
Lecture 6
Second-Order Linear Equations

Consider the homogeneous linear second-order DE with variable coeffi-
cients

p0(x)y′′ + p1(x)y′ + p2(x)y = 0, (6.1)

where p0(x) (> 0), p1(x) and p2(x) are continuous in J. There does not exist
any method to solve it except in a few rather restrictive cases. However,
the results below follow immediately from the general theory of first-order
linear systems, which we shall present in later lectures.

Theorem 6.1. There exist exactly two solutions y1(x) and y2(x) of
(6.1) which are linearly independent (essentially different) in J ; i.e., there
does not exist a constant c such that y1(x) = cy2(x) for all x ∈ J.

Theorem 6.2. Two solutions y1(x) and y2(x) of (6.1) are linearly
independent in J if and only if their Wronskian defined by

W (x) = W (y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣ = y1(x)y′
2(x) − y2(x)y′

1(x)

(6.2)
is different from zero for some x = x0 in J.

Theorem 6.3. For the Wronskian defined in (6.2) the following Abel’s
identity (also known as the Ostrogradsky–Liouville formula) holds:

W (x) = W (x0) exp
(

−
∫ x

x0

p1(t)
p0(t)

dt

)
, x0 ∈ J. (6.3)

Thus, if the Wronskian is zero at some x0 ∈ J, then it is zero for all x ∈ J.

Theorem 6.4. If y1(x) and y2(x) are solutions of (6.1) and c1 and c2
are arbitrary constants, then c1y1(x) + c2y2(x) is also a solution of (6.1).
Further, if y1(x) and y2(x) are linearly independent, then any solution y(x)
of (6.1) can be written as y(x) = c1y1(x) + c2y2(x), where c1 and c2 are
suitable constants.

Now we shall show that, if one solution y1(x) of (6.1) is known (by
some clever method), then we can employ variation of parameters to find
the second solution of (6.1). For this we let y(x) = u(x)y1(x) and substitute
this in (6.1) to get

p0(uy1)′′ + p1(uy1)′ + p2(uy1) = 0,
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or
p0u

′′y1 + 2p0u
′y′

1 + p0uy
′′
1 + p1u

′y1 + p1uy
′
1 + p2uy1 = 0,

or
p0u

′′y1 + (2p0y
′
1 + p1y1)u′ + (p0y

′′
1 + p1y

′
1 + p2y1)u = 0.

However, since y1 is a solution of (6.1), the above equation with v = u′ is
the same as

p0y1v
′ + (2p0y

′
1 + p1y1)v = 0, (6.4)

which is a first-order equation, and it can be solved easily provided y1 �= 0
in J. Indeed, multiplying (6.4) by y1/p0, we get

(y2
1v

′ + 2y′
1y1v) +

p1

p0
y2
1v = 0,

which is the same as
(y2

1v)
′ +

p1

p0
(y2

1v) = 0

and hence

y2
1v = c exp

(
−
∫ x p1(t)

p0(t)
dt

)
,

or, on taking c = 1,

v(x) =
1

y2
1(x)

exp
(

−
∫ x p1(t)

p0(t)
dt

)
.

Hence, the second solution of (6.1) is

y2(x) = y1(x)
∫ x 1

y2
1(t)

exp
(

−
∫ t p1(s)

p0(s)
ds

)
dt. (6.5)

Example 6.1. It is easy to verify that y1(x) = x2 is a solution of
the DE

x2y′′ − 2xy′ + 2y = 0, x �= 0.

For the second solution we use (6.5), to obtain

y2(x) = x2
∫ x 1

t4
exp

(
−
∫ t(

−2s
s2

)
ds

)
dt = x2

∫ x 1
t4
t2dt = − x.

