
Chapter 8

MODELS WITH DEMAND INFLUENCED
BY PROMOTION

8.1. Introduction
This chapter deals with a stochastic inventory model in which the

probability distribution of the product demand in any given period de-
pends on some environmental factors, as well as on whether or not the
product is promoted in the period. The problem is to obtain optimal
inventory ordering and product promotion decisions jointly so as to max-
imize the total profit.

Such problems arise in many business environments, where market-
ing tools such as promotions are often used to stimulate consumer de-
mand. The coordination between marketing and inventory management
becomes critical in their decision making. Traditionally, marketing is
mainly concerned with satisfying customers while manufacturing is pri-
marily interested in production efficiency. Conflicts may arise between
the two business functions because of their different primary focus ar-
eas. Furthermore, it is necessary to evaluate the trade-off between the
benefit brought by higher sales, and the increased costs caused by pro-
motion and holding more inventory. On the other hand, a promotion
plan must be supported by a coordinated procurement plan to ensure
that sufficient stock is available to meet the stimulated demand.

It is obviously desirable to adopt an integrated decision making system
by considering the two types of decisions jointly. However, most works
in inventory literature assume exogenous demand and do not deal with
promotion decisions explicitly. Early efforts in integrating promotional
decisions have been mostly focused on pricing.

A typical approach for modeling the price demand relationship is to
assume that the price-dependent portion of the demand is either additive
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or multiplicative to the base demand; (see Young (1978)). Karlin and
Carr (1962), Mills (1962), and Zabel (1970) studied the price demand
models with this assumption, and obtained structural results for the ad-
ditive and/or multiplicative cases. Furthermore, Thowsen (1975) showed
that the optimal pricing/inventory policy is a base-stock list price policy
under some additional assumptions. That is, if the initial inventory level
is below the base-stock level, then that stock level is replenished and the
list price is charged; if the initial inventory level is above the base-stock
level, then nothing is ordered, and a price discount is offered.

A dynamic inventory/advertising model with partially controlled ad-
ditive demand is analyzed by Balcer (1983), who obtains a joint optimal
inventory and advertising strategy under certain restrictions. However,
in the Balcer model, the demand/advertising relationship is determinis-
tic because only the deterministic component of demand is affected by
the advertising decision.

Sogomonian and Tang (1993) formulate a mixed integer program for
an integrated promotion and production decision problem, and devise
a “longest path” algorithm for finding an optimal joint promotion and
production plan. Their model assumes that demand at each period
depends on the time elapsed since the last promotion, the level of the
last promotion, and the retail price of the current period.

In this chapter, we analyze the joint promotion/inventory manage-
ment problem for a single item in the context of Markov decision process-
es (MDP). Specifically, we assume that consumer demand is affected by
a Markov process that depends on promotion decisions. The state vari-
able of the Markov process represents the demand state brought about
by changing environmental factors as well as promotion decisions. The
demand state in a period, in turn, determines the distribution of the
random demand in that period.

At the beginning of each period, a decision maker observes the demand
state and the inventory level, and then decides on (a) whether or not
to promote and (b) how much to order. The MDP is modeled so that
demand, and hence the revenue, will increase in the following period after
the product is promoted. However, there is a fixed cost for promoting
the product.

We solve the finite horizon problem via a dynamic programming ap-
proach. We show that there is a threshold inventory level P for each
demand state such that if the threshold is exceeded, then it is desirable
to promote the product. For the linear ordering cost case, the optimal
inventory replenishment policy is a base-stock type policy.

Our model differs from the existing models in the literature in several
ways. First, we do not stipulate a deterministic functional form of the
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relationship between promotion and demand. This allows the maximum
flexibility for modeling the demand uncertainty in the presence of pro-
motions. Second, we model the demand as an MDP, which provides a
better modeling approach for demand under the influence of marketing
activities and other uncertain environmental factors.

We should note that Sethi and Zhang (1994,1995) have developed
a general stochastic production/advertising model with unreliable ma-
chines and random demand influenced by the level of advertising via a
Markov process. They developed the dynamic programming equations
and show how various hierarchical solutions of the problem can be con-
structed. They do not study the nature of optimal solutions. Their
focus is on proving that the constructed hierarchical solutions are ap-
proximately optimal.

The Markov demand modeling technique adopted in this chapter ex-
tends the existing Markov-modulated demand models by introducing
promotion decisions. It provides a new, flexible approach to model de-
mand that depends not only on uncertain environmental factors, but is
also influenced by promotion decisions. While we limit the scope of our
analysis by including only the promotion decision, other factors that
potentially affect customer demand could also be incorporated in the
model in a similar way.

The remainder of the chapter is organized as follows. In Section 8.2,
we present the mathematical formulation of the promotion/inventory
problem, and provide a preliminary analysis of the problem in a general
setting. The assumptions required for obtaining additional structural
results of the model are discussed in Section 8.3. In Section 8.4, we
provide the optimality proof for the optimal promotion/inventory poli-
cies. Solutions with simplified parameters are also discussed. Further
extensions of the model, including those with price discounts as a pro-
motion device, are briefly discussed in Section 8.5. A numerical study is
presented in Section 8.6. The chapter concludes with some concluding
remarks and end notes in Section 8.7.

8.2. Formulation of the Model
In most classical inventory models, it is usually assumed that both the

price and the demand of the product are parameters and not decision
variables. Hence, the revenue from sales is independent of any decision
variables and can be neglected from the model except for the situation
in which demand not satisfied directly from inventory cannot be back-
logged. Furthermore, even in this lost sales case, the situation can be
handled by including the loss in revenue as a penalty cost of the unsatis-
fied demand. Therefore, an optimal inventory policy can be determined
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by minimizing the total cost. However, in our model, promotion deci-
sions will affect the future demand, and hence the future revenue. Thus,
it is important to include the revenue explicitly in the objective function
of the model.

