
Chapter 7

AVERAGE COST MODELS
WITH LOST SALES

7.1. Introduction
This chapter is concerned with the long-run average cost minimiza-

tion of a stochastic inventory problem with Markovian demand, fixed
ordering cost, and convex surplus cost in the case of lost sales. The for-
mulation of the problem is similar to that introduced in Chapter 4 except
that we replace the discounted cost objective function by the long-run
average cost objective function. To deal with this average cost problem,
we apply the vanishing discount method to solve the dynamic program-
ming equations defined for the problem, and establish the corresponding
verification theorem.

The plan of this chapter is as follows. Required results for the dis-
counted cost model derived in Chapter 4 are recapitulated in Section 7.3.
In the next section, we provide a precise formulation of the problem. In
Section 7.4, we obtain the asymptotic behavior of the differential dis-
counted value function as the discount rate goes to zero. The vanishing
discount approach to establish the average cost optimality equation is
developed in Section 7.5. The associated verification theorem is proved
in Section 7.6, and the theorem is used to show that a state-dependent
(s, S) policy is optimal for the problem. Section 7.7 concludes the chap-
ter with suggestions for future research.

7.2. Formulation of the Model
Consider an inventory problem over an infinite horizon. The de-

mand in each period is assumed to be a random variable defined on
a given probability space, and not necessarily identically distributed.
To precisely define the demand process, we consider a finite collection
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of demand states labeled i ∈ I = {1, 2, . . . , L}, and let ik denote the
demand state observed at the beginning of period k. We assume that
ik, k = 0, 1, 2, . . . , is a Markov chain over I, with the transition matrix
P = {pij}. Thus,

0 ≤ pij ≤ 1, i ∈ I, j ∈ I, and
L∑

j=1

pij = 1, i ∈ I.

Let the nonnegative random variable ξk denote the demand at the end
of a given period k ∈ 〈0, N−1〉. Demand ξk depends only on the demand
state in period k, by which we mean that it does does not depend on k
and is independent of past demand states and past demands. We denote
its probability density by ϕi(x) and its probability distribution by Φi(x)
when the demand state ik = i.

We suppose that orders are placed at the beginning of a period, deliv-
ered instantaneously, and followed by the period’s demand. Unsatisfied
demands are lost.

In what follows, we list the assumptions that are needed to derive the
main results of the chapter in Sections 7.5 and 7.6. Because not all the
results proved in this chapter require all of these assumptions, we label
them as follows so that we can specify the assumptions required in the
statements of the specific results proved in this chapter.

(i) The production cost is given by c(i, u) = K1Iu>0+ciu, whereK ≥ 0
is the fixed ordering cost and ci ≥ 0 is the variable cost.

(ii) For each i, the inventory cost function f(i, ·) is convex, nondecreas-
ing and of linear growth, i.e., f(i, x) ≤ Cf (1+ |x|) for some Cf > 0
and all x. Also, f(i, x) = 0 for all x ≤ 0.

(iii) For each i, the shortage cost function q(i, ·) is convex, nonincreasing
and of linear growth, i.e., q(i, x) ≤ Cq(1+ |x|) for some Cq > 0 and
all x. Also, q(i, x) = 0 for all x ≥ 0.

(iv) There is a state g ∈ I such that f(g, x) is not identically zero.

(v) The production and inventory costs satisfy for all i,

cix+
L∑

j=1

pij

∞∫

0

f(j, (x− z)+)dΦi(z) → ∞ as x→ ∞. (7.1)

(vi) The Markov chain (ik)∞k=0 is irreducible.
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(vii) There is a state h ∈ I such that 1 − Φh(ε) = ρ > 0 for some ε > 0.

(viii) For each i, the inequality q
′−(i, 0) ≤ f̄

′+(i, 0) − c̄i holds.

(ix) E ξk ≤ D <∞ for all k.

Remark 7.1 Assumptions (i)–(iii) reflect the usual structure of the pro-
duction and inventory costs to prove the optimality of an (si, Si) policy.
Note thatK is the same for all i. In the stationary case, this is equivalent
to the condition (2.18) required in the nonstationary model for the exis-
tence of an optimal (si, Si) policy; (see Chapter 2). Assumption (iv) rules
out trivial cases where the optimal policy is never to order. Assump-
tion (v) means that either the unit ordering cost ci > 0 or the second
term in (7.1), which is the expected holding cost, or both, go to infinity
as the surplus level x goes to infinity. While related, Assumption (v) nei-
ther implies nor is implied by Assumption (iv). Assumption (v) is borne
out of practical considerations and is not very restrictive. In addition,
it rules out such unrealistic trivial cases as the one with ci = 0 and
f(i, x) = 0, x ≥ 0, for each i, which implies ordering an infinite amount
whenever an order is placed. Assumptions (iv) and (v) generalize the
usual assumption made by Scarf (1960) and others that the unit inven-
tory holding cost h > 0. Assumption (viii) replaces the more stringent
assumption in the classical literature that the unit shortage cost is not
smaller than the unit price.

