
Chapter 3

DISCOUNT COST MODELS WITH
POLYNOMIALLY GROWING
SURPLUS COST

3.1. Introduction
This chapter studies stochastic inventory problems with unbounded

Markovian demands and more general costs than those considered in
Chapter 2. Finite horizon problems, as well as stationary and nonsta-
tionary discounted cost infinite horizon problems, are addressed. Exis-
tence of optimal Markov or feedback policies is established with Marko-
vian demand: unbounded, ordering costs that are l.s.c., and surplus
costs that are l.s.c. with polynomial growth. Furthermore, optimality
of (s, S)-type policies is proved when the ordering cost consists of fixed
and proportional cost components and the surplus cost is convex.

The literature on infinite horizon inventory models involving a fixed
ordering cost assumes surplus cost to be of linear growth and uniformly
continuous as in Karlin (1958c), Scarf (1960), Bensoussan et al. (1983),
and others. Even quadratic surplus costs that are popular in the pro-
duction planning literature dating back to the classical HMMS model of
Holt et al. (1960) have not been considered in infinite horizon inventory
models.

As for demand, Karlin and Fabens (1960), Song and Zipkin (1993),
Sethi and Cheng (1997), and Beyer and Sethi (1997) have all considered
Markovian demands. Karlin and Fabens consider only the class of state-
independent (s, S) policies, which does not in general include optimal
policies. Song and Zipkin consider Markov-modulated Poisson demand
in their analysis. Sethi and Cheng consider general Markovian demands
in their treatment of discounted cost problems.

In this chapter, we consider unbounded Markovian demands but re-
quire that a certain number (depending on the growth rate of the surplus
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cost function) of moments be finite. This is an essential requirement and
yet not very restrictive. As both cost and demand are generalized, the
chapter represents a significant extension of the infinite horizon inven-
tory problems (involving a fixed ordering cost component) that have
appeared in the literature.

In this chapter, we conduct a detailed analysis of the discounted cost
problem. The problem is carefully formulated in Section 3.2. In Sec-
tion 3.3, we use the dynamic programming equation to prove the ex-
istence of an optimal Markov control for the finite horizon problem.
We also provide a verification theorem for the solution of the dynamic
programming equation to be the value function. We prove the value
function to be continuous when the surplus cost is continuous and the
ordering cost is l.s.c. As we will remark later, this has some implications
for whether or not to order at the level s in an optimal (s, S)-type pol-
icy. The nonstationary infinite horizon problem is treated in Section 3.4.
With further assumptions on costs, the optimality of (s, S)-type policies
is established in Section 3.5. The stationary infinite horizon problem is
briefly discussed in Section 3.6. The chapter concludes with end notes
in Section 3.7.

3.2. Formulation of the Model
Let us consider an inventory problem over a finite number of periods

〈n,N〉 = {n, n + 1, . . . , N}, and an initial inventory of x units at the
beginning of period n, where n and N are any given integers satisfying
0 ≤ n ≤ N <∞. The demand in each period is assumed to be a random
variable defined on a given probability space (Ω,F ,P), and not necessar-
ily identically distributed. More specifically, the demand distributions
in successive periods are defined as below.

Consider a finite collection of demand states I = {1, 2, . . . , L}, and
let ik denote the demand state in the kth period. We assume that ik,
k ∈ 〈n,N〉, with known initial demand state in, is a Markov chain over
I with the transition matrix P = {pij}. Thus,

0 ≤ pij ≤ 1, i ∈ I, j ∈ I, and
L∑

j=1

pij = 1, i ∈ I.

Let a nonnegative random variable ξk denote the demand in a given
period k, k = 0, . . . , N−1. Demand ξk depends only on period k and the
demand state in that period, by which we mean that it is independent
of past demand states and past demands. We denote its cumulative
probability distribution by Φi,k(x), when the demand state ik = i. In
the following period, if the state changes to state j, which happens with
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probability pij, then the demand distribution is Φj,k+1 in that period.
We further assume that for some γ ≥ 1 and a positive constant D,

E(ξγ
k |ik = i) =

∞∫

0

xγdΦi,k(x) ≤ D <∞, k = 0, . . . , N−1, i ∈ I. (3.1)

This is not a very restrictive assumption from an applied perspective.
We denote by

Fk
l , the σ-algebra generated by {il, . . . , ik−1, ik; ξl, . . . , ξk−1},

0 ≤ l ≤ k ≤ N,
Fk = Fk

0 .
(3.2)

Since ik, k = 1, . . . , N, is a Markov chain and ξk depends only on ik, we
have

E(ξk|Fk) = E(ξk|i0, i1, . . . , ik; ξ0, ξ1, . . . , ξk−1)
= E(ξk|ik). (3.3)

An admissible decision (ordering quantities) for the problem on the
interval 〈n,N〉 with initial state in = i can be denoted as

U = (un, . . . , uN−1), (3.4)

where uk is a nonnegative Fk
n -measurable random variable. In simpler

terms, this means that decision uk depends only on the past information.
Note that since in is known in period n, Fn

n = (Ω, ∅); hence un is deter-
ministic. Moreover, it should be emphasized that this class of admissible
decisions is larger than the class of admissible feedback policies.