When both revenues and costs are included in the objective function,
one usually formulates a profit maximization problem. Nevertheless, in
order to preserve the similarity with the approach commonly used in
classical inventory literature, we will formulate the problem as a cost
minimization problem by treating revenues as negative costs. This is
equivalent to formulating the problem as a profit maximization problem.

8.2.1 Notation
We will formulate a discrete-time N -period problem consisting of pe-

riod 0, 1, 2, . . . , N−1. For the temporal conventions used in our discrete-
time setting, (see Figure 2.1 of Chapter 2), we introduce the following
notation.

mk = the promotion decision in period k such that

mk =
{

1, if the product is promoted in period k
0, otherwise;

pij(m) = the transition probability that the demand state changes
from i to j in one period if the promotion value is m;

{ik} = a discrete MDP with the transition
matrix P = {pij(mk)};

ξk = the demand in period k; it depends on ik but not on
k, and is independent of past demand states and
past demands;

ϕi(·) = the conditional density function of ξk when ik = i;
Φi(·) = the distribution function corresponding to ϕi;
μi = E{ξk|ik = i};
uk = the nonnegative order quantity in period k;
xk = the inventory level at the beginning of period k;
ck = the unit purchase cost in period k, k ∈ 〈0, N−1〉;
cN = the shortage cost per unit in period N ;
rk = the unit revenue in period k, k ∈ 〈0, N−1〉;
rN = the salvage cost per unit in period N ;
Ak = the promotion cost in period k when the product is



MARKOVIAN DEMAND INVENTORY MODELS 157

promoted in the period;
hk = the unit inventory holding cost in period k assessed

on the ending inventory in the period;
pk = the unit backlogging cost in period k assessed on the

backlog at the end of the period;
lk(z) = hkz

+ + pkz
−, the inventory/backlog cost function in

period k when z is the ending inventory in the period,
z+ = max(0, z), and z− = −min(0, z).

Remark 8.1 All of the cost/revenue parameters are assumed to be in-
dependent of the demand states for the sake of simplicity in exposition.
Given that the unit revenue is independent of the promotion decision,
this may imply that the model does not allow price discount. How-
ever, as it will be shown in Section 8.5, the price discount can easily be
incorporated in the model by treating it as a part of the promotion cost.

8.2.2 An MDP Formulation
We suppose that an order is placed at the beginning of a period and

delivered instantaneously. Also the promotion decision is made at the
beginning of the period. Subsequently, the actual demand materializes
during the period. The unsatisfied portion of the demand, if any, is
carried forward as backlog.

The expected one-period inventory cost for period k ∈ 〈0, N−1〉, given
the demand state i, is

Lk(i, y) = E[lk(y − ξk)|ik = i]

=
∫ y

0
hk(y − ξ)ϕi(ξ)dξ +

∫ ∞

y
pk(ξ − y)ϕi(ξ)dξ, (8.1)

where y is the amount of stock available at the beginning of a period
after the order, if any, is delivered.

We assume that the revenue is received when the demand occurs.
Hence, the total expected net cost in period k, given the initial inventory
level x, the order quantity u ≥ 0, and the promotion decision m, can be
expressed as

Gk(i, x;m,u) = E[lk(x+ u− ξk) +Ak1Im=1 + cku− rkξk|ik = i]
= Lk(i, x+ u) +Ak1Im=1 + cku− rkμi.

In the last periodN−1, if the ending inventory is positive, it is salvaged
at rN per unit; if the ending inventory is negative, the shortage is met
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at cN per unit. Thus, the terminal cost function can be defined as

gN(x) = cNx
− − rNx

+. (8.2)

Since the unit salvage value is normally less than the purchase price, we
have

cN ≥ rN ≥ 0. (8.3)

Note that cN and rN have different meanings than ck and rk, k∈〈0, N−1〉.
Let Jn(i, x;M,U), n ∈ 〈0, N − 1〉, denote the total expected cost,

including the terminal cost, when the system is operated under the
promotion policy M = {mn,mn+1, . . . ,mN−1} and the ordering policy
U = {un, un+1, . . . , uN−1} from period n through period N −1, given
the initial demand state i and the inventory level x at the beginning of
period n. That is,

Jn(i, x;M,U) = E

[
N−1∑

k=n

Gk(ik, xk;mk, uk) + gN(xN)

]

. (8.4)

The inventory balance equations are given by
{
xk+1 = xk + uk − ξk, k ∈ 〈n,N−1〉, with
xn = x, the beginning inventory level in period n. (8.5)

The objective is to determine M = {mn,mn+1, . . . ,mN−1} and U =
{un, un+1, . . . , uN−1} to minimize the expected total cumulative cost. De-
note vn(i, x) to be the infimum of Jn(i, x;M,U), i.e.,

vn(i, x) = inf
M,U

Jn(i, x;M,U). (8.6)

Then, vn(i, x) satisfies the dynamic programming equations
⎧
⎪⎨

⎪⎩

vn(i, x) = inf
m;u≥0

{Gn(i, x;m,u)

+ E[vn+1(in+1, x+ u− ξn) | in = i]} , n ∈ 〈0, N−1〉,
vN(i, x) = gN(x).

