
Chapter 9

VANISHING DISCOUNT APPROACH
VERSUS STATIONARY DISTRIBUTION
APPROACH

9.1. Introduction
In Part III, we derived the structure of the optimal policy to minimize

the long-run average cost by using the vanishing discount method. In
the classical inventory literature, a stationary distribution approach is
often used to minimize the long-run average cost. In this approach, the
stationary distribution of the inventory levels is obtained for a specific
class of policies, the best policy in this class is found, and then it is
proven that this policy is average optimal. In this chapter, we review
the stationary distribution approach in solving the simpler problem of
an inventory model with i.i.d demands, and then show how the results of
this analysis relate to those obtained by the vanishing discount approach.

In the context of inventory problems, Iglehart (1963b) and Veinott
and Wagner (1965) were the first to study the issue of the existence of
an optimal (s, S)-type policy for average cost problems with independent
demands, linear holding and backlog costs, and ordering costs consisting
of a fixed cost and a proportional variable cost. Iglehart obtained the
stationary distribution of the inventory/backlog (or surplus) level given
an (s, S) policy using renewal theory arguments (see also Karlin (1958a)
and Karlin (1958b)), and developed an explicit formula for the stationary
average cost L(s, S), s ≤ S, associated with the policy.

Iglehart assumed that the function L(s, S) is continuously differen-
tiable and that there exists a pair (s∗, S∗), −∞ < s∗ < S∗ < ∞, which
minimizes L(s, S) and satisfies the first-order conditions for an interior
local minimum. While he does not specify these assumptions explic-
itly, and certainly does not verify them, he uses them in showing the
key result that the minimum average cost of a sequence of problems
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with increasing finite horizons approaches L(s∗, S∗) asymptotically as
the horizon becomes larger. Veinott and Wagner (1965), with a short
additional argument suggested by Derman (1965), were able to advance
the Iglehart result into the optimality of the (s∗, S∗) policy in the special
case of discrete demands; (see also Veinott (1966)). While Veinott and
Wagner deal with the case of discrete demands, they assume, without
proving, that Iglehart’s results derived for the continuous demand case
also hold for their case. It should also be mentioned that Derman’s short
additional argument also applies to the continuous demand case treated
in Iglehart and proves that an L(s, S)-minimizing pair (s∗, S∗), if there
exists one, provides an optimal inventory policy; (see Section 9.7).

A good deal of research has been carried out in connection with the
average cost (s, S) models since then. With the exception of Zheng
(1991) and Huh et al. (2008), however, most of this research devoted to
establishing the optimality of (s, S) strategies, uses bounds on the in-
ventory position after ordering. Examples are Tijms (1972), Wijngaard
(1975), and Küenle and Küenle (1977). On the other hand, quite a few
papers are concerned with the computation of the (s∗, S∗) pair that min-
imizes L(s, S), and not with the issue of establishing the optimality of an
(s, S) policy. Some examples are Stidham (1977), Zheng and Federgruen
(1991), Federgruen and Zipkin (1984), Hu et al. (1993), and Fu (1994).
For other references, the reader is directed to Zheng and Federgruen
(1991), Porteus (1985), Sahin (1990), and Presman and Sethi (2006).
Furthermore, this literature has generally assumed that together, the
papers of Iglehart (1963b) and Veinott and Wagner (1965), have estab-
lished the optimality of an (s, S)-type policy for the problem.1 But, this
is not quite the case, however, since the assumptions on L(s, S) implicit
in Iglehart, to our knowledge, have not been satisfactorily verified.

We will compare the stationary cost analyses of Iglehart (1963b) and
Veinott and Wagner (1965) and the vanishing discount approach used
in Part II of this book. Both approaches prove the optimality of (s, S)
strategies, but for somewhat different notions of the long-run average

1Another possible approach views continuous demand distributions as the limit of a sequence
of discrete demand distributions. Such a limiting procedure could lead to a proof of optimality
of (s, S) policies in the continuous demand case. However, this is by no means a trivial
exercise.
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cost to be minimized. It turns out that the optimal (s, S) strategies are
optimal for these different notions of long-run average cost.

We will reproduce the results of Iglehart (1963b) and Veinott and
Wagner (1965) in some detail. Some of the proofs of implicit assumptions
are missing in Iglehart (1963b) with respect to the model under his
consideration. Without these results, the Iglehart analysis cannot be
considered complete. Moreover, these results are by no means trivial.2

For this purpose, we need to precisely specify Iglehart’s model. Then
for this model, we must show that there exists a pair (s∗, S∗), −∞ <
s∗ ≤ S∗ < ∞ that minimizes L(s, S). In order to accomplish this, we
establish in Section 9.7, a priori bounds on the minimizing values of
s and S. We should caution that any verification of these assumptions
on L(s, S) should not use arguments that rely on the optimality of an
(s, S) policy. With the bounds established in Section 9.7, the continuity
of L(s, S) provides us with the existence of a minimum. Continuous
differentiability of L(s, S) follows from the definition of the surplus cost
function L(y) and the assumption of a continuous density for the de-
mand. We then show that if (s∗, S∗) with s∗ = S∗ is a minimum, then
there is another minimum (s, S) with s < S. It is then possible to assume
that an interior solution always exists, and to obtain it by the first-order
conditions of an interior minimum.

Tijms (1972) uses the theory of Markov decision processes (MDP) to
prove the optimality of (s, S) strategies for a modified inventory prob-
lem with discrete demand. In particular, he imposes upper and lower
bounds on the inventory position after ordering. These bounds provide
a compact (finite) action space as well as bounded costs. Under these
conditions, standard MDP results yield the optimality of an (s, S) strat-
egy.

Zheng (1991) has provided a rigorous proof of the optimality of an
(s, S) policy in the case of discrete demands for the model in Veinott
and Wagner (1965). He was able to use the theory of countable state
Markov decision processes in the case when the solution of the average
cost optimality equation for the given problem is bounded, which is
clearly not the case here since the inventory cost is unbounded. Note
that this theory does not deal with the continuous demand case as it
would involve an uncountable state MDP. Zheng relaxed the problem
by allowing inventory disposals, and since the inventory costs are charged

2In fact, the motivation to write our paper arose from Example 9.4 in Section 9.4. The
example shows that even for a well-behaved demand density function satisfying Iglehart’s
assumptions, the derivation of equation (9.12) crucial for the subsequent analysis requires
additional arguments not given in Iglehart’s paper. The example also shows that in some
cases a base-stock policy can be optimal even in the presence of a positive fixed ordering cost.
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on ending inventories in his problem, he obtained a bounded solution for
the average cost optimality equation of the relaxed problem that involves
a dispose-down-to-S component. But the dispose-down-to-S component
of the optimal policy would be invoked in the relaxed problem only in
the first period (and only when the initial inventory is larger than S),
which has no influence on the long-run average cost of the policy. It
follows, therefore, that the (s, S) policy, without the dispose-down-to-S
component, will also be optimal for the original problem.