Now we shall find a particular solution of the nonhomogeneous equation

p0(x)y′′ + p1(x)y′ + p2(x)y = r(x). (6.6)

For this also we shall apply the method of variation of parameters. Let
y1(x) and y2(x) be two solutions of (6.1). We assume y(x) = c1(x)y1(x) +
c2(x)y2(x) is a solution of (6.6). Note that c1(x) and c2(x) are two unknown



Second-Order Linear Equations 37

functions, so we can have two sets of conditions which determine c1(x) and
c2(x). Since

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

as a first condition, we assume that

c′1y1 + c′2y2 = 0. (6.7)

Thus, we have
y′ = c1y

′
1 + c2y

′
2

and on differentiation

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting these in (6.6), we find

c1(p0y
′′
1 + p1y

′
1 + p2y1) + c2(p0y

′′
2 + p1y

′
2 + p2y2) + p0(c′1y

′
1 + c′2y

′
2) = r(x).

Clearly, this equation in view of the fact that y1(x) and y2(x) are solutions
of (6.1) is the same as

c′1y
′
1 + c′2y

′
2 =

r(x)
p0(x)

. (6.8)

Solving (6.7), (6.8) we find

c′1 = − y2(x)r(x)/p0(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
, c′2 =

y1(x)r(x)/p0(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
;

and hence a particular solution of (6.6) is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= −y1(x)
∫ x y2(t)r(t)/p0(t)∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣
dt + y2(x)

∫ x y1(t)r(t)/p0(t)∣∣∣∣ y1(t) y2(t)
y′
1(t) y′

2(t)

∣∣∣∣
dt

=
∫ x

H(x, t)
r(t)
p0(t)

dt,

(6.9)
where

H(x, t) =
∣∣∣∣ y1(t) y2(t)
y1(x) y2(x)

∣∣∣∣
/ ∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣ . (6.10)

The general solution of (6.6) which is obtained by adding this particular
solution with the general solution of (6.1) appears as

y(x) = c1y1(x) + c2y2(x) + yp(x). (6.11)
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The following properties of the function H(x, t) are immediate:

(i) H(x, t) is defined for all (x, t) ∈ J × J ;

(ii) ∂jH(x, t)/∂xj , j = 0, 1, 2 are continuous for all (x, t) ∈ J × J ;

(iii) for each fixed t ∈ J the function z(x) = H(x, t) is a solution of the
homogeneous DE (6.1) satisfying z(t) = 0, z′(t) = 1; and

(iv) the function

v(x) =
∫ x

x0

H(x, t)
r(t)
p0(t)

dt

is a particular solution of the nonhomogeneous DE (6.6) satisfying y(x0) =
y′(x0) = 0.

Example 6.2. Consider the DE

y′′ + y = cotx.

For the corresponding homogeneous DE y′′ +y = 0, sinx and cosx are the
solutions. Thus, its general solution can be written as

y(x) = c1 cosx+ c2 sinx+
∫ x

∣∣∣∣ sin t cos t
sinx cosx

∣∣∣∣∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣
cos t
sin t

dt

= c1 cosx+ c2 sinx−
∫ x

(sin t cosx− sinx cos t)
cos t
sin t

dt

= c1 cosx+ c2 sinx− cosx
∫ x

cos tdt+ sinx
∫ x cos2 t

sin t
dt

= c1 cosx+ c2 sinx− cosx sinx+ sinx
∫ x 1 − sin2 t

sin t
dt

= c1 cosx+ c2 sinx− cosx sinx− sinx
∫ x

sin tdt+ sinx
∫ x 1

sin t
dt

= c1 cosx+ c2 sinx+ sinx
∫ x cosec t(cosec t− cot t)

(cosec t− cot t)
dt

= c1 cosx+ c2 sinx+ sinx ln[cosecx− cotx].

