Lecture 6

Second-Order Linear Equations

Consider the homogeneous linear second-order DE with variable coeffi-
cients

po(@)y” +pr(2)y + p2(z)y = 0, (6.1)
where pg(x) (> 0), p1(z) and pa(x) are continuous in J. There does not exist
any method to solve it except in a few rather restrictive cases. However,
the results below follow immediately from the general theory of first-order
linear systems, which we shall present in later lectures.

Theorem 6.1. There exist exactly two solutions y;(x) and yz(z) of
(6.1) which are linearly independent (essentially different) in J; i.e., there
does not exist a constant ¢ such that y;(x) = cya(z) for all z € J.

Theorem 6.2. Two solutions y;(z) and ya(x) of (6.1) are linearly
independent in J if and only if their Wronskian defined by

W(z) = Wy, y2)(z) = yi(x)ys(x) — ya(2)y (x)
(6.2)
is different from zero for some x = xq in J.

Theorem 6.3. For the Wronskian defined in (6.2) the following Abel’s
identity (also known as the Ostrogradsky—Liouville formula) holds:

W(z) = W(xo)exp (— / pl(t)dt), o€ J. (6.3)

. Po(t)
Thus, if the Wronskian is zero at some x( € J, then it is zero for all x € J.

Theorem 6.4. 1If y;(z) and y2(z) are solutions of (6.1) and ¢; and ¢
are arbitrary constants, then c1yi(x) + coya(x) is also a solution of (6.1).
Further, if y; (z) and y2(x) are linearly independent, then any solution y(x)
of (6.1) can be written as y(x) = ¢1y1(z) + Cay2(x), where ¢ and ¢, are
suitable constants.

Now we shall show that, if one solution y;(z) of (6.1) is known (by
some clever method), then we can employ variation of parameters to find
the second solution of (6.1). For this we let y(z) = u(x)y; («) and substitute
this in (6.1) to get

po(uyr)” + p1(uyr) + p2(uyr) = 0,
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or
pou"y1 + 2pou’yy + pouyy + pru'yy + pruyy + pauyr = 0,
or
pou”y1 + (2poyy + pry)u’ + (poyy + p1yh + poyi)u = 0.

However, since y; is a solution of (6.1), the above equation with v = v’ is
the same as

poy1v’ + (2poys +piyi)v = 0, (6.4)
which is a first-order equation, and it can be solved easily provided y; # 0
in J. Indeed, multiplying (6.4) by y1/po, we get
(yiv' + 2yiy10) + %yfv =0,
0

which is the same as

and hence

5 “p(t) )
Yijv = cexp —/ dt |,
! ( po(t)
or, on taking ¢ =1,

1 /I p1(¢) )
v(r) = ———=exp| — dt | .
@ = e (- 5
Hence, the second solution of (6.1) is

w0 =50 g [ 2du)a

Example 6.1. It is easy to verify that y;(x) = 22 is a solution of
the DE

22y — 2y’ +2y = 0, x#0.

For the second solution we use (6.5), to obtain

v 1 Ay v 1
yo(z) = xQ/ 71 OXP (/ (32) ds) dt = 1’2/ t—4t2dt = —u.

Now we shall find a particular solution of the nonhomogeneous equation
po(x)y” + pi(x)y +p2(2)y = r(2). (6.6)

For this also we shall apply the method of variation of parameters. Let
y1(x) and yo(x) be two solutions of (6.1). We assume y(x) = ¢1(z)y1(z) +
co(x)y2(x) is a solution of (6.6). Note that ¢q (z) and ¢ () are two unknown
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functions, so we can have two sets of conditions which determine ¢ (z) and
co(z). Since
Y = ayr+ cays + s + oy

as a first condition, we assume that
Ayr + chys = 0. (6.7)

Thus, we have
Y = ay) + ey
and on differentiation

/!

y" = eyl + cayy + iy + chy.
Substituting these in (6.6), we find
c1(poyy +p1yy +p2yr) + ca(poys + prys + paye) +polciys + chys) = r(2).