The plan of the chapter is as follows. In Section 9.2, we state the
problem under consideration. Section 9.3 summarizes the results of
Iglehart relevant to the average cost minimization problem. Further-
more, we point out exactly which implicit assumptions have been used
by Iglehart without verification. We develop an example in Section 9.4
to show that even under the quite restrictive assumption of the exis-
tence of a continuous demand density, the assumptions implicit in the
Iglehart analysis are not necessarily satisfied. In Section 9.5, we derive
asymptotic bounds on the minimum cost function. In Section 9.6, we
review the analysis contained in Veinott and Wagner (1965) that is de-
voted to the solution of the average cost problem in the case of discrete
demands. To the extent that they use Iglehart’s analysis for their solu-
tion, we show how their paper is not quite complete and how it can be
completed. Section 9.7 contains the proofs needed for the completion of
Iglehart’s analysis and for establishing the optimality of an (s, S) policy
in the continuous demand case. Section 9.8 lists results that connect the
stationary distribution approach and the vanishing discount approach;
both are undertaken to prove the existence of an optimal (s, S) strat-
egy for the average cost inventory problem. Section 9.9 concludes the
chapter.

9.2. Statement of the Problem
In this section we formulate a stationary one-product periodic review

inventory model with the following notation and assumptions.

(i) The surplus (inventory/backlog) level at the beginning of period
k prior to ordering is denoted by xk. Unsatisfied demand is fully
backlogged.

(ii) The surplus level after ordering, but before demand realizes, in
period k is denoted by yk. Orders arrive immediately.

(iii) The one period demands ξk, k = 1, 2, . . ., are i.i.d. and the demand
distribution has a density ϕ(·). Let μ denote the mean demand.
Assume 0 < μ <∞.
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(iv) The surplus cost function L(y), where y is the surplus level imme-
diately after ordering, is given by

L(y) = E(h([y − ξ]+)) + E(p([y − ξ]−)),

where h(·) and p(·) represent holding and shortage cost functions,
respectively. Furthermore, L(y) is assumed to be convex and finite
for all y.

(v) The ordering cost when an amount u is ordered is given by

ĉ(u) = K1Iu>0 + cu, c ≥ 0, K > 0.

Given an ordering up to policy Y = (y1, y2, . . .), the inventory balance
equation is

xk+1 = yk − ξk.

Let fn(x|Y ) denote the expected total cost for an n-period problem with
the initial inventory x1 = x when the order policy Y is used, i.e.,

fn(x|Y ) = E

{
n∑

k=1

[ĉ(yk − xk) + L(yk)]

}

.

The objective is to minimize the expected long-run average cost

a(x|Y ) = lim inf
n→∞

1
n
fn(x|Y ) (9.1)

over the class of all nonanticipative or history-dependent policies Y.
In what follows we use fn(x|s, S) and a(x|s, S) instead of fn(x|Y ) and
a(x|Y ), with a slight abuse of notation, if Y is a stationary (s, S) strat-
egy.

The model described above is investigated in a more general setting of
Markovian demand and polynomially growing surplus cost in Chapter 6
for the average cost objective function

J(x|Y ) = lim sup
n→∞

1
n
fn(x|Y ). (9.2)

There we establish the average cost optimality equation and prove the
optimality of an (s, S)-type policy by using the vanishing discount ap-
proach.

A policy minimizing either (9.1) or (9.2) does not necessarily minimize
the other. However, if an optimal policy Y ∗ with respect to (9.1) is
such that limn→∞(1/n)fn(x|Y ∗) exists, then this limit is less than or
equal to both objective functions associated with any policy Y ∈ Y. On
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the other hand, if a policy Y ∗ is optimal with respect to (9.2) and if
limn→∞(1/n)fn(x|Y ∗) exists, then Y ∗ may still not minimize (9.1). For
this reason, Veinott and Wagner (1965) consider the objective function
(9.1) to be the stronger of the two; often the term more conservative is
used instead. In Sections 9.7 and 9.8, we complete Iglehart’s stationary
state analysis and use Derman’s short additional argument to obtain
an (s, S) policy, which is optimal with respect to (9.1) and has the
limit (1/n)fn(x|s, S)) as n→ ∞. Thus, this (s, S) policy also minimizes
both objective functions (9.1) and (9.2). In addition, by combining the
stationary approach with the dynamic programming approach, we show
in Section 9.8 that any (s, S) policy that is optimal with respect to (9.2)
is also optimal with respect to (9.1).

9.3. Review of Iglehart (1963b)
In this section we will summarize the results of a paper by Iglehart

(1963b) relevant to the problem of minimizing the long-run average cost,
and point out the implicit assumptions which have been used in his paper
without verification.

Let fn(x) denote the minimal total cost for the n-period problem when
the initial surplus level is x, i.e.,

fn(x) = min
Y
fn(x|Y ).

The sequence of functions (fm(x))nm=1 satisfies the dynamic program-
ming equation

fn(x) = min
y≥x

[ĉ(y − x) + L(y) +

∞∫

0

fn−1(y − ξ)ϕ(ξ)dξ]. (9.3)

Furthermore, it is known that fm(x) is K-convex, and an optimal strat-
egy minimizing the total cost is determined by a sequence (sm, Sm)nm=1

of real numbers with sm ≤ Sm, such that the optimal order quantity in
period m is

um =
{
Sm − xm if xm ≤ sm,

0 if xm > sm,

where xm denotes the surplus level at the beginning of the mth period.3

It is obvious that limn→∞ fn(x) = ∞ for all initial surplus levels x.
Iglehart investigates the asymptotic behavior of the function fn(x) for
large n. Heuristic arguments suggest that for a stationary infinite hori-

3Well-known papers dealing with this finite horizon problem are those of Scarf (1960), Schäl
(1976), and Veinott (1966).
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zon inventory problem, a stationary strategy should be optimal. Fur-
thermore, it is reasonable to expect that this stationary strategy is of
(s, S)-type.

Iglehart obtains the stationary distribution of the surplus level and
the expected one-period cost under any given (s, S) strategy satisfying
−∞ < s ≤ S < ∞. He uses the result of Karlin (1958a,b) that the
surplus level xn at the beginning of period n converges in distribution
to a random variable whose distribution has the density

f(x) =

⎧
⎪⎨

⎪⎩

m(S − x)
1 +M(Δ) , s < x ≤ S,

h(Δ, s − x)
1 +M(Δ) , x ≤ s,

(9.4)

where Δ := S − s, M(·) and m(·) are the renewal function and the
renewal density associated with ϕ(·), respectively, and h(Δ, ·) is the
density of the order quantity in excess of Δ. Note that by the Elementary
Renewal Theorem B.3.1, we have M(t)/t → 1/μ as t→ ∞. Also M(t) →
∞ as t→ ∞.

Furthermore, the one-period cost C(x), given the initial surplus x, is

C(x) =
{
K + L(S) + c(S − x), x ≤ s,
L(x), s < x ≤ S.