Ordering quantities are decided upon at the beginning of each period.
Demand in each period is supposed to occur at the end of the period
after the order has been delivered. Unsatisfied demand is carried forward
as backlog. The inventory balance equations are defined by

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = xk + uk − ξk, k = n, . . . ,N−1,
xn = x, initial inventory level,
ik, k = n, . . . ,N, Markov chain with transition matrix P,
in = i, initial state,

where xk is the surplus level at the beginning of period k, uk is the
quantity ordered at the beginning of period k, ik is the demand state in
period k, and ξk is the demand in period k. Note that xk > 0 represents
an inventory of xk and xk < 0 represents a backlog (or shortage) of −xk.

Next, we specify the relevant costs and the assumptions they satisfy.
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(i) The production cost function ck(i, u) : I × R
+ → R

+ is l.s.c.,
ck(i, 0) = 0, k = 0, 1, . . . , N−1.

(ii) The surplus cost function fk(i, x) : I × R
+ → R

+ is l.s.c., with
fk(i, x) ≤ f̄(1 + |x|γ), i = 1, 2 . . . , L, k = 0, 1, . . . , N −1, where
f̄ is a nonnegative constant. When x < 0, fk(i, x) is the cost of
backlogged sales x, and when x > 0, fk(i, x) is the carrying cost of
holding inventory x during that period.

(iii) fN(i, x) : I × R
+ → R

+, the penalty cost/disposal cost for the
terminal surplus, is l.s.c. with fN(i, x) ≤ f̄(1 + |x|γ). When x < 0,
fN(i, x) represents the penalty cost of unsatisfied demand x, and
when x > 0, fN(i, x) represents the disposal cost of the inventory
level x.

The objective function to be minimized is the expected present value
of all the costs incurred during the interval 〈n,N〉, i.e.,

Jn(i, x;U) = E

{
N−1∑

k=n

αk−n[ck(ik, uk) + fk(ik, xk)]

+αN−nfN(iN , xN)
}
, (3.5)

which is always defined, provided we allow this quantity to be infinite.
In (3.5), α denotes the discount factor with 0 < α < 1. While intro-

ducing α in this finite horizon model does not add to generality, in view
of the already time-dependent nature of the cost functions, we do so
for convenience of exposition in dealing with the average cost optimality
criterion studied in Chapter 6.

3.3. Dynamic Programming and Optimal
Feedback Policy

Let us first introduce the following definitions.

B
γ= Banach space of Borel functions b : I × R → R with polynomial

growth with power γ or less. More specifically, if b ∈ B
γ , then

|b(i, x)| ≤‖ b ‖γ (1 + |x|γ), where the norm

‖ b ‖γ= max
i

sup
x

|b(i, x)|
1 + |x|γ <∞. (3.6)

L
γ = the subspace of l.s.c. functions in B

γ . The space L
γ is closed in

B
γ .
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L
γ−

= the class of all l.s.c. functions which are of polynomial growth
with power γ or less on (−∞, 0].

In view of (3.3), we can write

E[b(ik+1, ξk)|Fk] = E[b(ik+1, ξk)|ik], (3.7)

for any b ∈ B
γ .

To write the dynamic programming equations more concisely, we de-
fine the operator Fn+1 on B

γ as follows:

Fk+1b(i, y) = E[b(ik+1, y − ξk)|ik = i]

=
L∑

j=1

{P(ik+1 = j|ik = i)E[b(j, y − ξk)|ik = i]}

=
L∑

j=1

pij

∫ ∞

0
b(j, y − ξ)dΦi,k(ξ). (3.8)

In addition to Assumptions (i)-(iii) on costs, we also require that for
k = 0, 1, . . . , N−1,

0 ≤ ck(i, u) + αFk+1(fk+1)(i, u) → ∞ for u→ ∞. (3.9)

Remark 3.1 Condition (3.9) implies that both the purchase cost and
the inventory (or salvage) cost associated with a decision in any given
period cannot both be zero. The conditions rule out the trivial and
unrealistic situation of ordering an infinite amount as the optimal policy.
See Remark 2.2 for further elaboration.

Let vn(i, x) represent the optimal value of the expected costs during
the time horizon 〈n,N〉 with demand state i in period n, i.e.,

vn(i, x) = inf
U
Jn(i, x;U).