(8.7)

Note that in this MDP formulation, the additional decision variable m
takes values in a finite set. Thus, the results on the existence of optimal
policies and the verification theorem can be obtained in a fashion similar
to those in Chapters 2 and 4. We refer the readers to Bertsekas and
Shreve (1976) for further discussion on the related issues.

Now, we rewrite (8.7) as

vn(i, x) = min
m;y≥x

{Gn(i, x;m, y − x) + E[vn+1(in+1, y − ξn) | in = i]}
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= −cnx+ min
m;y≥x

{An1Im=1 + cny + Ln(i, y) − rnμi

+
∫ ∞

0

L∑

j=1

pij(m)vn+1(j, y − ξ)ϕi(ξ)dξ},

n = 0, . . . , N−1, (8.8)
vN(i, x) = gN (x). (8.9)

To simplify our analysis, we convert (8.8) and (8.9) to an alternative
set of dynamic programming equations in terms of functions wn, using
the relation

vn(i, x) = wn(i, x) − cnx, n = 0, . . . , N. (8.10)

The resulting dynamic programming equations are

wn(i, x) = min
m;y≥x

{An1Im=1 + (cn+1 − rn)μi + (cn − cn+1)y

+Ln(i, y) +
∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi(ξ)dξ},

n = 0, . . . , N−1, (8.11)
wN(i, x) = gN(x) + cNx. (8.12)

Let us define for n = 0, . . . , N−1,

gn(i, y,m) = (cn+1 − rn)μi + (cn − cn+1)y + Ln(i, y)

+
∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi(ξ)dξ, (8.13)

qn(i, x,m) = An1Im=1 + min
y≥x

gn(i, y,m). (8.14)

Then, we have for n = 0, . . . , N−1,

wn(i, x) = min
m

{qn(i, x,m)}. (8.15)

For n = N, we use (8.2) and (8.12) and write

wN(i, x) = gN(x) + cNx =
{

0, x < 0,
(cN − rN)x, x ≥ 0. (8.16)

8.2.3 The Newsvendor Problem – a Myopic Solution
The value function wn(i, x) given by (8.11) and (8.12), consists of two

components – the cost incurred in the current period and the cost to
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go. A myopic solution can be obtained by ignoring the cost to go, i.e.,
by ignoring the last term in (8.11). Since a promotion affects only the
demand in the future, it will always be true that m = 0 in a myopic
solution. The remaining problem becomes a newsvendor-type problem,
in which the only decision variable is the inventory position y (after the
order is delivered). Let us denote the cost function of the newsvendor
problem by

min
y
gb
n(i, y) = (cn+1 − rn)μi + (cn − cn+1)y

+Ln(i, y), n ∈ 〈0, N−2〉. (8.17)

We can obtain the minimum of gb
n(i, y), n ∈ 〈0, N−2〉, at

S̄n,i = Φ−1
i

(
cn+1 − cn + pn

hn + pn

)

, (8.18)

provided the various unit costs satisfy the condition

− pn ≤ cn+1 − cn ≤ hn. (8.19)

When cn+1−cn+pn < 0, we have S̄n,i = 0. In this case, the “newsven-
dor” is always better off by postponing the purchase since the saving of
cn − cn+1 from the decreased purchase cost outweighs the backlogging
cost pn. On the other hand, when cn+1−cn > hn, we have S̄n,i = ∞. This
means that the “newsvendor” makes money on each unsold unit by sal-
vaging it at cn+1 in period n+1, which is greater than the unit purchase
plus holding cost. In our dynamic inventory problem, Condition (8.19) is
nothing but the usual condition which rules out any speculative motive.
Henceforth, we will assume that the costs satisfy (8.19).

It is clear from Assumption 8.2 (i) that

S̄n,i′ ≥ S̄n,i, ∀n ∈ 〈0, N−1〉 and i′ > i. (8.20)

We further assume that

S̄n+1,i ≥ S̄n,i, n ∈ 〈0, N−2〉, and i ∈ I. (8.21)

Assumption (8.21) is equivalent to assuming that (cn+1−cn+pn)/(hn+
pn) is nondecreasing in n. When cn+1 = cn, n ∈ 〈0, N−1〉, (8.21) would
imply that hn/pn is nonincreasing in n.
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8.2.4 Joint Optimal Promotion and Inventory Policies
In this section, we will characterize the optimal policies derived from

the dynamic programming equations by identifying the special structures
that an optimal policy exhibits under certain conditions.

We will first define the optimal policy for the inventory/promotion
problem as follows.

Theorem 8.1 The optimal inventory policy for the problem defined by
(8.11) can be characterized by two base-stock levels, and the optimal pro-
motion policy is of multithreshold type.

The proof of this theorem is given in Section 8.4, after additional
assumptions have been made and the relevant preliminary results are
provided in Section 8.3.

The first structural property of the optimal policy is like that of the
standard inventory models with linear ordering costs; a base-stock policy
is still optimal. Moreover, the optimal base-stock level in each period
is contingent on the demand state and the promotion decision to be
made. The two base-stock levels correspond to two different decisions
on promotions, respectively.

While the optimality of a base-stock policy with the base-stock level
given by Sm

n,i, immediately follows from the quasi-convexity of gn(i, x,m)
(the proof will be provided in Section 8.4), the promotion policy is de-
termined by the relative position of the two functions qn(i, x, 0) and
qn(i, x, 1). We define the difference between the two functions as

Δqn(i, x) = qn(i, x, 0) − qn(i, x, 1), n = 0, . . . , N−1.

Given i and x, if Δqn(i, x) ≥ 0, then it is optimal to promote; otherwise,
it is optimal not to promote.