Remark 7.2 Assumptions (vi) and (vii) are needed to deplete any given
initial inventory in a finite expected time. While Assumption (vii) says
that in at least one state h, the expected demand is strictly larger than
zero, Assumption (vi) implies that the state h would occur infinitely
often with finite expected intervals between successive occurrences.

Remark 7.3 Assumption (viii) means that the marginal shortage cost
in one period is larger than or equal to the expected unit ordering cost
less the expected marginal inventory holding cost in any state of the
next period. If this condition does not hold, that is, if −q′−n (i, 0) <

c̄in+1 − f̄
′+
n+1(i, 0) for some i, a speculative retailer may find it attractive

to meet a smaller part of the demand in period n than is possible from
the available stock, carry the leftover inventories to period (n+ 1), and
order a little less as a result in period (n + 1), with the expectation
that he will be better off. Thus, Assumption (viii) rules out this kind of
speculation on the part of the retailer. But such a speculative behavior
is not allowed in our formulation of the dynamics in any case, since the
demand in any period must be satisfied to the extent of the availability of
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inventories. This suggests that it might be possible to prove our results
without Assumption (viii).

The objective is to minimize the expected long-run average cost

J(i, x;U) = lim sup
N→∞

1
N

E
{ N−1∑

k=0

[c(ik, uk) + f(ik, xk)

+q(ik, xk + uk − ξk)]
}
, (7.2)

with i0 = i and x0 = x ≥ 0, where U = (u0, u1, . . .), ui ≥ 0, i = 0, 1, . . . ,
is a history-dependent or nonanticipative decision (order quantities) for
the problem. Such a control U is termed admissible. Let U denote the
class of all admissible controls. The surplus balance equations are given
by

xk+1 = (xk + uk − ξk)+, k = 0, 1, . . . . (7.3)

Our aim is to show that there exist a constant λ∗, termed the optimal
average cost, which is independent of the initial i and x, and a control
U∗ ∈ U such that

λ∗ = J(i, x;U∗) ≤ J(i, x;U) for all U ∈ U , (7.4)

and

λ∗ = lim
N→∞

1
N

E
{ N−1∑

k=0

[c(ik, u∗k) + f(ik, x∗k)

+q(ik, xk + uk − ξk)]
}
, (7.5)

where x∗k, k = 0, 1, . . . , is the surplus process corresponding to U∗ with
i0 = i and x0 = x.

To prove these results, we will use the vanishing discount approach.
That is, by letting the discount factor α in the discounted cost problem
approach one, we will show that we can derive a dynamic programming
equation whose solution provides an average optimal control and the
associated minimum average cost λ∗.

For this purpose, we recapitulate relevant results for the discounted
cost problem obtained in Chapter 4.

Remark 7.4 Note that the objective function (7.2) is slightly, but not
essentially, different from that used in the classical literature. Whereas
we base the surplus cost on the initial surplus in each period, the usual
practice in the literature is to charge the cost on the ending surplus levels,
which means to have f(ik, xk+1) instead of f(ik, xk) in (7.2). Note that
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xk+1 is also the ending inventory in period k. It should be obvious that
this difference in the objective functions does not change the long-run
average cost for any admissible policy. By the same token, we can justify
our choice to charge shortage costs at the end of a given period.

7.3. Discounted Cost Model Results
from Chapter 4

Consider the model formulated above with the average cost objective
(7.2) replaced by the extended real-valued objective function

Jα(i, x;U) =
∞∑

k=0

αkE[c(ik, uk)+f(ik, xk)+q(ik, xk+uk−ξk)], 0 ≤ α < 1.

