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Dedication

I wish to dedicate this monograph to two giants in the field of Reliability
Theory, Frank Proschan and Dick Barlow. I learned a great deal from studying
their jointly authored work, but I am particularly grateful to each of them for
personally nurturing my interest in the subject through numerous discussions
and stimulating correspondence. I was always impressed by their brilliance
and creativity, but was even more impressed by their kindness.

I spent the 1971-72 academic year as a postdoctoral fellow in the Statis-
tics Department at Florida State University. The highlight of that year was
the privilege of learning about Reliability Theory at the feet of the master.
Through Frank Proschan’s Reliability Seminar, I slowly graduated from my
early view of reliability as an acronym-laden subfield of applied probability
to a more mature view (Frank’s view) of the field as an area abundantly
endowed with intriguing models, mathematical subtlety, interesting and chal-
lenging open problems and a wide range of important applications. Frank’s
legendary sense of humor contributed to a tone that made attendance at his
seminar virtually mandatory – you didn’t want to miss anything (be it sub-
stantive or comedic)! An example of Frank at his impertinent best was a com-
ment he made when speaking about his 1983 “imperfect repair” paper with
Mark Brown. Having proven that one could obtain the proportional hazards
property for the “time until the first perfect repair” as a derived result from
their modeling assumptions, Frank stated that he considered this as evidence
that, among all the ways that one might model imperfect repair, “God favors
our model.” That remark is especially on my mind at this moment, having
just completed a monograph on system signatures. I can’t help but wonder
whether Frank Proschan, were he still with us, would have favored, on the
basis of the evidence presented in Chapters 3 - 7, this particular approach to
classifying and characterizing system designs over the alternatives one might
consider. It would have pleased me greatly if he had.

Dick Barlow had a different but similarly strong influence on the research
directions I’ve taken over the years. This includes work on nonparametric
modeling and inference in reliability, Bayesian thinking in reliability and in
general, and a host of other special topics. Barlow introduced me to network
reliability at a small workshop he hosted in Berkeley in the mid 1980s. Besides
Dick himself, I was the only statistician in attendance. The participants were
mostly engineers who were experts in subjects like graph theory and combi-
natorial mathematics. I recall jokingly referring to them as the counters (and
they were, indeed, some of the most sophisticated counters one could have
brought together). The group went to lunch together every day, usually at a
Chinese restaurant on University Avenue. At the end of one of those lunches,
I got a fortune cookie that still ranks as my favorite of all time. It actually
said something seemingly relevant. It read “You will soon be recognized by
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people who count.” It made my day!

In a poem on the portraits in Dublin’s Municipal Gallery, W. B. Yeats
wrote: “You that would judge me, do not judge alone this book or that
. . . .Think of where man’s glory most begins and ends, and say my glory was
I had such friends.” Yeats’ sentiments resonate strongly with me today as I
dedicate this work to two great mentors and friends.

FJS



Preface

One of the most common problems in the practice of engineering reliability is
that of selecting a particular system design among the several options available
for achieving some particular performance goal. Often, the goal is a long-lived
system. In the case of repairable systems, the goal might be identifying a sys-
tem design that has as little downtime as possible. The best performance per
unit cost is another worthy potential goal. The purpose of this monograph
is to provide some guidance on how problems of this type might be formu-
lated and solved. Our approach relies on the relatively new notion of “system
signatures.” We will introduce the concept here in the context of the well
established theory of coherent systems and will seek to provide convincing
evidence that the recommended approach to the problems mentioned above
is efficacious.

I must admit that I stumbled on the notion of system signatures quite
by accident. While visiting the University of Washington in 1982-3, on sab-
batical leave from the University of California, Davis, I was, among other
things, working on a number of research problems in Reliability Theory. One
problem involved trying to understand more deeply the concept of “closure”
under the formation of coherent systems. My being in Seattle, where much of
the seminal work in this area had been done in the 60s by Birnbaum, Esary,
Marshall, Proschan and Saunders, may have subconsciously driven me toward
this topic. What was well known at the time was that a (coherent) system
in components with increasing failure rates (IFR) is not “closed,” that is, is
not necessarily IFR, but that the larger class of systems in components with
the IFRA (increasing failure rate average) property is closed, that is, these
systems are themselves IFRA.

The question that interested me at the time was more or less halfway
between these two results – what could one say about the class of systems
that did enjoy the IFR closure property? The literature contained a partial
answer: k-out-of-n systems in i.i.d. IFR components were known to be IFR.
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Expanding upon this result seemed to require a new tool. My immediate goal
was to find ways of identifying a direct connection between the failure rate of
a system and the common failure rate of its components. The representation
theorem in Samaniego [61] expressing the system’s failure rate as a multiple
of the component failure rate turned out to be the tool that permitted the
complete characterization of systems that will be IFR when their components
are i.i.d. IFR. That representation had the form rT (t) = h(s, F )r(t), where s
is the signature of the system, a vector essentially capturing the influence of
the system design on the system’s failure rate, and F and r are the underlying
distribution and failure rate of the components. So the birth of the signature
idea dates back nearly 25 years. In the preceding paragraph, I referred to this
notion as “relatively new.” In the grand scheme of things, 25 years goes by
in a flash, so from that point of view, one could say that signatures are rela-
tively new. My intent, however, was to acknowledge that the notion was not
recognized as broadly useful until its properties were carefully studied in their
own right. In Kochar, Mukerjee and Samaniego [51], some new preservation
theorems were proven, and the comparison of system lifetimes via the prop-
erties of their signatures was shown to be feasible and fruitful. These results
revealed the potential power and breadth of the concept. Both of the themes
referred to above will be presented in detail in Chapter 4 of the present work.

This monograph consists of six substantive chapters on signatures and
their applications, together with an opening chapter introducing the topic and
a closing chapter summarizing the state of research on signatures and sharing
some of my thoughts on future theoretical developments and potential ap-
plications of interest. Most of the existing theory on structural reliability is
based on Birnbaum, Esary and Saunders’ [9] seminal work on multicompo-
nent, two-state systems. As in Birnbaum, et al. [9], our emphasis here will be
on binary systems (which are either in a functioning (1) or failed (0) state). My
work with the notion of signatures began with the publication of Samaniego
[61], a paper entitled “On the Closure of the IFR Class under the Forma-
tion of Coherent Systems.” In that paper, the signature vector was defined
for a coherent system with components having i.i.d. lifetimes with common
distribution F . In brief, the signature of such a system in n components is an
n-dimensional probability vector s that is the distribution of the index of the
ordered component failure time that corresponds to system failure.

Especially in the last decade, the broad applicability of system signatures
has become apparent, and their utility in the comparison of coherent systems
and communication networks has been more firmly established. Most recently,
we have found that the tool can facilitate the reformulation of heretofore an-
alytically intractable discrete optimization problems in the area of Reliability
Economics, providing a mechanism which can make the analytical treatment
of these problems feasible. My purpose here is to present a useful overview of
work to date on the properties and applications of system signatures with a
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view toward opening up new potential applications. Some new results will be
combined with work available in the literature. The present work is intended
to be both comprehensive and unifying. If I succeed in accomplishing these
goals, I am convinced that both the scope and depth of application of system
signatures in reliability will be substantially enhanced in future work.

I wish to thank my students and coworkers who have participated in many
of my studies in this general problem area. These include, in alphabetical or-
der, Debasisis Bhattacharya, Henry Block, Philip Boland, Michael Dugas,
Subhash Kochar, Myles Hollander, Michael McAssey, Hari Mukerjee, Moshe
Shaked and Eric Vestrup. Many of the ideas presented in this monograph
came to life in the course of my conversations with these collaborators, and I
express to each of them my deep appreciation for the many stimulating dis-
cussions we have had and for each of their contributions to the theory and
application of the signature idea. I hope that this attempt to present a coher-
ent and unified version of our collective results does justice to both the work
and to these key contributors.

I express my special appreciation to Dr. Robert Launer and to Dr. Harry
Chang of the Army Research Office for their sustained support of this project.
The present work combines new results developed under ARO support with
a reworking and new presentation of years of work on signature-related ideas.
My recent research in this area, as well as my work on the present project,
was supported by ARO grants ARO19-02-1-0377 and WN11NF05-1-0118. It
is also a pleasure to acknowledge other agencies that have supported this work
over the years, including the Air Force Office of Scientific Research, The Ford
Foundation, The National Security Agency and The National Science Foun-
dation. This monograph was written during a sabbatical leave funded by the
University of California, Davis, and I gratefully acknowledge that support as
being a critical element in the completion of this project. I would like to thank
Brad Efron for inviting me to spend a portion of that leave in the Statistics
Department at Stanford University. This provided me with a stimulating yet
quiet place to hide out while getting this project off the ground. Finally, I
thank the students in my graduate reliability course in Winter Quarter, 2007,
for reading the penultimate draft of this monograph and suggesting many im-
provements. My thanks to Ying Chen, Tammy Greasby, Yolanda Hagar, Jung
Won Hyun, Michelle Norris, Clayton Schupp, and Li Zhu.

Francisco J. Samaniego
University of California, Davis

March, 2007
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1

Introduction

The theory of Reliability and Life Testing has its roots in the research into the
performance of engineered systems that was spawned by the applications aris-
ing in the second World War. An example of early studies of reliability issues
is the work of Abraham Wald who, as a member of the heralded Statistical
Research Group at Columbia University, treated the problem of estimating
the vulnerability of aircraft used in WWII from data on “hits” taken by the
planes that returned from various missions. Wald’s work led to the addition
of reinforcement of particularly vulnerable sections of the fuselage which ul-
timately led to a higher rate of returning aircraft. Wald’s research on these
problems was declassified in the late 1970s and is described in detail by Man-
gel and Samaniego [55].

Important advances in Reliability Theory were made in the early 1950s.
Particularly notable is the paper by Epstein and Sobel [34], where optimal
estimates are obtained for the mean lifetime of systems based on “type II”
(or “order-statistic”) censored data assumed to be drawn from an exponential
distribution. The significance of that work was that it clearly demonstrated
that characteristics of the population could be efficiently estimated from early
failures, that is, from the first r systems to fail among the n systems placed
on test. Grenander’s [40] paper on nonparametric inference in reliability was
highly influential. Zelen’s [75] edited proceedings of a 1962 conference on the
statistical theory of Reliability drew attention to the field and highlighted
early research in the area.

A quantum leap in the development of a comprehensive theory of Relia-
bility occurred concurrently with the formation of a statistical research team
at Boeing Aircraft Company. That team, which achieved critical mass in the
early 1960s, had as its core members James Esary, Albert Marshall, Frank
Proschan and Sam Saunders. During their decade together at Boeing, they
developed many of the key concepts, models and methods of modern Relia-
bility Theory. This core group, in collaboration with Richard Barlow, Z. W.
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Birnbaum, Ingram Olkin and others, published seminal work in each of the
three primary subfields in the area: structural reliability , which concentrates
on the way systems are designed and how these designs influence system per-
formance, stochastic reliability , which concentrates on modeling the lifetime
characteristics of systems and their components, and statistical reliability ,
which concentrates on the process of drawing inferences about general char-
acteristics of systems from experimental data on their performance. Among
the best known products of the Boeing group and its affiliates are papers
by Birnbaum, Esary and Saunders [9] on the theory of coherent systems, by
Proschan [59] on the occurrence of apparent improved performance over time
(decreasing failure rate) in data sets consisting of combined failure data from
several systems, the classic text on Mathematical Reliability by Barlow and
Proschan [5], the important paper by Birnbaum, Esary and Marshall [8] on
nonparametric modeling in reliability and the introduction of a multivariate
exponential distribution as a shock model by Marshall and Olkin [56].

The basic theory and tools of structural reliability were pioneered by Birn-
baum, Esary and Saunders in a seminal Technometrics paper published in
1961. In that work, the authors created a framework for studying the basic
connection between the performance of a system and the performance of the
components of which it is composed. Their study established the “structure
function” as the predominant tool for distinguishing among systems and for
determining whether one system will outperform another. In this sense, this
class of functions can be used, though not with great ease, as an index on all
systems of interest, and one might select one system over others on the basis
of the characteristics of its structure function.

The aim of this monograph is to present a systematic examination of
an alternative tool in structural reliability – system signatures. Both theory
about, and applications of, system signatures are presented with a view to-
ward demonstrating that this tool constitutes a powerful and versatile device
for resolving a variety of problems in Reliability Theory, particularly those in-
volving comparative analysis. I will begin, in Chapter 2, with a review of the
traditional ideas and tools of structural reliability as found, for example, in
Barlow and Proschan [6]. We formally define the notion of a coherent system
and utilize structure functions and their properties as a vehicle for studying
system behavior and for comparing one system with another. Central to this
discussion is the important role of path sets and cut sets in studying the per-
formance properties of coherent systems. The well-known representations of
the structure function in terms of minimal path sets or minimal cut sets are
developed. A constructive description of the class of all coherent systems of
a given size is presented, and the intriguing open problem of counting the
number of coherent systems of order n, for arbitrary fixed n, is discussed. The
connection between the structure function and the reliability of a coherent
system is presented, and the “reliability polynomial” is introduced for treat-
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ment of the i.i.d. case.

In Chapter 3, we introduce the notion of “signatures” of coherent systems
in components with i.i.d. lifetimes and provide some guidance on computing
and interpreting them. The problem of comparing two complex systems has
typically been complicated by the fact that the traditional tools for charac-
terizing system designs have proven to be rather awkward as indices in op-
timization problems. As we shall see, the existence of an easily interpretable
summary of fixed dimension for the essential characteristics of the systems
whose components have i.i.d. lifetimes has made the analytical investigation
of many of these problems possible. Multiple examples of signature calcula-
tions are given, and mention is made of the elements of combinatorial mathe-
matics that are relevant to such calculations. Under the assumption that the
components of the systems to be considered have i.i.d. lifetimes, the distri-
bution (and density and failure rate, if they exist) of the system’s lifetime T
will be represented explicitly as a function of the system’s signature and the
underlying distribution F of the component lifetimes. These representations
are used with some regularity throughout the remainder of the monograph.
The notion of signature is extended beyond the class of coherent systems to
the family of all stochastic mixtures of coherent systems of a given size (to be
referred to as “mixed systems”), and the motivation for doing so is discussed
in detail.

In Chapters 4 and 5, the utility of signatures is demonstrated in various re-
liability contexts. Chapter 4 is dedicated to applications of system signatures
to closure and preservation theorems in reliability and to the role that sig-
natures can play in the comparison of coherent systems or mixtures of them.
First, we present a description of the “IFR closure problem” and provide a
characterization, in terms of system signatures, of systems whose lifetime dis-
tributions have an increasing failure rate whenever its components have i.i.d.
lifetimes with an increasing failure rate. We then present a collection of preser-
vation theorems showing that certain types of orderings of system signatures
imply like orderings of the corresponding system lifetime distributions. Since
the calculation of the lifetime distributions of complex systems is a challenging
(and often unsolved) problem which makes the direct comparison of system
lifetimes a tenuous matter, the utility of comparing some relatively simple
summaries for two system designs and knowing immediately that one system
has a longer lifetime (in some stochastic sense) is clearly useful. In Section 4.3,
an example involving stochastic comparisons of different types of redundancy
in coherent systems illustrates the utility of the preservation results developed
in the preceding section.

Since the ordering conditions on signatures in the preservation theorems
presented in Section 4.2 prove to be sufficient but not necessary for the or-
dering of system lifetimes, we turn, in the final section of Chapter 4, to the
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investigation of possible necessary and sufficient conditions (NASCs) for spe-
cific types of orderings to hold for the lifetimes T1 and T2 of two systems in
i.i.d. components. For each of the contexts in which preservation theorems are
established, NASCs are obtained for the ordering of system lifetimes. Interest-
ingly, the precise crossing properties of the survival functions or failure rates
of two systems of interest can be determined by the behavior of certain func-
tions that depend on the systems’ designs only through the respective system
signatures. Results of this latter type lead to insights that extend beyond the
partial ordering of systems via properties of their signatures. In situations in
which systems are not comparable in the usual stochastic senses, it is possible
to characterize the crossing behavior of pairs of survival functions or failure
rates, as well as the alternating monotonicity of the likelihood ratio, through
the precise behavior of the functions used in establishing NASCs for stochastic
domination. This latter extension provides a vehicle for fully understanding
the relative real-time behavior of the lifetime distributions, failure rates and
density functions of competing systems.

In Chapter 5, several comparisons between pairs of special-purpose sys-
tems are pursued. In particular, direct and indirect majority systems are con-
trasted. Signatures are also employed in establishing monotonicity properties
of consecutive k-out-of-n systems and in studying the limiting behavior of
survival functions and failure rates of arbitrary mixed systems. In section 5.4,
we present an important augmentation to the preceding theory on the com-
parison of two systems. The usual forms of stochastic comparisons (stochastic,
hazard-rate and likelihood-ratio ordering) are powerful when they are appli-
cable, but they have the limitation of inducing only a partial ordering on
the class of coherent (or mixed) systems. Simply put, it is easy to find pairs
of systems that are not comparable under any of these orderings. In Section
5.4, we consider the use of “stochastic precedence,” introduced in Arcones,
Kvam and Samaniego [3], which classifies system 2 as better than system
1 if P (T1 ≤ T2) ≥ 1/2. This criterion leads to definitive comparisons be-
tween any two systems of arbitrary size. An explicit formula for computing
P (T1 ≤ T2) is displayed and a signature-based NASC is given for the inequal-
ity P (T1 ≤ T2) ≥ 1/2 to hold.

Chapter 6 is dedicated to the study of signatures in the context of net-
work reliability. The chapter begins with a brief introduction to basic ideas
and vocabulary of communication networks. The signature is a well-defined
concept in each of several types of network problems, including two-terminal,
k-terminal and all-terminal reliability (focusing, respectively, on whether two
terminals, k terminals or all terminals in a network can communicate with
each other). The treatment of network reliability includes a review the the-
ory of “dominations” as introduced and developed by Satyanarayana and his
co-workers. This is followed by a derivation of a closed-form functional re-
lationship between dominations and the signature vector. The utility of this
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connection is illustrated by a comparison between two distinct networks with
9 terminals and 27 edges (i.e., 27 paths between pairs of terminals).

Problems in the field of “Reliability Economics” have been, until recently,
largely resistant to analytical treatment. In Chapter 7, we will consider the
problem of searching for the optimal system of order n relative to a specific
criterion function which depends on both a system’s performance and its cost.
The solution to this problem assumes i.i.d. component lifetimes and makes es-
sential use of the (n − 1)-dimensional simplex of signatures of all stochastic
mixtures of coherent systems of order n. The latter strategy turns what has
heretofore been treated as a large discrete optimization problem (i.e., finding
the best coherent system) into a continuous problem (i.e., finding the best
mixed system) to which the methods of differential calculus can be applied.
Given such a framework, optimal systems are identified through the signatures
that maximize the chosen criterion function. Examples are given in which the
optimal system is a non-degenerate mixture of coherent systems and every
coherent system is inferior to it. Since the solutions obtained depend on a
known underlying lifetime distribution F of the competing systems’ compo-
nents, a complete solution, usable in practice, would entail the estimation of
this distribution or its relevant features. Chapter 7 closes with a treatment of
the statistical problem that must be solved in order for the optimality results
of Chapter 7 to be applicable in practice. The final chapter of this mono-
graph is dedicated to a brief discussion of extensions of, and results related
to, the theory and applications treated in Chapters 3 - 7, some further ref-
erences to related work, and a description of several open problems of interest.

As indicated in the outline presented in this chapter, there’s a good deal
of work to be done. Let us now proceed with the program described above.



2

Background on Coherent Systems

2.1 Basic Ideas

We will use the term “system” quite freely and regularly, even though it will
remain an undefined term throughout this monograph. As we all have some
experience with engineered “systems,” our use of the term should cause no
confusion. Informally, we can think of a system as consisting of a collection
of “components,” basic constituents which are connected in some fashion to
create the whole. We might consider a radio, an automobile, a computer or a
cell phone as concrete examples of systems in common use. The main char-
acteristic of our use of the term is that a system works or fails to work as a
function of the working or failure of its components. While there are various
ways to formalize the notion of a system being partially functioning (for ex-
ample, a car could technically be driven for a few miles with a flat tire), we
will follow the convention established by Birnbaum et al. [9] and consider a
system to be either working or failed at any given point in time. To quantify
this fact, we assign a 1 to the event that the system works and a 0 to the
event that the system fails. The same can be said of each component.

For a system with n components, this idea gives rise to the notion of a
state vector, that is, a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n, where for each i,
xi = 1 if the ith component is working and xi = 0 if it is not working. We will
be interested in whether or not the system is working when the components
are in a specific state. A mapping called the structure function provides the
desired link.

Definition 2.1. Consider the space {0, 1}n of all possible state vectors for
an n-component system. The structure function ϕ : {0, 1}n → {0, 1} is a
mapping that associates those state vectors x for which the system works with
the value 1 and those state vectors x for which the system fails with the value
0.
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Some examples will help make this concept clear. Most people are famil-
iar with two particular systems that arise frequently in reliability: the series
system and the parallel system. The first works only if every component is
working, while the second works as long as at least one component is working.
The structure function for an n-component series system is given by

ϕ(x) =
n∏

i=1

xi , (2.1)

while for a parallel system, we have

ϕ(x) = 1 −
n∏

i=1

(1 − xi) . (2.2)

The two systems above are extreme examples of an important class of
systems called “k-out-of-n systems.” This label has a bit of ambiguity to it,
as it could represent systems that fail upon the kth component failure, but
it might also represent systems that work as long as at least k components
are working. For that reason, the former are often called k-out-of-n:F systems
and the latter are called k-out-of-n:G systems, the “F” standing for the k
failed components that ensure system failure and the “G” standing for the
k good components that ensure that the system functions. Throughout this
monograph, I will make reference to k-out-of-n systems without using the
qualifiers F or G. In all instances, I will be referring to what I have called
above the k-out-of-n:F systems. Thus, a series system is a 1-out-of-n system
and a parallel system is an n-out-of-n system. For hybrid systems such as the
system pictured in Figure 2.1, the structure functions will have elements of
both of the functions above, that is,

ϕ(x) = x1[1 − (1 − x2)(1 − x3)] . (2.3)

Fig. 2.1. A series-parallel system in three components
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The structure function for a k-out-of-n system is most easily represented
as:
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ϕ(x) = 0 if
n∑

i=1

xi ≤ n − k and ϕ(x) = 1 if
n∑

i=1

xi ≥ n − k + 1 . (2.4)

A fourth example is the five-component bridge system displayed in Figure
2.2 below. Its structure function ϕ(x), which follows the figure, is substantially
more complex than those that precede it.

Fig. 2.2. A bridge system in 5 components

��

��
2

��

��
5

��

��
1

��

��
4

��

��
3

The structure function of the bridge system shown above is given by

ϕ(x) = x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x2x3x4 − x1x2x3x5

− x1x3x4x5 − x1x2x4x5 − x2x3x4x5 + 2x1x2x3x4x5 (2.5)

The reader might rightly wonder how the latter structure function was
obtained. I placed it in the text at this point because it provides me with the
opportunity to make some useful comments. Regarding how the function was
obtained, one could use a rational, orderly process (resembling the inclusion-
exclusion principle which is discussed later in this chapter) to account first
for the ways in which the system will necessarily work – e.g., if components
1 and 4 are working or if components 1, 3 and 5 are working, etc. – and
then compensating for their two-way, three-way and four-way intersections.
We will introduce shortly an approach that results in (2.5) in a conceptually
and practically simpler way. The fact remains that the structure function of a
five-component bridge system is a complex object, no matter how you get it.
You can imagine struggling with the structure function of a system of order
20. Dealing with the structure functions of systems of order 100 seems almost
imponderable. In situations where systems are being compared or where an
optimal system is sought relative to some fixed criterion, it is clear that the
indexing of the class of systems by their structure functions complicates rather
than simplifies the problem. A further complication is that any relabeling of a
system’s components gives rise to a new function that is equivalent to the orig-
inal ϕ(x) but looks different. One would have to inspect the two functions side
by side to verify that the two representations have components that were in
one-to-one correspondence. This, then, constitutes the first bit of motivation
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one might have for considering other ways of characterizing system designs.
But structure functions are useful in their own way, and we will study them
further before moving on. In particular, we will utilize them as a vehicle for
focusing on the class of systems we will refer to as “coherent.”

If an engineer is designing a system for performing a particular function,
there are two basic requirements he or she would impose upon any design
considered for use. First, the system would not contain any component whose
functioning has absolutely no influence on whether or not the system works.
If the vector (x1, . . . , xi−1, a, xi+1, . . . , xn) represents a state vector for the n
components of an arbitrary system for which xi = a ∈ {0, 1}, then component
i is said to be irrelevant if the system’s structure function ϕ has the property
that ϕ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = ϕ(x1, . . . , xi−1, 1, xi+1, . . . , xn) for all
possible values of (x1, . . . , xi−1, xi+1, . . . , xn) ∈ {0, 1}n−1. If an n-component
system contained a component that was irrelevant, that component would be
removed from the design since there is a simpler system (of order no larger
than n − 1) that can provide identical performance.

A system that actually changed from a working state to a failed state upon
the replacement of a failed component with a working one would be baffling
indeed. One innate feature of systems with which we are familiar is that their
failure coincides with the failure of some component. If we were monitoring a
system over time, we would note that, as components begin to fail, the system
may continue to work for a while but, eventually, one of the components that
had remained working will prove to be critical to the system’s functioning,
and the system will fail upon the failure of that component. Fixing a failed
component might get the system working again, but in no instance would we
see a system, while working on the basis of k functioning components, fail as
a result of the act of replacing a failed component with a working component.
We call a system monotone if fixing a failed component cannot make the
system worse. Symbolically, a monotone system has a structure function for
which ϕ(x) ≤ ϕ(y) whenever x ≤ y, where the latter vector inequality is
understood to be applied component-wise. These two natural properties of
engineered systems form the basis for the following:

Definition 2.2. A system is said to be coherent if each of its components is
relevant and if its structure function is monotone.

The definition above severely restricts the number of possible functions
mapping {0, 1}n into {0, 1} that could play the role of a structure function for
a coherent system. For example, of the 256 possible functions mapping {0, 1}3

into {0, 1}, there are only 5 that correspond to coherent systems. Definition
2.2 requires, for example, that the structure function of every coherent system
satisfy the conditions ϕ(0) = 0 and ϕ(1) = 1. If either of these conditions
were violated, the monotonicity property would imply that every component
of the system is irrelevant. In spite of the fact that our restricting attention
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to coherent systems substantially reduces the number of possible structure
functions, it remains true that the number Z(n) of coherent systems of order
n grows rapidly with n. There are 2 coherent systems of order 2, 5 of order 3
and 20 of order 4. That the number grows exponentially in n is clear from the
fact that, to any system of order n, one may attach a new component either
in series or in parallel, immediately doubling the number of coherent systems.
This implies that there are more than a billion coherent systems of order 30.
Counting the exact number of coherent systems of order n is a difficult open
problem, though there exist published bounds for the rate of its growth. A
notable upper bound was obtained by Kleitman and Markowsky [50], who
addressed the equivalent calculation known as “Dedekind’s problem” in the
area of enumerative combinatorics:

log2 Z(n) ≤ {1 + O[(log2 n)/n]}
(

n

[n/2]

)
, (2.6)

where
(
n
k

)
is the number of combinations of n things taken k at a time and [x]

represents the greatest integer less than or equal to x. The size of Z(n) makes
the identification of optimal designs in various settings somewhat imposing.
In Chapter 7, we will illustrate a methodology that circumvents this difficulty.

Before proceeding to our discussion of an alternative summary of a coher-
ent system’s design, we will introduce an additional element of the Birnbaum,
Esary and Saunders framework which will play an important role in the sequel.
Let us focus for a moment on coherent systems of order n. A set of components
P is said to be a path set if the system works whenever all the components
in the set P work. It is clear that the set of all n components is a path set. If
A is a path set, then any set B that has A as a proper subset will be a path
set as well. The path sets of special interest are those that contain no proper
subsets that are also path sets. Such a set is called a minimal path set . We
will denote the minimal path sets of a coherent system as P1, P2, . . . , Pr. If we
examine the bridge system shown in Figure 2.2, we see that the minimal path
sets consist of the collection {{1, 4}, {1, 3, 5}, {2, 5}, {2, 3, 4}}. This collection
has two interesting properties:

(i) No minimal path set is a proper subset of any other, and
(ii) The algebraic union of all minimal path sets is the set of all the system’s

components.

It is possible to characterize all coherent systems of a given order n by
these two properties of its minimal path sets. Since, by (ii), every component
from 1 to n is a member of at least one minimal path set, the relevance of every
component is guaranteed. The monotonicity of the system corresponding to a
fixed collection of minimal path sets can be argued as follows. If component k
is not working and the system is also not working, then the structure function
ϕ will either remain equal to 0 or will increase to 1 when component k is
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replaced by a working component. On the other hand, if the system is work-
ing, there is a minimal path set P whose components are all working. Since
any set of components which contains P will also be a path set, it follows
that the set {P ∪ {k}} is a path set and that the system’s structure function
will remain equal to 1 when component k is replaced by a working component.

There is a natural relationship between path sets and sets of components
whose failure will guarantee that the system fails. A set of components C is
said to be a cut set if the system fails whenever all the components in the set
C fail. A cut set is minimal if it has no proper subset that is also a cut set.
The relationship between cut sets and path sets is evident from the following
facts: if P is a minimal path set and A is a proper subset of P , then Ac is a
cut set, and if C is a minimal cut set and B is a proper subset of C, then Bc

is a path set. Neither Ac nor Bc need be minimal. The family of minimal cut
sets has properties analogous to (i) and (ii) above, viz., properties (iii) and
(iv) below.

(iii) No minimal cut set is a proper subset of any other, and
(iv) The algebraic union of all minimal cut sets is the set of all the system’s

components.

In Table 2.1, coherent systems of order 4 are identified by their minimal cut
sets.

Table 2.1. Coherent Systems of Order 4

System Minimal cut sets

1 {1}, {2}, {3}, {4}
2 {1}, {2}, {3, 4}
3 {1}, {2, 3}, {2, 4}
4 {1}, {2, 3}, {2, 4}, {3, 4}
5 {1}, {2, 3, 4}
6 {1, 2}, {1, 3}, {1, 4}
7 {1, 2}, {1, 3}, {1, 4}, {2, 3}
8 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}
9 {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
10 {1, 2}, {1, 3}, {2, 4}, {3, 4}
11 {1, 2}, {2, 4}, {3, 4}
12 {1, 2}, {3, 4}
13 {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}
14 {1, 2}, {1, 3}, {2, 3, 4}
15 {1, 2}, {1, 3, 4}, {2, 3, 4}
16 {1, 2}, {1, 3, 4}
17 {1, 2, 3}, {1, 2, 4}
18 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}
19 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
20 {1, 2, 3, 4}
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Some of the 20 systems in Table 2.1 are easily recognizable. Clearly, system
1 is the series system in four components, system 9 is the 2-out-of-4 system,
system 19 is the 3-out-of-4 system and system 20 is the parallel system. System
10 is the system formed by connecting a pair of two-component series systems
in parallel, while system 12 is formed by connecting a pair of two-component
parallel systems in series. Systems 1 - 5 can be viewed as the systems one
obtains by adding a new component (1) in series to the five coherent systems
of order 3, while systems 6, 16, 17, 18 and 20 are the systems that can be
formed by adding a new component (1) in parallel to the five coherent systems
of order 3.

Since all possible coherent systems of order 4 are listed in Table 2.1 ac-
cording to their minimal cut sets, one might wonder what a list of the corre-
sponding minimal path sets would look like. First, it should be mentioned that
the 20 collections above can be thought of as the list of all possible minimal
path sets of a particular coherent system, as they are an exhaustive list of col-
lections of sets satisfying (i) and (ii) above. With that interpretation, system
1 would be the parallel system in four components, since if each component
serves as a minimal path set, the system works if at least one component is
working. Note, then, that the minimal cut sets of the series system are pre-
cisely the minimal path sets of the parallel system. This is an example of the
“duality” of two coherent systems. Coherent system A is the dual of coherent
system B if the minimal path sets of A are the minimal cut sets of B (and,
similarly, the minimal cut sets of A are the minimal path sets of B). The re-
lationship between dual coherent systems can be made precise through their
respective structure functions.

Definition 2.3. If A and B are dual systems, then their structure functions
are related by the equation

ϕA(x) = 1 − ϕB(1 − x) . (2.7)

A state vector x is called a cut vector if ϕ(x) = 0 and is called a path vector
if ϕ(x) = 1. Now if P is a minimal path set of system B, and x∗ is the
corresponding path vector, that is, x∗

i = 1 for all i ∈ P and x∗
i = 0 for all

i ∈ P c, then 1−x∗ is clearly a cut vector of B’s dual system A since, by (2.7),
ϕA(1−x∗) = 0. The set P corresponds to the zeros in the vector 1−x∗ and is
thus a cut set of system A. In addition, P is in fact a minimal cut set of A since
if any zeros in that vector were turned into ones, the number of ones in the
vector x∗ would be diminished. Because P is assumed to be a minimal path
set, ϕB would be zero for the diminished vector, implying that ϕA would be
one for the augmented version of 1−x∗. Thus, any set smaller than P cannot
be a cut set for the system A. In short, the equation (2.7) guarantees that any
minimal path set of a system is a minimal cut set of the system’s dual and
vice versa. This reasoning justifies the claim that for any collection of minimal
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cut sets defining a coherent system, the same collection can be regarded as
the minimal path sets which define coherent systems of that order. Since the
minimal path sets of a given system are the same as the minimal cut sets of
its dual, one can infer the minimal path sets of a given system of order 4 from
Table 2.2. For example, the minimal path sets of system 4 in Table 2.1 are
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, the cut sets of its dual, system 18.

Table 2.2. Duality among systems of order 4

System Dual

1 20

2 17

3 16

4 18

5 6

7 14

8 15

9 19

10 12

11 11

13 13

The closer look at the list of dual systems in Table 2.2 is instructive. An
example of the reasoning which leads to the identification of a system’s dual
is as follows. Note that system 4 in Table 2.1 has minimal cut sets equal to
{1}, {2, 3}, {2, 4} and {3, 4}. Now consider the system that has these four
sets as its minimal path sets, that is, the dual of system 4. Recognizing that
each minimal cut set of this dual system must render all its minimal path
sets inoperable, we may identify the sets {1, 2, 3}, {1, 2, 4} and {1, 3, 4} as the
minimal cut sets of the dual system. These cut sets satisfy conditions (iii) and
(iv) above, and, in fact, correspond to the minimal cut sets of system 18 in
Table 2.1. Thus, systems 4 and 18 are duals of each other. A further insight
one can glean from Table 2.2 is the fact that a system can be its own dual;
among systems of order 4, systems 11 and 13 in Table 2.2 have this property.

Carrying out the process exemplified above to identify the dual of system
11 in Table 2.1 brings out an interesting idiosyncrasy of any attempt to clas-
sifying coherent systems by their minimal path or cut sets (an idiosyncrasy
which carries over to their classification by their structure functions). The
system with minimal path sets {1, 2}, {2, 4} and {3, 4} (which were the cut
sets of system 11) has minimal cut sets {1, 4}, {2, 3} and {2, 4}. The reader
might find it disturbing that this collection of cut sets is not among the list
of all possible collections of cut sets in Table 2.1 for systems of order 4. The
reason for their apparent absence is the way that the components are labeled.
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In the latter collection, if we were to relabel component 3 as component 1 and
component 1 as component 3, we see that the resulting sets would be precisely
the cut sets listed for system 11 in Table 2.1. Thus, system 11 is its own dual.
A more important insight gained from this little exercise is that the labeling
of components matters, so that two seemingly different systems might in fact
be the same after its components are relabeled. On the other hand, while the
minimal cut sets of systems 6 and 11 in Table 2.1 have a similar appearance,
they are qualitatively different (since, for example, all three minimal cut sets
of system 6 have component 1 in common), so that no relabeling can con-
vert them into the minimal cut sets of system 11. The fact that relabeling of
components can disguise a coherent system, making it look like a potentially
different system, is a special difficulty that renders path sets, cut sets and
structure functions (which share this property) quite imperfect as indexes for
the class of coherent systems. The signature of a coherent system introduced
in the next chapter does not suffer from this imperfection.

