
Lecture 7
Preliminaries to Existence and

Uniqueness of Solutions

So far, mostly we have engaged ourselves in solving DEs, tacitly assum-
ing that there always exists a solution. However, the theory of existence
and uniqueness of solutions of the initial value problems is quite complex.
We begin to develop this theory for the initial value problem

y′ = f(x, y), y(x0) = y0, (7.1)

where f(x, y) will be assumed to be continuous in a domain D containing
the point (x0, y0). By a solution of (7.1) in an interval J containing x0, we
mean a function y(x) satisfying (i) y(x0) = y0, (ii) y′(x) exists for all x ∈ J,
(iii) for all x ∈ J the points (x, y(x)) ∈ D, and (iv) y′(x) = f(x, y(x)) for
all x ∈ J.

For the initial value problem (7.1) later we shall prove that the continu-
ity of the function f(x, y) alone is sufficient for the existence of at least one
solution in a sufficiently small neighborhood of the point (x0, y0). However,
if f(x, y) is not continuous, then the nature of the solutions of (7.1) is quite
arbitrary. For example, the initial value problem

y′ =
2
x

(y − 1), y(0) = 0

has no solution, while the problem

y′ =
2
x

(y − 1), y(0) = 1

has an infinite number of solutions y(x) = 1 + cx2, where c is an arbitrary
constant.

The use of integral equations to establish existence theorems is a stan-
dard device in the theory of DEs. It owes its efficiency to the smoothening
properties of integration as contrasted with coarsening properties of differ-
entiation. If two functions are close enough, their integrals must be close
enough, whereas their derivatives may be far apart and may not even exist.
We shall need the following result to prove the existence, uniqueness, and
several other properties of the solutions of the initial value problem (7.1).
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Theorem 7.1. Let f(x, y) be continuous in the domain D, then any
solution of (7.1) is also a solution of the integral equation

y(x) = y0 +
∫ x

x0

f(t, y(t))dt (7.2)

and conversely.

Proof. Any solution y(x) of the DE y′ = f(x, y) converts it into an
identity in x, i.e., y′(x) = f(x, y(x)). An integration of this equality yields

y(x) − y(x0) =
∫ x

x0

f(t, y(t))dt.

Conversely, if y(x) is any solution of (7.2) then y(x0) = y0 and since
f(x, y) is continuous, differentiating (7.2) we find y′(x) = f(x, y(x)).

While continuity of the function f(x, y) is sufficient for the existence
of a solution of (7.1), it does not imply uniqueness. For example, the
function f(x, y) = y2/3 is continuous in the entire xy-plane, but the problem
y′ = y2/3, y(0) = 0 has at least two solutions y(x) ≡ 0 and y(x) = x3/27. To
ensure the uniqueness we shall begin with the assumption that the variation
of the function f(x, y) relative to y remains bounded, i.e.,

|f(x, y1) − f(x, y2)| ≤ L|y1 − y2| (7.3)

for all (x, y1), (x, y2) in the domain D. The function f(x, y) is said to satisfy
a uniform Lipschitz condition in any domain D if the inequality (7.3) holds
for all point-pairs (x, y1), (x, y2) in D having the same x. The nonnegative
constant L is called the Lipschitz constant.

The function y2/3 violates the Lipschitz condition in any domain con-
taining y = 0, whereas the function f(x, y) = x − y satisfies the Lipschitz
condition in D = IR2 with L = 1. As an another example, the function
f(x, y) = ey satisfies the Lipschitz condition in D = {(x, y) : x ∈ IR, |y| ≤
c} with L = ec, where c is some positive constant.

Obviously, if inequality (7.3) is satisfied in D, then the function f(x, y)
is continuous with respect to y in D; however, it is not necessarily differen-
tiable with respect to y, e.g., the function f(x, y) = |y| is not differentiable
in IR2 but satisfies (7.3) with L = 1.

If the function f(x, y) is differentiable with respect to y, then it is easy
to compute the Lipschitz constant. In fact, we shall prove the following
theorem.

Theorem 7.2. Let the domain D be convex and the function f(x, y)
be differentiable with respect to y in D. Then for the Lipschitz condition
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(7.3) to be satisfied, it is necessary and sufficient that

sup
D

∣∣∣∣∂f(x, y)
∂y

∣∣∣∣ ≤ L. (7.4)

Proof. Since f(x, y) is differentiable with respect to y and the domain
D is convex, for all (x, y1), (x, y2) ∈ D the mean value theorem provides

f(x, y1) − f(x, y2) =
∂f(x, y∗)

∂y
(y1 − y2),

where y∗ lies between y1 and y2. Thus, in view of (7.4) the inequality (7.3)
is immediate.