Then, vn(i, x) satisfies the dynamic programming equations

vn(i, x) = fn(i, x) + inf
u≥0

{cn(i, u) + αE[vn+1(in+1,

x+ u− ξn)|in = i]}
= fn(i, x) + inf

u≥0
{cn(i, u) + αFn+1(vn+1)(i, x+ u)},

n = 0, 1, . . . , N−1, (3.10)
vN(i, x) = fN(i, x). (3.11)
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We can now state our existence results in the following two theorems.

Theorem 3.1 The dynamic programming equations (3.10) and (3.11)
define a sequence of functions in L

γ . Moreover, there exists a Borel
function ûn(i, x) such that the infimum in (3.10) is attained at u =
ûn(i, x) for any x. Furthermore, if the functions fn(i, ·), n = 0, 1, . . . , N,
i = 1, 2 . . . , L, are continuous, then the functions defined by (3.10) and
(3.11) are continuous.

Proof. We proceed by induction. Because of Assumption (iii) and
(3.11), it follows that vN(i, x) ∈ L

γ . Assume vn+1(i, x) belongs to L
γ .

Consider points x such that |x| ≤ M, where M is an arbitrary nonneg-
ative integer. Let

BM
n,i = sup

|x|≤M

{αFn+1(vn+1)(i, x)}. (3.12)

The constant BM
n,i is finite since vn+1(i, x) is in B

γ and therefore bounded
on |x| ≤M, and Fn+1 is a continuous linear operator; (see Lemma A.4.1).
Because of (3.9), we know that the set

NM
n,i := {u ≥ 0 : inf

|x|≤M
{cn(i, u) + αFn+1(fn+1)(i, x+ u) ≤ BM

n,i} (3.13)

is bounded, i.e., there is a ūM
n,i such that

NM
n,i ⊆ [0, ūM

n,i]. (3.14)

Because of vn+1 ≥ fn+1, we conclude that

{u ≥ 0 : inf
|x|≤M

{cn(i, u) + αFn+1(vn+1)(i, x + u) ≤ BM
n,i}

⊆ NM
n,i ⊆ [0, ūM

n,i], (3.15)

and, therefore without loss of optimality, we can restrict our attention
to 0 ≤ u ≤ ūM

n,i for all x satisfying |x| ≤ M. This is because for any
u > ūM

n,i,

cn(i, u) + αFn+1(vn+1)(i, x+ u)
≥ inf

|x|≤M
{cn(i, u) + αFn+1(vn+1)(i, x+ u)}

> BM
n,i = sup

|x|≤M

{αFn+1(vn+1)(i, x)}
≥ αFn+1(vn+1)(i, x)
= cn(i, 0) + αFn+1(vn+1)(i, x),

and thus u cannot be the point where the infimum is attained.
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Since the function

ψn(i, x, u) = cn(i, u) + αFn+1(vn+1)(i, x + u)

is l.s.c. and bounded from below, its minimum over a compact set is
attained; (see Theorem A.1.5). Moreover, from the classical Selection
Theorem A.1.7, we know that there exists a Borel function ûM

n (i, x) such
that

ψn(i, x, ûM
n (i, x)) = inf

0≤u≤ūM
n,i

ψn(i, x, u), |x| ≤M. (3.16)

Upon defining

ûn(i, x) = ûM
n (i, x) for M − 1 < |x| ≤M,

we obtain a Borel function such that

ψn(i, x, ûn(i, x)) = inf
u≥0

ψn(i, x, u), ∀x. (3.17)

Since

inf
u≥0

ψn(i, x, u) ≤ ψn(i, x, 0) ≤ cn(i, 0) + α ‖ Fn+1 ‖‖ vn+1 ‖γ (1 + |x|γ),

we can use (3.10), Assumption (ii), and Lemma A.4.1 to conclude that
vn(i, x) ∈ B

γ . Furthermore, because ψn(i, ·, ·) is l.s.c., it follows from
equation (3.16) that vn(i, ·) is l.s.c. for each i (see Theorem A.1.6), and
therefore vn ∈ L

γ .
To prove the last part of the theorem, we begin with the fact that for

each i the function fn(i, ·) is continuous, n = 0, 1, . . . , N. Then vN(i, ·) =
fN(i, ·) is continuous for all i, and the continuity of vn can be proved by
induction as follows. Assume vn+1 to be continuous. From (3.10) and
(3.17) we derive

vn(i, x0) = fn(i, x0) + cn(i, û(i, x0)) + Fn+1(vn+1)(i, x0 + û(i, x0))

and, because for x = x1 the infimum in (3.10) is not necessarily attained
at û(i, x0), we have

vn(i, x1) ≤ fn(i, x1) + cn(i, û(i, x0)) + Fn+1(vn+1)(i, x1 + û(i, x0)).

