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Summary and Discussion

8.1 Introduction

There are many problems of probability and statistics in which characterizing
a large and awkward space of objects by a simpler index of the space facilitates
analysis and makes the identification of optimal or at least rational solutions
possible. The notion of a sufficient statistic, one that can reduce the data to
a simple summary measure without loss of information about the unknown
features of the model involved, is perhaps the quintessential example of this
phenomenon. In linear model theory, results on dimension reduction have the
same aim, though the possibility of such reduction without some (at least
minor) loss of information is rarely possible. In this latter case, the compro-
mise is generally deemed to be worth making. The theory and applications
of system signatures can be thought of in the same way. The signature of a
system is a characteristic of the system’s design which captures an essential
feature of that design. Specifically, it provides a measure of how component
failures influence system failures when the components are independent and
have the same lifetime distributions. As mentioned earlier, this leveling of
the playing field among the components’ theoretical performance allows one
to focus exclusively on system design. Signatures are deterministic measures
that are properly classified as tools within the field of Structural Reliability,
providing information solely about the design of the corresponding system.

Regarding the information lost in using a signature vector as a proxy for a
particular system design, there are two sources of lost information that require
mention. The first is that there is not a one-to-one correspondence between
systems and signatures. There are, for example, only 17 distinct signatures
among the 20 different coherent systems of order 4. There are three pairs of
systems of order 4 that have the same lifetime distributions when the com-
ponent lifetimes are i.i.d. with a common distribution F . Of course, all 20
system lifetime distributions would differ if one relaxes the i.i.d. assumption.
Secondly, the lifetime distributions of the components of most real systems
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cannot reasonably be considered identical. The independence of the compo-
nent lifetimes is a less restrictive assumption, but dependencies can certainly
occur due to stress, wear-out or early failures, and a theory for comparing
two systems which relaxes both the independence and identically distributed
assumptions could well be viewed as the ultimate goal of the type of analyses
developed in this monograph.

This final chapter has several purposes. I will present, in Section 8.2, an
overview of the theory and applications of system signatures, summarizing
what I consider to be the highlights of the present monograph. This will in-
clude some brief commentary on the definition and interpretation of system
signatures, related representations of system lifetime distributions, preserva-
tion and characterization results based on traditional stochastic orders, al-
ternative signature-based metrics for comparing systems, the relationship be-
tween dominations and signatures in the context of communication networks
and the search for optimal systems in a Reliability Economics setting. Possi-
ble extensions of the developments mentioned above are discussed in Section
8.3, where I attempt to provide some indication of the extent of generalization
that appears to be feasible. In Section 8.4, I will review some signature-related
literature that has not been mentioned in this monograph but gives further
evidence of the broad applicability of the concept. Finally, in Section 8.5, I
will mention a number of open problems for which solutions would be most
welcome. In the spirit of the great mathematician Paul Erdös, I will offer
financial rewards for published solutions to these problems. Being of compar-
atively modest means, however, I cannot match the tantalizing offers that
Erdös enjoyed sprinkling throughout his lectures. I will pay 50 cents for so-
lutions to easy problems and 1 dollar for solutions to hard ones. While these
miserly offers won’t serve as much of an incentive for anyone to work on these
problems, I will count on old-fashioned self satisfaction, plus the right to add
something like “Winner of the Samaniego Prize for Contributions to Signature
Theory - 2043” to one’s resume, as sufficient inducement for readers to spend
at least a few minutes considering the problems I will mention. (Don’t worry
about the year of the prize; a generous endowment has been added to my will
which will sustain this prize indefinitely. Indeed, because of this endowment,
I am able to extend the range of the prize to any contribution to signature
theory that I or my descendents deem to be “not bad.”)

8.2 A Retrospective Overview

The signature of a system of order n whose components have i.i.d. lifetimes
with common distribution F has been defined as an n-dimensional probability
vector s whose ith element is si = P (T = Xi:n), where T is the system’s life-
time and Xi:n is the ith ordered component lifetime. As the order statistics of
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a random sample are stochastically ordered, it is clear from the definition of
signatures that probability vectors s which place most of their weight on the
larger integers in the set {1, 2, . . . , n} will correspond to the better performing
systems simply because these systems will tend to fail later, that is, they will
fail upon the failure of one of the larger order statistics. It has been shown
that these particular proxies for system designs give rise to representations
of systems’ survival functions, and also of the systems’ density and failure
rate functions when the underlying component distribution F is absolutely
continuous. These representations are used as essential tools in studying the
performance of individual systems in i.i.d. components and in comparing such
systems with each other. In the latter context, it is shown in Chapter 4 that
the existence of certain ordering relationships between the signatures of two
systems ensures that a similar relationship holds between the systems’ life-
times. Such preservation results are established for stochastic, hazard-rate and
likelihood-ratio ordering between signature vectors of the same size. The suffi-
cient conditions of these preservation theorems are extended in Section 4.4 to
necessary and sufficient conditions on two signature vectors for the aforemen-
tioned relationships between system lifetimes to hold. Theorem 3.2, a result
that establishes a recursive relationship between a given system’s signature
and that of a system of an arbitrary larger size having the same lifetime dis-
tribution, renders comparisons between systems of different sizes feasible.

