
Chapter 2

DISCOUNTED COST MODELS
WITH BACKORDERS

2.1. Introduction

One of the most important developments in the inventory theory has
been to show that (s, S) policies are optimal for a class of dynamic in-
ventory models with random periodic demands and fixed ordering costs.
Under an (s, S) policy, if the inventory level at the beginning of a pe-
riod is less than the reorder point s, then a sufficient quantity must be
ordered to achieve an inventory level S, the order-up-to level, upon re-
plenishment. There are a number of papers in the literature devoted to
proving the optimality of (s, S) policies under a variety of assumptions.
However, in real-life inventory problems, some of these assumptions do
not hold. It is our purpose to relax these assumptions toward realism
and still demonstrate the optimality of (s, S)-type policies.

The nature of the demand process is an important assumption in
stochastic inventory models. With possible exceptions of Karlin and
Fabens (1960) and Iglehart and Karlin (1962), classical inventory mod-
els have assumed demand in each period to be a random variable inde-
pendent of demands in other periods and of environmental factors other
than time. However, as elaborated in Song and Zipkin (1993), many
randomly changing environmental factors, such as fluctuating economic
conditions and uncertain market conditions in different stages of a prod-
uct life cycle, can have a major effect on demand. For such situations,
the Markov chain approach provides a natural and flexible alternative
for modeling the demand process. In such an approach, environmental
factors are represented by the demand state or the state-of-the-world of
a Markov process, and demand in a period is a random variable with
its distribution function dependent on the demand state in that period.
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Furthermore, the demand state can also affect other parameters of the
inventory system such as the cost functions.

Another feature that is not usually treated in the classical inventory
models, but is often observed in real life is the presence of various con-
straints on ordering decisions and inventory levels. For example, there
may be periods, such as weekends and holidays, during which deliveries
cannot take place. Also, the maximum inventory that can be accommo-
dated is often limited by a finite storage space. On the other hand, one
may wish to keep the amount of inventory above a certain level to reduce
the chance of a stockout, and ensure satisfactory service to customers.

While some of these features are dealt with in the literature in a
piecemeal fashion, we will formulate a sufficiently general model that
has models with one or more of these features as special cases and still
retain the optimal policy to be of (s, S)-type. Thus, our model considers
more general demands, costs, and constraints than most of the fixed cost
inventory models in the literature.

The plan of this chapter is as follows. The next section contains a
review of relevant models and how our model relates to them. In Sec-
tion 2.3, we develop a general finite horizon inventory model with a
Markovian demand process. In Section 2.4, we state the dynamic pro-
gramming equations for the problem and the results on the uniqueness of
the solution and the existence of an optimal feedback or Markov policy.
In Section 2.5, we use some properties of K-convex functions, derived
in Appendix C, to show that the optimal policy for the finite horizon
model under consideration is still of (s, S)-type, with the policy param-
eters s and S dependent on the demand state and the time remaining.
The nonstationary infinite horizon version of the model is examined in
Section 2.6. The cyclic demand case is treated in Section 2.7. The
analysis of models incorporating no-ordering periods and those with the
shelf capacity and service level constraints is presented in Section 2.8.
Section 2.9 concludes the chapter.

2.2. Review of the Related Literature

Classical papers on the optimality of (s, S) policies in dynamic in-
ventory models with stochastic demands and fixed setup costs include
those of Arrow et al.(1951), Dvoretzky et al. (1953), Karlin (1958a),
Scarf (1960), Iglehart (1963b), and Veinott (1966). Scarf develops the
concept of K-convexity and uses it to show that (s, S) policies are opti-
mal for finite horizon inventory problems with fixed ordering costs. That
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a stationary (s, S) policy is optimal for the stationary infinite horizon
problem is proved by Iglehart (1963b). Furthermore, Bensoussan et al.
(1983) provide a rigorous formulation of the problem with nonstationary
but stochastically independent demand. They also deal with the issue
of the existence of optimal feedback policies, along with a proof of the
optimality of an (s, S)-type policy in the nonstationary finite, as well as
infinite horizon cases.

The effect of a randomly changing environment in inventory models
with fixed costs received only limited attention in the early literature.
Karlin and Fabens (1960) have introduced a Markovian demand model
similar to ours. They indicate that given the Markovian demand struc-
ture in their model, it appears reasonable to postulate an inventory
policy of (s, S)-type with a different set of critical numbers for each
demand state. But they consider the analysis to be complex, and con-
centrate instead on optimizing only over the restricted class of ordering
policies, each characterized by a single pair of critical numbers, s and S,
irrespective of the demand state.

Song and Zipkin (1993) present a continuous-time, discrete-state for-
mulation with a Markov-modulated Poisson demand and with linear
costs of inventory and backlogging. They show the optimality of a state-
dependent (s, S) policy when the ordering cost consists of both a fixed
cost and a linear variable cost. An algorithm for computing the optimal
policy is also developed using a modified value iteration approach.

