Lecture 5 First-Order Linear Equations

Let in the DE (3.1) the functions M and N be $p_1(x)y - r(x)$ and $p_0(x)$, respectively, then it becomes

$$
p_0(x)y' + p_1(x)y = r(x), \tag{5.1}
$$

which is a first-order linear DE. In (5.1) we shall assume that the functions $p_0(x)$, $p_1(x)$, $r(x)$ are continuous and $p_0(x) \neq 0$ in J. With these assumptions the DE (5.1) can be written as

$$
y' + p(x)y = q(x), \t\t(5.2)
$$

where $p(x) = p_1(x)/p_0(x)$ and $q(x) = r(x)/p_0(x)$ are continuous functions in J.

The corresponding homogeneous equation

$$
y' + p(x)y = 0 \tag{5.3}
$$

obtained by taking $q(x) \equiv 0$ in (5.2) can be solved by separating the variables, i.e., $(1/y)y' + p(x) = 0$, and now integrating it to obtain

$$
y(x) = c \exp\left(-\int^x p(t)dt\right). \tag{5.4}
$$

In dividing (5.3) by y we have lost the solution $y(x) \equiv 0$, which is called the *trivial solution* (for a linear homogeneous DE $y(x) \equiv 0$ is always a solution). However, it is included in (5.4) with $c = 0$.

If $x_0 \in J$, then the function

$$
y(x) = y_0 \exp\left(-\int_{x_0}^x p(t)dt\right) \tag{5.5}
$$

clearly satisfies the DE (5.3) in J and passes through the point (x_0, y_0) . Thus, it is the solution of the initial value problem (5.3), (1.10).

To find the solution of the DE (5.2) we shall use *the method of variation of parameters* due to Lagrange. In (5.4) we assume that c is a function of x, i.e.,

$$
y(x) = c(x) \exp\left(-\int^x p(t)dt\right)
$$
 (5.6)

28

and search for $c(x)$ so that (5.6) becomes a solution of the DE (5.2). For this, substituting (5.6) into (5.2) , we find

$$
c'(x) \exp\left(-\int^x p(t)dt\right) - c(x)p(x) \exp\left(-\int^x p(t)dt\right) + c(x)p(x) \exp\left(-\int^x p(t)dt\right) = q(x),
$$

which is the same as

$$
c'(x) = q(x) \exp\left(\int^x p(t)dt\right). \tag{5.7}
$$

Integrating (5.7), we obtain the required function

$$
c(x) = c_1 + \int^x q(t) \exp\left(\int^t p(s)ds\right) dt.
$$

Now substituting this $c(x)$ in (5.6), we find the solution of (5.2) as

$$
y(x) = c_1 \exp\left(-\int^x p(t)dt\right) + \int^x q(t) \exp\left(-\int^x t \cdot p(s)ds\right) dt. \quad (5.8)
$$

This solution $y(x)$ is of the form $c_1u(x) + v(x)$. It is to be noted that $c_1u(x)$ is the general solution of (5.3) and $v(x)$ is a particular solution of (5.2) . Hence, the general solution of (5.2) is obtained by adding any particular solution of (5.2) to the general solution of (5.3).

From (5.8) the solution of the initial value problem (5.2) , (1.10) where $x_0 \in J$ is easily obtained as

$$
y(x) = y_0 \exp\left(-\int_{x_0}^x p(t)dt\right) + \int_{x_0}^x q(t) \exp\left(-\int_t^x p(s)ds\right)dt. \quad (5.9)
$$

This solution in the particular case when $p(x) \equiv p$ and $q(x) \equiv q$ simply reduces to

$$
y(x) = \left(y_0 - \frac{q}{p}\right)e^{-p(x-x_0)} + \frac{q}{p}.
$$

Example 5.1. Consider the initial value problem

$$
xy' - 4y + 2x2 + 4 = 0, \quad x \neq 0, \quad y(1) = 1.
$$
 (5.10)

Since $x_0 = 1$, $y_0 = 1$, $p(x) = -4/x$ and $q(x) = -2x - 4/x$, from (5.9) the

solution of (5.10) can be written as

$$
y(x) = \exp\left(\int_{1}^{x} \frac{4}{t} dt\right) + \int_{1}^{x} \left(-2t - \frac{4}{t}\right) \exp\left(\int_{t}^{x} \frac{4}{s} ds\right) dt
$$

$$
= x^{4} + \int_{1}^{x} \left(-2t - \frac{4}{t}\right) \frac{x^{4}}{t^{4}} dt
$$

$$
= x^{4} + x^{4} \left(\frac{1}{x^{2}} + \frac{1}{x^{4}} - 2\right) = -x^{4} + x^{2} + 1.
$$

