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System Signatures

The basic notion of a coherent system has been defined and illustrated in the
preceding chapter, and various properties and tools have been established to
assist in the study of such systems. Structure functions are admittedly quite
revealing. They are in one-to-one correspondence with the coherent systems
themselves and provide a way of indexing systems and also of comparing them.
Also, they are unambiguous summaries of a system’s design, and are more
useful summaries than schematic diagrams or flow charts, which often look
different but may correspond to one and the same system. We must, however,
acknowledge that the artillery we have discussed thus far has some limitations.
Since the number of coherent systems of order n grows exponentially with n,
the indexing of systems through their structure functions tends to be of lim-
ited use in problems involving comparisons or optimization among systems.
Structure functions are complex algebraic expressions that, in general, admit
to multiple equivalent representations. For example, the expressions in (2.5)
and (2.11) look quite different but are, in fact, equivalent forms of the struc-
ture function of the bridge system in Figure 2.2. In this chapter, we introduce
an alternative index which, although less general than a structure function,
has the virtues of being both quite manageable and easily interpreted. Most
importantly, for systems of order n, this index is of fixed dimension; in fact, it
resides in a bounded simplex in n-dimensional Euclidean space. We call this
index the system’s signature. Its precise meaning is specified below.

Definition 3.1. Let τ represent a coherent system of order n. Assume that
the lifetimes of the system’s n components are independent and identically
distributed (i.i.d.) according to the (continuous) distribution F . The signature
of the system τ , denoted by sτ , or simply by s when the corresponding system
is clear from the context, is an n-dimensional probability vector whose ith
element si is equal to the probability that the ith component failure causes the
system to fail. In brief, si = P (T = Xi:n), where T is the failure time of the



22 3 System Signatures

system and Xi:n is the ith order statistic of the n component failure times,
that is, the time of the ith component failure.

Before illustrating the concept of system signatures, it seems advisable to
scrutinize the definition above. In particular, it seems reasonable to question
the wisdom of the i.i.d. assumption on component lifetimes. The notion of sig-
nature, as a certain probability vector, is well defined without this assumption,
but the assumption is nonetheless made, and is made for good reason. Signa-
tures will be used primarily in the comparison of system designs. It should be
noted that a comparison between two systems with quite different component
characteristics may well be either misleading or inconclusive. It is clear, for
example, that a series system with four highly reliable components will out-
perform a four-component parallel system with relatively poor components. If
the probability that the components of the series system last beyond a fixed
mission time is 0.9, its reliability at that mission time is 0.6561, while that of
a parallel system having four components with reliability 0.1 is 0.3439. It is
clear, however, that parallel systems are preferable, in a general sense, to se-
ries systems. Indeed, the former’s structure function uniformly dominates the
latter’s. Once the i.i.d. assumption is made, any remaining differences in sys-
tem performance must be attributable to the system’s design. In that sense,
the assumption levels the playing field so that one has a basis for comparing
the designs themselves. From an analytical point of view, signatures, as de-
fined above in the i.i.d. setting, provide three major advantages. They allow
one to utilize the tools of combinatorial mathematics for the calculation of
system characteristics. Also, the well-known distribution theory for the order
statistics of an i.i.d. sample from a continuous distribution F is available for
studying the performance of a system with a given signature. Finally, signa-
tures depend only on the permutation distribution of the n observed failure
times and do not depend on the underlying distribution F . The signature
vector can therefore be viewed as a pure measure of a system’s design.