As has been noted earlier, the direct computation of the structure func-
tion for an arbitrary coherent system can be algebraically cumbersome. For-
tunately, there is a simple connection between the structure function of a
coherent system and its minimal path sets and minimal cut sets. In order for
a system to work, it must be the case that all the components of at least one
minimal path set are working. Similarly, the system will work if and only if
at least one of the components in every minimal cut set is working. These
observations provide the following tools for the computation of the structure
function of a coherent system. Let the minimal path sets of the system be
P1, . . . , Pr, and for each such set, define path structure function pj(x) as

pj(x) =
∏

i∈Pj

xi . (2.8)

Now pj(x) = 1 precisely when every component in Pj is working. It follows
that the structure function of the system may be represented as

ϕ(x) = 1 −
r∏

j=1

(1 − pj(x)) . (2.9)

Equation (2.9) can also be written in the following equivalent and revealing
form:

ϕ(x) = max
{1≤j≤r}

pj(x) = max
{1≤j≤r}

min
{i∈Pj}

{xi} (2.10)

Inspection of equations (2.9) or (2.10) confirms that the structure function is
1 if and only if there is at least one minimal path set for which all components
are working. As an example of the approach above, let’s revisit the calculation
of the structure function for the bridge system in Figure 2.2. As we have noted,
the minimal path sets for this system are {1, 4}, {2, 5}, {1, 3, 5} and {2, 3, 4}.
From (2.9), we thus obtain
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ϕ(x) = 1 − (1 − x1x4)(1 − x2x5)(1 − x1x3x5)(1 − x2x3x4) . (2.11)

Noting that the constants cancel out of this expression and using the idem-
potency of the x variables (that is, x2

i = xi), one can quite readily reduce the
expression in (2.11) to that in (2.5).

Similar considerations apply to the development of the structure function
using the properties of minimal cut sets. In this case, we denote the minimal
cut sets of the system of interest to be C1, . . . , Ck, and we define cut structure
functions as

cj(x) = 1 −
∏

i∈Cj

(1 − xi) . (2.12)

Now cj(x) = 1 precisely when the minimal cut set Cj contains at least one
working component. Since the system works if and only if every minimal cut
set contains at least one working component, it follows that the system’s
structure function has the alternative representation

ϕ(x) =
k∏

j=1

cj(x) . (2.13)

Equation (2.13) can be written in the following equivalent form:

ϕ(x) = min
{1≤j≤k}

cj(x) = min
{1≤j≤k}

max
{i∈Cj}

{xi} (2.14)

The discussion above, and in particular, the representations of the struc-
ture function in (2.9) and (2.13) make it apparent that a coherent system may
be thought of as a parallel system in which each element is a series system in
the components of a minimal path set. Similarly, the system can be thought
of as a series system in which each element is a parallel system in the compo-
nents of a minimal cut set.

Given two systems with structure functions ϕ1 and ϕ2 respectively, it is
clear that the second system performs better than the first if ϕ1(x) ≤ ϕ2(x) for
all x ∈ {0, 1}n, since this inequality implies that the first system will always
fail when the second system does. Two useful results concerning coherent
systems are easily established by comparing appropriate structure functions.
The first is that no system can perform better than the parallel system nor
worse than the series system. This follows from the self-evident inequalities

n∏

i=1

xi ≤ ϕ(x) ≤ 1 −
n∏

i=1

(1 − xi) . (2.15)

The second result is both more interesting and more useful. It concerns the
effect of redundancy in system designs. If one has an n-component system and
had the opportunity to enhance its performance by incorporating redundancy
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through the addition of n more components, one might reasonably ask which of
two options would be preferable: (1) backing up every component, essentially
replacing every component in the original design by a parallel system in two
components, or (2) backing up the entire system by an identical system of
order n (placed in parallel with the original system). The following theorem
establishes that option (1) is better, documenting the well known engineering
principle that componentwise redundancy is always better than systemwise
redundancy.

Theorem 2.1. Let ϕ be the structure function of a coherent system of order
n. Then for any x and y ∈ {0, 1}n,

ϕ(1−(1−x1)(1−y1), . . . , 1−(1−xn)(1−yn)) ≥ 1−(1−ϕ(x))(1−ϕ(y)) (2.16)

Proof. The structure function of the left-hand side of (2.16) is obtained by
adopting the view that the system with componentwise redundancy can be
considered to have the same structure as the original system, but with each
component replaced by a parallel subsystem in two components. The ith sub-
system works when [1−(1−xi)(1−yi)] = 1 and fails when [1−(1−xi)(1−yi)] =
0. Since the inequalities 1− (1− xi)(1− yi) ≥ xi and 1− (1− xi)(1− yi) ≥ yi

hold for all i, it follows from the mononicity of ϕ that

ϕ(1 − (1 − x1)(1 − y1), . . . , 1 − (1 − xn)(1 − yn)) ≥ ϕ(x)

and
ϕ(1 − (1 − x1)(1 − y1), . . . , 1 − (1 − xn)(1 − yn)) ≥ ϕ(y) .

The latter inequality implies that

ϕ(1 − (1 − x1)(1 − y1), . . . , 1 − (1 − xn)(1 − yn)) ≥ max{ϕ(x), ϕ(y)},

an inequality that is equivalent to (2.16). �

2.2 The Reliability of a Coherent System

Consider a coherent system in n independent components. If we fix a time t
at which the system is examined, we may treat the ith component as working
with probability pi, that is, we may let pi = P (Xi = 1), where Xi is a Bernoulli
variable representing the random state of the ith component at time t. We
will define the reliability of a system at time t as the probability that it is
working at that time. This probability will be denoted by h(p) and can be
computed from the structure function as

h(p) = P (ϕ(X) = 1) = Eϕ(X) . (2.17)

The function h(p) is multilinear, that is, it is linear in every pi. For the bridge
system pictured in Figure 2.2, the system reliability is given by
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h(p) = E(ϕ(x))
= E(X1X4 + X2X5 + X1X3X5 + X2X3X4 − X1X2X3X4 − X1X2X3X5

− X1X3X4X5 − X1X2X4X5 − X2X3X4X5 + 2X1X2X3X4X5)
= p1p4 + p2p5 + p1p3p5 + p2p3p4 − p1p2p3p4 − p1p2p3p5

− p1p3p4p5 − p1p2p4p5 − p2p3p4p5 + 2p1p2p3p4p5 .

When components are identically distributed, we have pi ≡ p, and the reli-
ability function h simplifies. For the bridge system in i.i.d. components, the
reliability function can be written in terms of this common p, and reduces to

h(p) = 2p2 + 2p3 − 5p4 + 2p5 . (2.18)

In the i.i.d. case, we refer to h as the reliability polynomial . For the n-
component series, parallel and k-out-of-n systems, the respective reliability
polynomials are given by

h1(p) = pn, h2(p) = 1 − (1 − p)n and h3(p) =
k−1∑

i=0

(
n

i

)
(1 − p)ipn−i .

(2.19)
For complex systems, computing the system’s reliability can be cumbersome,
even under the i.i.d. assumption. A useful tool for making this computation
(and as we shall see, for bounding h(p) above and below by partial sums) is
the so-called inclusion-exclusion formula. It is simply the general formula for
calculating the union of a collection of (possibly overlapping) events. For two
events, it is usually called “the addition rule.” The general formula is given
below. For a proof, see Feller [35].

Theorem 2.2. Let A1, A2, . . . , An be n events, that is, subsets of the sample
space of a random experiment. Then the probability that at least one of the
events occurs is given by

P (∪n
i=1Ai) =

n∑

i=1

P (Ai) −
∑

i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)

− · · · ± P (∩n
i=1Ai) . (2.20)

If we denote the ith summation of the inclusion-exclusion formula by Si,
we may write

P (∪n
i=1Ai) =

n∑

i=1

(−1)i+1Si . (2.21)

Further, partial sums of the formula in (2.21) can be shown to provide in-
creasingly precise upper and lower bounds for the probability of interest. For
instance,

P (∪n
i=1Ai) ≤ S1, P (∪n

i=1Ai) ≥ S1−S2, P (∪n
i=1Ai) ≤ S1−S2+S3, etc.
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Let’s apply this tool in (2.20) to compute the reliability function for the
coherent system of order 4 with minimal path sets {1}, {2, 3}, {2, 4}, {3, 4},
that is, for system 4 in Table 2.1. Note that the inclusion-exclusion formula
is precisely tailored for this calculation since a coherent system will function
if and only if all the components in at least one of its minimal path sets are
working. Let A1, A2, A3 and A4 be the events that all the components in each
of the four minimal path sets above are working. Then the reliability function
h(p) of the system is equal to P

(
∪4

i=1Ai

)
. For simplicity, let’s assume that

each component has the same probability p of working. Then

h(p) = S1 − S2 + S3 − S4

= (p + 3p2) − (6p3) + (3p4 + p3) − (p4)
= p + 3p2 − 5p3 + 2p4 . (2.22)

More generally, consider a system in n i.i.d. components, and let p be the
common probability that any given component is working at a fixed point in
time. We will say that the reliability polynomial is in “standard form” when
it is written as

h(p) =
n∑

i=1

dip
i . (2.23)

The polynomial in (2.22) is in standard form. The other form we will be
interested in is the so-called “pq form,” where h is written as

h(p) =
n∑

i=1

cip
iqn−i . (2.24)

In Chapters 6 and 8, we discuss when and why one might prefer one form over
the other.
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System Signatures

The basic notion of a coherent system has been defined and illustrated in the
preceding chapter, and various properties and tools have been established to
assist in the study of such systems. Structure functions are admittedly quite
revealing. They are in one-to-one correspondence with the coherent systems
themselves and provide a way of indexing systems and also of comparing them.
Also, they are unambiguous summaries of a system’s design, and are more
useful summaries than schematic diagrams or flow charts, which often look
different but may correspond to one and the same system. We must, however,
acknowledge that the artillery we have discussed thus far has some limitations.
Since the number of coherent systems of order n grows exponentially with n,
the indexing of systems through their structure functions tends to be of lim-
ited use in problems involving comparisons or optimization among systems.
Structure functions are complex algebraic expressions that, in general, admit
to multiple equivalent representations. For example, the expressions in (2.5)
and (2.11) look quite different but are, in fact, equivalent forms of the struc-
ture function of the bridge system in Figure 2.2. In this chapter, we introduce
an alternative index which, although less general than a structure function,
has the virtues of being both quite manageable and easily interpreted. Most
importantly, for systems of order n, this index is of fixed dimension; in fact, it
resides in a bounded simplex in n-dimensional Euclidean space. We call this
index the system’s signature. Its precise meaning is specified below.

Definition 3.1. Let τ represent a coherent system of order n. Assume that
the lifetimes of the system’s n components are independent and identically
distributed (i.i.d.) according to the (continuous) distribution F . The signature
of the system τ , denoted by sτ , or simply by s when the corresponding system
is clear from the context, is an n-dimensional probability vector whose ith
element si is equal to the probability that the ith component failure causes the
system to fail. In brief, si = P (T = Xi:n), where T is the failure time of the
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system and Xi:n is the ith order statistic of the n component failure times,
that is, the time of the ith component failure.

Before illustrating the concept of system signatures, it seems advisable to
scrutinize the definition above. In particular, it seems reasonable to question
the wisdom of the i.i.d. assumption on component lifetimes. The notion of sig-
nature, as a certain probability vector, is well defined without this assumption,
but the assumption is nonetheless made, and is made for good reason. Signa-
tures will be used primarily in the comparison of system designs. It should be
noted that a comparison between two systems with quite different component
characteristics may well be either misleading or inconclusive. It is clear, for
example, that a series system with four highly reliable components will out-
perform a four-component parallel system with relatively poor components. If
the probability that the components of the series system last beyond a fixed
mission time is 0.9, its reliability at that mission time is 0.6561, while that of
a parallel system having four components with reliability 0.1 is 0.3439. It is
clear, however, that parallel systems are preferable, in a general sense, to se-
ries systems. Indeed, the former’s structure function uniformly dominates the
latter’s. Once the i.i.d. assumption is made, any remaining differences in sys-
tem performance must be attributable to the system’s design. In that sense,
the assumption levels the playing field so that one has a basis for comparing
the designs themselves. From an analytical point of view, signatures, as de-
fined above in the i.i.d. setting, provide three major advantages. They allow
one to utilize the tools of combinatorial mathematics for the calculation of
system characteristics. Also, the well-known distribution theory for the order
statistics of an i.i.d. sample from a continuous distribution F is available for
studying the performance of a system with a given signature. Finally, signa-
tures depend only on the permutation distribution of the n observed failure
times and do not depend on the underlying distribution F . The signature
vector can therefore be viewed as a pure measure of a system’s design.

More can be said about the comparisons we will indulge in as we proceed.
We will, for example, be primarily interested in comparing systems of the same
order. While one could, in some instances, be interested in comparing systems
of different sizes, it is far more common to compare systems of the same size,
essentially investigating questions such as “Which of several possible configu-
rations of components would be preferable for certain specific purposes?” In
the words of the great Eastern philosopher Confucius, comparing apples to
oranges is a rather fruitless endeavor. A second issue that should be addressed
before proceeding is the possibility that results depending on signature vectors
as defined above might in fact be irrelevant in studying and comparing the
performance of real systems whose components are neither independent nor
identically distributed. In addressing this concern, it should be said that, in
any application of signature-related results in which the foundations of their
definition are in doubt, one should proceed with considerable caution. It is
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probably worth adding that signature-based results may be inexact in such
applications but are not necessarily irrelevant. Any mathematical result can
only give guidance in real applications, as the assumptions under which the re-
sult is developed can’t be checked with certainty in a given practical situation.
What signatures do is tell us something about the design of the associated
system. Knowing that one design is better than another (everything else be-
ing equal) is useful information as one diverges from the basic assumption
of i.i.d. component lifetimes. If, for example, the component lifetimes could
be considered independent and, while not identically distributed, nonetheless
roughly comparable, selecting the system with a better signature should lead
to better performance. Although an exact analysis would of course be desir-
able, characterizing system performance in non i.i.d. settings is a formidable
analytical task, quite unlike the i.i.d. setting to be studied here.

The computation of system signatures is, in essence, a combinatorial ex-
ercise. That doesn’t mean that it’s simple. It only means that there is a well-
organized body of knowledge and tools that can be applied to such problems.
To describe the counting problem of interest, let’s suppose that the random
variables X1,X2, . . . , Xn represent the failure times of the components of the
n-component system under study. Since the Xs are assumed to be i.i.d. from
some continuous distribution on (0,∞), the n! permutations of these n dis-
tinct failure times are equally likely. As noted above, the ith element of s can
be obtained as the probability si = P (T = Xi:n), where T is the failure time
of the system and Xi:n is the ith order statistic (that is, the ith smallest value)
among the i.i.d. failure times X1,X2, . . . , Xn. Equivalently, we may obtain si

as the ratio of ni, the number of orderings for which the ith component fail-
ure causes system failure, to n!, the total number of possible orderings of the
n failure times. The essential feature of the calculation of signatures is the
counting of the number of permutations of the n potential component failure
times that correspond with system failure upon the ith failure among the n
components. Since T resides in the set {X1:n,X2:n, . . . , Xn:n} with probability
one, it follows that the signature s is a probability vector, that is, si ≥ 0 for
all i and

∑n
i=1 si = 1.

We now turn to the computation of the signature vector for some simple
coherent systems. As an example of this computation, consider the three-
component system pictured in Figure 3.1 below. The failure times X1,X2 and
X3 of the three components of this system can be ordered in 3! = 6 ways, and
these six possible permutations are equally likely due to the i.i.d. assumption.
The “order-statistic equivalent” for the system failure time T is shown below
for each permutation of the component failure times.



24 3 System Signatures

Fig. 3.1. A 3-component system with structure function ϕ∗(x) = x1(x2+x3−x2x3)
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Table 3.1. The ordered component failure time which causes failure of system ϕ∗

above

Ordered Component Order Statistic Equal to
Failure Times System Failure Time T

X1 < X2 < X3 X1:3

X1 < X3 < X2 X1:3

X2 < X1 < X3 X2:3

X2 < X3 < X1 X2:3

X3 < X1 < X2 X2:3

X3 < X2 < X1 X2:3

It follows that the system above has signature vector s = (1/3, 2/3, 0). It
is easy to show that the five distinct coherent systems of order 3 have the sig-
natures (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 2/3, 0) and (0, 2/3, 1/3). The first three
of these signatures correspond to the i-out-of-3 systems for i = 1, 2, 3, and the
fifth corresponds to the system in which one component is in parallel with
a series system in the other two components. While the combinatorics in-
volved in calculating the signatures of systems of a given order can be fairly
complex, it is worth noting that, via the notion of “duality,” the amount of
calculation can be cut roughly in half, as the signature of a system’s “dual”
can be obtained from the system’s signature via symmetry arguments. Of the
five systems mentioned above, the first system is the dual of the third and
the fourth is the dual of the fifth. Table 3.2 provides the signatures of the 20
distinct coherent systems of order 4.
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Table 3.2. Coherent Systems of Order 4

System Minimal cut sets Signature

1 {1}, {2}, {3}, {4} (1, 0, 0, 0)

2 {1}, {2}, {3, 4} (1/2, 1/2, 0, 0)

3 {1}, {2, 3}, {2, 4} (1/4, 7/12, 1/6, 0)

4 {1}, {2, 3}, {2, 4}, {3, 4} (1/4, 3/4, 0, 0)

5 {1}, {2, 3, 4} (1/4, 1/4, 1/2, 0)

6 {1, 2}, {1, 3}, {1, 4} (0, 1/2, 1/4, 1/4)

7 {1, 2}, {1, 3}, {1,4}, {2, 3} (0, 2/3, 1/3, 0)

8 {1, 2}, {1, 3}, {1,4}, {2, 3}, {2, 4} (0, 5/6, 1/6, 0)

9 {1, 2}, {1, 3}, {1,4}, {2, 3}, {2, 4}, {3, 4} (0, 1, 0, 0)

10 {1, 2}, {1, 3}, {2, 4}, {3, 4} (0, 2/3, 1/3, 0)

11 {1, 2}, {2, 4}, {3, 4} (0, 1/2, 1/2, 0)

12 {1, 2}, {3, 4} (0, 1/3, 2/3, 0)

13 {1, 2}, {1, 3}, {1, 4}, {2, 3, 4} (0, 1/2, 1/2, 0)

14 {1, 2}, {1, 3}, {2, 3, 4} (0, 1/3, 2/3, 0)

15 {1, 2}, {1, 3, 4}, {2, 3, 4} (0, 1/6, 5/6, 0)

16 {1, 2}, {1, 3, 4} (0, 1/6, 7/12, 1/4)

17 {1, 2, 3}, {1, 2, 4} (0, 0, 1/2, 1/2)

18 {1, 2, 3}, {1, 2, 4}, {1, 3, 4} (0, 0, 3/4, 1/4)

19 {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} (0, 0, 1, 0)

20 {1, 2, 3, 4} (0, 0, 0, 1)

We now establish a fundamental property of a system’s signature s,
namely, that the distribution of the system lifetime T , given i.i.d. compo-
nents lifetimes with c.d.f. F , can be expressed as a function of s and F alone.
The following representation is drawn from Samaniego [61].

Theorem 3.1. Let X1, . . . , Xn be the i.i.d. component lifetimes of an n-
component coherent system with signature s, and let T be the system’s lifetime.
Then

FT (t) ≡ P (T > t) =
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(F (t))j (

F (t)
)n−j

. (3.1)

Proof. We first note that the system fails concurrently with the failure of
one of its components, so that T will necessarily take on the values of
one of the order statistics Xi:n of the sample X1, . . . , Xn, that is, T ∈
{X1:n,X2:n, . . . , Xn:n} with probability 1. Then, utilizing the Law of Total
Probability and the i.i.d. assumption on component lifetimes, we may write
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P (T > t) =
n∑

i=1

P (T > t, T = Xi:n)

=
n∑

i=1

P (T > t | T = Xi:n) P (T = Xi:n)

=
n∑

i=1

siP (Xi:n > t)

=
n∑

i=1

si

i−1∑

j=0

(
n

j

)
(F (t))j (

F (t)
)n−j

. �

By interchanging the order of the summations in (3.1), the representation
of the system survival function in (3.1) may be written in the alternative form

FT (t) =
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
(F (t))j (

F (t)
)n−j

. (3.2)

If one considers the chances that a system based on n i.i.d components is
working at a fixed point in time t0, then setting p = F (t0) and q = F (t0), we
derive the reliability polynomial h(p) in pq form from (3.2). Two equivalent
versions of h are

h(p) =
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
qjpn−j and h(p) =

n∑

j=1

⎛

⎝
n∑

i=n−j+1

si

⎞

⎠
(

n

j

)
pjqn−j .

(3.3)
The representation in (3.2) can also be written as a function involving the
odds G(t) = F (t)/F (t) of failure vs. survival. This form of the representation
of FT (t) in terms of signatures will prove to be quite useful in the sequel, and
is recorded below:

FT (t) =
(
F (t)

)n
n−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
(G(t))j

. (3.4)

A more detailed proof of Theorem 3.1 invoking Lemma 8.3.11 of Randles and
Wolfe [60] on the independence of the order statistics {Xi:n} and the ranks
of the original observations X1,X2, . . . , Xn is given in Kochar, Mukerjee and
Samaniego [51].

The proof of Theorem 3.1 contains an elementary fact that is of inde-
pendent interest and will also prove quite useful in the sequel. Note that the
survival function of the system lifetime T may be written in terms of the
survival functions of the order statistics of the component failure times, that
is,
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P (T > t) =
n∑

i=1

siP (Xi:n > t) . (3.5)

Utilizing the well-known identity for positive random variables Y , namely,

EY =
∫ ∞

0

F (y) dy , (3.6)

another useful connection between the system lifetime and the ordered failure
times follows:

ET =
n∑

i=1

siEXi:n . (3.7)

The representation in (3.1) can be applied to obtain useful representations
of a system’s density function and failure rate when F is absolutely contin-
uous. For example, the density function f(x) may be obtained from (3.1) as
follows.

Corollary 3.1. Let X1, . . . , Xn ∼ F be the i.i.d. component lifetimes of an n-
component coherent system with signature s, and let T be the system’s lifetime.
If F is absolutely continuous, then

fT (t) = −(∂/∂t)P (T > t) =
n∑

i=1

i si

(
n

i

)
(F (t))i−1 (

F (t)
)n−i

f(t) . (3.8)

Proof. Differentiating FT (t) in formula (3.1) yields an interior summation
with alternating signs in which all elements but the one shown in (3.8) cancel
out. �

It follows that the system failure rate rT (t), defined as the ratio

fT (t)
FT (t)

,

can be written in terms of the signature vector s and the underlying compo-
nent distribution F . The ratio of the density in (3.8) to the survival function
in (3.1) may be algebraically simplified to obtain a useful representation of
the system’s failure rate.

Corollary 3.2. Consider an n-component coherent system with signature s,
and assume that the component lifetimes X1, . . . , Xn are i.i.d. with distribu-
tion F and density f . Let T be the system lifetime. Then

rT (t) =
∑n

i=1 i si

(
n
i

)
(F (t))i−1 (

F (t)
)n−i+1

∑n
i=1 si

∑i−1
j=0

(
n
j

)
(F (t))j (

F (t)
)n−j

r(t) , (3.9)

where r(t) =
(
f(t)/F (t)

)
, the common failure rate of the components.
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An equivalent and occasionally more useful version of (3.9) is the following:

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(F (t))i (

F (t)
)n−i

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
(F (t))i (

F (t)
)n−i

r(t) , (3.10)

or, in terms of the odds function G(t) = F (t)/F (t),

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
(G(t))i

r(t) . (3.11)

We will be interested in the comparison of two systems with i.i.d. compo-
nents. As is clear from equation (3.1), the lifetime of a coherent system with
i.i.d. components depends on the structure of the system only through the
signature s. Indeed, if two systems in i.i.d. components have the same signa-
ture, the stochastic behavior of their lifetimes is identical. It is natural to ask
if two different coherent systems can have the same signature. The answer is
yes; one can see from Table 3.2 that the four-component systems labeled as
systems 11 and 13 have the same signature. The twenty coherent systems of
order four give rise to precisely 17 distinct signatures.

While the class of all coherent systems of a given size (or even the overall
collection of coherent systems of arbitrary order) is arguably the collection
of systems on which one would wish to concentrate in a particular applica-
tion, the class does have some limitations which will lead us to broaden our
perspective. I mentioned earlier that the number of coherent systems of order
n is not precisely known for general n and is quite large, even for moderate
size n. For any fixed n, the space of coherent systems of order n is, obviously,
discrete. As we shall see in the sequel, this has some negative consequences,
both mathematically and practically. The mathematical difficulty is that in
problems in which an optimal coherent system is sought, one typically must
focus on finding approximately optimal systems via some appropriate discrete
search algorithm. In other words, problems aimed at finding optimal coher-
ent systems tend to be analytically intractable. The practical problem with
coherent systems is less apparent at this point, but will become quite clear
in certain specific problems taken up in Chapter 7. Briefly, the fact is that
it is possible to expand the class of coherent systems to a larger collection
and that the solution to certain optimality problems lies outside of the subset
of coherent systems. We will see that, in certain problems, one can actually
do better, in a sense that will be made specific, by using a “system” that is
not coherent. The expansion pursued below is based on the familiar notion
of “randomization.” Indeed, what will be advocated here, in selected circum-
stances, is the process of selecting a coherent system at random. This process
leads to the concept of a mixed system, to which I now turn. Mixed systems
were first treated in Boland and Samaniego [20].
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Let us suppose that we have an (essentially) unlimited supply of com-
ponents whose lifetimes are i.i.d. with common distribution F . Consider the
collection of all coherent systems of order n. We could, in principle, have a
warehouse in which all such systems are in stock, and we could conceive of the
possibility of making available, upon demand, any particular coherent system
with n i.i.d. components. While this collection may be quite large, it is finite.
Limiting ourselves to this collection may have negative consequences, as al-
luded to above. Let us consider, instead, the process of selecting a coherent
system at random according to a fixed and known probability distribution p.
Let’s suppose that the probability vector p is m-dimensional and gives posi-
tive weight to m distinct coherent systems of order n with signature vectors
s1, s2, . . . , sm (each assumed to have components whose lifetimes are i.i.d with
distribution F ). Then it is clear that

P (system fails upon the ith component failure)

=
m∑

k=1

P (kth syst. chosen)P (ith comp. failure kills syst. | kth syst. chosen)

=
m∑

k=1

pkski . (3.12)

It follows that the signature s∗ associated with the process of selecting among
these m systems according to the probability distribution p is the vector equal
to the mixture of the signature vectors s1, s2, . . . , sm, that is, s∗ =

∑m
k=1 pksk.

To what extent does the consideration of stochastic mixtures of coherent
systems (hereafter referred to as “mixed systems”) broaden the class of coher-
ent systems? The broadening is, in fact, quite substantial. The signature of a
k-out-of-n system is the n-dimensional unit vector sk:n = (0, . . . , 0, 1, 0, . . . , 0),
with 1 as the vector’s kth element. It is thus clear that any probability vector
p in the simplex {

p ∈ [0, 1]n :
n∑

i=1

pi = 1

}
(3.13)

is the signature of a mixed system, namely, the system which mixes the k-
out-of-n systems with mixing distribution p. This simple observation follows
from (3.12) since the n-dimensional probability vector p can be written as

p =
n∑

k=1

pksk:n . (3.14)

Expanding the space of coherent systems of order n to the space of all
mixed systems of order n has a number of mathematical benefits. It makes
the index of the systems under consideration continuous, taking values in the
simplex in (3.13). Thus, instead of being restricted to discrete search methods
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and approximate solutions to optimization problems of interest, such prob-
lems will be amenable to analytical treatment using the tools of differential
calculus. As mentioned earlier, the solutions to certain optimization problems
turn out to be mixed rather than coherent systems; in such problems, the po-
tential exists for improving over the “score” of any coherent system by using
a particular mixed system. One further comment about the utility of mixed
systems should be made: the representation results in (3.1) - (3.11), as well
as all signature-related results to be presented in the sequel, apply equally
to coherent or mixed systems. Indeed, since mixed systems include coherent
systems as special cases, that is, as degenerate mixtures placing all their mass
on a single coherent system, it suffices to say that all signature-related results
in this monograph apply to the entire class of mixed systems.

But a critical question remains to be answered. Do mixed systems corre-
spond to a physical reality that can be utilized in practice? If not, the potential
mathematical advantages alluded to above are merely window-dressing. I will
therefore briefly indulge in some apologetics for the concept of mixtures of
coherent systems. To a decision theorist, or to a statistician working in the
field of survey sampling or experimental design, the notion of randomization
is both natural and essential. In the first instance, it is clear from the the-
ory of games that the best strategies often involve randomization, and the
decision theorist’s goal is to select the “best” decision rule available, a goal
that, in certain situations, leads to some form of randomization. In the latter
fields, randomization is seen as a tool that protects the statistician from both
known and unknown biases. Sir Ronald Fisher, the brilliant pioneer in the
field of experimental design (and in mathematical statistics generally) was an
early and strong advocate of randomization in designed experiments. What
we have advocated above is nothing more than randomization within the class
of coherent systems. The fact that a mixed system can be physically realized
by a simple randomization process is the key observation in recognizing the
concept’s practical utility.

To utilize a mixed system, one simply selects a coherent system at random
according to a particular mixing distribution, and one then uses the coher-
ent system so chosen. The signature of the mixed system is interpreted as an
expectation or long-run average over many applications of the mixed system.
The signature’s first element, for example, will be the limiting probability that
the first component failure causes the system to fail. This interpretation sug-
gests that the natural domain of application of mixed systems is a scenario in
which such a system will be used many times. Thus, its failure history will, in
the long run, be well represented by the mixed system’s signature. Recalling
(3.14), we note that, in the i.i.d. setting, any system, coherent or mixed, will
have the same long run performance as a mixture of k-out-of-n systems. The
mixing distribution would simply be the signature vector of the desired sys-
tem. An important and useful implication of these considerations is that any
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coherent or mixed system of order n will have the same expected performance
as a specific mixture of k-out-of-n systems. The “warehouse” mentioned on
page 29 could therefore provide a client with a mixture of k-out-of-n systems
whose performance matched the client’s requirements, that is, had the desired
signature.

I mentioned above that a non-degenerate mixture of coherent systems is
not itself coherent. This may not be self evident, especially in view of the
fact that each application of a mixed system amounts to picking a particular
coherent system at random. Of course, successive applications of the mixed
system will typically result in the use of different coherent systems from one
application to the next. The latter fact notwithstanding, every application of
a mixed system selects a coherent system with probability one. Since every co-
herent system is monotone, every mixed system also enjoys the monotonicity
property. Fixing a non-working component cannot adversely affect the perfor-
mance of a mixed system. So what is incoherent about a mixed system? The
incoherence comes from the following technicality: only the components of the
coherent system selected for use are relevant. The state of the components of
all other (unused) coherent systems to which the mixed system gives weight
makes no difference to the success or failure of the system actually chosen.
One could argue that in the course of repeated applications, all these other
coherent systems will come into play. But relevance is defined in terms of a
single application of the system and, according to that definition, a mixed
system will have irrelevant components. This technicality proves to be of mi-
nor importance, since when one focuses on relevance over repeated trials, the
issue vanishes entirely.

One final comment about the utility of mixtures should be made. The
intended domain for use of mixed systems is in applications in which a large
number of systems will be purchased and used. As will be seen in Chapter
7, the best available system, when both performance and cost are taken into
consideration, may well be a non-degenerate mixture of coherent systems. In
some settings, the exclusive use of a particular coherent system might be justi-
fied by convenience considerations or by its being “almost optimal” relative to
the criterion used to rank systems. The fact remains that one may be able to
achieve better results by randomizing among two or more coherent systems.
In using the optimal “mixed system,” one must recognize that the system
used in a given instance will be suboptimal, but that mixing these systems
according to the prescribed recipe produces an optimal result when averaged
over the many times in which the mixed system is applied.

In the next two chapters, we will consider a variety of problems in which
our primary interest will be in comparing one coherent (or mixed) system
with another. The most natural comparison one can make is between two
systems of the same size. The preservation theorems of Section 4.2 and the
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characterization results in section 4.4 deal precisely with that type of com-
parison. But there are also occasions in which one is interested in comparing
two systems in i.i.d. components whose orders n and m do not happen to
match (say, with n < m). Our approach to such a problem is to attempt to
“convert” the smaller system into an equivalent system of order m, (that is,
a system in m i.i.d. components with exactly the same lifetime distribution
as the smaller system). If this were possible, we would be in a position to use
the results of Sections 4.2 and 4.4 on comparing two systems of the same size.
It is not obvious, at first view, that the equivalence mentioned can in fact
be realized. The fact that it can is a consequence of the following theorem.
Assuming i.i.d. component lifetimes, this result ensures that for any system
of size n (a positive integer assumed to be smaller than the integer m), there
exists a system of size m with the same lifetime distribution. To get from the
smaller system to the larger one requires m − n consecutive applications of
the result below.

Theorem 3.2. Let s = (s1, s2, . . . , sn) be the signature of a coherent or mixed
system based on n i.i.d. components with common lifetime distribution F .
Then the coherent or mixed system with (n+1)-components with i.i.d. lifetimes
∼ F and corresponding to the signature vector

s∗ =
(

n

n + 1
s1,

1
n + 1

s1 +
n − 1
n + 1

s2,
2

n + 1
s2 +

n − 2
n + 1

s3, . . . ,

n − 1
n + 1

sn−1 +
1

n + 1
sn,

n

n + 1
sn

)
(3.15)

has the same lifetime distribution as the n-component system with signature
s.

Proof. Assume that all components in the following discussion have i.i.d. life-
times with common distribution F . We wish to show that, for a given n-
component mixed system with signature s, there is an (n + 1)-component
system (namely, the system with signature s∗) with the same lifetime dis-
tribution, thereby being stochastically equivalent to the original system. It
suffices to prove (3.15) when the original system is an arbitrary k-out-of-n
system, that is, when s is the unit vector

sk:n = (0, . . . , 0, 1, 0, . . . , 0) , (3.16)

where only the kth element is different from zero. We will show that this
n-dimensional signature is equivalent to the (n + 1)-dimensional signature

s∗ =
n − k + 1

n + 1
sk:n+1 +

k

n + 1
sk+1:n+1

=
(

0, . . . , 0,
n − k + 1

n + 1
,

k

n + 1
, 0, . . . , 0

)
, (3.17)
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where the two non-zero elements of s∗ are in the kth and (k + 1)st positions.
To see that this implies the claimed equivalence in the theorem, assume that,
for any k, the signature in (3.16) is equivalent to the signature in (3.17). Then,
since an arbitrary n-dimensional signature s may be written as a mixture of
the signatures of k-out-of-n systems, that is, as

s =
n∑

i=1

sisi:n , (3.18)

one may use the equivalence of (3.16) and (3.17) to convert s into the vector
in (3.15).

A direct proof of the equivalence of the signatures in (3.16) and (3.17) could
proceed by determining the validity of equating the corresponding survival
functions in (3.1). We will examine such an equation at a fixed time point t
and denote by p and q, respectively, the probability of the success or failure
of any given component at time t; thus, we will let q = F (t) and p = F (t). As
we will see, the equation of interest holds for all values of p and thus for all
choices of t. Writing the reliability polynomial as on the left-hand side of (3.3)
for the signature vectors in (3.16) and (3.17), and setting these expressions
equal to each other, yields

k−1∑

j=0

(
n

j

)
qjpn−j =

n − k + 1
n + 1

k−1∑

j=0

(
n + 1

j

)
qjpn+1−j

+
k

n + 1

k∑

j=0

(
n + 1

j

)
qjpn+1−j . (3.19)

One could then replace each “q” in equation (3.19) by “1 − p,” write both
sides of the equation as polynomials in p, and then verify that the coefficients
of pk on either side of (3.19) are equal for k = 0, 1, . . . , n + 1. This approach
to the desired identity is clearly a cumbersome algebraic exercise. We shall,
instead, demonstrate that the equality in (3.19) is valid by working with an
alternative representation of the equation.