(7.6)
Define the value function with i0 = i and x0 = x as

vα(i, x) = inf
U∈ U

Jα(i, x;U). (7.7)

Let B0 denote the class of all continuous functions from I × R into
[0,∞), and the pointwise limits of sequences of these functions; (see
Feller (1971)). Note that it includes piecewise-continuous functions. Let
B1 denote the space of functions in B0 that are of linear growth, i.e., for
any b ∈ B1, 0 ≤ b(i, x) ≤ Cb(1 + |x|) for some Cb > 0. Let B2 denote the
subspace of functions in B1 that are uniformly continuous with respect
to x ∈ R. For any b ∈ B1, we define

F (b)(i, y) =
L∑

j=1

pij

∫
M

0
b(j, (y − z)+)dΦi(z). (7.8)

Theorem 7.1 Let Assumptions (i)–(iii), (v), (viii), and (ix) hold.
Then, we have the following results.

(a) The value function vα(·, ·) is in B2, and it solves the dynamic
programming equation

vα(i, x) = f(i, x) + inf
u≥0

{c(i, u) + E[q(i, x+ u− ξi)

+α
L∑

j=1

pijv
α(j, (x + u− ξi)+)]}

= f(i, x) + inf
u≥0

{c(i, u) + Eq(i, x+ u− ξi)

+αF (vα)(j, x + u)}. (7.9)
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(b) vα(i, ·) is K-convex and there are real numbers (sα
i , S

α
i ), sα

i ≤ Sα
i ,

such that the feedback policy ûα
k (i, x) = (Sα

i − x)1Ix<sα
i

is optimal.

Proof. (Actually Theorem 7.1 has been stated but not proved in Chap-
ter 4.) The proof of part (a) follows the lines of the proof of Theorem 3.3
in Chapter 3 by taking the limit of the n-period value function, for n
tending to infinity. Part (b) immediately follows since the limit of a
sequence of K-convex functions is K-convex. �

7.4. Limiting Behavior as the Discount Factor
Approaches 1

Hereafter, we will omit the additional superscript α on the control
policies for ease of notation. Thus, for example, ûα

k (i, x) will be denoted
simply as ûk(i, x). Since we do not consider the limits of the control
variables as α → 1, the practice of omitting the superscript α will not
cause any confusion. In any case, the dependence of controls on α will
always be clear from the context.

To insure a “smooth” limiting behavior for α → 1, we prove in
Lemma 7.2 that vα(i, ·) is locally equi-Lipschitzian. For this we need
some notation and a preliminary result. For any y > 0, let

τy := inf{n :
n∑

k=0

ξk ≥ y}

be the first index for which the cumulative demand is not less than y.
The following required result is proved in Chapter 5.

Lemma 7.1 Let Assumptions (vii) and (viii) hold. Then, for any l ∈ I,
we have E(τy|i0 = l) <∞.

Lemma 7.2 Under Assumptions (i)-(iii), (vi) , (vii), and (ix), vα(i, ·)
is locally equi-Lipschitzian, i.e., for X > 0 there is a positive constant
C1 <∞, independent of α, such that

|vα(i, x) − vα(i, x̃)| ≤ C1|x− x̃| for all x, x̃ ∈ [0,X]. (7.10)

Proof. Consider the case x̃ ≥ x. Let us fix an α ∈ [0, 1). It follows
from Theorem 7.1 that there is an optimal feedback strategy U . Use the
strategy U with initial surplus x, and the strategy Ũ defined by

ũk = [uk − (x̃k − xk)]+ =
{

0 if uk ≤ x̃k − xk,
uk + xk − x̃k if uk > x̃k − xk,
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with initial x̃, xk, and x̃k denoting the inventory levels resulting from
the respective strategies. It is easy to see that the inequalities

0 ≤ x̃k − xk ≤ x̃− x and ũk ≤ uk

hold for all k. Let τ̃ := τx̃ for ease of notation. If ũk = 0 for all k ∈ [0, τ̃ ],
then x̃τ̃ = xτ̃ = 0, and the two trajectories are identical for all k > τ̃ . If
ũk′ �= 0 for some k′ ∈ [0, τ̃ ], then x̃k′ = xk′ , and the two trajectories are
identical for all k > k′. In any case, the two trajectories are identical for
all k > τ̃ . From Assumptions (i)–(iii), we have

c(ik, ũk) ≤ c(ik, uk),

|f(ik, x̃k) − f(ik, xk)| ≤ Cf |x̃− x|,
|q(ik, x̃k + ũk − ξk) − q(ik, xk + uk − ξk)| ≤ Cq|x̃− x|.