Both of the developments mentioned above – the signature-based repre-
sentations of system behavior and the relationships between signatures that
imply or characterize similar relationships between system lifetimes – hold for
all coherent systems and hold as well for all stochastic mixtures of coherent
systems. It has been argued that the notion of mixed systems is more than a
mathematical artifact which extends the reach of some theoretical results of
interest and serves as a useful tool in certain optimization problems. Indeed,
in applications in which a given system is to be used repeatedly, a mixed
system represents a potential selection among systems. Its implementation
can be physically realized through a simple process of randomization. In the
i.i.d. setting studied here, employing a mixed system involves the selection,
in each particular instance of its use, of a coherent system chosen according
to a fixed probability distribution. Further, since for any (coherent or mixed)
system in i.i.d. components, there exists a mixture of k-out-of-n systems with
the same lifetime distribution, one can restrict attention to the class of k-out-
of-n systems in carrying out the randomized selection of a coherent system at
each stage of the application. In Chapter 7, examples of problems are given
in which the optimal system relative to a chosen criterion function is not a
coherent system but rather a nondegenerate mixture of k-out-of n systems.
Thus, in selected circumstances, a particular mixed system can exhibit better
expected behavior than any competing coherent system and can thus be rea-
sonably recommended for practical use. The natural domain of applicability
of mixed systems is in settings in which the opportunity to select a system for
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a particular purpose occurs repeatedly.

The various forms of stochastic ordering considered in Chapter 4 have
the common characteristic of generating only a partial order among signa-
ture vectors or system lifetimes. Even the most liberal of these orderings, the
“st” order, will not apply to all possible pairs of coherent systems, and there
are uncountably many pairs of mixed systems that are not comparable via
stochastic ordering. In Section 5.4, this limitation is addressed through the
consideration of an alternative metric between system lifetimes. If T1 and T2

are the lifetimes of two mixed systems in i.i.d. components and the orders of
these systems are potentially different, then T1 is said to stochastically pre-
cede T2 if and only if P (T1 ≤ T2) ≥ 1/2. Three characteristics of the “sp”
metric that make it especially useful in comparing systems are that (i) any two
mixed systems of arbitrary size are necessarily comparable, that is, the first
is better than, equivalent to or worse than the second, and (ii) the relevant
probability P (T1 ≤ T2) is independent of the underlying common component
lifetime distribution F , that is, it is distribution-free (provided only that F
is continuous) and (iii) a closed form expression for computing P (T1 ≤ T2)
is available (and is given in Lemma 5.2). This type of comparison offers a
potential refinement of comparisons via the traditional stochastic orderings
when the latter yield inconclusive results.

The comparative reliability of communication networks is a research area
that abounds with problems having both theoretical interest and practical im-
portance. As is typical in the field, a given network is pictured as an undirected
graph with a certain number of vertices and with a set of edges connecting dif-
ferent pairs of vertices. The primary problem of interest is the determination
of the probability that a given set of vertices can communicate with another
set. Two scenarios of special interest are the “two-terminal” problem, where
interest is restricted to the question of whether two particular vertices are con-
nected, and the “all terminal” problem, where the probability that each vertex
can communicate with every other vertex is of primary interest. In these and
other communication network problems, much attention has been given to the
problem of computing the reliability of the network of interest. In Chapter
6, our focus is directed at one particularly efficient mode of computation of
network reliability – Satyanarayana’s theory of dominations. The main goal
of that chapter is to identify an explicit relationship between the domination
vector d of a given network and its signature vector s in the form s = g(d).
Such a formula allows one to exploit simultaneously the computational effi-
ciency of dominations and the utility and interpretive power of signatures in
the comparative analysis of networks. In Theorem 6.1, the relationship be-
tween dominations and signatures is clarified through an explicit expression
of the form s = P−1M−1d, where the matrices P and M are specifically
identified. The comparison of the networks displayed in Figure 7.3 provides a
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striking illustration of the potential benefits of the joint use of these two tools.

The generality of the main result in Chapter 6 should be noted. In that
chapter, we first call attention to the two different forms generally used to
represent the reliability polynomial of a mixed system based on components
with i.i.d. lifetimes in Chapter 2. The standard form and pq-form of these
polynomials were displayed in equations (2.23) and (2.24). Then the relation-
ship was derived between the domination vector d and the signature vector
s which, respectively, define the coefficients of the reliability polynomials of a
given communication network in standard and pq forms. This relationship, in
the form s = g(d), is displayed explicitly in Theorem 6.1. The fact that this
theorem applies equally to the respective coefficients of the reliability polyno-
mials of mixed systems was not stated explicitly in Chapter 6, but is readily
apparent from the algebraic developments in that chapter. The general prob-
lem solved in Chapter 6 is that of obtaining the exact relationship between
the vectors d and s in the two polynomials
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This is, of course, precisely the same problem one faces when transforming
the reliability polynomial of a mixed system from standard to pq form. It is
thus apparent that the relationship between d and s in Theorem 6.1 provides
the required link in the “systems” setting as well. This connection makes it
possible to exploit in tandem the computational advantages of dominations
and the broad utility of signatures in the comparative analysis of mixed sys-
tems.