Thus,

vn(i, x1) − vn(i, x0) ≤ fn(i, x1) − fn(i, x0)
+Fn+1(vn+1)(i, x1 + û(i, x0)) − Fn+1(vn+1)(i, x0 + û(i, x0)),

which, in view of the continuity of fn and vn+1 ∈ L
γ and (3.1), yields

lim sup
x1→x0

vn(i, x1) − vn(i, x0) ≤ 0.
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On the other hand, we have already proved that vn is l.s.c., which means

lim inf
x1→x0

vn(i, x1) − vn(i, x0) ≥ 0.

Therefore, vn is continuous. �
To solve the problem of minimizing J0(i, x;U), let us define

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂0 = x,
ûn = ûn(in, x̂n), n = 0, . . . , N−1,
x̂n + 1 = x̂n + ûn − ξn, n = 0, . . . , N−1,
in, n = 0, . . . , N, Markov chain with transition matrix P,
i0 = i,

where ûn(i, x) is a Borel function for which the infimum in (3.10) is
attained for any i and x.

Theorem 3.2 (Verification Theorem) The policy Û = (û0, û1, . . . , ûN−1)
minimizes J0(i, x;U) over the class U of all admissible decisions. More-
over,

v0(i, x) = min
U∈U

J0(i, x;U). (3.18)

Proof. Let U = (u0, . . . , uN−1) be any admissible decision with the
corresponding trajectory (x0, . . . , xN−1). Without loss of generality, we
may assume that Ecn(in, un)<∞, Efn(in, xn)<∞, n ∈ 〈0, N−1〉, and
EfN(iN , xN) < ∞. Otherwise, J0(i, x;U) = ∞ and U cannot be optimal
since J0(i, x;0) <∞ in view of (3.1) and Assumptions (i)-(iii).

Because vn(iN , xN) = fN(iN , xN), it follows that EvN(iN , xN) < ∞.
Using arguments analogous to those in the proof of Theorem 2.2, we
proceed by induction. Assume that Evn+1(in+1, xn+1) <∞. Using prop-
erty (vii) in Section B.2, (3.7), and (3.8), we obtain (see details leading
to (2.15))

E{vn+1(in+1, xn+1)|Fn} = Fn+1(vn+1)(in, xn + un) a.s. (3.19)

Since U is admissible but not necessarily optimal, we can use (3.10) to
assert that

vn(in, xn) ≤ fn(in, xn) + cn(in, un) + αFn+1(vn+1)(in, xn + un) a.s.

Then from the relation (3.19), we can derive

vn(in, xn) ≤ fn(in, xn) + cn(in, un) + αE{vn+1(in+1, xn+1)|Fn}.
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Taking expectation of both sides of the above inequality, we obtain

αnEvn(in, xn) ≤ αnE(fn(in, xn) + cn(in, xn))
+αn+1E(vn+1(in+1, xn+1)). (3.20)

We can conclude recursively that Evn(in, xn) < ∞ for all n ∈ 〈0, N〉
and that (3.20) holds. Then, by summing (3.20) from 0 to N−1 and
canceling identical terms on both sides, we obtain

v0(i, x) ≤ J0(i, x;U). (3.21)

Consider now the decision Û . Using the definition of ûn(in, x) as the
Borel function for which the infimum in (3.10) is attained, and proceed-
ing as above, we can obtain

αnEvn(in, x̂n)
= αnE(fn(in, x̂n) + cn(in, ûn)) + αn+1E(vn+1(in+1, x̂n+1)).

Note that x̂0 = x is deterministic and v0(i, x) ∈ L
γ . Therefore,

Ev0(i0, x̂0) = v0(i, x) <∞, and furthermore, it can be shown recursively
that Ecn(in, ûn) <∞, n ∈ 〈0, N−1〉 and Efn(in, x̂n) <∞, Evn(in, x̂n) <
∞, n ∈ 〈0, N〉. Adding up for n from 0 to N−1 and canceling terms, we
get

v0(i, x) = J0(i, x; Û ).

This and the inequality (3.21) complete the proof. �

3.4. Nonstationary Discounted Infinite Horizon
Problem

In this section, we consider an infinite horizon version of the model
formulated in Section 3.2. We require that the Assumptions (i) and (ii)
hold with N = ∞, and that i0, i1, . . . is a Markov chain with the same
transition matrix P. We set N = ∞, replace 〈n,N〉 by 〈n,∞〉, replace
the admissible decision in (3.4) by

U = (un, un+1, . . .), (3.22)

and replace (3.5) by the objective function

Jn(i, x;U) =
∞∑

k=n

αk−nE[ck(ik, uk) + fk(ik, xk)], (3.23)
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where α is the given discount factor, 0 < α < 1. The dynamic pro-
gramming equations for each i ∈ I and n = 0, 1, 2, . . . can be written
as

vn(i, x) = fn(i, x) + inf
u≥0

{cn(i, u) + αFn+1(vn+1)(i, x+ u)}. (3.24)

In what follows, we will show that there exists an L
γ-solution of (3.24),

which is the value function of the infinite horizon problem. Moreover,
the decision, for which the infimum in (3.24) is attained, is an optimal
feedback policy.