Therefore,

vα(i, x̃) − vα(i, x)
≤ Jα(i, x̃; Ũ ) − Jα(i, x;U)

= E
( τ̃∑

k=0

αk(f(ik, x̃k) − f(ik, xk) + q(ik, x̃k + ũk − ξk)

−q(ik, xk + uk − ξk) + c(ik, ũk) − c(ik, uk))
)

≤ E
( τ̃∑

k=0

αk(Cf + Cq)|x̃− x|
)

≤ E(τ̃ + 1)(Cf + Cq)|x̃− x|. (7.11)

It immediately follows from Lemma 7.1 that E(τ̃ +1)=E(τx̃ +1|i0 = i) ≤
E(τx + 1|i0 = i) <∞.

To complete the proof, it is sufficient to prove the above inequality
for x̃ < x. In this case, let us define the strategy Ũ by

ũk =
{
uk + x− x̃ if uk > 0,
0 otherwise,

It is easy to see that the inequalities

0 ≥ x̃k − xk ≥ x̃− x and ũk − uk ≤ x− x̃

hold for all k. Let τ := τx for ease of notation. If uk = 0 for all k ∈ [0, τ ],
then x̃τ = xτ = 0, and the two trajectories are identical for all k > τ . If
uk′ �= 0 for some k′ ∈ [0, τ ], then x̃k′ = xk′ , and the two trajectories are
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identical for all k > k′. In either case, the two trajectories are identical
for all k > τ .

From Assumptions (i)–(iii), we have

c(ik, ũk) − c(ik, uk) ≤ max{ci}|x− x̃|,
|f(ik, x̃k) − f(ik, xk)| ≤ Cf |x̃− x|,

|q(ik, x̃k + ũk − ξk) − q(ik, xk + uk − ξk)| ≤ Cq|x̃− x|.
Therefore,

vα(i, x̃) − vα(i, x)
≤ Jα(i, x̃; Ũ ) − Jα(i, x;U)

= E
( τ∑

k=0

αk(f(ik, x̃k) − f(ik, xk) + q(ik, x̃k + ũk − ξk)

−q(ik, xk + uk − ξk) + c(ik, ũk) − c(ik, uk))
)

≤ E
( τ∑

k=0

αk(Cf + Cq + max{ci})|x̃− x|
)

≤ E(τ + 1)(Cf + Cq + max{ci})|x̃ − x|. (7.12)

Lemma 7.1 implies again that E(τ+1)=E(τx+1|i0 = i)≤E(τx̃+1|i0 = i)<∞
and the proof is complete. �

Lemma 7.3 Under Assumptions (i)–(ix), there are constants α0 ∈ [0, 1)
and C2 > 0 such that for all α ≥ α0 and for any i for which sα

i > 0, we
have Sα

i ≤ C2 <∞.

Proof. Let us fix the initial state i0 = i for which sα
i > 0. Fix α0 > 0

and a discount factor α ≥ α0. Let U = (u(i0, x0), u(i1, x1), . . .) be an
optimal strategy with parameters (sα

j , S
α
j ), j ∈ I. Let us fix a positive

real number Y and assume Sα
i > Y . In what follows, we specify a value

of Y, namely Y ∗, in terms of which we will construct an alternative
strategy Ũ that is better than U .

For the demand state g specified in Assumption (iv), let

τ g := inf{n > 0 : in = g}
be the first period (not counting the period 0) with the demand state g.
Furthermore, let d be the state with the lowest per unit ordering cost,
i.e., cd ≤ ci for all i ∈ I. Then we define

τ := inf{n ≥ τ g : in = d}.
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Assume x0 = x̃0 = x̄ := 0, and consider the policy Ũ defined by
⎧
⎨

⎩

ũk = 0, k = 0, 1, 2, . . . , τ − 1,
ũτ = xτ + u(iτ , xτ ),
ũk = u(ik, xk), k ≥ τ + 1.

The two policies and the resulting trajectories differ only in the periods
0 through τ . Therefore, we have

vα(i, x̄) − Jα(i, x̄; Ũ)
= Jα(i, x̄;U) − Jα(i, x̄; Ũ)

= E
( τ∑

k=0

αk(f(ik, xk) − f(ik, x̃k) + q(ik, xk + uk − ξk)

−q(ik, x̃k + ũk − ξk) + c(ik, uk) − c(ik, ũk))
)

= E

(
τ∑

k=1

αk(f(ik, xk) + q(ik, xk + uk − ξk) − q(ik,−ξk))
)

+E

(
τ∑

k=0

αkc(ik, uk)

)

− E(ατ c(iτ , ũτ )). (7.13)

After ordering in period τ, the total accumulated ordered amount up
to period τ is less for the policy Ũ than it is for U . Observe that the
policy Ũ orders only in the period τ or later. The order of the policy Ũ
is executed at the lowest possible per unit cost cd in the period τ, which
is not earlier than any of the ordering periods of policy U . Because Ũ
orders only once and U orders at least once in periods 0, 1, . . . , τ, the
total fixed ordering cost of Ũ does not exceed the total fixed ordering
cost of U . Thus,

E

(
τ∑

k=0

αkc(ik, uk)

)

≥ E(ατ c(iτ , ũτ )).