Chapter 7 is dedicated to a particular problem in the area of Reliability
Economics. Specifically, we are interested in the problem of finding optimal
system designs relative to a class of criterion functions depending on both
a system’s performance and its cost. The criterion functions employed (see
(7.5)) depend on a system’s design solely through its signature, and they have
the desirable property that they are increasing functions of system perfor-
mance and decreasing functions of system cost. In a case of special interest,
the criterion function can be viewed as a system’s “performance per unit cost”
(PPUC), but the class of criteria considered includes functions that admit to
a variety of other interpretations. The optimization problem considered in
Chapter 7 is divided into two mutually exclusive cases, and the precise nature
of the optimal design is obtained for each. In the first case (corresponding to
r = 1, i.e., the PPUC case alluded to above), it is shown that the criterion
function can be maximized by a given coherent system (indeed, by a partic-
ular k-out-of-n system), while in the complementary case, where r �= 1, an
optimal system may be represented as a stochastic mixture of at most two
k-out-of-n systems. Several examples are given in which the class of coherent
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systems are dominated by a particular mixed system and are thus suboptimal.
Finally, the problem of estimating the features of the underlying component
lifetime distribution F upon which the criterion function depends is treated in
Section 7.5. The availability of an auxiliary sample of N i.i.d. component life-
times is assumed. For the particular case in which the measure of performance
used in the criterion function is the expected lifetime of the system (and thus
depends on F only through the expected order statistics {µi:n, i = 1, . . . , n}
of component lifetimes), consistent, asymptotically normal estimates of the
parameters µi:n are obtained. This leads to the important practical conclu-
sion that the system that maximizes the estimated criterion function will be,
for arbitrary ε > 0, an ε-optimal system relative to the true criterion function
if N is sufficiently large.

8.3 Desiderata

The theory and applications of system signatures treated in this monograph
have been developed under the assumption that the systems on which we
have focused are based on components with i.i.d. lifetimes. Since this is an
overarching assumption and since signature vectors are well defined with or
without this assumption, it is natural to explore possible generalizations of
signatures in which the i.i.d. assumption is relaxed. We will begin such an
exploration in this section with a view toward making the case that certain
generalizations are in fact both feasible and useful. Before tackling this issue,
however, it seems worth expanding upon the defense of signatures as defined
herein. In Chapter 3, we argued that signatures based on an i.i.d. assumption
on component lifetimes have the conceptual benefit of “evening the playing
field” among system designs we might wish to compare. Further, because the
signature provides information about a system that is a function of the system
design alone, it is a valuable measure of system characteristics that can be
useful quite apart from the consideration of the behavior of the components
one might deal with in practice. For example, if one system has a signature
vector that stochastically dominates that of a second system, then the fact
that the second system performs better in a particular application constitutes
an indication that the lifetimes of the components are either exhibiting some
form of dependence or are quite differently distributed or both. Since infor-
mation on the behavior of a system’s components is not always available or
easy to obtain, the insight about components gained from observed system
behavior can be helpful. Finally, when the i.i.d. assumption is a reasonable
approximation to the true behavior of a system’s components, signature-based
calculations of the system’s theoretical behavior can be expected to provide
useful approximations.
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One generalization that can be developed involves replacing the i.i.d. as-
sumption by the assumption that component lifetimes are exchangeable. As
noted by Kochar, Mukerjee and Samaniego [51], the representation in (3.5) of
the system survival function holds under this less stringent assumption, that
is, the identity

P (T > t) =
n∑

i=1

siP (Xi:n > t) (8.1)

holds when component lifetimes are exchangeable. Thus, one possible direc-
tion of further research is to seek to establish the results presented in this
monograph under the weaker assumption of exchangeability. However, since
exchangeability is but another way to quantify the notion that components
behave in a similar manner, such generalizations are not likely to make an
appreciable difference in practical applications. Let us, therefore, consider for
a moment a more useful generalization, that is, the relaxation of the i.i.d.
assumption to the case in which components have independent lifetimes with
possibly different lifetime distributions. The signature of an n-component sys-
tem whose components have independent lifetimes is defined as before, that
is, the signature vector s is an n-dimensional probability vector whose ith el-
ement is given by si = P (T = Xi:n), where T is the failure time of the system
and Xi:n is the lifetime of the ith component to fail. However, representation
results such as those in Chapter 3, while not entirely lost, will emerge in a
somewhat more cumbersome form. For example, the representation in (8.1)
becomes

