MDS diffusion matrix) and round key
addition. For efficient hardware implementations, the 8-bit to 8-bit substitution is
made of six smaller 4-bit to 4-bit substitutions.
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1. Assume an FPGA with 4-bit LUTs and dual-ported 4096-bit synchronous RAM
blocks. What is the cost of the complete Khazad substitution layer in LUTs
and RAMBs? What are the respective memory requirements (in bits) of the
LUT-based and RAMB-based solutions for the S-box?

2. Consider the 64-bit loop architecture for a (simplified) round of Khazad in
Figure 11.7. Assume that each layer (NL1, NL2, NL3, L) has a cost of 64 LUTs
(fully utilized). What is the total cost of such a design in LUTs (including the key
addition and the input multiplexor)?

3. Assume a very simple key scheduling that can be implemented as a single layer
of 128 LUTs. How much LUTs and registers are required to pipeline such a key
scheduling in five levels in the best manner if a slice structure similar to the one
of Figure 11.3 is used?

4. Assume that the delay of a LUT equals 5 nsec and that only these delays de-
termine the operating frequency of the design. What maximum throughput can
be obtained with a 2 (resp. 5) pipeline stage strategy if eight rounds have to be
iterated (in Mbits/sec)?

5. Same question if the delay of a LUT equals 3 nsec but there is a fixed delay due
to routing constraints in the design of 10 nsec. What is the best throughput that
can be obtained in a feedback mode in this context?

6. Consider a side-channel adversary trying to recover a n-bit random value k who
obtains the Hamming weight of this value: HW (k). Assuming noiseless mea-
surements, how much information does he gain? Now assume n = 64 as for the
Khazad cipher and an adversary who would obtain the Hamming weight of first
round S-box layer’s output for different plaintexts. Can an adversary exploit all
the information on k in a correlation attack? (hint: think both about information
and computation).
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NL3

Fig. 11.10 Loop architecture for a (simplified) round of Khazad.
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7. Consider a side-channel adversary targeting part of the key in the design of
Figure 11.7. Assume that the NL layers do not provide cryptographic diffusion
and that the L layer does provide perfect diffusion. Assume a five pipeline stage
implementation in which the overall power consumption of the design is only
caused by the registers. Assume that the correlation between the predictions of
the adversary and the real measurements (denoted as ρ) equals the square root of
the number of predicted registers in an attack divided by the total number of reg-
isters in the design. Assume finally that the number of plaintexts required for a
successful attack can be approximated with Nsucc � c · 1

ρ2 . How many plaintexts
are required for a successful attack against an 8-bit part of the key for which
c = 10?

8. Consider now an implementation in which two rounds of Khazad are unrolled.
How much would the security against the previous side-channel adversary be
increased? Consider finally the same implementation protected by a countermea-
sure such that the correlation coefficient is reduced by a factor of 5. What number
of plaintexts would then be required to attack?

9. Evaluate the hardware cost and throughput of the previous two-round unrolled
implementation of Khazad (Δlut = 5 nsec). Then assume that the previous coun-
termeasure against side-channel attacks (reducing the correlation coefficient by
a factor of 5) is applied to a single round architecture, divides the throughput by
two and uses 250 additional LUTs in the design (e.g., it could be a design with
random pre-charges). Can you comment the efficiency versus security against
correlation attacks tradeoff for these designs? Which metrics can be used for
these purposes?

11.8 Projects

Select a target symmetric cryptographic algorithm and a list of design goals, e.g.,
from Section 11.3.1.

1. Design a reconfigurable hardware architecture for this algorithm, simulate it and
implement it for a target device from any FPGA manufacturer.

2. Evaluate the resulting efficiency of your design according to the metrics of
Section 11.3.2.

3. Compare it with the existing literature and put forward the weaknesses of your
design.

4. What specific features of your FPGA did you exploit?
5. Then, think about hardware security from a general point of view. Select a phys-

ical attack that you want to prevent and add one or several countermeasure(s) to
your design.

6. Comment on the efficiency versus security tradeoff.
7. Does your countermeasure add new physical weaknesses?
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Chapter 12
Block Cipher Modes of Operation from
a Hardware Implementation Perspective

Debrup Chakraborty and Francisco Rodrı́guez-Henrı́quez

12.1 Introduction

Block ciphers are one of the most important primitives in cryptology. They are based
on well-understood mathematical and cryptographic principles. Due to their inher-
ent efficiency, these ciphers are used in many kinds of applications which require
bulk encryption at high speed.

Generally speaking, a block cipher consists of at least two closely related algo-
rithms: block encryption and block decryption. Block encryption takes as an input
a fixed-length block (known as the plaintext) and transforms it into another block
of the same length (known as the ciphertext) under the action of a fixed secret key
that may or may not have the same length of the plaintext. A block cipher must
be invertible in the sense that by using the block decryption algorithm it should be
always possible to recover the original plaintext from the ciphertext and the secret
key. Figure 12.1 shows schematically the situation just described. We stress that
once the plaintext has been encrypted using a given key, then a successful decryp-
tion can only be performed by knowing that key. Due to this feature, block ciphers
are classified as a secret or symmetric key primitives.

Formally a block cipher is considered to be secure if it behaves like a strong
pseudorandom permutation, i.e., a block cipher is secure if an adversary cannot dis-
tinguish its output from a randomly chosen permutation. This definition of security
for block ciphers is very strong, it implies that for any possible input, a secure block
cipher should produce random outputs. It is unfortunate that there exists no formal
security model for assessing whether a block cipher is or not secure or rather, how
secure a cipher is. Hence, we rely on a block cipher by the fact that no one has been
able to find an attack on it.

Assuming that an adversary has managed to obtain a plaintext and the corre-
sponding cipher text, then she can always try to obtain the n-bit secret key of a
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Fig. 12.1 Encrypting/decrypting with block ciphers.

given symmetric block cipher by trying all possible keys, a procedure traditionally
termed brute force attack. We say that a block cipher has a security strength of n
bits if the best known attack against it is not computationally cheaper than the brute
force attack. Modern block ciphers typically use a block and key length ranging
from 64 bits up to 256 bits. At the present state of the technology, block/key sizes of
128 bits are generally considered adequate in terms of both security and efficiency.

Block ciphers have been around for civilian/commercial use since 1971, when a
team leaded by H. Feistel and his colleagues at IBM designed a family of ciphers
known as Lucifer [2, 53]. Early versions of Lucifer operated on 24-bit long plain-
text blocks. The strongest variant which was released in 1973, operated on 128-bit
blocks and 128-bit secret keys. A revised version of that Lucifer variant, known
as the data encryption standard (DES), was adopted as a US FIPS standard in 1974
[16, 42]. Across the years, DES became the most influential block cipher ever inspir-
ing many new designs and attacks. Some other examples of famous block ciphers
include IDEA, AES, RC6, etc.

Most block ciphers have an iterative design which implies that the block being
encrypted/decrypted is processed by repeatedly applying a simpler function called
round. Typically, the number of rounds in modern ciphers ranges from 10 up to 32.
It is also customary to use a different sub-key per round, which is sometimes called
round key. Round keys are usually derived from the user secret key mentioned be-
fore, through a process called key schedule. Hence, a contemporary block cipher
specification usually comprises three different algorithms, namely, encryption, de-
cryption and key schedule algorithms.

As we have seen, block ciphers can only process plaintexts/ciphertexts with a
bit length smaller than blocklength of the block cipher, which is typically less than
256 bits. But this is an unacceptable restriction since applications demand encryp-
tion/decryption of arbitrary long messages. In order to overcome this difficulty, it
is necessary to introduce the concept of a mode of operation, which we will define
next.

A block cipher can be viewed as a function E : K ×M →C , where K ∈ {0,1}k

and M ,C ∈ {0,1}n. Then, a mode of operation can be defined as a procedure that
takes as input a key K ∈ {0,1}k, a message P ∈ {0,1}∗ of arbitrary length and
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sometimes an initialization vector or nonce IV ∈ {0,1}v and produces a ciphertext
C ∈ {0,1}∗ as its output. During the encryption process, some modes also produce a
tag τ ∈ {0,1}l with 0 < l ≤ n that can be considered as a checksum or hash value of
the plaintext message.1 The notion of a tag value is useful for offering the security
service of data integrity/authentication.

More informally, a mode of operation is a specific way to use a block cipher to
enable it to encrypt arbitrary long messages and (optionally) to provide other secu-
rity services, such as data confidentiality/privacy, authentication or a combination
of both.

Let us now assume for a moment that we have a secure block cipher which pro-
duces outputs that are indistinguishable from random strings. Unfortunately, even
if we manage to obtain such a strong cipher, it is not guaranteed that we can use it
securely to encrypt arbitrary long messages. To illustrate this point, let us introduce
next the most naive (and arguably the most insecure) mode of operation: electronic
code book (ECB).

Let us consider an arbitrary plaintext message P of bitlength l. Then, we can
partition the plaintext P into b = �l/n� plaintext blocks P1,P2, . . . ,Pb of length n,
where n is the block length handled by the cipher. It is noticed that if the message
length l is not a multiple of n, then the last plaintext block would be incomplete,
but for the sake of simplicity, let us assume that l is a multiple of n. Then, the l-bit
ciphertext C can be produced by invoking the block cipher a total of b times, thus
producing b cipher blocks Ci given as Ci = E(K,Pi) for i = 1,2, . . . ,b. The procedure
just outlined is known as the electronic code book (ECB) mode of operation.

ECB is highly insecure when dealing with plaintexts that exhibit high symmetry
at the block level. For instance, Figure. 12.2a shows a 256× 256 byte chess board
in grayscale. If we use a block cipher with block length of 128 bits (such as AES),
then the corresponding ECB-encrypted image will keep the same symmetry of the
plaintext (see Figure 12.2b). This shows that designing a scheme able to encrypt
arbitrary long messages using a given block cipher is not trivial.

The earliest modes of operation reported in the open literature were described
back in 1981, in the standard FIPS Pub. 81 [17].2 In that document four modes
of operation were specified, namely, the electronic code book (ECB), cipher block
chaining (CBC), cipher feedback (CFB) and output feedback (OFB) modes, where
the data encryption standard (DES) was the underlying block cipher.

Likewise, FIPS Pub. 46-3 [16, 42] approved the seven modes specified in ANSI
X9.52 [1]. Four of those modes were equivalent to the ECB, CBC, CFB and OFB
modes with the triple DES algorithm (TDEA) as the underlying block cipher,
whereas the other three modes in ANSI X9.52 were variants of the CBC, CFB and
OFB modes. In [46], the counter mode of operation was added to the list of approved
modes of operation.

1 These modes of operation termed “authenticated encryption modes” are discussed in detail in
Section 12.6.3.
2 In fact, counter mode encryption (“CTR mode”) was already introduced by Diffie and Hellman
in 1979 [14, 32].
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(a) (b)

Fig. 12.2 (a) A 256×256 byte chess board. (b) The ECB-encrypted image using AES-128.

By the end of the last century, several papers pointed toward new directions on
modes of operation research. The definition of the type of security provided by block
ciphers was fundamental toward developing modes of operations. As stated earlier,
a block cipher is considered as a pseudorandom permutation, thus the basic problem
to be addressed was to find domain extensions for pseudorandom permutations. The
work by Luby and Rackoff [35] was fundamental in this direction. Later, in [4]
various security notions for security in the symmetric setting was presented, it also
provided formal analysis of the traditional modes of operations proving security of
some of them and giving the security bounds. In 2000, formal security notions of
authenticity for symmetric encryption was presented in [5]. These led to numerous
proposals for authenticated encryption schemes. In another development, Naor and
Reingold [44] proposed a scheme to construct a strong pseudorandom permutation
using a block cipher. This work along with the one reported in [33] was one of
the first proposals for a class of constructions later called as tweakable enciphering
schemes or disk encryption schemes.

The second generation of modes of operation, therefore, was designed to offer
other security services according to different application goals. Some of the most
important classes of modes of operation are those modes which guarantee confiden-
tiality, modes for authenticated encryption, modes for authenticated encryption with
associated data and modes for disk encryption.

Another characteristic that distinguishes the second generation of modes of op-
eration is the fact that they are mostly designed for operating with several or even
arbitrary selections of block ciphers. The idea that a mode of operation is a research
problem largely independent of the specific block cipher being used may seem quite
natural nowadays. Nevertheless, 25 years ago, when the first generation modes of
operation were being specified, they were usually associated to a specific block ci-
pher (typically DES or triple DES) [16, 17, 42].
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A remarkable feature of modes of operation is the fact that, in contrast with
what we have for block ciphers, a formal model for assessing their security is avail-
able.3 Applications require various kinds/levels of securities and once a strict secu-
rity model can be established for a given application, one can have a construction of
a mode of operation secure under that model. Hence, a modern mode of operation
is always proposed with a security bound proof valid within the model of analy-
sis and the given security definition that provides bounds in terms of adversarial
resources.

Block ciphers in different modes of operation have been implemented on all
kinds of hardware and software platforms. For example, AES software implementa-
tions [7, 19] have a throughput that ranges from 300 to 800 Mbps depending on the
specific architecture and platform selected by the developers. Some efficient encryp-
tor/decryptor core VLSI implementations have also been reported in [27, 36, 51].
Performance of VLSI implementations ranges from 2 to 7.5 Gbps for the AES block
cipher. Similarly, various reconfigurable hardware implementations have been re-
ported in [8, 18, 21, 26, 34]. Those are one round (iterative) or n rounds (pipeline)
FPGA implementations optimized for encryption or encryption/decryption pro-
cesses. Reported performance results are broadly variable ranging from 300 Mbps
to up to 25 Gbps.

Various design strategies are used for the hardware implementation of a typical
block cipher and the corresponding modes of operation. An iterative looping design
(IL) implements only one round and n iterations of the algorithm are carried out by
feeding back previous round results. It utilizes less area (in terms of hardware re-
sources) but consumes more clock cycles, causing a relatively low-speed encryption.
In a loop unrolling or pipeline design (PP), rounds are replicated and registers are
provided between the rounds to control the dataflow. The design offers high speed
but area requirements are also high.

In fact, the specific selection of the mode of operation to be utilized will have a
significant impact in the design of an architectural design for a block cipher. In the
vast majority of block cipher hardware implementations, the electronic code book
(ECB) mode of operation has been targeted. Arguably, this is because ECB is the
simplest of all modes, which allows independent block encryption. Then, several
blocks can be processed in parallel or pipeline strategies can be applied to increase
performance.

Unfortunately, we are aware of just a handful of hardware designs of the other
four traditional modes of operation, namely, CBC, CFB, OFB and the counter mode.
Hardware designs implementing those modes of operation can be found in [3, 13,
18, 34, 37, 38].

The situation is even worse for the second generation of modes of operation,
since many of them have never been implemented either in hardware or in software
platforms. This rather deplorable situation may be caused for at least three factors.
First, designing a new mode of operation has become quite a theoretical challenge
in the sense that a formal proof of the alleged security of the new mode must be

3 Usually under the assumption that the underlying block cipher is a strong pseudorandom permu-
tation.
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included in the proposal. More often than not, researchers focus all their energies on
the arduous search of security bounds for their modes of operation, while the actual
implementation of their proposals (including test vector generation) is neglected,
ignored or, in the best case, delayed.

A second factor that may explain the lack of actual implementations for modern
modes is due to efficiency reasons. Commonly, a hardware designer is only inter-
ested on producing the fastest or the most compact possible designs. Fast and ultra
fast designs can only be obtained by utilizing (sub)pipeline architectures, which fre-
quently prevent the usage of more sophisticated modern modes. On the other hand,
compact designs are very often not compatible with modern modes because they
typically include in their specification a number of costly building blocks (such as
hash functions, field multipliers, etc.).

A third factor may be due to the fact the many of the second generation modes
have been patented. This fact discourages both academicians and IT engineers to
devote time to work on the hardware implementation of those modes.

The aim of this chapter is to give a brief overview of some of the most important
modes of operation that have been proposed in the last few years. We first describe
the traditional modes of operation, followed by a discussion of the security require-
ments and the adversary model used in modern modes. We describe in detail one
authenticated encryption and one disk encryption mode. In order to illustrate our
discussion we also provide as a case of study the design and hardware implemen-
tation description of a two pass authenticated encryption mode: AES-CCM, which
also includes a brief description of the AES block cipher.

12.2 Block Ciphers

A block cipher can be viewed as a function E : K ×M → C , where K = {0,1}k

and M = C = {0,1}n. Thus K , M and C are finite nonempty sets of bit strings
which are called the key space, the message space and the cipher space, respectively.
The parameters n and k are called the block length and key lengths, respectively.
These parameters can be different for different block ciphers. As evident from the
definition, a block cipher takes as input a n-bit message (also called plaintext) and
a k-bit key and produces a n-bit ciphertext. For any fixed K ∈ K we shall denote
E(K,P) as EK(P). For any key K ∈ K it is required that EK is a permutation, i.e.,
the function EK : {0,1}n →{0,1}n is a bijection. In other words for every ciphertext
C ∈ {0,1}n there exist one and only one message P ∈ {0,1}n such that EK(P) = C.
So EK being a permutation, it ensures that for every K a given EK will have a inverse
function which is generally called as E−1

K () or DK(). Thus, DK also maps {0,1}n to
{0,1}n and DK(EK(P)) = P and EK(DK(C)) = C for all P and C in {0,1}n.

The function EK() and DK() must be such that they can be easily computed and
these functions should be normally publicly available. To use a block cipher, a key
is randomly selected from the key space and agreed upon by the sender and receiver.
This key should be kept secret.
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Modern day block ciphers are usually composed of several identical transforms,
denoted as rounds. In each round the plaintext or the semi-transformed plaintext gets
transformed with the action of a round key, which is derived from the secret key by
some specific transform steps. A concrete instantiation of a block cipher which is
widely used is called the Advanced Encryption Standard (AES). To continue the
modes of operation discussion we shall not depend on any specific block cipher, as
a mode of operation is generally designed irrespective of the block cipher and any
secure block cipher can be plugged into it. For the sake of completeness, we give
a detailed description of the AES algorithm in the following section. Furthermore,
a brief background information on binary extension fields is also given after that;
this information will be useful when we discuss the offset codebook mode and its
implementation aspects of the OCB and the AES rounds.

12.3 Introduction to AES

Rijndael block cipher algorithm was chosen in October 2000 by NIST as the new
Advanced Encryption Standard (AES) [28]. In the rest of this section we shall give
a brief summary of the AES encryption process.

The basic structure of AES consists of a message input (128 bits), a secret user
key (128 bits) and a cipher message (128 bits) as the output. The AES cipher treats
the input 128-bit block as a group of 16 bytes organized in a 4×4 matrix called the
state matrix.

As is shown in Figure 12.3, the AES encryption algorithm consists of an ini-
tial transformation, followed by a main loop where nine iterations called rounds are
executed. Each round transformation is composed of a sequence of four transfor-
mations, namely byte substitution (BS), ShiftRows (SR), MixColumns (MC) and
AddRoundKey (ARK). For each round of the main loop, a round key is derived
from the original key through a process called Key Scheduling. Finally, a last round
consisting of three transformations BS, SR and ARK are executed.

The AES decryption algorithm operates similarly by applying the inverse of all
the transformations described above in reverse order. In the rest of this section we
briefly describe the AES round transformations, whereas the round-key derivation
process will be explained in Section 12.3.5.

Rounds 1–9 consist of the application of the four basic steps to the state matrix.
The order of the AES steps for these rounds are BS, SR, MC and ARK.

BS ARK BS SR ARKARK

( round -1 ) times

sub-key sub-key
SR MC

Fig. 12.3 AES encryption process.
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12.3.1 Byte Substitution (BS) Step

This is the first step for rounds from 1 to 10 and it is the main non-linear transfor-
mation of the encryption process. In BS step, each input byte of the state matrix
is independently replaced by another byte from a look-up table called S-box. The
S-box of the AES algorithm consists of 256 entries each of one byte, where each
byte is represented in the binary extension field GF(28) constructed using the irre-
ducible pentanomial P(x) = x8 +x4 +x3 +x+1. An AES S-box is composed of two
transformations: First, each input byte is replaced with its multiplicative inverse in
GF(28) with the element 00 being mapped onto itself; then, an affine transformation
over GF(2) is applied. The affine transformation consists of a matrix multiplication
by a constant matrix followed by the addition of the hexadecimal value “63”. For de-
cryption, the inverse S-box is applied by obtaining the inverse affine transformation
followed by multiplicative inversion in GF(28).

12.3.2 Shift Rows (SR) Step

It is the second step in the round transformation, consisting of a cyclic shift operation
where each row in the state matrix is rotated cyclically to the left using 0−,1−,2−
and 3− byte offset. In decryption, the rotation is applied to the right.

12.3.3 Mix Columns (MC) Step

In MC step, each column of the state matrix, considered as a polynomial over
GF(28), is multiplied by a fixed polynomial c(x) modulo x4 + 1. The polynomial
c(x) is given by c(x) = 03 · x3 + 01 · x2 + 01 · x + 02.

Let b(x) = c(x)a(x)mod (x4 + 1), then the modular multiplication with a fixed
polynomial can be written as:

⎡
⎢⎢⎣

b0,0

b0,1

b0,2

b0,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a0,0

a0,1

a0,2

a0,3

⎤
⎥⎥⎦ (12.1)

For the decryption process, we compute Inverse MixColumns using the constant
polynomial w(x) = w3x3 + w2x2 + w1x + w0, with coefficients w0(x) = x3 + x2 +
x, w1(x) = x3 + 1, w2(x) = x3 + x2 + 1, w3(x) = x3 + x + 1, and reduced modulo
M(x) = x4 +1, which is multiplied by each column of a block. The equivalent matrix
representation is
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⎢⎢⎣

b0,0

b0,1

b0,2

b0,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a0,0

a0,1

a0,2

a0,3

⎤
⎥⎥⎦ (12.2)

12.3.4 Add Round Key (ARK) Step

The output of MC is XORed with the round key derived from the user key. The ARK
step is symmetric for encryption and decryption. The only difference is that the
sub-key rounds are applied in reverse order for decryption.4 Each one of the above
described transformations BS, SR, MC and ARK are invertible [28]. Let us call
them IBS, ISR, IMC and IARK, respectively. Then the AES encryption/decryption
procedures can be described as follows:

1. ARK, using the 0th round key.
2. Nine rounds of BS, SR, MC, ARK, using round keys 1–9.
3. A final round: BS, SR, ARK, using the 10th round key.

Similarly, the decryption is computed as follows:

1. ARK, using the 10th round key.
2. Nine rounds of IBS, ISR, IMC, IARK, using round keys 9–1.
3. A final round: IBS, ISR, ARK, using the 0th round key.

12.3.5 Key Scheduling Algorithm

The round keys are obtained through the expansion of secret user key by attaching
recursively the 4-byte word ki = (k0,i,k1,i,k2,i,k3,i) to the user key. The original user
key consists of 128 bits arranged as a 4×4 matrix of bytes. Let w[0],w[1],w[2] and
w[3] be the four columns of the original user key. Then, those four columns are
recursively expanded to obtain 40 more columns as follows:

w[i] =

{
w[i−4]⊕w[i−1] if i mod 4 �= 0
w[i−4]⊕T(w[i−1]) otherwise

(12.3)

where T (w[i− 1]) is a non-linear transformation of w[i− 1] computed as follows.
Let w,x,y and z be the elements of the column w[i−1], then

1. Shift cyclically the elements to obtain x,y,z and w.
2. Replace each byte by a byte using the S-Box as S(x),S(y),S(z),S(w).
3. Compute the round constant rcon, defined as r(i) = 02(i−4)/4 over GF(28).

4 However, efficient implementations of AES encryptor/decryptor cores require to append the IMC
step to the generation of round keys for decryption.
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Then T (w[i− 1]) is the column vector, (S(x)⊕ r(i),S(y),S(z),S(w)). In this way,
columns from w[4] to w[43] are generated from the first four columns. Hence, the
ith round key consists of the columns

(w(4i),w(4i+ i),w(4i+ 2),w(4i+ 3)) (12.4)

In [47] several optimizations based on redundant computation for parallelizing
the Key Scheduling process were implemented. As a result, above four steps can be
reduced to only two steps [47].

Step 1 Step 2 (12.5)

k′0 = k0 ⊕SBox(k13)⊕ rcon; k′4 = k4 ⊕ k′0;

k′8 = k8 ⊕ k4 ⊕ k′0;

k′12 = k12 ⊕ k8 ⊕ k4 ⊕ k′0;

k′1 = k1 ⊕SBox(k14); k′5 = k5 ⊕ k′1;

k′9 = k9 ⊕ k5 ⊕ k′1;

k′13 = k13 ⊕ k9 ⊕ k5 ⊕ k′1;

k′2 = k2 ⊕SBox(k15); k′6 = k6 ⊕ k′2;

k′10 = k10 ⊕ k6 ⊕ k′2;

k′14 = k14 ⊕ k10 ⊕ k6 ⊕ k′2;

k′3 = k3 ⊕SBox(k12); k′7 = k7 ⊕ k′3;

k′11 = k11 ⊕ k7 ⊕ k′3;

k′15 = k15 ⊕ k11 ⊕ k7 ⊕ k′3;

12.4 A Background in Binary Extension Finite Fields

12.4.1 Rings

A ring R is a set whose objects can be added and multiplied, satisfying the following
conditions:

• Under addition, R is an additive (Abelian) group.
• For all x,y,z ∈ R we have,

x(y + z) = xy + xz

(y + z)x = yx + zx

• For all x,y ∈ R, we have (xy)z = x(yz).
• There exists an element e ∈ R such that ex = xe = x for all x ∈ R.

The integer numbers, the rational numbers, the real numbers and the complex num-
bers are all rings.
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An element x of a ring is said to be invertible if x has a multiplicative inverse in
R, that is, if there is a unique u ∈ R such that xu = ux = 1. 1 is called the unit
element of the ring.

12.4.2 Fields

A field is a ring in which the multiplication is commutative and every element except
0 has a multiplicative inverse. We can define the field F with respect to the addition
and the multiplication if

• F is a commutative group with respect to the addition.
• F \ {0} is a commutative group with respect to the multiplication.
• The distributive laws mentioned for rings hold.

12.4.3 Finite Fields

A finite field or Galois field denoted by GF(q = pm) is a field with characteristic
p and a number q of elements. Such a finite field exists for every prime p and
positive integer m and contains a subfield having p elements. This subfield is called
ground field of the original field. For every non-zero element α ∈GF(q), the identity
αq−1 = 1 holds. Furthermore, an element α ∈ GF(qm) lies in GF(q) itself if and
only if αq = α .

In the following we will only consider binary extension fields, where q = 2m,
also known as finite fields of characteristic two or simply binary fields.

12.4.4 Binary Finite Field Arithmetic

In the following we will use the polynomial basis representation of the binary fi-
nite fields elements. We represent each element as a binary string (am−1 . . .a2a1a0),
which is equivalently considered a polynomial of degree less than n:

am−1xm−1 + · · ·+ a2x2 + a1x + a0. (12.6)

Addition is by far the less-costly field operation, whereas multiplication is ar-
guably the most important arithmetic operation.

The addition of two elements a,b ∈ F is simply the addition of two polynomials,
where the coefficients are added in GF(2), or equivalently, using the bit-wise XOR
operation on the vectors a and b. The multiplication of two field elements can be
accomplished as follows.

Let A(x),B(x) be elements of GF(2m) and let P(x) be the degree m irreducible
polynomial generating GF(2m). Then, the field product C′(x) ∈ GF(2m) can be ob-
tained by first computing the polynomial product C(x) as
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C(x) = A(x)B(x) =

(
m−1

∑
i=0

aix
i

)(
m−1

∑
i=0

bix
i

)
(12.7)

Followed by a reduction operation, performed in order to obtain the (m−1)-degree
polynomial C′(x), which is defined as

C′(x) = C(x) mod P(x) (12.8)

Once the irreducible polynomial P(x) is selected and fixed, the reduction step can
be accomplished using only XOR gates.

A particular case of field multiplication is that of multiplying an arbitrary field
element A(x) by the field element x, an operation sometimes called xtimes, that
is frequently used in block cipher modes of operations and forms part of the AES
specification. The operation xtimes can be accomplished very efficiently by noticing
that

xtimes(A) = x ·A(x) = x ·
m−1

∑
i=0

aix
i =

m−1

∑
i=0

aix
i+1 (12.9)

Therefore, if the most significant bit of A, namely am−1, is equal to zero, then
xtimes(A) can be accomplished by a single left shift of the original element A. On
the other hand, if am−1 = 1, we can simply add P(x) to C(x), thus reducing the
power am−1xm. As a concrete example consider the case when P(x) is an irreducible
pentanomial. Then, the xtimes operation can be computed as

xtimes(A) =

{
∑m−2

i=0 aixi+1 if am−1 = 0

∑m−2
i=0 aixi+1 +(xk2 + xk1 + xk0 + 1) if am−1 = 1

(12.10)

The computational cost of the above equation is one left shift followed by possibly
an XOR operation.

12.5 Traditional Modes of Operations

As it was already mentioned, a block cipher can only encrypt fixed length strings,
but in real life, messages are of arbitrary lengths and are not restricted to the block
length of a block cipher. A mode of operation is a specific way to use a block cipher
for encrypting arbitrarily long messages. We now discuss some of the traditional
modes of operations which have been in use for long. The five modes which we
describe next are called the ECB (electronic code book), CBC (cipher block chain-
ing), CFB (cipher feedback), OFB (output feedback) and CTR (counter). For ease
of description we shall assume that the length of the plaintexts are multiples of the
blocklength of the block cipher. We shall denote by n the blocklength and by m the
number of blocks.
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12.5.1 Electronic Code Book Mode

This is probably the simplest of all modes. In the electronic code book (ECB) mode
the plaintext P is segmented as P = P1||P2|| . . . ||Pm, where each Pi is an n-bit long
block. Thereafter, the encryption function EK is applied separately on each Pi. A
schematic diagram of a ECB mode is shown in Figure 12.4.

12.5.2 Cipher Block Chaining Mode

In cipher block chaining (CBC) mode, the output of one block cipher is fed into
the other block cipher along with the next block message. The algorithm below
describes the mode and a pictorial description is provided in Figure 12.4b.
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Fig. 12.4 The traditional modes of operation: (a) ECB, (b) CBC, (c) CFB, (d) OFB.
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Algorithm CBC.EncryptIVK (P)
1. Partition P into P1,P2, . . .,Pm

2. C1 ← EK(P1 ⊕ IV);
3. for i ← 2 to m
4. Ci ← EK(Pi ⊕Ci−1)
5. end for
6. return C1,C2, . . . ,Cm

Algorithm CBC.DecryptIVK (C)
1. Partition C into C1,C2, . . . ,Cm

2. P1 ← E−1
K (C1)⊕ IV

3. for i ← 2 to m
4. Pi ← E−1

K (Ci)⊕Ci−1
5. end for
6. return P1,P2, . . .,Pm

CBC takes as input m message blocks and an initialization vector (IV). During
encryption, the output of the ith block depends on the previous i− 1 blocks. So,
CBC encryption is inherently sequential. The output of each block depends on all
the previous blocks and thus provides more security than ECB. The sequential de-
sign does not allow a fully pipelined implementation for this mode. Note that CBC
decryption is not sequential.

12.5.3 Cipher Feedback Mode

The encryption and decryption procedures for the cipher feedback mode (CFB)
are described below. A pictorial description of the mode is provided in Figure 12.4c.

Algorithm CFB.EncryptIVK (P)
1. Partition P into P1,P2, . . .,Pm

2. C1 ← EK(IV)⊕P1;
3. for i ← 2 to m
4. Ci ← EK(Ci−1)⊕Pi

5. end for
6. return C1,C2, . . . ,Cm

Algorithm CFB.DecryptIVK (C)
1. Partition C into C1,C2, . . . ,Cm

2. P1 ← EK(IV )⊕C1
3. for i ← 2 to m
4. Pi ← EK(Ci−1)⊕Ci

5. end for
6. return P1,P2, . . .,Pm

In CFB mode also the cipher blocks are chained but the output is produced in a
manner much different from that of CBC. For each block, the cipher produced is
just XORed with the message. Due to such a kind of encryption, the encryption
and decryption operations are similar. In case of decryption also the inverse block
cipher calls are not required. Like CBC, OFB encryption and decryption are also
inherently sequential. But an advantage in terms of implementation is that the block
cipher decryption operation is not needed.

12.5.4 Output Feedback Mode

In output feedback mode (Figure 12.4d) unlike CFB, the output of the block cipher
is fed back into the next block cipher. The algorithm is as shown below.
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Algorithm CFB.EncryptIVK (P)
1. Partition P into P1,P2, . . .,Pm

2. X ← IV;
3. for i ← 1 to m
4. X ← EK(X);
5. Ci ← X ⊕Pi

6. end for
7. return C1,C2, . . . ,Cm

Algorithm CFB.DecryptIVK (C)
1. Partition C into C1,C2, . . . ,Cm

2. X ← IV
3. for i ← 1 to m
4. X ← EK(X);
5. Pi ← X ⊕Ci

6. end for
7. return P1,P2, . . .,Pm

In this mode the IV is repeatedly encrypted to get a stream of random bytes.
Unlike the other modes described before in OFB no part of the plaintext is ever
given as an input to the blockcipher. This makes this mode very similar to a stream
cipher, where a stream cipher produces a stream of random bytes and these random
strings are XORed with the plaintext to generate the cipher. The specific way in
which the IV is encrypted in the mode also makes the algorithm sequential. Hence,
as in the case of CFB, for both encryption and decryption operations, only a forward
call of the block cipher (i.e., its encryption algorithm) is required.

12.5.5 Counter Mode

The counter (CTR) mode is a bit different from the other modes defined above. It
takes in an IV , and in each iteration the value of the IV incremented by one gets
encrypted. The ciphertext is produced by XORing the encryption results with the
plaintext blocks.

Algorithm CTR.EncryptIVK (P)
1. Partition P into P1,P2, . . .,Pm

2. C1 ← EK(IV)⊕P1;
3. for i ← 2 to m
4. Ci ← EK((IV + i) mod 2n)⊕Pi

5. end for
6. return C1,C2, . . . ,Cm

Algorithm CFB.DecryptIVK (C)
1. Partition C into C1,C2, . . .,Cm

2. P1 ← EK(IV )⊕C1
3. for i ← 2 to m
4. Pi ← EK((IV + i) mod 2n)⊕Ci

5. end for
6. return P1,P2, . . . ,Pm

In terms of efficiency the CTR mode is better than CBC, OFB or CFB as in
CTR the block cipher calls can be done in parallel. No feedback takes place in case
of CTR so the input to the ith block cipher in no way depends on the output of
the previous block ciphers. Also in CTR only the encryption algorithm is needed.
Additionally, for performing the decryption operation, the inverse call of the block
cipher is not needed.
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12.6 Security Requirements for Modes of Operations

In Section 12.5 we discussed some modes which can be used to encrypt messages
longer than the block length of the block cipher. Now we shall analyze some of
these modes to see whether they are secure. Also we shall try to intuitively formulate
security requirements for three important classes of modes.

Let us begin by analyzing the ECB mode. The ECB mode is not suitable for
encrypting bulk messages as it can reveal much information about a message. We
already illustrated this with the help of Figure 12.2a and its ECB encryption in 12.2b.
From Figure 12.2b we see that the encryption reveals much information regarding
the image. This is because in ECB, every block is encrypted using the same key
and so all equal plaintext blocks gets encrypted into equal ciphertext blocks. So,
if we encrypt a four-block message say P1,P2,P3,P4 where P1 = P2, then in the
ciphertext blocks C1,C2,C3,C4 also C1 would be equal to C2. This is not desirable
as the structure of the plaintext blocks gets revealed in the ciphertext blocks. In
this particular example, an adversary can readily find out that the first two plaintext
blocks were equal just by looking at the ciphertext. This limitation of ECB makes
the encryption in Figure 12.2b look so similar with the figure itself. Thus, ECB is
insecure.

The important question we would like to address now is when a mode can be
considered secure. In order to answer that, we first establish a formal model of the
adversary who tries to break the security of a mode.

12.6.1 The Adversary

To define security we need to formalize the goals and resources of an adversary. An
adversary can have various goals, the strongest among them, being able to recover
the keys that the encryption scheme uses. With knowledge of the key she can always
decrypt all encrypted messages that goes through the public channel and can also
replace encrypted messages with the encryption of messages of her choice. But the
goal of key recovery is a very strong goal and without recovering the key also an
adversary can predict some properties of the plaintext. Thus, an intuitive goal of a
crypto-system should be that it leaks no information regarding the plaintext through
the ciphertext.5 On the other hand, the weakest goal that an adversary can have
is being able to distinguish the ciphertext from random strings. Thus, if a crypto-
system is strong enough that an adversary cannot accomplish this weak goal, then
to an adversary the ciphertext would not in any way leak any information regarding
the plaintext.

An adversary who wants to break the security of a symmetric crypto-system
must be given access to some of the inputs or outputs of the system. The type of

5 Note that we already showed that the electronic code book mode (ECB) leaks some important
information regarding the plantext, which is undesirable.
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information access the adversary has defines the power of the adversary. The ad-
versary always has access to the ciphertexts as he can eavesdrop the public channel
and know the ciphertext. If an adversary only has access to the ciphertext we call
the attack mounted by the adversary as a ciphertext-only attack. Additionally the
adversary may know which messages produce these ciphertexts, such an attack is a
known plaintext attack. If the adversary can choose the plaintexts whose encryptions
he wants, then the attack is a chosen plaintext attack. There can be adversaries who
can choose the ciphertexts and get the corresponding plaintexts for those ciphertexts.
Such a kind of attack is called a chosen ciphertext attack. The strongest adversary is
the one who can adaptively choose messages (ciphertext) and get their encryptions
(decryptions). Such adversaries are called adaptive chosen plaintext (respectively
ciphertext) adversaries.

To formalize things we shall view the adversary as a polynomial time probabilis-
tic algorithm with certain resources. An adaptive chosen plaintext adversary should
be supplied with ciphertexts corresponding to the plaintexts of her choice. To do this
we allow the adversary to communicate with the encryption algorithm, i.e., she is
given access to the encryption scheme as a black box where she gives some inputs
and obtains the corresponding outputs but has no access to the internal workings of
the scheme. We call such an access as an oracle access. An adversary may be given
access to one or more oracles, as in case of an adaptive chosen plaintext and chosen
ciphertext adversary the adversary should be given access to both the encryption and
decryption oracles so that he can adaptively obtain encryptions and decryptions of
his choice.

12.6.2 Privacy Only Modes

With the above characterization of the adversary we now try to define the security
requirements for a class of modes called privacy only modes. In a privacy only mode
the goal is to create ciphertexts such that the adversary by knowing the ciphertexts
can have no knowledge of the plaintext. So, such an adversary has access to the
ciphertexts and also we assume that the adversary can have access to the ciphertexts
corresponding to plaintexts of her choice. To model security of a privacy only mode
we will give the adversary access to two oracles. The first one is the encryption
algorithm (i.e., the mode) and the second one is an algorithm which when given
an input of a plaintext of length m returns m random bits. Thus, the adversary has
two oracles, one of which is the real mode and the other returns random strings.
The adversary can query these oracles without repeating any query and his task is
to distinguish between these two oracles. If the probability with which any efficient
adversary can distinguish between these two oracles is small then the mode can be
considered secure in terms of privacy.

With this definition of privacy let us try to analyze the security of the CBC mode
of operation shown in Figure 12.4b. Let us recall that in the CBC mode, the algo-
rithm takes as input a key, an IV and the plaintext. The key is secret but in general
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we may assume the IV is a public quantity. If we allow an adversary A to freely
choose the IVs along with the plaintexts then CBC is also not secure in terms of pri-
vacy. An easy distinguishing attack can be mounted by A in the following manner.
A provides two encryption queries and gets the corresponding ciphertexts as below:

Query 1: IV1;P1
1 ,P1

2 →C1
1 ,C1

2

Query 2: IV2;P2
1 ,P2

2 →C2
1 ,C2

2

Here P j
i and C j

i represent a block (say n bits if the block length of the block cipher
is n) of plaintext and ciphertext, respectively. Additionally we assume the following
restrictions on the queries:

P1
1 = P2

1 = IV2 = IV1

P2
2 = C1

1

For such a set of queries C2
1 will always be equal to C2

2 . This happens because for
the first query C1

1 will be the block cipher output for all zero string and for the
second query both C2

1 and C2
2 will be the encrypted output of all zero strings. Thus

we see that if A is freely allowed to choose IVs then he can easily distinguish a
CBC output from random strings, so CBC in this setting is not secure in terms of
privacy.

To make CBC secure, we need to put a restriction on the usage of IV. First, a key
and IV pair is never to be repeated. Moreover, if in CBC encryption one replaces
the IV by the encryption of the IV (i.e., EK(IV)) then CBC is secure in terms of
privacy. Note that the IV is still a public quantity and we may allow an adversary
to obtain encryptions of messages with IVs of his choice, but he is not allowed to
obtain encryption of two different messages using the same IV. The IV used in this
manner is called a nonce.

The formalization of the security requirement of privacy only modes along with
the analysis of the security of the traditional modes of operation were first provided
in [4] and the security of CBC with the IV as a nonce was proved in [49].

12.6.3 Authenticated Encryption

The security provided by privacy only modes may not be enough in certain scenar-
ios. Recall, for defining privacy we assumed the adversary to be an adaptive chosen
plaintext adversary whose task was to distinguish the output of the mode from ran-
dom strings. Thus, if an adversary sees only ciphertexts from a secure privacy only
mode, he cannot determine anything meaningful from the ciphertexts. But, if we
assume that the adversary wants to tamper the ciphertexts which goes through the
public channel he can always do so. In a privacy only mode the receiver has no
way to determine whether she received the ciphertext that was originally sent by the
sender. This forms a major limitation of privacy only modes.
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To overcome this limitation we need to add some other functionality to a mode
so that the receiver of a message can verify whether she had obtained the ciphertext
sent by the sender. This is obtained by a tag. A tag can be considered as a checksum
of the message that was used to generate the ciphertext. A sender after decrypting
the ciphertext can always compute the tag and match the tag which she computed
using the decrypted message with the tag that she received. If the tags do not match
the receiver can know that a tampering of the ciphertext has taken place during
the transit. This functionality in the symmetric setting is called authentication and
the modes which provide both privacy and authentication are called authenticated
encryption modes.