Conversely, inequality (7.3) implies that∣∣∣∣∂f(x, y1)
∂y1

∣∣∣∣ = lim
y2→y1

∣∣∣∣f(x, y1) − f(x, y2)
y1 − y2

∣∣∣∣ ≤ L.

To prove the existence, uniqueness, and several other properties of the
solutions of (7.1), we shall also need a Gronwall’s-type integral inequality,
which is contained in the following result.

Theorem 7.3. Let u(x), p(x) and q(x) be nonnegative continuous
functions in the interval |x− x0| ≤ a and

u(x) ≤ p(x) +
∣∣∣∣
∫ x

x0

q(t)u(t)dt
∣∣∣∣ for |x− x0| ≤ a. (7.5)

Then the following inequality holds:

u(x) ≤ p(x)+
∣∣∣∣
∫ x

x0

p(t)q(t) exp
(∣∣∣∣
∫ x

t

q(s)ds
∣∣∣∣
)
dt

∣∣∣∣ for |x−x0| ≤ a. (7.6)

Proof. We shall prove (7.6) for x0 ≤ x ≤ x0 + a whereas for x0 − a ≤
x ≤ x0 the proof is similar. We define

r(x) =
∫ x

x0

q(t)u(t)dt

so that r(x0) = 0, and
r′(x) = q(x)u(x).

Since from (7.5), u(x) ≤ p(x) + r(x), it follows that

r′(x) ≤ p(x)q(x) + q(x)r(x),



48 Lecture 7

which on multiplying by exp
(
− ∫ x

x0
q(s)ds

)
is the same as(

exp
(

−
∫ x

x0

q(s)ds
)
r(x)

)′
≤ p(x)q(x) exp

(
−
∫ x

x0

q(s)ds
)
.

Integrating the above inequality, we obtain

r(x) ≤
∫ x

x0

p(t)q(t) exp
(∫ x

t

q(s)ds
)
dt

and now (7.6) follows from u(x) ≤ p(x) + r(x).

Corollary 7.4. If in Theorem 7.3 the function p(x) ≡ 0, then u(x) ≡ 0.

Corollary 7.5. If in Theorem 7.3 the function p(x) is nondecreasing
in [x0, x0 + a] and nonincreasing in [x0 − a, x0], then

u(x) ≤ p(x) exp
(∣∣∣∣
∫ x

x0

q(t)dt
∣∣∣∣
)

for |x− x0| ≤ a. (7.7)

Proof. Once again we shall prove (7.7) for x0 ≤ x ≤ x0 + a and for
x0 −a ≤ x ≤ x0 the proof is similar. Since p(x) is nondecreasing from (7.6)
we find

u(x) ≤ p(x)
[
1 +

∫ x

x0

q(t) exp
(∫ x

t

q(s)ds
)
dt

]

= p(x)
[
1 −

∫ x

x0

d

dt
exp

(∫ x

t

q(s)ds
)
dt

]

= p(x) exp
(∫ x

x0

q(t)dt
)
.

Corollary 7.6. If in Theorem 7.3 functions p(x) = c0 + c1|x− x0| and
q(x) = c2, where c0, c1 and c2 are nonnegative constants, then

u(x) ≤
(
c0 +

c1
c2

)
exp(c2|x− x0|) − c1

c2
. (7.8)

Proof. For the given functions p(x) and q(x), in the interval [x0, x0 + a]
inequality (7.6) is the same as

u(x) ≤ c0 + c1(x− x0) +
∫ x

x0

[c0 + c1(t− x0)]c2ec2(x−t)dt

= c0 + c1(x− x0) +

{
−[c0 + c1(t− x0)ec2(x−t)

∣∣∣x
x0

− c1
c2
ec2(x−t)

∣∣∣∣
x

x0

}

= c0 + c1(x−x0)− c0− c1(x−x0) + c0e
c2(x−x0) − c1

c2
+
c1
c2
ec2(x−x0)

=
(
c0 +

c1
c2

)
exp(c2(x− x0)) − c1

c2
.
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Finally, in this lecture we recall several definitions and theorems from
real analysis which will be needed in Lectures 8 and 9.