First, let us examine the finite horizon approximation Jn,m(i, x;U),
m ≥ 1, of (3.23). The approximation is obtained by the first m-period
truncation of the infinite horizon problem of minimizing Jn(i, x;U), i.e.,

Jn,m(i, x;U) =
n+m−1∑

k=n

E[cl(ik, uk) + fk(ik, xk)]αk−n. (3.25)

Let vn,m(i, x) be the value function of the truncated problem with no
penalty cost in the last period, i.e.,

vn,m(i, x) = inf
U
Jn,m(i, x;U). (3.26)

Since the truncated problem is a finite horizon problem defined on the
interval 〈n, n + m〉, Theorems 3.1 and 3.2 apply. Therefore, its value
function can be obtained by solving the corresponding dynamic pro-
gramming equations

vn,m+1(i, x) = fn(i, x) + inf
u≥0

{cn(i, u) (3.27)

+αFn+1(vn+1,m)(i, x+ u)},
vn+m,0(i, x) = 0. (3.28)

Moreover, vn,0(i, x) = 0 and

vn,m(i, x) = min
U
Jn,m(i, x;U).

Next we will show that an a priori upper bound on inf Jn(i, x;U) can
be easily constructed. Let us define

wn(i, x) = Jn(i, x;0), (3.29)

where 0 = {0, 0, . . .} is the policy that never orders anything. Then,
since no production costs are incurred in view of Assumption (i), we
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have

wn(i, x) = fn(i, x)+

E
[ ∞∑

k=n+1

αk−nfk(ik, x− (ξn + ξn+1 + · · · + ξk−1)
∣
∣
∣in = i

]
.(3.30)

Lemma 3.1 wn(i, x) is well defined and wn(i, x) ∈ L
γ .

Proof. On account of fn(i, x) ∈ L
γ , it is sufficient to show that

E
[ ∞∑

k=n+1

αk−nfk(ik, x− (ξn + ξn+1 + · · · + ξk−1))
∣
∣
∣in = i

]
∈ L

γ .

Assumption (ii) yields

E
[ ∞∑

k=n+1

αk−nfk(ik, x− (ξn + ξn+1 + · · · + ξk−1))
∣
∣
∣in = i

]

≤ f̄

∞∑

k=n+1

αk−n(1 + E
[
|x− (ξn + ξn+1 + · · · + ξk−1)|γ

∣
∣
∣in = i

]
)

=
f̄α

1 − α
+ f̄

∞∑

k=n+1

αk−nE
[
|x− (ξn + ξn+1 + · · · + ξk−1)|γ

∣
∣
∣ in = i

]
.

Note that it follows from (3.1) that E(ξγ
k |ik = i) ≤ D+1 for all k and i.

LetMx = max{|x|γ ,D+1}. Now let us consider the argument of the sum
for a fixed k ≥ n+ 1. Let Πk := {(in, . . . , ik) : in, . . . , ik ∈ I and in = i}
be the set of all combinations of demand states in periods n through k
for a given initial state in = i. Note that for a given sequence of demand
states, the one-period demands are independent. Then we have,

E
[
|x− (ξn + · · · + ξk−1)|γ

∣
∣
∣ in = i

]

=
∑

π∈Πk

E
[
|x− (ξn + · · · + ξk−1)|γ

∣
∣
∣ (in, . . . , ik) = π

]

×P((in, . . . , ik) = π)

≤
∑

π∈Πk

(k − n+ 1)γE
[
|x|γ + |ξn|γ + · · · + |ξk−1)|γ

∣
∣
∣ (in, . . . , ik) = π

]

×P((in, . . . , ik) = π)

≤
∑

π∈Πk

(k − n+ 1)γ(n − k)M̄xP((in, . . . , ik) = π)

= (k − n+ 1)γ(k − n)M̄x.
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Therefore,

E
[ ∞∑

k=n+1

αk−nfk(ik, x− (ξn + · · · + ξk−1))
∣
∣
∣in = i

]

≤ f̄
( α

1 − α
+ M̄x

∞∑

k=n+1

αk−n(k − n+ 1)γ(k − n)
)
<∞.

Consequently, wn(i, x) < ∞. In view of Theorem A.1.8, wn(i, x) is also
l.s.c. as the sum of nonnegative l.s.c. functions. Moreover, because M̄x =
|x|γ for |x|γ ≥ D+1, wn(i, x) is at most of polynomial growth with power
γ. Thus, we have wn(i, x) ∈ L

γ . �
We can now state the following result for the infinite horizon problem.