P (T > t) =
n∑

i=1

siP (T > t | T = Xi:n) , (8.2)

and the conditional probability in (8.2) can be computationally complex. The
signature vector itself may be computed as the sum of the probabilities of
all permutations of the component failure times that correspond to system
failure upon the ith component failure. Since the signature vector provides
an indication of how long a system will tend to last, it is useful to have it
in hand. Although there are no existing results under the sole assumption of
independent component lifetimes that state that the domination of one signa-
ture over another in some stochastic sense implies some form of domination of
the respective system lifetimes, it still makes some intuitive sense to utilize the
system with the dominating signature. The potential for theoretical results in
this setting will not be pursued further here. Instead, we turn to an example
of this latter setting in which the signature vector and the survival function
are obtained for the system displayed in the figure below.
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Fig. 8.1. A 3-component series-parallel system
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Example 8.1. Consider the 3-component coherent system in Figure 8.1 above.
Let us assume that the system’s components have independent exponential
lifetimes X1,X2,X3 with

Xi ∼ Exp(λi) for i = 1, 2, 3 .

We first compute the signature vector of the system. Note that the system
will fail upon the first component failure if and only if T = X1. Thus, the
permutations of the component failure times that result in system failure
upon the first component failure are {X1 < X2 < X3} and {X1 < X3 < X2}.
We thus obtain s1 as

s1 =
∫ ∞

0

∫ ∞

x1

∫ ∞

x2

λ1λ2λ3 exp {−(λ1x1 + λ2x2 + λ3x3)} dx3dx2dx1

+
∫ ∞

0

∫ ∞

x1

∫ ∞

x3

λ1λ2λ3 exp {−(λ1x1 + λ2x2 + λ3x3)}dx2dx3dx1

=
λ1λ2

(λ1 + λ2 + λ3)(λ2 + λ3)
+

λ1λ3

(λ1 + λ2 + λ3)(λ2 + λ3)

=
λ1

λ1 + λ2 + λ3
.

It follows that
s2 =

λ2 + λ3

λ1 + λ2 + λ3
.

The survival function of the system may be computed directly as

P (T > t) = P (X1 > t,X1 < X2 < X3) + P (X1 > t,X1 < X3 < X2)
+ P (X1 > t,X2 < X1 < X3) + P (X3 > t,X2 < X3 < X1)
+ P (X1 > t,X3 < X1 < X2) + P (X2 > t,X3 < X2 < X1).

(8.3)
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The first two probabilities in (8.3) correspond to system failure upon the first
component failure (since T = X1:3 only if X1:3 = X1). A typical calculation
of such probabilities would proceed as follows:

P (X1 > t,X1 < X2 < X3)

=
∫ ∞

t

∫ ∞

x1

∫ ∞

x2

λ1λ2λ3 exp {−λ1x1 − λ2x2 − λ3x3} dx3dx2dx1

=
∫ ∞

t

∫ ∞

x1

λ1λ2 exp {−λ1x1 − (λ2 + λ3)x2} dx2dx1

=
λ2

λ2 + λ3

∫ ∞

t

λ1 exp {−(λ1 + λ2 + λ3)x1} dx1

=
λ1λ2

(λ1 + λ2 + λ3)(λ2 + λ3)
exp {−(λ1 + λ2 + λ3)t} .

From this we may infer that the first two terms on the RHS of (8.3) add to

P (T > t, T = X1:3) =
λ1

λ1 + λ2 + λ3
exp {−(λ1 + λ2 + λ3)t} . (8.4)

The expression in (8.4) is, of course, equal to

s1 × P (T > t | T = X1:3) .

Proceeding similarly, one may obtain an expression for P (T > t, T = X2:3)
which is equivalent to the sum of the last four terms in (8.3). Evaluating the
integrals associated with these four terms yields

P (T > t, T = X2:3) = exp {−(λ1 + λ3)t} (1 − exp {−λ2t})
+ exp {−(λ1 + λ2)t} (1 − exp {−λ3t})

+
λ2 + λ3

λ1 + λ2 + λ3
exp {−(λ1 + λ2 + λ3)t} . (8.5)

Adding (8.4) and (8.5), we obtain the final expression

P (T > t) = exp {−(λ1 + λ3)t} (1 − exp {−λ2t})
+ exp {−(λ1 + λ2)t} (1 − exp {−λ3t})
+ exp {−(λ1 + λ2 + λ3)t} . (8.6)

The reader will notice that the expression in (8.6) can also be obtained utiliz-
ing three independent Bernoulli variables associated with the events {Xi > t}
for i = 1, 2 and 3.