Thus an authenticated encryption mode can be seen as a pair of algorithms (EEE,DDD)
where EEE produces the ciphertext C = (C, tag) when given a plaintext P as an input.
While the decryption algorithm DDD on an input C produces the corresponding plain-
text P or outputs INVALID if the computed tag does not match tag.

The security requirement of AE schemes are a bit different from privacy only
modes. For an AE scheme we do not want an adversary to be able to distinguish
ciphertexts produced from plaintexts chosen by her adaptively. So the security re-
quirement for privacy only modes is also a requirement for AE schemes, but addi-
tionally we want that the adversary should not be able to construct any ciphertext
which will get decrypted. To model this requirement we assume that the adversary
is given a number of ciphertext, tag pairs for plaintexts of his/her choice and after
observing these ciphertexts the task of the adversary is to forge, i.e., to construct
a ciphertext tag pair which on input to the decryption algorithm does not produce
INVALID. An AE mode is considered secure in the sense of authenticity if the prob-
ability of forging of any efficient adversary is low. A secure AE scheme is needed
to be secure both in the sense of privacy and authenticity.

Another class of AE schemes are called authenticated encryption with associated
data (AEAD). These schemes can be useful in certain realistic scenarios. Like if
we consider network packets, we do not want to encrypt the headers but we want to
authenticate the headers so that they cannot be tampered. Such schemes take as input
the message and an associated data (the packet header in this case), the message is
only encrypted but the tag is produced both with the message and the header. Most
AE schemes can be easily converted into AEADs.

12.6.4 Disk Encryption Schemes

Now, let us look at another application. Suppose we want to encrypt all data present
in the hard disk of a computer. Whenever there is a disk read then the particular disk
sector is decrypted and returned, similarly whenever some given data need to be
written to the disk the specific sector is encrypted and then written. The encryption
and decryption operations get done by the disk controller, which is a low-level de-
vice having no knowledge of the files, directories, etc. maintained by the operating
system. Each sector is considered as a message.



340 Debrup Chakraborty and Francisco Rodrı́guez-Henrı́quez

In this setting a very important limitation of the encryption algorithm to be used
is that the encryption should be length preserving, i.e., the length of the ciphertext
and plaintext should be equal. This limitation dictates that AE schemes cannot be
used for such applications, as in AE schemes always there is a ciphertext expan-
sion. A privacy only kind of mode is generally length preserving, but the security it
provides will not be enough for disk encryption schemes, as we do not want an ad-
versary to tamper the data present in the disk without our knowledge. So, we need
schemes in which the ciphertext produced will be indistinguishable from random
strings to any adversary who can access ciphertexts corresponding to the plaintexts
of his/her choice. Additionally if an adversary chooses ciphertexts and gets plain-
texts corresponding to those ciphertexts, she should be unable to distinguish those
plaintexts from random strings.

It should be noticed that this adversary is different from the adversary we dis-
cussed in case of privacy only and AE modes. In privacy only and the AE schemes
the adversary had the freedom to choose plaintexts and get the corresponding ci-
phertexts and her task was to distinguish the ciphertexts from random strings. Here
we are giving the adversary freedom to choose ciphertexts also. This adversary is
an adaptive chosen plaintext and chosen ciphertext adversary. So, in this scenario,
if the adversary plans to change the original ciphertext in the disk with some ci-
phertexts of her choice, then the decrypted plaintexts will be indistinguishable from
random. Thus, the adversary cannot create any ciphertext which will get decrypted
into something meaningful, in other words whatever ciphertext she creates will look
like random when it gets decrypted.

To define security of disk encryption (DE) schemes we assumed a more powerful
adversary than in case of AE schemes, but the security provided by DE schemes is
less than that of AE schemes. Recall, in AE schemes the adversary has two tasks,
one of distinguishing and another of forging. If an AE scheme is secure against
forgery attacks then the probability with which an adversary can create a valid ci-
phertext (i.e., the probability with which she can tamper a ciphertext which still gets
decrypted) is very low. But in case of DE schemes the adversary can tamper the
ciphertext and there is no mechanism in the scheme which can detect the tampering.
But the security definition guarantees that if such a tampering takes place then the
corresponding plaintext will be random. So, a high-level application which uses the
plaintext can detect the tampering. As most applications assume certain structure on
the data it uses and a tampering of the data will violate the structure, the probability
that an efficient adversary creates a ciphertext which will retain the structure in the
plaintext is low.

As we discussed in DE schemes the data in a sector are considered as a plain-
text/ciphertext. Thus if two sectors contain the same data they would get encrypted
into the same ciphertexts and the adversary can readily get the information that the
two sectors contain same data. We would not like the adversary to know such infor-
mation. To assure that this does not happen the DE schemes take in a quantity called
tweak along with the plaintext. The tweak may be considered as a type of associated
data. The tweak is not secret and there is no restriction about repetition of the tweak
as in nonces. The encryption of a message depends on the tweak used to encrypt it.
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In DE schemes the sector address is considered as the tweak. So, if two different
sectors contain the same message also they would have different sector addresses
and thus different tweaks, so their encryptions would be different.

12.6.5 Security Proofs

We have intuitively discussed some of the security requirements of modes of opera-
tions. Note that we have not provided with formal definitions of security which can
be done. The basic building block of a mode of operation is a block cipher. So the
security of a mode of operation heavily depends on the security of the underlying
block cipher. It is a pity that the security of primitives like block ciphers cannot be
formally proved. Instead, for block ciphers we just assume security based on the
facts that they can resist all known attacks.

A mode of operation is built using a block cipher and the security of a mode is
thus reduced in a suitable way to the security of the block cipher. Thus, assuming the
block cipher to be secure in a certain way, the security of the mode is derived using
the (presumed) security of the block cipher. Such a reduction is called a security
proof. We shall not discuss security proofs in this chapter, but any modern mode has
a security proof associated with it and it proves an upper bound on advantage of any
efficient adversary in breaking the security of that mode [10, 45].

12.7 Some Modern Modes

We already discussed security requirements of three important kinds of modes. Of
these three modes, the privacy only modes are of limited interest as they do not
provide security against active adversaries who can tamper the ciphertexts. The
AE modes and DE modes are of much interest in the current days. There are
many modes proposed till date. In Table 12.1 we list some secure AE and DE
modes.

AE modes can be classified according to the number of passes over the data
it requires. Easiest way to obtain an AE mode is to use two algorithms, one for
computing the tag and the other for encrypting. If these two algorithms are used
separately they obviously need two passes over the message and additionally two
keys will be required. This paradigm is called generic composition and was first
formally analyzed in [5].

The most efficient AE modes are the one pass AE modes. As the name suggests
they use only one pass over the data. Some single pass AE schemes proposed till
date are IACBC [29], IAPM [30], OCB [50], XCBC and XECB [20]. Also a gen-
eralization of the OCB construction was provided in [10]. Out of these modes OCB
is probably the most efficient and optimized AE mode. We provide a description of
OCB in Section 12.7.1
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Table 12.1 Some secure modes: AE stands for authenticated encryption and DE for disk
encryption.

Mode Source Type Notes
OCB [50] AE One Pass
IAPM [30] AE One pass

IACBC [29] AE One Pass
XCBC [20] AE One Pass
XECB [20] AE One Pass

CCM [43] AE Two Pass
EAX [6] AE Two Pass
CWC [31] AE Two Pass
GCM [41] AE Two Pass

CMC [24] DE Encrypt-Mask-Encrypt
EME [25] DE Encrypt-Mask-Encrypt
EME∗ [22] DE Encrypt-Mask-Encrypt
PEP [11] DE Hash-ECB-Hash

HCTR [54] DE Hash-CTR-Hash
HCH [12] DE Hash-CTR-Hash
TET [23] DE Hash-ECB-Hash
HEH [52] DE Hash-ECB-Hash

Other than the one pass schemes there exist other AE schemes which require two
passes over the data. For such modes, in one pass the ciphertext is computed and in
the other pass the tag is computed. Surely such modes are inefficient than the one
pass modes. All known one pass schemes except [10] are covered by patent claims.6

That is why two pass schemes are still of interest though one pass schemes exist.
Some of the two pass AE modes are CCM [15, 43], EAX [6], GCM [41] etc. We
shall discuss a two pass AE mode called CCM mode in detail including its hardware
implementation in Section 12.8.

Till date there are 10 disk encryption modes proposed. They are CMC [24],
EME [25] EME∗ [9, 22], XCB [39], ABL [40], HCTR [54], PEP [11], HCH [12],
TET [23] and HEH [52]. The construction of these modes falls under three basic
paradigms. The first paradigm is called encrypt-mask-encrypt where two layers of
encryption are used with a layer of masking in between. CMC, EME and EME∗

fall under this category. Another way of construction is to use electronic code book-
type encryption in between two hash layers, such constructions are called as hash-
ECB-hash constructions. PEP and TET fall under this category of constructions.
The other category, hash-counter-hash, uses a counter mode in between two hash
layers. HCTR, XCB, ABL and HCH fall under this category of constructions. We
provide a description of one DE mode EME in Section 12.7.2 which falls under the
encrypt-mask-encrypt category.

6 There is no known patent granted or pending on [10], but it may be covered by some existing
patent claims unknown to the authors.
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12.7.1 The Offset Codebook Mode

The offset codebook (OCB) mode was proposed by Rogaway and Black [50]. This
is a fully defined efficient mode which provides both privacy and authenticity. The
original OCB mode was modified a bit in [48] and called OCB1. OCB1 is not much
different from the original OCB. But certain tricks in the construction help to reduce
the complexity of the security proof. Also the description of OCB1 is easier than the
original OCB proposal.

Figure 12.5 shows the encryption and decryption algorithm using OCB1. The en-
cryption algorithm takes in a m block message (the last block can be an incomplete
block, i.e., the last block can have a block length less than the block length of the
block cipher), a block cipher key K and a nonce N. It produces a m block ciphertext
along with a τ bit tag. If n is the block length of the block cipher EK , then all n-bit
strings in the algorithm are viewed as elements in GF(2n). So, all n-bit strings in the
algorithm can be seen as polynomials of degree less than n whose coefficients are
from GF(2) (see Section 12.4 for a detailed discussion). The operation⊕ is addition
in the field GF(2n) and the operations xEK(N) and (x +1)EK are multiplications of
the polynomials x and 1 + x with the polynomial EK(N) modulo a fixed irreducible
polynomial in GF(2n). The algorithm is self-explanatory, but certain points are im-
portant to see. The encryption of the last block (i.e., the mth block in this case) is
different from the encryption of the other blocks. In step 10 of the algorithm, Cm

would be t bits long if Pm is t bit long. The operation Cm0∗ in step 11 means to add
(n− t) zeros to Cm to make Cm a full block. These discussions are all valid for the
decryption algorithm also.

Algorithm OCB1.EncryptNK(P)
1. Partition P into P1,P2, . . . ,Pm

2. Δ ← xEK(N)
3. Σ ← 0n

4. for i = 1 to m−1,
5. Ci ← EK(Pi ⊕Δ)⊕Δ
6. Δ ← xΔ
7. Σ ← Σ ⊕Pi

8. end for
9. Pad ← EK(len(Pm)⊕Δ)
10.Cm ← Pm ⊕Pad
11.Σ ← Σ ⊕Cm0∗ ⊕Pad
12.Δ ← (1+ x)Δ
13.Tag ← EK(Σ ⊕Δ)
14.T ← Tag[first τ bits]
15.return C ←C1||C2|| . . .||Cm||T

Algorithm OCB1.DecryptNK (C )
1. Partition C into C1,C2, . . . ,Cm,T
2. Δ ← xEK(N)
3. Σ ← 0n

4. for i = 1 to m−1,
5. Pi ← E−1

K (Ci ⊕Δ)⊕Δ
6. Δ ← xΔ
7. Σ ← Σ ⊕Pi

8. end for
9. Pad ← EK(len(Cm)⊕Δ)
10.Pm ←Cm ⊕Pad
11.Σ ← Σ ⊕Cm0∗ ⊕Pad
12.Δ ← (1+ x)Δ
13.Tag ← EK(Σ ⊕Δ)
14.T ′ ← Tag[first τ bits]
15.if T = T ′ return P ← P1||P2|| . . .||Pm

else return INVALID

Fig. 12.5 Encryption and decryption using OCB1.



344 Debrup Chakraborty and Francisco Rodrı́guez-Henrı́quez

OCB1 requires m+1 block cipher calls to encrypt a m block message. The other
operations it requires have insignificant computational overhead. It requires only
one pass over the data and can produce cipher in an online manner. Note that OCB1
requires only the length information of the last block to encrypt or decrypt. Also
OCB1 uses only one block cipher key. Assuming a nonce respecting adversary
(i.e., an adversary who does not repeat nonces) OCB can be proved to be secure
in terms of both privacy and authenticity. These discussions are also valid for the
original OCB.

12.7.1.1 Hardware Implementation Aspects of OCB

The parallel nature of the OCB mode of operation allows us to use a pipeline ap-
proach when implementing it in hardware. Furthermore, as is discussed in
Section 12.4, the operation xEK(N) of algorithm of Figure 12.5 can be implemented
at a negligible computational cost in hardware. In the following, we give a rough
estimation of the hardware implementation cost of the OCB mode of operation.

Let us assume that we have an AES block cipher encryption core that uses a
pipeline architecture of 10 stages. Then, referring to the algorithm of Figure 12.5,
step 2 must be computed in a sequential fashion, implying that 10 clock cycles will
be required for calculating Δ . Thereafter, the m− 1 block cipher calls in steps 4–9
can be accomplished using the benefits of the parallelism associated to the pipeline
architecture. So, we can argue that all the Ci for i = 1,2, . . . ,m, can be computed in
about (m−1)+10 clock cycles. Finally the tag computation of step 13 will require
10 extra clock cycles. Hence, according to the above analysis, we could achieve both
authentication and encryption after about (m−1)+ 20 clock cycles when using the
OCB mode of operation.

12.7.2 ECB-Mask-ECB Mode

Now we will discuss a disk encryption mode called ECB-mask-ECB (EME) [25].
As the name suggest, the mode consists of two electronic code book layers with
a masking layer in between. The encryption and decryption algorithm are given in
Figure 12.7. A pictorial description of EME is given in Figure 12.6.

EME takes in a m block message along with a tweak T . Note that the tweak
here is different from the nonce N in case of OCB. There is no restriction regard-
ing repetition of the tweak. Here also if the block length of the block cipher used
is n then each n-bit string in the algorithm is considered as an element in the field
GF(2n), i.e., they can be treated as polynomials of degree less than n with coeffi-
cients from the field GF(2) and the operations xiL and xiM denote the multiplication
of the polynomial xi with the polynomials L and M, respectively, modulo a fixed ir-
reducible polynomial.

The algorithm is self-explanatory, but an important feature to note is that in the
masking layer, the mask M is dependent on all the plaintext blocks and the mask is



12 Block Cipher Modes of Operation from a Hardware Implementation Perspective 345

P1 P2 P3 P4
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Fig. 12.6 Encryption of four blocks of plaintext using EME. Here, L = xEK(0n), SP = PPP2 ⊕
PPP3 ⊕PPP4, M = MP⊕MC and SC = CCC2 ⊕CCC3 ⊕CCC4.

distributed to all the blocks suitably. This makes each block of ciphertext dependent
on all blocks of plaintexts. This is a necessary mechanism for any disk encryption
mode.

EME has some message length restrictions. If the block length of the underlying
block cipher is n then EME cannot encrypt more than n blocks of messages. Also
the message length should always be a multiple of n. This message length restric-
tion may not amount to a serious restriction in case of disk encryption scenarios as
generally sector lengths are 512 bytes long.

To encrypt a m block message EME requires 2m+1 block cipher calls, the other
computational overheads are not significant. EME like all other DE modes needs
to process the whole plaintext before it can output any ciphertext. Thus it is not
an online mode of operation. EME is proved to be a secure tweakable enciphering
scheme.

12.7.2.1 Hardware Implementation Aspects of EME

The EME mode of operation can be partially implemented in parallel in a hardware
implementation. However, we stress that some computations of the algorithm of
Figure 12.7 represent a bottleneck from the hardware implementation perspective
as is discussed next.
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Algorithm EME.EncryptTK(P)
1. Partition P into P1,P2, . . . ,Pm

2. L ← xEK(0n)
3. for i ← 1 to m do
4. PPi ← xi−1L⊕Pi

5. PPPi ← EK(PPi)
6. end for
7. SP ← PPP2 ⊕PPP3 ⊕ . . .PPPm

8. MP ← PPP1 ⊕SP⊕T
9. MC ← EK(MP)
10.M ← MP⊕MC
11.for i ← 2 to m do
12. CCCi ← PPPi ⊕ xi−1M
13.end for
14.SC ←CCC2 ⊕CCC3 ⊕ . . .CCCm

15.CCC1 ← MC⊕SC⊕T
16.for i ← 1 to m do
17. CCi ← EK(CCCi)
18. Ci ← xi−1L⊕CCi

19.end for
20.return C1,C2, . . .,Cm

Algorithm EME.DecryptTK(C)
1. Partition C into C1,C2, . . . ,Cm

2. L ← xEK(0n)
3. for i ← 1 to m do
4. CCi ← xi−1L⊕Ci

5. CCCi ← E−1
K (CCi)

6. end for
7. SC ←CCC2 ⊕CCC3 ⊕ . . .CCCm

8. MC ←CCC1 ⊕SC⊕T
9. MP ← E−1

K (MC)
10.M ← MP⊕MC
11.for i ← 2 to m do
12. PPPi ←CCCi ⊕ xi−1M
13.end for
14.SP ← PPP2 ⊕PPP3 ⊕ . . .PPPm

15.PPP1 ← MP⊕SP⊕T
16.for i ← 1 to m do
17. PPi ← EK(PPPi)
18. Pi ← xi−1L⊕PPi

19.end for
20.return P1,P2, . . .,Pm

Fig. 12.7 Encryption and decryption using EME.

As we did in the analysis of OCB, let us assume that we have an AES block
cipher encryption core that uses a pipeline architecture of 10 stages. Then, refer-
ring to the algorithm of Figure 12.7, the computation of the parameter L in step 2
must be accomplished in a sequential fashion, implying that at least 10 clock cycles
will be required for completing that calculation. Thereafter, the m block cipher calls
included in steps 3–6 can be accomplished using the benefits of the parallelism asso-
ciated to the pipeline approach. So, we can argue that all the PPPi for i = 1,2, . . . ,m
can be computed in about (m− 1)+ 10 clock cycles. On the contrary, the cipher
call in step 9 for obtaining MC must be performed in a sequential fashion, which
implies 10 extra clock cycles. Similarly, the m−1 block cipher calls in steps 11–13
represent a computational effort of about (m−2)+10 clock cycles, whereas the last
block cipher call in step 17 implies 10 clock cycles more.

In summary, the computational cost of the algorithm in Figure 12.7 can be esti-
mated in about 2m− 3 + 50 clock cycles. Considering that for a typical EME ap-
plication, the plaintext will have a length of 32 blocks,7 then the EME algorithm
of Figure 12.7 will encrypt a disk sector in about 111 clock cycles when using a
pipeline AES hardware architecture. Some precomputations may save some cost in
EME. As L is a quantity only dependent on the key K, L can be easily precomputed
thus saving some clock cycles. A more detailed description of the hardware design
of EME along with designs of other DE schemes can be found in [37, 38].

7 Here we are assuming that the size of a disk sector is 512 bytes or thirty-two 128-bit AES blocks.
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12.8 The CCM Mode: A Case Study

Here we shall discuss a mode called CCM in detail including its hardware imple-
mentation. We shall design CCM with AES as the underlying block cipher. For
a summary of the AES algorithm specification we refer the interested reader to
Section 12.3.

The rest of this section is organized as follows. In Section 12.8.1 we briefly
describe the CCM mode of operation. Then, in Section 12.8.2, we present a recon-
figurable hardware implementation of an AES sequential encryptor core. In Sec-
tion 12.8.3, we give a design description of the AES–CCM mode reconfigurable
hardware implementation reported in [34]. Finally, in Section 12.8.4 we compare
the design described in this chapter with other architectures already reported in the
open literature.

12.8.1 The CCM Mode

CCM stands for counter with CBC–MAC. This means that two different modes are
combined into one, namely, the CTR mode and the CBC–MAC. CCM is a generic
authenticated encrypt block cipher scheme. It has been specifically designed for
being used in combination with a 128-bit block cipher, such as AES. CCM mode
can be easily extended to other block sizes, but this would require further definitions
not to be addressed here.

CCM mode was proposed by Whiting et al. [15]. Their original paper was sent to
NIST for evaluation as a generic new mode. Presently, it has become part of the new
802.11i IEEE standard [43]. CCM is an authenticated encryption scheme which also
supports associated data.

The generic CCM mode allows user definition of two main parameters. The first
choice is M, the size of the tag or the authentication field. Selecting an adequate
value for M involves a trade-off between message expansion and the probability
that an attacker can undetectably modify the message. Valid values for M are 4, 6,
8, 10, 12, 14 and 16 bytes. This parameter is encoded as (M−2)/2.

In the rest of this section we will use |P| to indicate the length in bytes of the
plaintext message P. The parameter L gives the size in bytes of the field that indi-
cates the numerical value of |P|. This value involves a trade-off between the max-
imum message size and the size of the nonce, which is an unique integer value
associated with each message. The value of L ranges from two to eight.

12.8.1.1 CCM Input Parameters

Before sending a message, a sender must provide the following information:

• A suitable encryption key K for the block cipher to be used.
• A nonce N of 15−L bytes. Nonce value must be unique, meaning that the set of

nonce values used with any given key shall not contain duplicate values.
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• The message P consisting of a string of |P| bytes where 0 ≤ |P| < 28L.
• Additional authenticated data a, consisting of a string of |a| bytes where 0 ≤

|a| < 264. This additional data are authenticated but not encrypted and are not
included in the output of this mode.

12.8.1.2 CCM Authentication

The first step consists of computing the tag or the authentication field T . This is done
using CBC–MAC mode [15, 43]. We first define a sequence of blocks B0,B1, . . . ,Bm,
and thereafter CBC–MAC is applied to those blocks so that the authentication field
T can be obtained.

The first block B0 is formatted as shown in Figure 12.8a, where l(P) is encoded
in most-significant-byte first order.

Within the first block B0, the Flags field is formatted as shown in Figure 12.8b
The Reserved bit field is reserved for future expansions and should always be set to
zero. The Adata bit is set to zero if l(a) = 0 and set to one if l(a) > 0.

Authentication data a are formatted by concatenating the string that encodes l(a)
with a itself, followed by organizing the resulting string in chunks of 16-byte blocks.
If necessary, the last block should be padded with zeros so that its length achieves
16 bytes. The blocks so constructed are appended to the first block B0.

Message blocks are added right after the (optional) authentication blocks a. Mes-
sage blocks are formatted by splitting the message P into 16-byte blocks and then
padding the last block with zeros if necessary. If the message P consists of the
empty string, then no blocks are added in this step. Then a sequence consisting of
the concatenation of the blocks B0,B1, . . . ,Bm is produced. Finally, the CBC–MAC
is computed as

Byte no 0

0

1 ... 15-L

1 ... 15-L

16-L ... 15

16-L ... 15

Contents Flags Nonce N l (P )

B0 Structure

Bit number

Contents

7 6 5 4 3 2 1 0

Reserved Adata M L

B  Flags field structure
0

(a)

(b)

Byte no

Contents Flags Nonce N Counter i

A  Structure
i

(c)

Bit number

Contents

7 5 4 3 2 1 0

Reserved Reserved 0 L

A  Flags field structure
i

(d)

6

Fig. 12.8 Structure of the B0 block and its flags.
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X1 := AESE(K,B0) (12.11)

Xi+1 := AESE(K,Xi ⊕Bi) for i = 1, . . . ,m

T := f irstMbytes(Xm+1)

where AESE is the AES block cipher selected for encryption and T is the MAC
value defined above. Note that the last block Bm is XORed with Xm and the result is
encrypted with the block cipher. If it is needed, the ciphertext would be truncated in
order to obtain T .

Figure 12.9 shows CCM authentication and verification processes dataflow. We
stress that because of the CBC feedback nature of the CCM mode, we cannot use a
pipeline approach when implementing a hardware CCM architecture.

12.8.1.3 CCM Encryption

CCM encryption is achieved by means of counter (CTR) mode as

Si := AESE(K,Ai) for i = 0,1,2, . . . ,m (12.12)

Ci := Si ⊕Pi

Figure 12.8c shows how the values Ai are formatted, where i is encoded in most-
significant-byte first order. Within each block Ai, the Flags field is formatted as
shown in Figure 12.8d. Once again, reserved bits field is reserved for future expan-
sions and must be set to zero.
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Fig. 12.9 Authentication and verification processes for the CCM mode.
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Plaintext P is encrypted by XORing each of its bytes with the first l(P) bytes of
the sequence produced by concatenating the cipher blocks S1,S2,S3, . . . produced
by Equation 12.12. Notice that S0 is not used for message encryption. The authenti-
cation value is computed by encrypting T with the key stream block S0 truncated to
the desired length as

U := T ⊕ f irstMbytes(S0) (12.13)

The final result C consists of the encrypted message P, followed by the encrypted
authentication value U .

12.8.1.4 Decryption and Verification

To decrypt a message the following informations are required:

• The encryption key K
• The nonce N
• The additional authenticated data a
• The encrypted and authenticated message C

Decryption starts by recomputing the key stream to recover the message P and
the MAC value T . Message and additional authentication data are then used to re-
compute the CBC–MAC value and check T .

If the T value is not correct, the receiver should not reveal the decrypted message,
the value T or any other information.

It is important to notice that the AES encryption algorithm is required in both
encryption as well as in decryption. Therefore, AES decryption functionality is
not necessary in CCM mode, which results in valuable hardware resources
saving.

Figure 12.10 shows the CCM encryption/decryption process dataflow.

12.8.2 AES Encryptor Core Implementation

As was mentioned before, in order to implement the CCM scheme, a 128-bit block
cipher is needed. In this section we describe the general architecture of an AES
sequential encryptor core as shown in Figure 12.11.

12.8.2.1 Implementation of the AES Rounds

Main nine rounds of AES must be implemented in an iterative way. Therefore, only
one round is shown in Figure 12.12. That circuit uses a multiplexor to select whether
we are going to process the first round or the other eight ones. At the end of the
circuit we use a latch block to store the current computed state matrix.
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Fig. 12.10 Encryption and decryption processes for the CCM mode.
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Fig. 12.11 General architecture of an AES encryptor core.

As is shown in Figure 12.12, rounds 1–9 were implemented using two main
building blocks. The first one is the BS/SR block that can be instrumented by using
the BRAMs (Block RAMs) embedded in the targeted FPGA device. Sixteen 8×256
BRAMs were configured for implementing AES S-box as a look-up table. By doing
so, it is possible to compute 16-byte substitutions at the same time. Mix Columns
and AddRoundKey Steps can be implemented jointly by doing some minor modifi-
cations. For polynomial multiplication the xtime(v) operation described at the end
of Section 12.4 was used.
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Fig. 12.12 Block diagram of the rounds 1–9.

12.8.2.2 Key Scheduling Implementation

In [47] several optimizations based on redundant computation for parallelizing the
Key Scheduling process were implemented. As a result, it takes two steps to com-
pute the round key [47].

Figure 12.13 shows Key Scheduling algorithm block diagram for an Iterative
Encryptor Core. That circuit has a multiplexor that selects whether the key to be
processed is the original user secret key or the current round key. At the output of
the circuit we use a latch that stores the round key so produced. That key will be
available until a new round key is generated. The latch is activated in the falling
edge of the clock and its CE is activated in high state. The implementation shown
can provide a round key every falling edge of the master clock.

12.8.2.3 AES Control Unit

The AES control unit synchronizes the whole process and controls the information
flow. In addition, it produces the signals to control the multiplexors and latches that
are used in the AES components. These synchronization signals are crucial because
each component should select the correct state matrix.

User secret
       Key

Select

Key

 Generator LATCH

CLK

CE

Round Key

Fig. 12.13 Iterative key scheduling block diagram.
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The signal generated to control the Final Round Latch is also used as an indicator
that the ciphertext is ready. This is done by a change in the CE output of the AES
block. When the plaintext is being processed, the CE output value is “0”, but when
a ciphertext is ready, this value changes to “1”. In addition, the AES block has an
extra input called “Encrypt” that indicates to the control unit that a new plaintext is
given and that a new process has to begin. This control signal must be high by one
single CLK’s cycle and after that it must be set to low.

12.8.3 Hardware Implementation of the CCM Mode

In this section we discuss design details utilized for CCM mode and AES encryptor
core implementations. It is assumed that the user must provide the additional au-
thentication data a as two blocks of 16 bytes each (see Section 12.8.1). This size
was selected considering the typical length of a TCP/IP header information. Fur-
thermore, it was assumed that the message P to be processed has a maximum length
of 1024 bytes.

Figure 12.14 shows the CCM mode general architecture, which comprises three
main building modules, namely, authentication module, encryption module and a
control unit module. All those three blocks together perform necessary operations
for generating a valid cipher text and an encrypted authentication value. Notice that
extra hardware is needed for the verification and decryption phases. In the rest of
this section we will explain how those three blocks were implemented in [34].

12.8.3.1 CCM Authentication

Figure 12.15a depicts the CCM authentication module architecture. This module
consists of an authentication block generator, a CBC–MAC module and a control
unit.
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Authentication Block Generator: Authentication block generator is the architecture
component responsible for generating the Bi blocks (see [15, 43] for details). Those
blocks are generated according to the instructions indicated in the control word that
the control unit sends in the “CW” line. That control word stipulates which block
should be generated, the B0 block or the blocks that correspond to the additional data
a or the ones corresponding to the message P. Each block is generated only when
the previous block has already been ciphered by the CBC–MAC module described
next.
CBC–MAC: Blocks Bi that were generated by the block generator are the inputs for
the CBC–MAC. Any input block Bi (except for the block B0) is XORed with the Xi

that was computed previously. The result of this operation is encrypted using AES,
and the resulting cipher text Xi+1 is fed back to the next block Bi+1. Figure 12.15b
depicts the CBC–MAC process just outlined.
Authentication Control Unit: Control unit orchestrates the authentication process
by receiving control signals from the general control unit. This block generates
the appropriate control word for the block generator module and the one that in-
dicates to the CBC–MAC Encryptor that a new Bi block can be processed. A 5-bit
control word is utilized, where the LSB is used for controlling the CBC–MAC’s
latch. The second bit is used to start encryption with the AES block; the third
bit controls which input will be selected by the MUX included in the CBC–MAC
component and finally, the last two bits indicate which type of block should be
generated.

Authentication control unit receives a signal when a Bi block has been processed
within the CBC–MAC module. Thereafter, the control unit module produces the
appropriate control word to generate the next block Bi+1 and process it. Control unit
runs a counter that indicates which control word should be generated. The process
of authentication begins when the general control unit indicates so with the “ACW”
word. After receiving this signal, the whole process is controlled by the local control
unit. With the aim of parallelizing the authentication and encryption processes, the
authentication begins first.
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Fig. 12.15 Authentication block.
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12.8.3.2 CCM Encryption

Figure 12.16a shows the CCM encryption architecture. This module consists of an
encryption block generator, a CTR block and a control unit.
Encryption Block Generator: This module is responsible for generating the Ai

blocks, (see Section 12.8.1 for details) generated according to the counter func-
tion. In this implementation, the counter begins in 0 and it is incremented one by
one. The blocks are formed with the nonce and the counter value. Each block is
generated when the CTR module has finished processing the previous one. Let us
recall that encryption begins only when the authentication module is processing the
second block with the additional data a. Based on this observation, the process of
authentication and encryption can be accomplished in parallel by generating the A1

block first and all subsequent Ai blocks but the first one (A0). When the CCM authen-
tication module has finished the last block processing, encryption block generator
may proceed to generate the A0 block in order to get S0.
The CTR Mode: The CTR mode is the last step in the encryption process, it encrypts
the Ai blocks with the block cipher (i.e., AES) to generate the Si stream blocks.
When a Si block is ready, it is XORed with the appropriate message m block. Fig-
ure 12.16b shows the internal composition of the CTR mode. This mode uses as
cipher block the AES implementation described in Section 12.8.2. The U0 value
shown in Figure 12.16b corresponds to the S0 block. That is why U0 is not XORed
with the message, when it is the last block (actually the first of the counter func-
tion), this value is used to encrypt the authentication value T computed as a part of
the authentication process as shown in Figure 12.9.
Encryption Control Unit: The implementation of this module is quite similar to the
one for the authentication process. This control block is responsible to keep the
counting and to tell the block generator which block is the next to be generated. At
the same time, it starts the CTR mode for processing a block in order to get a valid
ciphertext. When a ciphertext is ready, it tells to the general control unit that a new
ciphertext can be stored. The implementation is based on the counter process that
begins when the general control unit indicates that it is time to encrypt the message
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m, and it keeps counting until the general control unit indicates to stop. The control
unit receives a control word that indicates what to do, this control word is 2-bits
long, and the four possibilities are “00” or “10” do nothing, remain in initial state,
“01” generate the S0 block and “11” begin and continue counting.

12.8.3.3 General Control Unit

This module is the one that controls the authentication and encryption processes. It
synchronizes the information flow in order to parallelize the entire process and to
achieve a good performance. The control unit commands when the authentication
process must begin the execution. After the authentication process has processed the
first block (B0) and continues with the second of the two additional data a blocks,
the encryption process begins.

Notice that the authentication process must authenticate the other a block and all
message blocks. The encryption process, on the other hand, must encrypt only the
message blocks and since it starts first, one could think that the encryption process
would finish first. However, since it is necessary for the extra processing of the block
S0, the architecture discussed here manages to finish both processes at the same
time. In this way we can compute the encrypted authentication data U which is done
with extra hardware after the authentication and encryption processes. Figure 12.17
shows this process time line. Every unit in the time line represents 12 clock cycles.

The control unit behaves in the same way for all, the authentication and encryp-
tion processes and for the decryption and verification processes, which means that
the control unit does not know if it is encrypting or verifying.

12.8.3.4 Decryption and Verification

Decryption and verification processes are included in the architecture presented in
[34] and they were implemented as extra hardware. The additional hardware is used
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to select if the data are going to be authenticated and encrypted or decrypted and
verified. In Figure 12.14 that extra hardware as a MUX is shown before the authenti-
cation process. This MUX is used to select if the source message is the one provided
by the user (in case of authentication) or if it is the message that has been decrypted
(when verifying). This is selected by the mode input, when “0” the process is going
to authenticate and encrypt. If mode=“1”, then it will decrypt and verify.

The second MUX is used for selecting the output for the U value; when authen-
ticating, the selection should be the computed value U , this is done with the func-
tion f irstMBytes and the XOR operation between the computed T and the S0 block.
When verifying, computed U value is XORed with the Ureceived (sent by the trans-
mitter entity) in order to verify whether the message integrity has been corrupted or
not; if the XOR output is equal to zero, then the message is correct, otherwise, it is
assumed that the received message is corrupted.

As in the case of the authentication and encryption, the verification process be-
gins first and the decryption process starts after the verification process has pro-
cessed two blocks. In this way, verification can certify the received message that
was just decrypted. Figures 12.17 and 12.18 show the time line of these processes,
every unit in time line represents 12 clock cycles.

12.8.4 Experimental Results and Comparison

The design presented in this chapter (including key schedule) occupies 2154 slices,
while it makes use of 32 block RAMs. It was implemented on a 3s4000fg900-4
Spartan 3 device using VHDL language and Xilinx’s ISE 6.3i development tool
along with the ModelSim Xilinx Edition II v5.8c [34]. Table 12.2 summarizes the
hardware resources required by the design’s main building blocks.

As was mentioned before, it was considered that the additional information a
consisted of two 16-byte blocks. The maximum length of the plaintext is 1024 bytes
which results in 64 blocks of 16 bytes each. Then, a total of 67 effective blocks
must be processed (this estimation excludes the B0 block, which was considered as
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Table 12.2 Hardware resources of the design described in Section 12.8.3.

Block Slices BRAMs

Authentication 1031 16

Encryption 713 16

Control unit and extra Hw 410 0

CCM mode 2154 32

Maximum clock frequency 100.08 MHz

Table 12.3 AES–CCM comparison.

Author Device Mode Slices T∗

(BRAMs) (Mbps)
AES–CCM core Helion Virtex 4 CCM 480 (5) 670

Virtex 5 CCM 321 (0) 760
Fu et al. [18] Virtex 2 CTR 2415 (NA) 1490
Charot et al. [13] Altera APEX CTR N/A 512
Bae et al. [3] Altera Stratix CCM 5605(LC) 285

This Design Spartan 3 CBC 2154 (32) 1067

∗Throughput

an overhead in the process, so it was omitted from the throughput computation). The
processing of a total of 67 blocks can be accomplished by the design described in
this section in 804 clock cycles (each block is computed in 12 cycles). Finally, we
provide in Table 12.3 a comparison with several CCM–AES designs reported in the
open literature.

12.9 Conclusions

Block ciphers are one of the most important symmetric cryptographic primitives.
They are widely used for bulk encryptions. Block ciphers are always to be used
along with an appropriate mode of operation when one needs to encrypt messages
bigger than the block length of the block cipher. Also a mode of operation can pro-
vide security services other than privacy/confidentially. Thus, modes of operations
are important cryptographic objects. A modern mode needs to be secure in terms of
strong security definitions and also needs to be efficient in various respects. These
two goals are sometimes contradictory and thus designing an efficient mode which
is also secure is a challenging task.

From the beginning of this century many researchers have provided with many
secure and efficient designs, though not many of the proposed modes are actu-
ally being used in applications. The standardization efforts for modes for different
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applications is still going on and we hope that within a few years more modes would
be standardized and thus widely used in various applications.

Efficient implementation of modes is another very important aspect. As per hard-
ware design, AES has seen many efficient implementations, but all of these imple-
mentations may not be the best for every mode. A mode of operation may contain
objects other than the block ciphers like field multipliers, hash functions, etc. Also
the data dependencies for different kinds of modes may be quite different. This de-
mands specific implementations of the mode and in particular the block cipher. Not
many efficient implementations of different modes have yet been reported in the
literature. In fact there are many modes which have not yet been implemented and
therefore no test vectors are available for those modes.

Summarizing, in this chapter we provided a brief overview of hardware imple-
mentation aspects of modes of operations. We informally defined the various secu-
rity goals for various modes, provided a partial list of different secure modes and
described in detail the hardware implementation aspects of a secure mode called
CCM.
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project number 60240-J1.

12.10 Exercises

1. In this chapter we showed that CBC mode is insecure if the IV is repeated. We
also showed how to fix the problem. Show that the same is true for counter mode.

2. Assume that a plaintext of m blocks has been encrypted using a mode M. During
transmission the m

2 th block gets corrupted (assume 2|m). Discuss which of the
plaintext blocks will be corrupted after decryption, assuming the mode M to be
ECB, CBC, CFB, OFB and CTR.

3. EME has a message length restriction, i.e., if the blocklength of the underlying
block cipher is n it can securely encrypt only n blocks of message. Can you figure
out why? (Hint: This has something to do with intermediate masking. You can
look up the solution in [24].)

12.11 Projects

1. Implement any of the authenticated encryption modes in hardware. Provide test
vectors for the mode selected.

2. Implement any of the disk encryption modes in hardware. Provide test vectors
for the mode selected.
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Chapter 13
Basics of Side-Channel Analysis

Marc Joye

13.1 Introduction

Classical cryptography considers attack scenarios of adversaries getting black box
access to a cryptosystem, namely to its inputs and outputs. For example, in a chosen
ciphertext attack, an adversary can submit ciphertexts of her choice to a decryption
oracle and receives in return the corresponding plaintexts. In real life, however, an
adversary may be more powerful. For example, an adversary may in addition mon-
itor the execution of the cryptosystem under attack and collect some side-channel
information, such as the execution time or the power consumption. The idea behind
side-channel analysis is to infer some secret data from this extra information.

This chapter presents several applications of side-channel analysis using differ-
ent types of side-channel leakage. The primary goal is to explain the basic princi-
ples of side-channel analysis through concrete examples. Simple countermeasures
to prevent side-channel leakage are also discussed. More sophisticated methods and
advanced techniques are presented in the next chapters.

13.2 Timing Analysis

The concept of using side-channel information as a means to attack cryptographic
schemes first appeared in a seminal paper by Kocher [8]. In this paper, Kocher ex-
ploits differences in computation times to break certain implementations of RSA
and of discrete logarithm-based cryptosystems.

In this section, we describe two timing attacks. We show how an attacker able
to make timing measurements with some accuracy can recover secret data. The first
attack applies to a password verification routine. Following [5], the second attack is
against an implementation of an RSA signature scheme [2, 13].
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13.2.1 Attack on a Password Verification

In order to restrict access to data to legitimate users, certain applications make use of
passwords. Think for example of a file that requires a valid password to be opened.
If the password is an 8-byte value, a brute-force attack would require 2568 = 264

trials!
Now assume that the password verification routine is implemented as described

in Algorithm 4.1 P̃ denotes the 8-byte password proposed by the user and P denotes
the correct password. The routine returns “true” if the entered password is valid
and “false” if it is not.

Algorithm 4 Password verification.

Input: P̃ = (P̃[0], . . ., P̃[7]) (and P = (P[0], . . .,P[7]))
Output: ‘true’ or ‘false’
1: for j = 0 to 7 do
2: if (P̃[ j] �= P[ j]) then return ‘false’
3: end for
4: return ‘true’

This implementation is insecure against an attacker measuring the time taken by the
routine to return the status, “true” or “false”. We can see that the verification of
a valid password is longer since the routine returns “false” as soon as two bytes
differ. Based on this, an attacker can mount the following attack.