Definition 7.1. The sequence of functions {ym(x)} is said to converge
uniformly to a function y(x) in the interval [α, β] if for every real number
ε > 0 there exists an integer N such that wheneverm ≥ N, |ym(x)−y(x)| ≤
ε for all x in [α, β].

Theorem 7.7. Let {ym(x)} be a sequence of continuous functions in
[α, β] that converges uniformly to y(x). Then y(x) is continuous in [α, β].

Theorem 7.8. Let {ym(x)} be a sequence converging uniformly to
y(x) in [α, β], and let f(x, y) be a continuous function in the domain D
such that for all m and x in [α, β] the points (x, ym(x)) are in D. Then

lim
m→∞

∫ β

α

f(t, ym(t))dt =
∫ β

α

lim
m→∞ f(t, ym(t))dt =

∫ β

α

f(t, y(t))dt.

Theorem 7.9 (Weierstrass’ M-Test). Let {ym(x)} be a se-
quence of functions with |ym(x)| ≤ Mm for all x in [α, β] with

∑∞
m=0Mm <

∞. Then
∑∞

m=0 ym(x) converges uniformly in [α, β] to a unique function
y(x).

Definition 7.2. A set S of functions is said to be equicontinuous in
an interval [α, β] if for every given ε > 0 there exists a δ > 0 such that if
x1, x2 ∈ [α, β], |x1 − x2| ≤ δ then |y(x1) − y(x2)| ≤ ε for all y(x) in S.

Definition 7.3. A set S of functions is said to be uniformly bounded
in an interval [α, β] if there exists a number M such that |y(x)| ≤ M for
all y(x) in S.

Theorem 7.10 (Ascoli–Arzela Theorem). An infinite set
S of functions uniformly bounded and equicontinuous in [α, β] contains a
sequence which converges uniformly in [α, β].

Theorem 7.11 (Implicit Function Theorem). Let f(x, y)
be defined in the strip T = [α, β]×IR, and continuous in x and differentiable
in y, also 0 < m ≤ fy(x, y) ≤ M < ∞ for all (x, y) ∈ T. Then the equation
f(x, y) = 0 has a unique continuous solution y(x) in [α, β].

Problems

7.1. Show that the initial value problem

y′′ = f(x, y), y(x0) = y0, y′(x0) = y1, (7.9)
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where f(x, y) is continuous in a domain D containing the point (x0, y0), is
equivalent to the integral equation

y(x) = y0 + (x− x0)y1 +
∫ x

x0

(x− t)f(t, y(t))dt.

7.2. Find the domains in which the following functions satisfy the
Lipschitz condition (7.3), also find the Lipschitz constants:

(i)
y

(1 + x2)
. (ii)

x

(1 + y2)
. (iii) x2 cos2 y + y sin2 x.

(iv) |xy|. (v) y + [x]. (vi) x2y2 + xy + 1.

7.3. By computing appropriate Lipschitz constants, show that the fol-
lowing functions satisfy the Lipschitz condition in the given domains:

(i) x sin y + y cosx, |x| ≤ a, |y| ≤ b.

(ii) x3e−xy2
, 0 ≤ x ≤ a, |y| < ∞.

(iii) x2ex+y, |x| ≤ a, |y| ≤ b.
(iv) p(x)y+ q(x), |x| ≤ 1, |y| < ∞ where p(x) and q(x) are continuous
functions in the interval |x| ≤ 1.

7.4. Show that the following functions do not satisfy the Lipschitz
condition (7.3) in the given domains:

(i) f(x, y) =

⎧⎨
⎩

x3y

x4 + y2 , (x, y) �= (0, 0)

0, (x, y) = (0, 0)
, |x| ≤ 1, |y| ≤ 2.

(ii) f(x, y) =

⎧⎨
⎩

sin y
x

, x �= 0

0, x = 0
, |x| ≤ 1, |y| < ∞.

7.5. Let u(x) be a nonnegative continuous function in the interval
|x− x0| ≤ a, and C ≥ 0 be a given constant, and

u(x) ≤
∣∣∣∣
∫ x

x0

Cuα(t)dt
∣∣∣∣ , 0 < α < 1.

Show that for all x in |x− x0| ≤ a,

u(x) ≤ [C(1 − α)|x− x0|](1−α)−1

.

7.6. Let c0 and c1 be nonnegative constants, and u(x) and q(x) be
nonnegative continuous functions for all x ≥ 0 satisfying

u(x) ≤ c0 + c1

∫ x

0
q(t)u2(t)dt.
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Show that for all x ≥ 0 for which c0c1
∫ x

0 q(t)dt < 1,

u(x) ≤ c0

[
1 − c0c1

∫ x

0
q(t)dt

]−1

.

