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Abstract Balancing utilization and protection of the natural environment is a challeng-
ing task. Forest management in particular continues to deal with trade-offs 
inherent to responsible timber harvesting. This chapter focuses on harvest 
scheduling where one is interested in maximizing economic returns subject to 
maintaining a continued supply of timber in the future. This necessarily means 
managing resources in a sustainable manner. As such addressing spatial issues 
related to environmental concerns is critical. This chapter reviews approaches 
that have been relied upon to limit localized impacts of harvesting activity. 
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1 INTRODUCTION 

Human activities and their associated impacts on the environment continue 
to be recognized as a threat to the long-term sustainability of the Earth. 
Forestry represents an industry that relies on natural resources, forests and 
timber in particular, in a multiple-use context. Given demands for timber and 
wood products as well as the environmental impacts of harvest operations on 
flora and fauna, increasing attention has been directed to enhancing analysis 
and modeling detail in the management of natural resources. Of interest in 
this chapter is increased spatial and temporal specificity in harvest-scheduling 
analysis supported by optimization models. 

 
Harvest-scheduling optimization models have characteristically focused on 

making decisions on how to treat standing timber over a horizon of several 
years to decades. Decision variables in these models relate to the sequencing 
of stands or blocks for harvesting to satisfy temporal timber demands and 
other constraining conditions. Given this, the orientation of harvest-scheduling 
models is to maximize economic returns in the management of a forest region. 
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This necessarily means minimizing management costs, such as operational 
overhead, transportation system development/maintenance, timber movement 
costs, and so on. Spatial environmental concerns arise when accounting for 
wildlife richness, creating habitat favorable to flora and fauna, promoting 
diversity, maintaining soil and water quality, preserving scenic beauty, and 
moving toward sustainability more generally. In order to address such concerns 
implicitly or explicitly, limiting spatial impacts is desired in harvest-scheduling 
models. Adjacency restrictions and green-up conditions have traditionally 
been relied upon to regulate localized activity. 

2 ADJACENCY AND GREEN-UP 

Avoiding concentrated harvest activity in any one area has been approached 
in optimization models by addressing adjacency relationships. Adjacency 
reflects spatial proximity of an area to another area. Typically, adjacency  
is defined as two areas sharing a common boarder or point, but certainly 
adjacency could be defined using distance between two areas as well. One 
way to limit localized harvest impacts is to prohibit any two adjacent areas 
from being simultaneously treated, as was the intent of Thompson et al. 
(1973). Consider a harvesting decision variable for management area i: 

1 if area  is harvested
0 otherwisei

i
x

⎧
= ⎨
⎩

. 

For two management areas i and i′, we can define a condition that would 
limit harvesting to at most one of these adjacent areas: 

1≤+ ′ii xx . (1) 

Thus, restrictions would be imposed for all adjacent areas iN  to area i, and 
these conditions would be needed for each area i. Murray (1999) has referred 
to harvest-scheduling problems where adjacency between management units 
is imposed as the unit restriction model (URM). The assumption here is that 
the combined area of units i and i′ exceeds an acceptable threshold. That is, 

Aii >+ ′αα , where iα  is the area of unit i ( i′α  similarly defined) and A is 
the maximum permissible harvest disturbance area. Murray et al. (2004) 
indicate that maximum area limits of 16–49 ha are common in practice. 

 
If we also take into account temporal aspects of spatial decision making, 

the earlier notation can be extended as follows: 
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1if unit  is harvested in time period 
0 otherwiseit

i t
x

⎧
= ⎨
⎩

. 

In the context of limiting localized impacts, condition (1) can be more 
broadly defined to include both spatial and temporal restrictions on harvest 
activity as follows: 

( ) 1≤+∑
+

−=′
′′′

pt

ptt
titi xx . (2) 

where p is a pre-specified harvesting exclusion period. Condition (2) inclu-
des the so-called green-up requirement, where an area cannot be harvested  
if an adjacent unit has been harvested in a pre-specified interval of time 
before or after the current time period t. As such, condition (2) would be 
necessary for each units i and adjacent units i′ in every each time period t. 