1. For 0 ≤ n ≤ 255, the attacker proposes the 256 passwords P̃(n) = (n,0,0,0,0,0,
0,0) and measures the corresponding running time, τ[n].

2. Next, the attacker computes the maximum running time

τ[n0] := max
0≤n≤255

τ[n] .

The correct value for the first byte of P, P[0], is given by n0.
3. Once P[0] is known, the attacker reiterates the attack with

P̃(n) = (P[0],n,0,0,0,0,0,0),

and so on until the whole value of P is recovered.

This timing attack is very efficient. It requires at most 256 · 8 = 2048 calls to the
verification routine to completely recover an 8-byte password.

To prevent the attack, one may think of adding a random delay before returning
the status. This is however not sufficient since the attacker would still be able to
mount a similar attack. In Step 1, the attacker would propose t times the password

1 Note that this is basically the way the C function memcmp compares two memory regions.
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P̃(n) = (n,0,0,0,0,0,0,0) and measure the corresponding average running time over
the t executions, τ̄[n], for 0 ≤ n ≤ 255. The attack then proceeds as before. Its com-
plexity increases by a factor of t.

The correct way to prevent the attack is to make a constant time implementation
irrespective of the input data.

13.2.2 Attack on an RSA Signature Scheme

Like a handwritten signature, the purpose of a digital signature is to guarantee the
authenticity and the integrity of a message. There are two keys: a signing key which
is private and a verification key which is public.

A common practice to produce a digital signature of a message m with RSA relies
on the “hash-and-sign” paradigm. Message m is first hashed into μ(m) and the result
is then raised to the dth power modulo N, S = μ(m)d mod N, where d denotes the
private RSA key. The public verification key is {e,N} where ed ≡ 1 (mod φ(N))
and φ is Euler’s totient function. The validity of a putative signature S of message
m is verified by checking whether Se ≡ μ(m) (mod N).

There are various ways to evaluate a modular exponentiation. We consider be-
low the square-and-multiply algorithm. At iteration j of the main loop, there is
a modular squaring and when bit d j of d is equal to 1 there is also a modular
multiplication.

Algorithm 5 Computation of an RSA signature.
Input: m, N, d = (dk−1, . . .,d0)2, and μ : {0,1}∗ → ZZ/NZZ

Output: S = μ(m)d (mod N)
1: R0 ← 1; R1 ← μ(m)
2: for j = k−1 downto 0 do
3: R0 ← R0

2 (mod N)
4: if (d j = 1) then R0 ← R0 ·R1 (mod N)
5: end for
6: return R0

For better performance, the modular multiplications can be evaluated using Mont-
gomery method [10]. Montgomery modular multiplication produces a result correct
modulo N but lying in the interval [0,2N[ so that a subtraction by N may be needed
to have the result in [0,N[ as expected.2

As we will see, the time required to perform this possible subtraction can be
discriminatory and allows an attacker to recover the value of secret exponent d. The
attack iteratively recovers d, bit-by-bit, starting from the most significant position.

2 We note that there are implementations of Montgomery multiplication that directly produce a
result in [0,N[. See [6, 14].
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We assume that the attacker already knows dk−1, . . . ,dk−n+1. Her goal is to recover
the value of the next bit, dk−n.

1. The attacker guesses that dk−n = 1.
2. Next, the attacker randomly chooses t messages, m1, . . . ,mt , and prepares two

sets of messages, S0 and S1, given by

S0 =
{

mi | Montgomery multiplication R0 ← R0 ·R1 in Line 4 of

Algorithm 5 does not induce a subtraction for j = k−n
}

and

S1 =
{

mi | Montgomery multiplication R0 ← R0 ·R1 in Line 4 of

Algorithm 5 induces a subtraction for j = k−n
}

.

3. For each message in set S0, the attacker requests the signature and measures the
computation time to get it. She does the same for messages in set S1. Let τ̄0 and
τ̄1 denote the average time (per signature request) for messages in S0 and S1,
respectively.

4. If τ̄1 ≈ τ̄0 then the guess of the attacker was wrong and dk−n = 0. If τ̄1 � τ̄0

(more precisely, if the time difference between τ̄1 and τ̄0 is roughly the time of a
subtraction) then the attacker correctly guessed that dk−n = 1.

5. Now that the attacker knows dk−1, . . . ,dk−n+1,dk−n, she iterates the attack to re-
cover the value of dk−n−1 and so on.

It is worth noting that if dn−k = 0 then two sets, S0 and S1, behave as two
random sets and so the average computation time for messages in S0 and S1 will
be roughly the same.

The previous attack can be improved in a number of ways. In particular, the
knowledge of public exponent e = d−1 mod φ(N) and lattice basis reduction tech-
niques may help to speed up the recovery of d [4].

13.3 Simple Power Analysis

The power consumption of cryptographic devices, such as smart cards, depends on
the manipulated data and of the executed instructions. It can be monitored on an
oscilloscope by inserting a resistor in series with the ground or power supply pin.
The so-obtained measurement is called a power trace.

Simple power analysis (SPA) [7] is a technique that involves direct interpretation
of a power trace. This section presents some applications of simple power analysis.
We show how to reverse-engineer the code of a program, namely how to recover
an unknown instruction. The two other applications are actually attacks. We mount
key recovery attacks against implementations of a private RSA exponentiation and
a DES key schedule [11], as alluded in [8, Section 11].
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13.3.1 Reverse-Engineering of an Algorithm

Several models are used to characterize the information leakage through the power
consumption. The simpler model is the Hamming-weight model. It assumes that
the power consumption varies according to the Hamming weight (i.e., the num-
ber of non-zero bits in a given bit string) of the manipulated data or the executed
instruction.

Another model that works well in practice for many cryptographic devices is the
Hamming-distance model. This model considers the number of flipping bits in the
current state compared with the previous state. If Hw denotes the Hamming-weight
function and if statet and statet−1, respectively, denote the state at clock cycles t
and t −1 then the Hamming distance is given by

Hw(statet ⊕ statet−1) ,

where ⊕ denotes the XOR (exclusive OR) operator. It is easy to see that the above
relation yields the number of flipping bits.

Of course, other models can be imagined for different technologies or chips.

Figure 13.1 shows four power traces from a given smart card as it evaluates
f (x,0) for byte values x = 0,1,7 and 255. We see that the traces are almost identical
everywhere except at a few locations. These differences are called trace signatures.
Different values for x give rise to different power consumption levels.

Trace signatures can be exploited to reverse-engineer a program code. Imagine
that function f in the above example is performed on a smart card and is unknown.
More precisely, imagine that we just know that at some point in the computation the
smart card loads input byte x into the accumulator and applies some binary operator,
say ∂ , to x and 0:

f (x,0) = x ∂ 0.

If the leakage model is known, it is easy to recover the unknown instruction ∂ . As-
sume that the smart card follows the Hamming-distance model. It suffices to choose
a location in the power trace that presents a signature and, for each input value
x ∈ [0, . . . ,255], to measure the corresponding power consumption. The measured

Fig. 13.1 Power traces of f (x,0) for different values of x.
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(a)

(b)

Fig. 13.2 Recovering an unknown instruction. (a) Instant power consumption, for x ∈ [0, . . .,255].
(b) Hamming weight of 184⊕ x, for x ∈ [0, . . . ,255].

power consumptions are then reported on a graph as depicted on Figure 13.2a. The
next step is, for each byte value ∂ ∈ [0, . . . ,255], to plot the graph

(
x,Hw(∂ ⊕ x)

)
for x ∈ [0, . . . ,255]. The graph that most resembles Figure 13.2a yields the value of
unknown instruction. In our example, this unknown instruction is “184” which, for
the considered smart card, corresponds to an XOR. Observe that Figure 13.2a and
Figure 13.2b have globally the same shape.

13.3.2 Attack on a Private RSA Exponentiation

Figure 13.3 below represents (the beginning of) a power trace corresponding to the
computation of an RSA signature with the square-and-multiply algorithm as per
Algorithm 5.

We can distinguish two patterns in the power trace: a high-level pattern and a
low-level pattern. We know that, at each step, the square-and-multiply algorithm
performs a square and if the exponent bit is a 1 it also performs a multiply. Hence,
it is not difficult to deduce that high levels correspond to multiplies and low lev-
els to squares. The very beginning of the power trace presents a very low level of
power consumption, this corresponds to the squares R0 ← 12 (mod N) (cf. Line 3
in Algorithm 5) until the first non-zero bit of d is encountered, in which case the
accumulator, R0, contains μ(m): R0 ← 1 ·R1 (mod N) = μ(m). The next bits of d
are recovered from the left to the right with the following rule: A low level followed
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Fig. 13.3 Power trace of an RSA exponentiation.

by a high level corresponds to a 1-bit and a low level not followed by a high level
corresponds to a 0-bit. So, we get (in hexadecimal) d = 2EC6915BF94A. . . , that
is, the private RSA key!

Contrary to the timing attack of Section 13.2.2, this SPA attack equally applies
to signature schemes using probabilistic paddings like RSA-PSS [3].

13.3.3 Attack on a DES Key Schedule

SPA-type attacks are not restricted to public-key algorithms but can potentially be
applied to other types of cryptographic algorithms. Actually, a power trace can be
viewed as a two-dimensional leakage function since it gives the power consumption
level at a given time. It also reveals local timing information. We present in this
section an SPA attack against an implementation of the DES key schedule.

DES is a block cipher that operates on 64-bit blocks of plaintext; the key length
is 56 bits. DES comprises 16 identical rounds and makes use of a 48-bit sub-key
for each round. The round sub-keys are obtained through what is called the key
schedule. At round t, 1 ≤ t ≤ 16, a 56-bit input buffer Kt−1 is split into two 28-bit
halves, Ct−1 and Dt−1, and each half is circularly shifted by b bits to the left3—the
value of b depending on the round number (see Table 13.1)—to produce a 56-bit
output buffer Kt :

Kt = Ct‖Dt with Ct = Ct−1 � b and Dt = Dt−1 � b ,

and where � denotes the circular shifting to the left.

3 When DES is used in decryption, the circular shifting is done to the right.
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Table 13.1 Number of key bits (b) shifted per round.

Round number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DES 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
DES−1 0 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

The round sub-key is then obtained by extracting 48 bits from Kt . The initial value
K0 is derived from the cipher key.

Algorithm 6 describes an implementation of a DES key shifting by one bit to
the left. The algorithm is called b times to shift by b bits to the left. As the 56-bit
input buffer Kt−1 is updated with the 56-bit output buffer Kt , we drop the subscript
and consider a 56-bit buffer K = C|D. In this implementation, buffer K is coded
on 7 bytes K[0],K[1], . . . ,K[6] with 0 ≤ K[i] ≤ 255. We let (K[i]7,K[i]6, . . . ,K[i]0)2

denote the binary representation of byte K[i] (0≤ i≤ 6). So, we have C = (K[0]7, . . . ,
K[0]0,K[1]7, . . . ,K[1]0,K[2]7, . . . ,K[2]0,K[3]7, . . . ,K[3]4)2 and D = (K[3]3, . . . ,
K[3]0,K[4]7, . . . ,K[4]0,K[5]7, . . . ,K[5]0,K[6]7, . . . ,K[6]0)2,

K[0]7 K[0]6 K[0]5 K[0]4 K[0]3 K[0]2 K[0]1 K[0]0
K[1]7 K[1]6 K[1]5 K[1]4 K[1]3 K[1]2 K[1]1 K[1]0
K[2]7 K[2]6 K[2]5 K[2]4 K[2]3 K[2]2 K[2]1 K[2]0
K[3]7 K[3]6 K[3]5 K[3]4 K[3]3 K[3]2 K[3]1 K[3]0
K[4]7 K[4]6 K[4]5 K[4]4 K[4]3 K[4]2 K[4]1 K[4]0
K[5]7 K[5]6 K[5]5 K[5]4 K[5]3 K[5]2 K[5]1 K[5]0
K[6]7 K[6]6 K[6]5 K[6]4 K[6]3 K[6]2 K[6]1 K[6]0

.

Algorithm 6 DES key shifting.
1: carry← K[3]3
2: for j = 6 downto 0 do
3: K[ j]← K[ j] � 1 � This operation also affects the carry flag!
4: end for
5: K[3]4 ← 0
6: if (carry) then K[3]4 ← 1

At the end of the for loop, the carry contains the value of bit K[0]7 before shifting.
This bit should replace bit K[3]4 after shifting. This is done in two steps: K[3]4
is first forced to “0” and if the carry is set then it is written as “1”. Because the
corresponding power trace will present a different pattern depending on the input
bit K[0]7, the value of this bit can be deduced. Moreover, since after 16 rounds 28
bits are going into the carry in a DES encryption (see Table 13.1), the value of 28
cipher-key bits can be recovered. The value of the 28 remaining cipher-key bits can
be found by exhaustive search or by applying the same attack on DES in decryption
mode (which yields the value of 27 bits, see Table 13.1).
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13.4 Differential Power Analysis

Differential power analysis (DPA) [7] is a sophisticated power analysis technique
that makes use of statistical methods on a collection of power traces. This section
introduces the important notions: the DPA selection function and the DPA trace. We
show how this enables an attacker to locate an algorithm within a power trace. We
also show how this can be used to recover secret keys of cryptographic algorithms.
To illustrate this, we present a DPA attack against an implementation of the AES
block cipher [12] and generalize the timing attack presented in Section 13.2.2.

13.4.1 Bit Tracing

It is not always easy to precisely locate things in a power trace. Imagine for example
that somewhere in a long cryptographic process data are encrypted to form a cipher-
text which is next transferred to another location of RAM memory. The goal is to
locate the encryption algorithm.

We need to introduce some notation. Let σ denote a Boolean selection function
which returns σ(y) = 0 or σ(y) = 1, depending on the value of y. Let also 〈·〉 repre-
sent the average operator and CP(t) denote the power consumption of process P at
time period t.

Differential power analysis runs in two phases. In the first phase, several power
traces of a same process P are collected. In the second phase, depending on a known
intermediate value y, a partition of two sets, S0 and S1, is made:

S0 =
{

y | σ(y) = 0
}

and S1 =
{

y | σ(y) = 1
}

.

The DPA trace is then given by

ΔP(t) := 〈CP(t)〉S1 −〈CP(t)〉S0 ,

namely, the difference of the average power consumption curve corresponding to
sets S1 and S0, for each time period t.

Basically, the DPA trace magnifies the effect of selection function σ . Back to our
example, suppose that the cryptographic process is performed on an 8-bit device that
obeys the Hamming-weight model. Suppose further that the ciphertexts are known
and are represented on 16 bytes. If selection function σ is defined as returning the
value of a given bit of the first byte of the ciphertext then sets S0 and S1 will
contain ciphertexts for which a given bit is always a “0” and a “1”, respectively. As
a consequence, the average Hamming-weight value for the first byte of ciphertexts
in set S0 will be of 3.5 while for ciphertexts in set S1 its average value will be of
4.5. Furthermore, since in the Hamming-weight model the power consumption is a
function of the Hamming weight of the manipulated data, this difference between
the average Hamming weights will translate into a difference between the average
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Fig. 13.4 Locating an algorithm.

power consumptions for set S0 and set S1 when the first byte of the ciphertext is
being manipulated. This appears as a peak in the DPA trace. DPA peaks allow one
to trace the bit used for the selection: each time this bit is manipulated a DPA peak
should appear.

Applied to our example, we get a first DPA trace (bottom curve in Figure 13.4
presenting two peaks on the left-hand side). The second DPA trace (bottom curve in
Figure 13.4 presenting two peaks on the right-hand side) is obtained similarly by the
selection bit as a given bit in the last byte of the ciphertext. Hence, the ciphertext is
manipulated between the two points determined by the DPA peaks. We can assume
that this is the ciphertext being transferred for emission on the I/O or used in a
subsequent function. In order for the ciphertext to exist, the encryption algorithm
will have been executed. We therefore know that encryption algorithm is somewhere
before in the power trace (top curve in Figure 13.4).

13.4.2 Attack on an AES Implementation

DPA can also be used to recover secret information. In the previous section, we
have seen that DPA allows one to trace the activity of a selected bit. The idea was
to use this bit to make a partition of two sets. An encryption algorithm takes on
input a message and an encryption key to form a ciphertext. If the encryption key
is unknown, it is not possible to make a partition on intermediate values during the
course of the encryption. Nevertheless, DPA can be used by an attacker to validate
the value of a key candidate as follows.

1. The attacker makes a guess on the value of the key.
2. Next, she applies the DPA methodology to some intermediate value depending

on the key.
3. If the DPA trace does not present DPA peaks then it means that the guess was

wrong and the attacker goes back to step 1. If it does present peaks then the
attacker found the key, see, e.g., Figure 13.5.
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Fig. 13.5 DPA traces for different selection bits.

At first glance, it is not apparent to see in what this differs from a regular exhaus-
tive key search. The difference is that the technique may be applicable to part of the
key. We illustrate this on an implementation of the AES cipher.

The Advanced Encryption Standard (AES) is the successor of the older DES.
The AES block cipher encrypts 128-bit blocks of plaintext and supports key lengths
of 128, 192 and 256 bits. We consider the 128-bit version. The 128-bit plaintext, mi,
and 128-bit cipher key, K, are viewed as (4×4) matrices of bytes

mi = (s(i)
u,v)0≤u≤3

0≤v≤3
and K = (ku,v)0≤u≤3

0≤v≤3
.

Plaintext mi is first XORed with the cipher key and then gradually updated by apply-
ing round functions SubBytes, ShiftRows, MixColumns and AddRoundKey in a

series of 10 rounds. The SubBytes function substitutes each byte s(i)
u,v, 0 ≤ u,v ≤ 3,

by another byte through a non-linear permutation SRD. As SubBytes has an effect
on the value of a whole byte, selection function σ can be defined as the value of a

given output bit of SRD(s(i)
u,v), for example the first bit.

We recap in more detail how to recover a key byte ku,v.

1. The attacker makes a guess on the key byte ku,v (there are 256 possible values).
2. The attacker partitions the t random 128-bit messages,

m1 = (s(1)
u,v)0≤u≤3

0≤v≤3
, . . . ,mt = (s(t)

u,v)0≤u≤3
0≤v≤3

,

into two sets, S0 and S1, given by

S0 =
{

mi | bit1
(
SRD(s(i)

u,v)
)

= 0
}

and S1 =
{

mi | bit1
(
SRD(s(i)

u,v)
)

= 1
}

where bit1
(
SRD(s(i)

u,v)
)

denotes the first bit of byte SRD(s(i)
u,v).

3. Next, she evaluates the corresponding DPA trace

ΔP(t) := 〈CP(t)〉S1 −〈CP(t)〉S0 ,

and observes whether there are (significant) DPA peaks.
4. If not, the attacker goes back to step 1 with another guess for ku,v. Otherwise, the

attacker iterates the same attack to find the other key bytes.
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The attack requires to evaluate at most 256 DPA traces to recover one key byte
and so at most 256 ·16 = 4096 DPA traces to recover the cipher key.

13.4.3 Attack on an RSA Signature Scheme (2)

The attack we described in Section 13.2.2 readily applies by considering the power
consumption as a side channel. We assume the Hamming-weight model. The two
sets of messages can for example be defined as

S0 =
{

mi | lsb(Xi) = 0
}

and S1 =
{

mi | lsb(Xi) = 1
}
,

where Xi = μ(mi)(dk−1,...,dk−n+1,1)2 mod N and lsb(Xi) denote the least significant bit
of Xi.

13.5 Countermeasures

Since the publication of side-channel attacks against cryptographic devices, numer-
ous countermeasures have been devised. Countermeasures are available at both the
hardware and the software levels but the sought-after goal is the same: to suppress
the correlation between the side-channel information and the actual secret value be-
ing manipulated.

A first class of countermeasures consists in reducing the available side-channel
signal. This implies that the implementations should behave regularly. In particular,
branchings conditioned by secret values should be avoided.

A second class of countermeasures involves introducing noise. This includes
power smoothing whose purpose is to render power traces smoother. The insertion
of wait states (hardware level) or dummy cycles (software level) is another exam-
ple. This technique is useful to make statistical attacks harder to implement as the
signals should first be “re-aligned” (i.e., the introduced delays should be removed).
One can also make use of an unstable clock to desynchronize the signals. At the
software level, data masking is another popular countermeasure. For example, an
RSA signature (cf. Section 13.2.2) can equivalently be evaluated as

S =
[
(μ(m)+ r1 N)d+r2 φ(N) mod (r3 N)

]
mod N,

for three random values r1, r2 and r3.

Efficiency is not the only criterion to deal with when developing cryptographic
products. The implementations must also be resistant against side-channel attacks.
To protect against the vast majority of known attacks, they must combine counter-
measures of both classes described above. Moreover, experience shows that the best
results are attained by mixing hardware and software protections.
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13.6 Exercises

1. Suppose that in the password verification routine of Algorithm 4, the comparison
is done in a random order. More specifically, let S be the set of permutations on
the set {0,1, . . . ,7}. At each execution a permutation s is randomly chosen in S

and the comparison (cf. Line 2 of Algorithm 4) is replaced with

2: if (P̃[s( j)] �= P[s( j)]) then return “false” .

a. Do you think that this implementation is secure against timing attacks? Can
you break it?

b. Can you extend your attack if a random delay is added before returning the
status?

2. Consider the timing attack given in Section 13.2.2 against an implementation of
the “hash-and-sign” RSA signature scheme (Algorithm 5).

a. The attack recovers one bit of secret exponent d at a time. Can you modify it
to recover more than one bit at a time?

b. Let N = pq be a k-bit RSA modulus (k ≥ 1024) where p and q are two (dif-
ferent) balanced secret primes satisfying gcd(e,(p−1)(q−1)) = 1.
i. Prove that for public exponent e = 3, the corresponding private exponent

is given by d := 3−1 mod φ(N) = 1+2(p−1)(q−1)
3 . Next, letting d̂ = 1+2N

3 ,
prove that d̂−d < 2�k/2�+1.

ii. Explain how the previous relation can be used to speed up the attack when
public exponent e = 3.

c. The so-called square-and-multiply-always algorithm is a balanced version of
Algorithm 5. It requires an additional register (for convenience, we write it as
R−1). It is obtained by replacing Lines 1 and 4 of Algorithm 5 with

1: R0 ← 1; R1 ← μ(m); R−1 ← μ(m)
4: b ← d j −1; Rb ← Rb ·R1 (mod N)

respectively. Can you mount a timing attack against this modified implemen-
tation?

3. Figure 13.1 represents four power traces of f (x,0) for x = 0, 1, 7 and 255. You
can observe that the highest consumption level is not always obtained for the
same value of x (look at the different trace signatures). Does this give you indi-
cations on the leakage model?

4. The power trace of Figure 13.3 corresponds to an RSA exponentiation with pri-
vate exponent d = 2EC6915BF94A. . .
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a. How can you figure out the number of leading 0-bits? Namely, how can you
determine that d starts with 00101110 . . . = 2E . . . and not for example with
01011101 . . . = 5D . . .?

b. Let φ denote Euler’s totient function. Adding to d a random multiple of
φ(N)—or of (ed − 1) if φ(N) is not available—does not modify the result
of an RSA exponentiation. Do you think it helps if, at each execution, private
exponent d is randomized as d ← d + r φ(N) for a random integer r?

5. a. Explain why the circular shifting is done to the right when DES is used in de-
cryption whereas it is done to the left for encryption. Why is there no circular
shifting for the first round of DES−1 (see Table 13.1)?

b. The DES key shifting presented in Algorithm 6 is susceptible to SPA. Propose
an SPA-resistant implementation of it. Does your implementation resist DPA?

6. The bit-tracing method described in Section 13.4.1 is used to locate where in the
power trace the ciphertext is transferred to RAM memory.

a. The analysis requires the knowledge of the ciphertext. It is worth remarking
that the ciphertext is known but not chosen. What is the impact on the analysis
if the encryption algorithm is weak?

b. As presented, the analysis considers a given bit of the first byte of the cipher-
text to locate the beginning of the memory transfer. Propose another selection
function so as to obtain higher peak values.

7. a. The DPA attack against AES in Section 13.4.2 assumes that the attacker has
access to the input plaintexts. Can you adapt the attack in the case where the
attacker only knows the output ciphertexts?

b. It might be the case that different key byte candidates give rise to DPA peaks.
In such a case, how could you identify the right candidate?

c. Semantic security implies that encryption should be probabilistic. This can be
achieved with AES by encrypting a 128-bit plaintext m under key K as C =
(c1,c2) with c1 = AESK(r) and c2 = m⊕ r for a 128-bit random r. Plaintext
m can then be recovered from ciphertext C = (c1,c2) using key K as m =
c2 ⊕AES−1

K (c1).
i. Do you think that this implementation is secure against DPA attacks?

ii. Can you mount a DPA attack against this randomized version of AES?
8. Give a detailed presentation of the DPA attack against the RSA signature scheme

as described in Algorithm 5.

13.7 Projects

Power analysis requires specialized equipment which is not necessarily easily acces-
sible. So, we will only consider timing information as a side channel. These projects
can be done in C or using a higher-level language like Pari/GP [1].
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1. a. Implement the password verification routine as presented in Algorithm 4.
b. Mount the timing attack described in Section 13.2.1 against your implemen-

tation.
c. Design a password verification routine that resists timing attacks.

2. a. Implement the Montgomery modular multiplication (see [10] or [9, Sec-
tion 14.3.2] for details).

b. Implement the RSA signature scheme as presented in Algorithm 5 using your
implementation of the Montgomery modular multiplication. To simplify the
implementation, you may assume that input messages are in [0,N − 1] and
replace hash function μ with the identity map.

c. Mount a timing attack against your implementation.
d. Optimize your attack for the case e = 3 (see Problem 2(b)).
e. Consider other exponentiation algorithms (e.g., [9, Section 14.6]) and mount

timing attacks against the resulting implementations.
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Chapter 14
Improved Techniques for Side-Channel Analysis

Pankaj Rohatgi

14.1 Introduction

Over the last several years, side-channel analysis has emerged as a major threat to
securing sensitive information in hardware and systems. The list of side-channels
that have been (re)discovered include timing [8] micro-architectural anomalies
[1, 5, 12, 13], power consumption [9], electromagnetic emanations [2, 7, 14], opti-
cal [10, 11] and acoustic leakage [4]. These side-channels have been used to break
implementations of all major cryptographic algorithms (such as DES, AES, RSA,
Diffie-Hellman, Elliptic curves, COMP128, etc.) both in software and in hardware
as well as for extracting information directly from peripherals. Concurrently a va-
riety of side-channel analysis techniques have been developed to perform these at-
tacks. These techniques include simple power/EM analysis (SPA/SEMA), differen-
tial power/EM analysis (DPA/DEMA), higher-order DPA/DEMA, inferential power
analysis (IPA), partitioning attacks, collision attacks, hidden Markov model, etc.

In fact, side-channel analysis is so powerful that most attacks succeed, in prac-
tice, using only a fraction of the information present within the side-channel(s)!
Typically, these techniques do not analyze the characteristics of the noise present
within the side-channel signals, but try to remove it by averaging over a large num-
ber of samples. Related leakages that occur at different times in a side-channel trace
are not combined to extract more information, and leakages from multiple side-
channels are rarely combined. Therefore, if such techniques fail to break an im-
plementation using a small number of side-channel signals, it cannot be assumed
that the implementation is immune to side-channel attacks involving a limited num-
ber of side-channel traces. This question is particularly important to vendors, since
there are several system-level side-channel countermeasures [9] based on nonlin-
ear key updates that rely on the assumption that an adversary cannot extract the
key from a single (or few) side-channel trace(s). This question is also pertinent to
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implementations of stream ciphers such as RC4 that have a rapidly (and nonlinearly)
evolving internal secret state, where a side-channel attack must be able to recover
the state before it gets changed.

Answering such questions related to the fundamental capabilities and limits of
side-channel attacks requires a deeper understanding of side-channel leakages from
a device and an information-theoretic analysis of the optimal side-channel attacks
that are possible against it. In this chapter, we describe the theoretical foundations
for such an analysis by presenting a leakage model for CMOS devices and the max-
imum likelihood principle as the information theoretic basis for determining the
optimal attacks and limits of side-channel analysis. We introduce the multivariate
Gaussian noise assumption that makes it practical to apply the maximum likeli-
hood principle to side-channel analysis. We then describe several applications of
this approach. The first application, template attacks, shows how implementations
of stream ciphers such as RC4 that are immune to simple and differential side-
channel attacks could be broken using a single side-channel trace. Since this clas-
sical template attack has several practical shortcomings we also describe single-bit
template attacks that may be suboptimal but much more practical. We then describe
other applications of the maximum likelihood approach, such as an improved met-
ric for DPA/DEMA attacks, the design and analysis of attacks involving multiple
side-channels, and for information leakage assessment.

14.2 CMOS Devices: Side-Channel Leakage Perspective

Side-channels such as power and EM from a CMOS device are directly attributable
to the currents flowing within the device as it operates. The two basic types of cur-
rent flows include intentional flows, which are currents that flow in accordance to
the circuit design as it performs the computation, and leakage currents, which are
a property of the technology used to fabricate the device. In addition, there is non-
linear electromagnetic coupling between the different currents flowing within the
device which causes amplitude and angle modulation that in turn gives rise to sev-
eral EM side-channels. In addition there are variations within the different current
flows due to thermal noise.

14.2.1 Intentional Current Flows

In CMOS devices, all data processing is typically controlled by a “square-wave”-
shaped clock. From a logical perspective, each clock edge causes the device to per-
form an elementary operation resulting in a change in the state of the device. From a
physical perspective, the clock edge triggers a state-dependent sequence of switch-
ing events that result in current flows within the device. These events are transient
and a steady state is achieved before the next clock edge. At any clock cycle, the
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events and resulting currents are dependent on only a small number of bits of the
logic state of the device and not its entire state. These bits are termed relevant bits
and consist of the bits of the state that change as well as the bits that influence
the bits of the state that get changed. The set of relevant bits during a clock cycle
constitute the relevant state of the device at that clock cycle.

14.2.2 Leakage Current Flows

In an ideal CMOS device, currents only flow when there is switching activity. How-
ever, due to shrinking feature sizes and usage of stressed silicon, there is a significant
amount of current due to leakage even within the inactive parts of the circuit. The
net leakage current within the circuit depends purely on the technology used and the
size of the circuit. For our purposes we can approximate leakage current within a
CMOS device as a constant plus a small Gaussian noise term that is uncorrelated to
the activity occurring within the active part of the circuit.

14.2.3 Information Leakage in Power and EM Side-Channels

The power side-channel can be viewed as an aggregate measure of all the currents
flowing within the device. Of these currents, only the intentional currents can pro-
vide information about the relevant state of the device. However, due to aggregation
of currents and noise and due to impedances within the circuit and power grid, the
influence of weak individual intentional currents on the power side-channel can be
quite small. For understanding information leakage from EM, one only needs to
consider coupling effects that involve at least one intentional current. Even a single
EM sensor can pick up multiple and distinct mixtures of coupling effects over the
entire EM spectrum.

As a very good first approximation, both power and EM side-channel emanations
during a clock cycle carry information only about the relevant state of the device
during the clock cycle and not the other parts of the device state.

This is strongly supported by the experimental results which show that algo-
rithmic bits are significantly correlated to the power/EM signals only during the
clock cycles where the bits are actively involved in a computation. While an al-
gorithmic bit may leak to different degrees in different power and EM channels
at different parts of the computation, it never leaks when it is inactive. For exam-
ple, Figure 14.1 shows a power trace (in gray) overlaid with the contribution of
a particular bit to power trace (in black). This bit only impacts the power trace
during some clock cycles where it is part of the relevant state and not during
all clock cycles. Figure 14.2 which plots the leakage of the same bit in different
power/EM side-channels shows that the extent of leakage is different for different
side-channels.
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Fig. 14.1 Power side-channel (gray) overlayed with contribution from single relevant bit (black).

Fig. 14.2 DPA and three DEMA correlation curves (aligned).
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14.3 Characterizing Side-Channel Leakage Using Maximum
Likelihood

14.3.1 Adversarial Model

Given the side-channel leakage model above, it becomes natural to formulate side-
channel attacks in terms of how successful an adversary can be in obtaining infor-
mation about the relevant state using side-channels. For example, an adversary may
be interested in the LSB of the data bus during a LOAD instruction or he may be
interested in finding out the address of the data being loaded.

In general, the adversary would like to use side-channels to extract information
about the relevant state of a device when it is performing an elementary operation
given some prior knowledge about the relevant state. This is a classical inferencing
problem, but for simplicity, we can assume that the adversary is attempting to find
information about parts of the relevant state that are completely unknown. In this
case the problem is naturally formulated as a hypothesis testing problem as follows:

The adversarial model consists of two phases. The first phase, known as the pro-
filing phase, is a training phase for the adversary. He is given a training device
identical to a target device, an elementary operation, k distinct probability distribu-
tions B1, . . . ,Bk on the relevant states from which the elementary operation can be
invoked and a set of sensors for monitoring side-channel signals.

The adversary can invoke the elementary operation, on the training device, start-
ing from any relevant state. It is expected that adversary uses this phase to prepare
an attack.

In the second phase, known as the hypothesis testing phase, the adversary is given
a target device and the same set of sensors. He is allowed to make a bounded num-
ber L of invocations to the same elementary operation on the target device starting
from a relevant state that is drawn independently for each invocation according to
exactly one of the k distributions B1, . . . ,Bk. The choice of distribution is completely
unknown to the adversary (i.e., a priori, each distribution is equally likely to be cho-
sen with probability 1

k ) and his task is to use the signals on the sensors to select
the correct hypothesis (H1, . . . ,Hk) for the distribution being B1, . . . ,Bk. The utility
of the side-channels to extract this information can then be measured in terms of
the success probability achieved by the adversary as a function of the number of
invocations L.

14.3.2 Maximum Likelihood and Best Attack Strategy

Assume that an adversary acquires L statistically independent sets of sensor sig-
nals Oi, i = 1, . . . ,L. These L sets of signals may correspond to L invocations of an
operation on the target device. Also assume that there are K equally likely hypothe-
ses Hk, k = 1, . . . ,K, on the origin of these signals. Let p(O|H) be the probability
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distribution of the sensor signals under the hypothesis H. Under these assumptions,
the maximum likelihood hypothesis test [15] is optimal and it decides in favor of the
hypothesis Hk, if for all j, where 1 ≤ j ≤ K

L

∏
i=1

p(Oi|Hk) ≥
L

∏
i=1

p(Oi|Hj) (14.1)

i.e., Hk is the hypothesis under which the actual observations have the highest prob-
ability of occurring.

While the maximum likelihood test is optimal, it is usually impractical as an
exact characterization of the probability distribution of the sensor signals O may be
infeasible. Such a characterization has to capture the nature of each of the sensor
signals and the dependencies among them. This could further be complicated by
the fact that, in addition to the thermal noise, the sensor signals could also display
additional structure due to the interplay between properties of the device and those
of the distributions of the relevant states.

It turns out that in practice one can obtain near-optimal results by making the
right assumptions about the sensor signals. Such assumptions greatly simplify the
task of hypothesis testing by requiring only a partial characterization of sensor
signals.

14.3.3 Gaussian Assumption

One such widely applicable assumption is the Gaussian assumption which states
that under the hypothesis H, the sensor signal O has a multivariate Gaussian dis-
tribution with mean μH and a covariance matrix ΣH [15]. A multivariate Gaussian
distribution p(·|H) has the following form:

p(o|H) =
1√

(2π)n|ΣH |
exp(−1

2
(o− μH)T Σ−1

H (o− μH)), o ∈ Rn (14.2)

where |ΣH | denotes the determinant of ΣH and Σ−1
H denotes the inverse of ΣH .

The Gaussian assumption holds for a large number of devices and hypotheses
encountered in the practice. It can be shown that under the Gaussian assumption, the
maximum likelihood hypothesis testing for a single observation O and two equally
likely hypothesis H0 and H1

1 simplifies to the following comparison:

(O− μH0)
T Σ−1

H0
(O− μH0)− (O− μH1)

T Σ−1
H1

(O− μH1)≥ ln(|ΣH1 |)− ln(|ΣH0 |)
(14.3)

where a decision is made in favor of H1 if the above comparison is true, and in favor
of H0 otherwise.

1 Generalizations to multiple observations and more than two hypotheses are straightforward.
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In signal processing it is common to treat the observed trace O as consisting of
a mean signal component that depends purely on the operation being performed on
the device and is fixed across multiple invocations and a noise component which can
differ on each invocation. Noise is best modeled as a random sample drawn from a
noise probability distribution having a mean of zero. In the equations above, if hy-
pothesis H was correct then the mean signal component would be μH and the noise
component in each sample, i.e., O− μH , would also have a multivariate Gaussian
distribution with mean 0 and the same covariance matrix ΣH . Thus the Gaussian
assumption made here in the context of the signal characterization is often alterna-
tively referred to as the Gaussian noise assumption.

In many cases of practical interest, noise in the sensor signals does not depend on
the hypothesis, that is, ΣH0 = ΣH1 = ΣN . In such cases, the following well-known re-
sult from statistics gives the probability of error in maximum likelihood hypothesis
testing [15]:

Fact 1 For equally likely binary hypotheses, the probability of error in the maxi-
mum likelihood testing is given by

Pε =
1
2

erfc
( Δ

2
√

2

)
(14.4)

where Δ 2 = (μH1 − μH0)
T Σ−1

N (μH1 − μH0) and erfc(x) = 1− erf(x), where

erf(x) =
2√
π

∫ x

0
e−t2

dt

is the error function. Note that Δ 2 has a nice interpretation as the optimal signal-
to-noise ratio that an adversary can achieve under the Gaussian assumption.

In the rest of this chapter we will describe multiple applications of this charac-
terization of side-channels and their leakage.

14.4 Template Attacks

The motivation behind the development of template attacks was that in several in-
stances only a single (or a few) side-channel sample is available for carrying out an
attack against a device. This situation arises naturally in the case of stream ciphers
where the internal secret state keeps changing as the key stream is generated and in
protocols where ephemeral keys are used. In addition, there are some system-level
countermeasures that try to limit side-channel exposure by limiting the use of a par-
ticular key [9]. In such cases, the implementations can be easily made to be secure
against traditional simple/differential attacks since typically the differences between
signal levels with different keys/data is usually lower than the level of noise. This
noise cannot be eliminated by averaging since there is only one or a very limited
number of traces available.
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For attacking such implementations we convert the model described in the last
section into an attack technique called template attacks. If an adversary had infinite
resources, the template attack would work using this basic principle: Suppose there
is a crypto implementation on many “identical” devices and the adversary has access
to one such device on which he can perform experiments and he is also given a single
(or few) side-channel sample(s) S from a target device with an unknown key. The
adversary uses the test device to build signal/noise models or templates for side-
channel signals produced by the test device for all possible values of the key and
uses the maximum likelihood to determine which key is used in the target sample.

Clearly, since key sizes are large, it is infeasible to build templates for all pos-
sible keys. Practical template attacks have to meld this basic attack principle with
the details of the cryptographic algorithm being attacked. Typically this is done in
an iterative fashion, where at each stage, the adversary starts with a small candidate
set of prefixes for the key and ends with another small candidate set of larger-sized
prefixes of the key. At the end of this process, the adversary has a limited set of com-
plete keys that he can exhaustively test. In the beginning the candidate set is empty.
At each step, the adversary uses the test device to identify a small sub-section of
the sample S that depends only on a few unknown key bits. By experimenting with
the test device, he builds signal templates corresponding to his set of candidate key
prefixes extended by all possible value of the unknown key bits. The templates con-
sist of the mean signal and (multivariate Gaussian) noise probability distributions
for each of these extended prefixes of the key. He then compares these templates
with the signal S and uses the maximum likelihood principle to retain only a small
set of those prefixes that match S the best. Thus template attacks essentially use an
extend-and-prune strategy directed by the single sample S to be attacked: the adver-
sary extends candidate key prefixes by all possible values of a limited number of
unknown key bits, builds templates, and uses template classification to prune the set
of choices for these larger key prefixes. The success of this approach depends on the
effectiveness of the pruning strategy in controlling the combinatorial explosion that
occurs during the extension process.

Template attacks are particularly effective on implementations of cryptographic
algorithms due to their contamination and diffusion properties. Contamination refers
to key-dependent leakages which can be observed over multiple cycles in a sec-
tion of computation. Additionally, other variables affected by the key, such as key-
dependent table indices and values, cause further contamination at other cycles. The
extent of contamination controls the success of the pruning of the fresh key bits in-
troduced in the expansion phase. However, it is to be expected that if two keys are
almost the same, that even with the effects of contamination, pruning at this stage
may not be able to eliminate one of them. Diffusion is the well-known cryptographic
property wherein small differences in key bits are increasingly magnified in subse-
quent portions of the computation. Even if certain candidates for key prefixes were
not eliminated by contamination effects, diffusion will ensure that the wrong key
prefixes get pruned rapidly at later stages.

We now provide the details on how such attacks could be carried out in practice
by means of an example.
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14.4.1 Classical Template Attacks: The Case of RC4

Consider an implementation of the stream cipher RC4. While there are cryptanalytic
results on RC4 based on minor statistical weaknesses, none of these are useful for
side-channel attacks. A well-designed system, RC4 implementations are also quite
easy to secure against SPA- and DPA-style attacks. This is because initializing the
256-byte internal state of RC4 with a secret key is simple enough to be implemented
using low leakage instructions in a key-independent manner. This makes SPA un-
likely. After initialization, the only secret is the internal state. However, this secret
state evolves very rapidly as the cipher outputs more bytes. This rapidly evolving
secret state is outside the control of the adversary. This provides inherent immunity
against statistical attacks such as DPA, since the adversary cannot freeze the active
part of the state to collect multiple samples to eliminate the noise. For RC4, the
best that an adversary can hope for is to obtain a single sample of the side-channel
leakage during the key initialization phase and attempt to recover the key from that
single sample.