Suppose that X is a binomial random variable and that Y is a Bernoulli
variable, with X ∼ B(n, q) and Y ∼ B(1, q), and assume that X and Y are
independent. (Note that q = F (t) is being used as the probability of “success”
in the Bernoulli trials associated with these variables.) We can then identify
equation (3.19) as the following equation involving X and Y :

P (X < k) =
n − k + 1

n + 1
P (X + Y < k) +

k

n + 1
P (X + Y < k + 1) . (3.20)

It is evident that equation (3.20) can be rewritten as
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P (X < k) = P (X + Y < k) +
k

n + 1
P (X + Y = k) . (3.21)

Upon dividing both sides of (3.21) by P (X < k), we note that

P (X + Y < k)
P (X < k)

is equal to the conditional probability P (X + Y < k | X < k). We thus see
that (3.21) holds if and only if

P (X + Y ≥ k | X < k) =
k

n + 1
P (X + Y = k)

P (X < k)
. (3.22)

We will now demonstrate that (3.22) holds. We do so by displaying a sequence
of equivalent statements, the last of which is transparently true. We begin by
exploiting the fact that Y is a Bernoulli variable and is independent of X;
this allows us to rewrite (3.22) as

q
P (X = k − 1)

P (X < k)
=

k

n + 1
qP (X = k − 1) + pP (X = k)

P (X < k)
(3.23)

⇐⇒ q

(
n

k − 1

)
qk−1pn−k+1

=
k

n + 1

(
q

(
n

k − 1

)
qk−1pn−k+1 + p

(
n

k

)
qkpn−k

)
(3.24)

⇐⇒
(

n

k − 1

)
qkpn−k+1 =

k

n + 1

((
n

k − 1

)
+

(
n

k

))
qkpn−k+1 (3.25)

⇐⇒
(

n

k − 1

)
=

k

n + 1

(
n + 1

k

)
. (3.26)

We thus see that equation (3.19) is equivalent to the trivial relationship be-
tween binomial coefficients displayed in (3.26). Since (3.19) is equivalent to
the fact that the systems with the signatures s and s∗ in the statement of the
theorem have identical distributions, the proof is complete. �

The form of the signature s∗ in (3.15) makes it evident that, when s is
symmetric, the equivalent signature s∗ will inherit this property. This result
is recorded as

Corollary 3.3. Let s = (s1, s2, . . . , sn) be the signature of a mixed system
based on n i.i.d. components with common lifetime distribution F , and let s∗

be the signature in (3.15) of the equivalent system with (n + 1)-components
based on i.i.d. lifetimes ∼ F . If s is symmetric, that is, if si = sn−i+1 for all
i, then s∗ is symmetric as well. Furthermore, if (3.15) is applied repeatedly to
a signature vector s1 of length n to obtain an equivalent signature s2 of length
m > n, then the symmetry of s1 implies the symmetry of s2.
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The concept of the duality of two systems was defined formally in Chapter
2. Since taking advantage of duality relationships reduces the calculation of
the signatures of all coherent systems of a given size approximately in half, it
is useful to record the relationship between the signature of a system and its
dual. This is done in the following theorem. For a proof, see Kochar, Mukerjee
and Samaniego [51].

Theorem 3.3. Let s be the signature of a coherent system ϕ whose n compo-
nents have i.i.d. lifetimes, and let sD be the signature of its dual system ϕD.
Then

si = sD
n−i+1 for i = 1, 2, . . . , n . (3.27)

We note that Theorem 3.3 holds as well for the broader class of mixed systems
of order n.

We close this chapter with a useful notion and a related expression to
which we will return in Chapter 5. In (3.5), we displayed an explicit repre-
sentation of the survival function of a system in terms of its signature vector
and the survival functions of the order statistics corresponding to the n i.i.d.
component failure times. A similar representation may be developed for the
probability P (T1 ≤ T2), where T1 and T2 are the lifetimes of mixed systems
of orders n and m based on two independent i.i.d. samples of sizes n and m
from underlying distributions F1 and F2, respectively. The representation of
interest is drawn from Hollander and Samaniego [43], whose proof differs from
the one below in that it utilizes integral representations of probabilities of the
form P (X ≤ Y ). Here, we provide a simpler, direct proof.

Theorem 3.4. Let T1 and T2 represent the lifetimes of mixed systems of
orders n and m with respective signatures s1 and s2. Assume that the n
components of system 1 have i.i.d. lifetimes governed by the continuous
distribution F1, and let {X1:n,X2:n, . . . , Xn:n} be the corresponding ordered
component lifetimes. Similarly, assume that the m components of system
2 have i.i.d. lifetimes governed by the continuous distribution F2, and let
{Y1:m, Y2:m, . . . , Ym:m} be the corresponding ordered component lifetimes. Fi-
nally, assume the two samples are independent. Then

P (T1 ≤ T2) =
n∑

i=1

m∑

j=1

s1is2jP (Xi:n ≤ Yj:m) (3.28)

Proof. Using the Law of Total Probability and the i.i.d. assumption on com-
ponent lifetimes, we may obtain the desired result by writing
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P (T1 ≤ T2)

=
n∑

i=1

m∑

j=1

P (T1 = Xi:n)P (T2 = Yj:m)P (T1 ≤ T2 | T1 = Xi:n, T2 = Yj:m)

=
n∑

i=1

m∑

j=1

s1is2jP (Xi:n ≤ Yj:m). �



4

Signature-Based Closure, Preservation and
Characterization Theorems

4.1 An Application to the IFR Closure Problem

In Chapter 3, we referred to the failure rate function of a component or sys-
tem and mentioned its standard definition. The function merits some further
discussion. We will begin this section by reviewing the concept and its rele-
vance in reliability studies. The existence of a “failure rate” requires that the
distribution function F of the random variable of interest be absolutely con-
tinuous, that is, that F be differentiable. Suppose T is a random variable with
distribution function F and density function f , and as usual, let F = 1 − F .
Then the failure rate of T is defined as the ratio r(t) = f(t)/F (t). Here, as in
typical applications of the concept, we will assume that T ≥ 0 with probabil-
ity 1. This, of course, is an intuitive and necessary assumption when dealing
with the lifetime or time until failure of an engineered system. Because of the
approximation

f(t)∆t / F (t) ≈ P (t < T ≤ t + ∆t) / P (T > t) , (4.1)

the function r(t) is generally thought of as the instantaneous rate of failure
of the system at time t given that it has survived until time t. The function
thus tracks a system’s vulnerability to failure as the system ages.

Among parametric lifetime distributions, the exponential distribution with
density function

f(t) = λe−λt, t > 0 (4.2)

is ubiquitous for a number of reasons. For example, it is the unique continu-
ous probability model with the “memoryless property”: if T is exponentially
distributed, then P (T > x + t | T > t) = P (T > x). In words, this equation
implies that, if an item with an exponentially distributed lifetime has survived
until time t, then it is as good as new, i.e., the distribution of its remaining
(or residual) lifetime has the same exponential distribution as when the item
was new. A further defining property of exponential variables is their constant
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failure rate – as long as the item is working, the chances of proximate failure
is always the same. This follows from the fact that a variable T with density
in (4.2) has survival function

F (t) =
∫ ∞

t

λe−λxdx = e−λt, t > 0 (4.3)

so that its failure rate is given by

r(t) = f(t)/F (t) = λ for all t > 0 . (4.4)

In view of the memoryless property of the exponential distribution, its
constant failure rate is not unexpected; in fact, either property can be derived
from the other. While the latter property has a certain aesthetic appeal, it is
the very property that limits the applicability of the model. Most real systems
have failure rates that change over time. For many real systems, the failure
rate that one might expect would have a bathtub shape – initially decreasing,
as the item grows stronger in early life, but eventually increasing as the sys-
tem begins to deteriorate and has an increasing propensity for failure. While
families of distributions with bathtub-shaped failure rates have received some
attention in the literature, their general lack of tractability has been an im-
pediment to their use. Perhaps the most widely studied models for failure
time data are those with a monotone failure rate. Models for components or
systems which deteriorate with age are of special interest in practical appli-
cations. It is often reasonable to suppose that an engineered system begins
a slow but steady process of deterioration from its very inception. There are
many parametric models which have such a property, including gamma and
Weibull models with their “shape” parameters greater than 1. The entire class
of distributions with this property has the special appeal of including many
different shapes and parametric forms yet being, in total, a non-parametric
class which makes no specific assumption about the form of the distribution
or the density function. This class is formally defined below.

Definition 4.1. Let X be a positive random variable with distribution F , den-
sity f and failure rate r. Then X is said to have an increasing1 failure rate
if r(t) is increasing in t. The collection of all distributions with an increasing
failure rate is referred to as the IFR class.

The definition above notwithstanding, the IFR property can be defined
solely in terms of the distribution function F and does not require its absolute
continuity (i.e., the existence of the density function f). The idea that a system
is deteriorating with age can be captured by the condition that the conditional
probability P (X > t+x | X > t) is decreasing in t, that is, that the probability

1 Here, and in general in this monograph, the term “increasing” (“decreasing”) is
taken to mean “nondecreasing” (“nonincreasing”).
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of surviving x additional units of time is a decreasing function of age. This
condition may be written as

F (t + x)
F (t)

is decreasing for t > 0 . (4.5)

Another well known equivalent formulation of the IFR property involves the
so-called hazard function R, which is defined as

R(t) = − ln F (t) . (4.6)

A distribution has the IFR property if the corresponding hazard function R is
a convex function of t. When F is absolutely continuous, all three definitions
can be easily shown to be equivalent. For example, if F has density f , the
hazard function R(t) is convex if and only if ∂/∂tR(t) is increasing in t, but
of course

∂

∂t
R(t) = − ∂

∂t
ln F (t) =

f(t)
F (t)

= r(t) , (4.7)

implying that the convexity of R is equivalent to Definition 4.1. The relation-
ship between R and F is often expressed as

F (t) = e−R(t) , (4.8)

and the relationship between R and r is often expressed as

R(t) =
∫ t

0

r(x)dx . (4.9)

Because of the latter representation, R is sometimes called the “cumulative
hazard” or the “cumulative failure rate.” The nomenclature varies among
those who study and/or use these ideas. The phrase “hazard rate” is often
used in referring to the function r.

In addition to being a reasonable way to model the behavior of systems
that tend to deteriorate with time, the IFR class has a number of interesting
properties. It is known, for example, that an IFR distribution is absolutely
continuous on the set {t | F (t) < 1}. In other words, if an IFR distribution
F has a jump point, it can occur only at the supremum of its support set
(0, z] and F (z) = 1. This includes the possibility that z = ∞, in which case
F is absolutely continuous on the whole real line. The IFR class is known to
be closed under convolutions (that is, if X and Y are independent IFR vari-
ables, then X +Y is also IFR) but it is not closed under mixtures. Indeed, the
mixture of two different exponential distributions, both boundary members of
the IFR class, has a decreasing failure rate. Another form of closure that is of
great interest in reliability is closure under the formation of coherent systems.
Specifically, it is of interest to know whether or not a coherent system in n
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independent components will have a given property when each component
has that property. It is known that the IFR class does not enjoy such closure.
For example, one can show that a parallel system in two components with
independent exponentially distributed (and thus IFR) lifetimes will be IFR
if and only if the two lifetime distributions are identical. In all other circum-
stances, the failure rate of the system will be initially strictly increasing but
eventually strictly decreasing. This finding motivated Birnbaum, Esary and
Marshall [8] to search for a nonparametric class of distributions containing
the IFR class that was in fact closed under the formation of coherent systems.
The outcome of their search was the important discovery of the IFRA (in-
creasing failure rate average) class, that is, the class of distributions for which
R(t)/t is increasing in t. The IFRA class was shown to be the smallest class of
distributions which contains the exponential distributions and is closed under
the formation of coherent systems and taking limits in distribution. However,
with additional restrictions, certain IFR closure properties do hold for coher-
ent systems in IFR components. Following Samaniego [61], we discuss below
what can be said when component lifetimes are i.i.d. from an IFR distribution.

In the i.i.d. case, the representations given in (3.9) - (3.11) for a system’s
failure rate in terms of the system’s signature and the common component
lifetime distribution F and failure rate r, are valid for any absolutely contin-
uous distribution F . As mentioned above, an IFR distribution is absolutely
continuous in the interior of its support set. Thus, the representation in (3.11)
applies for all t < inf{z | F (z) = 1}. For an n-component mixed system based
on components with i.i.d. lifetimes ∼ F , the system failure rate can be written
as

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
(G(t))i

r(t) , (4.10)

where G(t) = F (t)/F (t) represents the odds of failure versus survival. Since
G(t) is an increasing function of t, it is apparent from (4.10) that, if the
component lifetimes of a mixed system are i.i.d. from an IFR distribution F ,
then the system is IFR whenever the rational function h, given by

h(x) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
xi

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
xi

, (4.11)

is an increasing function of x. This fact may be utilized to provide an elemen-
tary proof of the following result.

Theorem 4.1. Consider a k-out-of-n system τk:n. If the component lifetimes
of τk:n are i.i.d. according to an IFR distribution F , then the distribution of
the system lifetime is IFR.
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Proof. A proof of this result using properties of convex ordering may be found
in Barlow and Proschan [6]. A simple, direct proof using the signatures of the
systems involved proceeds as follows. The signature vector of the system τk:n

is the n-dimensional probability vector (0, . . . , 0, 1, 0, . . . , 0), with a “1” as its
kth element. Thus, the function h in (4.11) takes the particularly simple form

h0(x) =
(n − k + 1)

(
n

k−1

)
xk−1

∑k−1
i=0

(
n
i

)
xi

. (4.12)

The derivative of the function h0 above is easily shown to be positive for
all x > 0. The fact that h0 is increasing on (0,∞) implies that the lifetime
distribution of τk:n is IFR. �

While the result above has been in the reliability literature for some time,
the more general problem of characterizing the class of all systems that enjoy
this type of closure is not easy to investigate using traditional methods. The
fact that a broader class of systems in i.i.d. components are IFR when their
components are, and also the fact that such closure does not hold for all co-
herent systems, are demonstrated in the following two examples.

Example 4.1. Let us first consider the bridge system pictured in Figure 2.2
of Chapter 2. By elementary combinatorial calculations, the signature of this
system may be shown to be s = (0, 1/5, 3/5, 1/5, 0). Using this s and n = 5 in
(4.11), one obtains that the function h reduces to the following in this case:

h1(x) =
4x3 + 18x2 + 4x

2x3 + 8x2 + 5x + 1
. (4.13)

The derivative of h1 above is positive for all x > 0, implying that the lifetime of
the bridge structure will be IFR when its components have i.i.d. IFR lifetimes.

Let’s now examine next the 3-component system pictured below.

Fig. 4.1. A parallel-series system in three components
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3

��

��
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Example 4.2. Let τ be the 3-component system pictured in Figure 4.1 above.
Its signature is easily calculated to be (0, 2/3, 1/3). We will assume here that
the three components have lifetimes that are i.i.d. according to a particular
IFR distribution, namely, the exponential distribution with common failure
rate λ. From (4.10), we have that the failure rate of the system’s lifetime T
can be written as

rT (t) = λ
G2(t) + 4G(t)

G2(t) + 3G(t) + 1
, (4.14)

where G(t) = eλt − 1. The corresponding function h of (4.11) is in this case

h2(x) =
x2 + 4x

x2 + 3x + 1
. (4.15)

Since the component failure rate is the constant λ, and the function h2 is
increasing in the interval (0, 1+

√
5) and decreasing for x > 1+

√
5, it follows

that the system τ does not have an increasing failure rate.

The next result, proven by Samaniego [61] for coherent systems, charac-
terizes the class of systems which are IFR when their components have i.i.d.
IFR lifetimes. The characterization is based on the behavior of the function
h of (4.11) and thus implicitly on the system signatures for which h has the
requisite behavior.

Theorem 4.2. Consider a mixed system of order n based on components hav-
ing lifetimes that are i.i.d. IFR. The system’s lifetime is IFR if and only if
the rational function h(x) in (4.11) is increasing for x > 0.

Proof. As has been noted, the fact that the system lifetime is IFR when the
function h is increasing is directly implied by the failure rate representation
in (4.10). Now, suppose that the function h in (4.11) is not increasing over the
entire positive real line. The continuity of h, as a ratio of polynomials with
non-negative coefficients, ensures that there is an interval (a, b) ⊂ (0,∞) in
which h is decreasing. If the n components of the system have lifetimes that
are i.i.d. according to an exponential distribution with mean 1, the failure rate
of the system’s lifetime T may be written as

rT (t) = h(et − 1) . (4.16)

From this, we conclude that rT (t) is decreasing in the interval

(ln(1 + a), ln(1 + b)) ,

confirming that the distribution of T is not in the IFR class. �

As the preceding theorem indicates, the rational function h in (4.11) cap-
tures the precise information concerning the signature of a system that is
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required to characterize the class of systems in i.i.d. components that have
IFR lifetime distribution when the components do. While checking that h is
increasing may seem to be an imposing problem when the system involved is
complex, it is worth noting that it is equivalent to the problem of verifying
that a polynomial of degree no greater than 2n−3 is non-negative on the pos-
itive real line. This is a problem which can be attacked numerically without
great difficulty.

4.2 Preservation Theorems Based on Signature
Properties

In this section, we consider the problem of comparing the performance of
two mixed systems. Three different scenarios will be treated, each identifying
conditions which yield increasingly stronger conclusions about the superiority
of one system over another. Our treatment focuses on three common formu-
lations of the notion that a random variable X1 is smaller than a random
variable X2 in some stochastic sense. The versions of such orderings to be
utilized below are defined as follows. These definitions apply equally when
the random pairs (X1,X2) involved are discrete or continuous.

Definition 4.2. The random variables X1 and X2 are stochastically ordered
(denoted by X1 ≤st X2) if and only if their respective survival functions are
suitably ordered, that is, if and only if F 1(x) ≤ F 2(x) for all x.

Definition 4.3. The random variable X1 is smaller than the random variable
X2 in the hazard rate (or uniform stochastic) ordering if and only if the ratio
of survival functions F 2(x)/F 1(x) is increasing in x. This ordering will be
denoted by X1 ≤hr X2.

Definition 4.4. The random variable X1 is smaller than the random variable
X2 in the likelihood ratio ordering (denoted by X1 ≤lr X2) if and only if
the ratio f2(x)/f1(x) is increasing in x, where fi represents the density or
probability mass function of Xi.

For all three orderings above, we will use the statements “X1 ≤ X2”
and “F1 ≤ F2” interchangeably. Stochastic ordering occurs when one sur-
vival function dominates another uniformly; in the boundary case in which
F 1(x) ≡ F 2(x), each distribution can be said to be “stochastically larger”
than the other, and the latter condition can in fact be taken as a definition
of equality of the two distributions. For discrete distributions (e.g., a pair of
signatures s1 and s2), the stochastic ordering condition F 1(x) ≤ F 2(x) for
all x reduces to

∑n
i=j s1i ≤

∑n
i=j s2i for j = 1, . . . , n. When the underlying

distributions are absolutely continuous, hazard rate ordering is equivalent to
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the ordering of the failure rates, with X1 ≤hr X2 if and only if r1(t) ≥ r2(t)
for all t. It is well known that likelihood ratio ordering is the most strin-
gent of these orderings; indeed, lr ⇒ hr ⇒ st. It is also well known that
X1 ≤st X2 ⇒ EX1 ≤ EX2.

Preservation theorems are of considerable interest in reliability theory. In
essence, such theorems indicate that a property of the basic elements of a
system of interest (e.g., its components or its design) will be inherited by the
system itself. Since properties of a complex system are generally more diffi-
cult to ascertain than properties of its basic elements, preservation theorems,
which are vehicles for identifying system properties by inspection of more
basic elements of the system, can be very useful. In section 4.1, we proved a
theorem involving the IFR property, giving conditions under which the system
lifetime has an IFR distribution when its components have IFR distributions.
Results which show that a system inherits properties held by its components
are generally referred to as “closure theorems.” Here, we will be interested in
whether ordering properties of the signature vectors of two systems are pre-
served by the lifetimes of the systems corresponding to these signatures. The
three preservation results presented below were proven for coherent systems
by Kochar, Mukerjee and Samaniego [51]. They are stated and proved here
for general mixed systems. The first result examines the consequences of the
stochastic ordering of two signatures.

Theorem 4.3. Let s1 and s2 be the signatures of the two mixed systems of or-
der n, both based on components with i.i.d. lifetimes with common distribution
F . Let T1 and T2 be their respective lifetimes. If s1 ≤st s2, then T1 ≤st T2.

Proof. From the representation in (3.2) of a system’s survival function, we
have that, for all non-negative t,

F 1(t) =
n−1∑

j=0

⎛

⎝
n∑

i=j+1

s1i

⎞

⎠
(

n

j

)
(F (t))j (

F (t)
)n−j

≤
n−1∑

j=0

⎛

⎝
n∑

i=j+1

s2i

⎞

⎠
(

n

j

)
(F (t))j (

F (t)
)n−j

= F 2(t) ,

the inequality above being directly implied by the assumption s1 ≤st s2. �

Note that the five coherent systems of order three are totally ordered in
the sense of the theorem above. The twenty coherent systems of order four
cannot be totally ordered in this way. For example, the signatures of systems
5 and 7 in Table 3.2 are not stochastically ordered, so that the comparison of
these systems’ lifetimes via Theorem 4.3 is not possible. However, of the 190
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possible pair-wise comparisons of coherent systems of order 4, the stochastic
ordering of system signatures obtains in 180 cases.

We next examine the implications of the hazard rate ordering of two sig-
natures. Following the line of argument in Kochar, Mukerjee and Samaniego
[51], we show below that such an ordering between the signatures of two mixed
systems implies the corresponding system lifetimes obey the hazard rate or-
dering. Establishing the desired result will require use of the following lemma
proven in Joag-dev, Kochar and Proschan [46].

Lemma 4.1. Let α(·) and β(·) be real valued functions such that β(·) is non-
negative and α(·)/β(·) and β(·) are nondecreasing. If X1 ≤hr X2, where
X1 ∼ H1 and X2 ∼ H2, then

∫∞
−∞ α(x) dH1(x)

∫∞
−∞ β(x) dH1(x)

≤
∫∞
−∞ α(x) dH2(x)

∫∞
−∞ β(x) dH2(x)

(4.17)

Theorem 4.4. Let s1 and s2 be the signatures of the two mixed systems of or-
der n, both based on components with i.i.d. lifetimes with common distribution
F . Let T1 and T2 be their respective lifetimes. If s1 ≤hr s2, then T1 ≤hr T2.

Proof. Recall from (3.5) that, for j = 1 and 2, the survival function F j of Tj

may be written as

F j(t) =
n∑

i=1

sjiP (Xi:n > t) .

We assume that s1 ≤hr s2. We will prove that T1 ≤hr T2 by showing that
F 2(t) / F 1(t) is increasing in t. This is equivalent to showing that

F 2(x)
F 1(x)

≤ F 2(y)
F 1(y)

for any x ≤ y , (4.18)

an inequality that may be rewritten as
∑n

i=1 s1iP (Xi:n > y)∑n
i=1 s1iP (Xi:n > x)

≤
∑n

i=1 s2iP (Xi:n > y)∑n
i=1 s2iP (Xi:n > x)

for all x < y . (4.19)

But (4.19) can be shown to follow directly from (4.17) in Lemma 4.1 by
taking α and β to be the discrete functions α(i) = P (Xi:n > y) and β(i) =
P (Xi:n > x) and by taking H1 and H2 to be the discrete distributions s1 and
s2, respectively. We need only to verify that the chosen functions α and β
satisfy the hypotheses of Lemma 4.1. The required monotonicity of β follows
from the fact that successive order statistics are stochastically ordered. The
inequality

α(i)
β(i)

≤ α(i + 1)
β(i + 1)
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can be rewritten as

P (Xi+1:n > x)
P (Xi:n > x)

≤ P (Xi+1:n > y)
P (Xi:n > y)

for all x < y ,

an inequality that is equivalent to Xi:n ≤hr Xi+1:n, a well known property
of independently drawn order statistics (see, for example, Boland, El-Newehi
and Proschan [18]). �

The following result establishes that likelihood ratio ordering between sys-
tem signatures will imply the same ordering between system lifetimes.

Theorem 4.5. Let s1 and s2 be the signatures of the two mixed systems of or-
der n, both based on components with i.i.d. lifetimes with common distribution
F . Let T1 and T2 be their respective lifetimes. If s1 ≤lr s2, then T1 ≤lr T2.

Proof. This result is proven in Kochar, Mukerjee and Samaniego [51] using the
variation diminishing properties of totally positive functions of order 2. Here,
we will present an elementary proof. Let f1 and f2 be the density functions of
T1 and T2 respectively. We must show that the ratio f2(t) / f1(t) is increasing
in t. Using the density representation in (3.8) and dividing the numerator and
denominator of this ratio by f(t)

(
F (t)

)n−1
, we may write

f2(t)
f1(t)

=
∑n

i=1 i s2i

(
n
i

)
(G(t))i−1

∑n
i=1 i s1i

(
n
i

)
(G(t))i−1

, (4.20)

where G(t) = F (t) / F (t). A necessary and sufficient condition for the ratio in
(4.20) to be increasing on (0,∞) is that, for any real number c, the difference
f2(t)− cf1(t) changes signs at most once, with this change, if it occurs, being
from negative to positive, as t goes from 0 to ∞. (Clearly, this condition is
satisfied if the ratio in (4.20) is increasing, while if the difference crosses 0
more than once, it would necessarily be decreasing in some interval.) Letting
x = G(t), we wish to study the crossing properties of the function

t(x) = f2

(
G−1(x)

)
− cf1

(
G−1(x)

)
(4.21)

=
n∑

i=1

i

(
n

i

)
(s2,i − cs1,i)xi−1 (4.22)

which, of course, is simply a polynomial of degree at most n − 1. From our
assumption that s1 ≤lr s2, we have that the ratios s2,i / s1,i are increasing
as i goes from 1 to n. This implies that, for any real number c, the sequence
{s2,i − cs1,i} has at most one change of sign, from negative to positive, as i
goes from 1 to n. We may thus surmise that the coefficients of the polynomial
in (4.22) have at most one sign change. Now, Descartes’ “Rule of Signs” states
that the number of positive roots of a polynomial of arbitrary degree is no
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greater than the number of sign changes in its sequence of coefficients. We
conclude that, for any real number c, the polynomial in (4.22) will cross zero
at most once as x goes from 0 to ∞. The fact that the coefficients in (4.22)
can only change signs from negative to positive implies that t(x) itself, if
it undergoes a sign change, will change from negative to positive. Together,
these facts justify the conclusion that the ratio f2(t) / f1(t) is increasing for
t ∈ [0,∞), that is, that T1 ≤lr T2. �

The results above are by no means an exhaustive list of the ways in which
the results on signatures in Chapter 3 can be used to infer properties of sys-
tems from information available about system designs or the properties of a
system’s components. The preservation theorems above represent one natural
question one could ask: when all components have i.i.d. lifetimes, does one
system perform better than another when its design (that is, its signature) is
better in some specific sense? The results above show that this tends to be the
case. Another natural question to explore is: how do changes in the underly-
ing distribution of the components affect the performance of a given system?
This latter question deals with a single system signature but with two sets of
independent components, each set having its own lifetime distribution. The
following result provides an answer to this question in one particular setting
and serves as an example of how the properties of signatures may be used in
examining questions of this type.

Theorem 4.6. Consider a mixed system of order n based on components with
i.i.d. lifetimes. Let T1 be the lifetime of the system if its components have life-
time distribution F1, and let T2 be the lifetime of the system if its components
have lifetime distribution F2. If F1 ≤st F2, then T1 ≤st T2.

Proof. Let X1,X2, . . . , Xn be i.i.d. lifetimes with distribution F1, and let
Y1, Y2, . . . , Yn be i.i.d. lifetimes with distribution F2. From (3.5), we have
that, for i = 1 or 2, the survival function of Ti may be written as

P (T1 > t) =
n∑

i=1

siP (Xi:n > t) (4.23)

and

P (T2 > t) =
n∑

i=1

siP (Yi:n > t) (4.24)

respectively. Let X and Y be independent binomial variables, with X ∼
B

(
n, F 1(t)

)
and Y ∼ B

(
n, F 2(t)

)
. We may write P (Xi:n > t) = P (X > n−i)

and P (Yi:n > t) = P (Y > n − i). Thus, the fact that F 2(t) ≥ F 1(t) for all
t > 0 implies that

P (Yi:n > t) = P (Y > n − i) ≥ P (X > n − i) = P (Xi:n > t) for all t . (4.25)
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Using (4.25), we may conclude from (4.23) and (4.24) that P (T2 > t) ≥
P (T1 > t) for all t, which is the desired conclusion. �

Up to this point, the comparative results discussed in this section have
been restricted to two systems of the same size. It has been shown that the
ordering properties of the system signatures imply similar orderings between
the corresponding system lifetimes. Now let us suppose that we are interested
in comparing two systems that are not of the same order. Recall that in section
4.3, we showed that for any system of a given order, there exists an equivalent
system of any fixed larger size. Indeed, for n < m, Theorem 3.2 provides an
explicit representation which can be used m − n times in succession to iden-
tify the signature of the m-component system that is equivalent to that of any
fixed n-component system. The following example illustrates the use of such
a result in comparing systems of different orders.

Example 4.3. Assume components with i.i.d. lifetimes (∼ F ) for all systems
under discussion here. Let us consider a 2-component mixed system (based on
i.i.d. components) with signature vector (1/2, 1/2), a system that can be real-
ized as a 50-50 mixture of the series and parallel systems in two components.
A design engineer might legitimately ask whether a particular 4-component
coherent system to which he or she has access performs better or worse than
the 2-component system above. Using Theorem 3.2, we find that the 3- and
4-component systems with signature vectors (1/3, 1/3, 1/3) and (1/4, 1/4,
1/4, 1/4), respectively, are stochastically equivalent to the original system.
Now, using results from Theorems 4.1-4.3, one can compare the four dimen-
sional signature vectors directly and reach the appropriate conclusion. From
Table 3.2, we see that there are precisely five 4-component coherent systems
whose lifetimes are stochastically larger than the 2-component system above
(namely, systems 6, 16, 17, 18 and 20), and also precisely 5 with stochasti-
cally smaller lifetimes (namely, 1, 2, 3, 4 and 5). The lifetimes of each of the
remaining 10 coherent systems of order 4 have survival functions that cross
that of the 2-component system, so that neither is uniformly superior to the
other. Using this knowledge, the engineer can make a well-informed decision
about the choice alluded to above. In section 4.4, we will take a closer look
at the relative behavior of pairs of systems that are non-comparable via the
stochastic ordering of lifetimes. This further discussion of system comparisons
might well be relevant to the engineering decision alluded to above, as a sys-
tem that is better than another up to the system’s intended mission time
would be preferable, whether or not it has uniformly superior reliability at
any arbitrary time t.

4.3 An Application to Redundancy Comparisons

In Chapter 2, we presented a brief discussion of the engineering principle that
redundancy at the system level (that is, backing up a system with a second,
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identical system) is less effective than redundancy at the component level (that
is, backing up every component with an identical component). This principle
can be rigorously established by comparing the structure functions ϕ1 and ϕ2

of the two augmented systems. The fact that ϕ1 ≤ ϕ2 was established in The-
orem 2.1. When the components of both systems have lifetimes that are i.i.d.
according to the common distribution F , it follows from this theorem that the
two system signatures are stochastically ordered, that is, s1 ≤st s2. This of
course implies, by Theorem 4.3, that the system’s lifetimes T1 and T2 are sim-
ilarly ordered. Boland and El-Newehi [17] showed that stronger inequalities
failed to hold for systemwise and componentwise redundancy in general but
conjectured that they might hold for the class of k-out-of-n systems in i.i.d.
components. Boland and El-Newehi’s conjecture that T1 ≤lr T2 holds for such
systems was established by Singh and Singh [68] using a technical lemma which
developed some new, complex inequalties. Kochar, Mukerjee and Samaniego
[51] provided an alternative proof based on signatures. Specifically, Theorem
4.5 will imply the desired ordering of the two system lifetimes. The results in
the latter paper were proven for systems which survive as long as they have k
working components. The results are rederived below for k-out-of-n systems
as defined in this monograph, namely for systems which fail upon the kth
component failure. First, the signatures of k-out-of-n systems with system-
wise and componentwise redundancy are derived. I will take a different and
perhaps more natural approach to these derivations, using arguments based
on “combinations” rather than on “permutations” as utilized in the referenced
paper. This renders the proofs more direct and more intuitive. The redundant
systems based on a 2-out-of-3 system are pictured in Figures 4.2 and 4.3 below.

Fig. 4.2. Systemwise redundancy for a 2-out-of-3 system
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Fig. 4.3. Componentwise redundancy for a 2-out-of-3 system
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Theorem 4.7. The signature s of a k-out-of-n system in i.i.d. components
with systemwise redundancy has the elements

s2k+r =

(
n−1
k−1

)(
n

k+r

)
(

2n−1
2k+r−1

) for r = 0, . . . , n − k (4.26)

with si = 0 for 1 ≤ i < 2k and for n + k < i ≤ 2n.

Proof. We first establish the fact that the elements of s are equal to zero for
both sufficiently small and sufficiently large i, as stated in the theorem. Let
i represent the number of failed components. If i < 2k, it is not possible for
both the original k-out-of-n system and its backup system to have k failed
components, and thus one of the two must be working, which implies that the
overall system is working. If i > n + k, then both the original and the backup
systems have at least k + 1 failed components (the two extreme cases being
that all components in one of these systems have failed and k +1 components
of the other system have failed, and vice versa). It follows that the overall
system necessarily failed upon the prior failure of a component. Thus, si = 0
if either i < 2k or i > n + k.

To assist us in making the combinatorial argument leading to (4.26), let
us think of the component lifetimes of the original system as the Xs and the
component lifetimes of the backup system as the Y s. Let r ∈ {0, . . . , n − k}.
To obtain the likelihood of the system failing upon the (2k + r)th component
failure, we will condition on the fact that a particular X or a particular Y is the
time at which the (2k+r)th component fails. Since the conditional probability
obtained turns out to be the same for any component lifetime X or Y , it is
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also the unconditional probability that the system fails upon the (2k + r)th
component failure, that is, it is the probability in (4.26). Suppose that a
particular component lifetime Xi corresponds to the (2k + r)th component
failure. For the system to fail upon this component failure, one would need to
have exactly k−1 other failures in the original system (i.e., X failures) before
the failure time Xi. This can happen in

(
n−1
k−1

)
ways. There would also need

to be precisely k + r backup component failures (i.e., Y failures) preceding
the failure time Xi. This can happen in

(
n

k+r

)
ways. The product of these two

numbers is the total number of ways in which components could fail prior to
the failure time Xi, the (2k + r)th component failure time and the time at
which the system fails. On the other hand, the total number of ways in which
2k+r−1 components could fail prior to Xi is

(
2n−1

2k+r−1

)
, a number which serves

as the denominator of the desired probability. It follows that the probability
of system failure at time Xi is simply the ratio

(
n−1
k−1

)(
n

k+r

)
/
(

2n−1
2k+r−1

)
. Since

this probability is independent of Xi, and in fact, is the same for any X or Y
which kills the system and occurs as the (2k + r)th component failure time, it
is equal to the unconditional probability of system failure upon the (2k + r)th
component failure. �

Theorem 4.8. The signature s of a k-out-of-n system in i.i.d. components
with componentwise redundancy has the elements

s2k+r =

(
n−1
k−1

)(
n−k

r

)
(

2n−1
2k+r−1

) × 2r for r = 0, . . . , n − k (4.27)

with si = 0 for 1 ≤ i < 2k and for n + k < i ≤ 2n.

Proof. We will find it helpful to view the system of interest here as being
composed of n modules, each being a parallel system containing two com-
ponents – the original component j and its identical backup j′. Let us first
deal with the elements of the signature of the system that are claimed to be
equal to zero. Let i represent the number of failed components. If i < 2k, it
is clearly impossible for each of the 2k components in a given collection of k
modules to have failed, which means that every collection of k modules has at
least one working component. This ensures that there is an operative path set
and thus that the system is working. We conclude that si = 0 when i < 2k.
Now suppose that i > n + k. In this case, there are, for some j in the set
{0, 1, . . . , n − k − 1}, n − j failed original components and at least k + j + 1
failed backup components. Since only j original components are working, at
least (k + j + 1) − j = k + 1 failed backup components served as backups
for failed original components. This implies that there exists more than one
collection of k modules in which all 2k components have failed. From this, we
surmise that the system would have failed upon a prior component failure. It
follows that si = 0 when i > n + k.
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As in the proof of the preceding theorem, let us think of the component
lifetimes of the original system as the Xs and those of the backup components
as the Y s. Let r ∈ {0, . . . , n − k}. To obtain the likelihood of the system
failing upon the (2k + r)th component failure, we will condition on the fact
that the failure time X of a particular original component or Y of a particular
backup component causes the system to fail upon the (2k + r)th component
failure. Since the conditional probability obtained turns out to be the same
for any X or Y component, it is also the unconditional probability, that is, it
is the probability we seek. Suppose that a particular component lifetime Xi

corresponds to the (2k + r)th component failure. For the system to fail upon
this component failure, one would need to have exactly k − 1 failed modules
preceding time Xi. This can happen in

(
n−1
k−1

)
ways. We may think of this

as the occurrence of k − 1 “doubletons,” that is, failed pairs of original and
backup components, among the failures preceding time Xi. The remaining
failures must be “singletons,” since the occurrence of a kth doubleton in the
course of the first 2k + r− 1 failures would cause the system to fail before Xi.
One of these singletons must be the failure time Yi, for otherwise, the failure
time Xi will not correspond to the failure time of the system. The remaining r
singletons must be chosen from the n−k modules yet unaccounted for. These
singletons can be chosen in

(
n−k

r

)
× 2r ways, the factor 2r accounting for

that fact that each of these singletons can be either an X or a Y component.
The failed components preceding the failure time Xi will total 2k + r − 1 as
required, (2k− 2) from the failed modules, 1 from the failed singleton at time
Yi and r from the additional singletons. The product of the two counts above
is precisely the total number of ways in which components could fail prior to
the time Xi, the failure time of the (2k + r)th component and the time at
which the system fails. On the other hand, the total number of ways in which
2k+r−1 components could fail prior to time Xi as the (2k+r)th component
failure is

(
2n−1

2k+r−1

)
. It follows that the probability of system failure at time

Xi is simply the ratio
(
n−1
k−1

)(
n−k

r

)
× 2r /

(
2n−1

2k+r−1

)
. Since this probability is

independent of Xi, and is in fact the same for any X or Y which kills the
system and occurs as the (2k + r)th component failure time, it is equal to the
unconditional probability of system failure upon the (2k + r)th component
failure. �

We are now in a position to establish a strong form of domination of com-
ponentwise redundancy over systemwise redundancy.