More can be said about the comparisons we will indulge in as we proceed.
We will, for example, be primarily interested in comparing systems of the same
order. While one could, in some instances, be interested in comparing systems
of different sizes, it is far more common to compare systems of the same size,
essentially investigating questions such as “Which of several possible configu-
rations of components would be preferable for certain specific purposes?” In
the words of the great Eastern philosopher Confucius, comparing apples to
oranges is a rather fruitless endeavor. A second issue that should be addressed
before proceeding is the possibility that results depending on signature vectors
as defined above might in fact be irrelevant in studying and comparing the
performance of real systems whose components are neither independent nor
identically distributed. In addressing this concern, it should be said that, in
any application of signature-related results in which the foundations of their
definition are in doubt, one should proceed with considerable caution. It is
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probably worth adding that signature-based results may be inexact in such
applications but are not necessarily irrelevant. Any mathematical result can
only give guidance in real applications, as the assumptions under which the re-
sult is developed can’t be checked with certainty in a given practical situation.
What signatures do is tell us something about the design of the associated
system. Knowing that one design is better than another (everything else be-
ing equal) is useful information as one diverges from the basic assumption
of i.i.d. component lifetimes. If, for example, the component lifetimes could
be considered independent and, while not identically distributed, nonetheless
roughly comparable, selecting the system with a better signature should lead
to better performance. Although an exact analysis would of course be desir-
able, characterizing system performance in non i.i.d. settings is a formidable
analytical task, quite unlike the i.i.d. setting to be studied here.

The computation of system signatures is, in essence, a combinatorial ex-
ercise. That doesn’t mean that it’s simple. It only means that there is a well-
organized body of knowledge and tools that can be applied to such problems.
To describe the counting problem of interest, let’s suppose that the random
variables X1,X2, . . . , Xn represent the failure times of the components of the
n-component system under study. Since the Xs are assumed to be i.i.d. from
some continuous distribution on (0,∞), the n! permutations of these n dis-
tinct failure times are equally likely. As noted above, the ith element of s can
be obtained as the probability si = P (T = Xi:n), where T is the failure time
of the system and Xi:n is the ith order statistic (that is, the ith smallest value)
among the i.i.d. failure times X1,X2, . . . , Xn. Equivalently, we may obtain si

as the ratio of ni, the number of orderings for which the ith component fail-
ure causes system failure, to n!, the total number of possible orderings of the
n failure times. The essential feature of the calculation of signatures is the
counting of the number of permutations of the n potential component failure
times that correspond with system failure upon the ith failure among the n
components. Since T resides in the set {X1:n,X2:n, . . . , Xn:n} with probability
one, it follows that the signature s is a probability vector, that is, si ≥ 0 for
all i and

∑n
i=1 si = 1.

We now turn to the computation of the signature vector for some simple
coherent systems. As an example of this computation, consider the three-
component system pictured in Figure 3.1 below. The failure times X1,X2 and
X3 of the three components of this system can be ordered in 3! = 6 ways, and
these six possible permutations are equally likely due to the i.i.d. assumption.
The “order-statistic equivalent” for the system failure time T is shown below
for each permutation of the component failure times.
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Fig. 3.1. A 3-component system with structure function ϕ∗(x) = x1(x2+x3−x2x3)
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Table 3.1. The ordered component failure time which causes failure of system ϕ∗

above

Ordered Component Order Statistic Equal to
Failure Times System Failure Time T

X1 < X2 < X3 X1:3

X1 < X3 < X2 X1:3

X2 < X1 < X3 X2:3

X2 < X3 < X1 X2:3

X3 < X1 < X2 X2:3

X3 < X2 < X1 X2:3

It follows that the system above has signature vector s = (1/3, 2/3, 0). It
is easy to show that the five distinct coherent systems of order 3 have the sig-
natures (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 2/3, 0) and (0, 2/3, 1/3). The first three
of these signatures correspond to the i-out-of-3 systems for i = 1, 2, 3, and the
fifth corresponds to the system in which one component is in parallel with
a series system in the other two components. While the combinatorics in-
volved in calculating the signatures of systems of a given order can be fairly
complex, it is worth noting that, via the notion of “duality,” the amount of
calculation can be cut roughly in half, as the signature of a system’s “dual”
can be obtained from the system’s signature via symmetry arguments. Of the
five systems mentioned above, the first system is the dual of the third and
the fourth is the dual of the fifth. Table 3.2 provides the signatures of the 20
distinct coherent systems of order 4.
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Table 3.2. Coherent Systems of Order 4

System Minimal cut sets Signature

1 {1}, {2}, {3}, {4} (1, 0, 0, 0)

2 {1}, {2}, {3, 4} (1/2, 1/2, 0, 0)

3 {1}, {2, 3}, {2, 4} (1/4, 7/12, 1/6, 0)

4 {1}, {2, 3}, {2, 4}, {3, 4} (1/4, 3/4, 0, 0)