We now describe how template attacks apply against RC4’s state initialization
routine. RC4 operates on a 256-byte state table T to generate a pseudo-random
stream of bytes that is then XORed with the plaintext. Table T is initially fixed, and
in the state initialization routine, a variable length key (1 to 256 bytes) is used to
update T using the pseudo code below:

i1 = 0
i2 = 0
for ctr = 0 to 255

i2 = (key[i1] + T[ctr] + i2) mod 256
swap_byte(T[ctr], T[i2]);
i1 = (i1 + 1) mod (key_data_len)

endfor

A portion of the corresponding power side-channel signal (plotted in gray) and
the sample noise (plotted in black) for the first six iterations of the loop is shown in
Figure 14.3.

First it needs to be verified that simple side-channel analysis techniques will not
work on this implementation. This can be easily seen in Figure 14.4 which plots the
noise level for the first six iterations in a power sample in gray and plots in black
the difference between the signals for two different keys A and B that differ only
in the first byte. The figure clearly shows that the level of noise in the first iteration
(time 0 to 20μs) far exceeds the differences between the signals for keys A and B
in that iteration; so SPA will not have been able to determine which key byte was
used in the first iteration. In fact, in [6], it was stated that averages of several tens of
samples would be needed to reduce the level of noise below the signal differences.

RC4 is, however, an ideal candidate for a signal classification-based attack. No-
tice from the code snippet above that the key byte used in each iteration influences
the computation (and is part of the relevant state) multiple times within a loop. For
example, loading of the key byte, the computation of index i2, and the use of i2
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Fig. 14.3 Power signal (gray) and noise (black) during first six iterations of RC4 state initialization
loop.
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Fig. 14.4 Sample noise (gray) vs. signal differences (black) between keys A and B in first six
rounds.

in swapping the bytes of the state table T all contaminate the side-channel at dif-
ferent cycles in the iteration. Thus RC4 demonstrates good contamination for the
individual key bytes. Further, the use of i2 and the state in subsequent iterations,
and the fact that RC4 is a well-designed stream cipher, quickly propagates small key
differences to cause diffusion. This analysis is borne out in practice as is shown in
Figure 14.5 which plots the signal for the first six iterations for the key A in gray
and the difference between the signals for key A and key B in black. Keys A and B
differ only in the first byte and a small difference signal is clearly visible in the fig-
ure in the first iteration (0 to 20μs). The important point to note is that even though
the magnitude of the difference signal is small in the first iteration, significant dif-
ferences appear at many different places in the first iteration, which indicates good
contamination. The next point to note is that by the time the fifth iteration is reached,
the difference signal has become quite large, indicating good diffusion.
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Fig. 14.5 Signal for key A (gray) vs. signal differences (black) between keys A and B in first six
rounds.

The template attacks on this RC4 implementation works by building templates
for the signal and noise for around 42 sample points in each iteration of RC4 state
initialization routine that takes an input a fresh (unknown) key byte. These are the
points where significant differences arise for different keys as shown in Figure 14.5.

A first attempt to use a statistical model where the noise at these 42 points was
treated independently (i.e., ΣH is a diagonal variance matrix) to classify the (un-
known) key byte yielded poor results as shown in Table 14.1. The table here shows
the classification rates assuming there were only five possible values of the key byte.
Here the classification errors were as much as 35% for pairs of keys with few bit
differences. Somewhat more encouraging was the fact that even this limited statis-
tical model was fairly good (100% successful) at distinguishing between key byes
that were very different.

Next the full multivariate noise approach was applied. In the experiment, there
were 10 choices for the first key byte, as shown in column 1 of Table 14.2. They
are carefully chosen to be very close and yielded poor results with the univariate
statistics. For each key byte, 2000 side-channel signals were collected and analyzed
at the same 42 points in time. The mean of the 2000 samples was used as the av-
erage signal for that key (μH) and the covariance matrix (ΣH ) was also computed
from these signals. To obtain statistics on how well this approach works, the tem-
plates were used to classify tens of thousands of samples drawn using one of the

Table 14.1 Classification probability of five competing hypotheses using univariate statistics. En-
try (i, j) is probability of classifying samples with key i as one with key j.

Key byte 1111 1110 1110 1110 1101 1110 1011 1110 0001 0000
1111 1110 0.86 0.04 0.07 0.03 0.00
1110 1110 0.06 0.65 0.10 0.20 0.00
1101 1110 0.08 0.16 0.68 0.09 0.00
1011 1110 0.10 0.11 0.08 0.71 0.00
0001 0000 0.00 0.00 0.00 0.00 1.00
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Table 14.2 Percentage of samples for which the correct hypothesis is retained under different ball
sizes with 10 competing hypotheses.

Key byte Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball size c = e24

1111 1110 98.62 99.46 99.88 99.94
1110 1110 98.34 99.82 99.88 99.88
1101 1110 99.16 100.00 100.00 100.00
1011 1110 98.14 99.52 99.82 100.00
0111 1110 99.58 99.76 99.89 99.94
1111 1101 99.70 99.94 99.94 99.94
1111 1011 99.64 99.82 99.82 99.89
1111 0111 100.00 100.00 100.00 100.00
1110 1101 99.76 99.82 99.88 99.88
1110 1011 99.94 100.00 100.00 100.00

Average 99.29 99.81 99.91 99.95

10 choices as the first key byte. Column 2 in Table 14.2 summarizes the results of
the classification experiments for this set of 10 key choices. Since the values were
carefully chosen to reflect the worst case, these results can be extrapolated to the
case of 256 different values of the key byte. Column 2 in Table 14.4 is an extrap-
olation of our results for the case of 256 different templates by making pessimistic
assumptions about the number of “close” keys. In practice the actual results should
be much better.

To iteratively apply the approach a first heuristic would be to retain only the most
likely hypothesis, i.e., with highest likelihood probability. Even with such a drastic
pruning approach, average classification success probability is 99.3% with these 10
hypotheses and worst-case probability was 98.1%. Detailed results are described in
column 2 of Table 14.2. One gets reasonable results even if we use this extreme
pruning strategy in each iteration of the extend-and-prune approach. Extrapolating,
as shown in column 2 of Table 14.4, one can expect the average error probability
of the closest hypothesis approach to be about 5–6% when we consider all 256
possible values, since pessimistically one expects around 50–60 keys to be “close”
to any key. By bounding the error probability over many iterations by the sum of
error in each iteration, it can be seen that when the number of key bytes is small this
can be used to extract all key bytes. For example, one can do better than 50% for
about eight bytes of key material.

With a little more effort, much better results can be obtained by using a ball ap-
proach to pruning. In this approach, a constant c is chosen and if the best hypotheses
has probability P then all hypotheses that have probability P/c are retained. This ap-
proach is analogous to retaining all hypotheses which are a certain radius away from
the top hypothesis and hence the term ball approach. The columns 2, 3, 4, and 5 of
Table 14.2 showing success probability of retaining the correct hypothesis for balls
with different values of c, with column 2 corresponding to c = 1 and retaining only
the most likely hypothesis. When c = e6, the average success probability has im-
proved to better than 99.8% with the worst-case probability being 99.5%. As shown
in Table 14.3 the average number of hypotheses that we retain is still close to 1
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Table 14.3 Expected number of hypotheses retained under different ball sizes for 10 competing
hypothesis.

Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball Size c = e24

1 1.041 1.158 1.842

Table 14.4 Extrapolated results for 256 competing hypotheses.

Ball size c = 1 Ball size c = e6 Ball size c = e12 Ball size c = e24

Success prob. 95.02 98.67 99.37 99.65
Retained hypotheses 1 1.29 2.11 6.89

for balls of size e6 and e12. Again, using an estimate of about 50− 60 close keys,
we can extrapolate these results as done in Table 14.4. For example, choosing the
ball size e6, with good probability we expect to retain at most 1.5 hypotheses on
the average, yet we are guaranteed to retain the correct hypothesis with probability
at least 98.67%. Using this approach independently in each iteration, we can cor-
rectly classify keys of size n bytes with expected probability around (100–1.33n)%
and the number of remaining hypotheses would grow no more than (1.5)k, which is
substantially better than 28k (the entropy of the key).

14.4.2 Single-Bit Templates and Applications

The classical template attack described above suffers from several drawbacks. One
major drawback is that the methodology requires an iterative approach that attempts
to make test device’s computation identical to that of the target device. This makes
the attack tedious, iterative, and online. For example, in the RC4 case 256 tem-
plates for each unknown byte have to be constructed and templates for later bytes
cannot be constructed until the earlier bytes have been attacked. Another drawback
is that classical template attacks cannot handle randomized implementations, since
the attacker cannot force a test device to produce the same randomness as the target
device.

Single-bit template attacks are an attempt to get past these limitations at the cost
of reduced classification accuracy. These attacks are based on an empirical obser-
vation that after a successful DPA attack on an algorithmic bit b, the DPA peaks
themselves could be used to create binary templates to extract the bit b directly
from any signal! This means that once a particular implementation/device has been
attacked using DPA (say using a test card) one can predict the internal bits occurring
within a single trace from an identical implementation/device.

We illustrate the attack by means of an example. Consider an unprotected imple-
mentation of DES on smartcard A. Consider the 32 s-box output bits of the DES
computation in round one. For the unprotected DES implementation, one can easily
perform DPA for each of the 32 output bits. Correspondingly, one can build a pair
of templates for each output bit corresponding to the bit being equal to 0 and 1,



394 Pankaj Rohatgi

0 50 100 150
−200

0

200

400

600

800

1000

1200

Fig. 14.6 Improved DPA metric of s-box 1, bit 0 of the test device. Time in μs.

respectively. In order to build these templates, a DPA attack was performed on each
output bit using a DPA metric that we will be describing in Section 14.5.

Figure 14.6 displays the DPA metric of s-box 1, bit 0. The figure reveals several
points in time that clearly correlate with the selected s-box output bit. In the experi-
ments, the 50 highest peaks from this DPA metric were selected to be the points that
were incorporated into the pair of templates (bit = 0 and bit = 1) for that bit. Tem-
plates were built for each s-box output bit using a single set of 1400 side-channel
samples.

To estimate classification success rate, a set of 100 fresh random side-channel
samples were collected from the same device and all 32 s-box output bits were
classified using the templates developed earlier. The classification success rates ηSib j

for the ith s-box and jth bit, 1≤ i≤ 8 and 0≤ j ≤ 3, together with the corresponding
entropy loss are shown in Table 14.5. The classification success rates ranged from
0.72 to 1.00; in the worst case s-box 3, bit 3 and s-box 6, bit 0 were predicted
correctly for only 72 of the 100 samples. From these results, the probability that the
entire 32-bit output of all s-boxes is classified correctly is ∏8

i=1 ∏3
j=0 ηSib j = 0.0154

which although small is still 66 million times higher than a random guess.
These results can also be viewed in terms of entropy loss. For a particular bit, if

the classification success rate is p, then its corresponding entropy loss is given by
1+(1− p) log2(1− p)+ p log2(p). To compute the entropy loss for multiple bits we

Table 14.5 s-Box output bit classification success rates and entropy loss.

s-box 1 s-box 2 s-box 3 s-box 4 s-box 5 s-box 6 s-box 7 s-box 8
bit 0 1.00 0.91 0.88 0.93 0.77 0.72 0.80 0.84
bit 1 0.98 0.88 0.92 0.94 1.00 0.92 0.97 0.77
bit 2 0.75 0.89 0.99 0.92 0.95 0.83 0.90 0.79
bit 3 0.90 0.91 0.72 0.85 0.83 0.86 1.00 0.89

Entropy loss 2.57 2.10 2.13 2.30 2.28 1.50 2.61 1.35
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can add the individual losses (this corresponds to the worst case where classification
of different bits is independent). From this formula, we can see that 16.8 bits of
entropy has been lost from the 48 bits of the DES key used in the first round (out
of a maximum possible loss of 32 bits if the classification was perfect). The loss of
entropy of the keyspace can be translated into reduced expected computational cost
of a guided exhaustive search through the entire keyspace that examines more likely
keys earlier than the less likely keys.

For DES implementations, the attack can be improved substantially. Templates
can be built not just for round 1, s-box output bits but also for other bits such as
the data bits fed to the second round. These templates will further narrow down the
possibilities for the 48 key bits used in the first round. In addition, templates can be
built for the corresponding DPA attacks on the last two rounds of DES (which utilize
another 48-bit size subset of the key) and so on. Depending on the implementation,
single-bit templates can also be built directly for the key bits that are likely to be
highly effective since the same key bits show up in multiple locations in a round
and across multiple rounds.

To summarize, single-bit template attacks are capable of classifying a single bit
from a single side-channel sample with high probability even though the influence
of a single bit on the side-channel signal at a point in time is very small and could
be masked by several sources of noise including variation in adjacent bits. Cryp-
tographic algorithms with high contamination properties such as DES are ideally
suited for single-bit classification. Multiple precomputed single-bit templates can
lead to practical guided keyspace search algorithms using only a single sample from
the target device. Moreover, single-bit attacks when combined with other attacks
can result in much more devastating attacks such as template-enhanced DPA [3]
that use a DPA-like attack technique to overcome the random masking countermea-
sure, provided an adversary can acquire a single test card with a faulty RNG.

14.5 Improved DPA/DEMA Metric

In Section 14.4, when discussing template attacks, we assumed that the adversary
had access to a test device identical to the target device and that he could carry out a
profiling stage using the test device. In many circumstances, access to a test device
may not be possible. In such cases, a DPA-style attack is preferred since it assumes
no prior knowledge of device characteristics or implementation. In this section, we
apply theory from Section 14.3 to optimize the analysis of existing single-channel
DPA attacks.

14.5.1 Improving DPA

In the traditional DPA attack, an adversary collects a set of N signals, Oi, i = 1, . . . ,N
emanating from a given channel. Assume that the signals are normalized to have
zero sample average over all N signals. For each hypothesis H under consideration,
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the N signals are divided into two bins, termed the 0-bin and the 1-bin, with NH,0

and NH,1 samples, respectively. Let μH,0[ j] and μH,1[ j] be the sample means of
signals in the 0-bin and the 1-bin, respectively, for the hypothesis H. The next step
in the DPA attack consists of computing the differences of sample means μH [ j] =
μH,0[ j]− μH,1[ j] for all hypotheses and deciding in favor of the hypothesis Hi if
|μHi [ j]| has the largest peak among all differences of means. In other words, the
decision metric for the hypothesis H at time j is given by

MH [ j] =
(

μH,0[ j]− μH,1[ j]
)2

(14.5)

and the decision is made in favor of the hypothesis Hi if for some value of j, say j0,
MHi [ j0] >= MH [ j] for all H and j.

The traditional DPA attack and its variations have been successfully applied to
attack several cryptographic implementations. However, by using the theory devel-
oped in Section 14.3, the effectiveness of traditional DPA can be increased signifi-
cantly.

Before proceeding further, assume a void hypothesis Hv which corresponds to a
random bifurcation of the N signals into the 0-bin and the 1-bin. Using the Gaussian
assumption and Equation (14.3), the metric of a hypothesis Hi with respect to the
null hypothesis at time j is given by

MHi [ j] =

(
μHi [ j]−E[μHv [ j]]

)2

V [μHv [ j]]
−

(
μHi [ j]−E[μHi [ j]]

)2

V [μHi [ j]]
− ln
(V [μHi [ j]]

V [μHv [ j]]

)
(14.6)

In order to compute this metric, we need the values of the following parameters:
E[μHv [ j]], V [μHv [ j]], E[μH [ j]], and V [μH [ j]]. Since in the DPA attack, the adversary
skips the profiling phase of the attack, Equation (14.6) is not directly applicable.
In such cases, the theory suggests that unknown parameters of the test equation
be estimated directly from the collected signals. If the adversary uses a maximum
likelihood estimate of these parameters, then the resulting test is referred to as the
generalized maximum likelihood testing.

For the DPA attack, calculating the maximum likelihood estimate of the test pa-
rameters involves solving a set of nonlinear coupled equations. Therefore, instead
of using the maximum likelihood estimates of these parameters, we use sample es-
timates as follows: Let σ2

H,0[ j] and σ2
H,1[ j] be the sample variances of the signals

in the 0-bin and the 1-bin, respectively, at time j for hypothesis H. We propose the
following sample estimators2 of parameters in Equation (14.6):

E[μH [ j]] = μH [ j]

V [μH [ j]] =
σ2

H,0[ j]
N0

+
σ2

H,1[ j]
N1

(14.7)

2 We omit the derivation of these estimators as the derivation is tedious and follows from straight-
forward algebraic manipulations.
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Substituting these in Equation (14.6), we get the following formula for the metric:

MHi [ j] =

(
μHi [ j]− μHv [ j]

)2

σ 2
Hv,0[ j]

N0
+

σ 2
Hv,1[ j]
N1

− ln
( σ 2

Hi,0
[ j]

N0
+

σ 2
Hi,1

[ j]
N1

σ 2
Hv,0[ j]
N0

+
σ 2

Hv,1[ j]
N1

)
(14.8)

Table 14.6 shows the results of applying this method to attacking the s-box
lookup for a DES implementation. The first column shows the bit being predicted,
the second shows the number of samples required for the correct key hypothesis
to emerge as the winner under the traditional DPA metric, while the third column
shows the number of samples needed with the new metric. Clearly by using a better
metric, our improvement in the DPA attack reduces the number of signals needed
by a factor of 1.4–3.

Table 14.6 DPA results, mean difference vs. approximate generalized maximum likelihood.

S-box hyp. Min samples (mean diff.) Min samples(Max. Likl.)
S1,B3 640 350
S2,B3 630 210
S7,B3 110 40
S8,B3 130 90

14.6 Multi-Channel Attacks

As we have seen, there are several side-channels including power and multiple
EM channels that carry somewhat different information. Given this multitude of
information-bearing signals, a natural question to ask is how these multiple leak-
ages could be combined to enable better attacks. In addition, since each additional
sensor and side-channel signal used for analysis raises the cost and complexity of
an attack, another important question is how a resource-limited adversary could best
select the sensors and side-channels to mount an attack. In addition, system design-
ers would like to know how much information could leak to an adversary who is
able to place a set of side-channel sensors to capture information from the device.
In this section we will use the theory developed in Section 14.3 to answer all these
questions.

14.6.1 Multiple Channel Selection

Consider a resource-limited adversary who can select at most M channels for an
attack. When viewed in terms of our model, this problem conceptually has a very
simple solution: The adversary should choose those M channels that minimize his
probability of error in the maximum likelihood testing.
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This apparently simple technique can be quite subtle and tricky in practice.
Clearly, in situations where a well-prepared adversary has nicely characterized and
approximated signals from each of the channels under each hypothesis and the cor-
responding joint noise probability distribution between all the channels, the adver-
sary can also calculate the error probability for each possible choice of M channels,
at least for small M. For example, if the noise is Gaussian and independent of the
hypothesis, then from Equation (14.4), since erfc(·) decreases exponentially with Δ ,
the goal of an adversary limited to just two channels would be to choose channels
in such a manner as to maximize the output signal-to-noise ratio Δ 2.

If instead of a rigorous approach, channels are selected by heuristic techniques,
then the resulting selection could be sub-optimal for various subtle reasons. First,
different side-channels could leak different aspects of information relative to the
hypotheses being tested and sometimes there could be value in combining channels
which provide widely dissimilar information rather than combining those which
provide similar but partial information. Second, even if many channels provide the
same information, picking multiple channels from this set could still be valuable
since that may be almost as good as having the ability to make multiple invoca-
tions of the device with the same data and collecting a single side-channel. Even
for the case where only two side-channels can be selected, the optimal choice is
quite tricky and subtle as shown by the example below where the naive approach
of choosing the two signals with best signal-to-noise ratios is shown to be sub-
optimal.

Example 14.1. Consider the case where an adversary can collect two signals [O1,O2]T

at a single point in time, such that under the hypothesis H0, Ok = Nk for k = 1,2 and
under the hypothesis H1, Ok = Sk + Nk. Assume that Ni = (N1,N2)T has zero mean
multivariate Gaussian distribution with

ΣN =
(

1ρ
ρ 1

)

Note that O1 and O2 have signal-to-noise ratios of S2
1 and S2

2, respectively. After
some algebraic manipulations, we get

Δ 2 =
(S1 + S2)2

2(1 + ρ)
+

(S1 −S2)2

2(1−ρ)
(14.9)

Now, consider the case of an adversary who discovers two AM-modulated carrier
frequencies which are close and carry compromising information, both of which
have very high and equally good signal-to-noise ratios (S1 = S2) and another AM-
modulated carrier in a very different band with a lower signal-to-noise ratio. An
intuitive approach would be to pick the two carriers with high signal-to-noise ratios.
In this case S1 = S2 and we get Δ 2 = 2S2

1/(1+ρ). Since both signals originate from
carriers of similar frequencies, the noise that they carry will have a high correlation
coefficient ρ , which reduces Δ 2 at the output. On the other hand, if the adversary
collects one signal from a good carrier and the other from the worse quality carrier
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in the different band, then the noise correlation is likely to be lower or even 0. In
this case

Δ 2 =
(S1 + S2)2

2
+

(S1 −S2)2

2
= S2

1(1 + S2
2/S2

1) (14.10)

It is clear that the combination of high and low signal-to-noise ratios would be a
better strategy as long as S2

2/S2
1 > (1−ρ)/(1 + ρ). For example, if ρ > 1/3, then

choosing carriers from different frequency bands with even half the signal-to-noise
ratio results in better hypothesis testing. #$

14.6.2 Multi-Channel Template Attacks

Just as the template attack is the optimal attack strategy for the single-channel case,
a multi-channel template attack is the optimal strategy for the multi-channel case.
Expanding the template approach to multiple channels is straightforward. For multi-
ple channels, the template attack is identical except that the signals from the multiple
channels are concatenated together to yield a larger signal, i.e., for each invocation,
a combined signal is created by concatenating the signals from the individual ob-
served channels. Notice that the process of identifying the time instances and sample
points could end up selecting somewhat different time slices for each channel, de-
pending purely on the nature of leakage in each channel. The maximum likelihood
testing will pick up information from all channels (possibly at different times) for
classification.

To show that multiple channels help the classification process, we invoke an op-
eration on the smart card S with two different input bytes and look at just three
cycles during which the input was first processed. We collected EM and power
samples simultaneously and evaluated how well the template attack could clas-
sify a single EM/power trace into the two hypotheses H0 and H1 for the input
byte. We did this classification first using exactly one of the power/EM chan-
nels and then performed the classification using both channels simultaneously.
Figure 14.7 shows the mean EM and power signals for these hypotheses during
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Fig. 14.7 Mean power and EM signals during three cycles for two hypothesis.
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Table 14.7 Signal classification error using power, EM, and combination of power and EM.

Correct hypothesis Error (Pwr) Error (EM) Error (EM+Pwr)
H0 9.5% 15.1% 2.8%
H1 20.1% 15.2% 6.6%

these three cycles side by side.3 Table 14.7 shows the error rate of our classifica-
tion effort for inputs belonging to each hypothesis. One can clearly notice that using
both channels simultaneously results in better classification compared to any single
channel.

14.6.3 Multi-Channel DPA

Multi-channel DPA attack is a generalization of the single-channel DPA attack.
In this case, the adversary collects N signals, Oi, i = 1, . . . ,N. In turn, each of
the signals Oi is a collection of L signals collected from L side-channels. Thus,
Oi = [O1

i , . . . ,O
L
i ]

T , where Ol
i represents the ith signal from the lth channel. Note

that all DPA-style attacks treat each time instant independently and leakages from
multiple channels can only be pooled together if they occur at the same time. Thus,
in order for multi-channel DPA attacks to be effective, the selected channels must
have very similar leakage characteristics.

The formulae for computing the metric for multi-channel DPA attack are gen-
eralizations of those for the single channel as described in Section 14.5. The main
difference is that the expected value of sample mean difference at time j under
hypothesis H is a vector of length L, with the lth entry being the sample mean dif-
ference of the lth channel. Furthermore, the variance of the b-bin under hypothesis
H at time j is a covariance matrix of size L×L with the i, jth entry being the cor-
relation between signals from the ith and jth channels. Once again, as in the DPA
attack, the adversary does not have the luxury of estimating these parameters. There-
fore, we substitute sample estimates for these parameters along the same lines as in
Equation (14.7). We skip the cumbersome formulae and directly go to the results of
multi-channel DPA attacks.

Table 14.8 shows sample results of an attack on the s-box lookups in a DES
implementation using the power channel together with an EM channel whose leak-
age is similar to the power channel. The first column shows the bit being predicted,
the second shows the number of signals required for the correct key hypothesis to
emerge as the winner using both channels with the multi-channel metric, the last
two columns show the number of signals needed for the power and EM channels
separately using the new DPA/DEMA metric. From this it is clear that the number
of invocations needed for two-channel attacks can be significantly less compared to
single-channel attacks.

3 The slight offset in time is due to delay of EM signals with respect to the power signal.
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Table 14.8 Multi-channel DPA-style attack using power, EM, and power and EM.

S-box hyp. Min samples (Pwr+EM) Min samples (Pwr) Min samples (EM)
S1,B1 150 170 640
S1,B2 60 (>1000) 340
S1,B3 110 350 160
S2,B2 30 50 230
S2,B3 120 210 340
S4,B0 60 200 340
S6,B1 180 180 190
S7,B3 30 40 520
S8,B3 60 90 140

14.7 Toward Information Leakage Assessment

In this section, we address the following question: Can the information obtained
by combining leakages from several (or even all possible) signals from available
sensors be quantified regardless of the signal processing capabilities and computing
power of an adversary?

We will use maximum likelihood testing to craft a methodology to assess in-
formation leakage from elementary operations in a device. This methodology takes
into account the power signals and all EM signals extractable from all the given
sensors across the entire EM spectrum. Results of such an assessment will en-
able one to bound the success probability of the optimal adversary for any given
hypothesis.

Assume that for a single invocation, the adversary captures the power signal and
emanations across the entire electromagnetic spectrum from all sensors in an obser-
vation vector O. Let Ω denote the space of all possible observation vectors O. Since
the likelihood ratio, Λ(O), is a function of the random vector O, the best achievable
success probability, Ps, is given by

Ps = ∑
O∈Ω

I{Λ(O)>1}pN1(O−S1)+ I{Λ(O)<1}pN0(O−S0) (14.11)

where IA denotes the indicator function of the set A and pN1(O−S1) and pN0(O−
S0) are noise distributions under the hypothesis 1 and 0, respectively.

When the adversary has access to multiple invocations, an easier way of esti-
mating the probability of success/error involves a technique based on moment gen-
erating functions. We begin by defining the logarithm of the moment generating
function of the likelihood ratio:

μ(s) = ln
(

∑
O∈Ω

ps
N1(O−S1)p1−s

N0 (O−S0)
)

(14.12)

The following is a well-known result from information theory:
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Fact 2 Assume we have several statistically independent observation vectors4

O1,O2, . . . ,OL

For this case, the best possible exponent in the probability of error is given by the
Chernoff information:

C
def= − min

0≤s≤1
μ(s) def= − μ(sm) (14.13)

Note that μ(·) is a smooth, infinitely differentiable, convex function and therefore it
is possible to approximate sm by interpolating in the domain of interest and finding
the minima. Furthermore, under certain mild conditions on the parameters, the error
probability can be approximated by

Pε ≈
1√

8πLμ ′′(sm)sm(1− sm)
exp(Lμ(sm)) (14.14)

Note that in order to evaluate Equation (14.11) or (14.14), we need to estimate
pN0(·) and pN1(·). In general, this can be a difficult task. However, by exploiting
certain characteristics of the CMOS devices, estimation of pN0(·) and pN1(·) can be
made more tractable.

14.7.1 Practical Considerations

We will now outline some of the practical issues associated with estimating pN0(·)
and pN1(·) for any hypothesis. The key here is to estimate the noise distribution
for each cycle of each elementary operation and for each relevant state R that the
operation can be invoked with. This results in the signal characterization, SR, and
the noise distribution, pNR(·), which is sufficient for evaluating pN0(·) and pN1(·).

There are two crucial assumptions that facilitate estimating pNR(·): first, on chip-
cards examined by us the typical clock cycle is 270 ns. For such devices, most of
the compromising emanations are well below 1 GHz which can be captured by sam-
pling the signals at a Nyquist rate of 2 GHz. This sampling rate results in a vector of
540 points per cycle per sensor. Alternatively, one can also capture all compromis-
ing emanations by sampling judiciously chosen and slightly overlapping bands of
the EM spectrum. The choice of selected bands is dictated by considerations such
as signal strength and limitations of the available equipment. Note that the slight
overlapping of EM bands would result in a corresponding increase in the number of
samples per clock cycle; however, it remains in the range of 600–800 samples per
sensor.

4 For simplicity, this chapter deals with independent elementary operation invocations. Techniques
also exist for adaptive invocations.
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The second assumption, borne out in practice (see [6]), is that for a fixed relevant
state, the noise distribution pNR(·) can be approximated by a Gaussian distribution.
This fact greatly simplifies the estimation of pNR(·) as only about one thousand
samples are needed to roughly characterize pNR(·). Moreover, the noise density can
be stored compactly in terms of the parameters of the Gaussian distribution.

These two assumptions imply that in order to estimate pNR(·) for a fixed rel-
evant state R, we need to repeatedly invoke (say 1000 times) an operation on the
device starting in the state R and collect samples of the emanations as described
above. Subsequently, the signal characterization SR can be obtained by averaging
the collected samples. The noise characterization is obtained by first subtracting SR

from each of the samples and then using the Gaussian assumption to estimate the
parameters of the noise distribution.

The assessment can now be used to bound the success of any hypothesis testing
attack in our adversarial model. For any two given distributions B0 and B1 on the
relevant states, the corresponding signal and noise characterizations

S0,S1, pN0(·), and pN1(·)

are a weighted sum of the signal and noise assessments of the constituent relevant
states SR and pNR(·). The error probability of maximum likelihood testing for a sin-
gle invocation or its exponent for L invocations can then be bounded using Equa-
tions (14.11) and (14.13), respectively.

We now give a rough estimate of the effort required to obtain the leakage as-
sessment of an elementary operation. The biggest constraint in this process is the
time required to collect samples from approximately 1000 invocations for each rel-
evant state of the elementary operation. For an r-bit machine, the relevant states of
interest are approximately 22r; thus, the leakage assessment requires time to per-
form approximately 1000 ∗ 22r invocations. Assuming that the noise is Gaussian
and that each sensor produces an observation vector of length 800, for n sensors
the covariance matrix ΣN has (800 ∗ n)2 entries. It follows that the computation
burden of estimating the noise distribution would be proportional to (800 ∗ n)2.
Such an approach is certainly feasible for an evaluation agency from both a phys-
ical and computational viewpoint, as long as the size of the relevant state, r,
is small.

14.8 Projects

Pre-requisite: Exercises 1–4: A DPA setup for smart cards and sample smart cards.
Exercises 1, 2, and 3 require the following data collection:

Capture a set SA of a few thousand power signals from a smart card with DPA-
countermeasures turned off, operating on some fixed input A. Capture another set
of signals SB (where |SB| = |SA|) from the same smart card operating with another
fixed input B, which is very similar to A (e.g., A and B could differ only on one
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bit). Partition the sets SA and SB into two equal-sized training sets SA1 and SB1 and
two equal-sized testing sets SA2 and SB2, such that SA2 and SB2 contain at least a few
hundred signals each.

1. Single Point Binary Classification: Compute the mean signals μA and μB using
the sets SA1 and SB1. Subtract μA from μB and plot the difference of means signal
to locate the first point in time P where there is a significant difference (or peak).
At this point P, signals in SA1 have a mean μAP and signals in SB1 have a mean
μBP. Use the set SA1 to also compute the variance σ2

AP of these signals at point
P and likewise compute σ2

BP from SB1. Make the assumption that the signals
from SA1 and SB1 are normally distributed at point P (Gaussian assumption, with
n = 1). Next use the maximum likelihood principle and Gaussian assumption
about point P to classify signals from testing sets SA2 and SB2 by just looking at
point P. Compute the fraction of correct/incorrect classification from sets SA2 and
SB2.

2. Multi-Point Binary Classification, Univariate Statistics: Build upon experiment
1 above by considering two other peaks that are located near the first peak P. In
this exercise, compute the means and variances at these three points for inputs
A and B by using the training sets SA1 and SB1. Then use the maximum likeli-
hood principle with univariate Gaussian statistics (i.e., assuming that the noise
co-variance matrix across these three points is diagonal) to classify the test sig-
nals from SA2 and SB2 using these means and variances only. Compute the frac-
tion of correct/incorrect classification from sets SA2 and SB2.

3. Multi-Point Binary Classification, Multivariate Statistics: Repeat experiment 2
above with multivariate statistics, i.e., by computing the covariance between
the noise at the three different points in time and using the maximum likeli-
hood principle and Gaussian assumption to classify the test signals. Compute
the fraction of correct/incorrect classification from sets SA2 and SB2. Compare
the results of experiments 1, 2, and 3 to see how adding additional information
(points) and better analysis (multivariate statistics) improves the classification
accuracy.

4. Comparison of Metrics for DPA: Run a DPA experiment on your smartcard with
the usual DPA metric (Equation 14.5). Run the same experiment with the metric
provided in Equation (14.8). Compare the results in terms of number of signals
needed to obtain the correct result of the DPA analysis.

5. Signal Selection: Suppose you can collect two signals [O1,O2] at a point in time
(see Example 14.1) and use these two signals to determine between two hy-
potheses: H0, Ok = Nk, for k = 1,2, and under the hypothesis H1, Ok = Sk + Nk.
Assume that Ni = (N1,N2)T has zero mean multivariate Gaussian distribution
with

ΣN =

(
1ρ
ρ 1

)

Signal O1 has already been selected and O1 = S1 + N1. You have three choices
for the second signal O2:
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1. Choice 1: S2 = 0.9 ∗ S1, ρ = 0.5.
2. Choice 2: S2 = 0.8 ∗ S1, ρ = 0.2.
3. Choice 3: S2 = 0.65 ∗ S1, ρ = 0.

Which of these signals should you choose for O2 and why?
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Chapter 15
Electromagnetic Attacks and Countermeasures

Pankaj Rohatgi

15.1 Introduction and History

EM is a side-channel with a long history of rumors and leaks associated with its use
for espionage. It is well known that defense organizations across the world are para-
noid about limiting EM emanations from their equipment and facilities and conduct
research on EM attacks and defenses in total secrecy. In the United States, such work
is classified under the codename “TEMPEST” which is believed to be an acronym
for “transient electromagnetic pulse emanation standard”. In January 2001, in re-
sponse to a Freedom of Information Act (FOIA) request, some documents related
to TEMPEST such as NACSIM 5000 tempest fundamentals, NACSEM 5112 NON-
STOP evaluation techniques and NSTISSI no. 7000 TEMPEST countermeasures for
facilities were released in redacted form and can be downloaded from the website
http://www.cryptome.org.

In the public domain, the significance of the EM side-channel was first demon-
strated by van Eck in 1985 [11]. He showed that EM emanations from computer
monitors could be captured from a distance and used to reconstruct the information
being displayed. Figures 15.1 and 15.2 show a modern day recreation of this attack,
where the contents of the computer monitor displaying a Word document in Figure
15.1 have been reconstructed in Figure 15.2 using only the EM emanations from
that monitor. As a defense against this attack, Kuhn and Anderson in 1998 [8] de-
veloped special fonts which have substantially reduced EM leakage characteristics
which make them difficult to reconstruct.

The first openly published works on EM analysis of ICs and CPUs performing
cryptographic operations by Quisquater and Samyde [9] and by Gandolfi, Mourtel
and Olivier [5] in 2001 were quite limited. These attacks were performed on chip
cards and required tiny antennas to be placed in very close proximity to the IC being
attacked. In fact, the best attacks were semi-invasive, requiring the decapsulation
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Ç.K. Koç (ed.) Cryptographic Engineering, DOI 10.1007/978-0-387-71817-0 15,
c© Springer Science+Business Media, LLC 2009

407

http://www.cryptome.org


408 Pankaj Rohatgi

Fig. 15.1 Computer display.

Fig. 15.2 Computer display reconstructed from EM.

of the chip packaging and careful positioning of micro-antennas on the passivation
layer of the chip substrate to isolate the signals of interest. The EM signals were used
to demonstrate attacks such as simple and differential EM analysis (SEMA/DEMA).

Subsequently the work of Agrawal, Archambeault, Rao and Rohatgi in 2002 [1],
which was much closer to the declassified TEMPEST literature, removed these lim-
itations and showed that EM attacks on CPUs and cryptographic devices were pos-
sible at a distance and that the EM side-channel leaks information that is not easily
available from the power side-channel. This work included a systematic study of
EM leakages from computing equipment and peripherals, such as chip cards, CPUs,
crypto accelerators, monitors, keyboards and peripherals, comparison of the EM
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side-channel to other side-channels and a methodology for leakage assessment. This
work has appeared in cryptology ePrint archives May 2001, CHES 2002, CHES
2003, RSA Labs CryptoBytes Spring 2003 and forms the basis for this chapter.

15.2 EM Emanations Background

A deep understanding of the different types of EM leakages and the propagation of
EM signals are essential in order to conduct EM side-channel attacks and to develop
techniques to defend against such attacks.

Some of the earlier published work on EM emanations focused on one particular
form of EM leakage, i.e., the direct emanations from chip cards and good quality
direct EM emanations turned out to be very hard to capture without invasive tech-
niques and careful micro-antenna positioning. In reality, once the different forms
of EM emanations are understood, there are usually several possible EM signals
that can be easily captured from a device and used for EM analysis. In fact a single
EM sensor may be able to multiply EM signals even from a distance. This fact is
succinctly captured in the following quote from the NASCIM 5000 Tempest Funda-
mentals document.

“The forms in which compromising emanations might appear at an interception point are
numerous.”

15.2.1 Types of EM Emanations

There are two broad classes of EM emanations:

1. Direct Emanations: These emanations result from intentional current flows
within circuits. These generate time-varying electric and magnetic fields related by
Maxwell’s equations. In CMOS circuits, these current flows consist of short bursts
of current with sharp rising edges that occur during the switching operation and
result in EM emanations observable over a wide frequency band. Often, higher fre-
quency emanations are more useful to the attacker since there is substantial noise
and interference in the lower frequency bands. In complex circuits, it may be quite
difficult to isolate direct emanations due to interference from other signals. Reduc-
ing such interference requires tiny probes positioned very close to the signal source
and/or special filters to separate the desired signal from other interfering signals.

The initial published work on EM analysis by Quisquater and Samyde [9] and
Gandolfi, Mourtel and Olivier [5] focused exclusively on direct emanations, in par-
ticular they focused on using tiny coils to capture the time-varying magnetic fields
created by intentional currents.
2. Unintentional Emanations: Most modern devices pack a large number of cir-
cuits and components into a very small area and suffer from numerous unintentional
electrical and electromagnetic couplings between components, depending on their
proximity and geometry. The vast majority of these couplings are minor and are
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ignored by circuit designers since they do not affect functionality. Such couplings,
however, are a rich source of compromising emanations. These emanations mani-
fest themselves as modulations of carrier signals generated, present or introduced
within the device. Depending on the type of coupling, the carrier can be amplitude
modulated or angle modulated by the sensitive signal, or the modulation could be
more complex. If a modulated carrier can be captured, the sensitive signal can be
recovered by an EM receiver tuned to the carrier frequency and performing the ap-
propriate demodulation.

The various types of EM emanations are succinctly described in the following
quotes from NACSIM 5000 Tempest Fundamentals document:

“The strongest and most numerous electromagnetic emanations are generated by sharp-
rising and current waveforms of short duration · · · . Also, faster rise times generate addi-
tional emanations – harmonics – of progressively lower amplitudes from the same pulse
source, these harmonics · · · represent, in effect, a great many compromising signals. These
signals can be acquired not only by being correctly tuned to the fundamental frequency, but
also at any of the harmonic frequencies · · · . At times, in fact, harmonics are more useful
than the fundamental, i.e., Emanations at the fundamental frequency are often lost among
other signals of the same frequency, whereas a harmonic might be more easily isolated.”

· · ·
“Modulated spurious carriers (U). - This type of CE is generated as the modulation of a
carrier by RED data. · · · . The carrier is usually amplitude or angle-modulated by the basic
red data signal. Or a signal related to the basic RED data signal, which is then radiated into
space or coupled into EUT external conductors.”

Exploiting direct emanations requires close physical proximity to be effective.
In contrast, unintentional emanations are usually much easier to capture and exploit
since some modulated carriers are much stronger and propagate much further than
direct emanations. This enables attacks to be carried out at a distance without resort-
ing to any invasive techniques. Rich sources of such carriers include the periodic,
harmonic-rich clock signal(s) and signals used for internal and external communi-
cation. For example, an ideal, symmetric, “square-wave” clock signal depicted in
Figure 15.3, when viewed in the frequency domain in Figure 15.4, consists of a
dominant component at the fundamental frequency together with components at all
the odd harmonics with linearly decreasing amplitude. In practice, the actual clock
signal is far from ideal and usually contains a limited number of significant odd
harmonics and some even harmonics as well.

15.2.2 EM Propagation

EM emanations can propagate both via radiation and via conduction. Often, EM
emanations arrive at an intercept point by a complex combination of radiation and
conduction. This phenomenon is well described in the following quotes from NAC-
SIM 5000 Tempest fundamentals:

Propagation of EM Emanations

“Modulated spurious carriers (U). - This type of CE is generated as the modulation of a
carrier by RED data. · · · The carrier is usually amplitude or angle-modulated by the basic
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red data signal. Or a signal related to the basic RED data signal, which is then radiated into
space or coupled into EUT external conductors.”