Let us consider the equation

Δqn(i, x) = 0. (8.22)

Suppose there exists a finite number of real roots of this equation. Let us
label these roots as P k

n,i, k = 1, 2, . . . , Nr, such that P 1
n,i < P 2

n,i < . . . <

PNr
n,i . If there exists no real root of (8.22), we let Nr = 1 and P 1

n,i = −∞
when Δqn(i, x) > 0, ∀x, and P 1

n,i = ∞ when Δqn(i, x) < 0, ∀x.
It follows that the optimal promotion policy is a function of x and is

implemented in the following fashion. When x ≤ P 1
n,i, do not promote;

when P 1
n,i < x ≤ P 2

n,i, promote; when P 2
n,i < x ≤ P 3

n,i, do not promote;
and so on. We may call this type of policy a multithreshold policy. �
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8.3. Assumptions and Preliminaries
In order to provide a simple and meaningful characterization to the

optimal policy for the somewhat general MDP problem formulated in
Section 8.3, we introduce some additional assumptions.

8.3.1 Quasi-convexity
To obtain the optimality of simple form policies for our model, we

would like to have the function gn(i, y,m) to be quasi-convex in y ac-
cording to Definition C.1.2. For this purpose, we make the following
important, albeit restrictive, assumption on the demand density func-
tions.

Assumption 8.1 The demand density functions ϕi(·), i = 1, . . . , L, are
assumed to be of Pólya frequency of order 2 (PF2) according to Defini-
tion C.1.1.

Assumption 8.1 is, in fact, a popular assumption made in the inventory
literature; (see Porteus (1971)). As Porteus and others have argued, such
a condition is not very restrictive because the class of PF2 densities is
not lacking significant members. It contains all exponential densities and
all finite convolutions of such densities. Furthermore, any mean μ and
any variance in the range [μ2/n, μ2] can be produced with a convolution
of n exponential densities.

We will further note that such a condition on demand densities is
not necessary for our results. However, we use this condition for the
convenience of mathematical derivation for our results.

8.3.2 Stochastic Dominance
In the inventory literature (see the review in Section 8.1), it is usu-

ally assumed that demand consists of a deterministic component and a
stochastic component, with promotion activities affecting only the de-
terministic component. Such an assumption provides a simplified math-
ematical modeling approach for describing the promotion/demand re-
lationship. However, it does not accurately reflect the real-world situ-
ation, since the effect of promotional activities on demand cannot be
predetermined with certainty. To capture the stochastic nature of the
promotion/demand relationship, we will use a more realistic modeling
approach based on the concept of stochastic dominance for our joint
inventory/promotion decision problem.

Modeling the demand uncertainty induced by environmental factors
and promotional activities in a stochastic fashion has not been attempted
in the inventory literature. Our models represent a new approach to de-
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mand modeling. Based on the stochastic ordering relations introduced
above, we are able to describe the relationship between demand and pro-
motion activities in mathematical terms. See Section B.5 for additional
information on stochastic dominance and some of the commonly used
definitions of stochastic ordering.

For the purpose of the analysis carried out in this chapter, we adopt
Definition B.5.1 of stochastic ordering.

Assumption 8.2

(i) There exists a stochastic ordering relation between demands in dif-
ferent demand states such that

ζ1 ≤
st
ζ2 ≤

st
. . . ≤

st
ζL.

(ii) For any 1 ≤ l ≤ L,

L∑

j=l

pij(1) ≥
L∑

j=l

pij(0), and (8.23)

(iii)
L∑

j=l

pij(m) is nondecreasing in i. (8.24)

Remark 8.2 In simpler terms, Assumption 8.2 (i) means that the de-
mand in a higher demand state is more likely to be larger than that
in a lower demand state. Assumption 8.2 (ii) reflects the fact that a
promotion would more likely lead to a demand state with a stochas-
tically larger demand. Assumption 8.2 (iii) means that if the current
demand state is higher, the next period is more likely to be in a demand
state with a stochastically larger demand. Together, these assumptions
will ensure that a promotion not only always generates a stochastically
greater demand in the next period, but also has a positive impact on
future demand.

Assumption 8.2 may not apply to the cases in which customers build
inventories during an on-sale period and purchase less afterwards. How-
ever, our current model is more suitable to the situation where promo-
tions are made in the form of advertising.

Assumption 8.3 pij(1) = 0,∀j < i and pij(0) = 0,∀i < j.

Remark 8.3 Assumption 8.3 means that the demand state in the next
period after the product is promoted cannot be stochastically smaller
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than that in the current period. Likewise, if the product is not promoted
in the current period, the demand state in the next period cannot be
stochastically greater than that in the current period. Assumption 8.3
is stronger than Assumption 8.2, in the sense that some of the transition
probabilities are fixed at zero. However, the nonzero elements of the
transition probability matrix are not binding by Assumption 8.2.

The purpose of making these assumptions is to overcome some math-
ematical difficulties that are involved in proving the optimality of the
simple form policies introduced in Section 8.4.2.

8.4. Structural Results
We have formulated a profit-maximizing inventory/promotion deci-

sion problem as a cost minimization problem, and have developed the
dynamic programming equations for it.

In Section 8.2, we have characterized the general structure of the op-
timal policies without detailed proofs. We have shown that the optimal
policies for (8.7) can be expressed in simple forms. Specifically, the in-
ventory policy still retains the simplicity of base-stock policies, while the
promotion policy is of threshold type.

In this section, we will provide the proof for the optimality of the
policies defined in Theorem 8.1. Furthermore, we will show that the
optimal policies can be further simplified under certain conditions.