Theorem 4.9. Let T1 be the lifetime of a k-out-of-n system with i.i.d. com-
ponents under systemwise redundancy and let T2 be the lifetime of the corre-
sponding system under componentwise redundancy. Then T1 ≤lr T2.

Proof. Let s1 and s2 be the signatures of the systems above. From Theorems
4.7 and 4.8, we have that, for r = 0, . . . , n − k, the likelihood ratio of the
elements of these signatures is
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V (r) ≡ s2,2k+r

s1,2k+r
=

(
n−k

r

)
× 2r

(
n

k+r

) =
(n − k)!(k + r)! × 2r

n!r!
(4.28)

We can verify that V (r) is increasing in r by noting that for r = 0, . . . , n−k−1,

V (r + 1)
V (r)

=
2(k + r + 1)

r + 1
> 1 . (4.29)

This establishes that s1 ≤lr s2 which, by Theorem 4.5, implies that T1 ≤lr T2,
as desired. �

4.4 Signature-Based Characterizations of Relative
System Performance

The various ordering conditions on signatures of Section 4.2 are sufficient to
imply corresponding orderings of the system lifetimes. They are not, however,
necessary. Block, Dugas and Samaniego [11] provide counterexamples for the
necessity of these conditions, and they also provide new necessary and suf-
ficient conditions (NASCs) which ensure ordering of two system lifetimes in
each of the three senses considered in Section 4.2. These results are the sub-
ject of the present section. The results below are based on arguments found in
Block, Dugas and Samaniego [10]. We first consider an NASC for the stochas-
tic ordering of system lifetimes.

Theorem 4.10. Let s1 and s2 be the signatures of two arbitrary mixed sys-
tems based on coherent systems in n i.i.d. component lifetimes, and let T1 and
T2 denote the system lifetimes. Then T1 ≤st T2 if and only if g(x) ≥ 0 for all
x ≥ 0, where g(x) is the polynomial given by

g(x) =
n−1∑

j=0

(
n

j

)⎛

⎝
n∑

i=j+1

(s2i − s1i)

⎞

⎠xj . (4.30)

Proof. Suppose that two mixed systems are based on components with life-
times that are i.i.d. according to F , and suppose that T1 ≤st T2. Writing this
condition as

F 1(t) ≤ F 2(t) for all t > 0 , (4.31)

where F 1 and F 2 are the respective survival functions for T1 and T2, we see
that, in light of (3.2), the stochastic inequality T1 ≤st T2 is equivalent to

n∑

i=1

s1i

i−1∑

j=0

(
n

j

)
(G(t))j ≤

n∑

i=1

s2i

i−1∑

j=0

(
n

j

)
(G(t))j

, for all t > 0 , (4.32)
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where G(t) = F (t) / F (t) and s1 and s2 are the respective system signatures.
The inequality (4.32) is algebraically equivalent to

n∑

i=1

(s2i − s1i)
i−1∑

j=0

(
n

j

)
(G(t))j ≥ 0 for all t > 0 , (4.33)

or, upon interchanging the order of summation, is equivalent to

n−1∑

j=0

(
n

j

)⎛

⎝
n∑

i=j+1

(s2i − s1i)

⎞

⎠ (G(t))j ≥ 0 for all t > 0 . (4.34)

Now, define the function g to be the polynomial of degree (n − 1) displayed
in (4.30). From the equivalence of the inequalities (4.31) - (4.34), and the fact
that G(t) is an increasing function of t mapping (0,∞) onto (0,∞), it follows
that the stochastic ordering in (4.31) holds if and only if g(x) ≥ 0 for all
x ≥ 0. �

Remark 4.1. First, it should be noted that, if two system signatures are
stochastically ordered, i.e. s1 ≤st s2, then (4.30) clearly holds, since g is then a
polynomial with nonnegative coefficients. Thus, Theorem 4.10 contains The-
orem 4.3 as a special case. It also extends the earlier result, since condition
(4.30) is not only sufficient but also necessary for the stochastic ordering of
T1 and T2 to hold. Just as it is possible for a polynomial p(x) having some
negative coefficients to be positive for all x > 0, it is clear that the restrictive
condition s1 ≤st s2 is not required for the polynomial in (4.30) to be positive
for all positive x. Secondly, it is worth noting that, although condition (4.30)
is a complex statement concerning the relationship between the two system
signatures involved, no essential simplification is possible, as the condition
is both necessary and sufficient. In practice, condition (4.30) can be checked
using standard numerical methods.

Let us now consider an NASC for the hazard-rate ordering between sys-
tem lifetimes. For simplicity, we will state and prove the following result under
the assumption that the underlying component distribution F is absolutely
continuous.

Theorem 4.11. Let s1 and s2 be the signatures of two arbitrary mixed sys-
tems based on coherent systems in n i.i.d. components and the same compo-
nent distribution F with density f and failure rate r, and let T1 and T2 be the
respective system lifetimes. Then T1 ≤hr T2 if and only if

h1(x) − h2(x) ≥ 0 for all x ≥ 0 , (4.35)

where hj represents the rational function of x given by
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h(x) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
xi

∑n−1
i=0

(∑n
j=i+1 sj

) (
n
i

)
xi

(4.36)

with s = sl for l = 1 or 2.

Proof. From (3.11), we may infer that the lifetimes T1 and T2 of two mixed
systems based on coherent systems in n i.i.d. components, both having the
same component distribution F with density f and failure rate r, satisfy
T1 ≤hr T2 if and only if for all t > 0,

∑n−1
i=0 (n − i)s2,i+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 s2,j

) (
n
i

)
(G(t))i

≤
∑n−1

i=0 (n − i)s1,i+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 s1,j

) (
n
i

)
(G(t))i

(4.37)

where G(t) = F (t) / F (t) and s1 and s2 are the respective system signatures.
Now let h be the rational function displayed in (4.36), where s is an arbi-
trary n-dimensional probability vector (or system signature in the setting of
interest here). It is clear that, upon making the transformation x = G(t) in
(4.37), the inequality reduces to (4.35), showing that the latter inequality is
necessary and sufficient for the ordering of the failure rates of two systems
under consideration. �

Remark 4.2. Note that the NASC in (4.35) for the hazard rate ordering of
the lifetimes T1 and T2 does not depend functionally on the density or failure
rate of the common component distribution F . It can be shown that the
condition is necessary and sufficient for T1 ≤hr T2 provided only that the
common component lifetime distribution is continuous. The proof of this fact
can be obtained by verifying that condition (4.35) is an NASC for the ratio of
survival functions, that is, F 2(t)/F 1(t), to be increasing in t. The fact that the
derivative of this ratio is non-negative for all t > 0 reduces to (4.35). Condition
(4.35) is, like (4.30), a complex but both necessary and sufficient condition on
two signature vectors for the hazard rate ordering of system lifetimes. While
not immediately transparent, it can be shown that s1 ≤hr s2 implies condition
(4.35). Although condition (4.35) is mathematically complex, we note that,
after cross multiplying in the inequality h1(x) ≥ h2(x), the condition reduces
to checking that a certain polynomial of degree 2n − 3 is nonnegative for all
x ≥ 0. In a given problem of interest, this can be determined using standard
numerical methods.

Finally, let us consider the case of likelihood ratio ordering between two
system lifetimes.

Theorem 4.12. Let s1 and s2 be the signatures of two arbitrary mixed sys-
tems based on coherent systems in n i.i.d. components with the same com-
ponent lifetime distribution F , and let T1 and T2 be the respective system



56 4 Signature-Based Closure, Preservation and Characterization Theorems

lifetimes. Then T1 ≤lr T2 if and only if the rational function m2(x) / m1(x)
is increasing for all x ≥ 0, where ml(x) is given by

ml(x) =
n−1∑

i=0

(n − i)sl,i+1

(
n

i

)
xi , (4.38)

for l = 1 or 2.

Proof. One may derive from (3.8) that T1 ≤lr T2 if and only if the rational
function ∑n−1

i=0 (n − i)s2,i+1

(
n
i

)
(G(t))i

∑n−1
i=0 (n − i)s1,i+1

(
n
i

)
(G(t))i

(4.39)

is increasing in t > 0. If we define the polynomials m1(x) and m2(x) as in
(4.38), it is clear from (4.39), upon setting G(t) = x, that the condition that
the ratio m2(x) / m1(x) increases for all x ≥ 0 is necessary and sufficient for
T1 ≤lr T2 to hold. �

Remark 4.3. The NASC in Theorem 4.12 is complex but, again, immutable, as
no nontrivial simplification is possible. Determining the intervals over which
the ratio m2(x) / m1(x) is increasing or decreasing is equivalent to finding
the roots of a polynomial of degree no greater than 2n − 3 and would, in a
given application, be addressed using numerical methods.

The tools utilized above, namely, the inspection of the behavior of the
functions g(x), h(x) and m(x) in Theorems 4.10 - 4.12, can lead to some ad-
ditional useful insights. We know that if the function g(x) in (4.30) is positive
for all x > 0, the survival functions corresponding to the two system survival
functions will not cross, thus implying their stochastic ordering. A closer look
at the proof of Theorem 4.10 reveals that the positive roots of the function g
coincide precisely with points at which the two survival functions cross. Thus,
the roots of g completely determine the crossing properties of the survival
functions F 1 and F 2. Similarly, the crossing points of two failure rates r1(t)
and r2(t) are completely determined and identified by the values at which the
functions h1(x) and h2(x) of Theorem 4.11 are equal. Thus, one can charac-
terize the crossing behavior of pairs of survival functions or failure rates in
terms of the behavior of the functions g and h of the respective signature
vectors. This permits the comparison of survival functions and failure rates in
real time (in contrast to the asymptotic comparisons featured in recent papers
such as Block and Joe [12] and Block, Li and Savits [13]).

Similar results can be obtained regarding intervals in which the likelihood
ratio f2(t) / f1(t) is increasing or decreasing, as these behaviors correspond to
intervals in which the function m2(x) / m1(x) of Theorem 4.12 is increasing
or decreasing. The three types of order relations studied above are illustrated
in the following three examples. These examples are based on two systems in
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i.i.d. components for which both the survival functions and the failure rates of
the systems cross exactly once and whose likelihood ratio changes mono-
tonicity exactly once. In each case, the changes can be identified to occur
at a specific quantile of the common component lifetime distribution F . In all
three examples, the two systems to be compared are the same, namely, the 3-
component systems having the signatures s1 = (1/2, 0, 1/2) and s2 = (0, 1, 0),
respectively. The first system is a mixed system which results from randomly
selecting a series or a parallel system, each with probability 1/2, while the
second is simply a 2-out-of-3 system.

Example 4.4. To execute a comparison of the survival functions of the two
systems above, we note that the polynomial g of (4.30) can be identified as

g(x) = −1.5x2 + 1.5x (4.40)

in this problem. The polynomial g has a unique positive root at x = 1. From
Theorem 3.1, it follows that the two survival functions will cross at the time
t0 for which G(t0) = 1, that is, at time t0 = F−1(1/2). This leads to the
conclusion that the 2-out-of-3 system is as good as or better than the mixed
system if and only if t ≤ t0. This would be a particularly important finding
if the mission time for the chosen system happens to be smaller that t0, as it
would then serve to identify a system that is uniformly superior to the other in
the time internal of interest. If the system’s mission time is substantially larger
than t0, then one might well prefer the mixed system since it has superior
performance when t > t0.

Example 4.5. To compare the failure rates of these same two systems, we
proceed by computing the relevant functions h1 and h2 in (4.36). For the
systems in question, we obtain

h1(x) =
3 + 3x2

2 + 3x + 3x2
and h2(x) =

6x

1 + 3x
. (4.41)

The inequality h1(x) ≥ h2(x) is equivalent to

3x3 + 5x2 + x − 1 ≥ 0 . (4.42)

For x > 0, the inequality in (4.42) holds if and only if x is sufficiently small, as
the coefficients of the cubic involved have only one sign change. By Descartes’
Rule of Signs, this cubic can have at most one positive root. Its unique root
occurs at x = 1/3. We thus conclude that the functions h1 and h2 in (4.41)
cross exactly once, as do the failure rates of the two systems involved. The two
failure rates will cross at the time t0 for which G(t0) = 1/3 or, equivalently,
at time t0 = F−1(1/4). It follows that the 2-out-of-3 system has a smaller
failure rate than the mixed system for 0 ≤ t < F−1(1/4) and has a larger
failure rate than the mixed system if t > F−1(1/4). This implies that, relative
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to the hazard rate ordering, the 2-out-of-3 system would be preferable to the
mixed system if the mission time T0 of the system satisfies the inequality
T0 ≤ F−1(1/4).

Our final example explores the behavior of the likelihood ratio for the two
systems above.

Example 4.6. From (4.38) we identify the polynomials m1 and m2 in this
problem as

m1(x) = 1.5x2 + 1.5 and m2(x) = 6x .

The derivative of the ratio m2(x) / m1(x) has its lone positive root at x = 1.
Since F (t) = 0.5 when x = 1, the relative likelihood of the 2-out-of-3 system
to the mixed system is increasing for times t less than the median component
lifetime and decreases thereafter.



5

Further Signature-Based Analysis of System
Lifetimes

5.1 An Application to Direct and Indirect Majority
Systems

A direct majority system of order n is an n-component system that works
if and only if a majority of its components are working. When n is odd,
a direct majority system is simply an (n + 1)/2-out-of-n system. When n is
even, randomization is generally employed in defining the system. Specifically,
if n = 2m for some positive integer m, then a direct majority system works
either if more than m components are working or if exactly m are working and
a Bernoulli random variable X ∼ B(1, 1/2) yields a success. (Examples of the
case where n is even tend to be sociological rather than engineering-related;
for instance, if four people go out to dinner and two favor one restaurant while
the other two favor another, the matter is likely to be settled by a coin toss.)
When n is odd (say, n = 2m + 1), the reliability polynomial of the direct
majority system τ(m + 1 | 2m + 1) in “pq form” is given by

hτ(m+1 | 2m+1)(p) =
2m+1∑

i=m+1

(
2m + 1

i

)
piq2m+1−i . (5.1)

When n = 2m, it is easy to show that the system’s reliability polynomial is
equal to that of a direct majority system in 2m − 1 components. Hence we
will, without loss of generality, restrict attention to the case where the number
of components n is odd.

The frequent occurrence of the phrase “the majority rules” in common
parlance suggests that direct majority systems have wide applicability. The
Marquis of Condorcet (1743-94) was an early proponent of the use of majority
systems in social and political situations. He advocated the use of juries that
make decisions on the basis of the will of the majority (see Boland [15] for
details). One form of the Condorcet Jury Theorem states that if n is an odd
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integer greater than or equal to 3 and p > 1/2, then hτ((n+1)/2 | n)(p) ≥ p and,
moreover, hτ((n+1)/2 | n)(p) increases to 1 as n → ∞. This result indicates that
if a jury operating on a “majority rules” basis consists of n individuals whose
disposition toward conviction p is the same and exceeds 1/2, then the jury is
more likely to convict the defendant than any individual member of the jury
making the decision alone. Condorcet’s theorem makes an assumption of ho-
mogeneity (that is, a common p) and independence of individuals – essentially
the i.i.d. assumptions we have made in our discussion of coherent and mixed
systems. It thus seems reasonable to expect that some additional insights can
be gained on majority systems through the application of system signatures
in this particular context. The subject matter is of some interest in the field
of engineering, since many safety systems are constructed using some form of
“majority logic” in their design.

Some engineering applications require a more intricate design than that of
a direct majority system. For any odd integers R and S, a system in R × S
components is said to be an indirect majority system if the components are
divided into R subsystems of size S and the system works if and only if a
majority of the subsystems work, with a subsystem working if and only if a
majority of its components are working. The definition of indirect majority
systems generalizes to subsystems of different sizes (the American presiden-
tial electoral system being a prime example), but this extension will not be
pursued here, as our present purpose is simply to demonstrate the applicabil-
ity of signatures to the general area. In this section, we will be interested in
comparing the performance of direct and indirect majority systems of a given
size n.

Let R and S be odd positive integers, and let τR×S denote an indirect
majority system of size n = R × S. Using the theory of total positivity,
Boland, Proschan and Tong [19] showed that for n = R×S, hτ((n+1)/2 | n)(p) ≥
hτ(R×S)(p) if and only if p ≥ 1/2. In words, this indicates that when compo-
nents are independent, homogeneous and reasonably reliable (i.e., p ≥ 1/2), a
direct majority system is more reliable than any indirect majority system of
the same size. While this result would seem to imply that a direct majority
system is preferable to an indirect majority system of the same size, we will
see below that, using the concept of signature, one can prove that the mean
life of an indirect majority system always exceeds that of the direct majority
system of the same size when the i.i.d. components have a distribution with
a decreasing failure rate (DFR). The result presented below is due to Boland
and Samaniego [20]. One ingredient in its proof is a certain symmetry property
of the signature vectors of indirect majority systems. Boland [16] showed that
the signature vector of the n = R × S indirect majority system is symmetric
(i.e., si = sn−i+1 for i = 1, . . . , n). Table 5.1 illustrates this property for the
signatures of 5 × 3 and 3 × 5 indirect majority systems.
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Table 5.1. Signatures for two indirect majority systems of size n = 15

n = 5 × 3 n = 3 × 5

i si si

≤ 5 0 0

6 0.054 0.060

7 0.240 0.220

8 0.412 0.440

9 0.240 0.220

10 0.054 0.060

≥ 11 0 0

Now, let τ be a mixed system based on components with i.i.d. lifetimes,
and let s be its signature vector. From Chapter 3 (equations (3.6) and (3.7)),
we may represent the survival function of the system’s lifetime T as

P (T > t) =
n∑

i=1

siP (Xi:n > t) (5.2)

and the system’s expected lifetime as

E(T ) =
n∑

i=1

siEXi:n . (5.3)

Using these representations, we prove the claim made above about the com-
parative means of the lifetimes of direct and indirect majority systems.

Theorem 5.1. Let n, R and S be odd integers, with n = R × S. Let
T((n+1)/2 | n) and TR×S be the lifetimes of the direct majority system and the
R × S indirect majority system, respectively, with i.i.d. DFR component life-
times given by X1, . . . , Xn. Then

ET((n+1)/2 | n) ≤ ETR×S . (5.4)

Proof. Consider the function g : {1, 2, . . . , n} → (0,∞) defined by g(i) =
E(Xi:n), where {Xi:n, i = 1, . . . , n} are the order statistics corresponding to
the i.i.d. component lifetimes X1, . . . , Xn. Under the assumed condition that
the underlying distribution of the Xs is DFR, Kirmani and Kochar [49] showed
that g is a convex function in i. Now, let s be the signature of the R×S indirect
majority system. As noted above, s is symmetric about the central position in
this n-dimensional vector. This symmetry implies that

∑n
i=1 isi = (n + 1)/2,

as this sum is simply the mean of a symmetric distribution on the integers
{1, . . . , n}. From (5.3) and the convexity of g, we have that

ETR×S =
n∑

i=1

g(i)si ≥ g

(
n∑

i=1

i si

)
= ET((n+1)/2 | n) , (5.5)
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the last equality following from the symmetry of s about its mean (n + 1)/2.
This completes the proof. �

Example 5.1. The exponential distribution with mean µ is a boundary member
of the DFR class. Thus, Theorem 5.1 is applicable for a sample of n i.i.d.
exponential random variables and implies, for n = 15 say, that ET8|15 ≤
ET5×3. An exact calculation results in values which illustrate inequality (5.4),
with ET8|15 = 0.7254µ and ET5×3 = 0.7336µ.

5.2 An Application to Consecutive k-out-of-n Systems

Chiang and Niu [27] introduced the concept of the consecutive k-out-of-n sys-
tem. As the name suggests, such systems have their components arranged
in order, and they fail if k components in a row fail. Interest in these sys-
tems is motivated, in part, by their occurrence in applications involving the
performance of oil pipelines and of telecommunication systems. They have
also been found to be useful as models in the design of integrated circuitry.
A substantial literature on this type of system design has accumulated since
the appearance of Chiang and Niu’s paper, much of it directed at the chal-
lenging problem of the computation of such a system’s reliability (see, for
example, Derman et al. [30], and Du and Hwang [32]). Other issues receiving
recent attention include investigations of consecutive k-out-of-n systems with
dependent components (see Boland et. al. [19] and Gera [39]), investigations
into component importance in such designs (e.g. Zuo [76], Chang et. al. [24])
and studies on optimal arrangement of components (see Tong [70] and Du et.
al. [31]). For comprehensive reviews of the literature on this topic, see Chao,
Fu and Koutras [26] and, especially, the book by Chang, Cui, and Hwang [25].

In this section, we will apply the notion of system signatures to obtain
some further insights into consecutive k-out-of-n systems. The developments
below are based on work by Boland and Samaniego [21]. There are two types
of consecutive k-out-of-n systems that one finds in the reliability literature
– linear and circular consecutive k-out-of-n systems. We will restrict our at-
tention here to the former type. A system is said to be a linear consecutive
k-out-of-n system if its n components are ordered linearly, from first to last,
and the system fails as soon as a set of consecutive components i, i+1, . . . , n(i)
have failed, where 1 ≤ i ≤ n(i) ≤ n and n(i) = i + k − 1. Since only the lin-
ear version will be discussed here, any reference made below to a consecutive
k-out-of-n system will tacitly assume linearity.

Among linear consecutive k-out-of-n systems, the simplest case is the con-
secutive 2-out-of-n system. We will utilize τc:2|n as shorthand notation for this
system. Recall that our definition of the ith element si of the signature vector
is the probability that the system fails upon the ith component failure. The
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concept of signature is fundamentally related to cut sets of the system. In
what follows, it will be useful to use a complementary concept related to the
system’s path sets. Let aj represent the proportion of path sets among the

(
n
j

)

sets with exactly j working components. It then follows that the reliability
polynomial h(p) of (3.4) can be written as

h(p) =
n∑

j=1

aj

(
n

j

)
pjqn−j . (5.6)

Comparing (5.6) to (3.4), in which h(p) is written as a function of the signature
of the system, one may deduce that the vectors a and s are related as follows:

aj =
n∑

i=n−j+1

si for j = 1, . . . , n (5.7)

or equivalently

sj = an−j+1 − an−j for j = 1, . . . , n (5.8)

We will now obtain the vector a explicitly for the system τc:2|n. It can be
shown that there are precisely

(
i+1
n−i

)
ways one can have i successes and n − i

failures in a linear arrangement of n components for which there is at least one
success between every two failures. (We interpret

(
A
B

)
as 0 when A < B.) The

key idea in establishing the claim above is the following: Consider a sequence
of i successes (Ss) arranged linearly. These define i + 1 “spaces,” the first one
preceding the first S, the second being between the first and second S, and so
on, with the (i + 1)st following the ith and final S. Then the event described
above will occur if and only if there is at most one failure (F ) in each space.
What remains is to determine the number of ways in which this can happen.
This is equivalent to choosing n − i spaces among i + 1 and placing an F in
each slot selected. The answer is clearly

(
i+1
n−i

)
. This argument holds for any

value of i for which n−i ≤ i+1, that is, for i ≥ (n−1)/2. Since such sequences
of Ss and F s are necessary and sufficient for the system τc:2|n to work with
precisely i working components, we may surmise that

ai

(
n

i

)
=

(
i + 1
n − i

)
for

n − 1
2

≤ i ≤ n (5.9)

It therefore follows that the reliability polynomial for a consecutive 2-out-of-n
system is given by the two equivalent expressions below.

hc:2|n(p) =
n∑

i=[n/2]

(
i + 1
n − i

)
piqn−i =

[(n+1)/2]∑

i=0

(
n − i + 1

i

)
pn−iqi . (5.10)

Using (5.8) and (5.9), one can obtain the signature of any consecutive 2-out-of-
n system. In Table 5.2, the signature vectors of consecutive 2-out-of-n systems
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Table 5.2. Signatures for consecutive 2-out-of-n systems with 2 ≤ n ≤ 8

i sc:2|2 sc:2|3 sc:2|4 sc:2|5 sc:2|6 sc:2|7 sc:2|8
1 0 0 0 0 0 0 0

2 1 2/3 1/2 4/10 5/15 10/35 7/28

3 1/3 1/2 5/10 7/15 15/35 11/28

4 0 1/10 3/15 9/35 8/28

5 0 0 1/35 2/28

6 0 0 0

7 0 0

8 0

are displayed for 2 ≤ n ≤ 8.

In order to investigate the relationship between consecutive 2-out-of-n sys-
tems for different values of n, we will make use of the following result.

Lemma 5.1. Let hn(p) and hn+1(p) be the reliability polynomials of mixed
systems of order n and n + 1 respectively. From (5.6), these polynomials can
be written as

hr(p) =
r∑

j=1

aj,r

(
r

j

)
pjqr−j , (5.11)

with r = n or n + 1, where the elements aj,r, for j = 1, 2, . . . , r, are defined
as in (5.7), that is,

aj,r =
r∑

i=r−j+1

si,r for j = 1, . . . , r ,

with the subscript r representing the order of the system and (s1,r, . . . , sr,r)
being its signature. If, for all j ∈ {1, 2, . . . , n},

aj,n

(
n

j

)
+ aj+1,n

(
n

j + 1

)
≥ aj+1,n+1

(
n + 1
j + 1

)
, (5.12)

then hn(p) ≥ hn+1(p) for all p ∈ [0, 1].

Proof. Note that the left hand side of (5.12) is the coefficient of pj+1qn−j

in the polynomial (p + q)hn(p), while the right hand side of (5.12) is the
coefficient of pj+1qn−j in hn+1(p). Condition (5.12) states that, of these two
polynomials of degree n + 1, the coefficients of hn(p) are uniformly equal to
or larger than those of hn+1(p). The condition is therefore clearly a sufficient
condition for the claimed domination. �

From this, we may obtain the following result.
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Theorem 5.2. Let Tc:2|n be the lifetime of a consecutive 2-out-of-n system
with i.i.d. component lifetimes. Then Tc:2|n ≥st Tc:2|n+1.

Proof. The vectors an and an+1 corresponding to the systems τc:2|n and
τc:2|n+1 can be identified from (5.9). One can show that the former system
is uniformly superior to the latter simply by verifying that these vectors sat-
isfy condition (5.12). From (5.9), we see that for the consecutive 2-out-of-N
systems compared in this theorem, condition (5.12) reduces to

(
j + 1
n − j

)
+

(
j + 2

n − j − 1

)
≥

(
j + 2
n − j

)
for

n − 3
2

≤ j ≤ n , (5.13)

where
(

A
B

)
is taken as 0 if A < B or if B < 0. Letting r = j + 1 and k = n− j

in (5.13), the inequality may be rewritten as
(

r

k

)
+

(
r + 1
k − 1

)
≥

(
r + 1

k

)
for k = 0, 1, . . . , r + 2 . (5.14)

But since
(

r+1
k−1

)
≥

(
r

k−1

)
, the inequality in (5.14) follows immediately from

the well-known identity
(

r

k

)
+

(
r

k − 1

)
=

(
r + 1

k

)
for k = 0, 1, . . . , r + 1 . (5.15)

We may thus conclude that condition (5.12) holds for the systems in question.
It follows from Lemma 5.1 that Tc:2|n ≥st Tc:2|n+1. �

Theorem 5.2 generalizes to consecutive k-out-of-n systems for 2 < k ≤ n.
This result is established in Boland and Samaniego [21] using a different
method of proof.

5.3 The Limiting Behavior of System Failure Rates and
Survival Curves

In this section, the representations of FT (t) and rT (t) in Chapter 3 are uti-
lized to study the behavior of a mixed system as t → ∞. The results presented
here are due to Block, Dugas and Samaniego [10]. The first result identifies
the asymptotic failure rate of the system as a multiple of the limiting failure
rate of an individual component, that multiple depending on the largest index
i of the signature vector for which si > 0. This result extends the recently
established results by Block, Li and Savits [13] where conditions which de-
termine the asymptotic behavior of the failure rate of the mixture of lifetime
distributions are identified. One of their principal results is that if the failure
rates of the component lifetimes have limits, the failure rate of the mixture
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converges to the limit of the failure rate of the strongest component. The ap-
proach taken here differs from earlier studies in that our focus and our results
are based on signatures of coherent or mixed systems.

Theorem 5.3. Let T be the lifetime of a mixed system based on a set of
coherent systems in n i.i.d. components, each component having a common
failure rate r(t). Assume that r(t) has limit r as t → ∞, where 0 ≤ r ≤ ∞. If
the system has signature s = (s1, s2, . . . , sn) and failure rate rT (t), then

rT (t) → (n − K + 1)r , (5.16)

where K = max{i | si > 0}.

Proof. Consider the representation of rt(t) given in (3.11), namely,

rT (t) =
∑n−1

i=0 (n − i)si+1

(
n
i

)
(G(t))i

∑n−1
i=0

(∑n
j=i+1 si

) (
n
i

)
(G(t))i

r(t) , (5.17)

where G(t) = F (t) / F (t) ∈ (0,∞). Note that, by the definition of K, both
the numerator and the denominator of (5.17) are polynomials in the variable
“G(t)” and have degree K−1. If we divide the numerator and the denominator
of (5.17) by (G(t))K−1, we see that rT (t) has the same limit, as t → ∞, as

o(1) + (n − K + 1)sK

(
n

K−1

)

o(1) + sK

(
n

K−1

) r(t) . (5.18)

It follows from (5.18) that rT (t) → (n − K + 1)r as claimed. �

Remark 5.1. We note that the failure rate representation in (5.17) can also be
employed to identify the behavior of the system failure rate near zero. If T is
the lifetime of a mixed system based on a set of coherent systems in n i.i.d.
components, each component having a common failure rate r(t), then letting
t → 0 in (5.17) shows that rT (t) → ns1r(0+), where

r(0+) = lim
t→0+

r(t).

We now turn to an examination of the relative rate of convergence to
zero of the survival functions of two systems under comparison. For simple
systems, information on this question is quite transparent. For example, the
survival function of a parallel system in i.i.d. components tends to zero more
slowly than the survival function of an individual component, and the oppo-
site is true for series systems. The following results utilize the representation
of FT (t) in (3.2) to provide definitive descriptions of the rates of convergence
of survival functions to zero for general mixed systems.
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Theorem 5.4. Let T be the lifetime of a mixed system with signature s based
on a set of coherent systems in n i.i.d. components. Let F be the common
lifetime distribution of the components. Then

FT (t)
[
F (t)

]n−K+1
→

(
n

K − 1

)
sK , (5.19)

where K = max{i | si > 0}.

Proof. From (3.2), we have that the system has lifetime distribution

FT (t) =
K−1∑

j=0

⎛

⎝
n∑

i=j+1

si

⎞

⎠
(

n

j

)
(F (t))j (

F (t)
)n−j

. (5.20)

If one divides the above quantity by
[
F (t)

]n−K+1
and lets t approach ∞, one

obtains a summation of K terms, only the last of which has a non-zero limit,
that limit being the product

(
n

K−1

)
sK . �

Remark 5.2. Note that the rate of convergence of FT (t) to zero is only affected
by the largest index of a positive element of the signature vector. It follows
that a mixed system in n components for which the element sn of the signature
vector is positive achieves the same basic rate of convergence to zero as that
of the parallel system (which achieves the best (slowest) possible rate). On
the other hand, systems with the same value of K = max{i | si > 0} have the
same rate of convergence, but the survival functions, for large t, are ordered
and are proportional to their corresponding values of sK .

Theorem 5.5. Let T1 and T2 be the lifetimes of two mixed systems, with sig-
natures s1 and s2 and lifetime distributions F1 and F2, respectively, each based
on a set of coherent systems in n i.i.d. components with common distribution
F . Let K1 = max{i | s1i > 0} and K2 = max{i | s2i > 0}. Then

F 2(t)
F 1(t)

→ s2K

s1K
if K1 = K2 = K (5.21)

and
F 2(t)
F 1(t)

→ ∞(0) if K1 < (>)K2 . (5.22)

Proof. Using the representation of FT (t) in equation (3.4) and dividing
both numerator and denominator of F 2(t)/F 1(t) by (G(t))M , where M =
max{K1,K2}, the desired result follows. �
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5.4 Comparing Arbitrary Mixed Systems via Stochastic
Precedence

As in previous sections, we will assume that all systems under discussion are
based on components having independent lifetimes with common distribution
F . It will often be the case that some form of stochastic ordering, and/or the
necessary and sufficient conditions of section 4.4 which guarantee that system
lifetimes will be ordered in some stochastic sense, apply to the comparison of
two systems of interest. However, none of these conditions apply to all pos-
sible system comparisons. The relationships alluded to above each induce a
partial ordering on the class of mixed systems. Some pairs of mixed systems
are simply non-comparable using the signature conditions discussed thus far.
An example of such non-comparability is the 2-component mixed system with
signature (1/2, 1/2) (the subject of comparisons examined in Example 4.3)
and the 4-component mixed system with signature s = (0, 1/2, 1/2, 0). It has
been noted that this 2-component system has the same lifetime distribution
as the system with signature s∗ = (1/4, 1/4, 1/4, 1/4). It is easy to verify that
s and s∗ fail to satisfy the usual (lr, hr or st) orderings and also fail to satisfy
the less stringent NASCs of Theorems 4.7 - 4.9. Thus, none of the theorems
of Chapter 4 apply to the lifetimes T1 and T2 of these two particular mixed
systems. It is easy to find examples of pairs of coherent systems that are
non-comparable in this same sense. For instance, assuming i.i.d. component
lifetimes, the survival functions of coherent systems #5 and #7 in Table 3.2
cross each other and the corresponding system lifetimes are non-comparable
using the tools of Chapter 4. This type of limitation of the comparative meth-
ods considered thus far leads naturally to the exploration of different metrics
that might be applied to the comparative analysis of system performance.

“Stochastic precedence” was introduced by Arcones, Kvam and Samaniego
[3] as an alternative approach to the notion that one random variable is smaller
than another. They defined the “sp” relationship as follows.

Definition 5.1. Let Y1 and Y2 be independent random variables with respec-
tive distributions F1 and F2. Then Y1 is said to stochastically precede Y2

(written Y1 ≤sp Y2) if and only if P (Y1 ≤ Y2) ≥ 1/2. If both Y1 ≤sp Y2

and Y2 ≤sp Y1 hold, the variables are said to be sp-equivalent. Continuous
variables Y1 and Y2 will be sp-equivalent if and only if P (Y1 ≤ Y2) = 1/2.

It is worth noting that probabilities of the form P (X ≥ Y ) have a long
history in probability and statistics. The probability arises, most notably, in
nonparametric tests for distributional equality and in “stress-strength” test-
ing in reliability. In the former context, P (X ≥ Y ) is the expected value of the
famous Mann-Whitney statistic used to test the equality of two distributions
F and H based on independent random samples (Xs and Y s) from these dis-
tributions. In that setting, P (X ≥ Y ) is a well-accepted measure of the extent
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to which one distribution (or random variable) is larger than another and is
thus clearly relevant in the problem of interest as well. In stress-strength test-
ing, the variable X represents the strength of the material of interest and the
variable Y represents the level of stress to which the material is subjected.
With this understanding, P (X ≥ Y ) represents the probability that randomly
chosen material will survive the amount of stress that is randomly applied to
it. If P (X ≥ Y ) exceeds 1/2, the material tends to be stronger than the stress
to which it will be subjected. See, for example, Johnson [47] or Samaniego
[62] for further details.