Clearly, this equation in view of the fact that y;(x) and ya(x) are solutions
of (6.1) is the same as

chyr +cays = po(z)’ (6.8)
Solving (6.7), (6.8) we find
L m@r @), n@r)/m)
' ‘yl(w) ya(x) |7 ‘yl(w) ya(x) |
yi(x)  ya(x) yi()  ya(x)

and hence a particular solution of (6.6) is

yp(r) = cr(@)y(@) + ca(x)y2 (e

=y (B)r(t) /polt)
yi () y2<t>’ “”)/ ’yms) ya(2) ‘dt

() vh(t) () vh(t)

RO
= [ H( ,t)po(t)dt, -
where .
@) yaa(t) yi(t)  ya(t)

Hzt) = ’ym () ‘/ ' w1t () ’ (6.10)

The general solution of (6.6) which is obtained by adding this particular
solution with the general solution of (6.1) appears as

y(x) = (@) + caya(®) + yp(). (6.11)
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The following properties of the function H(z,t) are immediate:
(i) H(z,t) is defined for all (z,t) € J x J;
(ii) O0/H(x,t)/0x7, j=0,1,2 are continuous for all (z,t) € J x J;

(iii) for each fixed t € J the function z(z) = H(z,t) is a solution of the
homogeneous DE (6.1) satisfying z(¢t) = 0, 2/(¢) = 1; and

(iv) the function

D
(@) = /zOH( DL

is a particular solution of the nonhomogeneous DE (6.6) satisfying y(zo) =
y/((E(]) =0.

Example 6.2. Consider the DE
y' +y = cota.

For the corresponding homogeneous DE y” +y = 0, sinz and cosx are the
solutions. Thus, its general solution can be written as

sint cost
) T | sinx cosz | cost
y(x) = cicosx + casinx + - —dt
sint cost sint
cost —sint
) T ) cost
= cpcosx + cosine — [ (sintcosx —sinzcost)——dt
sin
. r . T cos?t
= c1COST + Ccoysinx — cosxT costdt + sinx -
sint
T 2
. . . 1 —sin“t
= C1COSZ + CoSINT — COSTSINZT + SINT e P dt
sin

xr xT
= clcosx+0251nxfcosxsinxfsinsc/ sintdtJrsinx/ _—tdt
sin

¥ cosect(cosect — cot t)
(cosect — cot t)

dt

= €1COST + cosinx + sina:/

= c¢1co8x + casinx + sinz Infcosec z — cot x].
From the general theory of first-order linear systems, which we shall
present in later lectures, it also follows that if the functions po(z) (> 0),

p1(x), po(x), and r(x) are continuous on J and zy € J, then the initial
value problem: (6.6) together with the initial conditions

y(®o0) = Yo, y/(fﬂo) =Y (6.12)

has a unique solution.



Second-Order Linear Equations 39

Now we shall show that second-order DEs with constant coefficients can
be solved explicitly. In fact, to find the solution of the equation

y' +ay +by = 0, (6.13)

where a and b are constants, as a first step we look back at the equation
Yy +ay = 0 (a is a constant) for which all solutions are multiples of y =
e~ %, Thus, for (6.13) also some form of exponential function would be a
reasonable choice and would utilize the property that the differentiation of
an exponential function e always yields a constant multiplied by e™.

Thus, we try y = €"® and find the value(s) of r. For this, we have
r2e"™ +are™ +be"™ = (r’ 4 ar +b)e™ = 0,
which gives
r? +ar+b = 0. (6.14)

Hence, €™ is a solution of (6.13) if = is a solution of (6.14). Equation (6.14)
is called the characteristic equation. For the roots of (6.14) we have the
following three cases:

1. Distinct real roots. If r; and o are real and distinct roots of
(6.14), then €™ and e"* are two solutions of (6.13) and its general solution
can be written as

y(x) = c1e™® + cqe".
In the particular case when ry = r, ro = —r (then the DE (6.13) is 3" —
r?y = 0) we have

rT —rz A+ B re A-B —rz
y(x) = c1e™ +coe = 5 e+ 5 e

— A (6+€> +B (6_6> = Acoshrz + Bsinhrz.

2 2

2. Repeated real roots. If r; = ry = r is a repeated root of
(6.14), then €™ is a solution. To find the second solution, we let y(z) =
u(z)e™ and substitute it in (6.13), to get

e (u" + 2ru’ + T2u) +ae™(u' +ru) + bue™ = 0,

or

u” 4+ (2r +a)u’ + (r* +ar +bju =u" + 2r +a)’ = 0.
Now since r is a repeated root of (6.14) it follows that 2r4+a = 0 and hence
u” =0, ie., u(x) = c; + cox. Thus,

y(x) = (c1+cax)e™ = c1€"® + cqwe™™.
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Hence, the second solution of (6.13) is ze™™.