8.4.1 Quasi-convexity of gn

Now we present some useful properties of the dynamic programming
equations and functions involved in (8.11-8.15).

Lemma 8.1 Denote the minimizer of gn(i, y,m) by Sm
n,i. For i = 1, . . . , L

and m = 0, 1,
(a) gn(i, y,m) is quasi-convex in y with Sm

n,i ≥ 0 for n = 0, . . . , N−1;
(b) wn(i, x) is nondecreasing in x and constant when x ≤ 0 for n =

0, . . . , N.

Proof. In view of cN ≥ rN , part(b) is obvious from (8.16) when n = N.
It is easy to see from (8.13) and (8.15) that (b) follows directly from (a)
for n < N−1.

We will now prove part (a) for n = 0, . . . , N− 1I1 by induction. Let
us define

ḡn(i, y,m) = (cn − cn+1)y + ln(y) +
L∑

j=1

pij(m)wn+1(j, y),
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where ln(y) is the surplus cost function as defined in Section 8.2.1. Then,
(8.13) can be written as

gn(i, y,m) = (cn − rn)μi +
∫ ∞

0
ḡn(i, y − ξ,m)ϕi(ξ)dξ.

When n = N−1, wn+1(j, y) = wN(j, y) is nondecreasing in y and is a
constant when y ≤ 0 by definition. From the definition of ln(y), we have

(cn − cn+1)y + ln(y) = (cn − cn+1 + hn)y+ + (pn − cn+1 + cn)y−,

which is convex in y with the minimum at 0. Therefore, ḡn(i, y,m)
is quasi-convex in y. Furthermore, the demand density ϕi is assumed
to be PF2. By Theorem C.1.1,

∫∞
0 ḡn(i, y − ξ,m)ϕi(ξ)dξ, and hence,

gn(i, y,m) is also quasi-convex in y with its minimizer Sm
n,i ≥ 0. Now, we

have completed the induction for the base case n = N−1.
Let us assume that (a) holds for n = k < N−1 and prove that (a) is

true for n = k − 1. Since (a) is assumed to be true for k = n, it follows
that (b) is true for k = n, i.e., wn+1(j, y) is nondecreasing in y and
constant when y ≤ 0. Using the same line of reasoning used above for
the base case, we can show that for n = k−1, gn(i, y,m) is quasi-convex
in y with its minimizer Sm

n,i ≥ 0. Therefore, (a) is proved for n = k − 1,
and the induction is completed. �

8.4.2 Simple Form Solutions
In this subsection we will demonstrate that under certain conditions,

the optimal solution exhibits some special structures that will simplify its
computation greatly. Furthermore, the simplicity of the special struc-
tures allows for easier interpretations and implementation of optimal
policies. The simple form solutions will be obtained with additional
assumptions made about demand and transition probabilities of the
Markov chain.

8.4.2.1 (S0, S1, P ) Policies
We will show in this subsection that if a stochastic dominance rela-

tionship exists between the demands with and without promotions, the
optimal promotion and ordering policy for the finite horizon problem
can be characterized as an (S0, S1, P ) policy, which is defined below.

Definition 8.1 An (S0, S1, P ) policy is specified by three control pa-
rameters S0, S1, and P with S0 ≤ S1. Under an (S0, S1, P ) policy, the
product is promoted when the initial inventory x is above or equal to P.
Furthermore, an order is placed to increase the inventory position to S1
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when x < S1 and the product is promoted, and to S0 when x < S0 and
the product is not promoted.

This is a special case of the optimal policies described in Section 8.4.
Here, the multithreshold policy for promotion decisions is simplified to
a single threshold policy.

First, we show some monotonicity properties that are needed for de-
riving the new results.

Lemma 8.2 Let cN = rN and let Assumption 8.2 hold. Then for
1 ≤ i < i′ ≤ L,

(a) wn(i, x) ≥ wn(i′, x), n ∈ 〈0, N〉;
(b) S1

n,i′ ≥ S1
n,i , n ∈ 〈0, N−1〉; and

(c) S1
n+1,i ≥ S1

n,i and S1
n,i ≥ S0

n,i, n ∈ 〈0, N−1〉.
Proof. We prove (a) by induction. When n = N, wN(i, x) = 0 by defi-
nition. Suppose that wn+1(i, x) is nonincreasing in i. First, let us prove
that gn(i, y,m) ≥ gn(i′, y,m),∀m, y. Since wn+1(j, y) is nonincreasing
in j, according to Assumption 8.2 (iii),

∑
L

j=1 pij(m)wn+1(j, y) is also
nonincreasing in i. Furthermore, by (B.3) we have

∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi(ξ)dξ

≥
∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi′(ξ)dξ.

Using Assumption 8.2 (ii), we obtain that

∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi′(ξ)dξ

≥
∫ ∞

0

L∑

j=1

pi′j(m)wn+1(j, y − ξ)ϕi′(ξ)dξ.

On account of

gn(i, y,m) = gb
n(i, y) +

∫ ∞

0

L∑

j=1

pij(m)wn+1(j, y − ξ)ϕi(ξ)dξ (8.25)

and (8.13), it is clear that

gn(i, y,m) ≥ gn(i′, y,m).
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In view of (8.14) and the quasi-convexity of gn, we have

qn(i, x,m) ≥ qn(i′, x,m),∀i′ > i, x,m.