5 {1}, {2, 3, 4} (1/4, 1/4, 1/2, 0)

6 {1, 2}, {1, 3}, {1, 4} (0, 1/2, 1/4, 1/4)

7 {1, 2}, {1, 3}, {1,4}, {2, 3} (0, 2/3, 1/3, 0)

8 {1, 2}, {1, 3}, {1,4}, {2, 3}, {2, 4} (0, 5/6, 1/6, 0)

9 {1, 2}, {1, 3}, {1,4}, {2, 3}, {2, 4}, {3, 4} (0, 1, 0, 0)

10 {1, 2}, {1, 3}, {2, 4}, {3, 4} (0, 2/3, 1/3, 0)

11 {1, 2}, {2, 4}, {3, 4} (0, 1/2, 1/2, 0)

12 {1, 2}, {3, 4} (0, 1/3, 2/3, 0)

13 {1, 2}, {1, 3}, {1, 4}, {2, 3, 4} (0, 1/2, 1/2, 0)

14 {1, 2}, {1, 3}, {2, 3, 4} (0, 1/3, 2/3, 0)

15 {1, 2}, {1, 3, 4}, {2, 3, 4} (0, 1/6, 5/6, 0)

16 {1, 2}, {1, 3, 4} (0, 1/6, 7/12, 1/4)

17 {1, 2, 3}, {1, 2, 4} (0, 0, 1/2, 1/2)

18 {1, 2, 3}, {1, 2, 4}, {1, 3, 4} (0, 0, 3/4, 1/4)

19 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} (0, 0, 1, 0)

20 {1, 2, 3, 4} (0, 0, 0, 1)

We now establish a fundamental property of a system’s signature s,
namely, that the distribution of the system lifetime T , given i.i.d. compo-
nents lifetimes with c.d.f. F , can be expressed as a function of s and F alone.
The following representation is drawn from Samaniego [61].

Theorem 3.1. Let X1, . . . , Xn be the i.i.d. component lifetimes of an n-
component coherent system with signature s, and let T be the system’s lifetime.
Then

FT (t) ≡ P (T > t) =
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(F (t))j (

F (t)
)n−j

. (3.1)

Proof. We first note that the system fails concurrently with the failure of
one of its components, so that T will necessarily take on the values of
one of the order statistics Xi:n of the sample X1, . . . , Xn, that is, T ∈
{X1:n,X2:n, . . . , Xn:n} with probability 1. Then, utilizing the Law of Total
Probability and the i.i.d. assumption on component lifetimes, we may write
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P (T > t) =
n∑

i=1

P (T > t, T = Xi:n)

=
n∑

i=1

P (T > t | T = Xi:n) P (T = Xi:n)

=
n∑

i=1

siP (Xi:n > t)

=
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(F (t))j (

F (t)
)n−j

. �

By interchanging the order of the summations in (3.1), the representation
of the system survival function in (3.1) may be written in the alternative form

FT (t) =
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
(F (t))j (

F (t)
)n−j

. (3.2)

If one considers the chances that a system based on n i.i.d components is
working at a fixed point in time t0, then setting p = F (t0) and q = F (t0), we
derive the reliability polynomial h(p) in pq form from (3.2). Two equivalent
versions of h are

h(p) =
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
qjpn−j and h(p) =

n∑

j=1

⎛

⎝
n∑

i=n−j+1

si

⎞

⎠
(

n

j

)
pjqn−j .

(3.3)
The representation in (3.2) can also be written as a function involving the
odds G(t) = F (t)/F (t) of failure vs. survival. This form of the representation
of FT (t) in terms of signatures will prove to be quite useful in the sequel, and
is recorded below:

FT (t) =
(
F (t)

)n
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
(G(t))j

. (3.4)

A more detailed proof of Theorem 3.1 invoking Lemma 8.3.11 of Randles and
Wolfe [60] on the independence of the order statistics {Xi:n} and the ranks
of the original observations X1,X2, . . . , Xn is given in Kochar, Mukerjee and
Samaniego [51].