Alternatively, instead of using (5.9) , we can find the solution of (5.10) as follows. For the corresponding homogeneous DE $y'-(4/x)y=0$ the general solution is cx^4 , and a particular solution of the DE (5.10) is

$$
\int^x \left(-2t - \frac{4}{t}\right) \exp\left(\int_t^x \frac{4}{s} ds\right) dt = x^2 + 1,
$$

and hence the general solution of the DE (5.10) is $y(x) = cx^4 + x^2 + 1$. Now in order to satisfy the initial condition $y(1) = 1$ it is necessary that $1 = c+1+1$, or $c = -1$. The solution of (5.10) is therefore $y(x) = -x^4 + x^2 + 1$.

Suppose $y_1(x)$ and $y_2(x)$ are two particular solutions of (5.2), then

$$
y'_1(x) - y'_2(x) = -p(x)y_1(x) + q(x) + p(x)y_2(x) - q(x)
$$

= -p(x)(y_1(x) - y_2(x)),

which implies that $y(x) = y_1(x) - y_2(x)$ is a solution of (5.3). Thus, if two particular solutions of (5.2) are known, then $y(x) = c(y_1(x) - y_2(x)) + y_1(x)$ as well as $y(x) = c(y_1(x) - y_2(x)) + y_2(x)$ represents the general solution of (5.2). For example, $x + 1/x$ and x are two solutions of the DE $xy' + y = 2x$ and $y(x) = c/x + x$ is its general solution.

The DE $(xf(y) + g(y))y' = h(y)$ may not be integrable as it is, but if the roles of x and y are interchanged, then it can be written as

$$
h(y)\frac{dx}{dy} - f(y)x = g(y),
$$

which is a linear DE in x and can be solved by the preceding procedure. In fact, the solutions of (1.9) and $dx/dy = 1/f(x, y)$ determine the same curve in a region in \mathbb{R}^2 provided the function f is defined, continuous, and nonzero. For this, if $y = y(x)$ is a solution of (1.9) in J and $y'(x) =$ $f(x, y(x)) \neq 0$, then $y(x)$ is monotonic function in J and hence has an inverse $x = x(y)$. This function x is such that

$$
\frac{dx}{dy} = \frac{1}{y'(x)} = \frac{1}{f(x, y(x))} \quad \text{in} \quad J.
$$

Example 5.2. The DE

$$
y' = \frac{1}{(e^{-y} - x)}
$$

can be written as $dx/dy + x = e^{-y}$ which can be solved to obtain $x =$ $e^{-y}(y+c)$.

Certain nonlinear first-order DEs can be reduced to linear equations by an appropriate change of variables. For example, it is always possible for the *Bernoulli equation*

$$
p_0(x)y' + p_1(x)y = r(x)y^n, \quad n \neq 0, 1.
$$
 (5.11)

In (5.11) , $n = 0$ and 1 are excluded because in these cases this equation is obviously linear.

The equation (5.11) is equivalent to the DE

$$
p_0(x)y^{-n}y' + p_1(x)y^{1-n} = r(x)
$$
\n(5.12)

and now the substitution $v = y^{1-n}$ leads to the first-order linear DE

$$
\frac{1}{1-n}p_0(x)v' + p_1(x)v = r(x).
$$
\n(5.13)

Example 5.3. The DE $xy' + y = x^2y^2$, $x \neq 0$ can be written as $xy^{-2}y' + y^{-1} = x^2$. The substitution $v = y^{-1}$ converts this DE into $-xv' + y' = 0$ $v = x^2$, which can be solved to get $v = (c - x)x$, and hence the general solution of the given DE is $y(x)=(cx-x^2)^{-1}$.

As we have remarked in Lecture 2, we shall show that if one solution $y_1(x)$ of the Riccati equation (2.14) is known, then the substitution $y =$ $y_1 + z^{-1}$ converts it into a first-order linear DE in z. Indeed, we have

$$
y'_1 - \frac{1}{z^2}z' = p(x)\left(y_1 + \frac{1}{z}\right)^2 + q(x)\left(y_1 + \frac{1}{z}\right) + r(x)
$$

=
$$
(p(x)y_1^2 + q(x)y_1 + r(x)) + p(x)\left(\frac{2y_1}{z} + \frac{1}{z^2}\right) + q(x)\frac{1}{z}
$$

and hence

$$
-\frac{1}{z^2}z' = (2p(x)y_1 + q(x))\frac{1}{z} + p(x)\frac{1}{z^2},
$$

which is the first-order linear DE

$$
z' + (2p(x)y_1 + q(x))z + p(x) = 0.
$$
 (5.14)

Example 5.4. It is easy to verify that $y_1 = x$ is a particular solution of the Riccati equation $y' = 1 + x^2 - 2xy + y^2$. The substitution $y = x + z^{-1}$

converts this DE to the first-order linear DE $z' + 1 = 0$, whose general solution is $z = (c - x)$, $x \neq c$. Thus, the general solution of the given Riccati equation is $y(x) = x + 1/(c - x)$, $x \neq c$.