Finally, from (8.15), we conclude that

wn(i, x) ≥ wn(i′, x),

which proves (a).
Let us examine (8.25) again. For n = N−1, it is clear that S1

N−1,i =
S̄N−1,i since wN(i, x) = 0. Hence, from (8.20) we know that S1

N−1,i′ ≥
S1

N−1,i,∀i′ > i. When n = N−2, from Assumption 8.3 we have

∫ ∞

0

L∑

j=1

pij(1)w′
n+1(j, y − ξ)ϕi(ξ)dξ

=
∫ ∞

0

L∑

j=i

pij(1)w′
n+1(j, y − ξ)ϕi(ξ)dξ,

which is equal to 0 when y ≤ S̄N−1,i and is nonnegative otherwise, ac-
cording to Lemma 8.1 (b). By Assumption (8.21), S̄N−2,i ≤ S̄N−1,i. Thus,
S1

N−2,i = S̄N−2,i. Therefore, by (8.20), S1
N−2,i′ ≥ S1

N−2,i,∀i′ > i. Repeating
this step for n = N−3, . . . , 0, we complete the proof for (b).

Since S1
n,i = S̄n,i, then according to (8.21), S1

n+1,i ≥ S1
n,i. Now let us

examine (8.25) with m = 0. Since

∫ ∞

0

L∑

j=1

pij(0)w′
n+1(j, y − ξ)ϕi(ξ)dξ ≥ 0,

we have S0
n,i ≤ S̄n,i, i.e., S0

n,i ≤ S1
n,i. Thus, (c) is proved. �

Remark 8.4 The assumption cN = rN is used in this proof for conve-
nience in the exposition. However, it can be relaxed by recalculating
S̄N−1,i with the last item included in (8.13).

Because of Assumption 8.3, we are able to determine the optimal
base-stock level in a myopic fashion, which is reflected in part (b) of
Lemma 8.2. We are now ready to show that the optimal policies for the
N -period problem are of (S0, S1, P ) type.

Theorem 8.2 When x ≤ S1
n,i, an (S0

n,i, S
1
n,i, Pn,i) policy is optimal for

the problem defined by (8.10-8.13) under Assumption 8.2, with Pn,i given
by the smallest root of equation (8.22).
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Proof. From the quasi-convexity of gn(i, y,m), g′n(i, y,m) ≥ 0 when y ≤
Sm

n,i. By (8.14), we have q′n(i, x,m) = 0 when x ≤ Sm
n,i, and q′n(i, x,m) ≥

0 when x > Sm
n,i. Also, we know that S0

n,i ≤ S1
n,i by Lemma 8.2 (c).

Hence, for x ≤ S1
n,i,

∂

∂x
(qn(i, x, 0) − qn(i, x, 1)) ≥ 0,

which means that there exists at most one real root for (8.22) when
x ≤ S1

n,i. Hence, a simple threshold policy is optimal for the promotion
decision when x ≤ S1

n,i. �

Remark 8.5 First, x ≤ S1
n,i is not a necessary condition for Theo-

rem 8.2. It is used for obtaining a simple proof. Second, the condition
is not very restrictive and is satisfied for all n ≥ k if xk ≤ S1

k,i for any
period k ≥ 0 with demand state i. This can be seen from the following
argument. By Assumption 8.3, if the product is promoted in period
k, the demand state j in period k + 1 will not be lower than i. Since
S1

k,i ≤ S1
k+1,j, and ∀j ≥ i and S0

k,i ≤ S1
k,i, ∀i as shown in Lemma 8.2 (c),

then as soon as xk ≤ S1
k,i for any k ≥ 0, we have xn ≤ S1

n,i for all sub-
sequent periods n = k + 1, k + 2, . . . , N−1 and all possible i. In view
of these arguments, the condition will hold when x0 = 0, which is often
the case.

Remark 8.6 Without further specifying cost and density functions, we
may have three typical cases in terms of the relative position of Pn,i as
given below.

Case 1. Pn,i = −∞. In this case, a promotion is always desired. The
corresponding optimal inventory policy is a base-stock policy with
the base-stock level given by S1

n,i. In fact, this is the only case in
which Pn,i < S0

n,i, since q′n(i, x,m) = 0 when x ≤ Sm
n,i, m = 1, 2.

Case 2. S0
n,i < Pn,i ≤ S1

n,i. In this case, a promotion is desirable only
when the initial inventory level exceeds the critical level Pn,i. Two
base-stock levels S0

n,i and S1
n,i are applied, respectively, depending on

whether or not the product is promoted.

Case 3. S0
n,i ≤ S1

n,i < Pn,i. This case is similar to Case 2 except that
no order will be placed once the product is promoted.

8.4.2.2 (S, P ) Policies
In this subsection, we replace Assumptions 8.2 (i) and 8.2 (iii) by the

following.
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Assumption 8.4 We assume that ξ1 ≤ ξ2 ≤ . . . ξL, in the sense of the
first moment ordering.

Remark 8.7 Although Assumption 8.4 is more restrictive than As-
sumption 8.2 (i) used in the previous subsection, it still represents a
generalization of the commonly used assumption of the additive random
demands in the literature. On the positive side, we can now drop As-
sumption 8.3 for the results to be obtained in this subsection. We further
note that Assumption 8.4 can be replaced by some weaker assumptions
under which the results in this subsection would still hold.

Theorem 8.3 Under Assumptions 8.4, 8.2 (ii), and 8.2 (iii), a special
case of the (S0, S1, P ) policy, i.e., the (S,P ) policy with Sn,i = S0

n,i =
S1

n,i, is optimal for the model.