The proof of Theorem 3.1 contains an elementary fact that is of inde-
pendent interest and will also prove quite useful in the sequel. Note that the
survival function of the system lifetime T may be written in terms of the
survival functions of the order statistics of the component failure times, that
is,
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P (T > t) =
n∑

i=1

siP (Xi:n > t) . (3.5)

Utilizing the well-known identity for positive random variables Y , namely,

EY =
∫ ∞

0

F (y) dy , (3.6)

another useful connection between the system lifetime and the ordered failure
times follows:

ET =
n∑

i=1

siEXi:n . (3.7)

The representation in (3.1) can be applied to obtain useful representations
of a system’s density function and failure rate when F is absolutely contin-
uous. For example, the density function f(x) may be obtained from (3.1) as
follows.

Corollary 3.1. Let X1, . . . , Xn ∼ F be the i.i.d. component lifetimes of an n-
component coherent system with signature s, and let T be the system’s lifetime.
If F is absolutely continuous, then

fT (t) = −(∂/∂t)P (T > t) =
n∑

i=1

i si

(
n

i

)
(F (t))i−1 (

F (t)
)n−i

f(t) . (3.8)

Proof. Differentiating FT (t) in formula (3.1) yields an interior summation
with alternating signs in which all elements but the one shown in (3.8) cancel
out. �

It follows that the system failure rate rT (t), defined as the ratio

fT (t)
FT (t)

,

can be written in terms of the signature vector s and the underlying compo-
nent distribution F . The ratio of the density in (3.8) to the survival function
in (3.1) may be algebraically simplified to obtain a useful representation of
the system’s failure rate.

Corollary 3.2. Consider an n-component coherent system with signature s,
and assume that the component lifetimes X1, . . . , Xn are i.i.d. with distribu-
tion F and density f . Let T be the system lifetime. Then

rT (t) =
∑n

i=1 i si

(
n
i

)
(F (t))i−1 (

F (t)
)n−i+1

∑n
i=1 si

∑i−1
j=0

(
n
j

)
(F (t))j (

F (t)
)n−j

r(t) , (3.9)

where r(t) =
(
f(t)/F (t)

)
, the common failure rate of the components.
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An equivalent and occasionally more useful version of (3.9) is the following:

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(F (t))i (

F (t)
)n−i

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
(F (t))i (

F (t)
)n−i

r(t) , (3.10)

or, in terms of the odds function G(t) = F (t)/F (t),

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
(G(t))i

r(t) . (3.11)

We will be interested in the comparison of two systems with i.i.d. compo-
nents. As is clear from equation (3.1), the lifetime of a coherent system with
i.i.d. components depends on the structure of the system only through the
signature s. Indeed, if two systems in i.i.d. components have the same signa-
ture, the stochastic behavior of their lifetimes is identical. It is natural to ask
if two different coherent systems can have the same signature. The answer is
yes; one can see from Table 3.2 that the four-component systems labeled as
systems 11 and 13 have the same signature. The twenty coherent systems of
order four give rise to precisely 17 distinct signatures.

While the class of all coherent systems of a given size (or even the overall
collection of coherent systems of arbitrary order) is arguably the collection
of systems on which one would wish to concentrate in a particular applica-
tion, the class does have some limitations which will lead us to broaden our
perspective. I mentioned earlier that the number of coherent systems of order
n is not precisely known for general n and is quite large, even for moderate
size n. For any fixed n, the space of coherent systems of order n is, obviously,
discrete. As we shall see in the sequel, this has some negative consequences,
both mathematically and practically. The mathematical difficulty is that in
problems in which an optimal coherent system is sought, one typically must
focus on finding approximately optimal systems via some appropriate discrete
search algorithm. In other words, problems aimed at finding optimal coher-
ent systems tend to be analytically intractable. The practical problem with
coherent systems is less apparent at this point, but will become quite clear
in certain specific problems taken up in Chapter 7. Briefly, the fact is that
it is possible to expand the class of coherent systems to a larger collection
and that the solution to certain optimality problems lies outside of the subset
of coherent systems. We will see that, in certain problems, one can actually
do better, in a sense that will be made specific, by using a “system” that is
not coherent. The expansion pursued below is based on the familiar notion
of “randomization.” Indeed, what will be advocated here, in selected circum-
stances, is the process of selecting a coherent system at random. This process
leads to the concept of a mixed system, to which I now turn. Mixed systems
were first treated in Boland and Samaniego [20].
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Let us suppose that we have an (essentially) unlimited supply of com-
ponents whose lifetimes are i.i.d. with common distribution F . Consider the
collection of all coherent systems of order n. We could, in principle, have a
warehouse in which all such systems are in stock, and we could conceive of the
possibility of making available, upon demand, any particular coherent system
with n i.i.d. components. While this collection may be quite large, it is finite.
Limiting ourselves to this collection may have negative consequences, as al-
luded to above. Let us consider, instead, the process of selecting a coherent
system at random according to a fixed and known probability distribution p.
Let’s suppose that the probability vector p is m-dimensional and gives posi-
tive weight to m distinct coherent systems of order n with signature vectors
s1, s2, . . . , sm (each assumed to have components whose lifetimes are i.i.d with
distribution F ). Then it is clear that