3 AREA RESTRICTIONS 

Current harvest-scheduling research increasingly focuses on a variant of  
the earlier problem, recognizing that management units may be defined such 
that two or more adjacent units do not necessarily violate the maximum area 
limitation (see Hokans, 1983; Lockwood and Moore, 1993; Murray, 1999). 
That is, it is possible that Aii <+ ′αα , representing a feasible management 
possibility. In this case, rather than adjacency constraints, one needs a maxi-
mum area restriction defined for sets of units if the intended condition is to 
be imposed in a harvest-scheduling optimization model. Murray (1999) has 
referred to harvest-scheduling problems where spatial limitations apply to 
sets of management units as the area restriction model (ARM). 

 
While in the general case this is a particularly formidable problem to 

structure (and solve) using integer programming, under certain conditions it 
is possible to enumerate potential feasible harvesting blocks (or areas) a 
priori (see Murray et al., 2004; Goycoolea et al., 2005). As an example, 
consider the forest units shown in Fig. 1, assuming a maximum allowable 
impact area of A=49 ha. Given this, there are 17 potential combinations of 
feasible blockings for these individual management units: {1}, {2}, {3}, 
{4}, {5}, {1,2}, {1,3}, {1,4}, {2,4}, {2,5}, {3,4}, {4,5}, {1,3,4}, {1,4,5}, 
{2,3,4}, {2,4,5}, and {3,4,5}. A block, then, is an area comprising spatially 
connect, or contiguous, management units. As such, a feasible block would 
need to be identified using some enumerative scheme (see Goycoolea et al., 
2005). 
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Figure 1. Forest management units. 

From a modeling perspective, this somewhat changes how our problem is 
mathematically represented as we must account for these permissible spatial 
blocks. This can be done by introducing a new decision variable for each 
feasible block l: 

1 if block  is harvested
0 otherwisel

l
y

⎧
= ⎨
⎩

. 

Given this notation and a priori identified feasible blocks, there are two cases 
in which any two blocks cannot be simultaneously selected for harvest. First, 
if a unit i is common to both blocks, clearly both should not be allowed as a 
unit and cannot be harvested twice. Second, if two blocks are adjacent, then 
we assume that their combined area would result in a spatial violation. While 
it is true that their combined area may not actually exceed the stipulated 
maximum area restriction, if this combination of units is feasible it will be 
identified as a potential block (see Goycoolea et al., 2005). Therefore, this 
harvesting option is present as a feasible block that can be selected. The 
implication of these two cases is that we can utilize an adjacency constraint 
to impose proscribed configurations of blocks as follows: 

lll llyy Ω∈′∀≤+ ′ ,1 , (3) 
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where lΩ  is the set of blocks adjacent to block l and those blocks which 
share a common management unit with block l. 
 

Returning to the example shown in Fig. 1, feasible blocks {1,4} and {2} 
would be prohibited based on adjacency given that their combined area (53 
ha) exceeds the maximum allowed disturbance area of 49 ha. Mathe-
matically, this can be imposed as follows: 

1}2{}4,1{ ≤+ yy . 

Alternatively, feasible blocks {1,4} and {3,4,5} would be prohibited because 
they share a common area,  unit 4. As such, the following additional const-
raint would also be needed, among others: 

1}5,4,3{}4,1{ ≤+ yy . 

For this example, it is possible to encapsulate the harvesting decision vari-
ables and spatial constraints as a graph of nodes and arcs. The nodes in this 
graph represent feasible blocks to harvest and arcs depict adjacency or block 
overlap restrictions. Goycoolea et al. (2005) refer to this as a projected graph 
because it is derived from the forest region. Figure 2 illustrates the projected 
graph for the earlier forest example. In this case, it is nearly a complete 
graph, with no arcs between {1} and {5}, {2} and {3}, {3} and {2,5}, and 
{5} and {1,3}. 
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Figure 2. Graph depicting blocks and restrictions in the five unit-forest. 
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Given the projected graph, it is possible to structure the harvest-sche-
duling optimization problem as an integer program by restricting spatial 
impacts between blocks using the ARM. 