We now turn to the problem of interest here, namely, the problem of com-
paring the performance of two mixed systems based on i.i.d. components from
a common distribution F . Let T1 and T2 be independent random variables rep-
resenting the lifetimes of two such systems. In this section, we will treat the
comparison of T1 and T2 via stochastic precedence. We derive below an ex-
plicit formula for computing P (T1 ≤ T2). Armed with the computed value of
P (T1 ≤ T2), we will always be able to classify the second system as better
than, equivalent to or worse than the first system according to whether this
probability is greater than, equal to or less than 1/2. It is therefore apparent
that any pair of mixed systems of arbitrary order can be definitively com-
pared via stochastic precedence. We note that the potential for comparison
extends to the lifetimes of pairs of mixed systems in which the underlying
component distributions are allowed to be different. We may, for example,
posit that the components from which the first system is constructed have
i.i.d. lifetimes with distribution F1 and the components from which the sec-
ond system is constructed have i.i.d. lifetimes with distribution F2. Indeed,
the expression for this probability in 3.4 is obtained under these broader as-
sumptions. In what follows, however, we will restrict our attention to the case
in which F1 = F2. The results presented here are drawn from Hollander and
Samaniego [43]. See also Hollander and Samaniego [44].

Given two mixed systems τ1 and τ2 with corresponding lifetimes T1 and
T2 satisfying the assumptions in the preceding paragraph, one can infer that
system τ2 will tend to last longer than system τ1 if their lifetimes satisfy the
condition P (T1 ≤ T2) > 1/2. In Theorem 3.4, we established the general
expression needed for stochastic-precedence calculations:

P (T1 ≤ T2) =
n∑

i=1

m∑

j=1

s1is2jP (Xi:n ≤ Yj:m) . (5.23)

We now develop an explicit formula from which P (T1 ≤ T2) can be computed.
We first establish a lemma which treats stochastic precedence between two
independently drawn order statistics. This result is a special case of Theorem
4 in Kvam and Samaniego [54], a result that applies to inequalities involving
an arbitrary number r ≥ 2 of independent order statistics. We give an ele-
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mentary proof of the lemma.

Lemma 5.2. Let X1,X2, . . . , Xn be a random sample of size n from a contin-
uous distribution F , and let X1:n,X2:n, . . . , Xn:n be the corresponding order
statistics. Let Y1, Y2, . . . , Ym be a random sample of size m from F , and let
Y1:m, Y2:m, . . . , Ym:m be the corresponding order statistics. Assume that the
two samples are independent. Then for any such distribution F ,

P (Xi:n ≤ Yj:m) =
n∑

k=i

(
n
k

)(
m
j

)
(
n+m
k+j

) j

k + j
. (5.24)

Proof. All possible orderings of the combined sample of Xs and Y s are equally
likely, each occurring with probability 1

(n+m)! . For the event {Xi:n ≤ Yj:m}
to occur, one must have, for some k ∈ {i, i + 1, . . . , n}, exactly k Xs and
j Y s occurring as the first k + j values in the combined sample, and given
that, the last of the k + j values must be a Y . The probability of the first
event is

(
n
k

)(
m
j

)
/
(
n+m
k+j

)
and the conditional probability of the second event

is j/(k + j). Applying the law of total probability, we obtain (5.24). �

Lemma 5.2 provides an explicit formula which allows us to refine the ex-
pression for P (T1 ≤ T2) given in Theorem 3.4. An interesting and important
by-product of the lemma is that it establishes the fact that the probability
P (T1 ≤ T2) is a distribution-free measure which takes the same value for all
continuous distributions F . This latter fact does not generalize to the case
where the distributions of the Xs and the Y s differ. If the X sample is drawn
from the distribution F1 while the Y sample is independently drawn from
the distribution F2, the probability P (T1 ≤ T2) will depend on F1 and F2.
This probability will also be substantially more difficult to calculate, though
explicit formulas may be obtained in certain circumstances. For example, Hol-
lander and Samaniego [43] derive an explicit formula for P (T1 ≤ T2) when F2

is in the class of Lehmann alternatives to F1, that is, when F2 = F k
1 for some

positive k. For the case of interest here (that is, where F1 = F2 = F ), the
computational formula for P (T1 ≤ T2) is given below in its final form.

Theorem 5.6. Let T1 and T2 represent the lifetimes of mixed systems of or-
ders n and m with respective signatures s1 and s2 and ordered component
lifetimes {X1:n,X2:n, . . . , Xn:n} and {Y1:m, Y2:m, . . . , Ym:m} obtained from two
independent i.i.d. samples of sizes n and m from a common distribution F .
Then

P (T1 ≤ T2) =
n∑

i=1

m∑

j=1

s1is2j

n∑

k=i

(
n
k

)(
m
j

)
(
n+m
k+j

) j

k + j
. (5.25)

The following pair of examples illustrates the utility of stochastic prece-
dence in making system comparisons. Systems that are non-comparable using
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the stronger conditions on pairs of signatures found in earlier sections of this
monograph will now be compared via stochastic precedence.

Example 5.2. Consider the two mixed systems discussed in the opening para-
graph of this section. To conform to the notation of Theorem 5.6, we re-
label these two systems’ signatures as s1 = (1/4, 1/4, 1/4, 1/4) and s2 =
(0, 1/2, 1/2, 0). Theorem 5.6 allows us to compute P (T1 ≤ T2) explicitly.
Adding the eight terms of (5.25) for which the product s1is2j > 0, we find
that P (T1 ≤ T2) = 1/2. Thus, although the two systems above are not com-
parable on the basis of the criteria treated in Chapter 4, we see that they are
comparable in the alternative metric of stochastic precedence and are found
to be equivalent in that metric.

Example 5.3. We have noted that the coherent systems #5 and #7 in Table
3.2 are non-comparable in the “st” sense (which of course implies the same in
the “hr” and “lr” senses). Here, we will compare these systems via stochastic
precedence. System #5 has signature s1 = (1/4, 1/4, 1/2, 0) and system #7
has signature s2 = (0, 2/3, 1/3, 0). Using Theorem 5.6, the probability P (T1 ≤
T2) is found to be equal to 109/210 or 0.519. From this we conclude that
system #7 will last longer than system #5 slightly more than half the time.
Thus, under a stochastic precedence criterion, system #7 would be judged to
be preferable to system #5.

As shown in Arcones, Kvam and Samaniego [3], stochastic precedence is
weak ordering, being implied, for example, by the usual stochastic ordering. It
is especially weak in the discrete case. For example, the 3-component systems
with signatures s1 = (0, 3/8, 5/8) and s2 = (0, 0, 1) are sp-equivalent. If Xi ∼
si for i = 1, 2, then P (X1 ≤ X2) = 5/8 and P (X2 ≤ X1) = 1, so that both
X1 ≤sp X2 and X2 ≤sp X1 hold. Thus, even though X1 ≤st X2, the two
signatures are equivalent in the “sp” sense. It is apparent from the above
that preservation theorems such as those featured in section 4.2 do not hold
for stochastic precedence. The condition s1 ≤sp s2 will not necessarily imply
that T1 ≤sp T2. It is not easy to identify simple sufficient conditions on two
signature vectors for the inequality T1 ≤sp T2 to hold. It is thus perhaps
surprising that necessary and sufficient conditions on the signatures of two
systems which guarantee the inequality T1 ≤sp T2 can be obtained without
any additional strain. This is due entirely to the interesting and important
fact that the probability P (T1 ≤ T2) is a distribution-free measure of the
comparative behavior of the two systems involved. This immediately leads
to an NASC for stochastic precedence between the lifetimes of two mixed
systems of arbitrary order based on i.i.d. component lifetimes. Indeed, if the
RHS of (5.25) is denoted by W (s1, s2), then

P (T1 ≤ T2) > 1/2 (or = 1/2 or < 1/2)

if and only if
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W (s1, s2) > 1/2 (or = 1/2 or < 1/2) . (5.26)

Remark 5.3. From Theorem 5.6, we may identify W (s1, s2) as precisely equal
to the probability P (T1 ≤ T2). It is, in fact, simply a formula for computing
P (T1 ≤ T2). Thus, the condition W (s1, s2) ≥ 1/2 is necessary and sufficient
to ensure that T1 ≤sp T2. The legitimacy of this as an NASC derives from the
fact W (s1, s2) is independent of the underlying distribution F and depends
only on the signatures of the two systems of interest.

Remark 5.4. It would seem from (5.25) that computing W (s1, s2) can be a
cumbersome matter for large systems with complex signatures. However, it
is clear that the formula in (5.25) is easily programmed. Thus, checking for
stochastic precedence of one mixed system relative to another is a process
that may be executed without much difficulty.

We began this section with a discussion of two mixed systems having
signatures (1/2, 1/2) and (0, 1/2, 1/2, 0) respectively. Example 5.2 continued
the discussion, carrying out the comparison via stochastic precedence of the
second system with a 4-component system whose lifetime was stochastically
identical to the first. The two systems were shown to be equivalent in the
“sp” sense. This outcome is no accident, as it is typical of “sp” comparisons
when the signature vectors are symmetric. A general result in this regard is
established below. We will prove the next two results for systems of the same
size (i.e., n = m), but as we shall see in the corollary that follows, the main
result holds for n �= m as well. The following tool will be required.

Lemma 5.3. Let X1,X2, . . . , Xn and Y1, Y2, . . . , Yn be two independent ran-
dom samples of size n from a continuous distribution F , and let X1:n,X2:n, . . . ,
Xn:n and Y1:n, Y2:n, . . . , Yn:n be the corresponding order statistics. Then (i)
P (Xi:n ≤ Yi:n) = 1/2, (ii) P (Xi:n ≤ Yj:n) = P (Xn−j+1:n ≤ Yn−i+1:n) and
(iii) P (Xi:n ≤ Yj:n) = 1 − P (Xj:n ≤ Yi:n).

Proof. Because of the continuity of F , the equality in each of the inequalities
above has probability zero. Consider the possible (2n)! permutations of the
combined sample of Xs and Y s. Each ordering is equally likely. Claim (i) fol-
lows from the fact that, for every ordering for which Xi:n ≤ Yi:n, the ordering
that relabels Xi as Yi and vice versa results in Yi:n ≤ Xi:n. Thus these events
have the same probability, namely 1/2. Claim (ii) follows from the fact that
if one reflects the Xs and Y s in each particular permutation so that the ith
smallest item becomes the ith largest, the event {Xi:n ≤ Yj:n} in the original
collection of permutations will correspond to the event {Xn−i+1:n ≥ Yn−j+1:n}
in the reflected set, implying that these events have the same probability.
Finally, since {Xi:n ≤ Yj:n} = {Xi:n ≥ Yj:n}c when F is continuous and
P (Xj:n ≤ Yi:n) = P (Xi:n ≥ Yj:n), claim (iii) follows. �

Theorem 5.7. Let X1,X2, . . . , Xn and Y1, Y2, . . . , Yn be two independent ran-
dom samples of size n from a continuous distribution F , and let X1:n,X2:n, . . . ,



5.4 Comparing Arbitrary Mixed Systems via Stochastic Precedence 73

Xn:n and Y1:n, Y2:n, . . . , Yn:n be the corresponding order statistics. Let τ1 and
τ2 be mixed systems of order n based on components with i.i.d. lifetimes
X1,X2, . . . , Xn and Y1, Y2, . . . , Yn as above. Denote the signatures of τ1 and
τ2 by s1 and s2 and their lifetimes T1 and T2. If both signature vectors are
symmetric, that is, that s1,i = s1,n−i+1 for all i and s2,i = s2,n−i+1 for all i,
then P (T1 ≤ T2) = 1/2, that is, T1 and T2 are sp-equivalent.

Proof. For simplicity, we will denote P (Xi:n ≤ Yj:n) by pi,j . From Lemma
5.3, we have that, for all i and j, (i) pi,i = 1/2, (ii) pi,j = pn−j+1,n−i+1 and
(iii) pi,j = 1 − pj,i. Using property (i), we may rewrite the expression for
P (T1 ≤ T2) in (5.23) as

P (T1 ≤ T2) =
1
2

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,jpi,j +
∑

i>j

s1,is2,jpi,j

=
1
2

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,jpi,j +
∑

i>j

s1,is2,j(1 − pj,i)

(by virtue of property (iii))

=
1
2

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,jpi,j +
∑

i>j

s1,n−i+1s2,n−j+1(1 − pn−i+1,n−j+1)

(by virtue of the symmetry of the signatures and property (ii))

=
1
2

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,jpi,j +
∑

i<j

s1,is2,j(1 − pi,j)

=
1
2

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,j . (5.27)

By the symmetry of s1 and s2, we have
∑

i<j

s1,is2,j =
∑

i<j

s1,n−i+1s2,n−j+1 =
∑

i>j

s1,is2,j ,

which implies that we may rewrite the expression for P (T1 ≤ T2) in (5.27) as

P (T1 ≤ T2) =
1
2

⎧
⎨

⎩

n∑

i=1

s1,is2,i +
∑

i<j

s1,is2,j +
∑

i>j

s1,is2,j

⎫
⎬

⎭

=
1
2

n∑

i=1

n∑

j=1

s1is2j = 1/2. �
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Corollary 5.1. Let τ1 and τ2 be mixed systems of orders n and m, respec-
tively, based on components with i.i.d. lifetimes ∼ F , and denote their signa-
tures by s1 and s2 and their lifetimes by T1 and T2. If both signature vectors
are symmetric, that is, if s1,i = s1,n−i+1 for all i and s2,i = s2,m−i+1 for
all i, then P (T1 ≤ T2) = 1/2. Thus T1 and T2 are equivalent in the sense of
stochastic precedence.

Proof. If n = m, the result is proven in Theorem 5.7. Assume, without loss
of generality, that n < m. Recall from Theorem 3.2 that, assuming i.i.d. com-
ponent lifetimes ∼ F , the system with signature s1 has the identical lifetime
distribution as the (n + 1)-component system with signature

s∗ =
(

n

n + 1
s1,

1
n + 1

s1 +
n − 1
n + 1

s2,
2

n + 1
s2 +

n − 2
n + 1

s3, . . . ,

n − 1
n + 1

sn−1 +
1

n + 1
sn,

n

n + 1
sn

)
.

As stated in Corollary 3.3, the signature s∗ will be symmetric if s1 is. Repeated
applications of Theorem 3.2 lead to a signature s∗1 of an m-component system
that is symmetric and has the same lifetime distribution as T1. The fact that
P (T1 ≤ T2) = 1/2 will then follow from Theorem 5.7. �

Example 5.4. The symmetry conditions on the signatures s1 and s2 in The-
orem 5.7 and Corollary 5.1 are sufficient conditions for the sp-equivalence of
two system lifetimes, but they are not necessary. Let T1 and T2 be the lifetimes
of two mixed systems based on components with i.i.d. lifetimes governed by
the continuous distribution F , and let the corresponding system signatures
be s1 = (1/4, 1/4, 1/2, 0) and s2 = (0, 3/4, 1/4, 0). It is easy to confirm that
T1 and T2 are sp-equivalent.
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Applications of Signatures to Network
Reliability

6.1 An Introduction to Communication Networks

Communication networks have been used and studied for several decades,
but their application and broad utilization has expanded dramatically in the
last 15 years. The original DARPA nationwide electronic network was es-
tablished largely for military communications and served as the first truly
large-scale application in the field. It is still in the memory banks of many
present-day researchers. The World Wide Web, a network which we take com-
pletely for granted today, as if it has always been there, dates back only to
the early nineties and owes much to the DARPA model for its design. These
examples of modern electronic communication systems have important pre-
decessors in the area of telephone and telegraph networks, but the specific
problems that will interest us here are of more modern origin. We are inter-
ested in the mathematical and probabilistic analysis involved in addressing
“connectivity” problems. Specifically, we will want to consider questions such
as: “What are the chances that all ‘terminals’ in a given network can com-
municate with each other?” and “Which of two competing network designs
has a higher probability of being connected?” One can, of course, ask more
fundamental questions regarding one’s ability to compute answers to these
two questions. A good deal of research in network theory is directed at classi-
fying computational algorithms in network reliability into problem types such
as NP-complete, NP-hard, problems solvable in polynomial time, etc., classes
which indicate whether or not a problem is hopelessly complex or is, at the
other extreme, computationally feasible. Chapter 5 of Colbourn [28] has an
excellent summary of problem types relative to this classification system. We
will not deal with this latter problem here. Instead, we will focus exclusively
on ways of computing the probability that a network is operational.

Following Colbourn [28], we will think of a “network” as an undirected
graph with a fixed number of vertices and a fixed number of edges connecting
pairs of vertices. We will assume that every vertex in such a network is con-
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nected to any other through at least one sequence of edges. A network with
v vertices and n edges is typically denoted by the symbol G(v, n). Further,
we take a viewpoint that is quite standard in the field, namely, that vertices
cannot fail, but that edges can be in either a functioning or a failed state.
It can be argued that such an assumption does not in fact limit the scope of
the problems we will study, as relaxing that assumption can be handled by
embedding a given network problem into a larger network problem satisfying
this assumption (see Colbourn [28], Chapter 4, for details). In communication
networks, “connectivity” is the “quality” characteristic of primary interest,
and most of the optimization problems that arise are directed at maximizing
the probability that the network is “connected” in some sense. Two-terminal
connectivity means that there is at least one set of functioning edges provid-
ing a path from one distinguished terminal to another. One can also consider
k-terminal connectivity for k > 2 and its fullest extension, v-terminal connec-
tivity, the latter term meaning that every vertex is connected to every other
vertex by at least one functioning path.

Whichever version of the connectivity problem is of interest, we have as-
sumed that the network is potentially connected, but that the connectivity
can be lost through the failure of one or more edges. These edges have specified
probabilities of working or failing. We will focus on the problem of determin-
ing the probability that a given network is working (that is, determining the
reliability of the network) and on the problem of comparing the reliability of
two competing networks, assuming, in both circumstances, that the proba-
bilities that the edges work are given. When all edges work independently of
each other and have a common probability p of working, the reliability of a
network with n edges can be written as an nth degree polynomial. The goal
of this chapter is to clarify the connection between two natural ways of com-
puting a network’s reliability polynomial and, of course, to exploit that con-
nection in extracting information about the network as efficiently as possible.
In the sequel, we derive a general formula for linking the reliability polynomi-
als in “standard” and “pq” forms (as defined in equations (2.23) and (2.24))
for an arbitrary network reliability problem. We limit our examples to the
“two-terminal” connectivity problem in section 6.2 and to an “all-terminal”
connectivity problem in section 6.3. We nonetheless aver that the treatment
given here is easily extended to the other versions of the connectivity problems
mentioned above.

In its most general form, the problem of computing the reliability of a
communication network is a highly challenging one, as it involves handling
the potentially complex multivariate distribution describing edge behavior,
including any and all dependencies among edges, and it requires a calculation
which takes account of this dependence structure. Not only do computational
issues pose difficulties, the comparison of competing networks magnifies them.
We will restrict our attention to a simpler but still quite important problem,
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namely, that of addressing reliability calculations and comparisons when the
edges’ lifetimes or their states (working or failed) at a given point in time
are independent and identically distributed. As we shall see, even this sim-
pler problem poses formidable analytical challenges. Solving such problems
is clearly the first step toward the solution of the more general problem of
computing network reliability when edges are independent but not identically
distributed. The most general form of the problem, which permits depen-
dencies among the lifetimes of individual edges, is likely to resist analytical
solution in the foreseeable future, although certain special cases may prove to
be manageable. The developments below are largely based upon the work in
Boland, Samaniego and Vestrup [22].

An additional and quite typical assumption we shall make is that the net-
works on which we focus attention are “coherent,” that is, every edge of the
network is relevant and any set of edges containing a path set is also a path set
(a condition equivalent to monotonicity). Proceeding under the assumptions of
coherency and i.i.d. edge lifetimes with common distribution F , let us consider
the calculation of the distribution of T , the failure time of the network (i.e.,
the time at which it becomes disconnected in the sense relevant to the context
under study). We will focus, in particular, on the calculation of the probabil-
ity that the network is connected at a given time t0. In the latter instance,
we’ll treat the states of edges (i.e. working or failed states) as independent
Bernoulli variables. In what follows, we will be interested in the special case
in which these variables are also identically distributed, that is, they are i.i.d.
Bernoulli variables with common “success” probability p = F (t0) at time t0.

Let us suppose that the n edges of the network G(v, n) have i.i.d. lifetimes
and thus that, for each, the probability of its functioning at a fixed time t0
is p ∈ (0, 1). The reliability polynomial of the network can be expressed, in
standard form, as

h(p) =
n∑

r=1

drp
r , (6.1)

Satyanarayana and Prabhakar [63] provided an alternative (via “signed dom-
inations”) to the use of the traditional “inclusion-exclusion” formula for de-
termining the coefficients {dr} in (6.1). Agrawal and Barlow [1] referred to
“domination theory” as a major breakthrough in the area of computational
network reliability, and today’s continued use of this computational tool in
network reliability confirms their assessment. For the reader’s convenience, we
will review the concept of dominations below. While domination theory has
proven to be a major boon in simplifying the computation of the reliability of
a network, it has not been found particularly useful in comparing one network
design with another. The use of “dominations” in the important problem of
identifying uniformly optimal networks of a given size has been limited to the
role of computing the reliability functions to be compared. See Boesch, Li and
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Suffel [14] for a description of the latter problem.

In the sequel, the notion of the “signature” of a network, obtained as
the natural extension to network theory of system signatures introduced in
Chapter 3, will be shown to be quite useful in problems involving network
reliability. The signature of a network, like the signature of a coherent or
mixed system, is a probability vector s whose components are the probabil-
ities that the 1st, 2nd, . . ., and nth ordered edge failures cause the network
to fail. Assuming, again, i.i.d. edge states at a fixed time t0, the reliability
polynomial of a network can be expressed in terms of the network’s signature
vector. Unlike the domination vector, the properties of the signature vector
are readily interpretable and have a close relationship to the failure time T
of the network itself. Before discussing domination theory in some detail, we
will briefly examine the notion of the “signature” of a network.

The signature of a network of order n (that is, having n edges) is defined
as the probability distribution s on the integers {1, 2, . . . , n} for which

si = P (T = Xi:n), i = 1, 2, . . . , n , (6.2)

where X1:n < X2:n < · · · < Xn:n are the order statistics from a random (i.i.d.)
sample of component lifetimes drawn from a continuous lifetime distribution
F and T is the lifetime of the network. As an illustration, we compute below
the signature of the “Wheatstone bridge” network.

Fig. 6.1. The Wheatstone bridge
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The bridge network above connects the four vertices A, B, C and D via
the five edges labeled e1, e2, e3, e4 and e5. For the two-terminal connectivity
problem where we are interested in whether or not terminals A and D can
communicate, the network’s minimal cut sets are {1, 2}, {4, 5}, {1, 3, 5} and
{2, 3, 4}. The network cannot fail upon the first edge failure, so we have that
s1 = 0. The second edge failure can cause network failure only if the first two
failures both fall into one of the two minimal cut sets {1, 2} or {4, 5}. There
are four possible arrangements of the first two failures that will be fatal to
the network. These failures could then be followed by 3! possible orderings of
the three edges yet unaccounted for. Thus, 4! of the 5! permutations of the
5 failure times result in network failure upon the second edge failure. This
implies that s2 = 1/5. While calculating s4 and s5 is simpler than calculating
s3, we will do the latter as a means of giving an additional example of the
kind of combinatorial thinking that is often required in the calculation of a
signature. Note that the edges e1, e2, e4 and e5 have equal status in Figure
6.1. Thus, if we identify the number of permutations in which the failure of
edge e1 is the third to occur and is fatal to the network, the same number will
be applicable to these other three edges. Now edge e1 will be the third failure
and will cause the network to fail if and only if edge failures occur in one of
the 16 permutations

3, 5, 1, , ; 5, 3, 1, , ; 2, 4, 1, , ; 4, 2, 1, , ;
2, 3, 1, , ; 3, 2, 1, , ; 2, 5, 1, , ; 5, 2, 1, , ,

where the blanks indicate that the remaining edge failures can occur in either
order. Extending this reasoning to edges e2, e4 and e5, we have identified 64
permutations in which the failure of the network occurs upon the third edge
failure. Finally, we note that there are precisely 8 permutations in which edge
e3 is the third to fail and causes the network to fail. These permutations are

1, 5, 3, , ; 5, 1, 3, , ; 2, 4, 3, , ; 4, 2, 3, , .

It follows that there are a total of 72 permutations corresponding to the failure
of the network upon the third failure. Since there are 5! = 120 permutations
in all, we obtain that s3 = 72/120 = 3/5. Since it is clear that the bridge
network cannot function with just one working edge, we know that s5 = 0
and thus deduce that s4 = 1/5. In summary, the signature of the 5-component
bridge network above is s = (0, 1/5, 3/5, 1/5, 0).

As shown in Samaniego [61], the survival function of a system’s lifetime
T can be written as a simple function of s and F . This representation is
shown in equation (3.1) in Chapter 3. The same representation is transparently
applicable to a communication network with signature s. When focusing on
the reliability of the network at a fixed time t0, where P (Xj > t0) = p for all
j, this representation reduces to the reliability polynomial in “pq-form,” that
is, in the form
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h(p) =
n∑

j=1

⎛

⎝
n∑

i=n−j+1

si

⎞

⎠
(

n

j

)
pjqn−j . (6.3)

Boland [16] noted that the “tail probabilities” of the signature vector s may
be viewed as the proportion of path sets of order j. It is precisely those sets,
among the collection of

(
n
j

)
sets with exactly j working components, that

each contribute the positive probability pjqn−j to the reliability polynomial
in (6.3). Letting aj stand for the proportion of path sets among the

(
n
j

)
dis-

tinct sets of j working components (with the complementary components
non-working), we may re-express the reliability polynomial in pq-form as

h(p) =
n∑

j=1

aj

(
n

j

)
pjqn−j . (6.4)

The relationship between the vectors a and s was made explicit in section
5.2. For the reader’s convenience, we record this relationship anew:

aj =
n∑

i=n−j+1

si for j = 1, . . . , n , (6.5)

or equivalently,

sj = an−j+1 − an−j for j = 1, . . . , n , (6.6)

where a0 ≡ 0. We can put the relationship between a and s in a particularly
useful form by writing a = Ps and s = P−1a, where P and P−1 are the n×n
matrices

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0 1
0 0 0 · · · 0 0 1 1
0 0 0 · · · 0 1 1 1
0 0 0 · · · 1 1 1 1
...

...
...

...
...

...
...

...
0 1 1 · · · 1 1 1 1
1 1 1 · · · 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.7)

and

P−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0 −1 1
0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · −1 1 0 0
...

...
...

...
...

...
...

...
...

0 −1 1 0 · · · 0 0 0 0
−1 1 0 0 · · · 0 0 0 0

1 0 0 0 · · · 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.8)

As has hopefully become apparent from the preceding chapters, signature
vectors are rich in interpretation; they stand to be particularly useful in the
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comparison of competing networks. The preservation and characterization re-
sults of sections 4.2 and 4.4, which hold equally for the signatures of networks
and of coherent or mixed systems, are examples of the utility of signatures
in the comparisons of systems or of networks. We now proceed to the main
agenda of this chapter, the identification of the exact relationship between the
vector of dominations d and the signature vector s. This is accomplished in
Section 6.3. Because domination theory provides essential tools for comput-
ing the reliability of a network, and signatures have high interpretive value
regarding network performance, the exact functional relationship s = f(d)
developed below enables one to exploit the benefits of both. Our closing ex-
ample, which compares the reliability of two complex networks, illustrates the
utility of this linkage quite effectively. Before establishing the linkage between
signature and domination vectors, we briefly digress to present the fundamen-
tal ideas and jargon of domination theory.

6.2 A Brief Look at Domination Theory

We now discuss a very useful shortcut for dealing with calculations calling for
the inclusion-exclusion formula. The approach is due to Satyanarayana and
his coworkers, and is generally known under the rubric “domination theory.”
The idea first appeared in Satyanarayana and Prabhakar [63]. The notion of
dominations was discovered in the process of seeking a reduction in the com-
plexity of the inclusion-exclusion formula for calculating the probability that
all components are functioning in at least one of a given network’s minimal
path sets. The inclusion-exclusion rule (see Chapter 2 for a statement, with
discussion) applies to the union of any n sets. When applied to a reliability
computation, each of the intersections appearing in the inclusion-exclusion for-
mula represents the collection of components appearing in one or more events
of the intersection in question, and each term in the expansion of P (∪n

i=1Ai)
contributes elements of the form pk or −pk to the reliability polynomial. (The
example below will serve to explain and clarify this seemingly counterintuitive
description.) Summing over all r-fold intersections for r = 1, . . . , n, and group-
ing elements of the same order, one obtains the expression in (6.1). While the
inclusion-exclusion formula provides an explicit expression for the reliability
polynomial, it can entail substantial computational complexity. The genera-
tion of the (say m) minimal path sets of a given system involves an algorithm
that is exponential in m, and the number of different intersections of m sets
is also exponential in m. What results is a doubly exponential algorithm for
computing system reliability. From this “inconvenient truth,” and the need
for something simpler, domination theory was born.

Let A1, A2, . . . , Am be a list of all minimal path sets of a given network of
order n (that is, with n edges). Let us view a given path set as a set of work-
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ing components (with the property that their working ensures the working
of the network and no proper subset has that characteristic). Note that the
“intersection” of any k sets among the m minimal path sets of the network
may then be thought of as the event that every component that is a member
of at least one of these k minimal path sets is working. It follows that the
probability of an intersection of events representing functioning minimal path
sets can be seen to be equivalent to the probability that every one of these
components work. The union of the components in a fixed collection of min-
imal path sets is called a formation. Further, an i-formation is defined as a
union of the components in a collection of i minimal path sets. For example,
the union {1, 2, 3} of the minimal path sets {1, 2} and {2, 3} is an example of
a 2-formation. We will refer to a particular formation as even (odd) if it is the
union of an even (odd) number of minimal path sets. A particular formation
can be both odd and even. For instance, in the network used in the example
below, we’ll see that {1, 2, 3, 4, 5} is simultaneously a 2-, 3- and 4-formation.

One may view domination theory as an accounting mechanism that helps
one to keep track of the basic elements of the inclusion-exclusion calculation.
An even formation occurs with each k-fold intersection in (2.20) for which k is
even, while an odd formation results when k is odd. The signs associated with
formations are drawn directly from (2.20), since the intersection of k events
contributes a negative term to the sum precisely when k is even. A network
having m minimal path sets has a total of 2m − 1 formations. We illustrate
these ideas for the Wheatstone bridge network shown in Figure 6.1. We will
calculate the reliability of the two-terminal Wheatstone bridge (where A and
D are the terminals of interest) given that each edge functions independently
with probability p. The minimal path sets of this two-terminal network are the
sets of edges {1, 4}, {2, 5}, {1, 3, 5}, and {2, 3, 4}. The signed domination of a
given union of minimal path sets is simply the difference between the number
of even and odd formations for that union. As an example of this calculation,
note that, if we denote the four minimal path sets above as A1, A2, A3 and
A4, then the formations associated with the set {1, 2, 3, 4, 5} are the 4 odd
formations (namely, the four unions of the sets {A1, A2, A3}, {A1, A2, A4},
{A1, A3, A4} and {A2, A3, A4}) and the 2 even formations (namely, the two
unions of the sets {A3, A4} and {A1, A2, A3, A4}). The relevant accounting is
tabulated below.
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Table 6.1. Signed dominations for the Wheatstone bridge network

Unions of Number of Number of Signed
Min Path Sets Odd Formations Even Formations Domination

{1, 4} 1 0 1

{2, 5} 1 0 1

{1, 3, 5} 1 0 1

{2, 3, 4} 1 0 1

{1, 2, 3, 4} 0 1 -1

{1, 2, 3, 5} 0 1 -1

{1, 2, 4, 5} 0 1 -1

{1, 3, 4, 5} 0 1 -1

{2, 3, 4, 5} 0 1 -1

{1, 2, 3, 4, 5} 4 2 2

Suppose that a particular union A of minimal path sets consists of exactly r
edges. Then the marginal probability that this set “works” is pr and the sum of
the coefficients (1’s and −1’s) in the terms of the inclusion-exclusion formula
corresponding to the occurrences of the probability P (A) in the expansion
(2.20) is precisely the signed domination of A. This term contributes the
product of the signed domination of A and the probability element pr to the
reliability polynomial. Given this type of accounting, the signed dominations
of all sets of size r can be summed and then multiplied by pr. Summing over
r = 1, . . . , n yields the reliability polynomial. For the bridge network above,
the reliability polynomial is thus computed as

h(p) = 2p2 + 2p3 − 5p4 + 2p5 . (6.9)

In the notation of (2.23), we have identified the coefficient vector d of the
reliability polynomial as (0, 2, 2,−5, 2) for the Wheatstone bridge network in
Figure 6.1. We will refer to d as the vector of dominations. The general pro-
cess described above applies equally well to the computation of the reliability
function for networks with independent but non-identical components, though
the final expression, being a multilinear function of p1, . . . , pn, will be both
more complex and more cumbersome. We will not deal with this generaliza-
tion further in the developments in this chapter.

6.3 The Linkage Between Dominations and Signatures

The goal of this section is to identify the functional relationship between
the signature vector s and the vector d of dominations. As we shall see,
it is quite easy to write d as a function of s, say d = f(s), but since the
domination vector is generally easier to compute than the signature vector,
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one would ordinarily expect to have d in hand first. Since signatures have
greater interpretive value, one would then typically seek to obtain s from d.
Thus, it will be the functional relationship s = f−1(d) that is our real goal. We
begin by identifying the function f above. Recall that we have two different
but equivalent representations of the reliability polynomial, namely,

h(p) =
n∑

r=1

drp
r (6.10)

from (6.1) and

h(p) =
n∑

j=1

aj

(
n

j

)
pjqn−j . (6.11)

from (6.4), where aj =
∑n

i=n−j+1 si for j = 1, . . . , n. Writing qn−j in (6.11) as
(1−p)n−j and expanding the term via the binomial theorem, one may rewrite
the polynomial in (6.11) as

h(p) =
n∑

j=1

aj

(
n

j

)
pj

(
n−j∑

i=0

(
n − j

i

)
(−1)ipi

)

=
n∑

r=1

⎛

⎝
r∑

j=1

aj

(
n

j

)(
n − j

r − j

)
(−1)r−j

⎞

⎠ pr , (6.12)

the latter sum resulting from the change of indexes from (j, i) to (r, j), where
r = i + j. From (6.10) and (6.12), it is apparent that

dr =
r∑

j=1

aj

(
n

j

)(
n − j

r − j

)
(−1)r−j for r = 1, . . . , n . (6.13)

It follows from (6.5) that the functional relationship d = f(s) is given by

dr =
r∑

j=1

⎛

⎝
n∑

i=n−j+1

si

⎞

⎠
(

n

j

)(
n − j

r − j

)
(−1)r−j for r = 1, . . . , n . (6.14)

Since d and a are linearly related via (6.13), their relationship may be
expressed as d = Ma, where M is the matrix specified in (6.15) below.

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
1

)(
n−1

0

)
0 0 · · · 0

−
(
n
1

)(
n−1

1

) (
n
2

)(
n−2

0

)
0 · · · 0

(
n
1

)(
n−1

2

)
−
(
n
2

)(
n−2

1

) (
n
3

)(
n−3

0

)
· · · 0

...
...

...
. . .