P (system fails upon the ith component failure)

=
m∑

k=1

P (kth syst. chosen)P (ith comp. failure kills syst. | kth syst. chosen)

=
m∑

k=1

pkski . (3.12)

It follows that the signature s∗ associated with the process of selecting among
these m systems according to the probability distribution p is the vector equal
to the mixture of the signature vectors s1, s2, . . . , sm, that is, s∗ =

∑m
k=1 pksk.

To what extent does the consideration of stochastic mixtures of coherent
systems (hereafter referred to as “mixed systems”) broaden the class of coher-
ent systems? The broadening is, in fact, quite substantial. The signature of a
k-out-of-n system is the n-dimensional unit vector sk:n = (0, . . . , 0, 1, 0, . . . , 0),
with 1 as the vector’s kth element. It is thus clear that any probability vector
p in the simplex {

p ∈ [0, 1]n :
n∑

i=1

pi = 1

}
(3.13)

is the signature of a mixed system, namely, the system which mixes the k-
out-of-n systems with mixing distribution p. This simple observation follows
from (3.12) since the n-dimensional probability vector p can be written as

p =
n∑

k=1

pksk:n . (3.14)

Expanding the space of coherent systems of order n to the space of all
mixed systems of order n has a number of mathematical benefits. It makes
the index of the systems under consideration continuous, taking values in the
simplex in (3.13). Thus, instead of being restricted to discrete search methods
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and approximate solutions to optimization problems of interest, such prob-
lems will be amenable to analytical treatment using the tools of differential
calculus. As mentioned earlier, the solutions to certain optimization problems
turn out to be mixed rather than coherent systems; in such problems, the po-
tential exists for improving over the “score” of any coherent system by using
a particular mixed system. One further comment about the utility of mixed
systems should be made: the representation results in (3.1) - (3.11), as well
as all signature-related results to be presented in the sequel, apply equally
to coherent or mixed systems. Indeed, since mixed systems include coherent
systems as special cases, that is, as degenerate mixtures placing all their mass
on a single coherent system, it suffices to say that all signature-related results
in this monograph apply to the entire class of mixed systems.

But a critical question remains to be answered. Do mixed systems corre-
spond to a physical reality that can be utilized in practice? If not, the potential
mathematical advantages alluded to above are merely window-dressing. I will
therefore briefly indulge in some apologetics for the concept of mixtures of
coherent systems. To a decision theorist, or to a statistician working in the
field of survey sampling or experimental design, the notion of randomization
is both natural and essential. In the first instance, it is clear from the the-
ory of games that the best strategies often involve randomization, and the
decision theorist’s goal is to select the “best” decision rule available, a goal
that, in certain situations, leads to some form of randomization. In the latter
fields, randomization is seen as a tool that protects the statistician from both
known and unknown biases. Sir Ronald Fisher, the brilliant pioneer in the
field of experimental design (and in mathematical statistics generally) was an
early and strong advocate of randomization in designed experiments. What
we have advocated above is nothing more than randomization within the class
of coherent systems. The fact that a mixed system can be physically realized
by a simple randomization process is the key observation in recognizing the
concept’s practical utility.