7.7. Suppose that y = y(x) is a solution of the initial value problem
y′ = yg(x, y), y(0) = 1 on the interval [0, β], where g(x, y) is a bounded and
continuous function in the (x, y) plane. Show that there exists a constant
C such that |y(x)| ≤ eCx for all x ∈ [0, β].

∗7.8. Suppose α > 0, γ > 0, c0, c1, c2 are nonnegative constants and
u(x) is a nonnegative bounded continuous solution of either the inequality

u(x) ≤ c0e
−αx + c1

∫ x

0
e−α(x−t)u(t)dt+ c2

∫ ∞

0
e−γtu(x+ t)dt, x ≥ 0,

or the inequality

u(x) ≤ c0e
αx + c1

∫ 0

x

eα(x−t)u(t)dt+ c2

∫ 0

−∞
eγtu(x+ t)dt, x ≤ 0.

If
β =

c1
α

+
c2
γ

< 1,

then in either case, show that

u(x) ≤ (1 − β)−1c0e
−[α−(1−β)−1c1]|x|.

∗7.9. Suppose a, b, c are nonnegative continuous functions on [0,∞)
and u(x) is a nonnegative bounded continuous solution of the inequality

u(x) ≤ a(x) +
∫ x

0
b(x− t)u(t)dt+

∫ ∞

0
c(t)u(x+ t)dt, x ≥ 0,

where a(x) → 0, b(x) → 0 as x → ∞. If∫ ∞

0
[b(t) + c(t)]dt < 1,

then show that u(x) → 0 as x → ∞.

7.10. Show that the sequence {nx/(nx+ 1)} , 0 ≤ x ≤ 1 converges

pointwise to the function f(x) =
{

0, x = 0
1, 0 < x ≤ 1.

7.11. Show that the sequence
{
nx2/(nx+ 1)

}
, 0 ≤ x ≤ 1 converges

uniformly to the function f(x) = x. Further, verify that

lim
n→∞

∫ 1

0

nx2

nx+ 1
dx =

∫ 1

0
lim

n→∞
nx2

nx+ 1
dx =

1
2
.
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∗7.12. Show the following:

(i) In the Ascoli–Arzela theorem (Theorem 7.10), the interval [α, β] can
be replaced by any finite open interval (α, β).
(ii) The Ascoli–Arzela theorem remains true if instead of uniform bound-
edness on the whole interval (α, β), we have |f(x0)| < M for every f ∈ S
and some x0 ∈ (α, β).

Answers or Hints

7.1. y(x) = y0 + (x− x0)y1 +
∫ x

x0

[∫ t

x0
f(s, y(s))ds

]
dt

= y0 + (x− x0)y1 +
[
t
∫ t

x0
f(s, y(s))ds

∣∣∣x
x0

− ∫ x

x0
tf(t, y(t))dt

]
= y0 + (x− x0)y1 +

∫ x

x0
(x− t)f(t, y(t))dt.

7.2. (i) IR2, 1. (ii) |x| ≤ a, |y| < ∞, (3
√

3/8)a. (iii) |x| ≤ a, |y| < ∞, a2+
1. (iv) |x| ≤ a, |y| < ∞, a. (v) IR2, 1. (vi) |x| ≤ a, |y| ≤ b, 2a2b+ a.

7.3. (i) a+ 1. (ii) max{2a3, 2a4}. (iii) a2ea+b. (iv) max−1≤x≤1 |p(x)|.
7.4. (i) |f(x, y)−f(x, 0)| = |x3y/(x4 +y2)| ≤ L|y|, i.e., |x3/(x4 +y2)| ≤ L;
however, along the curve y = x2 this is impossible. (ii) |f(x, y)−f(x, 0)| =
|x−1 sin y| ≤ L|y|; but, this is impossible.

7.5. For x ∈ [x0, x0+a] let r(x) =
∫ x

x0
Cuα(t)dt so that r′(x) < C(r(x)+ε)α,

where ε > 0 and r(x0) = 0. Integrate this inequality and then let ε → 0.

7.6. Let r(x) = c0 + c1
∫ x

0 q(t)u
2(t)dt so that r′(x) < c1q(x)(r(x) + ε)2,

where ε > 0 and r(0) = c0. Integrate this inequality and then let ε → 0.

7.7. Use Corollary 7.6.

7.10. Verify directly.

7.11. Verify directly.