· · ·
“There are four basic means by which compromising emanations may be propagated. They
are: electromagnetic radiation; conduction; modulation of an intended signal; and acoustics.
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A brief explanation of each follows. a. (C) Electromagnetic Radiation (U). - Whenever a
RED signal is generated or processed in an equipment, an electric, magnetic or electro-
magnetic field is generated. If this electromagnetic field is permitted to exist outside of an
equipment, a twofold problem is created; first the electromagnetic field may be detected out-
side the Controlled Space (CS); second the electromagnetic field may couple onto BLACK
lines connected to or located near the equipments, which exit the CS of the installation. b.
(C) Line Conduction. - Line Conduction is defined as the emanations produced on any ex-
ternal or interface line of an equipment, which, in any way, alters the signal on the external
or interface lines. The external lines include signal lines, control and indicator lines, and
a.c. and d.c. powerlines. c. (C) Fortuitous Conduction. - Emanations in the form of signals
propagated along any unintended conductor such as pipes, beams, wires, cables, conduits,
ducts, etc. d. (C) [Six lines redacted.]”

From an attacker’s perspective, conducted emanations are more useful than radi-
ated emanations. Radiated emanations attenuate rapidly with distance and need to
be captured close to the device since they obey the inverse square law. Conducted
emanations attenuate linearly with distance and thus can be intercepted at greater
distances.

The following example illustrates conducted EM emanations. Currents on the
power line of smart cards have been well studied in the context of power analysis.
For example, Figure 15.5 shows the amplitude of the current flowing on the power
line of a smart card while it is performing three rounds of DES. This fact is clearly
visible in the power signal which shows a basic signal shape for a DES round that is
repeated three times during this time window. Now the power line is also a conductor
and therefore is likely to carry conductive EM emanations as well. The faint, AM-
modulated EM signals at low carrier frequencies are overwhelmed by larger power-
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Fig. 15.5 Raw power signal during three rounds of DES.
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Fig. 15.6 Conducted EM signal on the power line during three rounds of DES.

consuming currents, but the faint, AM-modulated EM signals at higher carrier fre-
quencies can be easily separated and demodulated to yield compromising informa-
tion. Figure 15.6 shows the demodulated EM signal obtained from the power line,
which also displays a (different) basic shape for a DES round repeated three times.

15.3 EM Capturing Equipment

Like power analysis, an EM attack system requires sample collection equipment
such as a digital oscilloscope or a sampling board as well as software for controlling
device operations, triggering and controlling data collection and for signal process-
ing and analysis.

Radiated EM signals in the near field can be captured using near-field probes.
Signals in the far field can be captured by antennas appropriate for the band being
considered. Antennas and probes are not expensive and can even be constructed
at low cost. Conducted emanations on the power or ground lines are best captured
using LISNs (line impedance stabilization networks) and signals from fortuitous
conductors can be processed directly.

The critical piece of equipment for performing EM attacks is a tunable re-
ceiver/demodulator which can be tuned to various modulated carriers and can per-
form demodulation to extract the sensitive signal. High-end receivers such as the
Dynamic Sciences R-1550 (see [4]) are ideal for this purpose since they cover a
wide band and offer a large selection of bandwidths and demodulation options.
However, wideband/wide-bandwidth receivers tend to be quite expensive even when
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Fig. 15.7 A second-hand wideband, wide-bandwidth receiver.

Fig. 15.8 ICOM 7000 receiver.

purchased second-hand (see Figure 15.7). Another option is to use certain wideband
radio receivers that provide a large bandwidth intermediate frequency (IF) output in
addition to the audio output. One such receiver is the ICOM 7000 (see Figure 15.8)
which can be purchased second-hand for less than $1000. The IF output can be sam-
pled and demodulated by software to extract the signal. However, such receivers
introduce significant noise into the captured signals and are not suitable for cap-
turing very faint signals that are close to the thermal noise floor. In addition, these
receivers only provide a few MHz of bandwidth which is not enough to capture the
internals of devices operating at high frequencies. Those on low budgets can con-
struct their own low-noise receiver for under $1000 by using commonly available
low-noise electronic components (see Figure 15.9), common lab equipment and de-
modulation software, but this approach can become inconvenient due to the need for
frequent calibration. However, once the best signal to attack is identified, a custom,
non-tunable receiver/demodulator for the attack can be built quite cheaply.

Common laboratory equipment such as spectrum analyzers are also very useful
for quickly assessing the available EM signals to identify potentially useful carriers.
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Fig. 15.9 Low-cost, low-noise receiver built from components.

15.4 EM Leakage Examples

In this section we will describe several experiments which illustrate the types of EM
signals and EM side-channels available from several different devices and describe
possible avenues for attack.

15.4.1 Examples: Amplitude Modulation

In our first set of experiments, we will explore EM side-channels available via am-
plitude demodulation of a carrier signal. Our first example is a 6805-based smart
card operating on a 3.68 MHz external clock and performing the following set of
three instructions continuously in a 13-cycle loop:

1. Access RAM containing a value B (5 cycles)
2. Check for external condition (5 cycles)
3. Jump back to start of loop (3 cycles)

Figure 15.10 shows the raw signal obtained by a near-field EM sensor placed
behind the smart card during a time interval in which the card executed around 26
cycles or 2 iterations of the loop. The figure shows a very regular signal structure
repeated 26 times. On closer examination, this regular structure turns out to be the
differential of the clock signal. This is not surprising since the clock is the most
dominant signal and direct emanation within the card. From the raw signal, it is not
possible to discern the fact that the smart card is operating in a loop or to know the
nature of the operations being performed. This figure also highlights the problem
of working with direct emanations. In this case, the clock signal is so dominant
that information about other currents within the smart card have been washed out.
Extracting these smaller signals will require careful micro-antenna positioning in
close proximity to these signal sources.
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Raw signal from near-field sensor during 2 iteratons of loop (26 cycles)
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Fig. 15.10 Raw EM signal from 6805 smart card during 26 clock cycles.

This situation becomes clearer once the FFT of the raw signal is examined as
shown in Figure 15.11. Here the dominant signal is the clock signal, which consists
of strong components at the fundamental frequency and at odd harmonics as well
as some components at even harmonics. Information about the internal operations
of the smart card, such as the fact that it is operating in a loop with a frequency that
is 1/13th the clock frequency, is not readily apparent in the FFT; these signals have
very low amplitude and appear as noise in between the clock harmonics.
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Fig. 15.11 FFT of raw EM signal from 6805 smart card.
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However, at higher frequencies, say beyond 100 MHz, the amplitude of the clock
harmonics have been significantly reduced and these smaller signals can be ex-
tracted via AM demodulation by tuning a receiver at one of these clock harmon-
ics. Figure 15.12 shows the result of AM demodulating the raw signal at the 41st
clock harmonic with a center frequency of around 150 MHz. The demodulated sig-
nal, which again covers around 26 cycles, shows the structure of the computation
quite clearly. It is easy to see that these 26 cycles consist of a basic signal repeated
twice, i.e., a loop of 13 cycles, and the internals of this basic signal show three dif-
ferent substructures of 5 cycles, 5 cycles and 3 cycles which represents the three
instructions in the loop.

Just like the power side-channel, once the compromising EM signals are ex-
tracted, they provide details about the computation. For example using the same
AM demodulating technique, if one looks at the same smart card performing DES,
at a large time scale (see Figure 15.13) one can discern the 16 rounds of DES; at an
intermediate time scale (see Figure 15.14) one can discern the internals of the com-
putation during two rounds of DES; and at a very fine time scale (see Figure 15.15)
one can get information at the clock cycle level.

Our second example is a Palm Pilot which has been loaded with software de-
veloped by Feng Zhu of Northeastern University to perform elliptic curve cryp-
tography. In particular it has been programmed to perform the point multiplication
operation kP where P is a point on a Koblitz curve over GF[2163]. The multiplica-
tion operation is performed using Solinas’s technique which replaces the traditional
point doubling operation by the highly efficient Frobenius map (τ) computation as
follows:

• First the secret k is decomposed into its τ-adic NAF (non-adjacent form), i.e.,
k = Σsiτ i where si ∈ 0,1,−1 and no two adjacent si’s can be nonzero.

Am Demodulated signal (150Mhz carrier, 50Mhz band) showing 2 iterations of loop
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Fig. 15.12 Demodulated EM signal from 6805 smart card during 26 clock cycles.
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Fig. 15.13 Demodulated EM signal (100 MHz bandwidth) from smart card performing 16 rounds
of DES.
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Fig. 15.14 Demodulated EM signal showing two rounds of DES (100 MHz bandwidth).
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Fig. 15.15 Demodulated EM signal: clock cycle level details within a DES round.

• The traditional double/add algorithm is replaced by an algorithm that performs a
sequence of τ-transforms followed by add/subtract based on the value of si.

The advantage of this technique is that the computational cost of the kP operation is
approximately |k|/3 ≈ 54 point additions/subtractions, since the τ-transform opera-
tion is very efficient.

The EM emanations from the Palm Pilot can be picked up even a few centimeters
away from the device. A fairly good signal showing internal operations is available
via AM demodulation at 241 MHz. The signal shown in Figure 15.16 immediately
provides the sequence of τ-transforms (where si is 0) and the add/subtract operations
(where si is +1 or−1). Recovering the key k further requires distinguishing between
the add and subtract operations, but as Figure 15.17 shows, under intermediate level
of resolution these operations are distinct. Thus we have a simple electromagnetic
attack (SEMA) against this implementation.

Our final example for AM demodulation is a PCI bus-based RSA accelerator S
inside a Intel/Linux server. Multiple AM-modulated carriers are available from that
device, mostly at odd harmonics of the PCI clock of 33 MHz. Several carriers from
this device propagate upto 50 feet and through walls enabling precise RSA timing
to be measurable from around 50 feet. This precise timing could be used to per-
form better timing attacks than via remote interaction with the server. In addition to
high-energy carriers at multiples of the PCI clock frequency, there were also several
intermediate strength intermodulated carriers at other frequencies. These intermod-
ulated carriers arise due to nonlinear interactions among the various carriers present
within the accelerator’s operating environment. These carriers provided more details
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Fig. 15.16 EM signal from Palm Pilot showing elliptic curve operation sequence.

Fig. 15.17 EM signal from Palm Pilot: add vs. subtract.

of the internals of the RSA operation in S. For example, AM demodulating an inter-
modulated carrier at 461.4 MHz provided detailed information even from 3 to 4 feet
away.

Figure 15.18 shows the signal obtained by AM demodulating the 461.46 MHz
intermodulated carrier with a band of 150 KHz for a period of 2.5 ms during which
S computes two successive and identical 2048-bit modular exponentiations with a
12-bit exponent. For clarity, the figure shows an average taken over 10 signal sam-
ples. One can clearly see a basic signal shape repeated twice, with each repetition
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Fig. 15.18 EM signal from SSL accelerator S.

corresponding to a modular exponentiation. The first repetition spans the time in-
terval from 0 to 1.2 ms and the second from 1.2 to 2.4 ms. The signal also shows
the internal structure of the exponentiation operation. From time 0 to 0.9 ms, S re-
ceives the exponentiation request and performs some precomputation to initialize
itself to exponentiate using the Montgomery method. The actual 12-bit exponentia-
tion takes place approximately from time 0.9 to 1.2 ms. A closer inspection of this
region reveals substantial information leakage which is beneficial to an adversary.
Figure 15.19 plots an expanded view of this region for two different exponentiation
requests which have the same modulus and exponent but different data. The two
signals are plotted in different line styles (solid and broken). From the start, one can
see that the two signals go in and out of alignment due to data-dependent timing
of the Montgomery multiplications employed by this implementation. This data de-
pendence of the Montgomery multiplication operation provides the basis for most
of the attacks against S (see [2], [10] and [12]).

At intermediate distances of 10–15 feet, the level of noise increases significantly,
but simple statistical attacks on S are still feasible and require a few thousand
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Fig. 15.19 Two EM signals, different data, same modulus, same exponent.
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samples. However, attacks that are limited to one or a few samples become much
harder and quickly start approaching the limits of even the advanced signal analysis
techniques such as template attacks that will be described in another chapter.

15.4.2 Examples: Angle Modulation

Next we look at EM emanations that manifest as angle modulations of a carrier
signal. Our first example is the same 6805-based smart card as before running the
same 13-cycle loop, i.e.,

1. Access RAM containing a value B (5 cycles)
2. Check for external condition (5 cycles)
3. Jump back to start of loop (3 cycles)

but now the smart card is run on its internally generated, variable clock. In this case,
as a DPA countermeasure, the clock is designed to run freely with its frequency
changing with time. The smart card was tested with different values of the byte B
and the following behavior was observed (see Figure 15.20): When the byte B had an
LSB of 0, the loop ran faster, when it was 1 the loop ran slower. This means that the
internally generated clock signal is being angle modulated by the least significant bit
on the bus! The clock signal being the strongest EM signal can be captured from a
distance and by angle demodulating this signal one gets information about the LSB
on the bus.

The second example is another PCI-based RSA/Crypto Accelerator R inside an
Intel/Linux server. After AM demodulating a 99 MHz carrier (clock harmonic) some

Fig. 15.20 Loop frequency related to LSB(B)!
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Fig. 15.21 Macro view of internal operations within Crypto Accelerator R.

information about the internal operations of R is available as shown in Figure 15.21,
where the RSA operation is seen to consist of two stages: an initialization stage
followed by an exponentiation stage. However, at finer time scales, the information
about the internal operations of R is obscured by another, asynchronous signal G as
shown in Figure 15.22. Due to this interference it appears that one may not be able
to reconstruct the internals of the RSA operation to attack this device.

Obscured by interfering signal GObscured by interfering signal G

RSA Exponentiation Key/Data Dependent Internals

GENERATED asynchrononsly during operation

0

–500

–1000

–1500

–2000

2.718 2.728 2.73 2.732 2.734 2.736

x 105

2.724 2.7262.7222.72

Fig. 15.22 Signal G obscures details of internals of R.
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Fig. 15.23 Timing characteristics of G for three keys (two same).

But, as mentioned earlier, due to coupling effects, the timing of asynchronously
generated signals is usually affected by the operations being performed within a
device. This turns out to be the case for the signal G as well. Timing statistics of
G (using 1000 samples) gives information about internals as can be seen in Fig-
ure 15.23, which shows the timing characteristics of G in three independent runs
with three exponents, two of which are the same. This figure shows the average
inter-peak time between the different peaks in G. As seen from this figure, when
the keys are the same, the timing characteristics are very similar and quite different
from the timing characteristics for a dissimilar key. An attacker who can get around
1000 EM samples from one device R1 can use the timing statistics of G to deter-
mine the key used by R1 if he can get access to an identical test device R2. The
attacker would reconstruct the key bit-by-bit by comparing the timing statistics of
the signal G for different test keys in R2 with the timing characteristics of the signal
G obtained from R1. Moreover, since the signal G is strong enough to be captured
even at a distance of 10–15 feet, the attack may be quite practical.

15.5 Multiplicity of EM Channels and Comparison with Power
Channel

Based on the experiments described above, it is clear that there are multiple EM
side-channels based on amplitude or angle demodulating different carriers which
may be generated within the device, present in the environment or deliberately in-
troduced within the device. We have also seen that often higher frequency, low-
energy carriers may be more useful and leak more information than lower frequency,
high-energy carriers. Also in many situation, such as attacking cryptographic tokens,
PDAs and SSL accelerators, the EM side-channel is the only powerful side-channel
available since the power side-channel is not accessible.



15 Electromagnetic Attacks and Countermeasures 425

Next we illustrate that different EM carriers carry different information and leak-
ages via some EM side-channels are different from and incomparable to power
side-channel leakage and therefore the EM side-channel can sometimes be more
powerful than the power side-channel.

Just like the power side-channel, the EM side-channel signals can be used to per-
form attacks like simple/differential electromagnetic attacks (SEMA/DEMA) which
are the analogues of SPA and DPA. This is because, like power signals, EM ema-
nations are correlated to each active bit in the state of device at an instant in time.
Also, by comparing the correlation plots of DEMA/DPA for a particular algorith-
mic bit using different EM channels as well as the power side-channel, one can
compare how a particular bit leaks in the various side-channels. Figures 15.24 and
15.25 show the correlation plots for the correct hypothesis for the DES algorithm
running on a smart card using three different EM channels (AM demodulation done
at different carrier frequencies) as well as the power side-channel. These correlation
plots are aligned in time for all the channels with the power side-channel being the
solid line and the different EM channels being different styles of broken lines. These
plots show the extent to which the algorithmic bit (an S-box output bit in this case)
leaks into different side-channels. Figure 15.24 shows that the bit leaks differently
at different times in these channels. Figure 15.25 shows the case where the bit leaks
substantially in two of the EM channels, somewhat less prominently in the third
EM channel and hardly leaks within the power side-channel. In smart cards, this is a
common occurrence for several ALU-oriented instructions since power leakages are
biased toward instructions that access memory and consume more energy. We term
these instructions “bad instructions”, i.e., instructions where information leakage in
an EM channel is significantly greater than the corresponding leakage in the power
side-channel. In the 6805-based smart card, several bit-test instructions turned out to

Fig. 15.24 DPA and three DEMA correlation curves (aligned).
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Fig. 15.25 DPA and three DEMA correlation curves (aligned) where the bit leaks substantially.

be bad instructions: the value of the bit being tested leaked into the EM side-channel
but not in the power side-channel. Figures 15.26 and 15.27 shows two traces where
the tested bit is different and same, respectively, and the highlighted portion of the
signal is significantly different in these two cases, thus directly leaking the bit. The
power side-channel on the other hand did not carry this information.
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Fig. 15.26 Two EM signals for a bit-test operation: bits different.
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Fig. 15.27 Two EM signals for a bit-test operation: bits same.

15.6 Using EM to Bypass Power Analysis Countermeasures

In general all architectures have bad instructions and typically, in smart cards, these
tend to be the ALU-intensive instructions rather than bus-intensive instructions.
These bad instructions provide an avenue to break power analysis-resistant imple-
mentations.

A common assumption behind many power analysis countermeasures is that once
the basic execution sequence is free from simple power analysis (SPA) attacks, there
is enough noise/uncertainty in each power trace to prevent direct recovery of sen-
sitive information. Then various techniques such as masking [3, 6] and nonlinear
key update [7] can be used to further amplify this uncertainty to prevent the adver-
sary from learning information from multiple samples. If bad instructions are used
in a DPA-resistant implementation, then this assumption of limited leakage from
a single sample is violated and vulnerabilities get created. For example, if the EM
leakage is very large, then the DPA-resistant implementation may be vulnerable to
SEMA. If the EM leakage is moderate then higher-order EM attacks on masking
DPA countermeasures become possible as was shown in [1].

15.7 Quantifying EM Exposure

In order to assess vulnerability of a device to EM and other side-channels it is im-
perative that there be an assessment methodology in place to determine the extent
of the leakage and the effectiveness of the countermeasures. In the case of EM, this
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assessment can be quite complex since there are several possible interception points
and at each interception point multiple EM signals are available by considering dif-
ferent carriers and demodulations. One has to consider different adversaries and
classes of attacks including low-cost attacks by limited adversaries who can capture
only one signal at a time, to more powerful adversaries that can capture multiple
signals and perform complex signal processing operations, as well as unbounded
adversaries that can capture as many signals as they wish from a bounded set of
sensors and perform any feasible processing on these signals.

In some cases a sound methodology to assess EM vulnerabilities in these cases
is feasible. This will be covered in the chapter on improved techniques for side-
channel analysis.

15.8 Countermeasures

EM analysis countermeasures include circuit redesign to reduce unintentional em-
anations and techniques to reduce the S/N ratio observed by the adversary. For ex-
ample, EM shielding and/or the introduction of additional noise can reduce the S/N
ratio. Another option is to set up physically secure zones where entry is restricted,
to prevent the adversary from capturing a strong EM signal.

A systematic way to minimize EM exposure is outlined in the following quote
from the NACSIM 5000 TEMPEST Fundamentals document:

“The prevention of TEMPEST problems can best be accomplished by being attentive to
the problem throughout every stage of the equipment or system design and development.
Due to the many ways that information is processed in an equipment, there are many ways
that compromising emanations can be generated. It is nearly impossible to completely pre-
vent the generation of such compromising emanations. Therefore, the TEMPEST design
objectives should be to (a) keep the amplitude and frequency spectrum of compromising
emanations as low as possible (i.e., below the appheable limit); (b) prevent RED signals
from coupling from RED to BLACK lines or circuits; and (c) to prevent emanations from
escaping from the equipment through electromagnetic or acoustical radiation or through
line conduction. When involved in retrofitting non-TEMPEST designed equipments, many
of the methods identified herein, in addition to encapsulation techniques, may be useful in
meeting design objectives.”

However, the following cautionary quote from NACSIM 5000 also outlines why,
from a practical perspective, such EM attack resistance is unlikely to be present in
most systems.

“In typical baseband communication or data processing circuit designs, minimum attention
is given to suppression of unintentional emanations. Design engineers do not realize the
importance of component selection, interconnections, or layout in minimizing signal em-
anations. Draftspersons, who are unfamiliar with electrical engineering fundamentals, are
frequently employed in the design of PC boards and interconnecting leads. Occasionally,
this chore is delegated to a computer, which follows a minimal number of rules governing
circuit applications and circuit interconnections. As a result, undesired signal emanations
will probably be detected when the equipment must be proven TEMPEST hazard-free.”
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Once the basic EM leakage is minimized to prevent SEMA-style attacks, then
other randomization-based countermeasures that have been used in the context
of DPA, such as random masking or computing with shares or nonlinear up-
dates of sensitive information, may be used as countermeasures against DEMA
attacks.

15.9 Projects

Pre-requisite: A wideband radio and embedded device, e.g., a cellphone or PDA

1. Using a wideband radio how can you determine the clock frequency and harmon-
ics of the processor? Verify by checking the device specifications. What profes-
sional equipment can be used to quickly determine the clock signals within the
device?

2. (Advanced: Assuming that You Can Program the PDA.) Use your knowledge
of the processor clock frequency and instruction set to write a program that
loops with a frequency of around 1000 Hz or any other frequency in the audi-
ble range, till a key/button is pressed. Execute the program on the PDA. Then,
slowly scan the parts of the spectrum that are covered by your radio (using
AM or FM demodulation). If the processor clock and harmonics are within a
band covered by the radio, you should be able to hear the 1000 Hz tone at sev-
eral different center frequencies. Each of these bands represents a potential EM
side-channel that leaks information about the computation occurring within the
processor.

3. Now that you have determined the EM bands where there is leakage from the
CPU, how would you use this information to set up EM capturing equipment and
carry out a SEMA/DEMA attack on the device?

4. Locating Compromising Emanations from Device Display: While manipulating
the information displayed by the device (e.g., either by running an application
that regularly updates the screen or manually updating what is displayed), slowly
scan the parts of the spectrum (either AM or FM demodulation) that your radio
covers. At several frequencies you should be able to hear audible sounds when-
ever the screen changes. These are frequencies at which information about the
contents of the screen can leak. Actual attacks to capture the screen will depend
on the specifics of how the display is being refreshed.

5. EM Propagation (Advanced): First conduct experiment in exercise 2 to obtain
the 1000 Hz tone indicating EM leakage from the device. Place the device with
the running program inside a completely enclosed metal box (or a cardboard box
covered with aluminum foil). Can your receiver still capture the 1000 Hz tone
outside the metal box? Why not? Now place the device on a metal box that has
one or a few small openings (e.g., by creating a small opening within the foil-
covered cardboard box). Again, try to obtain the 1000 Hz tone with your receiver.
Move the receiver around the box to locate where the signal is strongest. Where
is the signal the strongest? Why?
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Chapter 16
Leakage from Montgomery Multiplication

Colin D. Walter

16.1 Introduction

Modular multiplication P = A×B mod M is a fundamental operation in most public
key cryptography. Its efficiency is usually critical in determining the overall effi-
ciency of a system because it is the main component in modular exponentiation
and in elliptic curve point multiplication. There are several algorithms which can
be chosen for performing modular multiplication, of which those by Barrett [1],
Montgomery [6] and Quisquater [2] are the most widely known. Most optimisations
which can be applied to one modular multiplication algorithm can also be applied to
the others, so that all have the same overall complexity [9]. However, Montgomery’s
method is rather more straightforward to implement; generally less work is involved
in achieving the optimisations.

This chapter delves into certain aspects of Montgomery’s algorithm: it seeks to
retain the advantages of simple and efficient code while at the same time addressing
the issue of side channel leakage from the final conditional subtraction. We study
the main loop and the final conditional subtraction separately in order to determine
a fully precise specification for the output and hence determine how much data are
leaked through the conditional subtraction side channel. This enables us to fix the
leakage very satisfactorily.

16.2 Montgomery Reduction

Modular multiplication is really a combination of two processes: multiplication and
modular reduction. These are generally interleaved for space efficiency reasons: this
keeps the intermediate values within a very small multiple of the modulus. This is
also called the integrated approach. With the separated technique, the multiplication
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is performed completely beforehand, allowing more time-efficient methods to be
employed. This is then followed by modular reduction of the product. We start by
looking at this process of reduction.

Definition 16.1. Suppose positive integers M and R have no common factor. Then,

i) A′ is called the Montgomery reduction of A modulo M with respect to R if A′ ≡
AR−1 mod M and AR−1 ≤ A′ < AR−1+M.

ii) Conversely, A is called a Montgomery representation or Montgomery residue of
A with respect to R if it satisfies A ≡ AR mod M. When R is clear, A is called an
M-residue.

Note that this definition contains two different inverses of R: one is the residue
modulo M which is the modular inverse of R in Z/MZ, the other is the rational
number which is the fractional inverse of R in Q. The context, indicated by the
presence or absence of “ mod M”, makes the intended choice clear.

Co-primality of M and R guarantees that there is a one-to-one correspondence
between a complete set of residues mod M and the set of residues {R′.R mod M |
0 ≤ R′ < M}. So there is a value R′ such that R′.R ≡ 1 mod M, i.e., R has an inverse
mod M. So the Montgomery reduction exists when M and R have no common fac-
tor, and the bounds ensure that it is unique. For cryptographic applications the co-
primeness property usually holds: R is generally a power of 2 so that division by R
is easily performed by shifting, whereas M is a product of some large primes, and
hence odd.

The Montgomery reduction A′ of A mod M can be obtained by finding integers
A′ and Q satisfying

A′R−QM = A

and such that Q is in the interval [0. . .R[. When R has the form R = rn, the solution
can be generated using the same process as in Hensel’s lemma, which solves the
equation iteratively modulo higher and higher powers of r.

When A and M have representations over base (or radix) r with digits ai and mi,
respectively, the Henselian process for obtaining the Montgomery reduction A′ with
respect to R = rn is given in Figure 16.1. There, m0

−1 is the inverse of m0 modulo
r. Usually the digits occupy words of memory, so that r = 2k where k is the number

Function MonRed(A,M, r,n): A′

Pre-condition: M and r are co-prime.
Post-condition: A′ ≡ Ar−n mod M with Ar−n ≤ A′ < Ar−n+M.

A′ ← A
For i ← 0 to n−1 do

qi ←−a′0m−1
0 mod r

A′ ← (A′ +qiM) div r
Return A′

Fig. 16.1 Montgomery modular reduction.
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of bits per word. Then the division by r in the last line of that figure is simply a shift
by one position of an array of words.

The choice of digit qi in the loop guarantees that the division by r is exact. Thus,
if the digits qi are formed into the “quotient” Q = ∑n−1

i=0 qiri then the output satisfies
A′ = (A+QM)r−n where Q < rn = R, as required. The bounds on A′ now follow,
showing it is the Montgomery reduction of input A.

The term Ar−n becomes smaller as n is increased. Hence, by choosing n such
that A < Mrn the output satisfies A′ < 2M and an extra conditional subtraction
of M will yield the least non-negative residue of AR−1 mod M. For example, if
the input A were obtained as a product of two reduced residues modulo M (i.e.,
least non-negative) then A < M2 and we would just need n such that M < rn in
order to achieve an output which is also fully reduced by the extra conditional
subtraction.

Unlike classical modular reduction, the choice of quotient digit qi does not de-
pend on the most significant digit of A′ but on its least significant. This means that qi

can be determined precisely without waiting for carry propagation to be completed
in the previous loop iteration. This is advantageous for application in a systolic array
where the processing elements perform digit level computations [10].

16.3 Montgomery Modular Multiplication

Instead of pre-computing the product A×B, the Montgomery reduction of A×B
modulo M can be obtained by interleaving the multiplication and the reduction,
as in Figure 16.2. We need one of the inputs, say B, to have a representation to base
r with at most n digits.

It is easy to verify the code of Figure 16.2 from its similarity to MonRed and by
observing that the non-modular operations compute A×B with a shift equivalent to a
factor of r−n. In fact, taking B = 1 yields the MonRed algorithm. As in the MonRed
algorithm, there is no upper bound on the value of input A. Moreover, the bound on
B is in terms of n and not M. Thus there is no need to ensure the inputs are least
non-negative residues modulo M.

Function MonPro(A,B,M, r,n): C

Pre-condition: M and r are co-prime, B = ∑n−1
i=0 biri < rn.

Post-condition: C ≡ ABr−n mod M and ABr−n ≤C < M+ABr−n.

C ← 0
For i ← 0 to n−1 do

qi ←−(c0 +a0bi)m−1
0 mod r

C ← (C +biA+qiM) div r
Return C

Fig. 16.2 Montgomery modular multiplication without conditional subtraction.
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Since the output of the ith iteration is exactly analogous to the output of the nth,
for which B < rn, we know that the partial product C is less than M+A throughout
the calculation. This gives a bound on how large the register for C needs to be. For
most applications M < rn and A < rn so that C requires one more bit than rn. A
further extra word may also be needed for intermediate results before the shift down
corresponding to the division by r. A detailed time and space efficiency analysis of
different methods to compute the update to the partial product C is given by Koç,
Acar and Kaliski [3].

Setting Q = ∑n−1
i=0 qiri gives C = (AB+QM)r−n and so Q ≈ ABr−n/M when C

is bounded by a small multiple of M. To be precise, if C−δM is the smallest non-
negative residue, then Q+δ = �ABr−n/M� yields the integer quotient. So further
conditional subtractions of M from C to obtain the least non-negative residue can be
combined with incrementing Q to yield the integer quotient.

The normal presentation of the algorithm includes a final conditional subtraction
of M to yield an output less than M. It is omitted in this first version of Mont-
gomery multiplication for three reasons: it is unnecessary when MonPro is used for
exponentiation, it is a strong source of side channel leakage and, for non-fully re-
duced inputs, more than one subtraction of M may be necessary. However, there are
two useful versions of Montgomery multiplication which include a final conditional
subtraction. They are given in Figures 16.3 and 16.4.

It is easy to check that the input bounds imply the output bounds in both cases.
Moreover, the bounds are such that outputs can be used as inputs to another ex-
ecution of the same algorithm. This is very convenient for applications involving
exponentiation. The second version, with bound R, is marginally more efficient than
the first for two reasons. First, this is because the comparison is easier to implement:
typically it just requires looking at an overflow bit rather than performing a poten-

Function MonPro(M)(A,B,M, r,n): C

Pre-condition: M and r are co-prime, A < M, B < rn.
Post-condition: C ≡ ABr−n mod M and C < M.

C ← MonPro(A,B,M, r,n)
if C ≥ M then C ←C−M

Fig. 16.3 Montgomery modular multiplication with bound M.

Function MonPro(R)(A,B,M, r,n): C

Pre-condition: M and r co-prime, A<R, B<R, M<R for R = rn.
Post-condition: C ≡ ABr−n mod M and C < R.

C ← MonPro(A,B,M, r,n)
if C ≥ R then C ←C−M

Fig. 16.4 Montgomery modular multiplication with bound R.
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tially full-length subtraction. Second, the frequency of the subtractions is usually
lower for the second version.

16.4 Exponentiation

All exponentiation algorithms consist of a sequence of products. Therefore, in order
to use MonPro for modular exponentiation, it suffices to adjust for the extra power
of R and to check that the output from one use of MonPro satisfies the bounds on
the input required for its use in any subsequent MonPro. If

Z = X×Y mod M

is one of the modular multiplications during the exponentiation when normal mod-
ular products are computed, then the usual choice for the corresponding multiplica-
tion using MonPro is

Z = MonPro(X ,Y ,M,r,n)

which operates on the corresponding M-residues. Comparing powers of R, we
find MonPro(X ,Y ,M,r,n) ≡ X×Y×R−1 ≡ XR×Y R×R−1 ≡ X×Y×R ≡ Z×R ≡
Z mod M. Thus, the entire exponentiation is done correctly with MonPro on the
corresponding M-residues if the input is adjusted to an M-residue and the output is
re-adjusted back from an M-residue. An example of this is given in Figure 16.5 for
the square-and-multiply method of exponentiation.1

To ensure the correct power of R in all operands, the evaluation of S = T N mod M
requires a pre-processing step to convert T to its M-residue:

Function MonExp(R)(T,N,M, r,n,R(2)) : S

Pre-conditions: M and r co-prime, T<M<R for R = rn, R(2) < R,
R(2) ≡ R2 mod M, and N = (nk−1...n2n1n0)2 with nk−1 = 1.

Post-condition: S = T N mod M and 0 ≤ S < M.

T = MonPro(R)(TR(2),M, r,n)
S ← T
For i ← k−2 downto 0 do

S ← MonPro(R)(S,S,M, r,n)
If ni = 1 then S ← MonPro(R)(S,T ,M, r,n)

S ← MonPro(R)(S,1,M, r,n)

Fig. 16.5 Square-and-multiply exponentiation with MonPro(R) .

1 Strictly speaking, M must be square-free to avoid the possibility of output S = M, which is
forbidden in the post-condition of the code. The output bound is treated later in this section.
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T = MonPro(T,R2 mod M,M,r,n)

and the post-processing step to convert back from an M-residue:

S = MonPro(S,1,M,r,n).

It is easy to see that the first of these introduces a factor of R, while the second
removes such a factor. Corresponding similar pre- and post-processing steps also
correctly introduce and eliminate a factor of R when MonPro(M) or MonPro(R) is
used throughout the exponentiation instead of MonPro – simply replace MonPro by
MonPro(M) or MonPro(R) as appropriate.

For the large exponents N typical of public key cryptography, these two extra
modular multiplications have a negligible cost when compared with the advantages
of a simpler multiplication algorithm. However, R(2) ≡ R2 mod M also needs to be
pre-computed and stored. Since M is usually fixed for many exponentiations, the
time penalty for this can normally be amortized over the lifetime of the modulus.

The other main requirement for using Montgomery modular multiplication in
exponentiation is that the output from one multiplication satisfies the pre-conditions
for inputs to the subsequent multiplications. This is plainly the case if MonPro(R)

is used throughout: inputs and outputs are both bounded by R. To use MonPro(M)

throughout, the condition M < R must be added in order to guarantee that the “B”
input is small enough. Then all inputs and outputs are bounded by M.

Now suppose MonPro is used in the exponentiation algorithm. In order to achieve
a common bound, say B, on all inputs and outputs of MonPro, it is necessary that
M+B2R−1 ≤ B. This just requires that the quadratic B2R−1−B+M has real roots,
i.e., 4M < R. This is achieved by choosing a large enough value for R, that is, a
sufficiently large n where R = rn. Then any bound B can be chosen as long as it is
between the two roots. This is readily seen to be the case for bounds such as B = 2M
or B = 1

2 R, or even a weighted average B = 2λ M+ 1−λ
2 R where 0 ≤ λ ≤ 1 [13].

For all three modular multiplication algorithms, the above bounds are sensible
conditions on cryptographic inputs T to an exponentiation. With bound B = M or
B = R for MonPro(B), the initial conditions T < B and R(2) < R ensure that T <
B, making T suitable for subsequent use in the exponentiation. Thereafter, every
input to MonPro(B) is bounded above by B, so that its output is also bound by B.
For MonPro, the initial conditions T < M and R(2) < R ensure that T < B for the
acceptable bound B = 2M. Thus, the pre-processing input R(2) need not be fully
reduced in any of three cases; R is an adequate bound for it in each case.

For MonPro(B) with bound B = M or R, and for MonPro with bound B = 2M or
1
2 R, the loop of the post-processing modular multiplication by 1 generates output
S satisfying S < M+BR−1 < M+1. Hence, for none of the three algorithms does
a final subtraction take place nor is it necessary to obtain a fully reduced output,
except possibly when S = M occurs.

However, a loop output of S = M is almost impossible. For MonPro(M), this is
irreconcilable with the obvious properties 0 < S < M and S ≡ 0 mod M. When M
is square free, S ≡ 0 mod M implies T ≡ 0 mod M. In this case, a pre-condition
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of 0 ≤ T < M forces T = 0. Then the output of every modular multiplication is 0,
ensuring that S = 0, so that S = M does not occur. So exponentiation with MonPro
never uses even a single subtraction to achieve a fully reduced output. Otherwise,
with MonPro(R) or MonPro in the non-square-free case, a single subtraction may be
required to obtain a fully reduced output [11].2

16.5 Space and Time Comparisons

In this section, the time and space requirements of exponentiation methods using the
three modular multiplication algorithms are compared: the standard MonPro(B) with
conditional subtraction and bound B = M or R, and MonPro with no subtraction and
bound B = 2M or 1

2 R.
The radix of the number representations here is r = 2k where k is the native bit

length of words in the processor which performs the modular multiplication. Typical
word lengths are small powers of 2, such as 8-, 16-, 32- and 64-bit. Standard key
lengths for RSA normally coincide with multiples of these, such as 1024, 1536 and
2048. The same is true for many of the standard prime fields Fp used in elliptic
curve cryptography [8]. Consequently, to achieve the property M < R required for
MonPro(B) with minimal cost, the property R < 2M frequently holds as well, that
is, R is the smallest power of 2 greater than M. So, discarding the final subtraction
and using MonPro for exponentiation instead of MonPro(B) comes at an initial cost
of increasing the number of iterations n, probably by just 1, to ensure 4M < R = rn.

So, with standard key and word lengths and the minimal choice for n, the register
containing C in MonPro(B) needs to have one more bit or one more word than M
because loop output values can be up to M+B in magnitude where B = M or R.
Increasing n by 1 to make 4M < R with an input bound of B = 2M or 1

2 R generates
intermediate values also less than M+B, but this is still below R. So MonPro expo-
nentiation needs no extra words for the intermediate calculations. Indeed, it requires
only two more bits for C than for M. So the loops in the modular multiplications
of MonPro and MonPro(B) exponentiations have the same computational space re-
quirements in a fully word-based implementation, and MonPro uses only one more
register bit when the top word is reduced to contain only the bit positions that are
needed.

Because both manipulate the same number of words, there is also unlikely to
be any time difference between single loop iterations in MonPro and MonPro(B).
The topmost incomplete word or equivalent individual bits cannot be processed any
faster than full words because the clock speed is set to that of the slowest word
operation.

So the main time and space differences will be between the final conditional
subtraction when MonPro(B) is used for exponentiation and the extra loop itera-
tion when MonPro is used. A leak-resistant implementation of MonPro(B)

2 See Exercise 2 for the non-square-free case.
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exponentiation will always perform the subtraction, but needs an extra register to
hold the pre-subtraction value of C (the “minuend”) as well as its post-subtraction
value. On the other hand, being more complex than a subtraction, the extra iteration
of MonPro may require more time. Taking into account their relative complexity,
the loop iteration is most likely to take the same time as a subtraction or double
that time since the clock frequency will probably be chosen to make word-level
multiply accumulate and subtraction operations take the same time. At a theoretical
level, the subtraction itself might be equivalent to about half an extra loop iteration,
and selecting the result of the subtraction or its minuend equivalent to another half
of a loop iteration. This would make MonPro and MonPro(B) take essentially the
same time.

The subtractor itself may require significant extra dedicated hardware and asso-
ciated data manipulation may require extra time. Moreover, code size will be in-
creased by having to incorporate instructions for the subtraction. As observed in
Section 16.4, MonPro exponentiation requires no final subtraction, so that the extra
hardware and code may not be necessary, although it is likely that other crypto-
graphic operations on the chip will require them.

Although the precise cost will be implementation specific, this discussion indi-
cates that using MonPro(B) with its conditional subtraction will be more expensive
in hardware than using MonPro for exponentiation, and the time requirements are
essentially identical. In conclusion, exponentiation using MonPro with 4M < R and
no final subtraction is a cost-effective and straightforward solution to the problem
of side channel leakage from conditional subtractions.

16.6 Side Channel Analysis

A substantial embarrassment to many smart card manufacturers in the 1990s was the
public discovery that naı̈ve implementations of Montgomery’s algorithm can cause
substantial side channel leakage, enabling private keys to be recovered from fewer
than a 100 uses of the key [4, 12]. The main problem arises from the conditional
subtraction in MonPro(M) and MonPro(R) which, because of the length of keys, takes
a large number of clock cycles to complete. It is therefore very evident in any EMR
or power trace.

Nowadays there are many effective counter-measures to prevent such leakage,
not least of which is using MonPro for exponentiation rather than MonPro(M)

or MonPro(R). Another counter-measure is to modify MonPro(M) and MonPro(R)

slightly so that the subtraction is always performed. Then the original loop output
value C is kept, and the new or old value is selected according to the sign of the new
value. In this way the leakage is considerably reduced. Other counter-measures are
discussed in other chapters; here we limit ourselves to measuring the leakage from
MonPro(M) and MonPro(R) and varying the parameter R in order to minimise it.

Assume that an implementation of exponentiation using a public modulus and
private exponent is under attack and that all conditional subtraction events can be
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observed clearly through a side channel. First, we make the simple observation that
when the conditional subtraction occurs in one modular multiplication but not in
another, then the multiplications must involve different arguments. Suppose an at-
tacker can choose the input to an exponentiation with the secret key on the target
device and he can observe individual conditional subtractions. With knowledge of
the public modulus and exponentiation algorithm, he can also write a software sim-
ulation of the exponentiation which will generate the same sequence of conditional
subtractions when it has the same input and uses a correct guess at the secret key.
He then guesses the bits of the key in the order that they are consumed by the al-
gorithm. Whenever there is a difference between the conditional subtractions in the
side channel leakage and his simulation, he knows the operands at that point differ
between the two exponentiations. So he has guessed incorrectly and he backtracks
to change his most recent guesses; several previous bits may need to be adjusted.
Providing the subtractions occur with probability not too close to 0 or 1, he has a
good chance of recovering the whole of the private key in this way.3 Such an attack
uses leakage from a single exponentiation and can be applied to both RSA and ECC,
as well as other exponentiation-based protocols. The obvious counter-measure is to
blind the input text T before exponentiating.