From the general theory of first-order linear systems, which we shall
present in later lectures, it also follows that if the functions p0(x) (> 0),
p1(x), p2(x), and r(x) are continuous on J and x0 ∈ J, then the initial
value problem: (6.6) together with the initial conditions

y(x0) = y0, y′(x0) = y1 (6.12)

has a unique solution.
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Now we shall show that second-order DEs with constant coefficients can
be solved explicitly. In fact, to find the solution of the equation

y′′ + ay′ + by = 0, (6.13)

where a and b are constants, as a first step we look back at the equation
y′ + ay = 0 (a is a constant) for which all solutions are multiples of y =
e−ax. Thus, for (6.13) also some form of exponential function would be a
reasonable choice and would utilize the property that the differentiation of
an exponential function erx always yields a constant multiplied by erx.

Thus, we try y = erx and find the value(s) of r. For this, we have

r2erx + arerx + berx = (r2 + ar + b)erx = 0,

which gives
r2 + ar + b = 0. (6.14)

Hence, erx is a solution of (6.13) if r is a solution of (6.14). Equation (6.14)
is called the characteristic equation. For the roots of (6.14) we have the
following three cases:

1. Distinct real roots. If r1 and r2 are real and distinct roots of
(6.14), then er1x and er2x are two solutions of (6.13) and its general solution
can be written as

y(x) = c1e
r1x + c2e

r2x.

In the particular case when r1 = r, r2 = −r (then the DE (6.13) is y′′ −
r2y = 0) we have

y(x) = c1e
rx + c2e

−rx =
(
A+B

2

)
erx +

(
A−B

2

)
e−rx

= A

(
erx + e−rx

2

)
+B

(
erx − e−rx

2

)
= A cosh rx+B sinh rx.

2. Repeated real roots. If r1 = r2 = r is a repeated root of
(6.14), then erx is a solution. To find the second solution, we let y(x) =
u(x)erx and substitute it in (6.13), to get

erx(u′′ + 2ru′ + r2u) + aeru(u′ + ru) + buerx = 0,

or
u′′ + (2r + a)u′ + (r2 + ar + b)u = u′′ + (2r + a)u′ = 0.

Now since r is a repeated root of (6.14) it follows that 2r+a = 0 and hence
u′′ = 0, i.e., u(x) = c1 + c2x. Thus,

y(x) = (c1 + c2x)erx = c1e
rx + c2xe

rx.
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Hence, the second solution of (6.13) is xerx.

3. Complex conjugate roots. Let r1 = µ+ iν and r2 = µ− iν
where i =

√−1, so that

e(µ±iν)x = eµx(cos νx± i sin νx).

Since for the DE (6.13) real part, i.e., eµx cos νx and the complex part, i.e.,
eµx sin νx both are solutions, the general solution of (6.13) can be written
as

y(x) = c1e
µx cos νx+ c2e

µx sin νx.

In the particular case when r1 = iν and r2 = −iν (then the DE (6.13) is
y′′ + ν2y = 0) we have y(x) = c1 cos νx+ c2 sin νx.

Finally, in this lecture we shall find the solution of the Cauchy–Euler
equation

x2y′′ + axy′ + by = 0, x > 0. (6.15)

We assume y(x) = xm to obtain

x2m(m− 1)xm−2 + axmxm−1 + bxm = 0,

or
m(m− 1) + am+ b = 0. (6.16)

This is the characteristic equation for (6.15), and as earlier for (6.14) the
nature of its roots determines the solution:

Real, distinct roots m1 �= m2: y(x) = c1x
m1 + c2x

m2 ,

Real, repeated roots m = m1 = m2: y(x) = c1x
m + c2(lnx)xm,

Complex conjugate roots m1 = µ + iν, m2 = µ − iν : y(x) =
c1x

µ cos(ν lnx) + c2x
µ sin(ν lnx).

In the particular case

x2y′′ + xy′ − λ2y = 0, x > 0, λ > 0 (6.17)

the characteristic equation is m(m− 1) +m− λ2 = 0, or m2 − λ2 = 0. The
roots are m = ±λ and hence the solution of (6.17) appears as

y(x) = c1x
λ + c2x

−λ. (6.18)

Problems

6.1. Let y1(x), y2(x), y3(x) and λ(x) be differentiable functions in J.
Show that for all x ∈ J ,
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(i) W (y1, y2 + y3)(x) = W (y1, y2)(x) +W (y1, y3)(x);
(ii) W (λy1, λy2)(x) = λ2(x)W (y1, y2)(x);
(iii) W (y1, λy1)(x) = λ′(x)y2

1(x).