3. Complex conjugate roots. Letr = p+ivand ry = p—iv
where i = v/—1, so that
eWEWIT — ol (cos pg + isinv).
Since for the DE (6.13) real part, i.e., e#* cos vz and the complex part, i.e.,
e’ sin v both are solutions, the general solution of (6.13) can be written
as
y(z) = c1e’® cosva + coe¥sinv.

In the particular case when r; = iv and ro = —iv (then the DE (6.13) is
y" 4+ v*y = 0) we have y(z) = ¢; cosvz + casinva.

Finally, in this lecture we shall find the solution of the Cauchy—FEuler
equation

22y +azy’ +by = 0, x>0. (6.15)
We assume y(x) = 2™ to obtain
2m(m — 1)z™ 2 + axmaz™ ! + bz™ = 0,
or
m(m—1)+am+b = 0. (6.16)

This is the characteristic equation for (6.15), and as earlier for (6.14) the
nature of its roots determines the solution:

Real, distinct roots my # ma: y(x) = ;™ + cox™2,

Real, repeated roots m = my = ma: y(z) = c12™ + ca(Ilnz)a™,

Complex conjugate roots m; = p+iv, me = p—iv :  yz) =
c1zt cos(vInzx) 4+ coxt sin(vinx).

In the particular case
w2y 4y =Ny =0, >0, A>0 (6.17)

the characteristic equation is m(m — 1) +m — A% = 0, or m? — A\? = 0. The
roots are m = £\ and hence the solution of (6.17) appears as

y(x) = cra™ 4+ coz™. (6.18)

Problems

6.1. Let y1(x),y2(x),ys(x) and A(x) be differentiable functions in J.
Show that for all z € J,
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(i) Wlys,y2 +ys)(x) = Wy, y2)(x) + W (Y1, y3)();
(i) Wy, Ady2) () = A2 (2)W (41, y2) ();
(iii) W (y1, Ayn)(2) = N (z)yi ().
6.2. Show that the functions y;(x) = ¢ (# 0) and y(z) = 1/2? satisfy
the nonlinear DE y” 4+ 3zyy’ = 0 in (0,00), but yi(x) + y2(z) does not

satisfy the given DE. (This shows that Theorem 6.4 holds good only for the
linear equations.)

6.3. Given the solution y;(z), find the second solution of the follow-
ing DEs:
i) @ -2y +@z—1y+y=0 (z#0,1), y(x)=(@-1)""
(i) 2(@-2)y"+2@@ -1y -2y = 0 (z#0,2), wi(e)=1-2).
(i) =y’ —y' =42y =0 (x#0), yi(x)=exp(z?).
(iv) (1—a2)y" — 209/ +2y =0 (ja| <1), wi(x) ==

6.4. The differential equation

zy" —(z+n)y' +ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i)  Verify that one solution is y; (z) = €”.
(ii) Show that the second solution has the form ys(z) = ce® [*t"e~!dt.
Further, show that with ¢ = —1/nl,

x 22 "

Yo(r) = 1+ <+ 4+ + —.

Note that ya(z) is the first n + 1 terms of the Taylor series about x = 0 for
e”, that is, for yi(x).

6.5. For the differential equation
v +o(y +y) =0,
verify that y;(z) = exp(—dz?/2) is one solution. Find its second solution.

6.6. Let y1(x) # 0 and yo(x) be two linearly independent solutions of
the DE (6.1). Show that y(x) = ya(z)/y1(x) is a nonconstant solution of
the DE

nien+ (210 + 28 0) )y~

6.7. Let y1(z) and ya2(z) be solutions of the DE

y' +pi(x)y +p2(z)y = 0 (6.19)
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in J. Show the following:
(i)  If yi(x) and yo(x) vanish at the same point in J, then yi(x) is a
constant multiple of ya(x).

(ii) If y1(z) and yo(z) have maxima or minima at the same point in
the open interval J, then y; (z) and y2(x) are not the linearly independent
solutions.

(i) If W(y1,y2)(x) is independent of x, then p;(x) =0 for all x € J.