The basic model presented in the next section extends the classical
Karlin and Fabens model in two significant ways. It generalizes the cost
functions that are involved and it optimizes over the natural class of
all history-dependent ordering policies. In relation to Song and Zip-
kin (1993), we consider more general demands (see Remark 2.3) and
state-dependent convex inventory/backlog costs without a standard as-
sumption made in the literature on backlog and purchase costs; (see Re-
marks 2.2 and 2.1). The nonstationary infinite horizon model extends
Bensoussan et al. (1983) to allow for Markovian demands and more gen-
eral asymptotic behavior on the shortage cost as the shortage becomes
large; (see Remark 2.1).

2.3. Formulation of the Model
Let us consider an inventory problem over a finite number of periods

〈n,N〉 = {n, n + 1, . . . , N} and an initial inventory of x units at the
beginning of period n, where n and N are any given integers satisfy-
ing 0 ≤ n ≤ N < ∞. The demand in each period is assumed to be
a random variable defined on a given probability space (Ω,F ,P) and
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not necessarily identically distributed. More specifically, the demand
distributions in successive periods are defined as below.

Consider a finite collection of demand states I = {1, 2, . . . , L}, and let
ik denote the demand state in period k. We assume that ik, k ∈ [n,N ],
with known initial demand state in is a Markov chain over I with the
transition matrix P = {pij}. Thus,

0 ≤ pij ≤ 1, i ∈ I, j ∈ I, and
L∑

j=1

pij = 1, i ∈ I.

Let a nonnegative random variable ξk denote the demand in a given
period k, k = 0, . . . , N−1. Demand ξk depends only on period k and the
demand state in that period, by which we mean that it is independent
of past demand states and past demands. We denote its cumulative
probability distribution by Φi,k(x), when the demand state ik = i. In
the following period, if the state changes to state j, which happens with
probability pij, then the demand distribution is Φj,k+1 in that period.
We further assume that for a positive constant D,

E(ξk|ik = i) =

∞∫

0

xdΦi,k(x) ≤ D <∞, k = 0, . . . , N−1, i ∈ I. (2.1)

This is not a very restrictive assumption from an applied perspective.
We denote by

Fk
l , the σ-algebra generated by {il, . . . , ik−1, ik; ξl, . . . , ξk−1},

0 ≤ l ≤ k ≤ N,
Fk = Fk

0 .
(2.2)

Since ik, k = 1, . . . , N, is a Markov chain and ξk depends only on ik, we
have

E(ξk|Fk) = E(ξk|i0, i1, . . . , ik; ξ0, ξ1, . . . , ξk−1)
= E(ξk|ik). (2.3)

An admissible decision (ordering quantities) for the problem on the
interval [n,N ] with initial state in = i can be denoted as

U = (un, . . . , uN−1), (2.4)

where uk is a nonnegative Fk
n -measurable random variable. In simpler

terms, this means that decision uk depends only on the past informa-
tion. Note that since in is known in period n, Fn

n = (Ω, ∅), and hence



MARKOVIAN DEMAND INVENTORY MODELS 25

0 1

period 0

k k + 1 k + 2

period k period k+1

ik

xk

yk
uk

ξk

ik+1

xk+1

N−1 N

period N−1

Figure 2.1. Temporal conventions used for the discrete-time inventory problem.

un is deterministic. Moreover, it should be emphasized that this class
of admissible decisions is larger than the class of admissible feedback
policies. Let us also denote a policy of not ordering anything at all as
0 = (0, . . . , 0).

Ordering quantities are decided upon at the beginning of each period.
Demand in each period is supposed to occur at the end of the period after
the order has been delivered; (see Figure 2.1 for the temporal conventions
used). Unsatisfied demand is carried forward as backlog. The inventory
balance equations are defined by

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = xk + uk − ξk, k = n, . . . ,N−1,
xn = x, initial inventory level,
ik, k = n, . . . ,N, Markov chain with transition matrix P,
in = i, initial state,

where xk is the surplus level at the beginning of period k, uk is the
quantity ordered at the beginning of period k, ik is the demand state in
period k, and ξk is the demand in period k. Note that xk > 0 represents
an inventory of xk and xk < 0 represents a backlog (or shortage) of −xk.
Also, the initial state i and the initial inventory level x are assumed to
be arbitrarily given.

Furthermore, we specify the relevant costs and the assumptions they
satisfy.

(i) The purchase or production cost is expressed as

ck(i, u) = Ki
k1Iu>0 + ciku, k ∈ 〈0, N−1〉, (2.5)

where the fixed ordering costs are Ki
k ≥ 0, the variable costs are

cik ≥ 0, and 1Iu>0 equals 1 when u > 0 and equals 0 when u ≤ 0.
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(ii) The surplus (or inventory/backlog) cost functions fk(i, ·) are con-
vex, and they are asymptotically linear, i.e.,

fk(i, x) ≤ C(1 + |x|) for some C > 0, k ∈ 〈0, N〉. (2.6)

The objective function to be minimized is the expected value of all
the costs incurred during the interval 〈n,N〉 with in = i and xn = x,
i.e.,

Jn(i, x;U) = E

{
N−1∑

k=n

[ck(ik, uk) + fk(ik, xk)] + fN(iN , xN)

}

, (2.7)

where U = (un, . . . , uN−1) is a history-dependent or nonanticipative ad-
missible decision (order quantities) for the problem and uN = 0. The
inventory balance equations are given by

xk+1 = xk + uk − ξk, k ∈ 〈n,N−1〉. (2.8)

Finally, we define the value function for the problem over 〈n,N〉 with
in = i and xn = x to be

vn(i, x) = inf
U∈ U

Jn(i, x;U), (2.9)

where U denotes the class of all admissible decisions. Note that the
existence of an optimal policy is not required to define the value function.
Of course, once the existence is established, the “inf” in (2.9) can be
replaced by “min”.