In many physical problems the nonhomogeneous term $q(x)$ in (5.2) is specified by different formulas in different intervals. This is often the case when (5.2) is considered as an *input–output* relation, i.e., the function $q(x)$ is an *input* and the solution $y(x)$ is an *output* corresponding to the input $q(x)$. Usually, in such situations the solution $y(x)$ is not defined at certain points, so that it is not continuous throughout the interval of interest. To understand such a case, for simplicity, we consider the initial value problem (5.2) , (1.10) in the interval $[x_0, x_2]$, where the function $p(x)$ is continuous, and

$$
q(x) = \begin{cases} q_1(x), & x_0 \leq x < x_1 \\ q_2(x), & x_1 < x \leq x_2. \end{cases}
$$

We assume that the functions $q_1(x)$ and $q_2(x)$ are continuous in the intervals $[x_0, x_1]$ and $(x_1, x_2]$, respectively. With these assumptions the "solution" $y(x)$ of (5.2) , (1.10) in view of (5.9) can be written as

$$
y(x) = \begin{cases} y_1(x) = y_0 \exp\left(-\int_{x_0}^x p(t)dt\right) + \int_{x_0}^x q_1(t) \exp\left(-\int_t^x p(s)ds\right)dt, \\ x_0 \le x < x_1 \\ y_2(x) = c \exp\left(-\int_{x_1}^x p(t)dt\right) + \int_{x_1}^x q_2(t) \exp\left(-\int_t^x p(s)ds\right)dt, \\ x_1 < x \le x_2. \end{cases}
$$

Clearly, at the point x_1 we cannot say much about the solution $y(x)$, it may not even be defined. However, if the limits $\lim_{x \to x_1^-} y_1(x)$ and $\lim_{x\to x_1^+} y_2(x)$ exist (which are guaranteed if both the functions $q_1(x)$ and $q_2(x)$ are bounded at $x = x_1$, then the relation

$$
\lim_{x \to x_1^-} y_1(x) = \lim_{x \to x_1^+} y_2(x) \tag{5.15}
$$

determines the constant c, so that the solution $y(x)$ is continuous on $[x_0, x_2]$.

Example 5.5. Consider the initial value problem

$$
y' - \frac{4}{x}y = \begin{cases} -2x - \frac{4}{x}, & x \in [1, 2) \\ x^2, & x \in (2, 4] \end{cases}
$$
(5.16)

$$
y(1) = 1.
$$

In view of Example 5.1 the solution of (5.16) can be written as

$$
y(x) = \begin{cases} -x^4 + x^2 + 1, & x \in [1, 2) \\ c\frac{x^4}{16} + \frac{x^4}{2} - x^3, & x \in (2, 4]. \end{cases}
$$

Now the relation (5.15) gives $c = -11$. Thus, the continuous solution of (5.16) is

$$
y(x) = \begin{cases} -x^4 + x^2 + 1, & x \in [1, 2) \\ -\frac{3}{16}x^4 - x^3, & x \in (2, 4]. \end{cases}
$$

Clearly, this solution is not differentiable at $x = 2$.

Problems

5.1. Show that the DE (5.2) admits an integrating factor which is a function of x alone. Use this to obtain its general solution.

5.2. (Principle of Superposition). If $y_1(x)$ and $y_2(x)$ are solutions of $y' + p(x)y = q_i(x), i = 1, 2$, respectively, then show that $c_1y_1(x) + c_2y_2(x)$ is a solution of the DE $y' + p(x)y = c_1q_1(x) + c_2q_2(x)$, where c_1 and c_2 are constants.

5.3. Find the general solution of the following DEs:

(i) $y' - (\cot x)y = 2x \sin x$. (ii) $y' + y + x + x^2 + x^3 = 0.$ (iii) $(y^2 - 1) + 2(x - y(1 + y)^2)y' = 0.$ (iv) $(1 + y^2) = (\tan^{-1} y - x)y'$.

5.4. Solve the following initial value problems:

(i)
$$
y' + 2y = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}
$$
, $y(0) = 0$.