(iv)  If y1(z) and yo(x) are linearly independent, then y;(x) and yo(z)
cannot have a common point of inflexion in J unless p; (z) and pz(x) vanish
simultaneously there.

(v) I W(y1,y2)(x*) = y1(a*) = 0, then either y;(z) = 0 for all x € J, or
ya(x) = (va (") /y1 (27))y (@)

6.8. Let y;1(z) and ya(z) be linearly independent solutions of (6.19),
and W (x) be their Wronskian. Show that

p : _ W (yid(y
Y+ p(e)y +p2(x)y = s \war iy ))

6.9. Show that the DE (6.1) can be transformed into a first-order
nonlinear DE by means of a change of dependent variable

v = oo ([ foua).

where f(x) is any nonvanishing differentiable function. In particular, if
f(z) = po(x), then show that (6.1) reduces to the Riccati equation,

s P () ()

= 0. (6.20)

6.10. If wy(z) and wy(z) are two different solutions of the DE (6.20)
with po(z) =1, i.e.,

w' +w? + p1(2)w + pa(z) = 0, (6.21)

then show that its general solution w(z) is given by

1 =) o ([ () —wato)r) =

Further, if ws(z) is another known solution of (6.21), then
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6.11. Find the general solution of the following homogeneous DEs:
(i) ¢+ 7y +10y =0.
(ii) y” —8y + 16y =0.
(iil) 3" + 2y + 3y = 0.
6.12. Find the general solution of the following nonhomogeneous DEs:
(i) "+ 4y = sin2z.
(i) o’ +4y + 3y =e 32
(iii) y" + 5y + 4y = e~ 12,
6.13. Show that if the real parts of all solutions of (6.14) are negative,
then lim,_, o, y(x) = 0 for every solution of (6.13).

6.14. Show that the solution of the initial value problem
y' =20+ By +r*y = 0, y0) =0, ¢ (0) =1
can be written as

(@) = — [l /FEredle _ glr+a- /B TAe]
2,/B2r + B)

Further, show that limg_.o yg(z) = ze"™.

6.15. Verify that y;(z) = z and ya2(r) = 1/x are solutions of

x?’y”—l—ny’—xy _—

Use this information and the variation of parameters method to find the
general solution of

w3y + 2%y —xy = z/(1+ ).

Answers or Hints

6.1. Use the definition of Wronskian.
6.2. Verify directly.

6.3. (i) Inz/(z—1). (ii) (1/2)(1—z)In[(z—2)/z]—1. (iii) e . (iv) (z/2) x
In[(1+2)/(1—2)] -1

6.4. (i) Verify directly. (ii) Use (6.5).
6.5. e 07" /2 [T 0t/2qy,
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6.6. Use y2(z) = y1(z)y(z) and the fact that y; (x) and yo(x) are solutions.

6.7. (i) Use Abel’s identity. (ii) If both attain maxima or minima at xg,
then ¢/ (z9) = ¢h(xo) = 0. (iii) Use Abel’s identity. (iv) If g is a common
point of inflexion, then ¢Y(zg) = &4 (z9) = 0. (v) W(a*) = 0 implies
¢pa(x) = ch1(x). If ¢ (z*) = 0, then ¢1(z) = 0, and if ¢} (z*) # 0 then
c = ¢o(x*) /1 (a").

6.8. Directly show right-hand side is the same as left-hand side.

6.9. Verify directly.

6.10. Use the substitution w = z+w; to obtain z’+ (2w, +py(7))z+22 = 0,
which is a Bernoulli equation whose multiplier is z=2 exp(— [*(2u1 +p1)dt).
Hence, if wy is a solution of (6.21), then its integrating factor is (w —
w1)~2exp(— [ (2u1 + p1)dt). Now use Theorem 3.4.

6.11. (i) cre 2 4 coe™®. (ii) (c1 + cox)e?®. (iii) cre™® cos v/2x + cpe™® x
sin \/ix

6.12. (i) c1 cos2z + cosin2z — twcos2z. (i) cre™® + coe 3% — Lae 3"
(iii) c1e™® + coe ™% — %xe‘“.

6.13. Use explicit forms of the solution.

6.14. Note that /3(8+2r) — 0 as 8 — 0.
6.15. ciz + (co/x) + (1/2)[(x — (1/z)) In(1 + z) — xlnx — 1].