...
±
(
n
1

)(
n−1
n−1

)
∓
(
n
2

)(
n−2
n−2

)
±
(
n
3

)(
n−3
n−3

)
· · ·

(
n
n

)(
n−n
n−n

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.15)
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Moreover, we have that a and s are linearly related, that is, a = Ps, where P
is the matrix displayed in (6.7). Since d = MPs, the relationship of interest
to us is s = P−1M−1d, where the matrix M is given in (6.15). The inverse
of P was identified in (6.8). What remains is to invert the matrix M above
and make the relationship s = f−1(d) explicit. Our expression for M−1 will
require the use of notation for the number of permutations of k items taken j
at a time. We will use the symbol (k)j for this number, where it is understood
that 0 ≤ j ≤ k. Rather than compute M−1 directly using the usual inversion
methodology (co-factors, parity, determinants, etc.), we will simply claim that
M−1 is the matrix M∗ whose ith row is given by

(m∗
i1, · · · ,m∗

ii, 0, · · · , 0) =

⎛

⎜⎜⎜⎝
(i)1
(n)1

,
(i)2
(n)2

, · · · ,
(i)i

(n)i︸ ︷︷ ︸
i slots

, 0, · · · , 0︸ ︷︷ ︸
n − i slots

⎞

⎟⎟⎟⎠ . (6.16)

This claim will be proven by showing that

(M∗)(M) = I , (6.17)

where I is the n×n identity matrix. Students (and even seasoned researchers)
reading this demonstration might make special note of this unusual method
of proof and make a point of adding it to their toolbox. For clarity’s sake, I
will make the method of proof especially explicit: what you do is guess the
answer to your problem, and then verify that your answer is correct. Cool,
huh? While not an elegant method, when it works, you really can’t beat it.
The good news is that it works here. We now show that the inner product πij

of the ith row of M∗ and the jth column of M (that is, πij =
∑n

k=1 M∗
ikMkj)

is 1 if i = j and is 0 otherwise. We will consider separately the following three
cases (a) i < j, (b) i > j and (c) i = j. Clearly, (6.17) holds in case (a), as
every element of the inner product πij is a product of two numbers, one of
which is 0. For case (b), let m = i − j; we then have

πij =
(

n

i − m

) m∑

k=0

(−1)k (i)i−m+k

(n)i−m+k

(
n − i + m

k

)

=
(

n

i − m

) m∑

k=0

(−1)k i × (i − 1) × · · · × (m − k + 1)
n × (n − 1) × · · · × (n − i + m − k + 1)

× (n − i + m)!
k!(n − i + m − k)!

=
(

n

i − m

)
(n − i + m)!i!

n!m!

m∑

k=0

(−1)k m!
k!(m − k)!

=
(

i

m

) m∑

k=0

(−1)k

(
m

k

)

= 0 ,
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since the sum in the penultimate term above is simply the binomial expansion
of (1 − 1)m. The arguments above show that all of the off-diagonal elements
of (M∗)(M) are 0. We now turn to the case in which i = j. In this case, we
have that πii is given by

(i)i

(n)i
×

(
n

i

)(
n − i

0

)
=

i!
n × · · · × (n − i + 1)

n!
i!(n − i)!

= 1 .

This completes our proof of (6.17). �

Given the explicit expressions for P−1 in (6.8) and M−1 in (6.16), one
may obtain the ith row of the matrix product M−1P−1, for i = 1, . . . , n, as
⎛

⎜⎜⎝−m∗
n−i,1+m∗

n−i+1,1,· · ·,−m∗
n−i,n−i+m∗

n−i+1,n−i,m
∗
n−i+1,n−i+1︸ ︷︷ ︸

n−i+1 slots

, 0,· · ·,0︸ ︷︷ ︸
i−1 slots

⎞

⎟⎟⎠

where m∗
ij = (i)j/(n)j . Since s = P−1M−1d, we may now identify the rela-

tionship s = f−1(d) in the following explicit form.

Theorem 6.1. Let d and s denote the domination and signature vectors for
a given network of order n. Then for i = 1, . . . , n, we have

si =
n−i∑

j=1

(−m∗
n−i,j + m∗

n−i+1,j)dj + m∗
n−i+1,n−i+1dn−i+1 . (6.18)

That is, for i = 1, . . . , n, we have

si =
n−i∑

j=1

−(n − i)j + (n − i + 1)j

(n)j
dj +

(n − i + 1)n−i+1

(n)n−i+1
dn−i+1 . (6.19)

In Section 6.1, we mentioned that the comparison of networks via their
domination vectors was unintuitive and, for complex networks, likely to be
unproductive. The reason for this is that for two complex networks, the dif-
ference of the reliability polynomials, that is,

∑
(d2r −d1r)pr, will typically be

of quite high degree. Because of the requirement
∑

dr = 1 on the domination
vector of an arbitrary network, the coefficients of the difference polynomial
will have some terms with opposite signs. Thus, determining whether one reli-
ability polynomial is uniformly larger than another for all 0 < p < 1 is a task
equivalent to finding the roots of a high degree polynomial. But Galois Theory
shows that the problem of finding roots of polynomials of degree greater than
4 is not “solvable by radicals.” One cannot, in general, obtain closed-form
expressions for the solutions to such problems.
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The ability to transform the problem from one involving the domination
vector to one involving the signature vector changes things substantially. To
see this more graphically, let us consider the comparison between the two
G(9, 27) networks pictured below.

Fig. 6.2. Networks G1 and G2

The reliability polynomials for the connectivity of the 9 vertexes of these
two networks are displayed below in standard form.

hG1(p) = 419904p27 − 6021144p26 + 41705280p25 − 18489826p24

+586821717p23 − 1413876060p25 + 2677774329p21

−4074363810p20 + 5048856414p19 − 5135792742p18

+4303029693p17 − 2967712776p16 + 1676975886p15

−769265910p14 − 282176568p13 + 80853282p12

+17445456p11 − 2667060p10 + 257634p9 − 11828p8

hG2(p) = 414720p27 − 5934288p26 + 41015964p25 − 181453380p24

+574666025p23 − 1381692972p22 + 2611463517p21

−3965536554p20 − 4904464002p19 + 4979513718p18

+4164454729p17 − 2867022480p16 + 1617256842p15

−740601350p14 − 271201476p13 + 77576922p12

+16709916p11 − 2550156p10 + 245898p9 − 11268p8

To the naked eye, the two networks pictured above are difficult to distin-
guish, and little intuition can be brought to bear on the question of which
might offer better performance. Further, it is clear from an inspection of the
two polynomials above that a comparison of them is not an inviting proposi-
tion. It is by no means obvious that one polynomial is uniformly larger than
the other for all p ∈ (0, 1). The comparison could be attacked by brute (nu-
merical and computational) force, and one would, in the end, conclude that
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hG1(p) ≥ hG2(p) for 0 < p < 1. However, the question of “why?” would re-
main a mystery. Let us examine the same comparison using the signatures of
the two networks. In Table 6.2, the tail probabilities Sj(x) =

∑27
i=x sji have

been calculated for each of the networks G1 and G2. From the second and
third columns of Table 6.2, we see that sG1 ≥st sG2 , an inequality that im-
mediately implies that hG1(p) ≥ hG2(p) for p ∈ (0, 1). Further, we see that
the superiority of network G1 over G2 is due to the superiority of one design
over the other as reflected by the comparisons of their signatures. This seems
sufficiently rewarding to justify, by itself, the treatment of this comparison
through the use of signatures. But as Sesame Street’s Count Von Count likes
to say while counting bats in the belfry: “But wait, there’s more!” The ratios
of the two signatures’ survival functions displayed in the last column of Table
6.2 shows that sG1 ≥hr sG2 , a conclusion that is not possible to obtain from
an analysis of the polynomials hG1(p) and hG2(p) alone. The latter inequality
implies that, when viewed as a continuous process, the lifetime of the network
G1 dominates that of the network G2 in the hazard rate ordering. This ad-
ditional fact establishes that G1 is not only better than the network G2, it’s
actually better in quite a strong sense. While far from obvious by inspection,
G1 rules!

The main motivation for dealing with signatures in the context of network
reliability is the fact that domination theory, while useful in making network
reliability calculations, is of limited value in comparing the performance char-
acteristics of competing networks. On the other hand, the examination of the
signatures of competing networks can be quite revealing. Theorem 6.1 makes
the relationship between dominations and signatures explicit and does so in
a particularly useful form. Clearly, both tools have a role to play. Domination
theory remains the go-to approach for computing the reliability of a network in
i.i.d. edges. With dominations in hand, one may readily identify the network’s
signatures via Theorem 6.1. This explicit connection allows one to exploit in
tandem the computational advantages of domination theory and the inter-
pretive advantages of signatures when making comparisons among networks.
The literature on the existence, uniqueness and identification of uniformly op-
timal networks of a given size (see, for example, Ath and Sobel [4], Boesch, Li
and Suffel [14], Myrvold, Cheung, Page and Perry [57] and Wang [74]) is still
quite incomplete, with a good many open problems remaining to be solved.
The coordinated application of dominations and signatures in such problems
should facilitate progress in this area.
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Table 6.2. Signature Tail Probabilities S(x) = 27
i=x si and Their Ratios

x SG1(x) SG2(x) SG1(x)/SG2(x)

1 1.0 1.0 1.0
2 1.0 1.0 1.0
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
6 1.0 1.0 1.0
7 0.999970 0.999970 1.0
8 0.999787 0.999787 1.0
9 0.999149 0.999149 1.0
10 0.997367 0.997367 1.0
11 0.993612 0.993612 1.0
12 0.985922 0.985922 1.0
13 0.971744 0.971743 1.0000005
14 0.947220 0.947214 1.0000063
15 0.906907 0.906867 1.0000442
16 0.843421 0.843240 1.0002148
17 0.747317 0.746717 1.0008024
18 0.607883 0.606416 1.0024183
19 0.417560 0.415077 1.0059834
20 0.189140 0.186804 1.0125000
21 0.0 0.0 —
22 0.0 0.0 —
23 0.0 0.0 —
24 0.0 0.0 —
25 0.0 0.0 —
26 0.0 0.0 —
27 0.0 0.0 —



7

Applications of Signatures in Reliability
Economics

7.1 Prototypical Problems in Reliability Economics

It is difficult to give a succinct description of the field of Reliability Economics.
At present, the field might be thought of as a somewhat scattered collection
of results in which a decision is made or an action is taken with a view toward
balancing the natural tension that exists between the performance of a sys-
tem and its cost. In assessing the performance characteristics of a particular
system design, for instance, one’s goal would be to identify a system whose
performance is good but whose cost is modest. Three imposing challenges
immediately arise in seeking to address a problem in Reliability Economics
analytically. One must begin by identifying a reasonable way of quantifying
the performance of each system under consideration (perhaps all possible sys-
tems of a given size). One must also quantify the cost of each of these systems.
Recall that the number of system designs under consideration may be huge.
The third challenge is that of determining some reasonable criterion for com-
paring the systems of interest. These challenges are formidable because of
the need to accurately assess each system’s potential performance and actual
cost, a process that can require a substantial amount of expertise. Often, they
are imposing because of the sheer size of the problem. Successfully meeting
the challenges above will invariably involve the development of a problem for-
mulation that is both conceptually sound and analytically tractable. In what
follows, we will devote considerable attention to the presentation and justifi-
cation of a particular formulation of the problem of finding the optimal system
design relative to a specific family of criterion functions that take performance
and cost into account.

It is apparent from the literature on modeling and inference in reliability
that economic concerns have not garnered their due attention. Most published
studies in the field concentrate on performance issues. On the several occa-
sions that I’ve had the opportunity to lecture on the subject of Reliability
Economics, I’ve motivated the interest we should have in the economic ques-
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tions that arise in our field by retelling a story my father told me when I
was young. It seems that there was a boy in my father’s home town who was
roundly regarded as mentally challenged. The town’s elders would gather in
the town square and laugh about the boy’s quirks. One prominent one was
this. Whenever the boy was offered his choice between a nickel and a quarter,
he would immediately take the nickel. This behavior was seen as very amusing.
Anytime there was a guest in town, the boy would be summoned to the town
square and the guest would be prompted to try this experiment first hand.
Sure enough, the boy would take the nickel and be on his way. Unbeknownst
to the cackling folks in the square, the boy would saunter home, go to his
room and toss the nickel into an enormous jar full of nickels. The boy knew
that the choice he had made, long before the current episode, was the choice
between one quarter and a jar full of nickels!

Economic concerns are so natural in the area of reliability that it may
seem surprising that the analytical treatment of problems in Reliability Eco-
nomics is, at present, in a relatively primitive state. General developments
in Reliability Economics are, as of this writing, quite sparse. (One notable
exception is the area of “warranty analysis”). This state of affairs is all the
more curious given the fact that circumstances in which one would be willing
to ignore the economics associated with a reliability problem are extremely
rare. Except for those cases in which either “cost is no object” or one can only
afford the cheapest available system and must accept whatever performance
comes with it, one is naturally inclined to try to optimize relative to one’s
investment. Informally, one can think of the aim of Reliability Economics as
that of “getting the most bang for the buck.” As a result, problems in the
area of Reliability Economics arise frequently and broadly. Many of us make
use of the publication Consumer Reports to assist us in making rational
decisions in balancing performance and cost in the things we buy. The field
extends as well to the U.S. military acquisitions program where the goal is to
develop a system designed to meet certain performance and suitability goals
while respecting the applicable budgetary constraints. In this chapter, we will
focus on the problem of optimal system design. The goal is to identify a sys-
tem that strikes an appropriate balance between one’s positive expectations
regarding its reliability and one’s concerns or constraints regarding cost. The
results presented here are largely drawn from Dugas and Samaniego [33].

It is useful to examine why problems in Reliability Economics have hereto-
fore tended to resist clean analytical solutions. Let us for a moment restrict
our attention to the search for an “optimal” coherent system of order n. While
the entire collection of such systems is easy to enumerate when n is small (as
is done, for example, for n = 3 and n = 4 in Chapters 2 and 3), we know
that the number of distinct coherent systems of order n grows exponentially
with n and is quite overwhelming even for relatively modest values of n. It is
therefore apparent that the problem of finding the best coherent system of a
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given order is, typically, a discrete optimization problem in which the space
to be searched is huge. A second obstacle to the analytical treatment of this
problem is the fact that there has been no obvious, manageable index with re-
spect to which one might optimize. Without such a tool, one must attack the
optimization problem by obtaining the cost and expected performance of each
available system and then comparing the value of the criterion function across
such systems. Not only is the exercise a complex one system by system (since,
for example, estimating a given system’s cost can by itself be a challenging
problem), the exercise must be repeated for every system under considera-
tion. When all coherent systems of a given size are being compared, an exact
cost-benefit analysis of all these systems will almost always be infeasible. We
should mention one seemingly appropriate index for coherent systems in Reli-
ability Economics problems, namely the system structure functions discussed
in Chapter 2. Some of the limitations of this potential index have already been
mentioned. Structure functions tend to be awkward to compute and each has
many equivalent forms. Further, structure functions have the same cardinality
as the class of coherent systems themselves (so their exhaustive computation
is, at best, exhausting) and they have no clear connection to a system’s cost.
Thus, the assessment of system cost would still need to be dealt with system
by system.

These two difficulties – the large discrete space over which the optimiza-
tion is to take place and the absence of an easily managed index for the opti-
mization – have led to the reliance on searching techniques for seeking good
(that is, nearly optimal) solutions as efficiently as possible. The literature on
general search methods for optimization purposes is vast. In the Reliability
Economics framework discussed above, where discrete search methods have
been required, genetic algorithms appear to be the favored approach in the
recent literature. See the monograph by Kuo, Prasad, Tillman and Hwang
[53] and their references for a discussion of the algorithmic approach to con-
strained optimization problems in reliability. Concrete examples of the use of
genetic algorithms in reliability economics problems include papers by Deeter
and Smith [29] and by Usher, Kamal and Sayed [71].

Both of the difficulties mentioned above are directly addressed in our treat-
ment of the problems described in this chapter, one, perhaps unexpectedly,
by making the space of systems to be considered even larger and the other
by indexing that space in a new way. In Chapter 3, we defined the signature
vector s of a system in n i.i.d. components. In this chapter, we will take the
signature vector as an index of the system of interest. Implicit in this selection
is the fact that we are, again, restricting attention to systems whose compo-
nents have i.i.d. lifetimes with common distribution F . While signatures were
initially defined for coherent systems of a given order, limiting their use as an
index for that specific collection merely addresses the same indexing problem
alluded to above. One still has to deal with an optimization problem over a
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potentially huge discrete space. A further difficulty is that, even though the
dimension of the index is bounded (in fact, is equal to the order of the systems
being compared), there are still a great many of them, and their individual
computation can be combinatorially quite complex.

For both practical and analytical reasons, the expansion of the space of
signatures beyond those of coherent systems will pay some positive dividends.
We will, in fact, consider the problem of finding the optimal system in the
Reliability Economics context studied in the sequel by maximizing a chosen
criterion function over the class of all mixed systems of order n. As discussed in
Chapter 3, a mixed system with signature s can be physically realized through
a randomization process that selects a k-out-of-n system with probability sk,
with k ranging from 1 to n. Since the class of mixed systems includes all
coherent systems as special (degenerate) cases, nothing is lost by considering
this larger space. And while the space of signatures of mixed systems based
on coherent systems of order n in i.i.d. components is uncountably infinite
(leading us to replace a discrete search by a search over a much larger space),
the larger problem is much more amenable to analytical treatment, as the
tools of differential calculus become available in the maximization problem of
interest. The optimization problem to which we now turn involves the maxi-
mization of a chosen criterion function over the (n − 1)-dimensional simplex
{s ∈ [0, 1]n |

∑n
i=1 si = 1}. As will be seen in the sequel, we will encounter

problems in which the optimal signature is in fact a coherent system (i.e., a de-
generate mixed system), so that the artifact of randomization serves there only
as a tool for finding the best coherent system analytically. Interestingly, we
will also encounter problems in which a non-degenerate mixed system proves
to be optimal, showing that the strategy of randomizing among a collection of
coherent systems is more than an analytical device. It can in fact lead to the
identification of a mixed system that improves upon any individual coherent
system.

7.2 Optimality Criteria

As mentioned above, the formulation of any Reliability Economics problem
will invariably include the specification of a criterion function that quantifies
the precise manner in which the performance and cost of the system (or pol-
icy) of interest will be weighed relative to each other. There is no question
that the choice of criterion function is, at least in part, a subjective matter
and that its choice over some alternative function will have some influence
upon the outcome of the optimization process. Whatever criterion function is
chosen, it is reasonable to require it to possess two basic properties that seem
essential in Reliability Economics applications: the criterion function should
vary proportionately with measures of system performance and inversely with
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measures of system cost. These properties are equivalent, for example, to the
position that, given two systems with the same performance characteristics,
we would prefer the one which costs less, and given two systems which cost
the same, we would prefer the better-performing system.

The class of criterion functions on which we will focus is general enough to
admit a wide variety of interpretations. As we shall see, however, the subclass
we study in detail, and propose for practical use, does indeed have the two
“essential” properties alluded to above. In treating system performance, two
particular measures seem the most natural: the expected lifetime ET of the
system and the system’s reliability function RT (t) = P (T > t). If the system
has been designed to survive beyond a predetermined mission time t0, then
the reliability RT (t0) at this mission time might be taken as the appropriate
measure of performance. Let us now recall that, for a mixed system of order
n based on components with i.i.d. lifetimes, both RT (t) and ET can be ex-
pressed in terms of the system’s signature and the particular properties of the
component lifetime distribution F . To be more specific, we have from (3.5)
and (3.7) that

RT (t) = P (T > t) =
n∑

i=1

siP (Xi:n > t) (7.1)

and

ET =
n∑

i=1

siEXi:n . (7.2)

Both of these measures have convenient forms, i.e., are linear combinations of
the elements of the signature vector, and both have natural interpretations in
terms of performance.

Similarly, one could model the expected cost of a system as a different
linear combination of the elements of s, that is, as

EC =
n∑

i=1

cisi . (7.3)

One example where such a representation of expected cost arises is the “sal-
vage model” in which there are three fundamental components of cost: CI ,
the initial, fixed cost of manufacturing the systems of interest, the cost A of
an individual component and the salvage value B of a used but working com-
ponent removed after system failure. Assuming that these elements determine
a system’s cost, then the expected cost of the system may be written as

EC =
n∑

i=1

(CI + n(A − B) + iB)si . (7.4)

The criterion function which we use in the sequel is somewhat more general
than simply the ratio of the measures of performance in (7.1) or (7.2) to the
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measures of cost in (7.3) or (7.4). Such ratios serve as notable special cases of
the class of criterion functions on which we will focus. Specifically, the measure
to be used of the relative value of performance and cost has the general form

mr(s,a, c) =
∑n

i=1 aisi

(
∑n

i=1 cisi)
r , (7.5)

where r > 0 and the vectors a and c can be chosen arbitrarily within
the context of two natural constraints: 0 < a1 < a2 < · · · < an and
0 < c1 < c2 < · · · < cn. These monotonicity constraints are motivated by
the intuition that the constants ai and ci are measures of performance and
cost, respectively, and since they are the coefficients of the signature element
si = P (T = Xi:n), both ai and ci should increase as the index i of the order
statistic fatal to the system increases. Without such a requirement, it would
be possible, for example, for a series system to have better performance, on av-
erage, and also cost more, than a parallel system (the respective consequences
of the inequalities a1 > an and c1 > cn, were those inequalities permitted to
hold). Consequences such as these are counterintuitive. Since we expect that
systems that tend to survive through more component failures have better
overall performance and also generally cost more, the constraints on a and
c above are, arguably, both natural and necessary. We note that the mono-
tonicity condition on a is satisfied for the choices of a of primary interest,
namely ai = EXi:n for i = 1, . . . , n or ai = P (Xi:n > t) for i = 1, . . . , n, and
the monotonicity conditions on c seem quite reasonable in general and are
satisfied, in particular, for the salvage model. That a better-designed system
will tend to perform better than a system with a weaker design, but will also
be more expensive, are facts that are both implied by the following result
when the monotonicity constraints on the vectors a and c hold.

Proposition 7.1. Let s1 and s2 be the signatures of two mixed systems based
on n components with i.i.d. lifetimes, and suppose that s1 �= s2 and that
s1 ≤st s2. If b is an n-dimensional vector satisfying 0 < b1 < b2 < · · · < bn,
then it follows that

∑n
i=1 bis1i <

∑n
i=1 bis2i.

Proof. Since s1 ≤st s2, we may write

n∑

i=1

bis1i =
n∑

i=1

(bi − bi−1)
n∑

j=i

s1j <

n∑

i=1

(bi − bi−1)
n∑

j=i

s2j =
n∑

i=1

bis2i ,

where we take b0 = 0 by definition. �

The general form of the criterion function in (7.5) ensures that it will
have the desirable property of being an increasing function of performance
and a decreasing function of cost. It is clear that if a(1) ≤ a(2), where
this vector inequality is interpreted componentwise, then it follows trivially
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that
∑n

i=1 a
(1)
i si ≤

∑n
i=1 a

(2)
i si; similarly, if c(1) ≤ c(2), it follows that∑n

i=1 c
(1)
i si ≤

∑n
i=1 c

(2)
i si. Thus, for example, if the elements of the “perfor-

mance vector” a undergo an increase resulting from an upgrade in component
quality, this will result in an overall increase in our measure

∑n
i=1 aisi of

system performance, and if the elements of the “cost vector” c undergo an
increase due to inflation, this will result in an overall increase in our measure
of the cost

∑n
i=1 cisi of the system.

The denominator of (7.5) requires further comment. Of course the salvage
model serves as motivation for the form of our measure of cost, but a quite
different justification is possible and is both more general and more com-
pelling. Let us assume that it is possible, through appropriate consultation
with experts in engineering design and budgetometry (to coin a term), to ob-
tain an expert assessment of the cost of constructing a k-out-of-n system. Let
ck be equal to that cost. Now suppose that one wishes to assign a cost to a
particular (coherent or mixed) system in n components, with i.i.d. lifetimes
∼ F , having signature vector s. As noted earlier, one can find a mixture of
k-out-of-n systems in n components with i.i.d. lifetimes ∼ F having precisely
the same signature and thus the same performance characteristics (that is,
exactly the same lifetime distribution). Thus, the cost of producing a system
with signature s can reasonably be considered to be the cost of producing the
equivalent mixture of k-out-of-n systems. This latter system is produced using
the probability vector s as the mixing distribution for k-out-of-n systems, and
its expected cost would be exactly

∑n
i=1 cisi. Since the performance of any

system in i.i.d. components can be replicated by a mixed system with a cost
of the form

∑n
i=1 cisi, the use of this linear function of the elements of the

signature vector in the denominator of our criterion function m is quite ap-
propriate. Over repeated applications of the mixed system above, its average
cost would converge to

∑n
i=1 cisi.

Finally, something should be said about the positive parameter r in (7.5).
The exponent r in the denominator of the criterion function serves as a cali-
bration parameter. In some applications, one will wish to weigh performance
and cost differently, and the value of r can be adjusted to accommodate the
application at hand. While setting r equal to 1 seems like the most natural
choice, rendering the criterion roughly interpretable as “performance per unit
cost,” other values of r may be required in particular applications. If control-
ling costs is of special importance, one might choose a value of r greater than
1, as this would accentuate the impact of the system’s cost. On the other
hand, if high performance is seen as essential, a value of r less than one might
be called for. The choice of r will vary with the application, and should be
thought of as a parameter to be selected, upon careful consideration, by the
client who would be using the chosen system.
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The class of criterion functions to which we restrict attention here is by
no means uniquely appropriate to the problem of interest. This choice might
be thought of as carrying the same import as the selection of, say, squared er-
ror loss in a statistical estimation problem. In both scenarios, it is reasonable
to investigate alternative criteria. In the present problem, one might wish to
maximize E(T/C) instead of ET/EC. Further, one might consider different
functional forms for the criterion m or at least introduce some nonlinearity
in the relationships between performance and/or cost and system signatures.
Criterion functions having the form in (7.5) are chosen here for two good
reasons, their desirable monotonicity properties and their amenability to ana-
lytical treatment. The exploration of alternative criteria with respect to which
one might seek to resolve problems in Reliability Economics seems, nonethe-
less, to be both warranted and desirable.

7.3 Characterizing Optimal Systems

We reiterate the tacit assumption made in signature-related analyses that the
systems under consideration have components whose lifetimes are i.i.d. accord-
ing to a common distribution F . Since the optimality results of this section
rely crucially on the choice of criterion function, and the criterion function
in (7.5) is an explicit function of the system signature, applications should
be guided by careful judgments regarding the relevance of these assumptions.
Under the criterion function in (7.5), we will now characterize optimal sys-
tems for arbitrary but fixed r. We treat the cases r = 1 and r �= 1 separately.

Consider first the case in which r = 1. Our search for an optimal system
will begin with an examination of the impact on the criterion function of a
small shift in mass from one element to another in a given signature vector.
Let s be the signature of a mixed system based on n i.i.d. components, and
suppose that the ith and jth elements of s are positive. Assume, without loss
of generality, that 1 ≤ i < j ≤ n. Let s∗ be a signature whose elements are
identical to those of s except for its ith and jth elements, with s∗i = si + ε
and s∗j = sj − ε, where ε obeys the constraint −si ≤ ε ≤ sj . If ε > 0, this
change represents a transfer of mass from sj to si, while if ε < 0, the transfer
of mass is in the other direction. It is convenient, at this point, to subsume the
dependence of the criterion function m on all parameters save the signature,
treating the remaining parameters (that is, a and c) as fixed. The parameter
r is, for now, set equal to 1. We may then write the inequality of interest as

m(s∗) ≥ m(s) . (7.6)

It is easy to verify that for ε > 0 (ε < 0), (7.6) is equivalent to the inequality

aj − ai

cj − ci
≥ (≤)

∑n
i=1 aisi∑n
i=1 cisi

. (7.7)
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Note that the inequality in (7.7) does not depend on the value of ε. This
fact has quite heavy implications! Indeed, it provides sufficient information to
allow us to identify the form of the optimal system. We note first that, for
any fixed vectors a and c, the criterion function is monotone in ε. Suppose a
small positive ε (representing a shift of the amount ε from the jth to the ith
elements of s) causes a positive increase in the criterion function m. Because
the inequality in (7.7) doesn’t depend on ε, one can show that further shifts
of probability from sj to si will cause further increases in m. (Indeed, the
inequality which specifies that consecutive shifts of positive mass ε1 and ε2

from the jth to the ith elements of s further increases the value of m over
its value following the single shift of mass ε1 is easily shown to be equivalent
to (7.7).) We conclude that, in such a circumstance, the maximum possible
increase in m is obtained by shifting the entire amount sj to the element si,
that is, setting the ith element of s equal to si + sj and the jth element of s
equal to zero. A similar argument, leading to a shift of mass in the opposite
direction, obtains when ε is negative. In each case, m is monotone in ε, and
the criterion function will necessarily increase by either shifting all the mass
from sj to si or from si to sj . The main consequence of this argument is that,
if s is a signature vector with at least two non-zero elements, it is always pos-
sible to increase the value of the criterion function by reducing the number
of non-zero elements, that is, by shifting all the mass from one element of s
to another. Repeated application of this procedure leads us to the following
result.

Theorem 7.1. Consider the class of all mixed systems based on n components
with i.i.d. lifetimes. For r = 1, the criterion function m in (7.5) is maximized,
for some k = 1, . . . , n, by the signature sk:n of a k-out-of-n system.

While identifying a specific k-out-of-n system that maximizes the criterion
function m in (7.5) is a straightforward matter, it should be recognized that
the maximizer need not be unique, and if there are two or more such systems
which maximize m, any mixture of these systems will also be optimal. It re-
mains true that, when r = 1, there is always at least one k-out-of-n system
that is as good or better than any other system one might utilize. The collec-
tion of equivalent optimal systems is identified in the result below.

Corollary 7.1. Assume that r = 1 in the criterion function m in (7.5), with
a and c fixed. Let

K∗ =
{

k | k = argmax
i

{
ai

ci
, i = 1, . . . , n

}}
.

Then, for any k ∈ K∗, m is maximized by the k-out-of-n system with signature
s = sk:n as well as by any mixture of i-out-of-n systems with i ∈ K∗.
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Turning our attention to the case in which r �= 1 in the criterion function
in (7.5), we begin by proving the following key lemma. From this result, we
will be able to infer that, given any signature vector with at least three pos-
itive elements, there is a signature having one less positive element that will
attain a criterion value that is at least as large.

Lemma 7.1. Let κ be a fixed positive constant no larger than 1, and let Sκ

be the simplex of vectors s ∈ [0, κ]3 for which s1 + s2 + s3 = κ. Define the
function f : Sκ → R

+ as

f(s) =
b1 +

∑3
i=1 aisi(

b2 +
∑3

i=1 cisi

)r (7.8)

with 0 < a1 < a2 < a3, 0 < c1 < c2 < c3, and b1, b2 ≥ 0. Then f(s)
is maximized over s ∈ Sκ at a point on the boundary of Sκ; i.e. if s∗ ∈
{argmax f(s), s ∈ Sκ}, then at least one of its elements is equal to 0.

Proof. The set Sκ is the convex hull of the set {(κ, 0, 0), (0, κ, 0), (0, 0, κ)}.
Since s1 = κ − s2 − s3, we may write the function f as

f(s) = g(s2, s3) =
x1 + s2x2 + s3x3

(y1 + s2y2 + s3y3)r
(7.9)

where x1 = b1 + κa1, y1 = b2 + κc1 and xi = ai − a1, yi = ci − c1 for i = 2, 3.
We note that the function g in (7.9) is a continuous and differentiable function
of (s2, s3) in the interior of Sκ, and can have an extreme point (that is, a local
maximum or minimum) in the interior of Sκ only if that point is a critical
point of g, that is, simultaneously satisfies the equations ∂g/∂s2 = 0 and
∂g/∂s3 = 0. Setting the first partial derivatives of g with respect to s2 and s3

equal to 0 results in the equations

x2(y1 + s2y2 + s3y3) − ry2(x1 + s2x2 + s3x3) = 0 (7.10)

and
x3(y1 + s2y2 + s3y3) − ry3(x1 + s2x2 + s3x3) = 0 . (7.11)

If x2y3 = x3y2, equations (7.10) and (7.11) have no solutions in the plane,
which implies that the function g has no local extrema, and the desired con-
clusion holds. If x2y3 �= x3y2, equations (7.10) and (7.11) have the unique
solution (s∗2, s

∗
3) given by

s∗2 =
x3y1 − x1y3

x2y3 − x3y2
(7.12)

and
s∗3 =

x1y2 − x2y1

x2y3 − x3y2
. (7.13)
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We now demonstrate that s∗2 and s∗3 must be of opposite signs; this will imply
that the point (κ − s∗2 − s∗3, s

∗
2, s

∗
3) lies outside of the simplex Sκ. The cases

in which (x2y3 − x3y2) is positive or negative are similar. Let us suppose
that (x2y3 − x3y2) > 0. If s∗2 and s∗3 were both positive, we would have,
simultaneously,

a) x2y3 > x3y2, b) x3y1 > x1y3 and c) x1y2 > x2y1 . (7.14)

Since y1, y2 and y3 are positive by assumption, we obtain, after division by
the appropriate y’s, the equivalent inequalities

d)
x2

y2
>

x3

y3
, e)

x3

y3
>

x1

y1
and f)

x1

y1
>

x2

y2
. (7.15)

Note that d) and f) in (7.15) imply that x1/y1 > x3/y3; they are thus incom-
patible with e), showing that s∗2 and s∗3 cannot both be positive. Analyzing
the case in which (x2y3 − x3y2) < 0 yields the same conclusion. Together,
these cases show that the unique critical point of the function f , namely
(κ − s∗2 − s∗3, s

∗
2, s

∗
3), lies outside of the first quadrant and thus outside of the

set Sκ. This in turn implies that the maximizer of the function f in the closed
simplex Sκ must lie on the boundary. �

Theorem 7.2. Consider the class of all mixed systems of order n, and let
0 < r �= 1 in the criterion function in (7.5), with 0 < a1 < a2 < · · · < an

and 0 < c1 < c2 < · · · < cn. Any system signature s∗ maximizing the function
mr(s,a, c) has at most two non-zero elements.

Proof. Suppose that the signature vector s has at least three non-zero el-
ements. Let’s assume that sji

> 0 for i = 1, 2, 3. Note that the criterion
function m can be written as

m(s) =
b1 +

∑3
i=1 aisji(

b2 +
∑3

i=1 cisji

)r , (7.16)

where
b1 =

∑

i�=j1,j2,j3

aisi and b2 =
∑

i�=j1,j2,j3

cisi .

Lemma 7.1 implies that there exists another system with fewer non-zero
elements that has a criterion function value greater than or equal to m(s).
This process can be repeated as long as the resulting signature has at least
three positive elements, eventually arriving at a signature vector s∗ with at
most two non-zero elements for which m(s∗) ≥ m(s). �

Theorem 7.2 implies that an optimal system may be found among the
(
n
2

)

possible mixtures of two k-out-of-n systems. It follows that, when r �= 1, one
can find either a k-out-of-n system or a mixture of at most two k-out-of-n
systems that maximizes the criterion function among all mixed systems of



102 7 Applications of Signatures in Reliability Economics

order n. While the lemma and theorem above leave open the possibility that
an optimal system can always be found among degenerate mixtures, that is,
among the class of the k-out-of-n systems, the following example shows that
this is not the case. When r �= 1, a non-degenerate mixture of coherent sys-
tems may indeed be superior to any individual coherent system relative to the
criterion function in (7.5).

Example 7.1. Let us examine the class of all mixed systems of order two,
including, of course, the two possible coherent systems, the parallel system and
the series system. Let the performance criterion be expected system lifetime
and the cost criterion be the salvage model. Assume that the component
lifetimes are distributed according to the Uniform (0, 1) distribution, so that
(a1, a2) = (µ1:2, µ2:2) = (1/3, 2/3). Letting A = 2, B = 1 and CI = 0 in the
salvage model (so that c1 = 3 and c2 = 4) and letting r = 2.5, the criterion
m in (7.5) is given by

m2.5(s,a, c) =
2
3 − s1

3

(4 − s1)2.5
, (7.17)

where s2 has been replaced by 1 − s1. Upon differentiating m in (7.17) with
respect to s1, it is easy to verify that the value of s1 that maximizes the
function m above is s1 = 2/3. Indeed, the mixed system with signature s∗ =
(2/3, 1/3) is the uniquely optimal system in this problem and outperforms
each of the two coherent systems of order two. �

The example above is sufficient to demonstrate that there are circum-
stances in which the class of coherent systems is suboptimal and that there
exists a mixed system that does better. On the other hand, it is possible to
identify conditions under which only certain types of two-fold mixtures of k-
out-of-n systems can be optimal. Under such conditions, an optimal system
must reside in a restricted subspace of the simplex of n-dimensional proba-
bility vectors. In exploring this possibility, we shall see that the optimality of
non-degenerate mixed systems is not a rare peculiarity, but actually occurs in
problems which might well arise in practice. In the developments that follow,
we identify a particular, quite ordinary, setting in which only series and paral-
lel systems and their mixtures can be optimal. We first establish the following
tool.