Problems at the next level of generalization, where the i.i.d. assumption is
relaxed in its entirety, are likely to resist solution for some time. There are a
variety of reasons for this. First, the modeling of dependence in lifetime distri-
butions is itself a challenging problem, with only a few models available that
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are both tractable and easily interpreted. Among such models, the Marshall-
Olkin [56] multivariate exponential (MVE) model is the best known. But even
this model, which is well-motivated as a shock model and highly tractable, has
found rather limited applicability in practice. One of the reasons for this is
the complexity of the model in higher dimensions, where, in the most general
case, 2n − 1 unknown parameters are required to describe the distribution of
an n-dimensional vector of component lifetimes. In computing signature vec-
tors under an MVE assumption, there is a further difficulty. Since the MVE
is not absolutely continuous with respect to Lebesgue measure of the appro-
priate dimension, and indeed gives positive probability to the events that two
or more component lifetimes are equal (via the action of a shock which causes
several components to fail simultaneously), the term P (T = Xi:n) has some
ambiguity. One could impose some convention on the interpretation of the
term (such as that the event occurs if i − 1 failures preceded the failure of
the system, and one or more components then fail simultaneously, causing
the system to fail). But whatever convention is adopted, it is clear that the
calculation of signature vectors will be substantially more complex than when
component lifetimes are i.i.d. according to some continuous distribution F .
Although some tractability is lost in using continuous multivariate lifetime
models, the fact that all the component lifetimes are different with probabil-
ity 1 at least removes the ambiguity discussed above. Time will tell whether
the extension of the notion of signatures to the general multivariate domain
proves feasible and useful.

8.4 Some Additional Related Literature

There are a variety of further applications of system signatures which merit
mention. We present a brief summary.

Boland [16] derives the signatures of indirect majority systems and exe-
cutes a comparison of such systems with direct majority systems of the same
size. He proves that the signature vector of an indirect majority system of
odd order n is symmetric about (n + 1)/2, and uses this fact to show that,
for n = R×S, the expected lifetime of an n-component indirect majority sys-
tem exceeds the expected lifetime of a direct majority system of size n when
the components have i.i.d. lifetimes with a common exponential distribution.
Some of this work is presented without proof in Section 5.1 and is applied to
the problem studied there.

Shaked and Suarez-Llorens [66] compare the information content of re-
liability experiments when components are assumed to have i.i.d. lifetimes
distributed according to a two-parameter exponential distribution. They in-
troduce the “convolution ordering” and provide sufficient conditions in terms
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of this ordering for one experiment to be more informative than another. They
also use conditions on the signature of a system to obtain certain information
inequalities. Specifically, when a system has a signature vector of the form
(0, . . . , 0, sk, . . . , sn) and its components have i.i.d. exponential lifetimes, its
lifetime is dominated in the information ordering by a k-out-of-n system with
similarly distributed components. An analogous result is shown to hold for
the dispersive ordering.

Belzunce and Shaked [7] define the new and useful concept of “failure
profiles” for studying the behavior of systems with independent but not nec-
essarily identically distributed component lifetimes. In describing their main
results, I will define terms slightly differently and more simply than is done
in the referenced paper (eliminating, for example, their use of the term “ad-
missible”), but the results to be described are isomorphic to theirs. A failure
profile of a coherent system is a pair (I, i), where I is a set of components and
i /∈ I, such that I is a path set of τ and I ∪{i} is a cut set of τ . Belzunce and
Shaked demonstrate the relevance of failure profiles in two standard formu-
lations of component importance. In their Theorem 2.5, they obtain a useful
representation of the density of the lifetime of a system based on components
with independent lifetimes in terms of its collection of failure profiles and the
individual densities and distribution functions of the system’s components.
This result generalizes the representation (3.8) of the density of the system
lifetime in the i.i.d. case. In their Theorem 3.5, they prove the likelihood ratio
ordering between two competing systems (assuming only independent com-
ponent lifetimes from distributions that are allowed to vary) under specific
conditions on the underlying component distributions and on the failure pro-
files of the two systems. They utilize this latter result to establish a likelihood
ratio ordering result for two systems with i.i.d. component lifetimes whose
respective signature vectors have a particular form.

Khaledi and Shaked [48]) study the behavior of the conditional residual
system lifetime given that a certain number of components are known to be
working. The motivation for this study is the fact that, for some systems, it
is possible to design a warning mechanism which alerts the user, before the
system fails, that at least a certain number of components are still function-
ing. The authors’ main interest is the comparison of two systems conditional
on such information. They provide conditions on the signature vectors of the
two n-component systems, and on the component distributions, which ensure
that the conditional system lifetimes of two competing systems, given that
at least n − i + 1 components are functioning, are stochastically ordered. For
example, they prove the following result.

Theorem 8.1. Let F1 and F2 be two continuous distributions on (0,∞). Let
τ1 and τ2 be coherent systems of order n based on components with i.i.d.
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lifetimes
X1,X2, . . . , Xn ∼ F1 and Y1, Y2, . . . , Yn ∼ F2 ,

and let
X1:n,X2:n, . . . , Xn:n and Y1:n, Y2:n, . . . , Yn:n

be the corresponding order statistics. Denote the signatures of τ1 and τ2

by s1 and s2 and their lifetimes T1 and T2. Suppose s1 is of the form
(0, . . . , 0, s1j , . . . , s1n) and s2 is of the form (0, . . . , 0, s2j , . . . , s2n). If s1 ≤st s2

and F1 ≤hr F2, then for i ≤ j,

FT1−y | Xi:n>y ≤st FT2−y | Yi:n>y .