4 SOLVING THE AREA RESTRICTION MODEL (ARM) 

The remainder of this chapter will focus on the ARM, as the URM has been 
shown to be a special case of the ARM (see Murray, 1999). Murray and 
Weintraub (2002) provide an empirical examination of the relationship 
between the URM and ARM. The ARM can be formally stated as follows: 

Maximizes ∑∑
l t

ltlt yβ , (4) 

subject to 

( ) tllyy l

pt

ptt
tltl ,,1 Ω∈′∀≤+∑

+

−=′
′′′ , (5) 

tUy t
l

ltlt ∀≤∑ν , (6a) 

tLy t
l

ltlt ∀≥∑ν , (6b) 

ly
t

lt ∀≤∑ 1 , (7) 

{ } tlylt ,1,0 ∀= , (8) 

where 
 
 is the benefit of harvesting block  in period l titβ , 
 is the volume produced by harvesting block  in period l titν , 
 is the upper bound on total volume harvested in period U tt , and 
 is the lower bound on total volume harvested in period L tt . 
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The objective (4) maximizes net return in selecting blocks for harvest. 
Constraints (5) impose adjacency and incompatibility restrictions on the 
simultaneous selection of blocks. Constraints (6) establish upper and lower 
bounds on harvesting productivity in each time period. Constraints (7) allow 
a block to be harvested at most once over the planning horizon. Finally, 
constraints (8) indicate integer requirements on decision variables. 

 
Common extensions to this basic model include road network constru-

ction and maintenance, minimum revenue requirements, age structure, and 
preservation of habitat (see Kirby et al., 1986; Murray and Church, 1995; 
Caro et al., 2003). 

 
Solving the ARM has proven to be a challenge. Much of the initial work 

on solving the ARM utilized heuristic solution methods. Hokans (1983) 
detailed an artificial intelligence-based heuristic for the ARM. Following this 
were approaches based on simulated annealing and tabu search developed by 
Lockwood and Moore (1993), Clark et al. (2000), and Richards and Gunn 
(2000). Recent work in this area includes the evolutionary approach (genetic 
algorithm) of Falcao and Borges (2002) and the tabu 2-opt heuristic of Caro  
et al. (2003). 

 
Murray et al. (2004) and Goycoolea et al. (2005) detail an approach for 

solving the ARM exactly using commercial integer-programming software. 
The idea behind the approach is to exploit properties of the projected graph. 
In particular, constraints (5) in the ARM are not particularly strong in the 
sense of inducing facets beneficial to integer-programming techniques. Speci-
fically, integer-programming typically relies on linear programming (LP) 
coupled with branch-and-bound, where integer restrictions on decision vari-
ables are initially relaxed then systematically resolved in the branching 
phase. When constraints (5) are utilized, highly fractional LP solutions often 
result, if a relaxed solution can be obtained at all, requiring substantial effort 
to resolve fractions and prove optimality, again if this can even be done at 
all. To address this issue, Goycoolea et al. (2005) proposed higher-ordered 
cliques and other facet-defining constraints in the projected graph. A clique 
is a set whose members share a mutually exclusive relationship with all other 
members in the set. The cliques suggested in Goycoolea et al. (2005) are 
structurally similar to those developed for the URM by Murray and Church 
(1996). 
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Constraints (5) actually are low-ordered cliques, fundamentally containing 
two decision variables, for example, Eq. 3 and a right-hand side coefficient 
value of one. Interestingly, higher ordered cliques typically exist in projected 
graphs, making it possible to have many decision variables in one constraint 
while retaining a right-hand side coefficient of one. Thus, Eq. 3 can be gener-
alized as follows: 

∑
∈

≤
Cl

ly 1, (9) 

where C is the set of blocks forming a clique (all blocks in the clique are 
mutually prohibited from being harvested together). Such a constraint in the 
ARM provides the facet-inducing property important for optimally solving 
integer-programming problems in practice. 
 