Lemma 7.2. Let κ be a fixed positive constant no larger than 1, and let Sκ

be the simplex of vectors s ∈ [0, κ]3 for which s1 + s2 + s3 = κ. Define the
function f : Sκ → R

+ as

f(s) =
b1 +

∑3
i=1 aisi(

b2 +
∑3

i=1 cisi

)r (7.18)
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for a, b and c satisfying 0 < a1 < a2 < a3, b1, b2 ≥ 0 and 0 < c1 < c2 < c3.
For i = 2, 3, let a∗

i = ai − ai−1 and c∗i = ci − ci−1, and assume that

a∗
2

c∗2
<

a∗
3

c∗3
. (7.19)

If f(s) is maximized over Sκ by s∗, then s∗2 = 0.

Proof. Set s1 = κ− s2 − s3 in (7.18), and let g(s2, s3) = f(κ− s2 − s3, s2, s3).
After a little algebra, we have that

∂

∂s2
g(s2, s3) =

A(r)
B(r)

, (7.20)

where

A(r) = a∗
2[b2 + κc1 + s2c

∗
2 + s3(c∗2 + c∗3)] − rc∗2[b1 + κa1 + s2a

∗
2 + s3(a∗

2 + a∗
3)]

and
B(r) = [b2 + κc1 + s2c

∗
2 + s3(c∗2 + c∗3)]

r+1 .

Now, set s3 = κ − s1 − s2 in (7.18), and let h(s1, s2) = f(s1, s2, κ − s1 − s2).
We then have that

∂

∂s2
h(s1, s2) =

C(r)
D(r)

, (7.21)

where

C(r) = −a∗
3[b2 + κc3 − s1(c∗2 + c∗3)− s2c

∗
3] + rc∗3[b1 + κa3 − s1(a∗

2 + a∗
3)− s2a

∗
3]

and
D(r) = [b2 + κc3 − s1(c∗2 + c∗3) − s2c

∗
3]

r+1 .

If the value of either (7.20) or (7.21) is negative, then for each fixed s1 or
s3, shifting mass away from element s2 will cause the value of the criterion
function m to increase. Since the denominators in (7.20) and (7.21) are simply
transformed versions of the denominator in (7.18), they are both positive.
Thus, the signs of both (7.20) and (7.20) are the same as the signs of the
numerators. We now show that, under the assumptions of the theorem, either
one or both of the numerators of (7.20) and (7.21) are negative at any r > 0
and for any value of s2 < κ. Now, the numerators of both (7.20) and (7.21)
are linear functions of r. The numerator in (7.20) is decreasing in r while
the numerator in (7.21) increasing in r. (The latter claim follows from the
fact that the coefficients of r in (7.20) and (7.21) have the appropriate signs).
Setting (7.20) equal to 0 and solving for r, we obtain:

r∗ =
a∗
2

c∗2

[
b2 + κc1 + s2c

∗
2 + s3(c∗2 + c∗3)

b1 + κa1 + s2a∗
2 + s3(a∗

2 + a∗
3)

]
, (7.22)

while setting (7.21) equal to 0 and solving for r, we obtain:



104 7 Applications of Signatures in Reliability Economics

r∗∗ =
a∗
3

c∗3

[
b2 + κc3 − s1(c∗2 + c∗3) − s2c

∗
3

b1 + κa3 − s1(a∗
2 + a∗

3) − s2a∗
3

]
, (7.23)

Now, since s1 + s2 + s3 = κ, we may make the substitution s1 = κ − s2 − s3

in (7.23) to obtain

r∗∗ =
a∗
3

c∗3

[
b2 + κc1 + s2c

∗
2 + s3(c∗2 + c∗3)

b1 + κa1 + s2a∗
2 + s3(a∗

2 + a∗
3)

]
. (7.24)

It is clear from (7.22) and (7.24) that r∗ < r∗∗ if and only if a∗
2/c∗2 < a∗

3/c∗3,
which is precisely the assumed condition in (7.19). But r∗ < r∗∗ implies that,
at any fixed value of r > 0, either one or both of the derivatives (7.20) and
(7.21) are negative. This in turn implies that the function f with positive s2

can be increased by shifting mass away from s2 to either s1 or s3 or both.
Since this is true as long as s2 > 0, it follows that any maxima of f in the
closed simplex Sκ must have s2 = 0. �

The proof of Lemma 7.2 is roughly depicted in the figure below.
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Fig. 7.1. The graph depicts the value of the numerators A(r) and C(r) of (7.20)
and (7.21) as a function of r > 0
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The lemma above provides the necessary tool to investigate the possible
existence of special subclasses of mixed systems to which the search for an
optimal system may be restricted. The result below shows that, under partic-
ular conditions on the vectors a and c of the criterion function of (7.5), the
signature of the optimal system will put all of its mass on series and parallel
systems.

Theorem 7.3. Consider the class of all mixed systems based on n components
with i.i.d. lifetimes, and let mr(s,a, c) be the criterion function in (7.5), with
0 < a1 < a2 < · · · < an and 0 < c1 < c2 < · · · < cn. Denote the successive
differences of the elements of a and c as a∗

i = ai −ai−1 and c∗i = ci − ci−1 for
i = 2, . . . , n. Suppose that

a∗
2

c∗2
<

a∗
3

c∗3
< · · · <

a∗
n

c∗n
. (7.25)

Then for r > 0, the optimal signature is a mixture of a series and a parallel
system.

Proof. Let d be a positive integer no greater that n − 2, and let s1 be a
signature vector with d nonzero elements among the 2nd through (n − 1)st
elements of the signature; label these indices i1 < i2 < · · · < id. We can write

m(s1) =
b1 + a1s11 + ai1s1i1 + a3s1n

(b2 + c1s11 + ci1s1i1 + c3s1n)r
,

where b1 =
∑

aisi and b2 =
∑

cisi, with the sum taken over all values of
i �= 1, i1, n. Under the assumption (7.25), it follows from Lemma 7.2 that there
exists another signature, s2 with s2i1 = 0 and with s2i = s1i for i �= 1, i1, n,
for which m(s2) > m(s1) obtains. Repeating this process, that is, successively
shifting all the mass from each of the d “interior” nonzero elements of s1 to the
elements s11 or s1n or both, one achieves successive increases in the criterion
function m. The resulting signature, after d iterations of this routine, is a
mixture of the signatures of a series system and a parallel system. �

Example 7.2. Consider the class of mixed systems based on n components
with i.i.d. exponentially distributed lifetimes (with common mean µ, say).
Let us take expected lifetime as the performance measure and assume the
salvage model for costs. Since the values of ci are linear and increasing in i,
while the values of ai = EXi:n = µ

∑i
j=1 1/(n − j + 1) are strictly convex

in i, the vectors a and c obey condition (7.25) of Theorem 7.3. Table 7.3
shows the optimal signature for various values of n, r and A. These examples
demonstrate a rather surprising lack of continuity in the nature of optimal
systems, as the best system design “leaps” over all intermediate k-out-of-n
systems, transitioning, as r increases, from a parallel system to mixtures of
parallel and series systems to a series system.
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Table 7.1. The optimal mixtures of 4 and 8 component systems with independent,
exponentially distributed components. The salvage model is assumed with varying
values of A and r, with the constant B set equal to 1 without loss of generality, as
the optimal system depends on A and B only through the ratio A/B.

n = 4 components n = 8 components

A r s1 s4 A r s1 s8

1.5 ≤ 1.6 0 1 1.5 ≤ 1.6 0 1
1.5 1.7 0 1 1.5 1.7 .0967 .9033
1.5 1.8 .0568 .9432 1.5 1.8 .2156 .7844
1.5 1.9 .1768 .8232 1.5 1.9 .3081 .6919
1.5 2 .2727 .7273 1.5 2 .3821 .6179
1.5 2.5 .5606 .4394 1.5 2.5 .6042 .3958
1.5 3 .7045 .2955 1.5 3 .7152 .2848
1.5 4 .8485 .1515 1.5 4 .8262 .1738
1.5 5 .9205 .0795 1.5 5 .8817 .1183
1.5 10 1 0 1.5 10 .9742 .0258
1.5 ≥ 10 1 0 1.5 ≥ 15 1 0
2 ≤ 1.6 0 1 2 ≤ 1.6 0 1
2 1.7 0 1 2 1.7 0 1
2 1.8 0 1 2 1.8 0 1
2 1.9 0 1 2 1.9 0 1
2 2 0 1 2 2 0 1
2 2.5 .1162 .8838 2 2.5 .2232 .7768
2 3 .3712 .6288 2 3 .4295 .5705
2 4 .6263 .3737 2 4 .6357 .3643
2 5 .7538 .2462 2 5 .7388 .2612
2 10 .9663 .0337 2 10 .9107 .0893
2 ≥ 12 1 0 2 ≥ 27 1 0
3 ≤ 1.6 0 1 3 ≤ 1.6 0 1
3 1.7 0 1 3 1.7 0 1
3 1.8 0 1 3 1.8 0 1
3 1.9 0 1 3 1.9 0 1
3 2 0 1 3 2 0 1
3 2.5 0 1 3 2.5 0 1
3 3 0 1 3 3 0 1
3 4 .1818 .8181 3 4 .2548 .7452
3 5 .4205 .5795 3 5 .4531 .5469
3 10 .8181 .1818 3 10 .7837 .2163
3 ≥ 21 1 0 3 ≥ 51 1 0

7.4 Estimating the Relevant Characteristics of the
Component Distribution

Thus far, we have assumed that the underlying component distribution F is
a known quantity and that, consequently, the F -dependent values such as the
expected order statistics {µi:n, i = 1, . . . , n} of the n i.i.d. component lifetimes
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of the systems of interest are known. This assumption will not be satisfied in
practical applications. Thus, utilizing the optimality results above requires
the development of estimators for F or for the functions of that distribu-
tion on which the criterion function m in (7.5) depends. The developments
above serve to identify the mixed system that maximizes the criterion function
mr(s,a, c) in (7.5) for any fixed values of the vectors a and c and the constant
r. The cost vector c and the calibration parameter r involve assessments on
the part of the experimenter (the producer, the consumer or both), and it
seems reasonable to assume that the value of c can be determined, in most
applications of interest, with the assistance of engineering judgment and other
expert advice. Further, the value of r can be chosen to fit a given application,
perhaps with the help of a suitable sensitivity analysis. When no good reason
appears to exist for setting r different from 1, the value r = 1 can serve as a
default setting that can provide useful guidance.

A statistical problem remains to be addressed. The vector a, being a func-
tion of the unknown distribution F , must be estimated from data. For the
vector a = (µ1:n, . . . , µn:n) of the expected order statistics of the components’
lifetimes (the most natural choice for these performance-related constants),
applying the optimality results above calls for reliable estimates of these µ’s.
We will hereafter assume, for concreteness, that this specification of the vec-
tor a has been chosen. The developments below are directed exclusively at
the estimation of {µi:n, i = 1, . . . , n}. Specifically, consistent, asymptotically
normal estimators of these parameters are developed below. It is then demon-
strated that the maximized criterion function utilizing these estimates of the
expected order statistics can be made arbitrarily close to the true maximum
value, that is, that the optimal design relative to an estimated criterion func-
tion will eventually be ε-optimal, for arbitrary ε > 0, as the data set upon
which our estimates are based grows.

The approach taken below to estimating µi:n requires access to data from
an auxiliary experiment yielding a random sample of N component lifetimes
having the common distribution F . In an environment in which the systems
under consideration have components with i.i.d. lifetimes, it is reasonable to
expect that a sample of such components would be available for independent
life testing. The failure times of these N components can be used to esti-
mate the expected order statistics {µi:n, i = 1, . . . , n} of the lifetimes of the
n components upon which the systems of interest rely. One might estimate
µi:n by taking repeated bootstrap samples of size n from X1, . . . , XN ; the
average of the ith largest values of each bootstrap sample stands to yield a
good approximation of µi:n. The estimator proposed below is closely related
to this empirical procedure. It is the expected value of the bootstrap estimate
given the observed values x1, . . . , xN . Hutson and Ernst [45] proposed such
an estimator for µi:n based only on samples of size n from F . The estimator
proposed for study here is based on random samples of arbitrary size N from
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F .

For a continuous distribution F , the expected value of the ith order sta-
tistic from a sample of size n from F can be represented by the familiar
expression

µi:n =
∫ ∞

−∞
Be(i, n − i + 1)x(F (x))i−1(1 − F (x))n−idF (x) , (7.26)

where Be(α, β) = Γ (α + β) / Γ (α)Γ (β) for α > 0 and β > 0. Since we will be
interested in estimating µi:n from an independent sample of size N , we will
find the following alternative expression more useful:

µi:n =
∫ 1

0

Be(i, n − i + 1)ui−1(1 − u)n−iF−1(u) du

=
N∑

j=1

∫ j/N

(j−1)/N

Be(i, n − i + 1)ui−1(1 − u)n−iF−1(u) du . (7.27)

The “analog estimator” of µi:n is obtained by replacing F−1(u) in (7.27) by the
sample quantile function, that is, by replacing F−1(u) for u ∈ ((j−1)/N, j/N)
by F̂−1(u) = X[Nu]+1:N , where [y] is the greatest integer less than or equal
to y. This substitution leads to the estimator

µ̂i:n =
N∑

j=1

{∫ j/N

(j−1)/N

Ji:n(u) du

}
Xj:N , (7.28)

where Ji:n(u) = Be(i, n − i + 1)ui−1(1 − u)n−1. The estimator µ̂i:n is the
expected value of Xi:n under assumed sampling from the empirical distribu-
tion FN of the observed component failure times X1, . . . , XN . It is an explicit
formula for the mean bootstrap estimate of µi:n based on repeated samples
of size n from x1, . . . , xN . For our purposes, a more important feature of the
estimator µ̂i:n is the fact that it is an L-estimator, that is, a linear combina-
tion of order statistics. This fact makes available for application in the present
problem the extensive literature and theoretical developments that exist for
such estimators. We take a brief digression here to make note of some relevant
background on L-estimation.

The study of L-estimators over the years has largely been motivated by
the interest in robust methods of estimation. When estimating a location pa-
rameter, for example, it has long been known that the extreme order statistics
in one’s sample tend to have a strong and often undesirable influence on an
estimator’s precision. Of course the mean X of a sample of size N is itself an L-
estimator (since it can be expressed as the linear combination

∑
(1/N)Xi:N ),

but it is not typical of the L-estimators employed to estimate the population
mean. Because of the strong influence that extreme order statistics can have
on X, alternative L-estimators like the sample median, trimmed means (which
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assign weight zero to a certain percentage of the sample among the largest and
the smallest observations) or more refined estimators of the form

∑
wj:NXj:N ,

which assign higher weights to observations close to the middle of the data
and lower weights to outlying observations, are typically recommended for
practical use. A detailed treatment of the early history of L-estimators can be
found in Stigler [69]. Prominent among the early contributors to the theory
of L-estimation include Bickel, Govidarajulu, Stigler, Shorack and van Zwet.
Reviews of the L-estimator literature can be found in Chapter 1 of Helmers
[41], in Shorack and Wellner [67], and in Chapter 22 of van der Vaart [72].

All existing results on the consistency or asymptotic normality of estima-
tors of the form

∑
wj:NXj:N require restrictions on both the weights wj:N and

on the underlying distribution F . Published results are often non-comparable
in that some make strong assumptions about the weights and weak assump-
tions about F while others do the opposite. The goal of balancing these two
ways of restricting the sum to obtain asymptotic stability can be achieved in
a variety of ways. From equation (7.28), we note that µ̂i:n is an L-estimator
with weights,

wj:N =

{∫ j/N

(j−1)/N

Ji:n(u) du

}
. (7.29)

These weights are generated from the integral of a bounded continuous func-
tion with bounded derivative existing almost everywhere. This particular
choice of weights will thus tend to satisfy the most stringent of regularity
conditions typically placed on the weights. Because of this, we shall be able to
obtain a satisfactory asymptotic theory for the estimators {µ̂i:n} while placing
minimal restrictions on F .

Van Zwet [73] established the strong consistency of L-estimators under the
relatively mild assumptions specified in the theorem below. His proof applies
Hölder’s inequality to the difference |µ̂i:n − µi:n| (see Hewitt and Stromberg
[42], pp. 188 - 190, for relevant definitions). We state van Zwet’s [73] the-
orem without proof. It provides for strong rather than weak consistency of
L-estimators, in contrast with most consistency results in the literature on L
statistics.

Theorem 7.4. Consider functions F and J used in defining µi:n and µ̂i:n in
equations (7.27) and (7.28), and assume that J ∈ Lp and F−1 ∈ Lq with
(1/p+1/q) = 1. Let X1, . . . , XN be i.i.d ∼ F , and assume that E(|X1|1+α) <
∞, where α > 0. If µ̂i:n is the L-estimator given in (7.28), then, for every
fixed i and n, µ̂i:n → µi:n with probability 1.

The asymptotic distribution theory for µ̂i:n will provide the rate of its
convergence to µi:n and will fully characterize the estimator’s asymptotic be-
havior. To achieve the desired results, we employ the theory of statistical
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functionals (see, for example, Fernholz [38]). We proceed by expressing the
target parameter as a statistical functional. We then show that the Taylor se-
ries expansion of an empirical counterpart of the functional has a linear term
to which the central limit theorem applies and a remainder term converging
to zero at an appropriate rate. The mild condition on F that will be required
in these developments is the existence of a finite second moment.

Let us define the statistical functional T (F ) as follows:

T (F ) =
∫ ∞

−∞
xJi:n(F (x)) dF (x) , (7.30)

an integral that may alternatively be written as

T (F ) =
∫ 1

0

F−1(u)Ji:n(u) du . (7.31)

We proceed by taking the Taylor series expansion of T (F + t(FN −F )) about
t = 0:

T (FN )−T (F ) = T (1)(F + t(FN − F ))
∣∣∣
t=0

+
∞∑

k=2

1
k!

T (k)(F + t(FN − F ))
∣∣∣
t=0

.

(7.32)
Expressions for the derivatives in (7.32) are given in the following result.

Lemma 7.3. For k = 1, 2, . . .,

T (k)(F + t(FN − F )) =
dk

dtk
[T (F + t(FN − F )]

=
∫ ∞

−∞
x(FN (x) − F (x))kJ

(k)
i:n (F (x) + t(FN (x) − F (x))) dF (x)

+ k

∫ ∞

−∞
x(FN (x) − F (x))k−1

×J
(k−1)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)]

+ t

∫ ∞

−∞
x(FN (x) − F (x))k

×J
(k)
i:n (F (x) + t(FN (x) − F (x)) d[FN (x) − F (x)] . (7.33)

Proof. By Fubini’s theorem, one may pass the first derivative under the inte-
gral sign and verify that the theorem holds for k = 1. We proceed by induction.
Assuming that the theorem holds for a fixed positive integer k, we consider
the (k + 1)st derivative. We have
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dk+1

dtk+1
[T (F + t(FN − F )] =

d
dt

{
dk

dtk
[T (F + t(FN − F )]

}

=
d
dt

∫ ∞

−∞
x(FN (x) − F (x))kJ

(k)
i:n (F (x) + t(FN (x) − F (x))) dF (x)

+ k
d
dt

∫ ∞

−∞
x(FN (x) − F (x))k−1

×J
(k−1)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)]

+ t
d
dt

{∫ ∞

−∞
x(FN (x) − F (x))k

× J
(k)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)]

}
(7.34)

=
∫ ∞

−∞
x(FN (x) − F (x))k+1J

(k+1)
i:n (F (x) + t(FN (x) − F (x))) dF (x)

+ k

∫ ∞

−∞
x(FN (x) − F (x))kJ

(k)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)]

+
∫ ∞

−∞
x(FN (x) − F (x))kJ

(k)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)]

+ t

∫ ∞

−∞
x(FN (x) − F (x))k+1

×J
(k+1)
i:n (F (x) + t(FN (x) − F (x))) d[FN (x) − F (x)] . (7.35)

Combining the second and third integrals in (7.35), we see that the (k + 1)st
derivative obeys the prescription in (7.33). �

Next, we rewrite the first term on the right-hand side of (7.32) using
integration by parts:

T (1)(F + t(FN − F ))
∣∣∣
t=0

=
∫ ∞

−∞
x(FN (x) − F (x))J (1)

i:n (F (x)) dF (x)

+
∫ ∞

−∞
xJi:n(F (x)) d[FN (x) − F (x)]

=
∫ ∞

−∞
x(FN (x) − F (x))J (1)

i:n (F (x)) dF (x)

−
∫ ∞

−∞
(FN (x) − F (x)) d[xJi:n(F (x))]

= −
∫ ∞

−∞
(FN (x) − F (x))Ji:n(F (x)) dx

= − 1
N

N∑

j=1

∫ ∞

−∞
(I(−∞,x)(Xj) − F (x))Ji:n(F (x))dx .

(7.36)
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Invoking Fubini’s Theorem, we see that the i.i.d. random variables in (7.36)
have expectation 0. Since E(X2) < ∞, we obtain, again using Fubini’s The-
orem, the following variance expression for an arbitrary term in the sum in
(7.36):

σ2
i:F = E

[∫ ∞

−∞
(I(−∞,x)(Xj) − F (x))Ji:n(F (x)) dx

]2

= E

∫ ∞

−∞

∫ ∞

−∞
(I(−∞,x)(Xj) − F (x))(I(−∞,y)(Xj) − F (y))

×Ji:n(F (x))Ji:n(F (y)) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
Ji:n(F (x))Ji:n(F (y))[min(x, y) − F (x)F (y)] dxdy . (7.37)

Applying the central limit theorem to the sum in (7.36), we may identify the
asymptotic distribution of µ̂i:n. This follows from the fact that

√
N

∞∑

k=2

1
k!

T (k)(F + t(FN − F ))
∣∣∣
t=0

p−→ 0 ,

as is shown below.

Theorem 7.5. Let X1,X2, . . . , XN be i.i.d. with common distribution F , and
assume that 0 < E(X2

1 ) < ∞. For every fixed i = 1, 2, . . . , n,

√
N(µ̂i:n − µi:n) D−→ Y ∼ N(0, σ2

i:F ) ,

where σ2
i:F is given in (7.37).

Proof. Note that, since Ji:n(u) is a polynomial of degree n − 1,

J
(n+j)
i:n (u) = 0 for j = 0, 1, 2, . . . ;

it follows that ∞∑

k=n+1

1
k!

T (k)(F + t(FN − F ))
∣∣∣
t=0

= 0 .

Moreover, we may write

J
(k)
i:n (u) =

n!
(n − k)!

k∑

j=0

(−1)j

(
k

j

)
Ji−j:n−k(u), for k = 1, 2, . . . , n − 2 ,

where Ji−j:n−k(u) = 0 whenever i − j ≤ 0 or i − j ≥ n − k. Since Ja:b(u) is

bounded for all 0 ≤ a ≤ b ≤ n, this shows that
∣∣∣J (k)

i:n (u)
∣∣∣ is bounded.
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We now show the convergence of the remaining terms in (7.32) to zero,
that is,

√
N

n∑

k=2

1
k!

T (k)(F + t(FN − F ))
∣∣∣
t=0

p−→ 0 . (7.38)

It suffices to show that the quadratic term (i.e., the term in which k = 2)
converges to 0. The higher order terms (with k ≥ 3) converge at least as fast
to 0 as the quadratic term since |FN (x)−F (x)| ≤ 1 and for all k, |J (k)

i:n | < Mk

for some Mk < ∞. Now

√
N

1
2!

T (2)(F + t(FN − F ))
∣∣∣
t=0

=
1√
N

∫ ∞

−∞
x
[√

N(FN (x) − F (x))
]2

J
(2)
i:n (F (x)) dF (x) (7.39)

+
2√
N

∫ ∞

−∞
x
√

N(FN (x) − F (x))J (1)
i:n (F (x))d[FN (x) − F (x)] . (7.40)

To show that the quantities in (7.39) and (7.40) each converge to 0 in prob-
ability, we apply Donsker’s Theorem (see, for example, van der Vaart [72])
to deduce that

√
N supx(FN (x) − F (x)) = Op(1). Let M2 be such that

|J (2)
i:n (F (x))| < M2. Then the convergence of (7.39) to 0 follows from

∣∣∣∣
1√
N

∫ ∞

−∞
x
[√

N(FN (x) − F (x))
]2

J
(2)
i:n (F (x)) dF (x)

∣∣∣∣

≤ 1√
N

∫ ∞

−∞

[
sup

x

√
N(FN (x) − F (x))

]2 ∣∣∣xJ
(2)
i:n (F (x))

∣∣∣ dF (x)

≤ 1√
N

Op(1)M2

∫ ∞

−∞
|x| dF (x)

= Op

(
1√
N

)
.

The convergence of (7.40) to zero follows by a similar argument:
∣∣∣∣

2√
N

∫ ∞

−∞
x
√

N(FN (x) − F (x))J (1)
i:n (F (x)) d[FN (x) − F (x)]

∣∣∣∣

≤
∣∣∣∣

2√
N

∫ ∞

−∞

√
N sup

x
|FN (x) − F (x)| ×

∣∣∣xJ
(1)
i:n (F (x))

∣∣∣ d[FN (x) + F (x)]
∣∣∣∣

≤ 2√
N

Op(1)M1
1
N

N∑

j=1

|Xj | +
2√
N

Op(1)M1

∫ ∞

−∞
|x| dF (x)

= Op

(
1√
N

)
.

The two bounds above serve to establish that



114 7 Applications of Signatures in Reliability Economics

√
N

1
2!

T (2)(F + t(FN − F ))
∣∣∣
t=0

p−→ 0 ,

as claimed. �

7.5 Approximately Optimal System Designs

In this section, it will be shown that the consistency of each âNi = µ̂i:n

demonstrated above implies that mr(s∗N ; âN ; c) converges to mr(s∗;a; c) in
some appropriate sense, where s∗ is the true optimal signature and

s∗N = argmax
s

{ ∑n
i=1 âNisi

(
∑n

i=1 cisi)
r

}
. (7.41)

In the following theorem, conditions are specified under which the optimized
approximate criterion function converges to the true maximum of mr(s;a; c)
over all signature vectors s ∈ [0, 1]n.

Theorem 7.6. Let mr(s;a; c) be the criterion function in (7.5), where a and
c satisfy the constraints 0 < a1 < a2 < · · · < an and 0 < c1 < c2 < · · · < cn.
Let a∗ be the true value of a. If âN is the estimated value of a based on a
random sample of size N , and âN

p−→ a∗ as N → ∞, then

mr(s∗N ; âN ; c)
p−→ mr(s∗;a∗; c) . (7.42)

Proof. We will develop an appropriate upper bound for the distance between
the quantities of interest. Note that

|mr(s∗N ; âN ; c) − mr(s∗;a; c)| =
∣∣∣∣sup

s
mr(s; âN ; c) − sup

s
mr(s;a∗; c)

∣∣∣∣

≤ sup
s

|mr(s; âN ; c) − mr(s;a∗; c)|

≤ sup
s

∣∣∣∣

∑n
i=1 âNisi

(
∑n

i=1 cisi)
r −

∑n
i=1 a∗

i si

(
∑n

i=1 cisi)
r

∣∣∣∣

≤ (c1)−r sup
s

∣∣∣∣∣

n∑

i=1

(âNi − a∗
i )si

∣∣∣∣∣

≤ (c1)−r max
i

|âNi − a∗
i | = op(1). �

The underlying component lifetime distribution F is unknown in virtually
all practical settings in which the optimality results of section 7.3 might be
of interest. In such settings, the vector of expected order statistics a can be
consistently estimated from auxiliary experiments. Theorem 7.6 shows that, if
F is assumed to have a finite second moment, the optimality results of section
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7.3 are applicable with the vector of expected order statistics a replaced by
the consistent estimator âN . When N is sufficiently large, the optimal value
mr(s∗N ; âN ; c) of the approximate criterion function can be made arbitrarily
close to the true optimal value mr(s∗;a∗; c) with high probability. One thus
has the mechanisms needed to identify ε-optimal systems, for arbitrary ε > 0,
based on the sampling experiments used to obtain our estimates of the ex-
pected order statistics of the component lifetimes.

There is always an element of uncertainty in applying asymptotic theory
to problems that occur in practice. A perennial question that arises is how
large a sample size is needed for the asymptotic approximation of interest to
hold. In the present context, one might ask how large the auxiliary sample
size N would need to be for the “approximately optimal” system to be close
to the true optimal system (in the sense of Theorem 7.6). To gain some insight
into this question, Dugas and Samaniego [33] carried out a simulation to com-
pare approximate and true optimal systems in a particular problem involving
systems of order 4. Component lifetimes were assumed to be independent ex-
ponential variables with mean 1. Dugas and Samaniego took the cost vector
in the criterion function m of (7.5) to be c = (2, 3, 4, 10) and the calibration
parameter to be r = 1. The true values of the expected order statistics from
Exp(1) are (1/4, 7/12, 13/12, 25/12). From Corollary 7.1, the optimal system
is found to be the 3-out-of-4 system with signature s = (0, 0, 1, 0). Samples of
size N = 100 were repeatedly generated from the distribution F = Exp(1).
The data below were displayed as an example of a typical (ordered) outcome
among their 200 replications.

Table 7.2. One hundred simulated Exp(1) variables.

0.025 0.064 0.065 0.069 0.075 0.081 0.091 0.094 0.094 0.100
0.133 0.145 0.174 0.175 0.181 0.189 0.214 0.219 0.228 0.235
0.262 0.273 0.276 0.278 0.283 0.321 0.324 0.333 0.346 0.393
0.407 0.407 0.442 0.444 0.485 0.507 0.524 0.528 0.536 0.558
0.567 0.579 0.599 0.609 0.609 0.625 0.651 0.701 0.708 0.709
0.721 0.730 0.741 0.827 0.870 0.889 0.902 0.913 0.926 0.944
0.953 0.973 0.997 1.052 1.150 1.150 1.156 1.185 1.198 1.291
1.313 1.330 1.351 1.486 1.507 1.529 1.588 1.624 1.636 1.731
1.747 1.768 1.831 1.880 1.908 1.915 1.934 1.966 2.403 2.415
2.453 2.642 2.726 2.907 3.160 3.840 3.958 4.796 4.926 6.094

From the data above, the estimate of a can be calculated to be â =
(0.2801, 0.6261, 1.1571, 2.2913), and the ratios of âi to ci are given by 0.1401,
0.2087, 0.2893 and 0.2291. Thus, for these data, the process of approximating
the expected order statistics of F by the L-estimators in (7.28) leads to an
“approximately optimal” system that is in fact optimal. The most impressive
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aspect of the simulation is the fact that the “approximately optimal” system
coincided with the true optimal system in each of the 200 simulations based on
100 Exp(1) variables. This suggests that the estimation approach developed
above has the potential to work with substantial dependability even when the
size of the auxiliary sample is small to moderate. The success of the approach
is, of course, dependent on the underlying distribution F , the applicable cost
vector c and the calibration parameter r.

7.6 Discussion

Many problems in the area of Reliability Economics have heretofore proven
to be quite resistant to analytical treatment. In contrast, the formulation of
the problem treated above makes an analytical treatment completely feasible.
The key technical ingredients have been (i) the use of system signatures as an
index for the systems under consideration, (ii) the identification of a particular
class of reasonable criterion functions that depend on the system design solely
through the signature and (iii) the broadening of the class of coherent systems
to the class of mixed systems, making the criterion function m a continuous
function of the family of n-dimensional probability vectors. In this framework,
it is possible to characterize optimal system designs precisely instead of sim-
ply approximating them using searching techniques. In the problems to which
the present formulation applies, this represents a useful conceptual advance.
To apply these optimization results in practice, that is, when the underly-
ing component distribution F is unknown, one must estimate the features
of the criterion function that depend on F . For the important case where F
influences the criterion function through its expected order statistics {µi:n},
specific estimators for these parameters have been proposed (assuming the
availability of an auxiliary sample of component lifetimes), and their consis-
tency and asymptotic normality have been confirmed. Finally, it has been
shown that the system which optimizes the approximate criterion function
will be ε-optimal relative to the true criterion function when the size of the
auxiliary sample is sufficiently large. We conclude this section with some dis-
cussion regarding the envisioned domain of application of these results.

Throughout this monograph, we have made the assumption that the com-
ponents of the systems of interest have i.i.d. lifetimes. Since the notion of
system signature extends beyond this setting, generalizations of these results
are possible. There are, however, some technical obstacles to such generaliza-
tions. These are discussed and briefly explored in the concluding chapter. The
results established here serve several purposes. First, they represent a concrete
entrée into a challenging area of application with an approach that permits
an analytical treatment of optimization problems. Secondly, the theory devel-
oped is directly applicable to systems in i.i.d. components, be they the chips
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or wafers in a computer, optical cables in a communication network or bat-
teries in a flashlight. Finally, since the i.i.d. assumption “evens the playing
field” when comparing two competing systems, these results provide a useful
benchmark when comparing system designs. The optimal system in an i.i.d.
scenario can reasonably be expected to perform well, if not optimally, in a
“neighborhood” of that scenario, and perhaps even more broadly.

Finally, let us briefly revisit the notion of mixed systems, as they have
been a key feature of the formulation and solution of the problem considered
in this chapter. The use of mixed strategies in game theory and the use of
randomized decision rules in decision theory are essential in the search for and
identification of optimal procedures. From a mathematical point of view, the
use of randomization in statistical work is beyond reproach. One simply can’t
have a comprehensive optimization theory without them. In the problems
studied here, we’ve seen that a mixed system may well dominate all other fea-
sible solutions (including all non-randomized solutions – the coherent systems
themselves). Table 7.3 demonstrates quite vividly that mixed systems do in
fact, in a setting as common as exponential life testing, provide “the best bang
for the buck.” While acknowledging this mathematical reality, one might still
ask whether mixed systems have true functionality. Can they be employed in
practice? Will an engineer accept the fact that, in a given situation, he/she
should use a mixed system which is specified by using a randomization de-
vice? A consumer may be uncomfortable with the supplier’s randomization,
providing him/her, for example, with a series system with probability 1/2
and a parallel system with probability 1/2. The fact remains that if the con-
sumer is going to make repeated use of these types of systems, the sequence of
systems provided according to the optimal mixture produces the best results
when performance and cost are considered simultaneously. The consequences
of using a suboptimal system can, of course, be measured and compared by
their corresponding values of mr(s;a; c).

The real domain for application of the results in this chapter is in prob-
lems in which a large number of systems will be purchased and used. The
developments above suggest that it may be best to randomize in the use of
the collection of systems used. To make the argument for the use of mixtures
more concrete, consider a car rental company in the process of purchasing a
new fleet of cars. Suppose that a mixed strategy that dictates purchasing new
cars according to a fixed mixing distribution rather than to buying the same
model repeatedly is found to be optimal with respect to a “performance per
adjusted unit cost” criterion. Using such a strategy, that is, mixing these pur-
chases according to the prescribed recipe, would produce an optimal overall
result.

An interesting feature of these results is that optimality can be achieved
by restricting attention to k-out-of-n systems and mixtures thereof. It is also
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worth noting that particular k-out-of-n systems are often optimal in the class
of all mixed systems (always if r = 1). In fact, in the general framework we
have studied, the system one should employ in any given application will never
involve a mixture of more than two such systems. Thus, the implementation
of the optimal mixing strategy is, in the end, a fairly painless exercise.
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Summary and Discussion

8.1 Introduction

There are many problems of probability and statistics in which characterizing
a large and awkward space of objects by a simpler index of the space facilitates
analysis and makes the identification of optimal or at least rational solutions
possible. The notion of a sufficient statistic, one that can reduce the data to
a simple summary measure without loss of information about the unknown
features of the model involved, is perhaps the quintessential example of this
phenomenon. In linear model theory, results on dimension reduction have the
same aim, though the possibility of such reduction without some (at least
minor) loss of information is rarely possible. In this latter case, the compro-
mise is generally deemed to be worth making. The theory and applications
of system signatures can be thought of in the same way. The signature of a
system is a characteristic of the system’s design which captures an essential
feature of that design. Specifically, it provides a measure of how component
failures influence system failures when the components are independent and
have the same lifetime distributions. As mentioned earlier, this leveling of
the playing field among the components’ theoretical performance allows one
to focus exclusively on system design. Signatures are deterministic measures
that are properly classified as tools within the field of Structural Reliability,
providing information solely about the design of the corresponding system.

Regarding the information lost in using a signature vector as a proxy for a
particular system design, there are two sources of lost information that require
mention. The first is that there is not a one-to-one correspondence between
systems and signatures. There are, for example, only 17 distinct signatures
among the 20 different coherent systems of order 4. There are three pairs of
systems of order 4 that have the same lifetime distributions when the com-
ponent lifetimes are i.i.d. with a common distribution F . Of course, all 20
system lifetime distributions would differ if one relaxes the i.i.d. assumption.
Secondly, the lifetime distributions of the components of most real systems
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cannot reasonably be considered identical. The independence of the compo-
nent lifetimes is a less restrictive assumption, but dependencies can certainly
occur due to stress, wear-out or early failures, and a theory for comparing
two systems which relaxes both the independence and identically distributed
assumptions could well be viewed as the ultimate goal of the type of analyses
developed in this monograph.