(9.5)

Averaging C(x) with respect to f(x) yields the following formula for the
stationary cost L(s, S) per period corresponding to the strategy param-
eters s and S:

L(s, S) =

s∫

−∞

[
K + L(S) + c(S − x)

]
f(x)dx+

S∫

s

L(x)f(x)dx

=
K + L(S) +

S∫

s
L(x)m(S − x)dx

1 +M(S − s)
+ cμ. (9.6)

Remark 9.1 It follows from the convergence in distribution of the sur-
plus level in period n that the expected cost E(C(xn)) in period n con-
verges to L(s, S). Therefore, we have

a(x|s, S) = lim
n→∞

1
n
fn(x|s, S) = lim

n→∞
1
n

(
n∑

i=1

E(C(xn))

)

= L(s, S).
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In many cases, it is more convenient to define the stationary cost in
terms of Δ and S:

L̃(Δ, S) := L(S − Δ, S) =
K + L(S) +

Δ∫

0

L(S − x)m(x)dx

1 +M(Δ)
+ cμ, (9.7)

or in terms of s and Δ:

L̂(s,Δ) := L(s, s+ Δ)

=
K + L(s+ Δ) +

Δ∫

0

L(s+ Δ − x)m(x)dx

1 +M(Δ)
+ cμ. (9.8)

Iglehart then attempts to minimize L(s, S) with respect to s and S.
Implicitly, he assumes L(s, S) to be continuously differentiable and that
the minimum is attained for some s∗ and S∗ satisfying −∞ < s∗ <
S∗ < ∞, i.e., the minimum is attained at an interior point and not at
the boundary s = S of the feasible parameter set. Therefore, he can
take derivatives of L̂(s,Δ) with respect to s and Δ and obtain necessary
conditions for the minimum by setting them equal to zero:

∂L̂(s,Δ)
∂s

= L′(s+ Δ) +

Δ∫

0

L′(s+ Δ − x)m(x)dx = 0 (9.9)

and

∂L̂(s,Δ)
∂Δ

=
L′(s+ Δ) +

Δ∫

0

L′(s+ Δ − x)m(x)dx+ L(s)m(Δ)

1 +M(Δ)

−
K + L(s+ Δ) +

Δ∫

0

L(s+ Δ − x)m(x)dx

(1 +M(Δ))2
m(Δ) = 0. (9.10)

Note that if s∗ = S∗, Condition (9.9) must be relaxed to ∂L̂/∂s ≤ 0.
Combining the necessary Conditions (9.9) and (9.10), one obtains

((1+M(Δ))L(s)−K−L(s+Δ)−
Δ∫

0

L(s+Δ−x)m(x)dx)m(Δ)=0. (9.11)
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Assuming further that m(Δ∗) = m(S∗ − s∗) > 0 for the minimizing
values s∗ and S∗, Iglehart obtains the following formula, crucial for his
subsequent analysis, by dividing by m(Δ) :

L(s∗) =
K+ L(s∗ + Δ∗) +

Δ∗∫

0

L(s∗ + Δ∗ − x)m(x)dx

1 +M(Δ∗)
= L(s∗, S∗) − cμ.

(9.12)

Let us recapitulate Iglehart’s implicit assumptions here. For his sub-
sequent analysis, he requires that

(I1) there is a pair (s∗, S∗) with −∞ < s∗ < S∗ <∞ (i.e., an interior
solution) that minimizes L(s, S),

(I2) L(s, S) is continuously differentiable, and

(I3) the minimizing pair (s∗, S∗) satisfies m(S∗ − s∗) > 0.

We will see that there is always a pair (s∗, S∗) satisfying Assumption
(I1) since K > 0. On the other hand, in general, not every minimizer of
L(s, S) satisfies Assumption (I1) even though K > 0; (see Example 9.4).
Assumption (I2) is satisfied because of the continuous differentiability of
L(·) and the existence of a continuous density, which implies continuous
differentiability of M(·). Assumption (I3) is more difficult to deal with.
In Example 9.4, Assumption (I3), i.e., m(S∗ − s∗) > 0, is violated for
all minimizing (s∗, S∗) pairs. The fact that Assumption (I3) does not
hold in general is a problem that can be fixed. It turns out that it is
not Assumption (I3) itself but rather equation (9.12) derived with the
help of this assumption that is crucial for the subsequent analysis. In
Section 9.7, we prove that there is always a minimizing pair (s∗, S∗) that
satisfies (9.12), even if m(S∗ − s∗) = 0 for all minimizing pairs.

9.4. An Example
We develop an example with K > 0, in which s = S is optimal and

m(S∗− s∗) = 0 for all minimizing pairs of parameters (s∗, S∗). To do so,
we prove two preliminary results.

Lemma 9.1 Let L(·) be a convex function with limx→±∞L(x) = ∞.
Then for 0 ≤ x1 ≤ x2,

min
S

{L(S) + L(S − x1)} ≤ min
S

{L(S) + L(S − x2)}.

Proof. Because of the limit property and the convexity of L(·), L(S) +
L(S − x2) attains its minimum. Let S2 be a minimum point of L(S) +
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L(S−x2). Let us first assume that L(S2) ≥ L(S2 −x2). Then, it follows
from the convexity of L(·) that L(S2 − x2 + x1) ≤ L(S2), and we obtain

min
S

{L(S) + L(S − x1)} ≤ L(S2 − x2 + x1) + L(S2 − x2)}
≤ L(S2) − L(S2 − x2)
= min

S
{L(S) + L(S − x2)}.

If L(S2) < L(S2 − x2), we conclude from the convexity of L(·) that
L(S2 − x1) ≤ L(S2 − x2). Thus,

min
S

{L(S) + L(S − x1)} ≤ L(S2) + L(S2 − x1)}
≤ L(S2) + L(S2 − x2)
= min

S
{L(S) + L(S − x2)},

which completes the proof. �

Lemma 9.2 Let L(·) be a convex function with limx→±∞L(x) = ∞.
Then

lim
D→∞min

S
{L(S) + L(S −D)} = ∞.

Proof. Fix D > 0 and let S∗ denote a fixed minimum point of L(·). It
is easy to see that

L(S) ≥ min{L(S∗ +D/2), L(S∗ −D/2)} for |S − S∗| ≥ D/2.

Also, substituting S −D for S,

L(S −D) ≥ min{L(S∗ +D/2), L(S∗ −D/2)} for |S −D − S∗| ≥ D/2.

Since at least one of the above conditions is satisfied and L(x) ≥ L(S∗)
for all x, we obtain

L(S) + L(S −D) ≥ min{L(S∗ +D/2), L(S∗ −D/2)} + L(S∗).

Therefore, it follows that

lim
D→∞min

S
{L(S) + L(S −D)}

≥ lim
D→∞min{L(S∗ +D/2), L(S∗ −D/2)} + L(S∗) = ∞,

and the proof is completed. �
For the purpose of this example, we assume the unit purchase cost

c = 0. It can easily be extended to the case c > 0. Let the one-period
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demand consist of a deterministic component D ≥ 0 and a random
component d. Let ϕ(·) be the density of d, where ϕ(·) is continuous on
(−∞,∞), ϕ(t) = 0 for t ≤ 0, and ϕ(t) > 0 for t ∈ (0, ε) for some ε > 0.
The density of the one-period demand is then given by ϕD(t) = ϕ(t−D).
It is continuous on the entire real line. We denote the renewal density
and the renewal function with respect to ϕD bymD andMD, respectively.
Let

LD(x) =

∞∫

−∞
l(x− ξ)ϕD(ξ)dξ

be the expected one-period surplus cost function. Let L(·) = L0(·).
Then, we have

LD(x) = L(x−D).