Proof. Assumption 8.4 is equivalent to

ϕ1(x− μ1) = ϕ2(x− μ2) = · · · = ϕL(x− μL)

in view of Definition B.5.3. Since ξ1 is nonnegative, i.e., ϕ1(x)=0,∀x≤0,
it follows that

ϕi(x) = 0, ∀x ≤ μi − μ1, i = 1, . . . , L. (8.26)

Also from (8.18),

S̄n,1 − μ1 = S̄n,2 − μ2 = · · · = S̄n,L − μL. (8.27)

The proof is done by induction. For k = N−1, SN−1,i = S0
N−1,i =

S1
N−1,i = S̄N−1,i for all i. Assume for k = n + 1 that Sn+1,i = S0

n+1,i =
S1

n+1,i = S̄n+1,i for all i.
It is known from Lemma 8.1 (b) that w′

n+1(i, y) = 0, ∀y ≤ S0
n+1,i,

and w′
n+1(i, y) ≥ 0, ∀y > S0

n+1,i. Thus,

L∑

j=1

pij(m)w′
n+1(j, y)

{
= 0, y ≤ S0

n+1,1 = S̄n+1,1,
≥ 0, otherwise.

Furthermore, by (8.26) and (8.27),

∫ ∞

0

L∑

j=1

pij(m)w′
n+1(j, y − ξ)ϕi(ξ)dξ

⎧
⎨

⎩

= 0, y ≤ S̄n+1,1 + μi − μ1

= S̄n+1,i,
≥ 0, otherwise.

Since S̄n,i ≤ S̄n+1,i, we conclude that Sn,i = S0
n,i = S1

n,i = S̄n,i. �
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8.5. Extensions
In this section, we briefly discuss some extensions of our model.

Infinite Horizon Problems. When the planning horizon is infinite,
the formulation of the model can be presented as follows. The total
cost of the infinite horizon problem to be minimized is given by

Jn(i, x;M,U) = E
∞∑

k=n

αk−nGk(ik, xk;mk, uk), (8.28)

where 0 < α < 1 is a discount factor. The inventory balance equa-
tions are given by

{
xk+1 = xk + uk − ξk, k = n, n+ 1, . . . , with
xn = x, the initial inventory level. (8.29)

Denote the minimum of Jn(i, x;M,U) by vn(i, x), i.e.,

vn(i, x) = inf
M,U

Jn(i, x;M,U). (8.30)

Then, vn(i, x) satisfies the dynamic programming equations

vn(i, x) = min
m;u≥0

{Gn(i, x;m,u)

+α E[vn+1(in+1, x+ u− ξn)|in = i]} , (8.31)
n = 0, 1, . . . .

By assuming stationary data, we can suppress the time index in the
formulation and expect that there exists a stationary optimal policy
which does not depend on time. (Issues regarding the existence of an
optimal feedback-type policy in infinite horizon models have been ad-
dressed in Bertsekas and Shreve (1976).) Therefore, the DP equation
can be written as

v(i, x) = min
m;u≥0

{G(i, x;m,u)

+α
L∑

j=1

pij(m)
∫ ∞

0
v(j, x + u− ξ)ϕi(ξ)dξ}. (8.32)

Since the infinite horizon problem can be considered as a limiting case
of the finite horizon problem when N → ∞, its optimal policy will
have the same structure as the optimal policy in the finite horizon
case, i.e., base-stock inventory policies and the threshold promotion
policy, or (S0, S1, P ) policy, under the corresponding assumptions
made in the finite horizon problem.
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Lost Sales. The dynamic programming equations can be written as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vn(i, x) = min
m;u≥0

{Gn(i, x;m,u)

+
∫ ∞
0 [vn+1(in+1, (x+ u− ξ)+)ϕi(ξ)dξ

}
,

0 ≤ n ≤ N−1,
vN(i, x) = −cNx

+.

(8.33)

For this problem, we only need to verify that

gn(i, y,m)=cny + Ln(i, y) +
∫ ∞

0

L∑

j=1

pij(m)vn+1(j, (y − ξ)+)ϕi(ξ)dξ

is also quasi-convex in y, where Ln(i, y) is defined as

Ln(i, y) =
∫ ∞

0
[ln(i, y − ξ) − rn(y − E(y − ξ)+)]ϕi(ξ)dξ.

Furthermore, we have

gn(i, y,m) = (cn − rn)y +
∫ ∞

0
[ln(i, y − ξ) + rnE(y − ξ)+

+
L∑

j=1

pij(m)wn+1(j, (y − ξ)+)

−cn+1E(y − ξ)+]ϕi(ξ)dξ

=
∫ ∞

0
[ln(i, y − ξ) + (rn − cn)(y − ξ)−

+(cn − cn+1)(y − ξ)+

+
L∑

j=1

pij(m)wn+1(j, (y − ξ)+)]ϕi(ξ)dξ.

It is easy to verify that

ln(i, y) + (rn − cn)y− + (cn − cn+1)y+ +
L∑

j=1

pij(m)wn+1(j, y+)

is quasi-convex in y. Therefore, gn(i, y,m) is also quasi-convex in y
since the density of ξi is assumed to be PF2.

Price Discounts. Price discounts can be considered a part of the
promotion cost. Let bk be a proportional price discount offered if the
product is promoted in period k. Then, the actual unit revenue will



172 Models with Demand Influenced by Promotion

be (1−bk)rk. By considering the revenue loss as part of the promotion
cost, the problem has the same form as the original problem.

Multiple Promotion Levels. We assume that the promotion effort
can take on one ofM discrete levels. These discrete levels could repre-
sent promotions communicated through different advertising media.
At different promotion levels, the promotion expenditures incurred
are also different.