Second, in elliptic curve cryptography, the classical formulae for point addition
and point doubling are so different that it is easy to distinguish them in side chan-
nel traces. Then, with an algorithm such as square-and-multiply, it becomes trivial
to read the pattern of adds and doubles and deduce the secret key. One counter-
measure is to use “unified” formulae for both doubling and adding, so that the same
sequence of field operations is performed in both cases. Unfortunately, for a point
doubling some pairs of these operations have identical arguments, whereas they are
different for point additions. When MonPro(M) or MonPro(R) is used to implement
the associated modular arithmetic, a difference in the behaviour of the conditional
subtractions indicates a point addition unequivocally, whereas identical behaviour
makes a point doubling more likely to be the case. With the shorter keys which oc-
cur in ECC, the attacker is left with a small search space of possible keys which it
is often computationally feasible to traverse [15]. This attack does not require the
opponent to be able to input data of his own choosing to the exponentiation although
it may require repeated use of the key until a sufficiently favourable exponentiation
occurs.

Third, a number of side channel attacks depend on recording the frequency of
the conditional subtraction at different points in an exponentiation algorithm over
a number of executions of it with different data and the same unblinded (secret)
exponent. In particular, as we see in the next section, the frequency is different for
squarings and multiplications. Hence repeated use of the square-and-multiply algo-
rithm with MonPro(R) (Figure 16.5) or MonPro(M), the same secret exponent and
random input data T , would enable the sequence of squarings and multiplications to
be deduced, and hence the bits of the secret key obtained.

3 In the next section we find that the probability of a subtraction is at most 1
2 and, by increasing R,

the probability can be made as close to 0 as desired.
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From this summary of attacks, it is clear that no implementation of Montgomery
modular multiplication or reduction should be allowed a final conditional subtrac-
tion which takes execution time which is not constant. The only exception is if
the subtraction is extremely rare – a case that may actually arise below for certain
choices of the parameters. Otherwise MonPro(M) and MonPro(R) should always per-
form their subtraction and choose the original or updated value as appropriate.

16.7 Frequencies of Conditional Subtractions

In this section we consider a set S of executions of MonPro(M) with common mod-
ulus M. The aim is to estimate the expected frequency of the conditional subtraction
for the main ways in which the set might have arisen. Then side channel leakage
about the conditional subtractions can be used to deduce which of the causes is the
most likely for S . The set might represent corresponding operations in a number of
different exponentiations using the same unblinded key, and the aim may be to de-
termine if these operations were all multiplications or all squarings. Similar results
can be obtained for MonPro(R), but they are considerably complicated by having
non-uniform distributions for the inputs and outputs: inputs and outputs have ranges
greater than M, so that some residue classes modulo M have more than one repre-
sentative.

As an example, consider the set of all MonPro(M) multiplications A×B modM
for M=7 and R=8. Since R−1 ≡ 1 mod M, the output C satisfies C ≡ AB mod M.
So, with ABR−1 as a lower bound, the outputs from the MonPro loop are those given
in Table 16.1. The overall frequency of the conditional subtraction is 5

49 . However,
restricting to squares A×A mod M, the frequency of the subtraction becomes 1

7 ,
which is a little greater. If the input A is fixed to A=5, then the probability of the
subtraction for random B rises to 2

7 . Different fixed values of A result in other quite
different probabilities.

There are three main types of set S to consider: those arising from squaring,
those arising from multiplications in which both arguments are free to assume any
values independently and those arising from multiplications in which one argument

Table 16.1 A modular multiplication table: unreduced outputs from MonPro(A,B) when M =
7,R = 8. The five bold entries require reduction.

0 0 0 0 0 0 0
0 1 2 3 4 5 6
0 2 4 6 1 3 5
0 3 6 2 5 8 4
0 4 1 5 2 6 3
0 5 3 8 6 4 9
0 6 5 4 3 9 8
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has the same value for the whole set. There are other sets of interest which are not
discussed. For example, none of the above matches the set of all multiplications
from a single m-ary or sliding windows left-to-right exponentiation (unless m = 2):
because one input, say A, is taken from a set of only log2 m distinct multipliers, it is
neither constant nor uniformly distributed.

Several reasonable, simplifying assumptions are made in order to derive the fre-
quencies of the subtraction for S . They are often very hard to justify theoretically,
but several are closely related to the diffusion properties on which the associated
cryptography relies. First,

• it is assumed that φ(M) ≈ M.

The “Euler phi” function having a value close to M means that M is a product of a
small number of large, not necessarily distinct, primes, as in the case of RSA and
Fp. The property φ(M) ≈ M just states that almost every number is prime to M.

Suppose input A of MonPro is prime to M. Then A has an inverse modulo M.
Therefore, if the other argument B has a uniform distribution modulo M, so will the
output C. So at least one input being uniformly distributed means that, to a very
good approximation, the output is also uniformly distributed. Such uniformity is
propagated from input to output through every instance of MonPro in an exponenti-
ation if the initial input is uniformly distributed. Due to formatting and construction
restrictions, the inputs to the exponentiation may not be uniform in practice, but dif-
fusion occurs so rapidly during exponentiation that, except possibly for the initial
one or two multiplicative operations, the uniformity can be assumed.

Let A, B and Z be discrete random variables over the interval of integers 0. . .M−1
corresponding respectively to the two MonPro(M) inputs and the variation in output
C of the MonPro loop within the interval [ABr−n,M+ABr−n[. Suppose

• A, B and Z are all independent and uniformly distributed

and let πmu be the probability that the final subtraction takes place. Then πmu

= pr(Z+ABR−1≥M) = 1
M3 ∑M−1

Z=0 ∑M−1
A=0 ∑M−1

B=0 (Z+ABR−1≥M) ≈ 1
M3 ∑M−1

A=0 ∑M−1
B=0

ABR−1 ≈ 1
M3

∫M
0

∫M
0 ABR−1dAdB where Z+ABR−1≥ M is 0 or 1 according to the

truth of the inequality. (The approximations arise from using real numbers instead
of integers and are very accurate for cryptographic-sized moduli.) So

πmu ≈
1
4

MR−1 (16.1)

This is the probability of the subtraction for a set S of multiplications under the
above hypotheses. Suppose the ith operation in a set of exponentiations is always
a multiplication and that the inputs to the exponentiations are uniformly distributed
modulo M. Then πmu is the probability of a subtraction when S is the corresponding
set of instances of MonPro(M).

Now let πsq be the probability that the final subtraction takes place when
MonPro(M) is used to square a uniformly distributed input. For the same definitions
as above, suppose
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• A and Z are independent and uniformly distributed.

Then πsq = pr(Z+A2R−1≥M) = 1
M2 ∑M−1

Z=0 ∑M−1
A=0 (Z+A2R−1≥M) ≈

1
M2 ∑M−1

A=0 A2R−1 ≈ 1
M2

∫M
0 A2R−1dA, whence

πsq ≈
1
3

MR−1 (16.2)

Unlike sets of multiplications, in practice most sets of squarings satisfy the criteria
to apply this value for πsq. Since πmu < πsq, the subtraction is less frequent for
multiplications than for squarings, as in the example with M=7.

Now suppose the value of A is fixed but the argument B is uniformly distributed
on 0 . . .M−1. Let πA be the probability that the conditional subtraction takes place.
For definitions as before, assume also that

• B and Z are independent and uniformly distributed.

Then πA = pr(Z+ABR−1≥M) = 1
M2 ∑M−1

Z=0 ∑M−1
B=0 (Z+ABR−1≥M)≈ 1

M2 ∑M−1
B=0 ABR−1

≈ 1
M2

∫M
0 ABR−1dB. Hence

πA =
1
2

AR−1 (16.3)

So, for fixed multiplier A, the frequency of subtractions depends strongly on its size.
For large A, such as 5 and 6 in the example with M = 7, the frequency is highest.
At the other extreme, note that the value is correct even for A = 0, although it is not
prime to M and so causes the output not to be uniformly distributed. As expected,
the average value of πA is πmu when A is uniformly distributed.

16.8 Variance in Frequencies and SCA Errors

If the frequency of the conditional subtraction is used to determine whether the
set S consists of multiplications or squarings, then the accuracy of the decision is
important to know.

Let Si be the set of ith modular multiplications in a collection of t square-and-
multiply exponentiations using the same 1024-bit key. So |Si| = t. There are about
1500 sets Si to classify in order to recover the bit pattern of the secret exponent. If
e errors are made, then, with a simple-minded approach in which every bit might
be one that has been misclassified, approximately 1500e different alternatives might
have to be tried before the correct exponent is discovered. Of course, operations for
sets Si with frequencies close to the average of πmu and πsq are the most likely to
be mis-classified, and the search should begin there. This would find the correct key
much more quickly. Nevertheless, it is clear that the error count e has to be kept very
small for this to become the foundation of a computationally feasible attack.

Assuming the inputs to the t exponentiations are independent, the conditional
subtractions should occur independently within each Si. Then the behaviour is that
of a binomial random variable for t trials with probability p = πmu or πsq. The
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expected number of subtractions is t p and its variance is σ2 = t p(p−1). To make
use of tables for the normal distribution, it is more likely that we will prefer to work
with the probability of the subtraction rather than its total count. In this case, the
mean is p and the variance is

σ2
mu =

1
4t

MR−1(1−1
4

MR−1)

σ2
sq =

1
3t

MR−1(1−1
3

MR−1)

or

σ2
A =

1
2t

AR−1(1−1
2

AR−1)

The point at which classification as a squaring or multiplication is equally likely
is the weighted average

π =
πsqσmu + πmuσsq

σmu + σsq
(16.4)

If the conditional subtraction occurs less often than this in Si then the set proba-
bly contains multiplications; if it is greater then the set probably contains squarings.
The probability of making an incorrect decision can be obtained by looking up ta-
bles for the normal distribution, which approximates the binomial distribution when
t is large. It uses the fact that if X is a normal random variable with mean μ and
variance σ2, then σ−1(X−μ) has the N(0,1) distribution, which is tabulated [7]. So,
the probability of the count being on the wrong side of π is easily seen to be approx-
imately Pr(Z >

πsq−πmu
σmu+σsq

), where Z is an N(0,1) random variable. This is the average
probability of mis-classifying an operation, but clearly the operation is much more
likely to be correctly classified when its subtraction probability is well away from π
than when it is close to π .

This error probability is roughly Pr(Z >
√

t
13.2) for a typical value of MR−1 ≈ 3

4 .
Then t > 1800 would lead to less than 1 error in the 1500 or so operations for a
1024-bit exponentiation. If R is doubled, the value of interest in the N(0,1) tables
is divided by about

√
2. Then around 18 errors appear. More refined attacks on the

same data can deduce the key with many fewer exponentiations [14]. However, as
the example shows, a very suitable counter-measure is to reduce MR−1 by increasing
R, because this reduces the incidence of conditional subtractions and hence reduces
the side channel leakage.

16.9 A Surprising Improvement

The formulae for πmu and πsq show that one of the easiest ways to reduce leak-
age is to reduce MR−1. Since the bit length of M is generally fixed, this means
increasing the number of iterations n in the Montgomery modular multiplica-
tion algorithm MonPro (Figure 16.2). This reduces the frequency of conditional
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subtractions. However, as noted in the last paragraph of Section 16.4, MonPro can
be used for exponentiation on its own without the final conditional subtraction once
MR−1 < 1

4 . This is because the extra shifting down then makes the output small
enough for re-use as an input to the next occurrence of MonPro.

A straightforward solution to side channel leakage would be to reduce standard
key lengths by 2 bits. Then 4M < R would hold automatically for the minimum
choice of n in a word-based implementation. Consequently, MonPro could be used
throughout an exponentiation without the need for extra iterations or conditional
subtractions, and all intermediate values would remain within the word boundaries.
However, suppose that M reaches the top of the word boundary, so that MonPro
requires one more iteration than MonPro(M) or MonPro(R). We will now look in
more detail at how this affects the bounds on intermediate values when MonPro is
used.

So, assume also that the word size is at least 2 bits and that n is chosen min-
imally to ensure 4M < R. This means r ≥ 4 and rM < R < 2rM. Let R′ denote
the Montgomery multiplier which the standard version MonPro(M) or MonPro(R)

would have used. So R = rR′ and M < R′ < 2M. This standard version produces
loop outputs bounded by ABR′−1+M, which is only just larger than R′. But here
MonPro performs an extra division by r. Consequently, the upper bound ABR−1+M
on the output is less, making it more likely to satisfy ABR−1+M < R′. An interesting
question is therefore whether all inputs and outputs would be bounded by R′ when
the extra iteration is performed, because the hardware requirements would then be
lower. Substituting in the bound R′, the desired property holds if R′r−1+M < R′,
i.e., if M < R′(1−r−1). Writing this as M < R′r−1(r−1) shows the condition is just
that the top word of M is not r−1, i.e., not entirely 1s.

Theorem 16.1. ([13], Thm 5.) Suppose the top digit of M is not r−1, that r ≥ 4
and that MonPro is executed with n iterations where M < R′ = rn−1, i.e., one more
iteration than normal. Then inputs bounded by R′ generate outputs bounded by R′.

In other words, in almost all cases M is such that a single extra iteration of the Mon-
Pro loop avoids any need for a conditional subtraction. In effect, it is equivalent to
using MonPro(R′) but without the conditional subtraction side channel. Intermediate
values of C at the end of a loop iteration in MonPro are bounded above by A+R′ so
that, as usual, one extra register bit is needed.

If one is prepared to exclude the rare cases of inconvenient moduli M with top
digit r−1, this means that exponentiation can be carried out successfully using Mon-
Pro with the usual register sizes and omitting conditional subtractions, providing
only that an extra iteration is done in the MonPro loop. Of course, at the end of the
exponentiation there is also no need for a conditional subtraction: as noted before,
the adjusting MonPro multiplication by 1 reduces the output to less than M.

With the extra iteration, the exceptional cases can be included simply by restor-
ing the conditional subtraction, i.e., by using MonPro(M) or MonPro(R′) with an
incremented value of n. Then, as in Section 16.7, Equation (16.3), the output can be
assumed to be uniformly distributed modulo M, so the probability of exceeding M
or R′ is at most 1

2 r−1. With a typical key lifetime of 10000 uses, and the difficulty
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of capturing that number of side channel traces, we just require 16-bit or larger
words for the conditional subtraction to have negligible probability of happening
even once per key bit during the lifetime of the key. This effectively eliminates the
side channel leakage since there is insufficient data at the information theoretic level
to reconstruct the key. To summarise, MonPro(B) (B=M or R′) can be used securely
for exponentiation with all keys if an extra iteration is performed and a 16-bit or
larger processor is used.

16.10 Conclusions

This chapter has carefully derived input and output bounds for several versions of
Montgomery modular multiplication in order for it to be of use in exponentiation.
Some pre- and post-processing is necessary, and the pre-computation of a multiplier
R(2) whose one-time cost can be amortised over the lifetime of the modulus M.

This analysis enabled the frequencies of conditional subtractions to be deduced
accurately, showing that there could be considerable side channel leakage from the
ability to observe the subtractions.

It was shown how this side channel could be closed by increasing the number
of iterations in the MonPro algorithm. At the further cost of one extra register bit,
or the exclusion of some extreme modulus values, the conditional subtraction can
be totally eliminated. However, even if the conditional subtraction were retained
to include the exceptional cases, the extra iteration reduces the side channel to an
unusable level except for these extreme moduli on hardware with a very small word
size.

The chapter therefore provides several choices for implementing Montgomery
modular multiplication in a manner which effectively eliminates any side channel
leakage emanating from the final, conditional subtraction.

16.11 Exercises

1. a. Find 16−1 mod 11. Using the output bounds given in Figure 16.2, compute a
complete table of output from MonPro when M = 11, R = 16 and A and B are
least non-negative residues modulo M.

b. Use this table to determine the probability of the conditional subtraction in
MonPro(M) for (a) multiplications and (b) squarings which have uniformly
distributed inputs. (c) For each value of A calculate the probability of the sub-
traction for multiplications by fixed A. (d) Compare these probabilities with
the theoretical ones derived in Section 16.7.

c. Repeat (b) with MonPro(R) in place of MonPro(M) (including part (d)).
d. Compute a complete table of output from MonPro when M = 7, R = 32 and

A and B are strictly bounded above by 2M. What is the largest value in the
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table? For each value B = M,M+1, ...,2M−1, if both inputs are strictly less
than B, find out how many outputs are B or larger.

2. a. Let M = 9, T = 3, N = 2, R = 16 in the computation of S = T N mod M using
MonPro(R). Find R−1 mod M and determine the two possible values for R(2).
Deduce the values of T and S. Hence show that the output S still requires a
final subtraction to be fully reduced. Why does this not contradict the claim
in the text that final subtractions are unnecessary?

b. Repeat (a) for the same inputs but with MonPro and R = 64.
c. Prove that using MonPro or MonPro(R) to compute S = 3N mod 9 will always

give output S = 9 when N ≥ 2 and R satisfies the usual constraints.
d. Suppose P is a prime such that P2 divides M, T = M/P and N ≥ 2. With the

usual requirements on R, prove that using MonPro or MonPro(R) to compute
S = T N mod M will always give output S = M.

3. Let N = DDMMYY be today’s date (a pseudo-random exponent), M the first
prime greater than the number of this page, R the first number greater than 9

8 M
which is prime to M and chosen input text T = � 1

4 M�.

a. Use a calculator to compute a value for R(2) and hence calculate the pre-
processing value T given by MonPro(M) for an exponentiation.

b. Convert N into binary and hence list the operations required to perform a
left-to-right square-and-multiply exponentiation with exponent N. Use this
list to create a list of the associated values of S when MonPro(M) is used to
evaluate T N mod M. Include in the list information about whether or not the
conditional subtraction occurs.

c. Now, using the values for T , R and M, reconstruct all the possible exponents
which generate the same list of the conditional subtractions as N. You should
create a binary tree of options for the bits and traverse the tree systematically,
calculating the corresponding values of S and checking to see whether or not
the behaviour of the conditional subtraction is the same. When the behaviour
of the subtraction is different, the branch can be pruned as it cannot represent
the true value of N.

d. Count the number of nodes in the tree which have been visited. Build an argu-
ment to justify that this number is linear in the length of the exponent. Is such
a search computationally feasible for a large exponent? What would happen
to this count if (a) R/M were larger? or (b) T/M were larger?

16.12 Projects

1. Choose any modulus M with no factors less than 28, say, such that (M−1)2 mod
M can be computed correctly and easily in the machine arithmetic that is avail-
able to you. Select a Montgomery constant R > M. R need not be a power of 2
for this exercise, but must be prime to M.
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a. Write a program to perform exponentiation with 16-bit exponents using
MonPro(M).

b. Check that your code performs correctly by comparing results with a classical
implementation of modular exponentiation.

c. Check also that no final subtraction is required to get output less than M.
d. Modify your code to collect data about the occurrences of the conditional

subtraction in the ith modular multiplication for each i. (Clearly 1 ≤ i < 32.)
e. Generate t = 103 random exponentiations using the same modulus and same

exponent and collect the conditional subtraction frequencies for each position
i in the exponentiation.

f. Verify that the frequencies match those expected from Section 16.7, at least
on average.

g. Compute the means and standard deviations of the frequencies for (a) the
multiplications and (b) the squarings. Hence compute the value of π given in
Equation (16.4).

h. Use your value for π to partition the operations into multiplications and squar-
ings. How many operations are mis-classified in this way? If the number of
multiplications is known and used as the partitioning point, how many are
mis-classified then?

i. Repeat (e)–(h) several times for different numbers of exponentiations to see
how the number of mis-classified operations varies with t.

2. a. Repeat Project 1 with MonPro(R) in place of MonPro(M), this time selecting R
such that (R−1)2 mod M is easily computable on your available machine.

b. Divide the interval [0,R] into, say, 50 or 100 sub-intervals and modify the ex-
ponentiation code to collect the frequencies for the output of MonPro(R) lying
in each sub-interval. Plot these frequencies on a graph for several different
values of M such that 1

2 R < M < R. Explain why the curve representing these
frequencies rises from 0 to R−M, is horizontal between R−M and M and then
falls from M to R.

c. Modify your data collection in (ii) to separate the sub-interval frequencies for
multiplication outputs from those of squaring outputs. Are the graphs of these
frequencies different? If so, attempt to explain the difference.

3. Collect subtraction frequencies from the exponentiation software from Projects
1 or 2 when the same modulus and exponent are used for a set of t = 103 expo-
nentiations.

a. Use the length of the exponent (16 here) and the total number of modular
multiplications in an exponentiation to deduce the number m of multiplica-
tions and the number s of squarings.

b. Let M be the set consisting of the m operations with the lowest frequencies
for the conditional subtraction, and let S be the complementary set consisting
of the other s operations. As before, count how many operations are mis-
classified if those in M are assumed to be multiplications and those in S are
assumed to be squarings.



448 Colin Walter

c. Modify your software to collect the data from the ith operation as a t-
dimensional vector over {0,1}where 0 indicates that no subtraction took place
and 1 that a subtraction did take place. Call the vector vi. For each operation,
compute the average Hamming distance between vi and the vectors in M .
Does this distance depend on whether the operation is a multiplication or a
squaring?

d. Suppose the m operations for which the distance of part (iii) is smallest rep-
resent multiplications. Re-allocate all the operations in M and S under this
assumption. Does this decrease the number of errors?

e. Repeat the re-allocation process of part (d) a number of times and observe
whether the number of errors decreases or increases with each iteration of the
process.

f. Repeat a similar re-allocation process on the initial partition of part (b) using
the average Hamming distance of vi from the vectors in set S .

g. Inconsistencies between the results of (v) and (vi) must represent allocation
errors in one or the other case. However, are there any operations which are
still incorrectly allocated? If not, reduce the value of t to see when errors start
appearing. If so, increase t to see if the number of errors decreases. Also, how
does the number of inconsistencies vary with t?

h. Repeat all the above for exponents with a variety of larger and larger lengths.
Does the proportion of errors change as the length increases when t is fixed?
How does the total number of errors vary for fixed t as the length varies?

4. Following on from Exercise 2, investigate more thoroughly the cases where the
computation of S = T N mod M using MonPro(M) might require a final condi-
tional subtraction in the post-processing phase. Look first at when M is a prime
power, then at more general non-square-free M.
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Chapter 17
Randomized Exponentiation Algorithms

Colin D. Walter

17.1 Introduction

A randomized algorithm for function f takes the usual inputs for f together with a
stream of random numbers and combines them in a way such that partial or complete
knowledge of the atomic operations used to compute f does not easily reveal the
values of some or all inputs. The output of f is still computed correctly, but the
value is independent of the random input stream.

In this chapter we consider randomized algorithms for the exponentiation func-
tion and assume that side channel leakage reveals a certain level of partial knowl-
edge about the arithmetic and read/write operations performed on the manipulated
big numbers. Our object is to make it computationally infeasible for an attacker to
use this information to deduce the secret exponent during its use over the lifetime of
a cryptographic token.

For example, in the usual square-and-multiply algorithm (Figure 17.1, [6]), full
knowledge of the sequence of squares and multiplies immediately determines the
complete exponent uniquely. Specifically, there is an exponent bit for every square;
and every time the square is followed by a multiplication the bit must be a 1, whereas
it must be a 0 when the square is followed by another square.

As a rule, leaked information is rarely without error; a number of squares may be
incorrectly recorded as multiplications and vice versa. Hence there is normally some
error correction to be performed. If the number of errors is small enough, a search of
nearby keys will discover the true value D in a computationally feasible time. Its cor-
rectness can be confirmed easily by using the corresponding public key E and the re-
lation PED = P. Traversing the search space must often be done intelligently, select-
ing the most probable alternatives first in order to have any hope of finding the key.

In typical protocols using RSA [13], the same secret key D is re-used a number of
times, during which it may or may not be possible to blind it by, for example, adding
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Inputs: M, bit representation of D = dn−1dn−2 . . .d2d1d0

Output: C = MD

C ← 1
For i ← n−1 downto 0 do
Begin

C ←C2

If di �= 0 then C ←C ∗M
End

Fig. 17.1 Square-and-Multiply Exponentiation.

a random multiple of φ(N) where N is the public modulus. Data about the atomic
operations can be accumulated over repeated use of the secret key and might be
combined successfully to reveal the key. However, many protocols, such as ECDSA
[2], generate a fresh random number on each occasion for use as the secret key. In
this case there is only one chance to obtain the key and, moreover, it may be prac-
tically impossible to extract useful side channel information from the cryptographic
token at the same time as using it to perform a real signature. Thus there is a variety
of contexts for which protection against leakage is desirable. Different randomized
algorithms are appropriate for these, and they have differing costs in terms of exe-
cution time and space, and code size, as well as demands on the supply of random
numbers.

The body of this chapter describes the main randomized algorithms for expo-
nentiation, provides an overview of possible attacks on them under likely leakage
models, and considers how the inevitable errors affect results. One corollary of the
definition of a randomized algorithm is that successive uses of the same inputs will
result in different sequences of operations. Consequently, Kocher’s averaging over
many uses of the same key will prove useless [7]. However, we motivate the discus-
sion further by showing how leaked data might be combined in Kocher-like fashion
to extract operator and operand information from a single use of a secret key. This
contrasts with attack details in earlier chapters where such information was only
obtained after averaging over many applications of the same key. We also conclude
with the important but counter-intuitive result that use of longer keys may actually
weaken a cryptosystem rather than strengthen it when side channel leakage occurs.

17.2 The Big Mac Attack

This attack [16] applies to m-ary exponentiation (Figure 17.2, [6]) and to all similar
algorithms which use a table of pre-computed digit powers of the input ciphertext C.
Big Mac is so-called because the digits di of the secret key are determined individ-
ually and independently, just like the flavours tomato, beef burger, lettuce, cheese,
etc. of different layers in a certain well-known fast food product which is too large
to be consumed in any other way.
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Inputs: M, base m representation of D = dn−1dn−2 . . .d2d1d0

Output: C = MD

Pre-computation of the table:
M(1) ← M
For i ← 2 to m−1 do M(i) ← M ∗M(i−1)

Exponentiation of the message:
C ← 1
For i ← n−1 downto 0 do
Begin

C ←Cm

If di �= 0 then C ←C ∗M(di)

End

Fig. 17.2 m-Ary exponentiation.

Using the notation of Figure 17.2 in which the exponent has a representation in
base m, the attacker first has to distinguish the processes C ← Cm of raising to the
mth power and C ←C∗M(di) of multiplication by the digit power of M. He must then
partition the multiplications into disjoint sets for which the digits di have the same
values. The method for doing this is intimated below. Normally m will be a power of
2 so that raising to the mth power is a sequence of log2 m squarings. For convenience,
we will assume that the mth power can be detected by recognizing squares from
multiplies. Once the partitioning has been performed, there are (m−1)! ways of
associating specific different digit values with the m−1 sets of multiplications. One
of these choices will yield the sought key. In fact, the pre-computations can be used
to determine the map from sets of multiplications to digits.

The background to the attack is the fact that the power consumed by a hardware
multiplier depends to some extent on the Hamming weight of the inputs [21]. This
means that if we were to look at the averaged power trace for a large number of
word-by-word multiplications a×b where a varies randomly and b is fixed then
we would obtain a result which is, at least to some extent, characteristic of b. For
standard classical multipliers, averaged traces for words b of equal Hamming weight
will be closer together than those for words of different weights. However, all we
need for the attack to succeed is for the power trace to vary measurably between
enough groups of word values. This depends mostly on the experimental technique
and the trouble and expense to which attacker and designer are prepared to go. With
a bit of experimentation, one can associate a probability of b having a particular
value for a given average trace.

The idea behind the attack is to apply the usual averaging process of Kocher’s
power analysis [7] to digit × big integer multiplication traces rather than to expo-
nentiation traces. Kocher takes a number of exponentiation traces associated with
the same secret exponent and arranges them so that parts corresponding to the
same exponent digit are aligned. He then takes an average to improve the signal-
to-noise ratio. Here we cut the trace of C ←C×M(di) into sub-traces corresponding
to constituent operations C ← shi f t(C)+ c j ×M(di) where c j is a word-level digit
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of C, i.e., a group of consecutive bits of C used as a single input to the hardware
multiplier of the cryptographic token. These sub-traces (one for each j) are aligned
and averaged to give a trace which should be characteristic of M(di). The depen-
dency on the words c j of C is averaged away. This is done for all n digits of the key
D. The n averaged traces are compared using the Euclidean distance between them.
It turns out that traces for which the digits have the same value are close together
whereas those for different valued digits are noticeably further apart. This enables
the partitioning to be performed.

Typically in RSA the inputs C and M will have around 1024 bits and an 8- or
16-bit hardware multiplier will be used. This means that C will be broken into about
64 words, and this is the number of traces which are averaged. Unless C has a really
exceptional value (such as 0), this is enough to remove any dependency on C in the
averaged trace. Moreover, as M(di) also has about 64 words, it is very unlikely that a
pair of them will share enough digits of similar characteristics to be confused when
their averaged traces are compared.

The same technique is applied to distinguish the squarings (or multiplications)
used in obtaining the mth power of C. In this case the averaged trace is that of
a random operand C′ rather than that of M(i) for some digit value i. This trace is
not close to that of any of the multiplications involving M(di) nor to any of the
operands used in the other mth power computations. Hence, when the partitioning
process is applied to all multiplications in the exponentiation, including those in
the mth powers, we can identify the mth power computations and group together
the sets of multiplications for which the same exponent digit has been used. So,
unless the key lengths are small and the multipliers are large, one might expect the
digits di, and hence the key D, to be recovered more or less accurately from a single
exponentiation.

17.3 Digit Representation and Exponentiation Algorithms

All of the randomized exponentiation algorithms in this chapter depend on a ran-
domized recoding of the binary representation of the secret key D. This is done by
one of the change-of-base algorithms in Figures 17.3 and 17.4, the latter being a
more complex version of the former in which the base m can be randomly varied
instead of being fixed. In both figures the function mod′ includes a random input
which allows a limited number of alternative output digits di subject to the prop-
erty that the division (D−di)/m, resp. (D−di)/mi, in the next line is exact. So the
outputs satisfy

D =
n−1

∑
i=0

dim
i = ((. . . (dn−1m+ dn−2)m+ · · ·+ d2)m+ d1)m+ d0 (17.1)

and

D = ((. . . (dn−1mn−2 + dn−2)mn−3 + · · ·+ d2)m1 + d1)m0 + d0 (17.2)
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respectively.

Inputs: D ≥ 0, base m > 1
Outputs: n, base m representation of D = (dn−1 . . .d2d1d0)m

i ← 0
While D > 0 do
Begin

di ← D mod′ m
D ← (D−di)/m
i ← i +1

End
n ← i

Fig. 17.3 Change-of-base algorithm for fixed base.

Input: D ≥ 0
Outputs: n, base sequence mn−1 . . .m2m1m0, digit sequence dn−1 . . .d2d1d0

i ← 0
While D > 0 do
Begin

Select base mi

di ← D mod′ mi

D ← (D−di)/mi

i ← i +1
End
n ← i

Fig. 17.4 Variable base representation algorithm.

Figure 17.3 just provides the usual, standard representation to some (fixed) base
m when mod′ is taken to be the usualmodfunction which returns the least non-
negative remainder on division by m. So m = 2 will give the binary representation,
and m = 10 the decimal version of D. With this fixed choice for mod′, successive
executions of the algorithm will always give the same representation. It yields the
normal m-ary exponentiation algorithm when the digits are fed into the exponentia-
tion algorithm given in Figure 17.5.

A well-known example of the application of Figure 17.4 is in the sliding windows
exponentiation algorithm. As before, take mod′ to be the mod function. The base mi

is chosen to be m = 2r if the remaining, unrecoded part of D is odd, and to be 2
otherwise. This gives windows of r or 1 bits. The digits for the r-bit windows are all
odd and those for the 1-bit windows are all 0. When these are fed into Figure 17.5,
the sliding windows exponentiation algorithm is obtained.
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Inputs: M, representation of D = dn−1 . . .d2d1d0
with respect to bases mn−1 . . .m2m1m0

Output: C = MD

Pre-computation: a table containing M(d) = Md for each digit value d
C ← 1
For i ← n−1 downto 0 do
Begin

C ←Cmi

If di �= 0 then C ←C ∗M(di)

End

Fig. 17.5 Left-to-right exponentiation.

The m-ary and sliding windows algorithms process the bits or digits of the expo-
nent D from left to right, i.e., from most to least significant. However, the square-
and-multiply algorithm for exponentiation can also process the digits in the opposite
order, as in Figure 17.6. The cost difference between the two directions for base 2
is almost entirely context specific, depending on, for example, how one moves data
around in registers.

However, for larger m, the left-to-right and right-to-left versions of the exponen-
tiation algorithm allow one to trade memory requirements for execution time. The
left-to-right version requires space for the pre-computed powers of M but the right-
to-left version has to spend time computing the digit powers of M (which has a new
value) at each loop iteration.

For cryptographic purposes it is usually desirable to recode the exponent in
the same order as the digits are consumed in the exponentiation. That means us-
ing the change-of-base algorithms here with the right-to-left exponentiation algo-
rithm. The high point of this chapter is the MIST algorithm which does things in
this order. If the opposite order is desired and D is stored in binary, then the new

Inputs: M, representation D = dn−1 . . .d2d1d0
with respect to bases mn−1 . . .m2m1m0

Output: C = MD

C ← 1
For i ← 0 to n−1 do
Begin

If di �= 0 then C ←C ∗Mdi

M ← Mmi

End

Fig. 17.6 Right-to-left exponentiation.
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Input: Binary representation of D = bz−1 . . .b2b1b0 ≥ 0
Outputs: n, base sequence m0m1m2 . . .mn−1, digit sequence d0d1d2 . . .dn−1

i ← 0
carry ← 0
While z > 0 do
Begin

borrow ← carry
Choose window size ri ≤ z
if ri = z then carry ← 0 else choose carry
mi = 2ri

di ← borrow×mi +(bz−1 . . .bz−ri )2− carry
i ← i +1
z ← z− ri

End
n ← i

Fig. 17.7 Variable base recoding algorithm.

bases must be powers of 2, and the change of base is achieved by recoding groups
of bits from left to right, as in Figure 17.7. Of course, this makes raising to the
power m particularly easy, but the subscripts are inevitably reversed from normal
terminology, giving D = ((. . . (d0m1+d1)m2+ · · ·+dn−3)mn−2+dn−2)mn−1+dn−1.
As we see shortly, this is used very imaginatively in Itoh’s overlapping windows
method [4].

17.4 Liardet–Smart

For elliptic curves, Liardet and Smart [8] suggested using the variable base re-
coding of Figure 17.4 where the base selection is a randomly chosen power mi = 2ri

of 2 bounded above by ri ≤ R. This choice is detailed in Figure 17.8 where
Random(R) returns a randomly chosen integer in the interval [1,R]. The function
mod′ of Figure 17.5 is deterministic, being the (signed) residue of least absolute
value (taking 1 when D is odd and ri = 2).

The recoding is used in left-to-right exponentiation applied to perform point
multiplication in an elliptic curve context. So the terminology becomes “addi-
tions” and “doublings” instead of “multiplications” and “squarings”. Then the pre-
computed table of Figure 17.5 need only contain the odd multiples of the input
point up to 2R−1: negative digits are dealt with by a point subtraction of the cor-
responding positive multiple of the input point. So the space efficiency is that of a
sliding window with (R−1)-bit windows for which all digit multiples have to be
computed.
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If Random(R) were to have a uniform distribution over [1,R] then the average
window size for the odd digits would be (R+1)/2. So the time efficiency of the
algorithm would be close to that of the equivalent sliding windows algorithm whose
window size is (R+1)/2. Of course, the distribution of bases could be biased to
favour larger values in order to increase execution efficiency.

As the windows now occupy arbitrary positions in the addition/doubling se-
quence, there will be both adds and doubles in any given position of the side channel
traces if the same key is re-used. This should make it virtually impossible to deduce
meaningful information from averaging a number of traces. Moreover, if the pat-
tern of adds and doubles can be determined for a single use of the key, there is
still the problem of identifying which digit occurs. Even more difficult is to dis-
tinguish the sign of the occurring digit because the same operands are used for
both signs.

This is an excellent algorithm for protocols such as ECDSA [2] where the se-
cret key is used just once, provided there is not too much side channel leakage.
There is an exercise at the end of the chapter to determine the computational cost of
key recovery under an expected leakage model. If the classical algorithms for point
addition and point doubling are used then the different numbers and types of the
constituent field operations could lead to a very accurate determination of the se-
quence of adds and doubles. So balanced code [1] may be advisable in combination
with this algorithm.

Inputs: D,R
Output: mi

If (D mod 2) = 0 then mi ← 2
else
Begin

r ← Random(R)
mi ← 2r

End

Fig. 17.8 Liardet–Smart base selection.

Table 17.1 Some recodings of 13 = 11012 with R = 3 and their add/double traces.

4 3 2 1 0 4 3 2 1 0

1 1 0 1 DA DA D DA
1 – 1̄ 0 1 DA D DA D DA
– – 3 0 1 D D DA D DA

1 1 – 1 DA DA D DA
1 – 1̄ – 1 DA D DA D DA
– – 3 – 1 D D DA D DA
1 0 – – 3̄ DA D D D DA
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17.4.1 Attacking the Algorithm

If the secret key is re-used unblinded, and the pattern of adds (A) and doubles (D)
is leaked with few errors, then the situation is less happy. An example is given in
Table 17.1 where possible digit sequences on the left are spaced out to indicate
the intervening doubling operations, and the corresponding operation sequences,
referred to as “traces”, are given on the right. So − − 3̄ indicates base 23 with digit
−3 and the corresponding sequence of adds and doubles is D D DA. By pairing each
A with a “D”, corresponding Ds are aligned with their associated bit position given
at the head of each column. For uniformity, there is an initial . . .DA for the leading
non-zero digit, although efficient code would omit it.

In order to determine the value of bits at position i or just above, we will ignore
the parts of the traces to the right of position i. For simplicity, assume this part is
deleted, i.e., the i rightmost occurrences of D are removed, and any As therein. Next,
partition the trace segments into two sets, TrA

i and TrD
i , according to whether their

rightmost operation (in position i) is A or D. Assume there are enough traces to
show all the possible patterns of adds and doubles around this position. If only D
occurs (i.e., TrA

i is empty), then the ith bit must be 0 since the representation using
only base 2 would generate A if the bit were 1. The same argument applies if only
A occurs. So the bits of index 0 and 1 must be 1 and 0, respectively, in the example
of Table 17.1.

Write Di for the value of the input binary key D from the most significant bit
down to, and including, bit i. Then the traces in TrA

i represent the value Di or Di +1
according to whether the next (i.e., less-significant) digit is non-negative or not.
Clearly, as digit di is odd for these traces, it must be the odd one of the values Di

or Di + 1 which is represented. So the bit pattern in the number represented by
the traces TrA

i is identical to that in Di with the sole possible exception of position
i. Assuming there are enough traces for base 2 to have been chosen at position i,
we will have A at position i+1 if, and only if, the bit is 1 at that position. This
can be seen in Table 17.1 where we can use this to deduce the values of bits in
positions 1 and 3. In fact, we can have no more As until the next bit which is 1. So
we can deduce that bit 2 is 1 from the trace set TrA

0 . As the first trace only goes
up to position 3, we know the input has at most 4 bits, all of which have now been
determined.

An attacker may only be able to make, say, 10 measurements with enough accu-
racy to deduce the patterns of adds and doubles. Consequently, a few bits may be
undetermined [19]. (If the arguments are performed carefully, none should actually
be incorrect.) However, it then requires surprisingly little computational power to
deduce the key.

On the other hand, if adds can scarcely be distinguished from doubles, life is
much more difficult for the attacker. His main problem in performing this attack
is to align the doubles. Without the ability to do this, the sub-traces corresponding
to given key bits cannot be aligned. Their random movement within side channel
traces seems to average away useful information except at the key ends. He could
select the very longest traces to guarantee only base 2 was used and average them
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to deduce their common pattern, but, of course, there will be no such traces because
the probability of generating them is too small for cryptographic-sized keys. So,
overall, any uncertainty over interpreting the side channel leakage seems to increase
dramatically the difficulty of extracting the key.

In conclusion, this algorithm should only be used after careful regard to its con-
text. In particular, it should not be employed where the same key is used repeatedly
without blinding unless side channel leakage is low.

17.5 Oswald–Aigner Exponentiation

Another randomized algorithm was proposed by Oswald and Aigner [11]. For ease
of presentation, the description here is slightly modified. The base is fixed at m =
2 and the digit set is {−1,0,1,2}. In the digit recoding phase (Figure 17.3), the
randomization occurs in the digit selection function mod′ which chooses –1 or 1
when D is odd and 0 or 2 when D is even. However, choice is only possible in certain
cases: 2 is only allowed when the previous non-zero digit was −1, namely when a
“Carry” has been propagated to obtain the next value of D in the recoding; and −1
is only allowed when there is no such Carry being propagated. Termination is forced
by selecting 1 if D = 1 and 2 if D = 2. This is described in detail in Figure 17.9, and
some recodings of 29 are given on the left side of Table 17.2.