To utilize a mixed system, one simply selects a coherent system at random
according to a particular mixing distribution, and one then uses the coher-
ent system so chosen. The signature of the mixed system is interpreted as an
expectation or long-run average over many applications of the mixed system.
The signature’s first element, for example, will be the limiting probability that
the first component failure causes the system to fail. This interpretation sug-
gests that the natural domain of application of mixed systems is a scenario in
which such a system will be used many times. Thus, its failure history will, in
the long run, be well represented by the mixed system’s signature. Recalling
(3.14), we note that, in the i.i.d. setting, any system, coherent or mixed, will
have the same long run performance as a mixture of k-out-of-n systems. The
mixing distribution would simply be the signature vector of the desired sys-
tem. An important and useful implication of these considerations is that any
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coherent or mixed system of order n will have the same expected performance
as a specific mixture of k-out-of-n systems. The “warehouse” mentioned on
page 29 could therefore provide a client with a mixture of k-out-of-n systems
whose performance matched the client’s requirements, that is, had the desired
signature.

I mentioned above that a non-degenerate mixture of coherent systems is
not itself coherent. This may not be self evident, especially in view of the
fact that each application of a mixed system amounts to picking a particular
coherent system at random. Of course, successive applications of the mixed
system will typically result in the use of different coherent systems from one
application to the next. The latter fact notwithstanding, every application of
a mixed system selects a coherent system with probability one. Since every co-
herent system is monotone, every mixed system also enjoys the monotonicity
property. Fixing a non-working component cannot adversely affect the perfor-
mance of a mixed system. So what is incoherent about a mixed system? The
incoherence comes from the following technicality: only the components of the
coherent system selected for use are relevant. The state of the components of
all other (unused) coherent systems to which the mixed system gives weight
makes no difference to the success or failure of the system actually chosen.
One could argue that in the course of repeated applications, all these other
coherent systems will come into play. But relevance is defined in terms of a
single application of the system and, according to that definition, a mixed
system will have irrelevant components. This technicality proves to be of mi-
nor importance, since when one focuses on relevance over repeated trials, the
issue vanishes entirely.

One final comment about the utility of mixtures should be made. The
intended domain for use of mixed systems is in applications in which a large
number of systems will be purchased and used. As will be seen in Chapter
7, the best available system, when both performance and cost are taken into
consideration, may well be a non-degenerate mixture of coherent systems. In
some settings, the exclusive use of a particular coherent system might be justi-
fied by convenience considerations or by its being “almost optimal” relative to
the criterion used to rank systems. The fact remains that one may be able to
achieve better results by randomizing among two or more coherent systems.
In using the optimal “mixed system,” one must recognize that the system
used in a given instance will be suboptimal, but that mixing these systems
according to the prescribed recipe produces an optimal result when averaged
over the many times in which the mixed system is applied.

In the next two chapters, we will consider a variety of problems in which
our primary interest will be in comparing one coherent (or mixed) system
with another. The most natural comparison one can make is between two
systems of the same size. The preservation theorems of Section 4.2 and the
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characterization results in section 4.4 deal precisely with that type of com-
parison. But there are also occasions in which one is interested in comparing
two systems in i.i.d. components whose orders n and m do not happen to
match (say, with n < m). Our approach to such a problem is to attempt to
“convert” the smaller system into an equivalent system of order m, (that is,
a system in m i.i.d. components with exactly the same lifetime distribution
as the smaller system). If this were possible, we would be in a position to use
the results of Sections 4.2 and 4.4 on comparing two systems of the same size.
It is not obvious, at first view, that the equivalence mentioned can in fact
be realized. The fact that it can is a consequence of the following theorem.
Assuming i.i.d. component lifetimes, this result ensures that for any system
of size n (a positive integer assumed to be smaller than the integer m), there
exists a system of size m with the same lifetime distribution. To get from the
smaller system to the larger one requires m − n consecutive applications of
the result below.