2.4. Dynamic Programming and Optimal
Feedback Policy

In this section we develop the dynamic programming equations sat-
isfied by the value function. We then provide a verification theorem
(Theorem 2.2), which states that the cost associated with the feedback
or Markov policy obtained from the solution of the dynamic program-
ming equations, equals the value function of the problem on 〈0, N〉.

Let B0 denote the class of all continuous functions from I × R into
R

+ and the pointwise limits of sequences of these functions; (see Feller
(1971)). Note that it includes piecewise-continuous functions. Let B1

be the space of functions in B0 that are of linear growth, i.e., for any
b ∈ B1, 0 ≤ b(i, x) ≤ Cb(1+ |x|) for some Cb > 0. Let C1 be the subspace
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of functions in B1 that are uniformly continuous with respect to x ∈ R.
For any b ∈ B1, we define the norm

‖ b ‖= max
i

sup
x

b(i, x)
1 + |x|

and the operator

Fk+1b(i, y) = E[b(ik+1, y − ξk)|ik = i]

=
L∑

j=1

{P(ik+1 = j|ik = i)E[b(j, y − ξk)|ik = i]}

=
L∑

j=1

pij

∫ ∞

0
b(j, y − ξ)dΦi,k(ξ). (2.10)

In addition to Assumptions (i) and (ii) on costs, we also require that
for k = 0, 1, . . . , N−1,

cikx+ Fk+1(fk+1)(i, x) → +∞ as x→ ∞. (2.11)

Remark 2.1 Condition (2.11) means that either the unit ordering cost
cik > 0 or the expected holding cost Fk+1(fk+1)(i, x) → +∞ as x → ∞,
or both. Condition (2.11) is borne out of practical considerations and
is not very restrictive. In addition, it rules out such unrealistic trivial
cases as the one with cik = 0 and fk(i, x) = 0, x ≥ 0, for each i and k,
which implies ordering an infinite amount whenever an order is placed.
The condition generalizes the usual assumptions made by Scarf (1960)
and others that the unit inventory carrying cost h > 0. Furthermore,
because of an essential asymmetry between the inventory side and the
backlog side we need not impose a condition like (2.11) on the backlog
side assumed in Bensoussan et al. (1983) and Bertsekas (1976). Whereas
we can order any number of units to decrease backlog or build inventory,
it is not possible to sell anything more than the demand in order to
decrease inventory or increase backlog. If it were possible, then the
condition like (2.11) as x→ −∞ would be needed to make backlog more
expensive than the revenue obtained by sale of units, asymptotically.
In the special case of stationary linear backlog costs, this would imply
p > c (or p > αc if costs are discounted at the rate α, 0 < α ≤ 1), where
p is the unit backlog cost. But since sales in excess of demand are not
allowed, we are able to dispense with the condition like (2.11) on the
backlog side or the standard assumption p > c (or p > αc) as in Scarf
(1960) and others, or the strong assumption p > αci for each i as in
Song and Zipkin (1993).
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Using the principle of optimality, we can write the following dynamic
programming equations for the value function

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vn(i, x) = fn(i, x) + inf
u≥0

{cn(i, u)

+ E[vn+1(in+1, x+ u− ξn)|in = i]}
= fn(i, x) + inf

u≥0
{cn(i, u) + Fn+1(vn+1)(i, x + u)} ,

n ∈ 〈0, N−1〉,
vN(i, x) = fN(i, x).

(2.12)

The next two theorems are fundamental. Together, they prove that
(i) the dynamic programming equations have a solution in an appro-
priate space, (ii) the infima in these equations are attained, (iii) these
infima provide an optimal feedback control within the class of admissi-
ble controls, and (iv) the solution of the equations is the value function.
Theorem 2.1 proves (i) and (ii). Theorem 2.2 takes the solution of the dy-
namic programming equations and the infima obtained in Theorem 2.1
and goes on to prove (iii) and (iv). Its proof uses the property (vii)
of conditional expectations given in Appendix B.2. Note, furthermore,
that from (iv) it follows that the solution of the dynamic programming
equations is unique in the defined space.

Theorem 2.1 The dynamic programming equations (2.12) define a se-
quence of functions in C1. Moreover, there exists a function ûn(i, x) in
B0, which provides the infimum in (2.12) for any x.

Proof. We proceed by induction. By Assumption (ii) on the function fN

and Theorems C.2.1 and A.1.3, vN is in C1. Now, assume that vn+1(i, x)
belongs to C1 for n < N. Consider points x such that |x| ≤M. It follows
from (2.12) that vn(i, x) ≥ fn(i, x) for all n, i, and x. Let

BM
n,i = max

|x|≤M
{cn(i, 0) + Fn+1(vn+1)(i, x)}.

We know that BM
n,i < ∞ because vn+1 ∈ C1. Let y = x + u. Then, we

have

cn(i, u) + Fn+1(vn+1)(i, x + u) ≥ Ki
n + cin(y − x) + Fn+1(fn+1)(i, y)

≥ Ki
n − cinM + ciny + Fn+1(fn+1)(i, y).