Carryover Effect of Promotions. First of all, the carryover effect
of a promotion can be partially captured by the Markovian transi-
tion law associated with the demand process. However, we may also
incorporate this factor explicitly in the following way. If we assume
that the effect of a promotion lasts J−1 periods, then we can redefine
the demand state as

ĩ = (i, j), i = 1, . . . , L, j = 0, . . . , J − 1,

where j is the number of periods elapsed from the last promotion. In
such a way, we can transform the new problem to the standard form
and obtain a similar solution.

Nonlinear Inventory Cost Function. By assuming the demand
density function to be PF2, we may relax the requirements on the
inventory cost function. We only require lk(x) to be quasi-convex in
x and attain its minimum at x = 0. It is clear that such a generalized
form of lk(x) will not change the results obtained in this chapter.

Case c α p q A S0
1 , S0

2 , S0
3 S1

1 , S1
2 , S1

3

3.1 0.50 0.90 1.00 5.00 2.00 12,12,16 16,17,17

3.2 1.00 0.90 1.00 2.00 2.00 8,8,12 12,15,15

3.3 2.00 0.90 1.00 2.00 2.00 0,0,0 0,0,0

3.4 2.50 0.90 1.00 2.00 2.00 0,0,0 0,0,0

3.5 1.00 0.90 2.00 4.00 2.00 9,9,13 13,16,16

3.6 1.00 0.90 1.00 4.00 2.00 11,11,15 15,16,16

3.7 1.00 0.90 1.00 5.00 2.00 11,11,15 15,17,17

3.8 0.50 0.90 1.00 2.00 2.00 9,9,13 13,16,16

3.9 0.50 0.90 1.00 1.00 2.00 7,7,10 10,14,14

3.10 0.50 0.95 1.00 2.00 2.00 9,9,13 13,16,16

3.11 0.50 0.85 1.00 2.00 2.00 9,9,13 13,16,16

Table 8.1. Numerical results for the MDP model with uniform demand distribution.
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Case c α p q A S0
1 , S0

2 , S0
3 S1

1 , S1
2 , S1

3

4.1 0.50 0.90 1.00 5.00 2.00 8,8,14 14,19,19

4.2 1.00 0.90 1.00 2.00 2.00 4,4,10 10,15,15

4.3 2.00 0.90 1.00 2.00 2.00 0,0,0 0,0,0

4.4 2.50 0.90 1.00 2.00 2.00 0,0,0 0,0,0

4.5 1.00 0.90 2.00 4.00 2.00 6,6,12 12,17,17

4.6 1.00 0.90 1.00 4.00 2.00 7,7,13 13,18,18

4.7 1.00 0.90 1.00 5.00 2.00 7,7,13 13,18,18

4.8 0.50 0.90 1.00 2.00 2.00 6,6,12 12,17,17

4.9 0.50 0.90 1.00 1.00 2.00 3,3,9 9,14,14

4.10 0.50 0.95 1.00 2.00 2.00 6,6,12 12,17,17

4.11 0.50 0.85 1.00 2.00 2.00 6,6,12 12,17,17

Table 8.2. Numerical results for the MDP model with truncated normal demand
distribution.

8.6. Numerical Results
In this section, we design a comparison study to demonstrate the

advantage of the joint promotion and inventory decision making. For
the same sample data, two types of policies are computed. One is the
(S0, S1, P ) policy, which we have shown to be optimal under certain
conditions. The other is the policy that one would use in a decentral-
ized system, i.e., promotion decisions and inventory decisions are made
separately. More specifically, we assume that in a decentralized system,
the information about the current inventory level is not considered for
the promotion decision making purpose. A promotion will be conducted
only if the expected revenue increase exceeds the promotion cost.

Our numerical results confirm that the joint decision making leads
to better performance than the decentralized decision making. Tables
8.1 and 8.2 are the results for the cases with uniform demand distribu-
tions and truncated normal distributions, respectively. The parameters
c, α, h, p and A are the unit purchase cost, the discount factor, the unit
holding cost, the unit shortage cost, and the promotion cost, respec-
tively. Figures 8.1-8.4 plot some of the cost functions obtained by two
types of decision making systems corresponding to the Cases 3.1-3.4 in
Table 8.1 . The solid lines (OP) are the results using our MDP models,
while the dotted lines (DC) represent the results obtained based on the
decentralized system.

The base-stock values computed using the two different approaches
happen to be the same in these particular cases. However, the values
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of the cost functions are different. In each case, our model performs no
worse than the decentralized model.

8.7. Concluding Remarks and Notes
In this chapter based on Cheng and Sethi (1999a) and Cheng (1996),

we have developed an MDP model for a joint inventory/promotion de-
cision problem, where the state variable of the MDP represents the de-
mand state brought about by changing environmental factors as well as
promotion decisions. Optimal inventory and promotion decision poli-
cies in a finite horizon setting are obtained via dynamic programming.
Under certain conditions, we show that there is a threshold inventory
level P for each demand state such that if the threshold is exceeded,
then it is desirable to promote the product. For the proportional order-
ing cost case, the optimal inventory replenishment policy is a base-stock
type policy with the optimal base-stock level dependent on the promo-
tion decision. Several extensions of the model are also discussed. We
also provided numerical results in Section 8.6 to demonstrate the benefit
achieved by the joint inventory/promotion decision making.
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Figure 8.1. Numerical results for Case 3.1.
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Figure 8.2. Numerical results for Case 3.2.
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Figure 8.3. Numerical results for Case 3.3.
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Figure 8.4. Numerical results for Case 3.4.
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