Theorem 3.2. Let s = (s1, s2, . . . , sn) be the signature of a coherent or mixed
system based on n i.i.d. components with common lifetime distribution F .
Then the coherent or mixed system with (n+1)-components with i.i.d. lifetimes
∼ F and corresponding to the signature vector

s∗ =
(

n

n + 1
s1,

1
n + 1

s1 +
n − 1
n + 1

s2,
2

n + 1
s2 +

n − 2
n + 1

s3, . . . ,

n − 1
n + 1

sn−1 +
1

n + 1
sn,

n

n + 1
sn

)
(3.15)

has the same lifetime distribution as the n-component system with signature
s.

Proof. Assume that all components in the following discussion have i.i.d. life-
times with common distribution F . We wish to show that, for a given n-
component mixed system with signature s, there is an (n + 1)-component
system (namely, the system with signature s∗) with the same lifetime dis-
tribution, thereby being stochastically equivalent to the original system. It
suffices to prove (3.15) when the original system is an arbitrary k-out-of-n
system, that is, when s is the unit vector

sk:n = (0, . . . , 0, 1, 0, . . . , 0) , (3.16)

where only the kth element is different from zero. We will show that this
n-dimensional signature is equivalent to the (n + 1)-dimensional signature

s∗ =
n − k + 1

n + 1
sk:n+1 +

k

n + 1
sk+1:n+1

=
(

0, . . . , 0,
n − k + 1

n + 1
,

k

n + 1
, 0, . . . , 0

)
, (3.17)
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where the two non-zero elements of s∗ are in the kth and (k + 1)st positions.
To see that this implies the claimed equivalence in the theorem, assume that,
for any k, the signature in (3.16) is equivalent to the signature in (3.17). Then,
since an arbitrary n-dimensional signature s may be written as a mixture of
the signatures of k-out-of-n systems, that is, as

s =
n∑

i=1

sisi:n , (3.18)

one may use the equivalence of (3.16) and (3.17) to convert s into the vector
in (3.15).

A direct proof of the equivalence of the signatures in (3.16) and (3.17) could
proceed by determining the validity of equating the corresponding survival
functions in (3.1). We will examine such an equation at a fixed time point t
and denote by p and q, respectively, the probability of the success or failure
of any given component at time t; thus, we will let q = F (t) and p = F (t). As
we will see, the equation of interest holds for all values of p and thus for all
choices of t. Writing the reliability polynomial as on the left-hand side of (3.3)
for the signature vectors in (3.16) and (3.17), and setting these expressions
equal to each other, yields

k−1∑

j=0

(
n

j

)
qjpn−j =

n − k + 1
n + 1

k−1∑

j=0

(
n + 1

j

)
qjpn+1−j

+
k

n + 1

k∑

j=0

(
n + 1

j

)
qjpn+1−j . (3.19)

One could then replace each “q” in equation (3.19) by “1 − p,” write both
sides of the equation as polynomials in p, and then verify that the coefficients
of pk on either side of (3.19) are equal for k = 0, 1, . . . , n + 1. This approach
to the desired identity is clearly a cumbersome algebraic exercise. We shall,
instead, demonstrate that the equality in (3.19) is valid by working with an
alternative representation of the equation.

Suppose that X is a binomial random variable and that Y is a Bernoulli
variable, with X ∼ B(n, q) and Y ∼ B(1, q), and assume that X and Y are
independent. (Note that q = F (t) is being used as the probability of “success”
in the Bernoulli trials associated with these variables.) We can then identify
equation (3.19) as the following equation involving X and Y :

P (X < k) =
n − k + 1

n + 1
P (X + Y < k) +

k

n + 1
P (X + Y < k + 1) . (3.20)

It is evident that equation (3.20) can be rewritten as
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P (X < k) = P (X + Y < k) +
k

n + 1
P (X + Y = k) . (3.21)

Upon dividing both sides of (3.21) by P (X < k), we note that

P (X + Y < k)
P (X < k)

is equal to the conditional probability P (X + Y < k | X < k). We thus see
that (3.21) holds if and only if

P (X + Y ≥ k | X < k) =
k

n + 1
P (X + Y = k)

P (X < k)
. (3.22)

We will now demonstrate that (3.22) holds. We do so by displaying a sequence
of equivalent statements, the last of which is transparently true. We begin by
exploiting the fact that Y is a Bernoulli variable and is independent of X;
this allows us to rewrite (3.22) as

q
P (X = k − 1)