For the forest example previously discussed, only three cliques are need-
ed to impose all projected graph restrictions: 

1}5,4,3{}5,4{}4,3{}4{

}5,4,2{}4,3,2{}5,2{}4,2{}2{

}5,4,1{}4,3,1{}4,1{}3,1{}2,1{}1{

≤++++

+++++

+++++

yyyy

yyyyy

yyyyyy

, (10a) 

1}5,4,2{}5,4{}4,2{}4{

}5,4,3{}4,3,2{}4,3{}3{

}5,4,1{}4,3,1{}4,1{}3,1{}2,1{}1{

≤++++

++++

+++++

yyyy

yyyy

yyyyyy

, (10b) 

1}5{

}5,4,3{}5,4,1{}4,3,1{}5,4{}4,3{}4,1{}4{

}5,4,2{}4,3,2{}5,2{}4,2{}2,1{}2{

≤+

+++++++

+++++

y

yyyyyyy

yyyyyy
, (10c) 

Assuming that an enumerative scheme is developed to identify all necessary 
cliques in a projected graph, a constraint for each clique k may be structured 
as follows: 

tky
kCl

pt

ptt
tl ,1 ∀≤∑ ∑

∈

+

−=′
′ , (11) 
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where k is the index of cliques. These constraints would replace constraints 
(5) in the ARM. The rationale for this replacement is that there will be sub-
stantially fewer constraints (11) than (5). Further, the facet inducing structure 
of constraints (11) is far superior to (5). 
 

Goycoolea et al. (2005) provide computational experience using commer-
cial integer-programming software to solve the ARM using constraints (11) 
for a range of harvest-scheduling problems. The largest problem solved had 
1,363 management units and a planning horizon of 7 periods, resulting in 
some 9,500 scheduling decision variables alone. Extensions of the ARM to 
account for average area considerations were detailed in Murray et al. (2004), 
readily solving scheduling problems with 351 planning units. The point here  
is that the projected graph and higher-ordered cliques make it possible to  
solve fairly large ARM-based harvest-scheduling problems with modest 
computational effort. 

5 TEMPORAL RESTRICTIONS 

While much progress has been made in the development of optimization 
approaches to support harvest scheduling, a relatively under investigated area 
of research in modeling spatial environmental concerns is the impacts of 
temporal output requirements. This is not particularly surprising given that 
spatial restrictions have been challenging to represent and impose, and they 
have had substantial impact on model solvability (Murray and Church, 1996; 

merely adding a temporal dimension to an ARM with a requirement on 
productivity in each time period greatly increased computational complexity. 
As an example, for a problem with 1363 management units and 15 time 
periods the addition of volume restrictions, constraints (6a) and (6b) incre-
ased computational effort by more than 200% just to find a solution within 
1% of optimality. Thus, addressing both space and time presents difficulty, 
but is fundamentally important to responsible natural resource management 
practices (see Ware and Clutter, 1971; Bettinger et al., 2003). 

 

fraction-inducing behavior of temporal volume constraints becomes apparent. 
That is, temporal volume constraints do not tend to be integer-friendly. As a 
result, approaches for dealing with this aspect of modeling difficulty in harvest 
scheduling is necessary, which is precisely what was done in Vielma et al. 

branching and relaxing strict volume constraints. 
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Goycoolea et al., 2005). Recent work by Vielma et al. (2007) has found that 

What is significant about the work of Vielma et al. (2007) is that the 

(2007). Specially, Vielma et al. (2007) discussed approaches for constraint 
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6 CONCLUSIONS 

Spatial environmental issues are of central concern in forest management.  
Harvest scheduling has long been focused on using optimization models to 
support management and decision making. There has been an evolution of 
sorts in harvest-scheduling where greater spatial and temporal specificity is 
expected with increases in geographic data and a better understanding of 
ecological processes. To support this, harvest scheduling models have moved 
from unit-based to area-based approaches, such as the ARM. While many  
of the initial ARM applications made use of heuristic solution methods, 
recent work has demonstrated increased capabilities for optimally solving 
such problems. Improvements facilitated by the use of projected graphs and 
cliques necessarily exploit spatial problem structure. Along the temporal 
domain, advances are being made associated with the ARM, but there appears 
to be substantial opportunity for improvements based on space–time insights. 

 
Future research addressing spatial environmental concerns will no doubt 

continue to push the envelop of computational capabilities for solving 
harvest-scheduling models. One can anticipate advances in both exact and 
heuristic approaches. It seems reasonable as well to expect research focusing 
on the impacts of temporal volume restrictions. Beyond this, extension of  
the basic ARM to address roading and other operational concerns is no  
doubt an important future area of work with real potential for significant 
contributions. 
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