Theorem 3.3 Let Assumptions (i)-(ii) and (3.1) hold. Then, we have

0 = vn,0 ≤ vn,1 ≤ . . . ≤ vn,m ≤ wn (3.31)

and
vn,m ↑ vn ∈ B

γ , (3.32)

where vn is a solution of (3.24) in L
γ . Furthermore, there exists Û =

{ûn, ûn+1, . . .} for which the infimum in (3.24) is attained, and Û is an
optimal feedback policy, i.e.,

vn(i, x) = min
U
Jn(i, x;U) = Jn(i, x; Û ). (3.33)

Proof. By definition, vn,0 = 0. Let Ũn,m = {ũn, ũn+1, . . . , ũn+m−1} be
a minimizer of (3.25). Thus,

wn(i, x) = Jn(i, x;0) ≥ Jn,m(i, x;0)

≥ vn,m(i, x) = Jn,m(i, x; Ũn,m) ≥ Jn,m−1(i, x; Ũn,m−1)
≥ min

U
Jn,m−1(i, x;U) = vn,m−1(i, x).

This proves (3.31). Moreover, it follows from (3.31) that there is a
function vn(i, x) such that

vn,m(i, x) ↑ vn(i, x) ≤ wn(i, x). (3.34)

Next, we will show that the functions vn satisfy the dynamic program-
ming equations (3.24). Observe from (3.27) and (3.31) that for each m,
we have

vn,m(i, x) ≤ fn(i, x) + inf
u≥0

{cn(i, u) + αFn+1(vn+1,m)(i, x+ u)}.
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Thus, in view of (3.34), we can replace vn+1,m by vn on the RHS of the
above inequality and then pass to the limit on the LHS as m → ∞ to
obtain

vn(i, x) ≤ fn(i, x) + inf
u≥0

{cn(i, u) + αFn+1(vn+1)(i, x+ u)}. (3.35)

Let the infimum in (3.27) be attained at ûn,m. In order to obtain the
reverse inequality, we first prove that ûn,m(i, x) is uniformly bounded
with respect to m.

In the proof of Theorem 3.1 we showed that for |x| ≤ M, there is an
ūM

n,i such that ûn,N−n(i, x) ≤ ūM
n,i. Furthermore, if we replace vn+1 by

wn+1 in (3.12) and follow the same line of arguments as in the proof of
Theorem 3.1, we obtain an upper bound ¯̄uM

n,i, which does not depend on
the horizon N. Therefore, we can conclude that

ūn(i, x) := ¯̄uM
n,i is an upper bound for ûn,m(i, x) if M − 1 < |x| ≤M,

(3.36)
independent of m.

For l > m, we see from (3.27)that

vn,l+1(i, x) = fn(i, x) + cn(i, ûn,l(x))
+αFn+1(vn+1,l)(i, x + ûn,l(x))

≥ fn(i, x) + cn(i, ûn,l(x))
+αFn+1(vn+1,m)(i, x + ûn,l(x)).

(3.37)

Fix m and let l → ∞. In view of (3.36), we can choose a sequence of
periods l′ such that

ûn,l′(i, x) → ũn(i, x) for l′ → ∞. (3.38)

We then conclude from (3.37) and Fatou’s Lemma (Lemma B.1.1) that

vn(i, x) ≥ fn(i, x) + lim
l′→∞

cn(i, ûn,l′(i, x))

+α lim inf
l′→∞

Fn+1(vn+1,m)(i, x + ûn,l′(i, x)),

≥ fn(i, x) + lim
l′→∞

cn(i, ûn,l′(i, x))

+α
L∑

j=1

pij

∞∫

0

(lim inf
l′→∞

vn+1,m(i, x+ ûn,l′(i, x) − ξ))dΦi,n(ξ).

Since vn+1,m and cn are l.s.c., we can, in view of (3.38), pass to the limit
in the argument of these functions to obtain

vn(i, x) ≥ fn(i, x) + cn(i, ũn(i, x)) + αFn+1(vn+1,m)(i, x + ũn(i, x)),
≥ fn(i, x) + inf

u≥0
{cn(i, u) + αFn+1(vn+1,m)(i, x+ u)}. (3.39)
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This, along with (3.35) and (3.34), proves (3.32).
From Theorem A.1.8, it follows that vn is l.s.c., as the monotone limit

of l.s.c. functions vn,m asm→ ∞. Also, since vn is bounded by a function
wn of polynomial growth, we have vn ∈ L

γ .
Because wn ≥ vn ≥ fn, it is clear that ūn(i, x) defined in (3.36) is also

an upper bound for the minimizer in (3.24). Therefore, there exists a
Borel map ûn(i, x) such that

cn(i, ûn(i, x)) + αFn+1(vn+1)(i, x + ûn(i, x))
= inf

u≥0
{cn(i, u) + αFn+1(vn+1)(i, x + u)}. (3.40)

With that in mind, we can use (3.24) to obtain

E[vk(ik, xk)]
= E[fk(ik, xk) + ck(ik, ûk)] + αE[Fk+1(vk+1)(ik, xk + ûk)]
= E[fk(ik, xk) + ck(ik, ûk] + αE[vk+1(ik+1, xk+1)], k = 0, 1, 2, . . . .