This final chapter has several purposes. I will present, in Section 8.2, an
overview of the theory and applications of system signatures, summarizing
what I consider to be the highlights of the present monograph. This will in-
clude some brief commentary on the definition and interpretation of system
signatures, related representations of system lifetime distributions, preserva-
tion and characterization results based on traditional stochastic orders, al-
ternative signature-based metrics for comparing systems, the relationship be-
tween dominations and signatures in the context of communication networks
and the search for optimal systems in a Reliability Economics setting. Possi-
ble extensions of the developments mentioned above are discussed in Section
8.3, where I attempt to provide some indication of the extent of generalization
that appears to be feasible. In Section 8.4, I will review some signature-related
literature that has not been mentioned in this monograph but gives further
evidence of the broad applicability of the concept. Finally, in Section 8.5, I
will mention a number of open problems for which solutions would be most
welcome. In the spirit of the great mathematician Paul Erdös, I will offer
financial rewards for published solutions to these problems. Being of compar-
atively modest means, however, I cannot match the tantalizing offers that
Erdös enjoyed sprinkling throughout his lectures. I will pay 50 cents for so-
lutions to easy problems and 1 dollar for solutions to hard ones. While these
miserly offers won’t serve as much of an incentive for anyone to work on these
problems, I will count on old-fashioned self satisfaction, plus the right to add
something like “Winner of the Samaniego Prize for Contributions to Signature
Theory - 2043” to one’s resume, as sufficient inducement for readers to spend
at least a few minutes considering the problems I will mention. (Don’t worry
about the year of the prize; a generous endowment has been added to my will
which will sustain this prize indefinitely. Indeed, because of this endowment,
I am able to extend the range of the prize to any contribution to signature
theory that I or my descendents deem to be “not bad.”)

8.2 A Retrospective Overview

The signature of a system of order n whose components have i.i.d. lifetimes
with common distribution F has been defined as an n-dimensional probability
vector s whose ith element is si = P (T = Xi:n), where T is the system’s life-
time and Xi:n is the ith ordered component lifetime. As the order statistics of
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a random sample are stochastically ordered, it is clear from the definition of
signatures that probability vectors s which place most of their weight on the
larger integers in the set {1, 2, . . . , n} will correspond to the better performing
systems simply because these systems will tend to fail later, that is, they will
fail upon the failure of one of the larger order statistics. It has been shown
that these particular proxies for system designs give rise to representations
of systems’ survival functions, and also of the systems’ density and failure
rate functions when the underlying component distribution F is absolutely
continuous. These representations are used as essential tools in studying the
performance of individual systems in i.i.d. components and in comparing such
systems with each other. In the latter context, it is shown in Chapter 4 that
the existence of certain ordering relationships between the signatures of two
systems ensures that a similar relationship holds between the systems’ life-
times. Such preservation results are established for stochastic, hazard-rate and
likelihood-ratio ordering between signature vectors of the same size. The suffi-
cient conditions of these preservation theorems are extended in Section 4.4 to
necessary and sufficient conditions on two signature vectors for the aforemen-
tioned relationships between system lifetimes to hold. Theorem 3.2, a result
that establishes a recursive relationship between a given system’s signature
and that of a system of an arbitrary larger size having the same lifetime dis-
tribution, renders comparisons between systems of different sizes feasible.

Both of the developments mentioned above – the signature-based repre-
sentations of system behavior and the relationships between signatures that
imply or characterize similar relationships between system lifetimes – hold for
all coherent systems and hold as well for all stochastic mixtures of coherent
systems. It has been argued that the notion of mixed systems is more than a
mathematical artifact which extends the reach of some theoretical results of
interest and serves as a useful tool in certain optimization problems. Indeed,
in applications in which a given system is to be used repeatedly, a mixed
system represents a potential selection among systems. Its implementation
can be physically realized through a simple process of randomization. In the
i.i.d. setting studied here, employing a mixed system involves the selection,
in each particular instance of its use, of a coherent system chosen according
to a fixed probability distribution. Further, since for any (coherent or mixed)
system in i.i.d. components, there exists a mixture of k-out-of-n systems with
the same lifetime distribution, one can restrict attention to the class of k-out-
of-n systems in carrying out the randomized selection of a coherent system at
each stage of the application. In Chapter 7, examples of problems are given
in which the optimal system relative to a chosen criterion function is not a
coherent system but rather a nondegenerate mixture of k-out-of n systems.
Thus, in selected circumstances, a particular mixed system can exhibit better
expected behavior than any competing coherent system and can thus be rea-
sonably recommended for practical use. The natural domain of applicability
of mixed systems is in settings in which the opportunity to select a system for
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a particular purpose occurs repeatedly.

The various forms of stochastic ordering considered in Chapter 4 have
the common characteristic of generating only a partial order among signa-
ture vectors or system lifetimes. Even the most liberal of these orderings, the
“st” order, will not apply to all possible pairs of coherent systems, and there
are uncountably many pairs of mixed systems that are not comparable via
stochastic ordering. In Section 5.4, this limitation is addressed through the
consideration of an alternative metric between system lifetimes. If T1 and T2

are the lifetimes of two mixed systems in i.i.d. components and the orders of
these systems are potentially different, then T1 is said to stochastically pre-
cede T2 if and only if P (T1 ≤ T2) ≥ 1/2. Three characteristics of the “sp”
metric that make it especially useful in comparing systems are that (i) any two
mixed systems of arbitrary size are necessarily comparable, that is, the first
is better than, equivalent to or worse than the second, and (ii) the relevant
probability P (T1 ≤ T2) is independent of the underlying common component
lifetime distribution F , that is, it is distribution-free (provided only that F
is continuous) and (iii) a closed form expression for computing P (T1 ≤ T2)
is available (and is given in Lemma 5.2). This type of comparison offers a
potential refinement of comparisons via the traditional stochastic orderings
when the latter yield inconclusive results.

The comparative reliability of communication networks is a research area
that abounds with problems having both theoretical interest and practical im-
portance. As is typical in the field, a given network is pictured as an undirected
graph with a certain number of vertices and with a set of edges connecting dif-
ferent pairs of vertices. The primary problem of interest is the determination
of the probability that a given set of vertices can communicate with another
set. Two scenarios of special interest are the “two-terminal” problem, where
interest is restricted to the question of whether two particular vertices are con-
nected, and the “all terminal” problem, where the probability that each vertex
can communicate with every other vertex is of primary interest. In these and
other communication network problems, much attention has been given to the
problem of computing the reliability of the network of interest. In Chapter
6, our focus is directed at one particularly efficient mode of computation of
network reliability – Satyanarayana’s theory of dominations. The main goal
of that chapter is to identify an explicit relationship between the domination
vector d of a given network and its signature vector s in the form s = g(d).
Such a formula allows one to exploit simultaneously the computational effi-
ciency of dominations and the utility and interpretive power of signatures in
the comparative analysis of networks. In Theorem 6.1, the relationship be-
tween dominations and signatures is clarified through an explicit expression
of the form s = P−1M−1d, where the matrices P and M are specifically
identified. The comparison of the networks displayed in Figure 7.3 provides a
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striking illustration of the potential benefits of the joint use of these two tools.

The generality of the main result in Chapter 6 should be noted. In that
chapter, we first call attention to the two different forms generally used to
represent the reliability polynomial of a mixed system based on components
with i.i.d. lifetimes in Chapter 2. The standard form and pq-form of these
polynomials were displayed in equations (2.23) and (2.24). Then the relation-
ship was derived between the domination vector d and the signature vector
s which, respectively, define the coefficients of the reliability polynomials of a
given communication network in standard and pq forms. This relationship, in
the form s = g(d), is displayed explicitly in Theorem 6.1. The fact that this
theorem applies equally to the respective coefficients of the reliability polyno-
mials of mixed systems was not stated explicitly in Chapter 6, but is readily
apparent from the algebraic developments in that chapter. The general prob-
lem solved in Chapter 6 is that of obtaining the exact relationship between
the vectors d and s in the two polynomials

n∑
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djp
j and

n∑

j=1

⎛

⎝
n∑
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)
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This is, of course, precisely the same problem one faces when transforming
the reliability polynomial of a mixed system from standard to pq form. It is
thus apparent that the relationship between d and s in Theorem 6.1 provides
the required link in the “systems” setting as well. This connection makes it
possible to exploit in tandem the computational advantages of dominations
and the broad utility of signatures in the comparative analysis of mixed sys-
tems.

Chapter 7 is dedicated to a particular problem in the area of Reliability
Economics. Specifically, we are interested in the problem of finding optimal
system designs relative to a class of criterion functions depending on both
a system’s performance and its cost. The criterion functions employed (see
(7.5)) depend on a system’s design solely through its signature, and they have
the desirable property that they are increasing functions of system perfor-
mance and decreasing functions of system cost. In a case of special interest,
the criterion function can be viewed as a system’s “performance per unit cost”
(PPUC), but the class of criteria considered includes functions that admit to
a variety of other interpretations. The optimization problem considered in
Chapter 7 is divided into two mutually exclusive cases, and the precise nature
of the optimal design is obtained for each. In the first case (corresponding to
r = 1, i.e., the PPUC case alluded to above), it is shown that the criterion
function can be maximized by a given coherent system (indeed, by a partic-
ular k-out-of-n system), while in the complementary case, where r �= 1, an
optimal system may be represented as a stochastic mixture of at most two
k-out-of-n systems. Several examples are given in which the class of coherent
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systems are dominated by a particular mixed system and are thus suboptimal.
Finally, the problem of estimating the features of the underlying component
lifetime distribution F upon which the criterion function depends is treated in
Section 7.5. The availability of an auxiliary sample of N i.i.d. component life-
times is assumed. For the particular case in which the measure of performance
used in the criterion function is the expected lifetime of the system (and thus
depends on F only through the expected order statistics {µi:n, i = 1, . . . , n}
of component lifetimes), consistent, asymptotically normal estimates of the
parameters µi:n are obtained. This leads to the important practical conclu-
sion that the system that maximizes the estimated criterion function will be,
for arbitrary ε > 0, an ε-optimal system relative to the true criterion function
if N is sufficiently large.

8.3 Desiderata

The theory and applications of system signatures treated in this monograph
have been developed under the assumption that the systems on which we
have focused are based on components with i.i.d. lifetimes. Since this is an
overarching assumption and since signature vectors are well defined with or
without this assumption, it is natural to explore possible generalizations of
signatures in which the i.i.d. assumption is relaxed. We will begin such an
exploration in this section with a view toward making the case that certain
generalizations are in fact both feasible and useful. Before tackling this issue,
however, it seems worth expanding upon the defense of signatures as defined
herein. In Chapter 3, we argued that signatures based on an i.i.d. assumption
on component lifetimes have the conceptual benefit of “evening the playing
field” among system designs we might wish to compare. Further, because the
signature provides information about a system that is a function of the system
design alone, it is a valuable measure of system characteristics that can be
useful quite apart from the consideration of the behavior of the components
one might deal with in practice. For example, if one system has a signature
vector that stochastically dominates that of a second system, then the fact
that the second system performs better in a particular application constitutes
an indication that the lifetimes of the components are either exhibiting some
form of dependence or are quite differently distributed or both. Since infor-
mation on the behavior of a system’s components is not always available or
easy to obtain, the insight about components gained from observed system
behavior can be helpful. Finally, when the i.i.d. assumption is a reasonable
approximation to the true behavior of a system’s components, signature-based
calculations of the system’s theoretical behavior can be expected to provide
useful approximations.
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One generalization that can be developed involves replacing the i.i.d. as-
sumption by the assumption that component lifetimes are exchangeable. As
noted by Kochar, Mukerjee and Samaniego [51], the representation in (3.5) of
the system survival function holds under this less stringent assumption, that
is, the identity

P (T > t) =
n∑

i=1

siP (Xi:n > t) (8.1)

holds when component lifetimes are exchangeable. Thus, one possible direc-
tion of further research is to seek to establish the results presented in this
monograph under the weaker assumption of exchangeability. However, since
exchangeability is but another way to quantify the notion that components
behave in a similar manner, such generalizations are not likely to make an
appreciable difference in practical applications. Let us, therefore, consider for
a moment a more useful generalization, that is, the relaxation of the i.i.d.
assumption to the case in which components have independent lifetimes with
possibly different lifetime distributions. The signature of an n-component sys-
tem whose components have independent lifetimes is defined as before, that
is, the signature vector s is an n-dimensional probability vector whose ith el-
ement is given by si = P (T = Xi:n), where T is the failure time of the system
and Xi:n is the lifetime of the ith component to fail. However, representation
results such as those in Chapter 3, while not entirely lost, will emerge in a
somewhat more cumbersome form. For example, the representation in (8.1)
becomes

P (T > t) =
n∑

i=1

siP (T > t | T = Xi:n) , (8.2)

and the conditional probability in (8.2) can be computationally complex. The
signature vector itself may be computed as the sum of the probabilities of
all permutations of the component failure times that correspond to system
failure upon the ith component failure. Since the signature vector provides
an indication of how long a system will tend to last, it is useful to have it
in hand. Although there are no existing results under the sole assumption of
independent component lifetimes that state that the domination of one signa-
ture over another in some stochastic sense implies some form of domination of
the respective system lifetimes, it still makes some intuitive sense to utilize the
system with the dominating signature. The potential for theoretical results in
this setting will not be pursued further here. Instead, we turn to an example
of this latter setting in which the signature vector and the survival function
are obtained for the system displayed in the figure below.
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Fig. 8.1. A 3-component series-parallel system
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Example 8.1. Consider the 3-component coherent system in Figure 8.1 above.
Let us assume that the system’s components have independent exponential
lifetimes X1,X2,X3 with

Xi ∼ Exp(λi) for i = 1, 2, 3 .

We first compute the signature vector of the system. Note that the system
will fail upon the first component failure if and only if T = X1. Thus, the
permutations of the component failure times that result in system failure
upon the first component failure are {X1 < X2 < X3} and {X1 < X3 < X2}.
We thus obtain s1 as

s1 =
∫ ∞

0

∫ ∞

x1

∫ ∞

x2

λ1λ2λ3 exp {−(λ1x1 + λ2x2 + λ3x3)} dx3dx2dx1

+
∫ ∞

0

∫ ∞

x1

∫ ∞

x3

λ1λ2λ3 exp {−(λ1x1 + λ2x2 + λ3x3)}dx2dx3dx1

=
λ1λ2

(λ1 + λ2 + λ3)(λ2 + λ3)
+

λ1λ3

(λ1 + λ2 + λ3)(λ2 + λ3)

=
λ1

λ1 + λ2 + λ3
.

It follows that
s2 =

λ2 + λ3

λ1 + λ2 + λ3
.

The survival function of the system may be computed directly as

P (T > t) = P (X1 > t,X1 < X2 < X3) + P (X1 > t,X1 < X3 < X2)
+ P (X1 > t,X2 < X1 < X3) + P (X3 > t,X2 < X3 < X1)
+ P (X1 > t,X3 < X1 < X2) + P (X2 > t,X3 < X2 < X1).

(8.3)
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The first two probabilities in (8.3) correspond to system failure upon the first
component failure (since T = X1:3 only if X1:3 = X1). A typical calculation
of such probabilities would proceed as follows:

P (X1 > t,X1 < X2 < X3)

=
∫ ∞

t

∫ ∞

x1

∫ ∞

x2

λ1λ2λ3 exp {−λ1x1 − λ2x2 − λ3x3} dx3dx2dx1

=
∫ ∞

t

∫ ∞

x1

λ1λ2 exp {−λ1x1 − (λ2 + λ3)x2} dx2dx1

=
λ2

λ2 + λ3

∫ ∞

t

λ1 exp {−(λ1 + λ2 + λ3)x1} dx1

=
λ1λ2

(λ1 + λ2 + λ3)(λ2 + λ3)
exp {−(λ1 + λ2 + λ3)t} .

From this we may infer that the first two terms on the RHS of (8.3) add to

P (T > t, T = X1:3) =
λ1

λ1 + λ2 + λ3
exp {−(λ1 + λ2 + λ3)t} . (8.4)

The expression in (8.4) is, of course, equal to

s1 × P (T > t | T = X1:3) .

Proceeding similarly, one may obtain an expression for P (T > t, T = X2:3)
which is equivalent to the sum of the last four terms in (8.3). Evaluating the
integrals associated with these four terms yields

P (T > t, T = X2:3) = exp {−(λ1 + λ3)t} (1 − exp {−λ2t})
+ exp {−(λ1 + λ2)t} (1 − exp {−λ3t})

+
λ2 + λ3

λ1 + λ2 + λ3
exp {−(λ1 + λ2 + λ3)t} . (8.5)

Adding (8.4) and (8.5), we obtain the final expression

P (T > t) = exp {−(λ1 + λ3)t} (1 − exp {−λ2t})
+ exp {−(λ1 + λ2)t} (1 − exp {−λ3t})
+ exp {−(λ1 + λ2 + λ3)t} . (8.6)

The reader will notice that the expression in (8.6) can also be obtained utiliz-
ing three independent Bernoulli variables associated with the events {Xi > t}
for i = 1, 2 and 3.

Problems at the next level of generalization, where the i.i.d. assumption is
relaxed in its entirety, are likely to resist solution for some time. There are a
variety of reasons for this. First, the modeling of dependence in lifetime distri-
butions is itself a challenging problem, with only a few models available that
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are both tractable and easily interpreted. Among such models, the Marshall-
Olkin [56] multivariate exponential (MVE) model is the best known. But even
this model, which is well-motivated as a shock model and highly tractable, has
found rather limited applicability in practice. One of the reasons for this is
the complexity of the model in higher dimensions, where, in the most general
case, 2n − 1 unknown parameters are required to describe the distribution of
an n-dimensional vector of component lifetimes. In computing signature vec-
tors under an MVE assumption, there is a further difficulty. Since the MVE
is not absolutely continuous with respect to Lebesgue measure of the appro-
priate dimension, and indeed gives positive probability to the events that two
or more component lifetimes are equal (via the action of a shock which causes
several components to fail simultaneously), the term P (T = Xi:n) has some
ambiguity. One could impose some convention on the interpretation of the
term (such as that the event occurs if i − 1 failures preceded the failure of
the system, and one or more components then fail simultaneously, causing
the system to fail). But whatever convention is adopted, it is clear that the
calculation of signature vectors will be substantially more complex than when
component lifetimes are i.i.d. according to some continuous distribution F .
Although some tractability is lost in using continuous multivariate lifetime
models, the fact that all the component lifetimes are different with probabil-
ity 1 at least removes the ambiguity discussed above. Time will tell whether
the extension of the notion of signatures to the general multivariate domain
proves feasible and useful.

8.4 Some Additional Related Literature

There are a variety of further applications of system signatures which merit
mention. We present a brief summary.

Boland [16] derives the signatures of indirect majority systems and exe-
cutes a comparison of such systems with direct majority systems of the same
size. He proves that the signature vector of an indirect majority system of
odd order n is symmetric about (n + 1)/2, and uses this fact to show that,
for n = R×S, the expected lifetime of an n-component indirect majority sys-
tem exceeds the expected lifetime of a direct majority system of size n when
the components have i.i.d. lifetimes with a common exponential distribution.
Some of this work is presented without proof in Section 5.1 and is applied to
the problem studied there.

Shaked and Suarez-Llorens [66] compare the information content of re-
liability experiments when components are assumed to have i.i.d. lifetimes
distributed according to a two-parameter exponential distribution. They in-
troduce the “convolution ordering” and provide sufficient conditions in terms
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of this ordering for one experiment to be more informative than another. They
also use conditions on the signature of a system to obtain certain information
inequalities. Specifically, when a system has a signature vector of the form
(0, . . . , 0, sk, . . . , sn) and its components have i.i.d. exponential lifetimes, its
lifetime is dominated in the information ordering by a k-out-of-n system with
similarly distributed components. An analogous result is shown to hold for
the dispersive ordering.

Belzunce and Shaked [7] define the new and useful concept of “failure
profiles” for studying the behavior of systems with independent but not nec-
essarily identically distributed component lifetimes. In describing their main
results, I will define terms slightly differently and more simply than is done
in the referenced paper (eliminating, for example, their use of the term “ad-
missible”), but the results to be described are isomorphic to theirs. A failure
profile of a coherent system is a pair (I, i), where I is a set of components and
i /∈ I, such that I is a path set of τ and I ∪{i} is a cut set of τ . Belzunce and
Shaked demonstrate the relevance of failure profiles in two standard formu-
lations of component importance. In their Theorem 2.5, they obtain a useful
representation of the density of the lifetime of a system based on components
with independent lifetimes in terms of its collection of failure profiles and the
individual densities and distribution functions of the system’s components.
This result generalizes the representation (3.8) of the density of the system
lifetime in the i.i.d. case. In their Theorem 3.5, they prove the likelihood ratio
ordering between two competing systems (assuming only independent com-
ponent lifetimes from distributions that are allowed to vary) under specific
conditions on the underlying component distributions and on the failure pro-
files of the two systems. They utilize this latter result to establish a likelihood
ratio ordering result for two systems with i.i.d. component lifetimes whose
respective signature vectors have a particular form.

Khaledi and Shaked [48]) study the behavior of the conditional residual
system lifetime given that a certain number of components are known to be
working. The motivation for this study is the fact that, for some systems, it
is possible to design a warning mechanism which alerts the user, before the
system fails, that at least a certain number of components are still function-
ing. The authors’ main interest is the comparison of two systems conditional
on such information. They provide conditions on the signature vectors of the
two n-component systems, and on the component distributions, which ensure
that the conditional system lifetimes of two competing systems, given that
at least n − i + 1 components are functioning, are stochastically ordered. For
example, they prove the following result.

Theorem 8.1. Let F1 and F2 be two continuous distributions on (0,∞). Let
τ1 and τ2 be coherent systems of order n based on components with i.i.d.
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lifetimes
X1,X2, . . . , Xn ∼ F1 and Y1, Y2, . . . , Yn ∼ F2 ,

and let
X1:n,X2:n, . . . , Xn:n and Y1:n, Y2:n, . . . , Yn:n

be the corresponding order statistics. Denote the signatures of τ1 and τ2

by s1 and s2 and their lifetimes T1 and T2. Suppose s1 is of the form
(0, . . . , 0, s1j , . . . , s1n) and s2 is of the form (0, . . . , 0, s2j , . . . , s2n). If s1 ≤st s2

and F1 ≤hr F2, then for i ≤ j,

FT1−y | Xi:n>y ≤st FT2−y | Yi:n>y .

They also obtain the following complementary result for component distrib-
utions F1 and F2 that are “reverse hazard rate ordered” (denoted by ≤rh),
that is, for which F2(t) / F1(t) is increasing in t.

Theorem 8.2. Let F1 and F2 be two continuous distributions on (0,∞). Let
τ1 and τ2 be coherent systems of order n based on components with i.i.d.
lifetimes

X1,X2, . . . , Xn ∼ F1 and Y1, Y2, . . . , Yn ∼ F2 ,

and let
X1:n,X2:n, . . . , Xn:n and Y1:n, Y2:n, . . . , Yn:n

be the corresponding order statistics. Denote the signatures of τ1 and τ2

by s1 and s2 and their lifetimes T1 and T2. Suppose s1 is of the form
(s11, . . . , s1i, 0, . . . , 0) and s2 is of the form (s21, . . . , s2i, 0, . . . , 0). If s1 ≤st s2

and F1 ≤rh F2, then for i ≤ j,

FT1−y | Xj:n>y ≤st FT2−y | Yj:n>y .

Further, under specific conditions on the signature vector of the system,
Khaledi and Shaked [48] obtain upper and lower bounds for

E[T − y | Xi:n > y] ,

where T and Xi:n are the lifetime and ith ordered component failure time of
a given system.

Navarro and Shaked [58] utilize system signatures in showing hazard-rate
ordering among independently drawn minima {X1:1,X1:2, . . . , X1:n, . . .} and
in studying the limiting behavior of failure rates of selected systems. They de-
velop a representation of the system survival function as a linear combination
of the survival functions of minima such as those above, calling the vector
of coefficients in the expression the “minimal signature” of the system. For
signatures as defined in this monograph, conditions are given under which the
ratio of the failure rates of an n-component system with a given signature and
that of a k-out-of-n system is asymptotically equal to 1.
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8.5 Some Open Problems of Interest

8.5.1 The Ordering of Expected System Lifetimes

In section 5.4, we treated the comparison of systems via stochastic precedence.
This metric has the appealing characteristic of rendering all pairs of mixed
systems comparable, making it always possible to judge one system as better
or worse than (or equivalent to) the other. It would, of course, be useful to
have definitive results using the even simpler and most commonly used metric
for system performance, the expected system lifetime. It should be noted that
comparisons of the expected lifetimes of two systems may be “too rough”
a comparison in some problems, as it completely ignores the variability in
system lifetime. Further, it is possible that a system whose expected lifetime
exceeds that of a second system will be less reliable than the second system at
the systems’ planned mission time. It is nonetheless of interest to know when
one could expect that, on average, one system will last longer than another.
While the condition ET1 ≤ ET2, where T1 and T2 are the lifetimes of the two
systems involved, is a fairly weak stochastic relationship (implied, for example,
by T1 ≤st T2), questions about this ordering are likely to arise more often in
applications than questions about the more stringent relationships discussed
in Chapters 4 and 5. Thus, the goal of finding conditions which guarantee that
the above ordering of expectations holds seems worthy of attention. Boland
and Samaniego [20] discuss this problem and note that for two given systems
having components with i.i.d. lifetimes ∼ F , it is possible for ET1 ≤ ET2

when F = F1 and for ET2 ≤ ET1 when F = F2. However, they prove the
following result for a particular group of small systems.

Theorem 8.3. Consider two mixed systems of order n = 3 based on coherent
systems in i.i.d. components with lifetime distribution F . Denote their re-
spective signature vectors as s1 and s2. Then ET1 ≤ ET2 for all distribution
functions F if and only if s1 ≤st s2.

The extension of this result to systems of arbitrary order n has not been
shown, nor have counterexamples been identified which demonstrate that the
result fails to hold for other values of n. The former possibility depends on
the special properties of the spacings between order statistics and appears to
be quite challenging. Counterexamples are inherently quirky, so it is difficult
to assess the level of difficulty in showing that the theorem above does not
hold for general n if, in fact, that is the case.

8.5.2 Other Preservation Results

In Section 4.2, it was shown that three specific versions of the stochastic or-
dering of system signatures carry over to the lifetimes of these systems. There
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are, of course, numerous other orderings for which preservation results may
hold (or fail to hold). Shaked and Shantikumar [65] discuss a host of alterna-
tive orderings of univariate distributions. Among these are mean residual life
ordering, reverse hazard rate ordering, dispersive ordering, the Laplace trans-
form and the moment generating function orderings, convex ordering and
star-shaped ordering. The latter two orderings are also discussed in Chapter
4 of Barlow and Proschan [6]. These and a number of other formulations of
univariate ordering have been found useful in reliability. If ORD represents
any given ordering among them, then it would be of interest to know whether
or not the implication s1 ≤ORD s2 ⇒ T1 ≤ORD T2 holds for systems in i.i.d
components. I am inclined to classify problems consisting of proofs or coun-
terexamples for these implications as dollar-valued. For all those disposed to
think about such problems, it seems appropriate to say at this time: ready,
set, go!

8.5.3 The limiting monotonicity of rT (t)

In Section 5.3, the asymptotic behavior of the failure rate of an arbitrary
mixed system was examined, and its limiting value was explicitly identified.
This result was established by Block, Dugas and Samaniego [11] using the
failure rate representation in (3.11). A natural question that arises in this
same context concerns the potential relationship between the monotonicity
of the component failure rate r(t) and that of the system’s failure rate rT (t).
More specifically, it would be of interest to identify conditions that imply that,
for sufficiently large t, the system failure rate rT (t) is strictly increasing (de-
creasing) if and only if the common component failure rate r(t) is eventually
strictly increasing (decreasing).

8.5.4 Further Results on Stochastic Precedence

In section 5.4, it was shown that, using the metric of stochastic precedence,
any pair of mixed systems based on components with i.i.d. lifetimes ∼ F are
comparable, with either one being superior to the other or the two systems
being sp-equivalent. Stochastic precedence is well defined when both systems
are based on components with i.i.d. lifetimes with differing component dis-
tributions F1 and F2. Indeed, the representation in (3.28) was shown to hold
under these more general conditions. However, the computation of P (T1 ≤ T2)
is considerably more challenging in this latter scenario. Results facilitating the
comparison of two system lifetimes when the systems are based on components
with independent lifetimes but different distributions would be a worthwhile
extension of the results in section 5.4. Hollander and Samaniego [43] demon-
strate the feasibility of such generalizations, providing a formula for the exact
calculation of the probability P (T1 ≤ T2) when F2 is in the class of Lehmann
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alternatives to F1, that is, when F2(t) ≡ [F1(t)]k for some k > 0. The compar-
ative analysis of systems in the general setting in which F1 �= F2 will require
further investigation.

8.5.5 Uniformly Optimal Networks

Let us, for concreteness, limit our discussion to the “all-terminal” problem
for communication networks, that is, to the problem of determining whether
or not all the vertices of a given network can communicate with each other.
Among all networks of a given size, that is, within the class of G(v, n) net-
works with v vertices and n edges, a network is said to be uniformly optimal if
the probability that all vertices can communicate is maximal. Even under the
simplifying assumption that that edges are independent and have a common
reliability p, the problem of identifying uniformly optimal networks (that is,
networks that are optimal for all p ∈ (0, 1)) in the class G(v, n) is an open
problem and appears to be a quite challenging one. In certain special cases,
the problem has been solved, but results to date are quite limited. Boesch
et al. [14], for example, identified a uniformly optimal network (UON) in the
class G(v, v+1). The general problem is complicated by the fact that, for some
values of v and n, no uniformly optimal network exists, as demonstrated by
Myrvold et al. [57]. Thus, the open problems that remain include the problem
of characterizing those classes of networks for which a uniformly optimal net-
work exists and, given such a class, identifying the UON explicitly. Because of
the challenging nature of these problems, certain intermediate problems are
also of interest. For example, direct comparisons among two or more networks
of special interest or between two subclasses of networks of the same size, can
be of use in particular applications.

In Chapter 6, it was shown that the signature vectors of competing net-
works can be a useful tool in comparing their reliability. To my knowledge,
the tool has not yet been applied in the search for UONs. To illustrate the
utility of signatures in this context, we provide a brief illustration in a problem
alluded to above. Let us consider the class of networks in the class G(5, 6).
Three particular networks in this class are displayed below.
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Fig. 8.2. Network G1(5, 6)
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Fig. 8.3. Network G2(5, 6)
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Fig. 8.4. Network G3(5, 6)
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The three networks above can be compared using the associated relia-
bility polynomials computed via domination theory. Alternatively, one can
identify the signatures of the three systems as s1 = (0, 4/15, 11/15, 0, 0, 0),
s2 = (0, 2/5, 3/5, 0, 0, 0) and s3 = (0, 2/5, 3/5, 0, 0, 0), from which we see that
G2 and G3 are equivalent and that both are inferior to G1 (with si ≥lr s1

for i = 2 and 3). In larger problems, where existence and uniqueness ques-
tions remain unresolved and available methods of finding UONs, if they exist,
amount to numerical searches, the ability to establish the superiority of one
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network over another by comparing their signatures, and the possibility of
optimizing network reliability as a function of the signature vector, should
offer some hope of successfully attacking these challenging problems.

8.5.6 Other Problems in Reliability Economics

I’ll begin by making brief mention of two problems in Reliability Economics
that are related to the problem treated in Chapter 7, both involving the
search for an optimal system design relative to a criterion such as that in
(7.5) under specified constraints. One obvious class of open problems involves
maximizing the criterion function (7.5) among systems that are mixtures of
a fixed sub-collection of coherent systems. Another class of open problems
would involve maximizing the criterion function under a budgetary constraint
such as

∑n
i=1 ci ≤ K. Both of these problems are of practical interest, as

the selection of a system will often be restricted to the choice among certain
available systems and mixtures thereof, and there are often budgetary limits
that restrict the selection of the system one might purchase. In either of these
constrained scenarios, the optimal system is likely to differ from the optimal
systems identified in Chapter 7. Problems involving the characterization of
optimal solutions in constrained Reliability Economics contexts constitute a
set of interesting open problems of some practical importance.

Example 8.2. As an illustration of the first of these problems, consider the
problem of selecting among stochastic mixtures of the two coherent systems of
order n = 3 having signature vectors s1 = (1/3, 2/3, 0) and s2 = (0, 2/3, 1/3)
respectively. Let us take r = 1 in the criterion function in (7.5). Without
loss of generality, we set c1 = 1 and allow c2 and c3 to be arbitrary values
satisfying 1 < c2 < c3. We will take the vector a to be equal to (1/4, 1/2, 3/4),
the expected order statistics of the Uniform distribution U [0, 1]. Then the
criterion function of the two systems above will be

m1 =
5/12

1/3 + c2(2/3)
and m2 =

7/12
c2(2/3) + c3(1/3)

.

A mixed system giving weights p and (1 − p) to these two systems will have
criterion function equal to

m3 =
p(5/12) + (1 − p)(7/12)

p(1/3) + c2(2/3) + c3(1/3)(1 − p)
.

It’s easy to verify that

m1 < m3 if and only if c3 <
7
5

+ c2
4
5

,

while
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m2 < m3 if and only if c3 >
7
5

+ c2
4
5

.

It follows that if 1 < c2 < c3 and c3 = 7/5 + c2(4/5), both coherent systems
above, as well as all stochastic mixtures of them, yield the same value of the
criterion function, while for any other choice of c3 > c2 > 1, the criterion
function is uniquely maximized by one of the coherent systems or the other.
In all cases, there exists a coherent system (among the two available) that is
optimal relative to the chosen criterion function.

The example above suggests the conjecture that, when r = 1 in the cri-
terion function in (7.5), there exists a system in any collection of coherent
systems which will be optimal within the class of all mixtures of these sys-
tems. This conjecture agrees with the result in Theorem 7.1 in the case that
one seeks an optimal system among the stochastic mixtures of all coherent
systems. While it is not readily apparent that Theorem 7.2 generalizes in the
same way, it seems reasonable to conjecture that, when r �= 1 in (7.5), an
optimal system within any collection of coherent systems and their mixtures
can be found within the class of mixtures of two systems in the collection.
The method of proof used in establishing Theorem 7.2 (showing, essentially,
that any mixture of three systems in the collection can be improved upon by
an appropriate mixture of two) may well be successful in showing this.

We will also comment briefly on the problem of searching for an optimal
system under cost constraints. In the criterion function in (7.5), the cost of a
given n-component system design is quantified in terms of the positive con-
stants c1 < c2 < · · · < cn. Note that if the constraint

∑n
i=1 ci ≤ K will place

no restriction on the choice of system if in fact cn ≤ K. This is the case
because the optimal system in the unconstrained problem is either a k-out-
of-n system costing ck ≤ K or a mixture of two k-out-of-n systems costing
pci+(1−p)cj ≤ K. Thus, for any value of r in (7.5), the system that optimizes
the criterion function overall will satisfy the constraint and is thus obviously
optimal in the constrained problem. At the other extreme, if K < c1, then
there is no system that will satisfy the constraint. Intermediate problems in
which c1 < K < cn will require individual optimal solutions that may well
differ from the optimal solution in the unconstrained problem. We conjecture
that, in such constrained problems, the optimal solutions will be of a form
similar to those given in Theorems 7.1 and 7.2, and that the methods of proof
utilized in those theorems can be adapted to obtain the new results. Without
repeating the commentary above, we mention that a similar set of considera-
tions arise when the budgetary constraint of interest is on the total cost of a
mixed system, that is, has the form

∑n
i=1 cisi ≤ K.

The problem of finding an optimal design while accounting for both per-
formance and cost is but one of many optimization problems of interest in the
general area of Reliability Economics. Among topics in reliability in which
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performance and cost enter in a central way are the areas of maintenance and
repair. The varied policies employed in these areas (including, for example,
block replacement policies and maintenance through the use of spare parts)
have both reliability and economic implications. While there is a literature on
optimization on these topics, it remains to be seen whether the problems of
interest can benefit from formulations based on system signatures.

8.5.7 Wholly New Stuff

Hey, don’t be greedy. I’ve got to leave something for me to do!
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