Now the stationary cost function, given s and S, is

LD(s, S) =
K + LD(S) +

S∫

s
LD(x)mD(S − x)dx

1 +MD(S − s)
,

and in view of Δ = S − s, we define

L̃D(Δ, S) = LD(S − Δ, S) =
K + LD(S) +

Δ∫

0

LD(S − x)mD(x)dx

1 +MD(Δ)
.

We will show that there is a constant D0 such that for all D > D0, the
pair that minimizes the stationary average cost is of the following form

(s∗, S∗) is a minimum point of LD(s, S) if, and only if, S∗ minimizes
LD(S) and 0 ≤ S∗ − s∗ ≤ D.

It is obvious that because of ϕD(t) = 0 for all t ≤ D, mD(t) = 0 and
MD(t) = 0 for t ≤ D. Therefore, for any given Δ ≤ D,

min
S

L̃D(Δ, S) = K + min
S
LD(S) = K + min

S
L(S).

We will show that for a sufficiently large D,

min
S

L̃D(Δ, S) > K + min
S
L(S) for all Δ > D.

To do so, we consider three cases that arise when Δ > D for any given
D.
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Case 1. Let Δ ∈ {Δ : 0 < MD(Δ) ≤ 1}. Then,

min
S

L̃D(Δ, S)

=
K + min

S

{

LD(S) +
Δ∫

0

LD(S − x)mD(x)dx
}

1 +MD(Δ)

≥
K + min

S

{

LD(S) + min
x∈[D,Δ]

{LD(S − x)}MD(Δ)
}

1 +MD(Δ)

= K +
1

1 +MD(Δ)

(

min
S

{
(1 −MD(Δ))LD(S)

+ min
x∈[D,Δ]

{LD(S − x) + LD(S) −K}MD(Δ)}
}
)

≥ K +
1

1 +MD(Δ)

(

(1 −MD(Δ))min
S
LD(S)

+MD(Δ)min
S

{ min
x∈[D,Δ]

{LD(S − x) + LD(S) −K}}
)

.

(9.13)

Using Lemma 9.1, we have

min
S

{ min
x∈[D,Δ]

{LD(S − x) + LD(S) −K}}
= min

S
{ min

x∈[D,Δ]
{L(S −D − x) + L(S −D) −K}}

= min
S

{ min
x∈[D,Δ]

{L(S − x) + L(S) −K}}
= min

S
{L(S −D) + L(S) −K}. (9.14)

On account of Lemma 9.2, this expression tends to infinity asD → ∞.
Therefore, there is a D1 > 0 such that

min
S

{L(S −D) + L(S) −K} > 2min
S
L(S) for all D ≥ D1. (9.15)

Thus from (9.13)–(9.15), we have

min
S

L̃D(Δ, S) > K + min
S
L(S) for all D ≥ D1,

implying that Δ in this case cannot be a minimizer.
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Case 2. Let Δ ∈ {Δ : 1 < MD(Δ) ≤ 2}. Then,

L̃D(Δ, S) =
K + LD(S) +

Δ∫

0

LD(S − x)mD(x)dx

1 +MD(Δ)

≥
K + 1

2

Δ∫

0

(LD(S − x) + LD(S))mD(x)dx

3

≥ 1
6

min
x∈[D,Δ]

{LD(S − x) + LD(S)}MD(Δ)

≥ 1
6

min
x∈[D,Δ]

{LD(S − x) + LD(S)}.

In view of Lemma 9.1, taking the minimum with respect to S yields

min
S

L̃D(Δ, S) ≥ 1
6

min
S

{ min
x∈[D,Δ]

{LD(S − x) + LD(S)}}

=
1
6

min
S

{LD(S −D) + LD(S)}

=
1
6

min
S

{L(S −D) + L(S)}. (9.16)

From Lemma 9.2 we know that this expression tends to infinity as
D → ∞. Therefore, there is a D2 > 0 such that

min
S

{L(S −D) + L(S)} > 6(K + min
S
L(S)) for all D ≥ D2. (9.17)

Then, from (9.16) and (9.17),

min
S

L̃D(Δ, S) > K + min
S
L(S) for all D ≥ D2,

and thus Δ in Case 2 cannot be optimal.

Case 3. Let Δ ∈ {Δ : 2 < MD(Δ)}. Now we define C := 3(K +
minS L(S)) = 3(K + minS L

D(S)), Sl := min{S : LD(S) ≤ C}, and
Su := max{S : LD(S) ≤ C}. It follows from the convexity of LD(·)
and the fact that limx→±∞LD(x) = ∞ that Sl and Su are finite. Let
D0 := max{D1,D2, Su − Sl} and choose D ≥ D0. Then we obtain

L̃D(Δ, S) =
K + LD(S) +

Δ∫

0

LD(S − x)mD(x)dx

1 +MD(Δ)

≥

Δ∫

0

LD(S − x)mD(x)dx

1 +MD(Δ)
.
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It is easy to conclude from the definitions of Sl and Su that LD(S −
x) ≥ C for x ∈ [0,Δ] \ [S − Su, S − Sl]. Because

[0,Δ] \ [S − Su, S − Sl] = [0,Δ] \ [(S − Su)+, (S − Sl)+],

we obtain

L̃D(Δ, S) ≥ CM(Δ) − C(MD((S − Sl)+) −MD((S − Su)+))
1 +MD(Δ)

.

(9.18)
Since 0 ≤ (S − Sl)+ − (S − Su)+ ≤ Su − Sl ≤ D, it is clear that
there is almost surely at most one renewal between (S − Su)+ and
(S−Sl)+, and therefore MD((S−Sl)+)−MD((S−Su)+) ≤ 1. Thus,

L̃D(Δ, S) ≥ C(MD(Δ) − 1)
1 +MD(δ)

>
C

3
= K + min

S
L(S).

Therefore, for D > D0 and all Δ = S − s > D, we have

min
S

LD(s, S) = min
S

L̃D(Δ, S) ≥ min
S

LD(S, S).

Because LD(s, S) is constant in s for S −D ≤ s ≤ S, it is clear that the
minimizing point (s∗, S∗) satisfies the desired conditions. Furthermore,
because mD(t) = 0 for 0 ≤ t ≤ D, it holds that

mD(S∗ − s∗) = 0 for all minimum points of LD(s, S).

9.5. Asymptotic Bounds on the Optimal Cost
Function

As the horizon n of the inventory problem becomes large, it is rea-
sonable to expect that the optimal strategy parameters (sm, Sm) and
(sm+1, Sm+1) for small m do not differ significantly and that the optimal
strategy tends to a stationary one. On the other hand, if a stationary
strategy is applied, the inventory level tends towards a steady state.
The minimum cost per period that one can achieve in the steady state
is k := L(s∗, S∗). If the system approaches the steady state fast enough,
one could expect the difference fn(x)−nk to be uniformly bounded with
respect to n for any x. In Section 4 of his paper, Iglehart obtains bounds
on fn(x) in terms of an explicitly given solution ψ(·) of the equation

ψ(x) = min
y≥x

[ĉ(y − x) + L(y) − k +

∞∫

0

ψ(y − ξ)ϕ(ξ)dξ]. (9.19)
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He proves that the function ψ(·) defined as

ψ(s∗ + y) =

⎧
⎨

⎩

−cy, y ≤ 0,

L(y + s∗) − k +
∞∫

0

ψ(y + s∗ − ξ)ϕ(ξ)dξ, y > 0,

(9.20)
satisfies (9.19). The pair (s∗, S∗) is a minimizer of L(s, S), which satisfies
(9.12).