Because of (2.11), there is a constant ūM
n,i such that for all y > ūM

n,i −M,
we have

ciny + Fn+1(fn+1)(i, y) > BM
n,i + cinM −Ki

n.
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Since y > ūM
n,i −M is implied by u > ūM

n,i, we have for all u > ūM
n,i,

cn(i, u) + Fn+1(vn+1)(i, x+ u) > BM
n,i ≥ cn(i, 0) + Fn+1(vn+1)(i, x).

Consequently, any u > ūM
n,i cannot be the infimum in (2.12). Therefore

in (2.12), we can restrict u by the constraint 0 ≤ u ≤ ūM
n,i for all the

points x satisfying |x| ≤M, without loss of optimality.
Since the function

ψn(i, x;u) = cn(i, u) + Fn+1(vn+1)(i, x + u)

is l.s.c. and bounded from below, its minimum over a compact set is
attained. Moreover, from the Selection Theorem A.1.7, we know that
there exists a Borel function ûM

n (i, x) such that

ψn(i, x; ûM
n (i, x)) = inf

0≤u≤ūM
n,i

ψn(i, x;u), ∀x.

With the definition

ûn(i, x) = ûM
n (i, x) for M − 1 < |x| ≤M,

we obtain a Borel function such that

ψn(i, x, ûn(i, x)) = inf
u≥0

ψn(i, x, u), ∀x.

Now for |x1 − x2| ≤ δ, we have

|ψn(i, x1, u) − ψn(i, x2, u)|
= |Fn+1(vn+1)(i, x1 + u) − Fn+1(vn+1)(i, x2 + u)|

≤
L∑

j=1

pij sup
|x1−x2|≤δ

|vn+1(j, x1) − vn+1(j, x2)|,

from which together with (2.5), (2.6) and (2.12), it follows easily that
vn(i, x) is uniformly continuous in x. Since

inf
u≥0

ψn(i, x, u) ≤ cn(i, 0)+ ‖ Fn+1 ‖‖ vn+1 ‖ (1 + |x|),

we can use (2.12) and (2.6) to conclude that vn(i, x) ∈ C1. �
To solve the problem of minimizing J0(i, x;U), we use ûn(i, x) of The-

orem 2.1 to define
{
ûn = ûn(in, x̂n), n ∈ 〈0, N−1〉 with i0 = i,
x̂n+1 = x̂n + ûn − ξn, n ∈ 〈0, N−1〉 with x̂0 = x.

(2.13)
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Theorem 2.2 (Verification Theorem) The decision Û=(û0,û1,. . . ,ûN−1)
is optimal for the problem J0(i, x;U). Moreover,

v0(i, x) = min
U∈U

J0(i, x;U). (2.14)

Proof. Let U = (u0, . . . , uN−1) be any admissible decision. Without
loss of generality, we may assume that Ecn(in, un) < ∞, Efn(in, xn) <
∞, n ∈ 〈0, N −1〉 and EfN(iN , xN) < ∞. Otherwise, J0(i, x;U) = ∞
and U cannot be optimal since J0(i, x;0) < ∞ in view of (2.1) and
Assumptions (i) and (ii).

Because vN(iN , xN) = fN(iN , xN), it follows that EvN(iN , xN) <∞.We
proceed by induction. Assume that Evn+1(in+1, yn+1) <∞. Next, using
(2.8), the property (B.2-vii) of conditional expectations, the Markovian
property (2.3), the independence assumption of ξn, and the notation
(2.10), we obtain

E{vn+1(in+1, xn+1)|i0, . . . , in, ξ0, . . . , ξn−1}
= E{vn+1(in+1, xn + un − ξn)|i0, . . . , in, ξ0, . . . , ξn−1}
= E{vn+1(in+1, y − ξn)|i0, . . . , in, ξ0, . . . , ξn−1}y=xn+un

= E{vn+1(in+1, y − ξn)|in}y=xn+un

= Fn+1(vn+1)(in+1, y)y=xn+un

= Fn+1(vn+1)(in+1, xn + un) a.s. (2.15)

Now using (2.12), since U is admissible but not necessarily optimal, we
can assert that

vn(in, xn) ≤ fn(in, xn) + cn(in, un) + Fn+1(vn+1)(in+1, xn + un) a.s.,

and from the relation (2.15), we can derive

vn(in, xn) ≤ fn(in, xn) + cn(in, un)
+E{vn+1(in+1, xn+1)|i0, . . . , in, ξ0, . . . , ξn−1} a.s.

By taking the expectation of both sides of the above inequality, we obtain

Evn(in, xn) ≤ E(fn(in, xn) + cn(in, un)) + E(vn+1(in+1, xn+1)). (2.16)

It follow from (2.16) that Evn(in, xn) < ∞ and, therefore, (2.16) holds
for all n ∈ 〈0, N〉. Summing from 0 to N−1, we get

v0(i, x) ≤ J0(i, x;U). (2.17)
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Now consider the decision Û . From the definition of ûn(in, x) as the
Borel function that attains the infimum in (2.12), and proceeding as
above, we can also obtain

Evn(in, ŷn) = E(fn(in, ŷn) + cn(in, ûn)) + E(vn+1(in+1, yn+1)).