They also obtain the following complementary result for component distrib-
utions F1 and F2 that are “reverse hazard rate ordered” (denoted by ≤rh),
that is, for which F2(t) / F1(t) is increasing in t.

Theorem 8.2. Let F1 and F2 be two continuous distributions on (0,∞). Let
τ1 and τ2 be coherent systems of order n based on components with i.i.d.
lifetimes

X1,X2, . . . , Xn ∼ F1 and Y1, Y2, . . . , Yn ∼ F2 ,

and let
X1:n,X2:n, . . . , Xn:n and Y1:n, Y2:n, . . . , Yn:n

be the corresponding order statistics. Denote the signatures of τ1 and τ2

by s1 and s2 and their lifetimes T1 and T2. Suppose s1 is of the form
(s11, . . . , s1i, 0, . . . , 0) and s2 is of the form (s21, . . . , s2i, 0, . . . , 0). If s1 ≤st s2

and F1 ≤rh F2, then for i ≤ j,

FT1−y | Xj:n>y ≤st FT2−y | Yj:n>y .

Further, under specific conditions on the signature vector of the system,
Khaledi and Shaked [48] obtain upper and lower bounds for

E[T − y | Xi:n > y] ,

where T and Xi:n are the lifetime and ith ordered component failure time of
a given system.

Navarro and Shaked [58] utilize system signatures in showing hazard-rate
ordering among independently drawn minima {X1:1,X1:2, . . . , X1:n, . . .} and
in studying the limiting behavior of failure rates of selected systems. They de-
velop a representation of the system survival function as a linear combination
of the survival functions of minima such as those above, calling the vector
of coefficients in the expression the “minimal signature” of the system. For
signatures as defined in this monograph, conditions are given under which the
ratio of the failure rates of an n-component system with a given signature and
that of a k-out-of-n system is asymptotically equal to 1.
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8.5 Some Open Problems of Interest

8.5.1 The Ordering of Expected System Lifetimes

In section 5.4, we treated the comparison of systems via stochastic precedence.
This metric has the appealing characteristic of rendering all pairs of mixed
systems comparable, making it always possible to judge one system as better
or worse than (or equivalent to) the other. It would, of course, be useful to
have definitive results using the even simpler and most commonly used metric
for system performance, the expected system lifetime. It should be noted that
comparisons of the expected lifetimes of two systems may be “too rough”
a comparison in some problems, as it completely ignores the variability in
system lifetime. Further, it is possible that a system whose expected lifetime
exceeds that of a second system will be less reliable than the second system at
the systems’ planned mission time. It is nonetheless of interest to know when
one could expect that, on average, one system will last longer than another.
While the condition ET1 ≤ ET2, where T1 and T2 are the lifetimes of the two
systems involved, is a fairly weak stochastic relationship (implied, for example,
by T1 ≤st T2), questions about this ordering are likely to arise more often in
applications than questions about the more stringent relationships discussed
in Chapters 4 and 5. Thus, the goal of finding conditions which guarantee that
the above ordering of expectations holds seems worthy of attention. Boland
and Samaniego [20] discuss this problem and note that for two given systems
having components with i.i.d. lifetimes ∼ F , it is possible for ET1 ≤ ET2

when F = F1 and for ET2 ≤ ET1 when F = F2. However, they prove the
following result for a particular group of small systems.

Theorem 8.3. Consider two mixed systems of order n = 3 based on coherent
systems in i.i.d. components with lifetime distribution F . Denote their re-
spective signature vectors as s1 and s2. Then ET1 ≤ ET2 for all distribution
functions F if and only if s1 ≤st s2.

The extension of this result to systems of arbitrary order n has not been
shown, nor have counterexamples been identified which demonstrate that the
result fails to hold for other values of n. The former possibility depends on
the special properties of the spacings between order statistics and appears to
be quite challenging. Counterexamples are inherently quirky, so it is difficult
to assess the level of difficulty in showing that the theorem above does not
hold for general n if, in fact, that is the case.

8.5.2 Other Preservation Results

In Section 4.2, it was shown that three specific versions of the stochastic or-
dering of system signatures carry over to the lifetimes of these systems. There
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are, of course, numerous other orderings for which preservation results may
hold (or fail to hold). Shaked and Shantikumar [65] discuss a host of alterna-
tive orderings of univariate distributions. Among these are mean residual life
ordering, reverse hazard rate ordering, dispersive ordering, the Laplace trans-
form and the moment generating function orderings, convex ordering and
star-shaped ordering. The latter two orderings are also discussed in Chapter
4 of Barlow and Proschan [6]. These and a number of other formulations of
univariate ordering have been found useful in reliability. If ORD represents
any given ordering among them, then it would be of interest to know whether
or not the implication s1 ≤ORD s2 ⇒ T1 ≤ORD T2 holds for systems in i.i.d
components. I am inclined to classify problems consisting of proofs or coun-
terexamples for these implications as dollar-valued. For all those disposed to
think about such problems, it seems appropriate to say at this time: ready,
set, go!