Briefly, the proof goes as follows. First, Iglehart verifies that the
function ψ(·) defined in (9.20) is K-convex.

Remark 9.2 It should be mentioned that ψ(·) is also K-convex if we
replace k by any value larger than L(s∗, S∗) = L(s∗) + cμ.

In the next step, he shows that the function

G(y) = cy + L(y) +

∞∫

0

ψ(y − ξ)ϕ(ξ)dξ,

which represents the function to be minimized in (9.19), attains its min-
imum at y = S∗, and G(s∗) = K +G(S∗) for ψ(·) defined in (9.20). To
show this, it is essential that (9.12) holds.

The K-convexity of G(·) follows from the K-convexity of ψ(·). Now
we return to equation (9.19) written in terms of G(·), i.e.,

ψ(x) = −k − cx+ min
y≥x

[K1Iy>x +G(y)],

and transform its RHS. For x ≤ s∗, the minimum is attained for y = S∗
and we get

−k − cx+ min
y≥x

[K1Iy>x +G(y)]

= −k − cx+K +G(S∗) = −k − cx+G(s∗)

= −k − cx+ cs∗ + L(s∗) +

∞∫

0

ψ(s∗ − ξ)ϕ(ξ)dξ

= −c(x− s∗).

For x > s∗, the minimum is attained for y = x and we obtain

−k − cx+ min
y≥x

[K1Iy>x +G(y)]

= −k − cx+G(x)

= −k + L(x) +

∞∫

0

ψ(x− ξ)ϕ(ξ)dξ.
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Therefore, the function ψ(·) defined in (9.20) actually satisfies (9.19).
Observe that we can write explicitly,

G(y + s∗) =

⎧
⎪⎪⎨

⎪⎪⎩

c(s∗ + μ) + L(y + s∗) for y < 0,
c(s∗ + μ) + L(s∗) + L(y + s∗)

+
∫ y
0 L(y + s∗ − ξ)m(ξ)dξ

−L(s∗)[1 +M(y)] for y ≥ 0.

The main result of this section is that for given W ∈ R, there are
constants r and R depending on W such that the inequalities

nk + ψ(x) − r ≤ fn(x) ≤ nk + ψ(x) +R, for x ≤W, (9.21)

hold. The assertion is proved by induction. First, Iglehart shows that the
optimal order levels Sk for the n-period problem are uniformly bounded
from above, i.e., the bound does not depend on n. Then he chooses
a constant W larger than this bound and proves that the inequality
holds for n = 1. Since f1(x) and ψ(x) are both linear with slope −c for
x ≤ min{s1, s}, we can set

r = min
min{s1,s}≤x≤W

{f1(x) − ψ(x) − k}

and
R = max

min{s1,s}≤x≤W

{f1(x) − ψ(x) − k}.

The induction step for n = N + 1 uses (9.3) and (9.19). Note that
because x ≤W and Sn ≤W , the minimum in (9.3) is attained for some
y ≤W , and the inequality (9.21) can be used for n = N.

Because ψ(·) is continuous and therefore ψ(x) < ∞ for any x, it
follows from (9.21) that

lim
n→∞

fn(x)
n

= k. (9.22)

It should be mentioned that the proof of (9.21) requires only that ψ(·)
solves (9.19) and that ψ(x) is linear with slope −c for all x smaller than
some finite constant. Moreover, it follows from (9.22) that there is no
such solution for k �= L(s∗) + cμ.

In Sections 6 and 7, Iglehart investigates the limiting behavior of the
function gn(x) = fn(x) − nk as n→ ∞. He proves that for K = 0,

lim
n→∞ gn(x) = ψ(x) +A,

where ψ(·) is given by (9.20) and A is a constant. For K > 0, he is only
able to obtain

lim sup
n→∞

gn(x) ≤ ψ(x) +B
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for a constant B. For K > 0, he also conjectures that lim infn→∞ gn(x) ≥
ψ(x) +B, which would lead to limn→∞ gn(x) = ψ(x) +B.

9.6. Review of the Veinott and Wagner Paper
Veinott and Wagner (1965) deal with the inventory problem intro-

duced in Section 9.2 with one essential difference. They consider the
demand ξi in period i to be a discrete random variable taking nonnega-
tive integer values. They assume that one-period demands ξ1, ξ2, . . . are
i.i.d. random variables with the probability

P(ξi = k) = ϕ(k), k = 0, 1, . . . , i = 1, 2, . . . .

We only recapitulate here the results of Veinott and Wagner that are
important in the context of the existence of an optimal (s, S) strategy.
We restrict our attention to the case of the zero leadtime for convenience
in exposition.

The discrete renewal density and the renewal function are defined as

m(k) =
∞∑

i=1

ϕi(k),

M(k) =
∞∑

i=1

Φi(k) =
k∑

j=0

m(j), k = 0, 1, . . . ,

where ϕi and Φi denote the probabilities and the cumulative distribu-
tion function of the i-fold convolution of the demand distribution, re-
spectively.

Employing a renewal approach or a stationary probability approach,
Veinott and Wagner derive a formula for the stationary average cost
a(x|s, S), given a particular stationary (s, S) strategy. Since the unit
purchase cost does not influence the optimal strategy, the formulas are
derived for the case c = 0. An extension to c > 0 is straightforward.
Veinott and Wagner (VW) obtain

a(x|s, S) = LVW(s, S) =
K + L(S) +

S−s∑

i=0
L(S − j)m(j)

1 +M(S − s)

for integer values of s and S. It should be mentioned that this function
does not depend on the initial surplus x.

For their discrete demand case, Veinott and Wagner claim that, just as
in Iglehart’s continuous demand density case, a minimizing pair (s∗, S∗)
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of LVW(s, S) would satisfy (9.22), i.e.,

lim
n→∞

1
n
fn(x) = LVW(s∗, S∗). (9.23)

Furthermore, in the appendix of their paper, Veinott and Wagner es-
tablish the bounds for the parameters minimizing LVW(s, S). The proofs
of these bounds, derived in their paper for computational purposes, do
not require the existence of a stationary optimal (s, S) strategy in the
average cost case, but critically depend on the discrete nature of the
demand.

Having established bounds on the minimizers of LVW(s, S), it is clear
that the discrete function LVW(s, S) attains its minimum for an integer
pair (s∗, S∗).

However, the claim by Veinott and Wagner that a discrete analog of
Iglehart’s analysis yields (9.23) for the discrete demand case, requires
some additional arguments not included in their paper. Observe that
a completion of Iglehart’s analysis not only requires the existence of a
finite minimizer of the stationary average cost function, but it also needs
the minimizer to satisfy equation (9.12), which with c = 0 reduces to

L(s∗, S∗) = L(s∗). (9.24)

In general, the integer minimizer of LVW(s, S) will not satisfy this con-
dition.