Note that x̂0 = x is deterministic and v0(i, x) ∈ C1. Thus, Ev0(i0, x̂0) =
v0(i, x) < ∞, and we can prove recursively that Ecn(in, ûn) < ∞, n ∈
〈0, N−1〉 and Efn(in, x̂n) < ∞, Evn(in, x̂n) < ∞, n ∈ 〈0, N〉. Adding
up for n from 0 to N−1, it follows that

v0(i, x) = J0(i, x; Û ).

This and the inequality (2.17) complete the proof. �
Taken together, Theorems 2.1 and 2.2 establish the existence of an

optimal feedback policy. This means that there exists a policy in the
class of admissible policies whose objective function value equals the
value function defined by (2.9), as well as a Markov (or feedback) policy
which gives the same objective function value. Furthermore, the solution
v0(i, x) obtained in Theorem 2.1 is the value function.

2.5. Optimality of (s, S)-type Ordering Policies
We impose an additional condition on the costs under which the op-

timal feedback policy ûn(i, x) turns out to be an (s, S)-type policy. For
n ∈ 〈0, N−1〉 and i ∈ I, let

Ki
n ≥ K̄i

n+1 ≡
L∑

j=1

pijK
j
n+1 ≥ 0. (2.18)

Remark 2.2 Condition (2.18) means that the fixed cost of ordering in
a given period with demand state i should be no less than the expected
fixed cost of ordering in the next period. The condition is a generaliza-
tion of the similar conditions used in the standard models. It includes
the cases of the constant ordering costs (Ki

n = K, ∀i, n) and the nonin-
creasing ordering costs (Ki

n ≥ Kj
n+1, ∀i, j, n). The latter case may arise

on account of the learning curve effect associated with fixed ordering
costs over time. Moreover, when all the future costs are calculated in
terms of their present values, even if the undiscounted fixed cost may
increase over time, Condition (2.18) still holds as long as the rate of
increase of the fixed cost over time is less than or equal to the discount
rate.
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Theorems C.2.2 and C.2.3 are included in Appendix C to provide the
required existing results on K-convex functions or their extensions. We
can now derive the following result.

Theorem 2.3 Assume (2.18) in addition to the assumptions made in
Section 2.3. Then there exists a sequence of numbers sn,i, Sn,i, n ∈
〈0, N−1〉, i ∈ I, with sn,i ≤ Sn,i, such that the optimal feedback policy is

ûn(i, x) = (Sn,i − x)1Ix<sn,i . (2.19)

Proof. The dynamic programming equations (2.12) can be written as
{
vn(i, x) = fn(i, x) − cinx+ hn(i, x), n ∈ 〈0, N−1〉, i ∈ I,
vN(i, x) = fN(i, x), i ∈ I,

(2.20)

where
hn(i, x) = inf

y≥x
[Ki

n1Iy>x + zn(i, y)] (2.21)

and
zn(i, y) = ciny + Fn+1(vn+1)(i, y). (2.22)

From (2.5) and (2.12), we have vn(i, x) ≥ fn(i, x), ∀n ∈ 〈0, N−1〉. From
Theorem 2.1, we know that vn ∈ C1. These, along with (2.11), ensure
for n ∈ 〈0, N−1〉 and i ∈ I, that zn(i, y) → +∞ as y → ∞, and zn(i, y)
is uniformly continuous.

In order to apply Theorem C.2.3 to obtain (2.19), we need only to
prove that zn(i, x) is Ki

n-convex. According to Theorem C.2.2, it is
sufficient to show that vn+1(i, x) is Ki

n+1-convex. This is done by in-
duction. First, vN(i, x) is convex by definition and, therefore, K-convex
for any K ≥ 0. Let us now assume that for a given n ≤ N−1 and i,
vn+1(i, x) is Ki

n+1-convex. By Theorem C.2.2 and Condition (2.18), it
is easy to see that zn(i, x) is K̄i

n+1-convex, hence also Ki
n-convex. Then,

Theorem C.2.3 implies that hn(i, x) is Ki
n-convex. Therefore, vn(i, x) is

Ki
n-convex. This completes the induction argument.
Thus, it follows that zn(i, x) is Ki

n-convex for each n and i. Since
zn(i, y) → +∞ when y → ∞, we apply Theorem C.2.3 to obtain the
desired sn,i and Sn,i. According to Theorem 2.2, the (s, S)-type policy
defined in (2.19) is optimal. �

Remark 2.3 Theorem 2.3 can be easily extended to allow for a constant
leadtime in the delivery of orders. The usual approach is to replace the
surplus level by the so-called surplus position. It can also be generalized
to Markovian demands with discrete components and countably many
states.
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Remark 2.4 In the standard model with L = 1, Veinott (1966) gives
an alternate proof to the one by Scarf (1960) based on K-convexity.
For this, he does not need a condition like (2.11), but requires other
assumptions instead.