8.5.3 The limiting monotonicity of rT (t)

In Section 5.3, the asymptotic behavior of the failure rate of an arbitrary
mixed system was examined, and its limiting value was explicitly identified.
This result was established by Block, Dugas and Samaniego [11] using the
failure rate representation in (3.11). A natural question that arises in this
same context concerns the potential relationship between the monotonicity
of the component failure rate r(t) and that of the system’s failure rate rT (t).
More specifically, it would be of interest to identify conditions that imply that,
for sufficiently large t, the system failure rate rT (t) is strictly increasing (de-
creasing) if and only if the common component failure rate r(t) is eventually
strictly increasing (decreasing).

8.5.4 Further Results on Stochastic Precedence

In section 5.4, it was shown that, using the metric of stochastic precedence,
any pair of mixed systems based on components with i.i.d. lifetimes ∼ F are
comparable, with either one being superior to the other or the two systems
being sp-equivalent. Stochastic precedence is well defined when both systems
are based on components with i.i.d. lifetimes with differing component dis-
tributions F1 and F2. Indeed, the representation in (3.28) was shown to hold
under these more general conditions. However, the computation of P (T1 ≤ T2)
is considerably more challenging in this latter scenario. Results facilitating the
comparison of two system lifetimes when the systems are based on components
with independent lifetimes but different distributions would be a worthwhile
extension of the results in section 5.4. Hollander and Samaniego [43] demon-
strate the feasibility of such generalizations, providing a formula for the exact
calculation of the probability P (T1 ≤ T2) when F2 is in the class of Lehmann
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alternatives to F1, that is, when F2(t) ≡ [F1(t)]k for some k > 0. The compar-
ative analysis of systems in the general setting in which F1 �= F2 will require
further investigation.

8.5.5 Uniformly Optimal Networks

Let us, for concreteness, limit our discussion to the “all-terminal” problem
for communication networks, that is, to the problem of determining whether
or not all the vertices of a given network can communicate with each other.
Among all networks of a given size, that is, within the class of G(v, n) net-
works with v vertices and n edges, a network is said to be uniformly optimal if
the probability that all vertices can communicate is maximal. Even under the
simplifying assumption that that edges are independent and have a common
reliability p, the problem of identifying uniformly optimal networks (that is,
networks that are optimal for all p ∈ (0, 1)) in the class G(v, n) is an open
problem and appears to be a quite challenging one. In certain special cases,
the problem has been solved, but results to date are quite limited. Boesch
et al. [14], for example, identified a uniformly optimal network (UON) in the
class G(v, v+1). The general problem is complicated by the fact that, for some
values of v and n, no uniformly optimal network exists, as demonstrated by
Myrvold et al. [57]. Thus, the open problems that remain include the problem
of characterizing those classes of networks for which a uniformly optimal net-
work exists and, given such a class, identifying the UON explicitly. Because of
the challenging nature of these problems, certain intermediate problems are
also of interest. For example, direct comparisons among two or more networks
of special interest or between two subclasses of networks of the same size, can
be of use in particular applications.

In Chapter 6, it was shown that the signature vectors of competing net-
works can be a useful tool in comparing their reliability. To my knowledge,
the tool has not yet been applied in the search for UONs. To illustrate the
utility of signatures in this context, we provide a brief illustration in a problem
alluded to above. Let us consider the class of networks in the class G(5, 6).
Three particular networks in this class are displayed below.
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Fig. 8.2. Network G1(5, 6)
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Fig. 8.3. Network G2(5, 6)
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Fig. 8.4. Network G3(5, 6)
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The three networks above can be compared using the associated relia-
bility polynomials computed via domination theory. Alternatively, one can
identify the signatures of the three systems as s1 = (0, 4/15, 11/15, 0, 0, 0),
s2 = (0, 2/5, 3/5, 0, 0, 0) and s3 = (0, 2/5, 3/5, 0, 0, 0), from which we see that
G2 and G3 are equivalent and that both are inferior to G1 (with si ≥lr s1

for i = 2 and 3). In larger problems, where existence and uniqueness ques-
tions remain unresolved and available methods of finding UONs, if they exist,
amount to numerical searches, the ability to establish the superiority of one
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network over another by comparing their signatures, and the possibility of
optimizing network reliability as a function of the signature vector, should
offer some hope of successfully attacking these challenging problems.