Subsequently, in order to establish the dynamic programming equa-
tion in the MDP context, Tijms (1972) has shown that there are integer
minimizers (s∗, S∗) of L(s, S) such that

L(s∗ − 1) ≥ L(s∗, S∗) ≥ L(s∗). (9.25)

For our purpose, it immediately follows from (9.25) and the continuity
of L(x) that there is an s# < S∗ such that

(a) (�s#�, S∗) is an integer minimizer of LVW(s, S), implying that
LVW(�s#�, S∗) = LVW(s∗, S∗), and

(b) LVW(�s#�, S∗) = L(s#),
where �x� denotes the largest integer smaller or equal to x. Using the pair
(s#, S∗) and the function L(s, S) := LVW(�s�, S) in Iglehart’s analysis,
we can get the desired formula (9.24).

Once (9.24) is established, the short additional argument suggested by
Derman and used by Veinott and Wagner would provide the optimality
of a stationary (s, S) strategy for the average cost inventory problem.

Specifically, it follows from the definition of fn that fn(x) ≤ fn(x|Y )
for all initial values x and all history-dependent strategies Y ∈ Y. Thus,

a(x|s∗, S∗) = L(s∗, S∗) = lim
n→∞

1
n
fn(x)
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= lim inf
n→∞

1
n
fn(x) ≤ lim inf

n→∞
1
n
fn(x|Y ) = a(x|Y ),

for any history-dependent strategy Y ∈ Y. Therefore, (s∗, S∗) is average
optimal.

We now return to the continuous demand case of Iglehart.

9.7. Existence of Minimizing Values of s and S

In this section, we first establish a priori bounds on the values of s
and S that minimize L(s, S). Once that is done, the continuity of L(s, S)
ensures the existence of a solution (s∗, S∗) that minimizes L(s, S). While
Veinott and Wagner have proved bounds on the minimizing s and S,
their proofs use the fact that the demands are discrete, and there is
no obvious way to transfer their proofs to the continuous demand case.
Additionally, they employ a vanishing discount argument. Since the
discounted problem is not within the scope of the original Iglehart paper,
we will provide bounds on the minimizing parameters (s, S) using only
the properties of the stationary cost function.

L(x)

Su

C = 2L(0, 0)

Sl x

Figure 9.1. Definitions of Sl and Su

Lemma 9.3 There is a constant S̄ such that for all S ≥ S̄ and s ≤ S,
the stationary cost L(s, S) > L(0, 0).

Proof. Let C = 2L(0, 0) > 0. Choose Sl and Su such that Sl ≤ Su and
L(Sl) = L(Su) = C; (see Figure 9.1). Let S ≥ Su. Our proof requires
three cases to be considered: s ≤ Sl, Sl < s < Su, and Su ≤ s ≤ S.

Case s ≤ Sl. In this case, M(S − Sl) ≤ M(S − s), which we will
use later. From the cost formula (9.5) and the stationary probability
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density (9.4), we have

L(s, S) ≥
S∫

s

L(x)f(x)dx ≥ C

Sl∫

s

f(x)dx+ C

S∫

Su

f(x)dx

=
C

1 +M(S − s)

⎡

⎣

S∫

s

m(S − x)dx−
Su∫

Sl

m(S − x)dx

⎤

⎦

=
C

1 +M(S − s)

[
M(S − s) −M(S − Sl) +M(S − Su)

]

= C − C

[
1 +M(S − Sl) −M(S − Su)

1 +M(S − s)

]

≥ C − C

[
1 +M(S − Sl) −M(S − Su)

1 +M(S − Sl)

]

= C

[
M(S − Su)

1 +M(S − Sl)

]

. (9.26)

Case Sl < s < Su. In this second case, we use (9.5) and (9.4) to
immediately obtain

L(s, S) ≥
S∫

Su

L(x)f(x)dx =
C

1 +M(S − s)

S∫

Su

m(S − x)dx

= C

[
M(S − Su)

1 +M(S − s)

]

.

But in this case, S − s ≤ S − Sl. Therefore,

L(s, S) ≥ C

[
M(S − Su)

1 +M(S − Sl)

]

. (9.27)

Since M(t)/t → 1/μ as t→ ∞, the expression in the square brackets
in (9.26) and (9.27), which does not depend on s, goes to one as
S → ∞, i.e.,

lim
S→∞

M(S − Su)
1 +M(S − Sl)

= lim
S→∞

M(S − Su)
M(S − Sl)

= lim
S→∞

M(S − Su)
S − Su

S − Sl

M(S − Sl)
S − Su

S − Sl

=
1
μ
· μ · 1 = 1.
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Therefore, there is an S̄≥Su, independent of s, such that M(S−Su)
/(1 +M(S − Sl)) > 1/2 for all S ≥ S̄. This means that

L(s, S) > L(0, 0) for all S ≥ S̄ and s < Su,

which proves the lemma in the first two cases.

Case Su ≤ s ≤ S. Finally, for this third case, we use (9.5) to obtain

L(s, S) =

s∫

−∞
[K + L(S)]f(x)dx+

S∫

s

L(x)f(x)dx ≥ C > L(0, 0).

This completes the proof. �

Lemma 9.4 For Sl defined in Lemma 9.3, L(s, S)>L(0, 0) for all S≤Sl

and s ≤ S.

Proof. For S ≤ Sl, it is clear from (9.5) that

L(s, S) =

s∫

−∞
[K + L(S)]f(x)dx+

S∫

s

L(x)f(x)dx ≥ C > L(0, 0).

This completes the proof. �
It is easy to see that together, Lemmas 9.3 and 9.4, prove that the

minimizing value of S lies in the set [Sl, S̄]. In the next lemma, we show
that the minimizing value of s is bounded as well.

Lemma 9.5 There is a constant s̄ such that for all s ≤ s̄ and S ≥ s,
L(s, S) > L(0, 0).

Proof. Let Sl and S̄ be defined as in Lemma 9.3. Let s ≤ Sl. For any
S satisfying s ≤ S ≤ Sl or s ≤ Sl ≤ S̄ ≤ S, it follows from Lemmas 9.3
and 9.4 that L(s, S) > L(0, 0). Therefore, we can restrict our attention
to the values of S which satisfy Sl ≤ S ≤ S̄. Then, from (9.5) and (9.4)
we have

L(s, S) ≥
Sl∫

s

L(x)f(x)dx

≥ C

Sl∫

s

f(x)dx =
C

1 +M(S − s)

⎡

⎢
⎣

Sl∫

s

m(S − x)dx

⎤

⎥
⎦
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=
C

1 +M(S − s)

[
M(S − s) −M(S − Sl)

]

= C − C

[
1 +M(S − Sl)
1 +M(S − s)

]

≥ C − C

[
1 +M(S̄ − Sl)
1 +M(Sl − s)

]

. (9.28)

Since M(t) → ∞ as t → ∞, the expression in the square brackets in
(9.28), which does not depend on S, goes to zero as s→ −∞. Therefore,
there is an s̄ ≤ Sl, independent of S, such that (1 + M(S̄ − Sl))/(1 +
M(Sl − s)) < 1/2 for all s ≤ s̄. This means that

L(s, S) > C/2 = L(0, 0) for all s ≤ s̄ and S > s,

and the proof is completed. �

Remark 9.3 The proofs of Lemmas 9.3 and 9.4 can be easily extended
to nondifferentiable renewal functions M by using Lebesgue-Stieltjes in-
tegrals. Therefore, the assertions of these two lemmas also hold for
demand distributions which do not have densities.