(ii) $y' + p(x)y = 0$, $y(0) = 1$, where $p(x) = \begin{cases} 2, & 0 \le x \le 1 \\ 1, & x > 1. \end{cases}$

5.5. Let $q(x)$ be continuous in $[0, \infty)$ and $\lim_{x\to\infty} q(x) = L$. For the DE $y' + ay = q(x)$, show the following:

(i) If $a > 0$, every solution approaches L/a as $x \to \infty$.

(ii) If $a < 0$, there is one and only one solution which approaches L/a as $x \rightarrow \infty$.

5.6. Let $y(x)$ be the solution of the initial value problem (5.2) , (1.10) in $[x_0,\infty)$, and let $z(x)$ be a continuously differentiable function in $[x_0,\infty)$ such that $z' + p(x)z \leq q(x)$, $z(x_0) \leq y_0$. Show that $z(x) \leq y(x)$ for all x in $[x_0,\infty)$. In particular, for the problem $y' + y = \cos x$, $y(0) = 1$ verify that $2e^{-x} - 1 \leq y(x) \leq 1, \ x \in [0, \infty).$

5.7. Find the general solution of the following nonlinear DEs:

- (i) $2(1 + y^3) + 3xy^2y' = 0.$
- (ii) $y + x(1 + xy^4)y' = 0.$
- (iii) $(1-x^2)y' + y^2 1 = 0$.
- (iv) $y' e^{-x}y^2 y e^x = 0$.

***5.8.** Let the functions p_0 , p_1 , and r be continuous in $J = [\alpha, \beta]$ such that $p_0(\alpha) = p_0(\beta) = 0$, $p_0(x) > 0$, $x \in (\alpha, \beta)$, $p_1(x) > 0$, $x \in J$, and

$$
\int_{\alpha}^{\alpha+\epsilon} \frac{dx}{p_0(x)} = \int_{\beta-\epsilon}^{\beta} \frac{dx}{p_0(x)} = \infty, \quad 0 < \epsilon < \beta - \alpha.
$$

Show that all solutions of the DE (5.1) which exist in (α, β) converge to $r(\beta)/p_1(\beta)$ as $x \to \beta$. Further, show that one of these solutions converges to $r(\alpha)/p_1(\alpha)$ as $x \to \alpha$, while all other solutions converge to ∞ , or $-\infty$.

Answers or Hints

5.1. Since $M = p(x)y - q(x)$, $N = 1$, $[(M_y - N_x)/N] = p(x)$, and hence the integrating factor is $\exp(\int^x p(t) dt)$.

5.2. Use the definition of a solution.

5.3. (i) $c \sin x + x^2 \sin x$. (ii) $ce^{-x} - x^3 + 2x^2 - 5x + 5$. (iii) $x(y-1)/(y+1) =$ $y^{2} + c$. (iv) $x = \tan^{-1} y - 1 + ce^{-\tan^{-1} y}$.

5.4. (i)
$$
y(x) = \begin{cases} \frac{1}{2}(1 - e^{-2x}), & 0 \le x \le 1 \\ \frac{1}{2}(e^2 - 1)e^{-2x}, & x > 1 \end{cases}
$$
 (ii) $y(x) = \begin{cases} e^{-2x}, & 0 \le x \le 1 \\ e^{-(x+1)}, & x > 1. \end{cases}$

5.5. (i) In $y(x) = y(x_0)e^{-a(x-x_0)} + \left[\int_{x_0}^x e^{at}q(t)dt\right]/e^{ax}$ take the limit $x \to$ ∞. (ii) In $y(x) = e^{-ax} \left[y(x_0)e^{ax_0} + \int_{x_0}^{\infty} e^{at}q(t)dt - \int_x^{\infty} e^{at}q(t)dt \right]$ choose $y(x_0)$ so that $y(x_0)e^{ax_0} + \int_{x_0}^{\infty} e^{at}q(t)dt = 0$ (lim_{$x \to \infty$} $q(x) = L$). Now in $y(x) = -\left[\int_x^{\infty} e^{at} q(t) dt\right] / e^{ax}$ take the limit $x \to \infty$.

5.6. There exists a continuous function $r(x) \geq 0$ such that $z' + p(x)z =$ $q(x) - r(x), z(x_0) \leq y_0$. Thus, for the function $\phi(x) = y(x) - z(x), \phi' + z(x_0)$ $p(x)\phi = r(x) \geq 0, \ \phi(x_0) = y_0 - z(x_0) \geq 0.$

5.7. (i) $x^2(1+y^3) = c$. (ii) $xy^4 = 3(1+cxy)$, $y = 0$. (iii) $(y-1)(1+x) =$ $c(1-x)(1+y)$. (iv) $e^x \tan(x+c)$.