8.5.6 Other Problems in Reliability Economics

I’ll begin by making brief mention of two problems in Reliability Economics
that are related to the problem treated in Chapter 7, both involving the
search for an optimal system design relative to a criterion such as that in
(7.5) under specified constraints. One obvious class of open problems involves
maximizing the criterion function (7.5) among systems that are mixtures of
a fixed sub-collection of coherent systems. Another class of open problems
would involve maximizing the criterion function under a budgetary constraint
such as

∑n
i=1 ci ≤ K. Both of these problems are of practical interest, as

the selection of a system will often be restricted to the choice among certain
available systems and mixtures thereof, and there are often budgetary limits
that restrict the selection of the system one might purchase. In either of these
constrained scenarios, the optimal system is likely to differ from the optimal
systems identified in Chapter 7. Problems involving the characterization of
optimal solutions in constrained Reliability Economics contexts constitute a
set of interesting open problems of some practical importance.

Example 8.2. As an illustration of the first of these problems, consider the
problem of selecting among stochastic mixtures of the two coherent systems of
order n = 3 having signature vectors s1 = (1/3, 2/3, 0) and s2 = (0, 2/3, 1/3)
respectively. Let us take r = 1 in the criterion function in (7.5). Without
loss of generality, we set c1 = 1 and allow c2 and c3 to be arbitrary values
satisfying 1 < c2 < c3. We will take the vector a to be equal to (1/4, 1/2, 3/4),
the expected order statistics of the Uniform distribution U [0, 1]. Then the
criterion function of the two systems above will be

m1 =
5/12

1/3 + c2(2/3)
and m2 =

7/12
c2(2/3) + c3(1/3)

.

A mixed system giving weights p and (1 − p) to these two systems will have
criterion function equal to

m3 =
p(5/12) + (1 − p)(7/12)

p(1/3) + c2(2/3) + c3(1/3)(1 − p)
.

It’s easy to verify that

m1 < m3 if and only if c3 <
7
5

+ c2
4
5

,

while
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m2 < m3 if and only if c3 >
7
5

+ c2
4
5

.

It follows that if 1 < c2 < c3 and c3 = 7/5 + c2(4/5), both coherent systems
above, as well as all stochastic mixtures of them, yield the same value of the
criterion function, while for any other choice of c3 > c2 > 1, the criterion
function is uniquely maximized by one of the coherent systems or the other.
In all cases, there exists a coherent system (among the two available) that is
optimal relative to the chosen criterion function.

The example above suggests the conjecture that, when r = 1 in the cri-
terion function in (7.5), there exists a system in any collection of coherent
systems which will be optimal within the class of all mixtures of these sys-
tems. This conjecture agrees with the result in Theorem 7.1 in the case that
one seeks an optimal system among the stochastic mixtures of all coherent
systems. While it is not readily apparent that Theorem 7.2 generalizes in the
same way, it seems reasonable to conjecture that, when r �= 1 in (7.5), an
optimal system within any collection of coherent systems and their mixtures
can be found within the class of mixtures of two systems in the collection.
The method of proof used in establishing Theorem 7.2 (showing, essentially,
that any mixture of three systems in the collection can be improved upon by
an appropriate mixture of two) may well be successful in showing this.

We will also comment briefly on the problem of searching for an optimal
system under cost constraints. In the criterion function in (7.5), the cost of a
given n-component system design is quantified in terms of the positive con-
stants c1 < c2 < · · · < cn. Note that if the constraint

∑n
i=1 ci ≤ K will place

no restriction on the choice of system if in fact cn ≤ K. This is the case
because the optimal system in the unconstrained problem is either a k-out-
of-n system costing ck ≤ K or a mixture of two k-out-of-n systems costing
pci+(1−p)cj ≤ K. Thus, for any value of r in (7.5), the system that optimizes
the criterion function overall will satisfy the constraint and is thus obviously
optimal in the constrained problem. At the other extreme, if K < c1, then
there is no system that will satisfy the constraint. Intermediate problems in
which c1 < K < cn will require individual optimal solutions that may well
differ from the optimal solution in the unconstrained problem. We conjecture
that, in such constrained problems, the optimal solutions will be of a form
similar to those given in Theorems 7.1 and 7.2, and that the methods of proof
utilized in those theorems can be adapted to obtain the new results. Without
repeating the commentary above, we mention that a similar set of considera-
tions arise when the budgetary constraint of interest is on the total cost of a
mixed system, that is, has the form

∑n
i=1 cisi ≤ K.

The problem of finding an optimal design while accounting for both per-
formance and cost is but one of many optimization problems of interest in the
general area of Reliability Economics. Among topics in reliability in which
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performance and cost enter in a central way are the areas of maintenance and
repair. The varied policies employed in these areas (including, for example,
block replacement policies and maintenance through the use of spare parts)
have both reliability and economic implications. While there is a literature on
optimization on these topics, it remains to be seen whether the problems of
interest can benefit from formulations based on system signatures.

8.5.7 Wholly New Stuff

Hey, don’t be greedy. I’ve got to leave something for me to do!