Input: D ≥ 0
Outputs: n, and representation of D = (dn−1 . . .d2d1d0)2

i ← 0
Carry ← False
While D > 0 do
Begin

If D = 1 then di ← 1 else
If D = 2 then di ← 2 else
If Carry then
Begin

If (D mod 2) = 1 then di ← 1 else di ← 0 or 2
If di �= 0 then Carry ← False

End
else
Begin

If (D mod 2) = 0 then di ← 0 else di ← 1 or −1
If di = −1 then Carry ← True

End
D ← (D−di)/2
i ← i +1

End
n ← i

Fig. 17.9 Oswald–Aigner digit generation.
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For exponentiation, the right-to-left method of Figure 17.6 is preferred because
the digits are then consumed in the same order as they are generated. In an elliptic
curve context, the digit −1 causes no problems as point subtraction is as easy as
point addition. The digit 2 is processed by re-ordering the loop iteration to perform
the point addition (with digit di = 1) after the point doubling instead of before it.
Hence the space efficiency matches that of the equivalent square-and-multiply algo-
rithm. On average half the recoded digits are odd (+1 or –1) and half are even (0 or
2). More precisely, the digits {−1,0,1,2} occur in the ratio 1

8 : 3
8 : 3

8 : 1
8 . So the aver-

age time efficiency is a little poorer than square-and-multiply because occurrences
of digit 2 are more expensive than those of digit 0.

17.5.1 Attacking the Algorithm

As in the attack on the Liardet–Smart algorithm, suppose that adds (A) can be distin-
guished from doubles (D) reliably in each execution of the exponentiation procedure
and that the same key is used many times unblinded as the exponent.

Again, the behaviour of the algorithm at any point depends on the local bit pattern
in the binary representation of the key. This bit pattern is reflected in a restricted set
of patterns over {A,D}. From these, the bit pattern can be deduced. For example,
the pattern DAAD only arises from the recoding 12 or 1̄2 (more significant digit
on the left). This means a corresponding bit pattern 111 must occur in the binary
representation: the middle 1 is needed to generate the digit 2 using a Carry which
can only come from the bit on its right being 1, and a 1 is needed on its left to give
the recoded digit 1 or 1̄. This occurs for some traces representing the top three bits
in Table 17.2.

Now suppose there are enough traces to generate every possible pattern of oper-
ations near a given bit position. From the previous paragraph, we will know every
occurrence of 111. Also, the bit pair 00 always causes two doublings with no in-
tervening addition, but for every other bit pair an intervening add is possible. So
we can identify every occurrence of 00. Thus 00 cannot occur in the example of
Table 17.2. Furthermore, the bit pattern 10 always has one A between the Ds of its
two bit positions whereas every other bit pattern allows the Ds to be adjacent for

Table 17.2 Recodings of 29 = 111012 and their traces, both generated right to left.

4 3 2 1 0 4 3 2 1 0

1 1 1 0 1 DA DA DA D DA
2 1̄ 1 0 1 AD DA DA D DA
1 2 1̄ 0 1 DA AD DA D DA
2 0 1̄ 0 1 AD D DA D DA
1 1 1 1 1̄ DA DA DA DA DA
2 1̄ 1 1 1̄ AD DA DA DA DA
1 2 1̄ 1 1̄ DA AD DA DA DA
2 0 1̄ 1 1̄ AD D DA DA DA
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some recoding. Hence all occurrences of 10 will be determined. This shows that 10
must occur over positions 2,1 in the example of Table 17.2. These two cases enable
every bit 0 to be determined as well as every bit immediately to the left of a 0. Of
course, the remaining undetermined bits must all be 1s, otherwise they would have
been determined as belonging to a pattern 00 or 10. In fact, if some traces contain
one or more As and others contain no As between two neighbouring Ds, then the
corresponding bit pair must be ∗1 for some bit ∗. So every bit 1 can be determined
that way. This is the case for the example of Table 17.2 and it reveals the whole key.

However, the attacker may have too few traces to be sure of his deductions about
the bits. In this case he looks at the ratios of the number of traces with zero, one
or two As between the Ds of a bit pair. Most occurrences of 1 will be determined
unequivocally as above, including the majority of occurrences of 111. Otherwise, it
is possible to use the operation pattern to assign a probability to the value of each bit
pair. For example, no intervening As will make 00 the most likely bit pair, and with a
probability that increases with the number of traces available for inspection. As each
bit belongs to two pairs (except at the ends), almost all bits are determined with high
or complete accuracy. Indeed, with as few as 10 correct traces and a standard key
length for elliptic curve cryptography, it is computationally possible to determine
any unknown bits and reveal the secret key ([20], Thm. 1).

Greater accuracy is obtained from looking at patterns corresponding to sequences
of three or more bits instead of just two and this might overcome problems arising
from errors in the traces.

However, the above analysis depends critically on precise alignment of all occur-
rences of doubles in the traces. With balanced code for adds and doubles [1], this
may be difficult because the adds and doubles cannot be distinguished so easily. In
fact, it is not clear how to align the traces satisfactorily even if the bits of the key
are known as far as the point of interest in the traces. Inexact alignment seems to
average away any useful data about the bits except at the ends.

As with the Liardet–Smart algorithm, the security of the Oswald–Aigner method
relies on the key being different on each use, or for it to be very difficult to use side
channel leakage to distinguish adds from doubles reliably.

17.6 Ha–Moon

There are two randomizing algorithms due to Ha and Moon et al. [3, 25], both
presented as left-to-right exponentiation methods.

The first [3] has fixed base m = 2 and simply employs the most general binary
signed digit (BSD) coding in the change-of-base algorithm (Figure 17.3): it selects
digit d = 0 when D ≡ 0 mod 2 and randomly chooses between d = ±1 when D ≡
1 mod 2. When D is odd, the random choice makes the next value of D odd or even
with equal probability, and so the occurrence or otherwise of a multiplication does
not indicate the value of the next bit in the original input value of D. However, in
exactly the same way as with the Oswald–Aigner method, the pattern of additions
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and multiplications reveals the exponent with feasible computation when it is re-
used about 10 times [10].

The second, improved version by S.-M. Yen et al. [25] uses any fixed 2-power
radix and employs digit recoding from most to least significant, so that conversion
can be done on-the-fly during a left-to-right exponentiation. An example with base
4 is given in Figure 17.10. It is readily verified that the digit di is always in the range
1–14.

Input: Base 4 representation of D = (bn−1 . . .b2b1b0)4, bn−1 > 0
Output: Base 4 representation of D = (dn−1 . . .d2d1d0)4 +δ
Carry ← bn−1
i ← n−1
While i > 0 do
Begin

Borrow ← 4∗Carry
Carry ← Random from 1,2,3
di−1 ← Borrow − Carry +bi−1
i ← i−1

End
δ ← Carry

Fig. 17.10 A Yen–Chen–Ha–Moon digit recoding with base 4.

Regarding time efficiency, the method is similar to m-ary exponentiation. (Here
with m = 4.) It has the same number of squarings. However, it also has the
same number of multiplications as squarings because all the digits are now non-
zero, whereas m-ary exponentiation has only m

m−1 = 3
4 of this number. The pre-

computations also add marginally to the time, as does the extra digit δ . The space
requirement is close to that of m2-ary exponentiation since the pre-computed ta-
ble contains m2−2 = 14 values. As the digits are non-negative, the technique can
be used for modular exponentiation as well as for point multiplication on elliptic
curves.

17.6.1 Attacking the Algorithm

The non-zero property of the digits ensures that the pattern of squares and multipli-
cations is always the same and there are no dummy operations to which to apply the
safe error attack [24]. The attacks mounted on Liardet–Smart and Oswald–Aigner
are therefore impossible here.

However, there are features of the recoded digit values which might be used to
extract the bits of the key. Park and Lee [14] observed that the average value of the
digit di−1 has 2 for Carry and 8 for Borrow, making an average of 6 + bi−1. Hence,
minimal leakage of the value of the recoded digit from enough traces will be suf-
ficient to determine bi−1 correctly with high probability. For example, the leakage
can be turned into probable digit values using the Big Mac attack [16] which was
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described in Section 17.2. Now the identical pattern of operations for every expo-
nentiation is in the attacker’s favour: he can easily align operations at position i−1
and so pool any weak leakage in order to find the average 6 + bi−1. This enables
him to recover the secret key D with very few errors. He just needs to collect more
trace data to add into his averages if the signal-to-noise ratio is not giving enough
correct digits. Consequently, any re-use of a key with such recoding should be com-
bined with random blinding of it. Then the used value of bi−1 varies randomly and
its average value contains no information.

Thus the second Ha–Moon algorithm exhibits different strengths and weak-
nesses from those of the Liardet–Smart and Oswald–Aigner algorithms. This may
make it more suitable than the others in some contexts. As usual, message whiten-
ing and key blinding appear necessary if the same key is to be re-used a number
of times.

17.7 Itoh’s Overlapping Windows

The algorithm of Itoh et al. [4] is a sliding window technique which, in its gen-
eral form, essentially includes all the preceding algorithms except that digits are
non-negative. It allows any representation given by the variable base representa-
tion algorithm (Figure 17.4) subject to the base being a 2-power. As in the (second)
Ha–Moon algorithm, the authors describe the conversion from binary as a recoding
from left to right, enabling a table-driven exponentiation to consume the digits in
the order they are generated.

The method is illustrated by several examples, the first being the overlapping
windows method (O-WM) in Figure 17.11. There are two main parameters, k and
h, with k > h and a recommended relationship h ≥ k/2. The base for both input and
output is fixed at m = 2k−h for this example. In the figure, the k-bit variable Le f t
consists of two parts. Its lowest k−h bits are the next set of bits of D to be processed,
namely the base m digit bi−1. Its top h bits, the value of Top, is the remainder left
from processing the more significant bits of D. The output digit di−1 is no larger
than Le f t and so the digit range is from 0 to 2k−1. Consequently, the process can
be viewed as a k-bit sliding windows method with an overlap of h bits.

Figure 17.11 is just a fixed base version of the variable base recoding in Fig-
ure 17.7 with appropriate simplifications and details about “choose”. It yields a
left-to-right exponentiation method whose time efficiency is similar to that of m-
ary exponentiation and whose space efficiency is that of 2k-ary exponentiation. For
smart card applications, k needs to be kept very small, which limits the amount of
randomness which can be introduced. We need h ≥ k/2 to add as much randomness
as is in the key D.

The full O-WM method still keeps k fixed but allows h to vary, so that the base
m also varies. This uses the recoding method of Figure 17.7 where Carry is chosen
to keep output digits in the range 0 to 2h−1. Interested readers should consult the
original paper of Itoh [4].
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17.7.1 Attacking the Algorithm

The O-WM method is very similar to the second Ha–Moon algorithm for a fixed
base m = 2k−h. The main difference is in the range for Carry in Figure 17.10. The
similarity means that the same attacks are likely to work for both algorithms, al-
though there are more complications here. The presence of zero digits and/or vari-
able bases means that matters are easier when squares can be recognized. Then
the multiplications can be correctly aligned in the same way as in Table 17.1 for
Liardet–Smart. Leakage of Hamming weight enables this to be done, and so that is
assumed in the leakage model here.

In particular, the attack described in Section 17.6.1 works here, using Park and
Lee’s averaging technique [14]. Usually a good first approximation to bi−1 is ob-
tained by ignoring the effect of Le f t on the range of randoms assigned to Top: when
the previous value of Top is non-zero, Le f t has a value of at least m = 2k−h, which is
at least 2h if h ≤ k/2. There is a large cost in selecting h > k/2, but even if this were
to occur, very few previous values of Top are small enough to reduce the range of
the following value of Top. Hence Top has an average value only slightly less than
1
2(2h−1), making the average value of di−1 a little less than bi−1 + 1

2(m−1)(2h−1).
This enables an approximate value for bi−1 to be deduced once squaring operations
in the traces have been aligned. Of course, at least 1 in 2h of the random values
will be 0, so the average for Top should be reduced by O(2−h) and that for di−1 re-
duced by O((m−1)2−h) = O(2k−2h). So in most cases this rough calculation should
yield bi−1 simply by rounding down. With a bit more effort the accuracy of the digit
prediction would be improved.

In comparison with earlier algorithms, it is clear that this one is more difficult to
break if suitable parameters can be chosen (such as large k and small k−h), espe-
cially if the base is made variable. So security can be improved, but it is at the cost
of run-time efficiency.

Input: h,k with 0 < h < k, n > 0, D = (bn−1 . . .b2b1b0)m where m = 2k−h

Output: Random base m representation of D = (dn−1 . . .d2d1d0)m

m ← 2k−h

Top ← 0
i ← n
While i > 0 do
Begin

Left ← m∗Top+bi−1
If i = 1 then Top ← 0
else Top ← Random from {0,1, . . . ,min{Left,2h −1}}
di−1 ← Left − Top
i ← i−1

End

Fig. 17.11 O-WM recoding.
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17.8 Randomized Table Method

Itoh et al. [4] enhance O-WM with a “randomized table” technique (RT-WM) which
modifies the digit range {dmin, . . . ,dmax} to {r+dmin2c, . . . ,r+dmax2c} where r is
a random c-bit number fixed for each exponentiation. The required pre-computed
table then contains the powers of the input text under the new digit range. As the
method can be applied as an additional counter-measure to any recoding scheme, the
translation is described as a separate process here. However, it is a fully integrated
part of the recoding in [4].

For the desired sequence of bases mn−1,mn−2, . . . ,m0, let

D0 = r(((. . . (mn−2 + 1)mn−3 + · · ·+ 1)m1 + 1)m0 + 1)

Compute D′ = (D−D0 − δ )/2c where D−D0 = δ mod 2c, and apply the chosen
recoding method with the chosen bases to D′ to obtain

D′ = ((. . . (d′
n−1mn−2 + d′

n−2)mn−3 + · · ·+ d′
2)m1 + d′

1)m0 + d′
0

where the digits d′
i are in the range {dmin, . . . ,dmax}. Then

D = ((. . . (dn−1mn−2 + dn−2)mn−3 + · · ·+ d2)m1 + d1)m0 + d0 + δ

for digits di = r+d′
i2

c in the required range {r+dmin2c, . . . ,r+dmax2c}.

17.8.1 Attacking the Algorithm

The motivation behind RT-WM is clearly the disruption of the digit averaging at-
tacks described in Sections 17.6.1 and 17.7.1. Currently there are no published at-
tacks on the method.

If the leakage were strong enough, an attack which yields any information from
individual traces might be applied to the table construction phase first in order to
reveal r and then applied to the exponentiation phase. This is unlikely to work with-
out averaging over many traces: devices which employ the algorithm are likely to
use hardware counter-measures which are sufficient to defeat attacks on a single
trace.

The average of r is 1
2(2c−1), which leads to an average value for D0. In the case

of Ha–Moon 2 or O-WM this would lead to average values for each digit d′
i . Os-

tensibly, this leads to recovery of the average for D′ and hence to D. However, the
borrows in computing D′ = (D−D0 − δ )/2c mean that every d′

i has the same aver-
age, namely that of a random digit. Hence the average d′

i contains no information,
and D cannot be recovered in this way.

There are new methods being published which enable weak leakage to be com-
bined successfully in the presence of randomizing counter-measures, e.g., [23]. If
the same key is used sufficiently many times, the information theoretic content of the
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mi ← 0
If Rand(8) < 7 then

If D ≡ 0 mod 2 then mi ← 2 else
If D ≡ 0 mod 5 then mi ← 5 else
If D ≡ 0 mod 3 then mi ← 3

If mi = 0 then
Begin

p ← Rand(8)
If p < 6 then mi ← 2 else
If p < 7 then mi ← 5 else
mi ← 3

End

Fig. 17.12 One choice for digit recoding in Mist.

side channels is enough to determine the key uniquely. The only question is whether
or not the information can be combined into a computationally feasible attack.

17.9 The MIST Algorithm

In the preceding algorithms, the change-of-base and variable base representation
algorithms in Figures. 17.3 and 17.4 only made use of bases which are powers of
2. This means that these algorithms can be expressed as left-to-right recodings of
binary, and digits can be consumed as they are generated by the usual left-to-right
exponentiation algorithm. The MIST algorithm [17] deliberately selects bases which
are not all powers of the same prime, but this forces digit generation to be from right
to left. However, by separating digit generation from exponentiation, the exponenti-
ation can be performed in either direction.

The original description suggests choosing the recoding base mi randomly from
the set S = {2,3,5}. An example algorithm for this is given in Figure 17.12 where
Rand(n) returns a random non-negative integer less than n. Because raising to the
power 3 or 5 is less efficient than raising to a power of 2, the choice is biased to-
wards base 2. However, a multiplication is saved in the exponentiation when the
digit is zero, so there also a bias towards selecting bases for which the digit is 0. The
digit choice mod′ could be the least non-negative value, but alternatives are possi-
ble, such as the residue of least absolute value. D would be stored efficiently in base
240 if the machine word were 8-bits long, so that recoding digit and base selection
could be done by looking only at the lowest digit. A typical recoding example is
23510 = (((((0×2 + 1)×3 + 0)×2 + 1)×5 + 4)×2 + 0)×3 + 1. This can be abbre-
viated to 235 = 120312450213 using the obvious notation to indicate the base of
each digit.

Space efficiency is similar to that of binary exponentiation except for an extra
register required to store one more intermediate product and space for the recoding.
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Time efficiency is between that of binary and quaternary exponentiation. The details
to check this require modelling the recoding as a Markov process and computing its
eigenvectors [17]. The left-to-right exponentiation method of Figure 17.5 uses table
entries for the multiplications. However, to achieve the best efficiency in the right-
to-left method of Figure 17.6, the computations of Mdi and Mmi must be combined to
minimize the total number of long integer multiplications. Specifically, Mdi should
be computed en route to Mmi . The details can be expressed using an addition chain in
which a + b = c stands for the computation of Ma×Mb to obtain Mc. For example,
the addition chain 1 + 1 = 2, 2 + 1 = 3, 2 + 3 = 5 enables M2, M3 and M5 to be
computed with three multiplications, and so is suitable for base 5 with any digit
except 4.

17.9.1 Attacking the Algorithm

The algorithm is designed to make it much more difficult to apply any of the previ-
ous attack methods to deduce the exponent D. Specifically, the variable base choice
means there is no alignment between operations and bits of D which could be ex-
ploited. So attacks similar to those against the Liardet–Smart and Oswald–Aigner
algorithms are not possible. In general, the patterns of squarings and multiplications
do not seem to narrow the search space sufficiently to allow key recovery [18].

In any exponentiation, detection of operand re-use may be possible by observ-
ing Hamming weights on the bus or repeated access of the same memory locations.
This makes every table-based left-to-right exponentiation potentially vulnerable. In-
deed, all the previous algorithms are fatally compromised unless there is enough
noise to ensure a number of mistakes in determining the operand sharing. However,
in the original right-to-left MIST, the operand sharing pattern still leaves an am-
biguity between the digit/base pairs 12 and 03. These occur sufficiently frequently
to make it computationally infeasible to traverse the search space for the correct
key D.

Nevertheless, Oswald [12] has reported analysing patterns of squarings and mul-
tiplications from a single trace by using Viterbi’s algorithm [15] to select the most
likely sequence of digits. This chooses about 83% of digits correctly, but apparently
does not identify which are the correct ones. It is an improvement on the 74% pre-
dicted by independently selecting the most likely digits when the pattern for each
digit has been identified [18]. The latter choice ignores a strong dependence between
consecutive digit choices resulting from the efficiency-driven bias in Figure 17.12.
With short elliptic curve keys, Oswald’s technique leaves some 30 bits to modify,
which is infeasible without good information about their positions. Further work
on the attack may reveal this so that a prioritized search can be performed. But
the result also assumes perfect information from the trace. In practice, noise leads
to some degradation in the deduced pattern, and this is likely to render the attack
infeasible.
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17.10 Conclusions

The first attacks on exponentiation by Kocher et al. [7] showed that key recovery is
possible from weak side channel information when keys are re-used with the same
unprotected pattern of long integer operations. Similar trace averaging methods can
reveal repeated patterns of operand re-use and of data movements in algorithms.
This can still create problems for algorithms that appear to have key-independent
computation patterns at the highest level [5]. Randomization techniques are required
to prevent this. Key blinding provides one solution, but it may be insufficient [22].
Further randomization to confuse the attacker can be provided through the rando-
mary exponentiation in this chapter. Most of the methods that have been developed
thus far have been seen to be weak on their own and require key blinding as well if
the key is to be re-used. However, for once-off key use the randomization provides
the algorithms with considerably increased security and an efficiency which is often
better than that of algorithms with uniformly balanced code – such as square-and-
always-multiply.

17.11 Exercises

These exercises are aimed at developing an appreciation of just how difficult it is to
discover the correct key from imperfect side channel leakage even when the degree
of error is very low.

1. In the Liardet–Smart algorithm choose a key size of 160 bits, an upper bound
R = 4 on the window size, and assume that there is side channel leakage from
a point multiplication which provides the sequence of adds and doubles without
error.

a. What is the average number of windows which occur?
b. Calculate the average number of different keys for which the same pattern of

adds and doubles will occur.
c. Does the algorithm become more or less secure if the value of R is altered?
d. Is there a most secure value for R with this level of leakage?
e. Is it computationally feasible to attack an implementation of this algorithm

with so much leakage?
f. What are the answers to these questions if the key size is doubled to 320 bits?
g. Repeat the previous parts under the assumption that adds and doubles are

only determined correctly with a probability of p = 0.95. (So about 10 errors
may need to be corrected before guessing the digits corresponding to each
addition.) Make any reasonable simplifications you wish. For example, ignore
the fact that some patterns of adds and doubles are impossible.

2. This exercise involves some programming, but it can be done entirely by
hand. If so, take a smaller key size such as 20 bits, adjust the probabilities,
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e.g., pS = 1− 1
20 = 0.95, and use the parity of word lengths in this question as

the random number generator.

a. Use a random number generator to obtain a random 160-bit key D. For con-
venience, pick a key for which exactly 80 bits are 0 and 80 bits are 1 (includ-
ing the first). Convert D into the string of squarings (S) and multiplications
(M) which occur when it is used as the exponent in the usual square-and-
multiply algorithm. Make sure your implementation omits unnecessary oper-
ations, such as an initial squaring of 1.

b. Suppose this key and algorithm are used in a cryptographic token which suf-
fers from side channel leakage. Assume that pS = 1− 1

80 and pM = 1− 1
40 are

the probabilities that each S and M is determined correctly before taking ac-
count of the fact that two multiplications cannot be adjacent. Use these proba-
bilities to generate a string λ over the alphabet {S,M} which might have been
deduced from the trace information.

c. Write down a formula for the expected number of errors in λ . In how many
cases is it expected to be possible to correct the error when “MM” occurs? Are
there any end conditions which λ must also satisfy before it can correspond
to the true sequence of operations? Compare your figures with those from the
key and string which you generated.

d. What are the probabilities of having (a) no errors, (b) exactly one error,
(c) exactly two errors, (d) exactly five errors to correct? (You may assume,
for simplicity, that observable errors, such as “MM”, have not occurred.)

e. Take your string λ and correct the obvious errors such as occurrences of
“MM”. Mark all characters in λ which might represent isolated errors. (So
assume there are no adjacent errors.) How many keys need to be tested for
correctness if λ contains exactly (a) one error, (b) two errors, or (c) five er-
rors?

f. Are there any substrings which must be correct if they contain at most one
error?

g. Suppose the search for the correct key is done using a machine with a 32-
bit processor. Using information in earlier chapters about the cost of elliptic
curve operations, estimate how many 32-bit operations are needed to check
the correctness of the key if it has exactly five errors and has been used in
an elliptic curve point multiplication over a 160-bit field? (Assume the test
requires a 160-bit point multiplication.)

17.12 Projects

1. In this project we assume the same key is re-used without blinding, so that there
are a number of traces corresponding to the same exponent. We try to reconstruct
the key from these traces.
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a. Write a program to generate the sequences of squarings (S) and multiplica-
tions (M) given by (a) the Liardet–Smart and (b) the Oswald–Aigner algo-
rithms. Collect 50 such sequences, initially for 20-bit keys.

b. As in Table 17.1 align the squarings of a number of such sequences and de-
termine whether or not the ratio of squares to multiplications is the same for
each column in the averaged sequence. If it is not, can anything be deduced
about the corresponding bit in the exponent?

c. Look at the patterns of S and M which are possible for an adjacent pair of bits.
Do the possibilities determine either or both of the bits? Mark the bits which
are determined. How many bits are doubly determined as a result of pairing
them with the bits on either side? How many bits remain undetermined? If
those bits had different values, would they have been determined? If so, does
this mean all bits can be determined?

d. Repeat the previous part of the question, this time looking at the patterns of S
and M for three adjacent bits.

e. Mechanize the bit determination process worked out in the previous parts.
Apply the process to a number of sets of 2n sequences, n = 1,2, . . . and a 160-
bit key. Calculate the average number of incorrectly determined bits for each
size of trace set. If there are cases where all the bits are recovered correctly,
how often is the correct key recovered for each set size?

2. a. Choose a random 160-bit key. Write a program implementing the Ha–Moon
recoding algorithm of Figure 17.10 and use it to generate a number of random-
ized digit sequences for the key. Extend the program so that it will average the
digit values at each base 4 position in the key. Use this information to predict
the base 4 digit of the key as described in Section 17.6.1.

b. Apply the digit prediction process to a number of sets of 2n sequences,
n = 1,2, . . .. Calculate the average number of incorrectly determined digits
for each size of trace set. If there are cases where all the digits are recovered
correctly, how often is the correct key recovered for each set size?

c. Extend the digit prediction process so that it returns a probability with each
digit, namely the 1 minus half the distance of b̄i from its nearest integer, where
b̄i is the real number average used to predict the digit bi. Repeat the previous
part, this time treating each incorrect digit prediction as correct if it is among
the 10% with the lowest probabilities and the next nearest integer is the correct
value.

d. Estimate the cost of checking a key prediction in terms of the number of 32-
bit operations required to perform a 160-bit elliptic curve point multiplication.
For a case where digit errors were predictable in the sense of the previous part
of the question, is it computationally feasible to correct all the digit errors
identified as correctable? Decide your answer by estimating the number of
hours a PC of your choice would require to test half the key possibilities. Is
it computationally feasible to recover a key in this way, given that you must
now divide the cost of correcting digit errors by the probability of having a
key prediction that is correctable?
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B. Kaliski, Ç. K. Koç, and C. Paar (editors), Lecture Notes in Computer Sci-
ence, 2523, pp. 276–290, Springer-Verlag, 2002.

19. C. D. Walter. Breaking the Liardet-Smart Randomized Exponentiation Algo-
rithm, Proc. Cardis 2002, Usenix Assoc, Berkeley, CA, pp. 59–68 2002.

20. C. D. Walter. Issues of Security with the Oswald-Aigner Exponentiation Al-
gorithm, Topics in Cryptology – CT-RSA 2004, T. Okamoto (editor), Lecture
Notes in Computer Science, 2964, pp. 208–221, Springer-Verlag, 2004.

21. C. D. Walter and D. Samyde. Data Dependent Power Use in Multipliers, 17th
IEEE Symposium on Computer Arithmetic – ARITH-17, IEEE Computer So-
ciety, pp. 4–12, 2005.

22. C. D. Walter. Longer Randomly Blinded RSA Keys may be Weaker than Shorter
Ones, Information Security Applications, 8th International Workshop – WISA
2007, S. Kim, M. Yung and H.-W. Lee (editors), Lecture Notes in Computer
Science, 4867, pp. 303–316, Springer-Verlag, 2008.

23. C. D. Walter. Recovering Secret Keys from Weak Side Channel Traces of Differ-
ing Lengths, Cryptographic Hardware and Embedded Systems — CHES 2008,
E. Oswald and P. Rohatgi (editors), Lecture Notes in Computer Science, 5154,
pp. 214–227, Springer-Verlag, 2008.

24. S.-M. Yen, S.-J. Kim, S.-G. Lim, and S.-J. Moon. A countermeasure against
one physical cryptanalysis may benefit another attack, Information Security
and Cryptology - ICISC 2001, K. Kim (editor), Lecture Notes in Computer
Science, 2288, pp. 414-427, Springer-Verlag, 2002.

25. S.-M. Yen, C.-N. Chen, S. J. Moon, and J. C. Ha. Improvement on Ha-
Moon Randomized Exponentiation Algorithm, Information Security and Cryp-
tology – ICICS 2004, C. Park and S. Chee (editors), Lecture Notes in Computer
Science, 3506, pp. 154–167, Springer-Verlag, 2005.



Chapter 18
Microarchitectural Attacks and
Countermeasures

Onur Acıiçmez and Çetin Kaya Koç

18.1 Introduction

Microarchitectural analysis (MA) is a fast evolving area of side-channel cryptanaly-
sis. This new area focuses on the effects of common processor components and their
functionalities on the security of software cryptosystems. The main characteristic of
microarchitectural attacks, which sets them aside from classical side-channel at-
tacks, is the simple fact that they exploit the microarchitectural behavior of modern
computer systems.

The fascinating progress of microprocessor technology in the last decades is
maybe the most influential power that has been driving the scientific and technolog-
ical advances. However, due to strictly throughput, performance, and “performance
per watt”-oriented goals of modern processor designs and also “time-to-market”-
driven business philosophy, the resulting products, i.e., commodity processor ar-
chitectures in the market, lack a thorough security analysis. The main element that
gave birth to microarchitectural analysis area is indeed this particular gap between
the current processor architectures and the ideal secure computing environment.

The identification of requirements for secure execution environments has always
been a challenging task since the invention of high-complexity computing devices.
The security requirements of early computer systems were defined with monolithic
mainframe computers in mind (cf. [9, 15, 48] and also [19] for a nice collection of
early computer security efforts). Today, the domination of multi-user PC and server
platforms and also the multitasking operating systems mandates a serious revision of
these early requirements. Recently, we have seen an increased effort on the security
analysis of daily life computer platforms. The advances in the field, more specifi-
cally, the desire to develop secure execution technologies such as AMD’s Pacifica,
Intel’s virtualization technology (VT) and trusted execution technology (TXT) (co-
denamed LaGrande technology or LT for short) play an important role to increase
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attention on analysis of computer platform security due to [42]. Here, it has been
especially shown that microarchitectural properties of modern processors create a
significant security risk (cf. [3, 4, 6, 10, 29, 35]).

Today’s high-end computer architectures employ several different components
each of which is responsible for a specific task mostly to increase the performance
of the system. Among all these different components, we will focus on only four of
them in this chapter:

1. Data cache
2. Branch prediction unit
3. Instruction cache
4. Functional units, especially multiplier

These four components are the ones that had been exploited in MA until the time this
chapter was written. Although it is necessary to understand the detailed functional-
ity and purposes of these components in order to grasp the basic idea underlying
the theory of MA, we cannot cover all these details in this chapter. It would take
yet another book to explain even the basics of modern computer architecture, and
therefore we have to assume that the reader already has at least some familiarity
with computer architecture concepts. There are several books in the literature (e.g.,
[16, 34, 38, 39]) that give comprehensive overviews of modern computer architec-
tures. Even though we will try to give very brief explanations of the aforementioned
microprocessor components, we recommend the readers to study the related mate-
rials from [34, 39] or a similar resource in advance.

In this chapter, we cover all of these four MA types mentioned above. We start
with an overview and history of microarchitectural analysis. Then we present each
MA type including the basics of these attacks and examples of concrete attack strate-
gies found in the literature. We also discuss the differences between these MA types
and possible countermeasure techniques.

18.2 Overview and Brief History

The actual origins of microarchitectural analysis go back to [20, 40]. Although these
publications implicitly pointed out the security risks of microprocessor components
like cache, concrete and widely applicable security attacks relying on microproces-
sor functionalities have not been worked out until very recent years. The results
of these recent studies immediately attracted significant public interest due to their
implications and broad application ranges of these security breaches.

The typical targets of side-channel analysis have been and still are smart cards.
However, we have seen significant increase in the research efforts spent on side-
channel analysis of commodity PC platforms. Soon, the researchers realized the
fact that the internal functionalities of some microprocessor components like data
and instruction cache and branch prediction units cause very serious side-channel
leakage and hence create crucial security risks. These efforts led to the development
of microarchitectural analysis area.
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Side-channel analysis can be defined as the study of the relations between
the strength of cryptosystems and data-dependent variations in the so-called side-
channel information, e.g., execution time and power consumption, generated during
the execution of their physical implementations. Malicious parties can exploit such
variations to find out the secrets used in security applications and cryptosystems.
These variations either directly give the key value out during a single cipher exe-
cution or leak sensitive information which can be gathered during many executions
and analyzed to compromise the system. MA attacks exploit the microarchitectural
components of a processor to reveal cryptographic keys. The internal functionalities
of the aforementioned processor components generate such data-dependent varia-
tions in execution time and power consumption, which are the subjects of MA.

The first type of MA we had seen is called “Cache Analysis”. A cache-based
attack, abbreviated to “cache attack” or “cache analysis” from here on, exploits
the cache behavior of a cryptosystem by obtaining the execution time and/or
power consumption variations generated via cache hits and misses, cf. [5, 6, 10–
12, 24, 26, 27, 29, 31, 35, 43–45]. The potential cache vulnerability of computer
systems has been known for a long time, cf. [20, 22, 23]; however, actual realistic
and practical cache attacks were not developed until recent years. Cache analysis
techniques enable an unprivileged process to attack another process, e.g., a cipher
process, running in parallel on the same processor as done in [26, 29, 35]. Fur-
thermore, some of the cache attacks can even be carried out remotely, i.e., over a
network [6].

The current cache attacks in the literature, excluding instruction cache attacks
which are fundamentally different than data cache attacks, are data-path attacks.
They exploit the data access patterns of a cipher. The memory accesses of S-box-
based ciphers like DES and AES are key dependent. Cache attacks analyze the cache
statistics, e.g., miss/hit rates, of the cipher execution and try to reveal these memory
access patterns. Cache statistics of an execution include the number of cache hits and
misses, the cache lines modified by the cipher, and such. An unprivileged malicious
party cannot directly obtain the cache statistics of a cipher,1 but it can observe the
side-channel leakage through execution time and/or power consumption to estimate
these values. For instance, the execution time of AES software implementations is
directly related to the total number of cache hits and misses occuring during an
encryption, cf. [41], and someone can measure AES encryption time to determine
these statistics.

Branch prediction analysis (BPA) is the second type of MA which was developed
in 2006. Several variants of BPA attacks were introduced in [4], all of which exploit
the side-channel leakage due to branch prediction units of microprocessors. The
most powerful variant of BPA is called simple branch prediction analysis (SBPA)
and it relies on the ability to run a spy process parallel to the cipher process under

1 In fact, current processors have special registers, called performance counters, inside the chip to
count and store such statistics. These registers are mainly used for performance monitoring pur-
poses and fortunately require special privileges to be read. The potential power of a malicious party
would be significantly higher without this requirement of high privilege. For further information
on performance counters and performance monitoring events, refer to [49].
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attack [3]. According to [3], a carefully written spy process running simultaneously
with an RSA process is able to collect during one single RSA signing execution
almost all of the secret key bits. The concept of SBPA is proved in [3] by applying an
attack on the exponentiation phase of a simple RSA implementation as a case study.
A spy process, which relies on the simultaneous multithreading (SMT) capability of
some microprocessors, is implemented to observe the execution of an RSA cipher
process. This concept was also verified by André Seznec, a well-known expert on
branch prediction [50].

The actual power of SBPA is not limited to this basic application on RSA expo-
nentiation. The SBPA has a potential to reveal the entire execution flow of a target
process on almost any execution environment, i.e., with or without SMT. This is a
very strong claim which has not been experimentally verified.

Following this interesting research field, two other MA are also introduced: ex-
ploiting instruction cache (I-cache analysis) and shared functional units (SFU anal-
ysis). Similar to BPA, I-cache and SFU analysis rely on spy routines and they reveal
the execution flow of cryptosystems. In I-cache analysis, an adversary runs a spy
process simultaneously or quasi-parallel with the cipher and detects the changes
occuring in the instruction cache.

The principles of SFU analysis are different than the previous MA types. The
previous types, i.e., cache, branch prediction, and instruction cache analysis, try to
observe the changes in the persistent state of the mentioned microprocessor compo-
nents. The spy process-oriented MA attacks, except SFU analysis, rely on the fact
that the execution of cryptosystems leaves persistent changes in the state of shared
resources like cache and branch target buffer. In other words, the cipher execution
leaves “footprints” on the observable state, i.e., the so-called metadata of these re-
sources and an unprivileged spy process can keep track of these footprints if it runs
on the same processor in parallel with the cipher. An adversary can reveal the exe-
cution flow and/or the memory access patterns of cryptosystems by spying on these
states and especially by detecting the changes of these states as a function of time.
On the other hand, SFU analysis does not take advantage of persistent states. It fol-
lows a quite different approach and tries to detect when a certain functional unit is
occupied by the cipher.

We will explain the details of each of these MA types in the following sections.

18.3 Cache Analysis

18.3.1 Basics of Cache

We can only give a brief explanation of cache in this section. We recommend the
readers to explore more on cache architectures in order to grasp the details of cache
attacks. For further information on cache, please refer to [17, 18, 30].

A high-frequency processor needs to retrieve the data at a very high speed in
order to utilize its functional resources. The latency of a main memory is not
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short enough to match this demand of high-speed data delivery. The gap between
the latency of main memories and the actual demand of processors has been and
will be continuously increasing as Moore’s law holds. Common to all proces-
sors, the attempt to close this gap is the employment of a special buffer called
cache.

A cache is a small and fast storage area used by a CPU to reduce the average
memory access time. It acts as a buffer between the main memory and the processor
core and provides the processor fast and easy access to the most frequently used
data (including instructions) without frequent external bus accesses.

Cache stores the copies of the most frequently used data. When the processor
needs to read a location in main memory, it first checks to see if the data are already
in the cache. If the data are already in the cache (called a cache hit), the processor
immediately uses this data instead of accessing the main memory, which has a sig-
nificantly longer latency than a cache. Otherwise (a cache miss), the data are read
from the memory and a copy of it is stored in the cache. This copy is expected to be
used in the near future due to the temporal locality property.

A cache is partitioned into a number of non-overlapping fixed size blocks, called
cache blocks or cache lines. The minimum amount of data that can be read from the
main memory into a cache at once is called cache line or cache block size, i.e., each
cache miss causes a cache block to be retrieved from a higher level memory. The
reason why a block of data is transferred from the main memory to the cache instead
of transferring only the data that are currently needed lies in spatial locality property.
Since a cache is limited in size, storing new data in a cache mandates eviction of
some of the previously stored data.

The method of deciding where to store and search for a data in a cache is called
cache mapping strategy. Three main cache mapping strategies are direct, fully asso-
ciative, and set associative mapping.

A particular data block can only be stored in a single certain location in a di-
rect mapped cache. The exact location is determined using the address of the data
block. On the contrary, a data block can be placed in potentially any location in a
fully associative cache. The location of a particular placement is determined by the
replacement policy. Set associative mapping is a combination of these two mapping
strategies. Set associative caches are divided into a number of same size sets, called
cache sets, and each set contains the same fixed number of cache lines. A data block
can be stored only in a certain cache set based on the address of the data block (just
like in a direct mapped cache); however, it can be placed in any location inside this
set (like in a fully associative cache). Again, the particular location of a data inside
its cache set is determined by the replacement policy.

The replacement policy is the method of deciding which data block to evict from
the cache in order to place the new one in. The ultimate goal is to choose the data that
are most unlikely to be used in the near future. There are several cache replacement
policies proposed in the literature (cf. [18, 34]). In this document, we focus on a
specific one: least recently used (LRU). It is the most commonly used policy and it
picks the data that are least recently used among all of the candidate data blocks that
can be evicted from the cache.
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18.3.2 Overview of Cache Attacks

Cryptosystems have data-dependent memory access patterns. For example, S-box-
based block ciphers like DES and AES employ table lookups and the indices of these
lookups are functions of the plaintext and the secret key. Cache architectures leak
information about the cache hit/miss statistics of ciphers through side-channels, e.g.,
execution time and power consumption. Therefore, it is possible to exploit cache
behavior of a cipher to obtain information about its memory access patterns, i.e.,
indices of S-box and table lookups.

Cache attacks rely on cache hits and misses occur during the encryption/
decryption process of a cryptosystem. Even if a cipher implementation has a fixed
execution flow, i.e., if the same instructions are executed for any particular (plain-
text, cipherkey) pair, the cache behavior during the execution causes variations in
the program execution time. Cache attacks exploit such variations and narrow the
exhaustive search space of secret keys.

Theoretical cache attacks were first described by Page in [31]. He characterized
two types of cache attacks: trace driven and time driven. We have recently seen
another type of cache attacks that can be named as “access-driven” attacks.

In trace-driven cache attacks, the adversary obtains the traces of cache activity for
a sample of encryptions. We define a trace as a sequence of cache hits and misses.
For example,

MHHMHMHM,MMHMHHMH,MMMMHHHH

are examples of a trace of length 8. Here H and M represent a cache hit and miss,
respectively. The first memory access in the first example results in a miss, sec-
ond one in a hit, and so on. If an adversary captures such traces, he can determine
whether a particular access during an encryption is a hit or miss. Therefore, the
adversary has the ability to observe (e.g.) if the second access to a lookup table
yields a hit and can infer information about the lookup indices, which are key depen-
dent. This ability gives an adversary the opportunity to make inferences about the
secret key.

Time-driven attacks, on the other hand, are less restrictive and they do not rely
on the ability of capturing the outcomes of individual memory accesses. Adversary
observes the aggregate profile, i.e., total number of cache hits and misses or at least
a value that can be used to approximate these numbers. For example, he measures
the total execution time of a cipher and uses this measurement to approximate the
number of cache misses occurring during the encryption. Note that each cache miss
introduces a delay to the overall execution time and thus the total encryption time
is proportional to the number of cache misses. Time-driven attacks are based on
statistical inferences and therefore require much higher number of samples than
trace-driven attacks.

While trace-driven and time-driven attacks analyze the outcomes of memory ac-
cesses, access-driven attacks follow a different approach. The adversary determines
the cache sets that the cipher process modifies. Therefore, he can understand which
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elements of the lookup tables or S-boxes are accessed by the cipher. Then, the can-
didate keys that cause an access to unaccessed parts of the tables can be eliminated.

In the following sections, we explain each of these cache attack types in more
detail. We describe simplified attack models for each type and try to enrich the
understanding of the reader by showing concrete attack examples from the litera-
ture along with these models. We can only focus on a small fraction of the pre-
vious studies on this subject in this chapter to keep the length in a reasonable
range. Therefore, we first want to give a short survey on cache analysis and briefly
cover the entire prior art before delving into the details of our set of concrete attack
examples.