2.6. Nonstationary Infinite Horizon Problem
We now consider an infinite horizon version of the problem formulated

in Section 2.3. By letting N = ∞ and U = (un, un+1, . . .), the extended
real-valued objective function of the problem becomes

Jn(i, x;U) =
∞∑

k=n

αk−nE[ck(ik, uk) + fk(ik, xk)], (2.23)

where α is a given discount factor, 0 < α ≤ 1. The dynamic programming
equations are

vn(i, x) = fn(i, x)+ inf
u≥0

{cn(i, u)+αFn+1(vn+1)(i, x+u)}, n = 0, 1, 2, . . . .

(2.24)

In what follows, we will show that there exists a solution of (2.24) in
class C1, which is the value function of the infinite horizon problem; (see
also Remark 2.5). Moreover, the decision that attains the infimum in
(2.24) is an optimal feedback policy. Our method is that of successive
approximation of the infinite horizon problem by longer and longer finite
horizon problems.

Therefore, we examine the finite horizon approximation Jn,m(i, x;U),
m ≥ 1, of (2.23), which is obtained by the first m-period truncation of
the infinite horizon problem of minimizing Jn(i, x;U), i.e.,

Jn,m(i, x;U) =
n+m−1∑

k=n

αk−nE[ck(ik, uk) + fk(ik, xk)]. (2.25)

Let vn,m(i, x) be the value function of the truncated problem, i.e.,

vn,m(i, x) = inf
U∈U

Jn,m(i, x;U). (2.26)

Since (2.26) is a finite horizon problem on the interval 〈n, n + m〉, we
may apply Theorems 2.1 and 2.2 and obtain its value function by solving
the dynamic programming equations
{
vn,m+1(i, x) = fn(i, x) + inf

u≥0
{cn(i, u) + αFn+1(vn+1,m)(i, x+ u)},

vn+m,0(i, x) = 0.
(2.27)
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Moreover, vn,0(i, x) = 0, vn,m ∈ C1, and the infimum in (2.26) is at-
tained.

It is not difficult to see that the value function vn,m increases in m.
In order to take its limit as m → ∞, we need to establish an upper
bound on vn,m. One possible upper bound on infU∈U Jn(i, x;u) can be
obtained by computing the objective function value associated with a
policy of never ordering anything. With the notation 0 = {0, 0, . . .} for
this policy, let us write

wn(i, x) = Jn(i, x;0)

= fn(i, x) + E

⎧
⎨

⎩

∞∑

k=n+1

αk−nfk(ik, x−
k−1∑

j=1

ξj)|in = i

⎫
⎬

⎭
. (2.28)

In a way similar to Section I.5.1 of Chapter 4 in Bensoussan et al. (1983),
it is easy to see that given (2.6), wn(i, x) is well-defined and is in C1.
Furthermore, in class C1, wn is the unique solution of

wn(i, x) = fn(i, x) + αFn+1(wn+1)(i, x). (2.29)

We can state the following result for the infinite horizon problem.

Theorem 2.4 Assume (2.5) and (2.6). Then, we have

0 = vn,0 ≤ vn,1 ≤ . . . ≤ vn,m ≤ wn (2.30)

and as m→ ∞
vn,m ↑ vn, a solution of (2.24) in B1. (2.31)

Furthermore, vn ∈ C1, and we can obtain Û = {ûn, ûn+1, . . .} for which
the infimum in (2.24) is attained. Moreover, Û is an optimal feedback
policy, i.e.,

vn(i, x) = min
U∈U

Jn(i, x;U) = Jn(i, x; Û ). (2.32)

Proof. By definition, vn,0 = 0. Let Ũn,m = {ũn, ũn+1, . . . , ũn+m−1} be
a minimizer of (2.25). Thus,

vn,m(i, x) = Jn,m(i, x; Ũn,m) ≥ Jn,m−1(i, x; Ũn,m)
≥ min

U∈U
Jn,m−1(i, x;U) = vn,m−1(i, x).

It is also obvious from (2.25) and (2.28) that vn,m(i, x) ≤ Jn,m(i, x;0) ≤
wn(i, x). This proves (2.30). Since vn,m ∈ C1, we have

vn,m(i, x) ↑ vn(i, x) ≤ wn(i, x), (2.33)
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with vn(i, x) l.s.c., and hence in B1. Next, we show that vn satisfies the
dynamic programming equations (2.24). Observe from (2.27) and (2.30)
that for each m, we have

vn,m(i, x) ≤ fn(i, x) + inf
u≥0

{cn(i, u) + αFn+1(vn+1,m)(i, x+ u)}.

Thus, in view of (2.33), we obtain

vn(i, x) ≤ fn(i, x) + inf
u≥0

{cn(i, u) + αFn+1(vn+1)(i, x+ u)}. (2.34)

In order to obtain the reverse inequality, let ûn,m attain the infimum
on the RHS of (2.27). From (2.5) and (2.6), we obtain that

cinûn,m(i, x) ≤ αFn+1(vn+1,m)(i, x) ≤ α(1 +M) ‖wn ‖ (1 + |x|),
where ‖·‖ is the norm defined on B1. This provides us with the bound

0 ≤ ûn,m(i, x) ≤Mn(1 + |x|). (2.35)

For l > m, we see from (2.27) that

vn,l+1(i, x) = fn(i, x) + cn(i, ûn,l(x))
+αFn+1(vn+1,l)(i, x+ ûn,l(x))

≥ fn(i, x) + cn(i, ûn,l(x))
+αFn+1(vn+1,m)(i, x + ûn,l(x)). (2.36)

Fix m and let l → ∞. In view of (2.35), we can, for any given n, i and
x, extract a subsequence ûn,l′(i, x) such that ûn,l′(i, x) → ūn(i, x). Since
vn+1,m is uniformly continuous in m and cn is l.s.c., we can pass to the
limit on the RHS of (2.36). Noting that the left-hand side converges as
well, we obtain

vn(i, x) ≥ fn(i, x) + cn(i, ūn(x)) + αFn+1(vn+1,m)(i, x+ ūn(x))
≥ fn(i, x) + inf

u≥0
{cn(i, u) + αFn+1(vn+1,m)(i, x + u)}.