Furthermore, it follows from Assumptions (iii), (vi), and (ix) that

E

(
τ∑

k=1

q(ik,−ξt)
)

<∞.

Because τ ≥ τ g, we obtain

E

(
τ∑

k=1

αk(f(ik, xk) + q(ik, xk + uk − ξk))

)

≥ E

(
τg
∑

k=1

αkf(ik, xk)

)

,
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and because Sα
i ≥ Y, we obtain

xk ≥ Y −
k∑

t=1

ξt.

Irreducibility of the Markov chain (in)∞n=0 implies existence of an integer
m, 0 ≤ m ≤ L, such that P(im = g) > 0. Let m0 be the smallest such
m. It follows that τ g ≥ m0 and therefore, for all α ≥ α0

E

(
τg
∑

k=1

αkf(ik, xk)

)

≥ αm0E(f(im0 , xm0))

≥ αm0
0 E(f(g, Y −

m0∑

t=1

ξt)|im0 = g)P(im0 = g). (7.14)

Using Assumptions (ii), (iv), and (ix), it is easy to show that the RHS
of (7.14) tends to infinity as Y goes to infinity. Therefore, we can choose
Y ∗, 0 ≤ Y ∗ <∞ such that for all α ≥ α0,

vα(i, x̄) − Jα(i, x̄; Ũ) ≥ αm0
0 E(f(g, Y ∗ −

m0∑

t=1

ξt)|im0 = g)P(im0 = g)

−E

(
τ∑

k=1

q(ik,−ξt)
)

> 0. (7.15)

Note that the RHS of (7.15) is independent of α. Therefore, for α ≥ α0,
a policy with Sα

i > C2 := Y ∗ cannot be optimal. �

7.5. Vanishing Discount Approach
Lemma 7.4 Under Assumptions (i)-(ix), the differential discounted
value function wα(i, x) := vα(i, x) − vα(1, 0) is uniformly bounded with
respect to α for all x and i.

Proof. Since Lemma 7.2 implies

|wα(i, x)| = |vα(i, x) − vα(1, 0)|
≤ |vα(i, x) − vα(i, 0)| + |vα(i, 0) − vα(1, 0)|
≤ C3|x| + |wα(i, 0)|,

it is sufficient to prove that wα(i, 0) is uniformly bounded. Note that C3

may depend on x, but it is independent of α.
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First, we show that there is an M > −∞ with wα(i, 0) ≥M for all α.
Let α be fixed. From Theorem 7.1 we know that in this discounted case
there is a stationary optimal feedback policy U = (u(i, x), u(i, x), . . .).
With k∗ = inf{k : ik = i}, we consider the cost for the initial state
(i0, x̃0) = (1, 0), and the inventory policy Ũ that does not order in peri-
ods 0, 1, . . . , k∗ − 1, and follows U starting from the period k∗, i.e., Ũ is
defined by {

ũk = 0 for k < k∗,
ũk = u(ik, xk) for k ≥ k∗.

The cost corresponding to this policy is

Jα(1, 0; Ũ ) = E

(
k∗−1∑

k=0

αkq(ik,−ξk) + αk∗
vα(i, 0)

)

. (7.16)

Because of Assumptions (iii), (vi) and (ix), there exists a constant M
such that

E

(
k∗−1∑

k=0

q(ik,−ξk)
)

≤ −M <∞.

Therefore, we have

wα(i, 0) = vα(i, 0) − vα(1, 0) ≥ vα(i, 0) − Jα(1, 0; Ũ )

≥ vα(i, 0) − E

(
k∗−1∑

k=0

αkq(ik,−ξk) + αk∗
vα(i, 0)

)

≥ vα(i, 0)(1 − E(αk∗
)) +M ≥M. (7.17)

The validity of the inequality wα(i, 0) ≤ M is shown analogously by
changing the role of the states 1 and i. Thus,

|wα(i, x)| ≤ C3|x| + max{M,M},
and the proof is complete. �

Lemma 7.5 Under Assumptions (iii) and (viii), (1 − α)vα(1, 0) is uni-
formly bounded for 0 < α < 1.