Multiplying by αk−n, summing from n to N−1, and canceling terms
yield

vn(i, x) ≥ E
[ N−1∑

k=n

αk−n(ck(ik, ûk) + fk(ik, x̂k))
]

+ αN−nE[vN(iN , x̂N)].

Letting N → ∞, we conclude

vn(i, x) ≥ Jn(i, x; Û ). (3.41)

From Theorem 3.2 we know that vn,k(i, x) ≤ Jn,k(i, x;U) for any policy
U, and we let k → ∞ to obtain

vn(i, x) ≤ Jn(i, x;U) for any admissible U. (3.42)

Together, inequalities (3.41) and (3.42) imply

vn(i, x) = Jn(i, x; Û ) = min
U
Jn(i, x;U),

which completes the proof. �
Before we prove the optimality of an (s, S)-type policy for the nonsta-

tionary finite and infinite horizon problems, we should note that Theo-
rem 3.3 does not imply uniqueness of the solution to the dynamic pro-
gramming equations (3.27) and (3.28). There may be other solutions.
Moreover, one can show that the value function is the minimal positive
solution of (3.27) and (3.28). It is also possible to obtain a uniqueness
proof under additional assumptions. For our purpose, however, it is
sufficient to have the results of Theorem 3.3.
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3.5. Optimality of (s, S)-type Ordering Policies
The existence and optimality of a feedback (or Markov) policy ûn(i, x)

was proved in Theorems 3.1 and 3.2. We now make additional assump-
tions to further characterize the optimal feedback policy.

Let us assume that for any demand state i,

fn(i, x) is convex with respect to x, n = 0, 1, . . . , N, (3.43)

cn(i, u) =
{

0, u = 0,
Ki

n + cin · u, u > 0, (3.44)

where cin ≥ 0 and Ki
n ≥ 0, n = 0, 1, . . . , N−1, and

Ki
n ≥ αK̄i

n+1 ≡ α

L∑

j=1

pijK
j
n+1, n = 0, 1, . . . , N. (3.45)

It should be noted that (3.43) implies that fn(i, ·), for any i and
n = 0, 1, . . . , N, is continuous on R.

Remark 3.2 Assumptions (3.43)–(3.45) reflect the usual structure of
costs to prove optimality of an (s, S)-type policy.

Theorem 3.4 Let N be finite. Let Assumptions (i)-(iii), (3.1), (3.9),
and (3.43)-(3.45) hold. Then, there exists a sequence of numbers sn,i,
Sn,i, n = 0, . . . , N−1, i = 1, . . . , L, with sn,i ≤ Sn,i, such that the optimal
feedback policy is

ûn(i, x) =
{
Sn,i − x, x ≤ sn,i,
0, x > sn,i.

(3.46)

Proof. The dynamic programming equations (3.10) and (3.11) can be
written as

vn(i, x) = fn(i, x) − cinx+ hn(i, x), 0 ≤ n ≤ N−1, i = 1, . . . , L,
vN(i, x) = fN(i, x), i = 1, . . . , L,

where

hn(i, x) = inf
y≥x

[Ki
n1Iy>x + zn(i, y)], (3.47)

zn(i, y) = ciny + αFn+1(vn+1)(i, y). (3.48)

From (3.10), we have vn(i, x) ≥ fn(i, x). This inequality, along with
(3.9), ensures for n = 1, 2, . . . , N−1 and i = 1, 2, . . . , L that

zn(i, x) → +∞ as x→ ∞. (3.49)
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Furthermore, from the last part of Theorem 3.1, it follows that vn+1 is
continuous; therefore zn(i, x) is continuous.

In order to obtain (3.46), we need to prove that zn(i, x) is Ki
n-convex.