Theorem 9.1 If the one-period demand has a density, then the function
L(s, S), defined on −∞ < S < ∞, s ≤ S, attains its minimum. Fur-
thermore, if (s∗, S∗) is a minimum point of L(s, S), then Sl ≤ S∗ ≤ S̄
and s̄ ≤ s∗ ≤ S∗.

Proof. Because of Lemmas 9.3–9.5, the search for a minimum point
can be restricted to the compact set {(s, S) : Sl ≤ S ≤ S̄, s̄ ≤ s ≤ S}.
It immediately follows from the existence of a density of the one-period
demand that L(s, S) is continuous, and therefore it attains its infimum
over the compact set. �

It remains to show that the minimum is attained at an interior point
and that there is a minimum point that satisfies (9.12).

Lemma 9.6 If K > 0, then there is a pair (s∗, S∗), with s∗ < S∗, that
minimizes L(s, S).

Proof. We distinguish three cases.

Case 1. If m(x) is identically zero on [0, ε] for some ε > 0, it imme-
diately follows that L̃(Δ, S) is constant for Δ ∈ [0, ε] and any fixed
S. Therefore, if (0, S∗) minimizes L̃(Δ, S), so does (ε, S∗), which is
an interior point.
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Case 2. Now let m(0) > 0. Any minimal point of L̂(s,Δ) satisfies
(9.9). Let s∗ be a solution of (9.9) for Δ = 0. Then it follows from
(9.10) that

∂L̂(s∗,Δ)
∂Δ Δ=0 = −Km(0) < 0

and therefore, Δ = 0 cannot be a minimizer.

Case 3. Ifm(·) does not satisfy either of the two cases above, it follows
from the continuity of m as a sum of convolutions of continuous
densities that there is an ε > 0 such that m(x) > 0 for all x ∈ (0, ε].
This property implies that M(x) > 0 for x > 0. For a fixed S, it holds
that

L̃(S,Δ) − L̃(S, 0)

=
K + L(S) +

Δ∫

0

L(S − x)m(x)dx

1 +M(Δ)
− (K + L(S))

=
1

1 +M(Δ)
(−M(Δ)(K + L(S)) + L(S − η)M(Δ)) (9.29)

for some η ∈ [0,Δ]. Since M(Δ) > 0 for Δ ∈ (0, ε] and L is continu-
ous, it follows that for sufficiently small Δ

L̃(S,Δ) − L̃(S, 0) < 0,

and Δ = 0 cannot be a minimizer. �

Lemma 9.7 There are s∗ and S∗, with s∗ < S∗, which minimize L(s, S)
and, at the same time, satisfy (9.12).

Proof. It follows from Lemma 9.6 that there is an interior minimizer
(s#, S∗) of L(s, S). If m(S∗ − s#) > 0, it immediately follows from Igle-
hart’s analysis that (9.12) is satisfied.

If m(S∗ − s#) = 0, we define

Δ0 = inf{Δ ≥ 0 : m(x) ≡ 0 on [Δ, S∗ − s#]}
and

Δ1 = sup{Δ ≥ 0 : m(x) ≡ 0 on [S∗ − s#,Δ]}.
Obviously for Δ ∈ [Δ0,Δ1], the pair (S∗−Δ, S∗) minimizes L. Let ε > 0.
Then we have

L̃(Δ1, S
∗) − L̃(Δ1 + ε, S∗) ≤ 0.
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Therefore, it follows that
⎛

⎝K + L(S∗) +

Δ1∫

0

L(S∗ − ξ)m(ξ)dξ

⎞

⎠ (1 +M(Δ1 + ε))

−
⎛

⎝K + L(S∗) +

Δ1+ε∫

0

L(S∗ − ξ)m(ξ)dξ

⎞

⎠ (1 +M(Δ1)) ≤ 0

or
⎛

⎝K + L(S∗) +

Δ1∫

0

L(S∗ − ξ)m(ξ)dξ

⎞

⎠ (M(Δ1 + ε) −M(Δ1))

−(1 +M(Δ1))

Δ1+ε∫

Δ1

L(S∗ − ξ)m(ξ)dξ ≤ 0.

Applying the Mean Value Theorem A.1.9 and dividing by (M(Δ1 + ε)−
M(Δ1))(1 + M(Δ1)), which is strictly positive by the definition of Δ1

and the monotonicity of M(·), we obtain

K + L(S∗) +
Δ1∫

0

L(S∗ − ξ)m(ξ)dξ

1 +M(Δ1)
≤ L(S∗ − η)

for some η ∈ [Δ1,Δ1 + ε]. Since L(y) is continuous, we find for ε→ 0,

L(Δ1, S
∗) − cμ =

K + L(S∗) +
Δ1∫

0

L(S∗ − ξ)m(ξ)dξ

1 +M(Δ1)
≤ L(S∗ − Δ1).

(9.30)
If Δ0 > 0, we analogously find

L̃(Δ0, S
∗) ≥ L(S∗ − Δ0). (9.31)

If Δ0 = 0, it is easy to see from (9.7) that

L̃(0, S∗) − cμ = K + L(S∗) > L(S∗). (9.32)

Since L̃(·, S∗) and L(·) are both continuous, it follows from (9.30)-(9.32)
that there is a Δ∗ > 0 such that

L̃(Δ∗, S∗) − cμ = L(S∗ − Δ∗),
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i.e., the pair (s∗, S∗) := (S∗ − Δ∗, S∗) is an interior minimizer that
satisfies (9.12). �

Lemma 9.7 finally establishes the existence of an interior minimizer of
the stationary cost function that satisfies equation (9.12) as required for
Iglehart’s analysis. With that analysis completed, the following result is
easily established with the help of the same short additional argument
that Derman suggested to Veinott and Wagner.

Theorem 9.2 The parameters s∗ and S∗, obtained in Lemma 9.7, de-
termine a stationary (s, S) strategy which is average optimal.

Remark 9.4 It follows from (9.9) that for any minimizer (s∗, S∗) of
L(s, S), we have s∗ ≤ argmin L(y). Therefore, for any two minimizers
(s∗1, S∗

1) and (s∗2, S∗
2) of L(s, S) that satisfy (9.12), it holds that

L(s∗1) = L(s∗1, S
∗
1) − cμ = k − cμ = L(s∗2, S

∗
2) − cμ = L(s∗2).

Since k − cμ > minS L(S), L(x) is convex, and limx→±∞L(x) = ∞, it
follows that s∗1 = s∗2.

9.8. Stationary Distribution Approach versus
Dynamic Programming and Vanishing
Discount Approach

In Chapters 5 and 6, we have established the average optimality of
an (s, S) strategy in the more general setting of Markovian demand.
We use dynamic programming and a vanishing discount approach to
obtain the average cost optimality equation and show that it has a K-
convex solution, which provides an (s, S) strategy that minimizes (9.2).
Furthermore, we prove a verification theorem stating that any stable
policy (defined later in the section; see (9.35)) satisfying the average
cost optimality equation is average optimal.