18.3.3 A Brief Survey on Cache Analysis

Although [20, 22, 23] pointed the cache vulnerability of computer systems a long
time ago, actual realistic cache attacks had not been developed until recent years.
D. Page described and simulated a theoretical cache attack on DES [31] in 2002.
Actual cache-based timing attacks were first implemented by Tsunoo et al. [43, 44].
They developed several cache attacks on various ciphers, including MISTY1, DES,
and Triple-DES [43]. Their original attack on MISTY1 was improved later in [45].

Bernstein showed the vulnerability of AES software implementations on various
platforms [10]. There was a common belief that Bernstein’s attack could be used as
a real remote attack; however, later studies proved it wrong [27].

Osvik et al. described various local cache attack variants first in [28] in 2005,
then they presented their results at CT-RSA in early 2006 [29]. They made use of a
local process, called spy process, to monitor the cache activities of an AES process.
They exploited the collisions between the table lookups in the first two rounds of
AES and the memory access operations of the spy process. Neve et al. improved
these attacks in [29] by taking the last AES round into consideration [26].

The same idea of exploiting collisions between two different processes was also
used by Percival in [35] and Bertoni et al. in [11]. Percival exploited simultaneous
multithreading feature of the modern processors and developed a cache attack on
RSA [35]. Bertoni et al. developed a cache-based power attack on AES using the
idea of exploiting external collisions.

Similar to external collisions between different processes, one can also exploit
internal collisions inside a cipher. The attacks of Tsunoo et al. are based on this
principle [43, 44]. Trace-driven attacks also rely on internal collisions [5, 24]. A
summary of possible cache collision attacks on AES is given in [12].

None of these efforts was successful to achieve the goal of developing a generic
and universally applicable cache attack that can also compromise remote systems.
A remote cache attack and ideas to develop a universal remote cache attack on AES
are given in [6].

Several hardware- and software-based countermeasures were proposed to prevent
cache attacks in [10, 13, 29, 32, 33].
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18.3.4 Time-Driven and Trace-Driven Attacks

Let Pi and Ki be the ith byte of the plaintext and cipherkey, respectively. In this chap-
ter, each byte is considered to be either an 8-digit radix-2 number, i.e., ∈ {0,1}8, that
can be added in GF(28) using a bitwise exclusive OR operation or an integer in [0,
255] that can be used as an index.

Assume that we have a cryptosystem, which operates on a lookup table, and each
element of this table is as large as the size of a cache line. There are two accesses to
the same lookup table as in Figure 18.1. The indices of these accesses are a function
of different bytes of the plaintext and the cipherkey. An adversary removes all of
the cipher data from the cache by (e.g.) reading or writing a large piece of data.
Therefore, prior to an encryption the cache does not contain any data that belongs
to this cryptosystem.

Then the adversary triggers encryption with arbitrary plaintext. Whenever the
two indices become equal for a plaintext, the second access will find the target data
in the cache and result in a cache hit. In other words, whenever the equation

(P1 ⊕K1 = P2 ⊕K2)

holds for a plaintext, or in a different interpretation, the equation

(P1 ⊕P2 = K1 ⊕K2)

holds, then we will have a cache hit in the second during the encryption of this
plaintext. Note that we assume a clean cache prior to the encryption, i.e., the cache
does not contain any data belonging to this cipher. Similarly, whenever there is a
cache hit in the second table lookup, these equations will also hold. Therefore, the
key byte difference K1 ⊕K2 can be derived from the values of plaintext bytes P1 and
P2 if this plaintext causes such a cache hit.

In trace-driven attacks, we assume that the adversary can directly understand if
the latter access results a hit, thus he can directly obtain K1 ⊕K2.

This goal is more complicated in time-driven attacks. These attacks rely on the
following facts:

• The execution time of a cipher is directly related to the number of cache misses
occurring during the execution. In other words, the overall execution time of an
encryption can be used to approximate the number of cache misses that occur
during the encryption.

Fig. 18.1 Two different accesses to the same table.
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• The average number of cache misses in encryptions of a sample of plaintext that
results in a biased cache miss is different than the case of a random sample.
For example, a large sample of plaintext, each of which results in a cache miss
during the second table lookup, causes a different number of cache misses in
average during the execution of a cipher compared to a random sample that does
not result in such a biased cache miss.

The expected number of cache misses during an encryption with a plaintext that
obeys the equation (P1 ⊕P2 = K1 ⊕K2) is less than the expected number of cache
misses when the plaintext does not obey this equation. We need to use a large sam-
ple to realize an accurate statistics of the execution. In our case, if we collect a
sample of different plaintext with the corresponding execution time, the plaintext
byte difference, P1 ⊕P2, that causes least number of cache misses in average (i.e.,
the shortest average execution time) gives the correct key byte difference.

When we consider this fact, a simple attack method becomes the following:

Phase 1: Obtain a sample of (plaintext, encryption time) pairs generated under the
same target key.

Phase 2: Split this initial set into 128 subsets based on the plaintext values. In order
to do this, first create a subset for each possible value of P1 ⊕P2. Note that there
are 128 possibilities because P1 and P2 are bytes and therefore the length of P1 ⊕
P2 is 8 bits. Then scan each plaintext in the initial sample and put it in the subset
that corresponds to P1 ⊕P2 value of this plaintext.

Phase 3: Calculate the average encryption time of the entities in each subset. If the
initial sample obtained in Phase 1 is large enough, all of these average values,
except one subset, will be close to each other. The only exception is the subset
that corresponds to the P1 ⊕P2 value that is equal to K1 ⊕K2. Therefore, the key
byte difference can be recovered.

In this basic example attack, we assume that each element of the lookup table is
as large as the size of a cache line. However, the elements of the lookup tables in
real implementations are usually smaller than the cache line size. Therefore, each
cache line stores more than one element of the table. Any cache miss results in the
transfer of an entire cache line, not only a single element, from the main memory.
This indicates the fact that there will be a cache hit even when P1 ⊕K1 is not equal
to P2 ⊕K2. If a cache line stores more than one element of a table, those will be
consecutive elements of the table because of the current cache architectures. Hence,
we can still recover the most significant bits of K1 ⊕K2 in a real attack by following
our basic attack model. This concept will be more clear when we cover our first
concrete cache attack in the next section.

18.3.5 Exploiting Internal Collisions in Time-Driven Attacks

We cover some example cache attacks on AES-128 in this section. Our first example
is very similar to the basic attack given above.
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The most widely used AES software implementation employs five different
lookup tables. There are 10 rounds of computations in AES-128 and 16 table
lookups in each round. The indices of the first round table lookups are in the form
Pi ⊕Ki for i ∈ {0,1, ...,15}. The indices to the first AES table in the first round are
P0 ⊕K0, P4 ⊕K4, P8 ⊕K8, and P12 ⊕K12.

We can directly apply the idea given in the previous section to these indices. If we
use the simple attack method on the first two indices P0⊕K0 and P4⊕K4 by splitting
our initial sample set into the subsets based on the value P0⊕P4, the distinct average
encryption time values will indicate the value of K0 ⊕K4.

Figure 18.2 shows the average execution time for each subset that was formed
during the search of K0 ⊕K4 in a real attack using the indices P0⊕K0 and P4⊕K4. It
can clearly be seen in this figure that there are several distinct points as opposed to
a single point for the correct K0 ⊕K4 value. The reason, as explained above, is that
the elements of the lookup tables in real implementations are usually smaller than
the actual cache line size and thus each cache line stores more than one element of

Fig. 18.2 The first graph shows the results of the search for 〈K0 ⊕K8〉msp using the indices (P0 ⊕
K0) and (P8 ⊕K8) in an experimental attack. The second graph shows the same search when the
number of table elements in a single cache line is known to be 16.
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the table. Therefore, there is a cache hit during the latter table lookup whenever the
most significant parts of P0 ⊕K0 and P4 ⊕K4 become equal for a plaintext. So, we
can only find the difference of the most significant part of the key bytes using the
equation

〈P0〉⊕ 〈P4〉 = 〈K0〉⊕ 〈K4〉

where 〈A〉 stands for the most significant part of A. The size of the most significant
parts, i.e., the number of bits that can be recovered by exploiting these two indices,
depends on how many table elements a cache line holds.

The dashed ellipse in the top graph of this figure obviously contains more than 8
and less than 32 points, so an attacker can conclude that there are 16 table elements
in a cache line, which also means that the most significant parts of the key byte
differences are 4 bits long. Using less sets during a search on key byte differences
gives more clear identification of the correct value, because each set contains more
elements in this case. An increase in the size of a sample gives a better estimation
of the expected execution time for this sample because the variance of the average
encryption time decreases proportional to the size of the sample. The bottom graph
shows the average execution time of each 16 sets that can be formed for the same
search.

Applying the same idea on different indices of the first round, we can find the
key byte differences 〈Ki ⊕K4∗ j+i〉 with i, j ∈ {0,1,2,3}. This attack is called first
round attack. On current widely used processors the search space can typically be
reduced to 56, 68, or 80 bits for 128-bit keys. If we also consider the indices of the
second round table lookups, called second round attack or two-round attack, we can
reduce the search space to 32 bits. The equations used in second round attack are
more complicated than first round attack; therefore, we do not cover them in detail
in this chapter. Further details can be found in [6].

These attack principles can be used to develop a remote cache attack, i.e., a cache
attack that does not require local access to the target machine and can compromise
the systems over a network just by sending messages to the systems and measuring
the response time. They also showed how one can devise and apply such remote
cache attacks on other cryptosystems. Their experiments indicate that cache attacks
can be used to extract secret keys of remote systems if the system under attack
runs on a server with a multitasking or multithreading system and a large enough
workload. Although a large number of measurements are required to successfully
perform a remote cache attack, it is feasible in principle.

18.3.6 Access-Driven Attacks

In a computer system, we have a main memory, which stores the data of each process
running on the system, and a cache between the memory and the CPU as shown in
Figure 18.3. We represent each cache block with a square in this figure and each
column corresponds to a different cache set. For example, the cache in this figure
has two blocks in each column, so it is two-way set associative. Assume that the data
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Fig. 18.3 Main memory and cache structure in a CPU.

blocks in a column of the memory map only to the corresponding cache set in the
same column of the cache. Mapping a memory block to a cache set means that this
particular cache block can only be stored in that set of the cache. As an example,
the garbage data and data structure 1 can only be in the dark area of the cache in
Figure 18.3. In fact, the mapping between memory locations and cache blocks in real
computer systems are different and more complicated than our basic assumption.
However, for the sake of simplicity and clarity, we follow this assumption in this
chapter.

Also assume the following. There are two different processes, the cryptosystem
and a malicious process, called Spy process, running on the same machine. Cryp-
tosystem process operates on several different data structures. The actual value of
the secret key affects which of these data structures (e.g., which parts of a table
lookup) are accessed during an encryption and when (e.g., in which round) they are
accessed.

An adversary can easily understand if the cipher has at least one access to, for
example, data structure 1 during a particular encryption. This is due to the situation
that accesses to garbage data and data structure 1 create external collisions. We
define a collision in this context as the situation that occurs when an attempt is
made to store two or more different data items at a location that can hold only one
of them. We use the term “external collision” if these data items belong to different
processes. On the other hand, if the data items belong to the same process, we call
it as “internal collision”.

In our case here, the cache does not have enough number of sets to store the
garbage data and data structure 1 at the same time. Since the cache is only two-
way associative and the garbage data completely fills the dark area in, an access
to garbage data results in replacing any previously stored data in the dark area.
Similarly, an access to any data that maps to the same cache location also replaces
some or all of the garbage data if it resides in the cache prior to this access. There-
fore, an access to the garbage data may evict data structure 1 from the cache and
vice versa. This fact enables an adversary to devise an attack on the cryptosystem
process.

A basic attack works as the following. An adversary reads the garbage data which
would force the CPU to load the content of it into the cache (Figure 18.4a). Then
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Fig. 18.4 Steps of a basic attack.

the adversary triggers an encryption and the cryptosystem is run under this initial
cache state. There are two possible cases that may happen during the encryption:

Case 1: Cipher accesses data structure 1.
Case 2: Cipher does not access data structure 1.

When the first case happens, the access to data structure 1 changes the content of the
first four cache sets as shown in the figure. Otherwise, these sets remain unchanged.
In Case 1 (Case 2, resp.) the final state of the first four cache sets just after the
encryption becomes like Figure 18.4b (Figure 18.4c, resp.). When the adversary
reads the garbage data again after the encryption, he can understand which case
was true, because reading the garbage data creates some cache misses and thus
takes longer in Case 1. Similarly, at least in theory, the adversary can use the same
technique for other data structures and reveal the entire set of items that are accessed
during an encryption. Since this set depends on the secret key value, he can gain
invaluable information to narrow the exhaustive search space.

This model describes an active attack where the adversary must be able to control
the contents of the cache. The cache attacks that rely on this basic model correspond
to access-driven types. Percival’s attack on RSA [35] (cf. Section 18.3.7), Osvik
et al. and Neve et al.’s attacks on AES [26, 28, 29] (cf. Section 18.3.6.1), and the
power attack by Bertoni et al. [11] use this attack model. In fact, branch prediction
analysis (cf. Section 18.4) and instruction cache analysis (cf. Section 18.5) are also
based on similar approaches.

18.3.6.1 Osvik–Shamir–Tromer (OST) Attacks

Our first example of access-driven cache attack was developed by Osvik, Shamir,
and Tromer. They described and simulated several different methods on AES to per-
form local cache attacks. We cover only their most powerful attack in this chapter.
The principle of their attack is very similar to the above basic model. They apply
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the same idea on AES to determine which parts of AES tables are accessed during
an AES operation.

In their attack, the adversary runs a spy process, which reads a local array to load
it into the cache. After the spy process sets the state of the cache to a known state by
forcing the CPU to replace the cache entries with the data of this array, the adversary
triggers an AES encryption with a known plaintext. Immediately after the execution
of AES, the spy process takes over the CPU and starts reading the same array again.
However, this time it also measures the time it takes to read the blocks of this array.
That way, as explained above, the adversary can determine which parts of the array
got evicted from the cache. The parts of this local array that are not evicted by AES
process directly give out which blocks of AES tables were not accessed during the
encryption.

Let us consider the index P0⊕K0 as an example. This attack is a known plaintext
attack and we know the values of P0 but trying to find K0. When we apply this
attack, we determine the elements of AES tables that are not accessed during the
encryption of this plaintext, i.e., the values that P0 ⊕K0 cannot be equal to. We
can then eliminate the values of K0 that would cause an access to these unaccessed
elements for this particular value of P0. If we can gather enough data from several
encryptions, we end up with the correct value of 〈K0〉. Remember that we cannot
reveal the least significant part of K0 for the reason explained in the previous section.
In general, if we consider the first round indices, we can reveal 〈Ki〉 for 0≤ i≤ 15. If
we extend our focus on the second round indices, then we can recover the entire key.

Osvik et al. described several variations of access-driven cache attacks on AES.
They also suggested relying on hardware-assisted SMT feature to detect the changes
of the cache states on-the-fly during the encryption. However, their attack idea does
not require SMT feature and can principally work on any multitasking environment.

Figure 18.5 shows real experimental results of an access-driven variant taken
from [29]. In this experiment, Osvik et al. observed the cache activity of several
encryptions with random but known plaintext values. They ran the spy process and
collected “measurement scores” for each possible value of 〈Ki〉 as the following.
They collected samples of the form (P, y, m) consisting of arbitrary table indices
y, random plaintexts P, and measurement scores m. The measurement scores are
the time delays when the spy reads the blocks of its local array that map to the

Fig. 18.5 Average measurement scores of first round OST attack for 30,000 (left) and 800 (right)
triggered encryptions under the same key. The x-axis shows P5⊕y (left) and 〈P5⊕y〉 and the y-axis
shows the average measurement scores in units of clock cycles. The actual value of 〈K5〉 can easily
be determined as 0×5.



18 Microarchitectural Attacks and Countermeasures 489

same cache set as the block of the AES table that contains table element with the
index y. If we consider a key byte 〈Ki〉, whenever 〈y〉 becomes equal to 〈Pi ⊕Ki〉
for a particular P, the measurement score m will be higher for this (P, y) pair. If
we collect measurement scores (P, y, m) for a sample of known plaintext, split
these scores into different subsets based on 〈Pi ⊕ y〉 values and calculate the av-
erage m values in each of these subsets, then the subsets that correspond to the
correct 〈Ki〉 value will have higher average measurement scores compared to the
other subsets. This is exactly what Osvik et al. did to generate the results shown in
Figure 18.5.

18.3.7 Percival’s Hyper-Threading Attack on RSA

Percival developed a cache attack on RSA, which relies on hardware-assisted SMT
capability [35]. Our attack model described in Section 18.3.6 can work on almost
any system. But, such access-driven attacks become much more powerful on simul-
taneous multithreading environments, because the adversary can run the spy process
simultaneously with the cipher. Running these processes simultaneously allows an
attacker to obtain not only the set of data structures accessed by the cipher but also
the approximate time that each access occurs.

In Percival’s attack, the adversary again runs a spy process but this time it is
run simultaneously with the server on an SMT processor. Spy process has a local
array just like the previous attack and continuously reads each block of this local
array in the same order. Note that each of these blocks correspond to a different
cache line. The spy process reads the blocks that map to the same cache set together
and measures the overall read time for each of these sets. In other words, the spy
process observes each cache set (via reading the local array in a structured manner)
in a certain order to determine whether the RSA process modifies this cache set. If
reading a cache set takes longer, the attacker can conclude that this set was accessed
during the time interval between the last read of the set by the spy process and the
current read.

The experimental results of Percival’s attack are given in Figure 18.6. The color
of each little square in this figure indicates the time it takes the spy to read the
corresponding cache set, denoted as cache congruency class. These colors can be
considered as the measurement scores for each cache set. All of the squares in a
particular column map to the same cache set. The vertical axis shows the time of the
observation.

In general, such an attack can reveal the “footprints” of a victim process. Per-
cival applied this idea on RSA and was able to identify the order of squaring and
multiplication operations in OpenSSL’s RSA implementation. Percival’s attack on
OpenSSL’s sliding windows exponentiation (with a window size of 5 bits) could
reveal an average 200 bits of information about each of the two 512-bit secret
exponents.
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Fig. 18.6 Graphical representation of a small portion of the spy measurements in Percival’s attack
on RSA.

18.4 Branch Prediction Analysis

Branch prediction analysis (BPA) is the second microarchitectural analysis type we
cover in this chapter. Several methods to exploit the branch prediction mechanism
are developed [3, 4]; branch prediction mechanism is nowadays a part of all general
purpose processors. We call all of these attacks branch prediction analysis. The most
powerful variant of BPA is called simple branch prediction analysis (SBPA) and it
is our subject in this section. Please refer to [4] for other variants of BPA.

18.4.1 The Concept of Branch Prediction

Deep microprocessor pipelines coupled with the ability to fetch and issue multiple
instructions at every machine cycle led to the development of superscalar proces-
sors. Superscalar processors target a theoretical or best-case throughput of less than
one machine cycle per completed instructions, cf. [39]. However, the actual through-
puts of superscalar processors are limited by the available instruction-level paral-
lelism (ILP) in the executed code. When branch instructions were recognized as one
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of the most crucial performance killers of superscalar processors, microprocessor
architects quickly invented the concept of branch predictors in order to circumvent
those performance bottlenecks. There has been very significant amounts of research
on more and more sophisticated branch prediction mechanisms, cf. [34, 38, 39].
However, it turns out that the branch mechanisms can be exploited to attack the
integrity of the processes running on the processor.

Superscalar processors rely on branch prediction mechanisms to execute instruc-
tions speculatively to overcome control hazards, cf. [34, 39]. Therefore, the actual
performance of microprocessors is greatly affected by the efficiency of speculation,
which makes it one of the key issues in modern superscalar processor design.

A branch instruction is a point in the instruction stream of a program where
the next instruction is not necessarily the next sequential one. There are two types
of branch instructions: unconditional branches (e.g., jump instructions, goto state-
ments) and conditional branches (e.g., if-then-else clauses, for and while loops). For
conditional branches, the decision to take or not to take the branch depends on some
condition that must be evaluated in order to determine the correct execution path.
During this evaluation period, the processors speculatively execute instructions from
one of the possible execution paths instead of stalling and awaiting for the decision
to come through.

The key to achieve higher processor performance is the ability to predict the cor-
rect execution path as accurately as possible. The ultimate goal of branch prediction
mechanisms is therefore to predict the most likely execution path in such a case.
The accuracy of branch prediction mechanisms greatly affects the overall perfor-
mance. Thus, it is very beneficial if the branch prediction algorithm tries to predict
the most likely execution path in a branch. If the prediction is true, the execution
continues without any delays. However, if the speculatively executed instruction
flow turns out to be wrong, which is called a misprediction, the instructions on the
pipeline that were speculatively issued have to be dumped and the execution has to
start over from the mispredicted instruction path, thus suffers from a misprediction
delay. Measurable timing differences between a correct and incorrect prediction are
exactly what the BPA/SPBA attacks capitalize on.

A microprocessor needs the following information to speculatively execute the
instructions after a conditional branch:

• The outcome of the branch prediction. It has to determine the outcome of a con-
ditional branch, i.e., whether it needs to be taken or not taken, in order to execute
the correct instruction sequence. This outcome depends on the evaluation of the
condition and it is not immediately available when a conditional branch is issued.
The processor must execute the branch and check the outcome of the condition,
which is evaluated in later stages of the pipeline. Instead of waiting the actual
outcome of the branch to come through, the processor starts executing a possi-
ble instruction sequence, which is predicted as the correct sequence by the branch
prediction unit (BPU). This prediction is usually based on the history of the same
branch as well as the history of other branches executed just before the current
branch, cf. [39].
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• The target address of the branch. If the BPU predicts a conditional branch to be
taken, the instructions in the target address have to be fetched and issued. In this
case, the processor needs the address of the predicted instruction sequence, i.e.,
the target address, in order to fetch and issue these instructions. Similar to the
outcome of the branch, the target address may not be immediately available too.
Therefore, the CPU tries to keep records of the target addresses of previously
executed branches in a buffer, the so-called branch target buffer (BTB).

Overall common to all branch prediction units (BPU) is the following Fig-
ure 18.7. As shown, the BPU consists of mainly two “logical” parts, the BTB and
the predictor. The predictor is that part of the BPU that makes the prediction on the
outcome of the branch under question. The BTB is the buffer where the CPU stores
the target addresses of the previously executed branches. Since this buffer is limited
in size, the CPU can store only a number of such target addresses, and previously
stored addresses may be evicted from the buffer if a new address needs to be stored
instead. If the processor cannot find a target address in BTB (called a BTB miss), the
execution suffers from a BTB miss delay similar to a branch misprediction. Further
details of branch prediction can be found in [34, 38, 39].

18.4.2 Simple Branch Prediction Analysis

Several methods to exploit the branch prediction mechanisms are developed [4].
One of these methods presented relies on the fact that processors keep the target
addresses of recently executed conditional branches in BTB. This attack, which was
initially named as “trace-driven BTB attack”, was significantly improved in [3] and
renamed as simple branch prediction analysis (SBPA).

Fig. 18.7 Branch prediction unit architecture.
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SBPA is also a spy-oriented attack similar to the cache eviction attacks presented
above. However, there is a fundamental difference between SBPA attacks and pure
data cache eviction attacks. Attacking the BTB is targeting the instruction flow,
which is more complicated than the data flow within the memory hierarchy, i.e.,
between the L1 data cache and the main memory.

The SBPA attack is applied on RSA by running a spy process simultaneously
with RSA on a multithreaded processor. It could reveal the execution flow of the
RSA process by observing the BTB state transitions during a single RSA operation.
Although the attack is carried out on an SMT system, it is argued that this attack can
be used on almost any processor [7].

SBPA takes advantage of the fact that both processes share the BTB. The spy pro-
cess continuously executes a certain fixed sequence of a sufficiently higher number
of branches to guarantee the eviction of a target branch executed by the crypto-
graphic process. In [3], the conditional branch of RSA, which determines the square
and multiply sequence of the exponentiation, was targeted. When the next time the
cryptographic process executes the target conditional branch, the address of this
branch cannot be found in BTB. If the cipher takes this branch, the processor must
rewrite the target address back to BTB, which causes the footprint of this branch to
be left in BTB. Since the spy process continuously executes several branches, it will
detect this change shortly after it happens. This way, the spy process can observe
the traces of the target branch in terms of “taken” and “not taken”.

We have to mention that the branches executed by the spy maps to the same BTB
area with the target branch. In other words, the spy process intentionally creates con-
flicts (thus a race condition) between its branches and the target branch. Therefore,
whenever the target branch turns out to be taken, the target address of this branch
needs to be stored in BTB by evicting one of the spy branches from the BTB. When
the spy process re-executes its branches, it will encounter a misprediction on the
branch that has just been evicted. This misprediction will also trigger further mis-
predictions because the entry of the evicted spy branch needs to be re-stored and an-
other not-yet-re-executed spy branch entry has to be evicted, which will also cause
other mispredictions. Overall, the execution time of this spy step suffers from many
misprediction delays resulting in a high timing gap between taken and not-taken
situations of the target branch.

Reference [3] demonstrated the first SBPA attack on the S&M algorithm im-
plemented in OpenSSL-0.9.7. They showed that measurements taken from a single
run of the S&M exponentiation is sufficient to extract almost all of the RSA secret
exponent bits. Figure 18.8 shows their experimental results. The y-axis shows the
measurements of the spy in terms of the clock cycles and x-axis shows the order
of these measurements, which also indicates the order of the RSA operations. As
you can see, the spy measurements become clearly different when RSA executes a
multiplication compared to the case of a square operation. Since the order of the spy
measurements is also known, we can easily extract the operation sequence of RSA
and construct the secret exponent from these measurement results.

Attacking the S&M algorithm was only a case study to show the potential of
SBPA. The actual potential of SBPA is much broader as stated in [3, 7]. In general,
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Fig. 18.8 Experimental results of SBPA on S&M exponentiation, yielding 508 out of 512 secret
key bits.

SBPA can reveal the execution flow of a process and thus endangers any system
if their execution flow depends on sensitive information. Several potential applica-
tion areas of SBPA are given in [3]. Reference [7] identifies a novel side-channel
attack on binary extended euclidean algorithm, which is enabled by the SBPA
methodology.

18.5 I-cache Analysis

Instruction cache was identified as another microarchitectural analysis source [2].
This new technique, called instruction cache analysis or shortly I-cache analysis, is
also spy oriented and tries to reveal the execution flow of a process just like branch
prediction attacks.

Many processors use different caches for data and code segments of a process.
Instruction cache (I-cache) stores recently executed instructions from the code seg-
ment and when a process starts executing a code block that is not currently stored
in the cache, i.e., in case of a cache miss, the processor loads these instructions
from main memory into the cache. Since a cache is limited in size, several differ-
ent code blocks share the same cache sets/lines. In case of a cache conflict between
different code blocks, they evict each other from the instruction cache when their
executions are interleaved. As you can see, the functionality of instruction cache is
very similar to data cache and also shared between different processes. Since we
already explained above some details of cache architectures and the general func-
tionality, which is very similar in both data and instruction cache, we do not cover
these concepts again in this section.

In [2], the consequences of cache conflicts are exploited by creating intentional
conflicts between the instructions of an RSA process and a spy code and forcing the
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processor to evict the RSA instructions out of I-cache. The attack scenario given in
[2] is the following.

A spy process runs simultaneously with the cipher process and tries to determine
which instructions are executed by the cipher. It spies on the cipher execution by ob-
serving the I-cache state transitions. Assume that the spy process tries to understand
when the cipher “touches” a certain I-cache set during the execution of a part of
cipher code. The spy process continuously executes a set of “dummy” instructions
that map to this particular cache set. These dummy instructions are not intended
to perform any useful calculations other than filling some I-cache space, i.e., the
“spied-on” cache set. These dummy instructions fill completely and precisely this
I-cache set, no more, no less. Therefore, the processor has to store them into the
spied-on cache set, which inevitably causes the eviction of the previous entries in
that I-cache location and sets it to a known predetermined state. When the cipher
executes some instructions that map to this particular I-cache location, the predeter-
mined state set by the spy process must change. The spy process can determine this
change via the timing difference when it re-executes its dummy instructions.

Reference [2] applied this basic principle to OpenSSL’s RSA implementation.
Due to some performance improvement reasons, OpenSSL first calls either multi-
plication or square functions from its multiprecision library during a Montgomery
operation and then calls Montgomery reduction function to reduce the result to
the modulus. This technique causes key-dependent sequence of multiplication and
square function calls during sliding window exponentiation, which is the default
exponentiation algorithm used in OpenSSL. In the experiments of [2], the spy con-
tinuously executed dummy instructions to evict the instructions of the multiplica-
tion function and measured the execution time of its own dummy instructions as
described above. Note that, in this practical attack, the spy does not observe a single
I-cache set but a number of sets that can hold the instructions of the multiplica-
tion function.

Figure 18.9 shows the results of this experiment. Again the y-axis shows the
measurements of the spy in terms of the clock cycles and x-axis shows the order of

Fig. 18.9 Experimental results of I-cache analysis given in [2].
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these measurements, which also indicates the order of the RSA operations. These
timing measurements were taken during a single RSA operation under a random
1024-bit key. As you can see in this figure, the operation sequence of RSA could be
successfully observed via I-cache analysis.

18.6 Exploiting Shared Functional Units

All of the microarchitectural analysis types we have covered above rely on the fact
that there are some buffers (e.g., data cache, instruction cache, BTB) shared between
different processes running on the same processor. The state of these buffers and the
transitions between these states are affected by the execution of any of these pro-
cesses and also affect the execution of other processes. These attacks can be applied
on any platform with or without SMT capability as explained in [26]. However, [1]
presents a novel attack which is very unique to certain SMT architectures and it
seems that it cannot be carried out on CPU architectures without SMT hardware as-
sistance. In this sense, this attack is unique because it does not rest upon a shared re-
source with the persistent state property between context/process switches. Instead,
it is based upon the fact that some SMT technologies share complex functional units
between the hardware-supported threads, i.e., between logical processors within a
physical SMT processor, in order to keep the SMT area over head cheap.

Reference [1] presents an attack on OpenSSL which exploits the fact that the inte-
ger multiplier in Pentium 4 architecture is shared between the two threads executing
on the same SMT-enabled processor. Since a multiplier does not preserve any per-
sistent state, this attack methodology is quite different than other microarchitectural
types. The principle idea of this attack is the following. A spy process continuously
executes a number of dummy multiplication instructions and measures their execu-
tion time. Whenever the other process (RSA process in this case) performs some
multiplications by executing its own multiplication instructions, the time measured
by the spy will be longer. This is because the spy and the cipher instructions race
to occupy the shared multiplier. When the multiplier executes a multiplication in-
struction from the cipher process, the spy multiplication instructions have to wait
their turn until the multiplier finishes its current task, which eventually cause longer
execution time for the spy instructions and can easily be detected by the spy.

Reference [1] also exploited the key-dependent RSA implementation of
OpenSSL. As we already explained above, OpenSSL implementation has key-
dependent sequence of multiplication and square function calls during sliding win-
dow exponentiation. We need to mention another important aspect of OpenSSL’s
implementation. RSA operations make use of multiprecision multiplication routines
due to their long operand sizes. Usually the operands in RSA exponentiations are
512 bits or 1024 bits long, respectively, for 1024 and 2048 bit RSA keys. Note
that RSA implementations usually benefits from Chinese remainder theorem and
operates on half-sized operands compared to the size of entire public keys. Multi-
precision libraries represent large integers as a sequence of machine-sized words.
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OpenSSL implements two different multiplication algorithms: Karatsuba and
“normal” multiplication. OpenSSL uses Karatsuba multiplication to multiply two
numbers with an equal number of words (e.g., square operation). Karatsuba multi-
plication takes O(nlog2 3) time, where n is the number of words in the operands, cf.
[25]. When multiplying two numbers with an unequal number of words of size n and
m, OpenSSL executes normal multiplication, which runs in O(nm) time. Therefore,
a square operation takes less time than a multiplication in OpenSSL. This particular
way of implementing RSA causes the leakage of operation sequence because the
execution time variations depend on this sequence due to the difference between the
implementations of multiplication and square operations.

Shared functional unit attack uses this timing difference, which can be observed
by the spy process as described above, to distinguish between modular multiplica-
tions and squares. The operation sequence reveals the entire secret key in a binary
square and multiply exponentiation. In case of OpenSSL’s sliding window exponen-
tiation, a large number of key bits can be derived.

18.7 Comparing Microarchitectural Analysis Types

Data cache attacks try to reveal the data access patterns of cryptosystems. On the
other hand, branch prediction, I-cache, and shared function unit attacks expose the
execution flow of the ciphers. Implementations with fixed instruction flow, which
is usually the case for block ciphers, are intrinsically protected against these at-
tacks. However, public key cryptosystem implementations, e.g., those of RSA and
ECC, usually have key-dependent operation flow. It is possible to implement these
systems without key-dependent execution flow, but it comes with some degree of
performance loss. Due to such performance and optimization reasons, the develop-
ers usually choose to implement these systems in a way that cause execution flow
variations, which make BPA, I-cache, and SFU attacks a real threat to actual security
systems.

It is also possible to determine the execution flow of a cipher (e.g., RSA) by
analyzing the data access patterns as done in [35]. However, implementations can
avoid this threat by carefully handling the layout of data structures on the memory.
For example, OpenSSL changed the way it handles the RSA structures to avoid data
cache attacks. Even when the data structures are handled in a special way, BPA,
I-cache, and SFU analysis can compromise the implementations if the execution
flow remains key dependent. Similarly, data cache attacks can be applied on imple-
mentations with fixed execution flow if the data access patterns are key dependent.
Therefore, both data and instruction cache analysis must be considered during the
design and implementation of security critical systems.

The basic difference between I-cache and branch prediction analysis is the
following. Branch prediction analysis presented in [3, 4] specifically targets con-
ditional branches. A conditional branch controls the execution of different instruc-
tion paths. Thus, the outcome of a conditional branch, which can be observed via
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BPA, leaks the instruction path to an adversary. However, using conditional branch
is only one way to implement execution flow control. There are other techniques,
which may be protected against BPA, to conditionally alter the execution flow with-
out the use of conditional branches. In this sense, I-cache analysis is broader than
BPA because it reveals the execution flow regardless of how execution flow control
is implemented. For example, [8] proposes to use indirect jumps instead of condi-
tional branches as a countermeasure to BPA, but this mitigation is still vulnerable to
I-cache analysis.

The main difference between shared FU attack and the other MA types is the fact
that it does not exploit the footprints of cryptosystems that are left on the persistent
states of a buffer. Other MA types, data cache, I-cache, and BPA attacks rely on the
persistent states of some buffers shared between different processes running on the
same processor. These attacks can be applied on any platform with or without SMT
capability. On the other hand, shared FU attack is based upon the fact that some
SMT technologies share complex functional units between the hardware-supported
threads and thus it seems that it cannot be carried out on CPU architectures without
SMT hardware assistance.

18.8 Countermeasures for Microarchitectural Analysis

In this section we investigate possible countermeasures to prevent MA threats. We
cover mainly software-based countermeasures and very briefly mention possible
hardware-based countermeasures. The reason why we do not cover hardware-based
approaches in greater length is because there had not been any real attempt, un-
fortunately, to employ such hardware changes in real systems. Therefore, we focus
on more practical aspects of MA prevention, more specifically software mitigation
methods, in this section.

Several countermeasures for AES were proposed in [13] against cache attacks.
Particularly, [13] argues that permuting the AES lookup tables prevents access-
driven attacks. They also propose to use smaller lookup tables, e.g., original AES
S-box, during the first and last rounds of AES computations. Current cache attacks
on AES exploit first, second, and the last round accesses. Using smaller tables dur-
ing these rounds make it more difficult, i.e., require more samples, to apply these
cache attacks. A formal study was presented in [41] to analyze the effects of table
sizes, among other parameters, on the performance of time-driven attacks.

The only cache attack on RSA is from Percival [35]. He exploited the fact that
OpenSSL implementation accesses different data structures during square and mul-
tiplication operations. In other words, Percival’s attack can extract the operation
sequence of RSA by tracing the cache activities, cf., Section 18.3.7. Moreover, it
is also possible to determine which table entries are used in a multiplication step
because table entries were stored in consecutive regions of memory and thus they
map to different cache sets. Reference [14] proposes an implementation technique
that does not have these weaknesses. To be more precise, [14] proposes to change
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the memory layout of RSA exponentiation table and to interleave the table en-
tries in memory instead of storing them in a consecutive manner. This way, each
access to any table entry results in touching the same cache lines, which makes
the accesses to different table entries indistinguishable. However, one still can ob-
serve the operation sequence of RSA due to the simple fact stated above. There-
fore, [14] also suggests to employ fixed window exponentiation, which has a con-
stant operation sequence. These countermeasures were implemented in OpenSSL
as an optional protection mechanism, i.e., a user has the option to turn these
mechanisms on.

Branch prediction and I-cache attacks exploit execution flows of cryptosystems.
The best mitigation method for these attacks is to implement cryptosystems with
fixed execution flows. Reference [7] analyzed the strength of OpenSSL’s RSA
implementation considering branch prediction analysis and detected several weak
points that needed to be changed. Particularly, [7] suggested to remove several con-
ditional branches that affect the strength of RSA implementation. OpenSSL team
took these suggestions into consideration and modified the implementations. Ref-
erence [7] also proposes a new method to implement high-level execution flow of
RSA without any variations. A similar proposal is also given in [21].

Another mitigation method for branch prediction vulnerabilities is given in [8].
They suggest to implement conditional branches via indirect branching. In other
words, their method comprises storing the addresses of the branch legs in memory
and loading the corresponding address into a register during runtime based on the
evaluated condition of a conditional branch and using this register as the jump target.
Since they do not consider to avoid execution flow variations, the proposed mitiga-
tion does not truly provide high security. Their protection can easily be overcome
by I-cache attacks.

There are also several hardware countermeasures in the literature proposed to
prevent microarchitectural attacks. We do not cover the details of hardware-based
countermeasures in this book. The interested readers can refer to [10, 32, 33, 47].

18.9 Exercises

1. What is (are) the difference(s) between time-driven and access-driven cache at-
tacks? Which one is more efficient and why?

2. What is (are) the fundamental difference(s) between data cache and instruction
cache attacks?

3. Both I-cache analysis and simple branch prediction analysis (SBPA) can very ef-
fectively reveal the execution flow of a cryptosystem. For example, both attacks
can extract the sequence of multiplication/square operations in an RSA exponen-
tiation by observing only a single run of the cipher. However, I-cache analysis
is more general than SBPA in the sense that I-cache analysis can compromise
SBPA-resistant systems. What is the reason of this situation?

4. Which cryptosystems are susceptible to branch prediction analysis?
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5. Why is it easier to carry out microarchitectural attacks on simultaneous multi-
threading processors?

6. Which microarchitectural attack type does seem to work only on simultaneous
multithreading processors? Why?

18.10 Projects

1. There are some reference cache attack codes in [10] and [35]. Verify Bernstein’s
attack on AES and Percival’s attacks on RSA using these reference codes.
Bernstein’s AES attack mimics a remote cache attack. In real remote attacks, the
timing measurements must be obtained by a client and they also contain a lot
of noise due to network delays, etc. However, in Bernstein’s experiments, the
encryption time is measured inside the crypto process, i.e., the server, instead of
in the client. Modify Bernstein’s reference code and measure the actual response
times inside the client and verify that this attack becomes practically infeasible
in a realistic remote attack.
Percival’s attack, the experiments need to be performed on a simultaneous multi-
threading processor. You can run these experiments on an HT-enabled Pentium 4.
In order to synchronize spy and crypto processes, you can use pthread library.

2. There are several publications in the literature, cf. [36, 37, 46], that give the
details of how one can extract the secret exponent in an RSA exponentiation by
observing the occurrences of extra reduction steps in Montgomery multiplication
during the exponentiation. In other words, if we can observe which multiplica-
tion/square operations perform an extra reduction step during an entire modular
exponentiation with a secret exponent, we can extract the value of this secret ex-
ponent by using some statistical analysis techniques. These techniques can also
tolerate some levels of errors in the observations. SBPA and I-cache analysis
are useful tools to perform such observations to detect the occurrences of extra
reduction steps. Study [36, 37, 46], find an RSA implementation that employs
Montgomery multiplication with extra reduction step (OpenSSL v.0.9.8e would
suffice), and try to apply SBPA and I-cache attacks on this implementation to
detect the extra reduction steps and extract the secret exponent. Also analyze the
error rates in the observations and their effect on the necessary sample size.

3. Branch prediction attacks have been demonstrated only on conditional branches
so far. Avoiding conditional branches in cryptographic implementations are
thought to prevent these attacks. However, there are still many open questions.
For example, it may also be possible to compromise security systems by detect-
ing when and which unconditional branches are executed during the course of a
cryptographic operation. Such information can be useful if the implementation
has data-dependent execution time and/or control flow variations. Another prob-
lem is due to error detection purposes. The software implementations, whether
cryptographic operations or regular applications, have many conditional branches
to detect run-time errors/anomalies. For example, a widely accepted convention
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is to use conditional branches, e.g., if-then-else statements, to check the return
values of functions/methods to detect run-time errors, unexpected results, etc. Al-
though these conditional branches have a low probability to alter the execution
flow, they can be exploited via branch prediction analysis. These aspects need
further investigations.
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120 journal, conference and book articles, 7 US patents, and edited 5 books. He is
an IEEE Fellow since 2007 for contributions to cryptographic engineering.
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folded register, 283
Fourier ring, 129
FPGA, 55, 236, 247, 251, 296
FPGA shift register, 285
functional unit extensions, 204
functional units, 476

Galois field, 239
Gaussian Assumption, 386
GCM, 341
General Extension Fields, 96
Generalized full adder, 109
generalized variance, 34
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