Proof. Consider the strategy 0 = (0, 0, . . .). Then, because 0 is not
necessarily optimal,

0 ≤ vα(1, 0) ≤ Jα(1, 0;0) = E

( ∞∑

k=0

αkq(ik,−ξk)
)

.
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Because of Assumptions (iii) and (ix), Eq(i,−ξk) is bounded for all i and
there is a C4 <∞ such that E(q(ik,−ξk)) < C4. Therefore,

0 ≤ (1 − α)vα(1, 0) ≤ (1 − α)
∞∑

k=0

αkC4 = C4.

�

Theorem 7.2 Let Assumptions (i)–(ix) hold. There exist a sequence
(αk)∞k=1 converging to 1, a constant λ∗, and a locally Lipschitz continuous
function w∗(·, ·), such that

(1 − αk)vαk(i, x) → λ∗ and wαk(i, x) → w∗(i, x),

locally uniformly in x and i as k goes to infinity. Moreover, (λ∗, w∗)
satisfies the average cost optimality equation

w(i, x) + λ = f(i, x) + inf
u≥0

{c(i, u) + Eq(i, x+ u− ξi)

+F (w)(i, x + u)}. (7.18)

Proof. It is immediate from Lemma 7.2 and the definition of wα(i, x)
that wα(i, ·) is locally equi-Lipschitzian for α ≥ α0, and therefore it
is uniformly continuous on any finite interval. Additionally, accord-
ing to Lemma 7.4, wα(i, ·) is uniformly bounded, and by Lemma 7.5,
(1 − α)vα(1, 0) is also uniformly bounded. Therefore, the Arzelà-Ascoli
Theorem A.3.5 and Lemma 7.2, lead to the existence of a sequence
αk → 1, a locally Lipschitz continuous function w∗(i, x), and a constant
λ∗ such that

(1 − αk)vαk(1, 0) → λ∗ and wαk(i, x) → w∗(i, x),

with the convergence of wαk (i, x) to w∗(i, x) being locally uniform.
It is easily seen that

lim
k→∞

(1 − αk)vαk(i, x) = lim
k→∞

(1 − αk)(wαk (i, x) + vαk(1, 0)) = λ∗.

Substituting vαk(i, x) = wαk(i, x) + vαk(1, 0) into (7.9) yields

wαk(i, x) + (1 − αk)vαk(1, 0) = f(i, x) + inf
u≥0

{c(i, u)
+Eq(i, x+ u− ξi) + αkF (wαk)(i, x + u)}. (7.19)

Since wαk(i, x) converges locally uniformly with respect to x and i and
since for any given x a minimizer u∗ in (7.19) can be chosen such that,
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x + u∗ − ξ ∈ [0, x + C2], we can use Lemma 7.3 and pass to a limit on
both sides of (7.19) to obtain (7.18). This completes the proof. �

Lemma 7.6 Let λ∗ be defined as in Theorem 7.2. Let Assumptions (i)–
(ix) hold. Then, for any admissible strategy U, we have λ∗ ≤ J(i, x;U).

Proof. Let U = (u0, u1, . . .) denote any admissible decision. Suppose

J(i, x;U) < λ∗. (7.20)

Put
f̃(k) = E[f(ik, xk) + q(ik, xk + uk − ξk) + c(ik, uk)].

From (7.20), it immediately follows that
∑n−1

k=0 f̃(k) < ∞ for each pos-
itive integer n, since otherwise we would have J(i, x;U) = ∞. Note
that

J(i, x;U) = lim sup
n→∞

1
n

n−1∑

k=0

f̃(k),

while

(1 − α)Jα(i, x;U) = (1 − α)
∞∑

k=0

αkf̃(k). (7.21)

Since f̃(k) is nonnegative for each k, the sum in (7.21) is well-defined
for 0 ≤ α < 1, and we can use the Tauberian Theorem A.5.2 to obtain

lim sup
α↑1

(1 − α)Jα(i, x;U) ≤ J(i, x;U) < λ∗.