P (X < k)
=

k

n + 1
qP (X = k − 1) + pP (X = k)

P (X < k)
(3.23)

⇐⇒ q

(
n

k − 1

)
qk−1pn−k+1

=
k

n + 1

(
q

(
n

k − 1

)
qk−1pn−k+1 + p

(
n

k

)
qkpn−k

)
(3.24)

⇐⇒
(

n

k − 1

)
qkpn−k+1 =

k

n + 1

((
n

k − 1

)
+

(
n

k

))
qkpn−k+1 (3.25)

⇐⇒
(

n

k − 1

)
=

k

n + 1

(
n + 1

k

)
. (3.26)

We thus see that equation (3.19) is equivalent to the trivial relationship be-
tween binomial coefficients displayed in (3.26). Since (3.19) is equivalent to
the fact that the systems with the signatures s and s∗ in the statement of the
theorem have identical distributions, the proof is complete. �

The form of the signature s∗ in (3.15) makes it evident that, when s is
symmetric, the equivalent signature s∗ will inherit this property. This result
is recorded as

Corollary 3.3. Let s = (s1, s2, . . . , sn) be the signature of a mixed system
based on n i.i.d. components with common lifetime distribution F , and let s∗

be the signature in (3.15) of the equivalent system with (n + 1)-components
based on i.i.d. lifetimes ∼ F . If s is symmetric, that is, if si = sn−i+1 for all
i, then s∗ is symmetric as well. Furthermore, if (3.15) is applied repeatedly to
a signature vector s1 of length n to obtain an equivalent signature s2 of length
m > n, then the symmetry of s1 implies the symmetry of s2.
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The concept of the duality of two systems was defined formally in Chapter
2. Since taking advantage of duality relationships reduces the calculation of
the signatures of all coherent systems of a given size approximately in half, it
is useful to record the relationship between the signature of a system and its
dual. This is done in the following theorem. For a proof, see Kochar, Mukerjee
and Samaniego [51].

Theorem 3.3. Let s be the signature of a coherent system ϕ whose n compo-
nents have i.i.d. lifetimes, and let sD be the signature of its dual system ϕD.
Then

si = sD
n−i+1 for i = 1, 2, . . . , n . (3.27)

We note that Theorem 3.3 holds as well for the broader class of mixed systems
of order n.

We close this chapter with a useful notion and a related expression to
which we will return in Chapter 5. In (3.5), we displayed an explicit repre-
sentation of the survival function of a system in terms of its signature vector
and the survival functions of the order statistics corresponding to the n i.i.d.
component failure times. A similar representation may be developed for the
probability P (T1 ≤ T2), where T1 and T2 are the lifetimes of mixed systems
of orders n and m based on two independent i.i.d. samples of sizes n and m
from underlying distributions F1 and F2, respectively. The representation of
interest is drawn from Hollander and Samaniego [43], whose proof differs from
the one below in that it utilizes integral representations of probabilities of the
form P (X ≤ Y ). Here, we provide a simpler, direct proof.

Theorem 3.4. Let T1 and T2 represent the lifetimes of mixed systems of
orders n and m with respective signatures s1 and s2. Assume that the n
components of system 1 have i.i.d. lifetimes governed by the continuous
distribution F1, and let {X1:n,X2:n, . . . , Xn:n} be the corresponding ordered
component lifetimes. Similarly, assume that the m components of system
2 have i.i.d. lifetimes governed by the continuous distribution F2, and let
{Y1:m, Y2:m, . . . , Ym:m} be the corresponding ordered component lifetimes. Fi-
nally, assume the two samples are independent. Then

P (T1 ≤ T2) =
n∑

i=1

m∑

j=1

s1is2jP (Xi:n ≤ Yj:m) (3.28)

Proof. Using the Law of Total Probability and the i.i.d. assumption on com-
ponent lifetimes, we may obtain the desired result by writing
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P (T1 ≤ T2)

=
n∑

i=1

m∑

j=1

P (T1 = Xi:n)P (T2 = Yj:m)P (T1 ≤ T2 | T1 = Xi:n, T2 = Yj:m)

=
n∑

i=1

m∑

j=1

s1is2jP (Xi:n ≤ Yj:m). �




