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Introduction

The theory of Reliability and Life Testing has its roots in the research into the
performance of engineered systems that was spawned by the applications aris-
ing in the second World War. An example of early studies of reliability issues
is the work of Abraham Wald who, as a member of the heralded Statistical
Research Group at Columbia University, treated the problem of estimating
the vulnerability of aircraft used in WWII from data on “hits” taken by the
planes that returned from various missions. Wald’s work led to the addition
of reinforcement of particularly vulnerable sections of the fuselage which ul-
timately led to a higher rate of returning aircraft. Wald’s research on these
problems was declassified in the late 1970s and is described in detail by Man-
gel and Samaniego [55].

Important advances in Reliability Theory were made in the early 1950s.
Particularly notable is the paper by Epstein and Sobel [34], where optimal
estimates are obtained for the mean lifetime of systems based on “type II”
(or “order-statistic”) censored data assumed to be drawn from an exponential
distribution. The significance of that work was that it clearly demonstrated
that characteristics of the population could be efficiently estimated from early
failures, that is, from the first r systems to fail among the n systems placed
on test. Grenander’s [40] paper on nonparametric inference in reliability was
highly influential. Zelen’s [75] edited proceedings of a 1962 conference on the
statistical theory of Reliability drew attention to the field and highlighted
early research in the area.

A quantum leap in the development of a comprehensive theory of Relia-
bility occurred concurrently with the formation of a statistical research team
at Boeing Aircraft Company. That team, which achieved critical mass in the
early 1960s, had as its core members James Esary, Albert Marshall, Frank
Proschan and Sam Saunders. During their decade together at Boeing, they
developed many of the key concepts, models and methods of modern Relia-
bility Theory. This core group, in collaboration with Richard Barlow, Z. W.
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Birnbaum, Ingram Olkin and others, published seminal work in each of the
three primary subfields in the area: structural reliability , which concentrates
on the way systems are designed and how these designs influence system per-
formance, stochastic reliability , which concentrates on modeling the lifetime
characteristics of systems and their components, and statistical reliability ,
which concentrates on the process of drawing inferences about general char-
acteristics of systems from experimental data on their performance. Among
the best known products of the Boeing group and its affiliates are papers
by Birnbaum, Esary and Saunders [9] on the theory of coherent systems, by
Proschan [59] on the occurrence of apparent improved performance over time
(decreasing failure rate) in data sets consisting of combined failure data from
several systems, the classic text on Mathematical Reliability by Barlow and
Proschan [5], the important paper by Birnbaum, Esary and Marshall [8] on
nonparametric modeling in reliability and the introduction of a multivariate
exponential distribution as a shock model by Marshall and Olkin [56].

The basic theory and tools of structural reliability were pioneered by Birn-
baum, Esary and Saunders in a seminal Technometrics paper published in
1961. In that work, the authors created a framework for studying the basic
connection between the performance of a system and the performance of the
components of which it is composed. Their study established the “structure
function” as the predominant tool for distinguishing among systems and for
determining whether one system will outperform another. In this sense, this
class of functions can be used, though not with great ease, as an index on all
systems of interest, and one might select one system over others on the basis
of the characteristics of its structure function.

The aim of this monograph is to present a systematic examination of
an alternative tool in structural reliability – system signatures. Both theory
about, and applications of, system signatures are presented with a view to-
ward demonstrating that this tool constitutes a powerful and versatile device
for resolving a variety of problems in Reliability Theory, particularly those in-
volving comparative analysis. I will begin, in Chapter 2, with a review of the
traditional ideas and tools of structural reliability as found, for example, in
Barlow and Proschan [6]. We formally define the notion of a coherent system
and utilize structure functions and their properties as a vehicle for studying
system behavior and for comparing one system with another. Central to this
discussion is the important role of path sets and cut sets in studying the per-
formance properties of coherent systems. The well-known representations of
the structure function in terms of minimal path sets or minimal cut sets are
developed. A constructive description of the class of all coherent systems of
a given size is presented, and the intriguing open problem of counting the
number of coherent systems of order n, for arbitrary fixed n, is discussed. The
connection between the structure function and the reliability of a coherent
system is presented, and the “reliability polynomial” is introduced for treat-



1 Introduction 3

ment of the i.i.d. case.

In Chapter 3, we introduce the notion of “signatures” of coherent systems
in components with i.i.d. lifetimes and provide some guidance on computing
and interpreting them. The problem of comparing two complex systems has
typically been complicated by the fact that the traditional tools for charac-
terizing system designs have proven to be rather awkward as indices in op-
timization problems. As we shall see, the existence of an easily interpretable
summary of fixed dimension for the essential characteristics of the systems
whose components have i.i.d. lifetimes has made the analytical investigation
of many of these problems possible. Multiple examples of signature calcula-
tions are given, and mention is made of the elements of combinatorial mathe-
matics that are relevant to such calculations. Under the assumption that the
components of the systems to be considered have i.i.d. lifetimes, the distri-
bution (and density and failure rate, if they exist) of the system’s lifetime T
will be represented explicitly as a function of the system’s signature and the
underlying distribution F of the component lifetimes. These representations
are used with some regularity throughout the remainder of the monograph.
The notion of signature is extended beyond the class of coherent systems to
the family of all stochastic mixtures of coherent systems of a given size (to be
referred to as “mixed systems”), and the motivation for doing so is discussed
in detail.

In Chapters 4 and 5, the utility of signatures is demonstrated in various re-
liability contexts. Chapter 4 is dedicated to applications of system signatures
to closure and preservation theorems in reliability and to the role that sig-
natures can play in the comparison of coherent systems or mixtures of them.
First, we present a description of the “IFR closure problem” and provide a
characterization, in terms of system signatures, of systems whose lifetime dis-
tributions have an increasing failure rate whenever its components have i.i.d.
lifetimes with an increasing failure rate. We then present a collection of preser-
vation theorems showing that certain types of orderings of system signatures
imply like orderings of the corresponding system lifetime distributions. Since
the calculation of the lifetime distributions of complex systems is a challenging
(and often unsolved) problem which makes the direct comparison of system
lifetimes a tenuous matter, the utility of comparing some relatively simple
summaries for two system designs and knowing immediately that one system
has a longer lifetime (in some stochastic sense) is clearly useful. In Section 4.3,
an example involving stochastic comparisons of different types of redundancy
in coherent systems illustrates the utility of the preservation results developed
in the preceding section.

Since the ordering conditions on signatures in the preservation theorems
presented in Section 4.2 prove to be sufficient but not necessary for the or-
dering of system lifetimes, we turn, in the final section of Chapter 4, to the
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investigation of possible necessary and sufficient conditions (NASCs) for spe-
cific types of orderings to hold for the lifetimes T1 and T2 of two systems in
i.i.d. components. For each of the contexts in which preservation theorems are
established, NASCs are obtained for the ordering of system lifetimes. Interest-
ingly, the precise crossing properties of the survival functions or failure rates
of two systems of interest can be determined by the behavior of certain func-
tions that depend on the systems’ designs only through the respective system
signatures. Results of this latter type lead to insights that extend beyond the
partial ordering of systems via properties of their signatures. In situations in
which systems are not comparable in the usual stochastic senses, it is possible
to characterize the crossing behavior of pairs of survival functions or failure
rates, as well as the alternating monotonicity of the likelihood ratio, through
the precise behavior of the functions used in establishing NASCs for stochastic
domination. This latter extension provides a vehicle for fully understanding
the relative real-time behavior of the lifetime distributions, failure rates and
density functions of competing systems.

In Chapter 5, several comparisons between pairs of special-purpose sys-
tems are pursued. In particular, direct and indirect majority systems are con-
trasted. Signatures are also employed in establishing monotonicity properties
of consecutive k-out-of-n systems and in studying the limiting behavior of
survival functions and failure rates of arbitrary mixed systems. In section 5.4,
we present an important augmentation to the preceding theory on the com-
parison of two systems. The usual forms of stochastic comparisons (stochastic,
hazard-rate and likelihood-ratio ordering) are powerful when they are appli-
cable, but they have the limitation of inducing only a partial ordering on
the class of coherent (or mixed) systems. Simply put, it is easy to find pairs
of systems that are not comparable under any of these orderings. In Section
5.4, we consider the use of “stochastic precedence,” introduced in Arcones,
Kvam and Samaniego [3], which classifies system 2 as better than system
1 if P (T1 ≤ T2) ≥ 1/2. This criterion leads to definitive comparisons be-
tween any two systems of arbitrary size. An explicit formula for computing
P (T1 ≤ T2) is displayed and a signature-based NASC is given for the inequal-
ity P (T1 ≤ T2) ≥ 1/2 to hold.

Chapter 6 is dedicated to the study of signatures in the context of net-
work reliability. The chapter begins with a brief introduction to basic ideas
and vocabulary of communication networks. The signature is a well-defined
concept in each of several types of network problems, including two-terminal,
k-terminal and all-terminal reliability (focusing, respectively, on whether two
terminals, k terminals or all terminals in a network can communicate with
each other). The treatment of network reliability includes a review the the-
ory of “dominations” as introduced and developed by Satyanarayana and his
co-workers. This is followed by a derivation of a closed-form functional re-
lationship between dominations and the signature vector. The utility of this
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connection is illustrated by a comparison between two distinct networks with
9 terminals and 27 edges (i.e., 27 paths between pairs of terminals).

Problems in the field of “Reliability Economics” have been, until recently,
largely resistant to analytical treatment. In Chapter 7, we will consider the
problem of searching for the optimal system of order n relative to a specific
criterion function which depends on both a system’s performance and its cost.
The solution to this problem assumes i.i.d. component lifetimes and makes es-
sential use of the (n − 1)-dimensional simplex of signatures of all stochastic
mixtures of coherent systems of order n. The latter strategy turns what has
heretofore been treated as a large discrete optimization problem (i.e., finding
the best coherent system) into a continuous problem (i.e., finding the best
mixed system) to which the methods of differential calculus can be applied.
Given such a framework, optimal systems are identified through the signatures
that maximize the chosen criterion function. Examples are given in which the
optimal system is a non-degenerate mixture of coherent systems and every
coherent system is inferior to it. Since the solutions obtained depend on a
known underlying lifetime distribution F of the competing systems’ compo-
nents, a complete solution, usable in practice, would entail the estimation of
this distribution or its relevant features. Chapter 7 closes with a treatment of
the statistical problem that must be solved in order for the optimality results
of Chapter 7 to be applicable in practice. The final chapter of this mono-
graph is dedicated to a brief discussion of extensions of, and results related
to, the theory and applications treated in Chapters 3 - 7, some further ref-
erences to related work, and a description of several open problems of interest.

As indicated in the outline presented in this chapter, there’s a good deal
of work to be done. Let us now proceed with the program described above.