On the other hand, we know from Theorem 7.2 that (1−αk)vαk(i, x)→λ∗
for a subsequence {αk}∞k=1 converging to one. Thus, there exists an α < 1
such that

(1 − α)Jα(i, x;U) < (1 − α)vα(i, x),

which contradicts the definition of the value function vα(i, x). �

7.6. Verification Theorem
Definition 7.1 Let (λ,w) be a solution of the average optimality equa-
tion (7.18). An admissible strategy U = (u0, u1, . . .) is called stable with
respect to w if for each initial inventory level x ≥ 0 and for each initial
demand state i ∈ I,

lim
k→∞

1
k

E(w(ik, xk)) = 0,
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where xk is the inventory level in period k corresponding to the initial
state (i, x) and the strategy U .

Lemma 7.7 Let Assumptions (i)-(ix) hold. Then, there are constants
Si <∞ and 0 ≤ si ≤ Si, i ∈ I, such that

u∗(i, x) =
{
Si − x, x < si,
0, x ≥ si,

attains the minimum on the RHS in (7.18) for w = w∗, as defined
in Theorem 7.2. Furthermore, the stationary feedback strategy U∗ =
(u∗, u∗, . . .) is stable with respect to any continuous function w.

Proof. Let {αk}∞k=0 be the sequence defined in Theorem 7.2. Let

Gαk(i, y) = ciy + Eq(i, y − ξi) + αkF (wαk)(i, y) (7.22)

and

G(i, y) = ciy + Eq(i, y − ξi) + F (w∗)(i, y). (7.23)

Because w∗(i, ·) is K-convex, we know that a minimizer in (7.18) is
given by

u∗(i, x) =
{
Si − x, x < si,
0, x ≥ si,

where 0 ≤ Si ≤ ∞ minimizes G(i, ·), and si solves

G(si) = K +G(Si)

if a solution to this equation exists, or si = 0 otherwise. Note that if
si = 0, it follows that u∗(i, x) = 0 for all nonnegative x. It remains to
show that Si <∞.

We distinguish two cases.

Case 1. If there is a subsequence, still denoted by {αk}∞k=0, such
that sαk

i > 0 for all k = 0, 1, ..., then it follows from Lemma 7.3 that
Gαk attains its minimum in [0, C2] for all αk > α0. Thus, Gαk , k =
0, 1, ... are locally uniformly continuous and converge uniformly to
G. Therefore, G attains its minimum also in [0, C2], which implies
Si ≤ C2.

Case 2. If there is no such sequence, then there is a sequence, still
denoted by {αk}∞k=0, such that sαk

i = 0 for all k = 0, 1, .... It follows
that for all y > x,

Gαk(x) < K +Gαk(y),
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and therefore, in the limit,

G(x) < K +G(y).

This implies that the infimum in (7.18) is attained for u∗(i, x) ≡ 0,
which is equivalent to si = 0. But if si = 0, we can choose Si

arbitrarily, say Si = C2.

It is obvious that the stationary policy U∗ is stable with respect to
any continuous function, since we have xk ∈ [0,max{C2, x0}] for all
k = 0, 1, . . . for such a policy. �

Theorem 7.3 (Verification Theorem)
(a) Let (λ,w(·, ·)) be a solution of the average cost optimality equa-

tion (7.18), with w continuous on [0,∞). Then, λ ≤ J(i, x;U) for any
admissible U .

(b) Suppose there exists an û(i, x) for which the infimum in (7.18) is
attained. Furthermore, let Û = (û, û, . . .), the stationary feedback policy
given by û, be stable with respect to w. Then,

λ = J(i, x; Û ) = λ∗

= lim
N→∞

1
N

E

(
N−1∑

k=0

f(ik, x̂k) + q(ik, xk + uk − ξk) + c(ik, ûk)

)

,

and Û is an average optimal strategy.
(c) Moreover, Û minimizes

lim inf
N→∞

1
N

E

(
N−1∑

k=0

f(ik, xk) + q(ik, xk + uk − ξk) + c(ik, uk)

)

over the class of admissible decisions which are stable with respect to w.

Proof. We start by showing that

λ ≤ J(i, x;U) for any U stable with respect to w. (7.24)

We assume that U is stable with respect to w, and then follow the same
approach used in deriving (2.15) to obtain

E{w(ik+1, xk+1) | i0, . . . , ik, ξ0, . . . , ξk−1} = F (w)(ik, xk + uk) a.s.
(7.25)



148 Average Cost Models with Lost Sales

Because uk does not necessarily attain the infimum in (7.18), we have

w(ik, xk) + λ ≤ f(ik, xk) + c(ik, uk)
+q(ik, xk + uk − ξk) + F (w)(ik , xk + uk) a.s.,

and from (7.25) we derive

w(ik, xk) + λ ≤ f(ik, xk) + q(ik, xk + uk − ξk) + c(ik, uk)
+E(w(ik+1, xk + uk − ξk) | ik) a.s.