This, along with (2.33), (2.34), and the fact that vn(i, x) ∈ B1, proves
(2.31).

Next we prove that vn ∈ C1. Let us consider the problem (2.25) again.
From (2.23),

Jn(i, x′;U) − Jn(i, x;U)
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=
∞∑

k=n

αk−nE

⎡

⎣fk

⎛

⎝ik, x
′ +

k−1∑

j=n

uj −
k∑

j=n+1

ξi

⎞

⎠

−fk

⎛

⎝ik, x+
k−1∑

j=n

uj −
k∑

j=n+1

ξi

⎞

⎠

⎤

⎦ .

From (2.6), we have

|Jn,m(i, x′;U) − Jn,m(i, x;U)| ≤
∞∑

l=n

αl−nC|x′ − x| = C|x′ − x|/(1 − α),

which implies |vn,m(i, x′)−vn,m(i, x)| ≤ C|x′−x|/(1−α). By taking the
limit as m→ ∞, we have |vn(i, x′)− vn(i, x)| ≤ C|x′ − x|/(1 − α), from
which it follows that vn ∈ C1. Therefore, there exists a function ûn(i, x)
in B0 such that

cn(i, ûn(i, x)) + αFn+1(vn+1)(i, x + ûn(i, x))
= inf

u≥0
{cn(i, u) + αFn+1(vn+1)(i, x + u)}.

Hence, we have

vn(i, x) = Jn(i, x; Û ) ≥ inf
U∈U

Jn(i, x;U).

But for any arbitrary admissible control U, we also know that vn(i, x) ≤
Jn(i, x;U). Therefore, we conclude that

vn(i, x) = Jn(i, x; Û ) = min
U∈U

Jn(i, x;U).

�

Remark 2.5 We should indicate that Theorem 2.4 does not imply that
there is a unique solution of the dynamic programming equations (2.24).
There may well be other solutions. Moreover, one can show that the
value function is the minimal positive solution of (2.24). It is also pos-
sible to obtain a uniqueness proof under additional assumptions.

With Theorem 2.4 in hand, we can now prove the optimality of an
(s, S)-type policy for the nonstationary infinite horizon problem.

Theorem 2.5 Assume (2.5), (2.6), and (2.11) hold for the infinite hori-
zon problem. Then, there exists a sequence of numbers sn,i, Sn,i, n =
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0, 1, . . . , with sn,i ≤ Sn,i for each i ∈ I, such that the optimal feedback
policy is ûn(i, x) = (Sn,i − x)1Ix<sn,i .

Proof. Let vn denote the value function. Define the functions zn and
hn as in Section 2.5. We know that zn(i, x) → ∞ as x → +∞ and
zn(i, x) ∈ C1 for all n and i ∈ I.

We now prove that vn is Ki
n-convex. Using the same induction as

in Section 2.5, we can show that vn,k(i, x), as defined in (2.26), is Ki
n-

convex. This induction is possible since we know that vn,k(i, x) satisfies
the dynamic programming equations (2.27). It is clear from the defini-
tion of K-convexity and from taking the limit as k → ∞, that the value
function vn(i, x) is also Ki

n-convex.
From Theorem 2.4, we know that vn ∈ C1 and that vn satisfies the

dynamic programming equations (2.24). Therefore, we can obtain an
optimal feedback policy Û = {ûn, ûn+1, . . .} that attains the infimum in
(2.24). Because vn is Ki

n-convex, ûn can be expressed as in Theorem 2.5.
�

2.7. Cyclic Demand Model
Cyclic or seasonal demand often arises in practice. Such a demand

represents a special case of the Markovian demand, where the number
of demand states L is given by the cycle length, and

pij =
{

1, if j = i+ 1, i = 1, . . . , L− 1, or i = L, j = 1,
0, otherwise.

Furthermore, we assume that the cost functions and density functions
are all time invariant. The result is a considerably simplified optimal
policy, i.e., only L pairs of (sn, Sn) need to be computed.

We can state the following corollary to Theorem 2.5.

Corollary 2.1 In the infinite horizon inventory problem with the de-
mand cycle of L periods, let n1 and n2 (n1 < n2) be any two periods such
that n2 = n1 +m ·L, m = 1, 2, . . . . Then, we have sn1 = sn2 and Sn1 =
Sn2.

2.8. Constrained Models
In this section, we incorporate some additional constraints that often

arise in practice. We show that (s, S)-type policies continue to remain
optimal for the extended models.
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2.8.1 No-ordering Periods
Consider the special situation in which ordering is not possible in cer-

tain periods (for example, suppliers do not accept orders on weekends).
We will show that the following theorem holds in such a situation.