6.2. Show that the functions y1(x) = c (�= 0) and y2(x) = 1/x2 satisfy
the nonlinear DE y′′ + 3xyy′ = 0 in (0,∞), but y1(x) + y2(x) does not
satisfy the given DE. (This shows that Theorem 6.4 holds good only for the
linear equations.)

6.3. Given the solution y1(x), find the second solution of the follow-
ing DEs:

(i) (x2 − x)y′′ + (3x− 1)y′ + y = 0 (x �= 0, 1), y1(x) = (x− 1)−1.
(ii) x(x− 2)y′′ + 2(x− 1)y′ − 2y = 0 (x �= 0, 2), y1(x) = (1 − x).
(iii) xy′′ − y′ − 4x3y = 0 (x �= 0), y1(x) = exp(x2).
(iv) (1 − x2)y′′ − 2xy′ + 2y = 0 (|x| < 1), y1(x) = x.

6.4. The differential equation

xy′′ − (x+ n)y′ + ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i) Verify that one solution is y1(x) = ex.

(ii) Show that the second solution has the form y2(x) = cex
∫ x

tne−tdt.
Further, show that with c = −1/n!,

y2(x) = 1 +
x

1!
+
x2

2!
+ · · · +

xn

n!
.

Note that y2(x) is the first n+ 1 terms of the Taylor series about x = 0 for
ex, that is, for y1(x).

6.5. For the differential equation

y′′ + δ(xy′ + y) = 0,

verify that y1(x) = exp(−δx2/2) is one solution. Find its second solution.

6.6. Let y1(x) �= 0 and y2(x) be two linearly independent solutions of
the DE (6.1). Show that y(x) = y2(x)/y1(x) is a nonconstant solution of
the DE

y1(x)y′′ +
(

2y′
1(x) +

p1(x)
p0(x)

y1(x)
)
y′ = 0.

6.7. Let y1(x) and y2(x) be solutions of the DE

y′′ + p1(x)y′ + p2(x)y = 0 (6.19)
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in J. Show the following:

(i) If y1(x) and y2(x) vanish at the same point in J, then y1(x) is a
constant multiple of y2(x).
(ii) If y1(x) and y2(x) have maxima or minima at the same point in
the open interval J, then y1(x) and y2(x) are not the linearly independent
solutions.
(iii) If W (y1, y2)(x) is independent of x, then p1(x) = 0 for all x ∈ J .
(iv) If y1(x) and y2(x) are linearly independent, then y1(x) and y2(x)
cannot have a common point of inflexion in J unless p1(x) and p2(x) vanish
simultaneously there.
(v) If W (y1, y2)(x∗) = y1(x∗) = 0, then either y1(x) = 0 for all x ∈ J, or
y2(x) = (y′

2(x
∗)/y′

1(x
∗))y1(x).

6.8. Let y1(x) and y2(x) be linearly independent solutions of (6.19),
and W (x) be their Wronskian. Show that

y′′ + p1(x)y′ + p2(x)y =
W

y1

d

dx

(
y2
1

W

d

dx

(
y

y1

))
.

6.9. Show that the DE (6.1) can be transformed into a first-order
nonlinear DE by means of a change of dependent variable

y = exp
(∫ x

f(t)w(t)dt
)
,

where f(x) is any nonvanishing differentiable function. In particular, if
f(x) = p0(x), then show that (6.1) reduces to the Riccati equation,

w′ + p0(x)w2 +
p′
0(x) + p1(x)
p0(x)

w +
p2(x)
p2
0(x)

= 0. (6.20)

6.10. If w1(x) and w2(x) are two different solutions of the DE (6.20)
with p0(x) = 1, i.e.,

w′ + w2 + p1(x)w + p2(x) = 0, (6.21)

then show that its general solution w(x) is given by

w(x) − w1(x)
w(x) − w2(x)

exp
(∫ x

(w1(t) − w2(t))dt
)

= c1.