By taking the expectation of both sides, we obtain

E(w(ik , xk)) + λ ≤ E(f(ik, xk) + q(ik, xk + uk − ξk) + c(ik, uk))
+E(w(ik+1, xk+1)).

Summing from 0 to n− 1 yields

nλ ≤ E

(
n−1∑

k=0

f(ik, xk) + q(ik, xk + uk − ξk)

+c(ik, uk)) + E(w(in, xn)) − E(w(i0, x0)). (7.26)

Divide by n, let n go to infinity, and use the fact that U is stable with
respect to w, to obtain

λ ≤ lim inf
n→∞

1
n

E

(
n−1∑

k=0

f(ik, xk)

+ q(ik, xk + uk − ξk) + c(ik, uk)) . (7.27)

Note that if the above inequality holds for ‘liminf’, it certainly also holds
for ‘limsup’. This proves (7.24).

On the other hand, if there exists a û for which the infimum in (7.18)
is attained , we then have

w(ik, x̂k) + λ = f(ik, x̂k) + q(ik, x̂k + ûk − ξk) + c(ik, û(ik, x̂k))
+F (w)(ik, x̂k + û(ik, x̂k)), a.s.,

and we analogously obtain

nλ = E

(
n−1∑

k=0

f(ik, x̂k) + q(ik, x̂k + ûk − ξk) + c(ik, û(ik, x̂k))

)

+E(w(in, x̂n)) − E(w(i0, x̂0)). (7.28)
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Because Û is assumed stable with respect to w, we get

λ = lim
n→∞

1
n

E

(
n−1∑

k=0

f(ik, x̂k) + q(ik, x̂k + ûk − ξk) + c(ik, û(ik, x̂k)

)

= J(i, x; Û ). (7.29)

For the special solution (λ∗, w∗) defined in Theorem 7.2, and the strat-
egy U∗ defined in Lemma 7.7, we have

λ∗ = J(i, x;U∗).

Since U∗ is stable with respect to any continuous function by Lemma 7.7,
it follows that

λ ≤ J(i, x;U∗) = λ∗, (7.30)

which, in view of Lemma 7.6, proves part (a) of the theorem.
Part (a) of the theorem, together with (7.29), proves the average op-

timality of Û over all admissible strategies. Furthermore, since λ =
J(i, x; Û ) ≥ λ∗ by (7.29) and Lemma 7.6, it follows from (7.30) that
λ = λ∗, and the proof of Part (b) is completed.

Finally, Part (c) immediately follows from Part (a) and (7.27). �

Remark 7.5 It should be obvious that any solution (λ,w) of the av-
erage cost optimality equation and control u∗ satisfying (a) and (b) of
Theorem 7.3 will have a unique λ, since it represents the minimum aver-
age cost. On the other hand, if (λ,w) is a solution, then (λ,w+c), where
c is any constant, is also a solution. For the purpose of this chapter, we
do not require w to be unique up to a constant. If w is not unique up
to a constant, then u∗ may not be unique. We also do not need w∗ in
Theorem 7.2 to be unique.

The final result of this section, namely, that there exists an average
optimal policy of (s, S)-type, is an immediate consequence of Lemma 7.7
and Theorem 7.3.

Theorem 7.4 Let Assumptions (i)-(viii) hold. Let si and Si, i ∈ I be
defined as in Lemma 7.7. Then, the stationary feedback strategy U∗ =
(u∗, u∗, . . .) defined by

u∗(i, x) =
{
Si − x, x < si,
0, x ≥ si,

is average optimal.
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7.7. Concluding Remarks and Notes
This chapter is based on Cheng and Sethi (1999b) and Beyer and

Sethi (2005). We have proved a verification theorem for the average cost
optimality equation, which we have used to establish the existence of an
optimal state-dependent (s, S) policy.

As with the discounted cost models, the optimality of an (s, S) policy
for a lost sales case is established only under the condition of zero order-
ing leadtime; (see references in Chapter 4). With nonzero leadtimes, the
results for models with backlog do not generalize to the lost sales case.
Specifically, an (s, S) policy is no longer optimal, and the form of the
optimal policy is more complicated; (see, e.g., Zipkin (2008a) and Huh
et al. (2008)). Nevertheless, an (s, S)-type policy is often used without
the optimality proof; (see, e.g., Kapalka, et al. (1999)).
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