Theorem 2.6 In the problem with some no-ordering periods, the opti-
mal policy is still of (s, S)-type for any period, except when the ordering
is not allowed.

Proof. To stay with our earlier notation, it is no loss of generality to
continue assuming the setup cost to be Ki

m in a no-ordering period m
with the demand state i; clearly, setup costs are of no use in no-ordering
periods. The definition (2.21) is revised as

hn(i, x) =

{
zn(i, x), in a no-ordering period n,
inf
y≥x

[Ki
n1Iy>x + zn(i, y)], otherwise,

(2.37)
and zn(i, y) is defined as before in (2.22). Using the same induction
argument as in the proof of Theorem 2.3, we can show that hn(i, x) and
vn(i, x) are Ki

n-convex if ordering is allowed in period n. If ordering is
disallowed in period n, then hn(i, x) = zn(i, x), which is K̄i

n+1-convex,
and therefore also Ki

n-convex. Thus, in both cases vn(i, x) is Ki
n-convex.

�

Remark 2.6 Theorem 2.6 can be generalized to allow for supply un-
certainty as in Parlar et al. (1995). One needs to replace uk in (2.8) by
akuk, where P{ak = 1|ik = i} = qi

k and P{ak = 0|ik = i} = 1 − qi
k, and

modify (3.2) appropriately.

2.8.2 Storage and Service Level Constraints
Let B <∞ denote an upper bound on the inventory level. Moreover,

to guarantee a reasonable measure of service level, we introduce a chance
constraint requiring that the probability of the ending inventory falling
below zero in any given period does not exceed 1 − αp for a specified
αp ∈ (0, 1], known as Type 1 service level. Thus,

P{xk+1 < 0} ≤ 1 − αp, k ∈ 〈0, N−1〉.
As an example, if we set αp = 0.95, then we are requiring that we satisfy
the demand in any given period with at least 95% probability.

Given the demand state i in period k and the inventory dynamics
(2.8), we can write the above condition as Φi,k(xk + uk) ≥ αp, which
can be converted into xk + uk ≥ Ai

k, where Ai
k = inf(a|Φi,k(a) ≥ αp),
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referred to as the safety stock in period k that guarantees the Type
1 service level αp in that period. If we define the quantile function
Φ−1

i,k (η) = inf(a|Φi,k(a) ≥ η), then we can also write Ai
k = Φ−1

i,k (αp).
The dynamic programming equations can be written as (2.22), where

zn(i, y) is as in (2.22) and

hn(i, x) = inf
y≥x,Ai

n≤y≤B

[Ki
n1Iy>x + zn(i, y)], (2.38)

provided Ai
n ≤ B, n ∈ 〈0, N−1〉, i ∈ I; if not, then there is no feasible

solution, and hn(i, x) = inf Ø ≡ ∞. This time, since y is bounded by
B <∞, Theorem 2.1 can be relaxed as follows.

Theorem 2.7 The dynamic programming equations (2.20) with (2.38)
define a sequence of l.s.c. functions on (−∞, B ]. Moreover, there exists
a function ûn(i, x) in B0, which attains the infimum in (2.20) for any
x ∈ (−∞, B ].

With ûn(i, x) of Theorem 2.7, it is possible to prove Theorem 2.2,
also known as the verification theorem, for the constrained case. We
now show that the optimal policy is of (s, S)-type.

Theorem 2.8 There is a sequence of numbers sn,i, Sn,i, n∈〈0, N−1〉,
i ∈ I, with sn,i ≤ Sn,i and Ai

n ≤ Sn,i ≤ B such that optimal feedback
policy ûn(i, x) = (Sn,i − x)1Ix<sn,i is optimal for the model with capacity
and service constraints defined above.

Proof. First note that Theorem C.2.3 holds when g is l.s.c. and K-
convex on (−∞, B ], B <∞. Also, by Theorem C.2.2 (iii) and (iv), one
can see that Eg(x− ξ) is K-convex on (−∞, B ] since ξ ≥ 0. Because g is
l.s.c., it is easily seen that Eg(x−ξ) is l.s.c. on (−∞, B ]. Furthermore, by
Theorem 2.7, vn is l.s.c. on (−∞, B ]. With these observations in mind,
the proof of Theorem 2.3 can easily be modified to complete the proof.

�

Remark 2.7 A constant integer leadtime τ ≥ 1 can also be included in
this model, with the surplus level replaced by the surplus position and
with the lower bound Ai

k properly redefined in terms of the distribution
of the total demand during the leadtime; (see, e.g., Porteus (1971) or
Zipkin (2000)).

2.9. Concluding Remarks and Notes
This chapter, based on Sethi and Cheng (1997), develops various real-

istic extensions of the classical dynamic inventory model with stochastic
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demands. The models consider demands that are dependent on a finite
state Markov chain including demands that are cyclic. Some constraints
commonly encountered in practice, namely no-ordering periods, finite
storage capacities, and service levels, are also treated. Both finite and
infinite horizon cases are studied. It is shown that all of these mod-
els, not unlike the classical model, exhibit the optimality of (s, S)-type
policies.
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