Further, if w3(x) is another known solution of (6.21), then

w(x) − w3(x)
w(x) − w2(x)

= c2
w1(x) − w3(x)
w1(x) − w2(x)

.
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6.11. Find the general solution of the following homogeneous DEs:

(i) y′′ + 7y′ + 10y = 0.
(ii) y′′ − 8y′ + 16y = 0.
(iii) y′′ + 2y′ + 3y = 0.

6.12. Find the general solution of the following nonhomogeneous DEs:

(i) y′′ + 4y = sin 2x.
(ii) y′′ + 4y′ + 3y = e−3x.
(iii) y′′ + 5y′ + 4y = e−4x.

6.13. Show that if the real parts of all solutions of (6.14) are negative,
then limx→∞ y(x) = 0 for every solution of (6.13).

6.14. Show that the solution of the initial value problem

y′′ − 2(r + β)y′ + r2y = 0, y(0) = 0, y′(0) = 1

can be written as

yβ(x) =
1

2
√
β(2r + β)

[
e[r+β+

√
β(2r+β)]x − e[r+β−

√
β(2r+β)]x

]
.

Further, show that limβ→0 yβ(x) = xerx.

6.15. Verify that y1(x) = x and y2(x) = 1/x are solutions of

x3y′′ + x2y′ − xy = 0.

Use this information and the variation of parameters method to find the
general solution of

x3y′′ + x2y′ − xy = x/(1 + x).

Answers or Hints

6.1. Use the definition of Wronskian.

6.2. Verify directly.

6.3. (i) lnx/(x−1). (ii) (1/2)(1−x) ln[(x−2)/x]−1. (iii) e−x2
. (iv) (x/2)×

ln[(1 + x)/(1 − x)] − 1.

6.4. (i) Verify directly. (ii) Use (6.5).

6.5. e−δx2/2
∫ x

eδt2/2dt.
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6.6. Use y2(x) = y1(x)y(x) and the fact that y1(x) and y2(x) are solutions.

6.7. (i) Use Abel’s identity. (ii) If both attain maxima or minima at x0,
then φ′

1(x0) = φ′
2(x0) = 0. (iii) Use Abel’s identity. (iv) If x0 is a common

point of inflexion, then φ′′
1(x0) = φ′′

2(x0) = 0. (v) W (x∗) = 0 implies
φ2(x) = cφ1(x). If φ′

1(x
∗) = 0, then φ1(x) ≡ 0, and if φ′

1(x
∗) �= 0 then

c = φ′
2(x

∗)/φ′
1(x

∗).

6.8. Directly show right-hand side is the same as left-hand side.

6.9. Verify directly.

6.10. Use the substitution w = z+w1 to obtain z′+(2w1+p1(x))z+z2 = 0,
which is a Bernoulli equation whose multiplier is z−2 exp(− ∫ x(2u1+p1)dt).
Hence, if w1 is a solution of (6.21), then its integrating factor is (w −
w1)−2 exp(− ∫ x(2u1 + p1)dt). Now use Theorem 3.4.

6.11. (i) c1e−2x + c2e
−5x. (ii) (c1 + c2x)e4x. (iii) c1e−x cos

√
2x+ c2e

−x×
sin

√
2x.

6.12. (i) c1 cos 2x+ c2 sin 2x− 1
4x cos 2x. (ii) c1e−x + c2e

−3x − 1
2xe

−3x

(iii) c1e−x + c2e
−4x − 1

3xe
−4x.

6.13. Use explicit forms of the solution.

6.14. Note that
√
β(β + 2r) → 0 as β → 0.

6.15. c1x+ (c2/x) + (1/2)[(x− (1/x)) ln(1 + x) − x lnx− 1].