This is done by induction. First, vN(i, x) is convex by definition and
therefore, K-convex for any K ≥ 0. Let us now assume that for a given
n ≤ N−1 and i, vn+1(i, x) is Ki

n+1-convex. By Assumption (3.45), it is
easy to see that zn(i, x) is αK̄i

n+1-convex, hence also Ki
n-convex. Then,

Theorem C.2.3 implies that hn(i, x) is Ki
n-convex. Therefore, vn(i, x) is

Ki
n-convex. This completes the induction argument.
Thus, it follows that zn(i, x) is Ki

n-convex for each n and i. In view
of (3.49), we apply Theorem C.2.3 to obtain the desired sn,i and Sn,i.
According to Theorem 3.2 and the continuity of zn, the optimal feedback
policy defined in (3.46) is optimal. �

Theorem 3.5 Let Assumptions (i)-(ii), (3.1), (3.9), and (3.43)–(3.45)
hold for the cost functions for the infinite horizon problem. Then, there
exists a sequence of numbers sn,i, Sn,i, n = 0, 1, . . . , with sn,i ≤ Sn,i for
each i ∈ I, such that the feedback policy

ûn(i, x) =
{
Sn,i − x, x < sn,i,
0, x ≥ sn,i,

(3.50)

is optimal.

Proof. Let vn denote the value function. Define the functions zn and
hn as above. We know that zn(i, x) → ∞ as x→ +∞ and zn(i, x) ∈ L

γ

for all n and i = 1, 2, . . . , L.
We now prove that vn is Kn-convex. Using the same induction as in

the proof of Theorem 3.4, we can show that vn,m(i, x), defined in (3.26),
is Ki

n-convex. This induction is possible since we know that vn,m(i, x)
satisfies the dynamic programming equations (3.27) and (3.28). It is
clear from the definition of K-convexity that this property is preserved
under monotone limit procedures. Thus, the value function vn(i, x),
which is the limit of vn,m(i, x) as m→ ∞, is Ki

n-convex.
From Theorem 3.3 we know that vn satisfies the dynamic program-

ming equations (3.27) and (3.28). Therefore, we can obtain an optimal
feedback policy Û = {ûn, ûn+1, . . .}, for which the infimum in (3.27) is
attained. Because zn is Ki

n-convex and l.s.c., ûn can be expressed as in
(3.50). �

Remark 3.3 It is important to emphasize the difference between the
(s, S) policies defined in (3.46) and (3.50). In (3.46), an order is placed
when the inventory level is s or below, whereas in (3.50) an order is
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placed only when the inventory is strictly below s. Most of the literature
uses the policy type (3.46). While (3.46) in Theorem 3.4 can be replaced
by (3.50) on account of the continuity of zn, it is not possible to replace
(3.50) in Theorem 3.5 by (3.46), since zn is proved only to be l.s.c.

Remark 3.4 In the stationary infinite horizon discounted cost case dis-
cussed in the next section, we are able to prove that the value function
is locally Lipschitz, and therefore continuous. The proof is provided in
Chapter 5, Lemma 5.3. Thus, in this case, policies of both types (3.50)
and (3.46) are optimal.

3.6. Stationary Infinite Horizon Problem
If the cost functions, as well as the distributions of the demands, do

not explicitly depend on time, i.e., for each k

ck(i, u) = c(i, u), fk(i, x) = f(i, x), and Φi,k = Φi,

then it can be easily shown that the value function vn(i, x) does not
depend on n. In what follows, we will denote the value function of the
stationary discounted cost problem by vα(·, ·), in order to emphasize
the dependence on the discount factor α. In the same manner as in
Section 3.4, it can be proved that the function vα satisfies the dynamic
programming equation

vα(i, x) = f(i, x) + inf
u≥0

{c(i, u) + αF (vα)(i, x + u)}, (3.51)

where F is the same as Fn+1, defined in (3.8), i.e.,

Fb(i, y) =
L∑

j=1

pij

∫ ∞

0
b(j, y − ξ)dΦi(ξ),

for b ∈ B
γ .

Furthermore, for any α, 0 < α < 1, there is a stationary optimal feed-
back policy Uα = (uα(i, x), uα(i, x), . . .), where uα(i, x) is the minimizer
on the RHS of (3.51). Moreover, if the cost functions also satisfy the
Assumptions (3.43)–(3.45) introduced in Section 3.5, then we can obtain
pairs (sα

i , S
α
i ) such that either of the (sα

i , S
α
i )-policies of types (3.50) and

(3.46) is optimal; (see Remark 3.4).

3.7. Concluding Remarks and Notes
This chapter, based on Beyer and Sethi (1997) and Beyer et al. (1998),

generates the discounted infinite horizon inventory model involving fixed
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costs that have appeared in the literature, to allow for unbounded de-
mand and costs with polynomial growth. We have shown the existence
of an optimal Markov policy, and that this can be a state-dependent
(s, S) policy.

This chapter makes several specific contributions. It extends the
proofs of existence and verification of optimality in the discounted cost
case given in Chapter 2, to allow for more general costs including l.s.c.
surplus cost with polynomial growth.

Some problems of theoretical interest remain open. One might want
to show that the value function in the discounted nonstationary infinite
horizon case is continuous if the surplus cost function is continuous.
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