More specifically, we prove that there is a policy Y ∗ that minimizes
the average cost defined by

J(x|Y ) = lim sup
n→∞

1
n
fn(x|Y )

over all history-dependent policies Y ∈ Y. Furthermore, this policy Y ∗
can be represented as an (s, S) policy. In addition, we show that this
policy also minimizes the criterion

a(x|Y ) = lim inf
n→∞

1
n
fn(x|Y )
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over the class of all stable policies.4

Moreover, the completion of Iglehart’s analysis in the previous sec-
tion allows us to drop the stability restriction on the class of admissible
strategies and to obtain the stronger result that an optimal (s, S) strat-
egy also minimizes a(x|Y ) over all history-dependent policies Y ∈ Y.
Theorem 9.3 that follows connects the two approaches.

For the average cost problem under consideration, the average cost
optimality equation derived in Chapter 6 is given by

ψ(x) = min
y≥x

[ĉ(y − x) + L(y) − λ+

∞∫

0

ψ(y − ξ)ϕ(ξ)dξ]. (9.33)

A pair (λ∗, ψ∗) such that

ψ∗(x) = min
y≥x

[ĉ(y − x) + L(y) − λ∗ +

∞∫

0

ψ∗(y − ξ)ϕ(ξ)dξ]

is called a solution of (9.33). Note that for λ = k, (9.33) reduces to
equation (9.19), specified by Iglehart.

Theorem 9.3 Let (λ∗, ψ∗) be a solution of the average cost optimality
equation (9.33). Let ψ∗ be continuous and let the minimizer on the RHS
of (9.33) be given by

y(x) =
{
S∗ if x ≤ s∗,
x if x > s∗,

for −∞ < s∗ ≤ S∗ <∞. Then,

(a) the pair (s∗, S∗) minimizes L(s, S),

(b) (s∗, S∗) satisfies (9.12), and

(c) for all history-dependent policies Y ∈ Y, it holds that

λ∗ = k = lim
n→∞

1
n
fn(x|s∗, S∗) ≤ lim inf

n→∞
1
n
fn(x|Y ).

4Bounds on the action space imposed by Tijms (1972) imply that the admissible policies he
considers are stable. In this case, either of the criteria — lim inf or lim sup — can be used in
the MDP context.
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Proof. To prove (a) we assume to the contrary that the pair (s∗, S∗)
does not minimize L(s, S). Then, there is another strategy (s, S) with
L(s∗, S∗) > L(s, S). Therefore, in view of Remark 9.1, we obtain

lim sup
n→∞

1
n
fn(x|s∗, S∗) = L(s∗, S∗) > L(s, S) = lim sup

n→∞
1
n
fn(x|s, S).

(9.34)
Equation (9.34) contradicts the optimality of (s∗, S∗) proved in Chap-
ter 6 for the average cost objective function (9.2). Therefore, (s∗, S∗)
minimizes L(s, S).

It is shown in Chapter 6 that the λ∗ from the solution of the average
cost optimality equation is equal to the minimum of the average cost
defined in (9.2), and is therefore equal to k = L(s∗, S∗). Knowing this,
part (c) of Theorem 9.3 immediately follows from (a) and Theorem 9.2.

For the proof of (b), we note that ψ∗ can by expressed as in (9.20).
As shown in Iglehart, ψ∗ is continuous if and only if (9.12) holds. This
proves part (b) of Theorem 9.3. �

Theorem 9.4 If limx→−∞[cx+L(x)] = ∞, then there is a unique (up to
a constant) continuous bounded-from-below K-convex function ψ∗ such
that (λ∗, ψ∗) is a solution of the average cost optimality equation (9.33).
Furthermore, λ∗ is equal to the minimal average cost with respect to
either (9.1) or (9.2).

Proof. Because of the K-convexity of the solution, the minimizer on
the RHS of (9.19) is given by

y(x) =
{
S∗ if x ≤ s∗,
x if x > s∗,

for some not necessarily finite s∗ ≤ S∗. Since limx→−∞(cx+ L(x)) = ∞
and ψ∗ is bounded from below, it follows that

lim
x→−∞

[
cx+ L(x) − k +

∞∫

0

ψ∗(x− ξ)ϕ(ξ)dξ
]

= ∞,

and therefore, s∗ > −∞. Since limx→∞L(x) = ∞ and ψ∗ is bounded
from below, it is obvious that

lim
y→∞

[
cy + L(y) − k +

∞∫

0

ψ∗(y − ξ)ϕ(ξ)dξ
]

= ∞,

and therefore, S∗ <∞.
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It is easy to show that the (s, S) strategy with finite parameters s∗
and S∗ is stable with respect to ψ∗, i.e.,

lim
n→∞

ψ∗(xn)
n

= 0. (9.35)

Given this fact, it is proved in Chapter 6 that (s∗, S∗) is an optimal
strategy with respect to the average cost defined in (9.2) with minimal
average cost λ∗. It follows from Theorem 9.3 that λ∗ = k.

By Theorem 9.3, (s∗, S∗) minimizes L(s, S) and satisfies (9.12). It
follows from Remark 9.4 that s∗ is unique. The K-convexity and the
parameter s∗ uniquely determine the solution (9.20) of (9.19) (up to a
constant). Therefore, (λ∗, ψ∗) is the unique solution of (9.33) with the
desired properties. �

Remark 9.5 In the case of a constant unit shortage cost p, the condi-
tion limx→−∞(cx + L(x)) = ∞ is equivalent to the requirement p > c.
This condition is only introduced to simplify the proof and can be
dropped altogether.

9.9. Concluding Remarks and Notes
In this chapter, based on Beyer and Sethi (1999), we have reviewed

the classical papers of Iglehart (1963b) and Veinott and Wagner (1965),
treating single-product average cost inventory problems. We have point-
ed out some conditions that are assumed implicitly but not proved in
these papers, and we have proved them rigorously. In particular, we
have provided bounds for any pair (s∗, S∗) minimizing the stationary
one-period cost L(s, S), using only the properties of the stationary cost
function.

The main purpose of our analysis in this chapter has been to complete
the stationary distribution analyses of Iglehart and Veinott and Wagner
and relate it to the vanishing discount approach. Therefore, we have
stayed with the relatively restrictive assumptions on the demand distri-
bution made by Iglehart. However, these assumptions are not necessary
for the results obtained in this chapter. Indeed, it can be shown that
even for general demand distributions consisting of discrete and contin-
uous components, the corresponding stationary cost function attains its
minimum provided the expected values of all the quantities required in
the analysis exist. Furthermore, there is a pair minimizing L(s, S) that
satisfies (9.12) and that can in turn be proved to be average optimal.

We have also introduced the connection between the stationary distri-
bution approach and the dynamic programming approach to the prob-
lem. While dynamic programming is applicable even in problems defying
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a stationary analysis but with objective function (9.2), the stationary
analysis, when possible, can prove optimality with respect to the more
conservative objective function (9.1). Finally, by combining both ap-
proaches, we have shown that an (s, S) policy – optimal with respect
to either of the objective functions (9.1) or (9.2) – is also optimal with
respect to the other.

Finally, we mention that Presman and Sethi (2006) have developed a
unified stationary distribution approach that deals with both the discoun-
ted and long-run average cost problems in continuous time. Bensoussan
et al. (2005b), on the other hand, use the dynamic programming approach
in the continuous-time case, which use the theory of quasivariational in-
equalities. They only deal with the discounted problem, however.
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