
Lecture 5
First-Order Linear Equations

Let in the DE (3.1) the functions M and N be p1(x)y− r(x) and p0(x),
respectively, then it becomes

p0(x)y′ + p1(x)y = r(x), (5.1)

which is a first-order linear DE. In (5.1) we shall assume that the func-
tions p0(x), p1(x), r(x) are continuous and p0(x) �= 0 in J. With these
assumptions the DE (5.1) can be written as

y′ + p(x)y = q(x), (5.2)

where p(x) = p1(x)/p0(x) and q(x) = r(x)/p0(x) are continuous functions
in J.

The corresponding homogeneous equation

y′ + p(x)y = 0 (5.3)

obtained by taking q(x) ≡ 0 in (5.2) can be solved by separating the vari-
ables, i.e., (1/y)y′ + p(x) = 0, and now integrating it to obtain

y(x) = c exp
(

−
∫ x

p(t)dt
)
. (5.4)

In dividing (5.3) by y we have lost the solution y(x) ≡ 0, which is called the
trivial solution (for a linear homogeneous DE y(x) ≡ 0 is always a solution).
However, it is included in (5.4) with c = 0.

If x0 ∈ J, then the function

y(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

(5.5)

clearly satisfies the DE (5.3) in J and passes through the point (x0, y0).
Thus, it is the solution of the initial value problem (5.3), (1.10).

To find the solution of the DE (5.2) we shall use the method of variation
of parameters due to Lagrange. In (5.4) we assume that c is a function of
x, i.e.,

y(x) = c(x) exp
(

−
∫ x

p(t)dt
)

(5.6)
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and search for c(x) so that (5.6) becomes a solution of the DE (5.2). For
this, substituting (5.6) into (5.2), we find

c′(x) exp
(

−
∫ x

p(t)dt
)

−c(x)p(x) exp
(

−
∫ x

p(t)dt
)

+c(x)p(x) exp
(

−
∫ x

p(t)dt
)

= q(x),

which is the same as

c′(x) = q(x) exp
(∫ x

p(t)dt
)
. (5.7)

Integrating (5.7), we obtain the required function

c(x) = c1 +
∫ x

q(t) exp
(∫ t

p(s)ds
)
dt.

Now substituting this c(x) in (5.6), we find the solution of (5.2) as

y(x) = c1 exp
(

−
∫ x

p(t)dt
)

+
∫ x

q(t) exp
(

−
∫ x

t

p(s)ds
)
dt. (5.8)

This solution y(x) is of the form c1u(x) + v(x). It is to be noted that
c1u(x) is the general solution of (5.3) and v(x) is a particular solution
of (5.2). Hence, the general solution of (5.2) is obtained by adding any
particular solution of (5.2) to the general solution of (5.3).

From (5.8) the solution of the initial value problem (5.2), (1.10) where
x0 ∈ J is easily obtained as

y(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

+
∫ x

x0

q(t) exp
(

−
∫ x

t

p(s)ds
)
dt. (5.9)

This solution in the particular case when p(x) ≡ p and q(x) ≡ q simply
reduces to

y(x) =
(
y0 − q

p

)
e−p(x−x0) +

q

p
.

Example 5.1. Consider the initial value problem

xy′ − 4y + 2x2 + 4 = 0, x �= 0, y(1) = 1. (5.10)

Since x0 = 1, y0 = 1, p(x) = −4/x and q(x) = −2x− 4/x, from (5.9) the
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solution of (5.10) can be written as

y(x) = exp
(∫ x

1

4
t
dt

)
+
∫ x

1

(
−2t− 4

t

)
exp

(∫ x

t

4
s
ds

)
dt

= x4 +
∫ x

1

(
−2t− 4

t

)
x4

t4
dt

= x4 + x4
(

1
x2 +

1
x4 − 2

)
= − x4 + x2 + 1.

Alternatively, instead of using (5.9), we can find the solution of (5.10) as
follows. For the corresponding homogeneous DE y′−(4/x)y = 0 the general
solution is cx4, and a particular solution of the DE (5.10) is∫ x(

−2t− 4
t

)
exp

(∫ x

t

4
s
ds

)
dt = x2 + 1,

and hence the general solution of the DE (5.10) is y(x) = cx4+x2+1. Now in
order to satisfy the initial condition y(1) = 1 it is necessary that 1 = c+1+1,
or c = −1. The solution of (5.10) is therefore y(x) = −x4 + x2 + 1.

Suppose y1(x) and y2(x) are two particular solutions of (5.2), then

y′
1(x) − y′

2(x) = −p(x)y1(x) + q(x) + p(x)y2(x) − q(x)

= −p(x)(y1(x) − y2(x)),

which implies that y(x) = y1(x) − y2(x) is a solution of (5.3). Thus, if two
particular solutions of (5.2) are known, then y(x) = c(y1(x)−y2(x))+y1(x)
as well as y(x) = c(y1(x)− y2(x))+ y2(x) represents the general solution of
(5.2). For example, x+1/x and x are two solutions of the DE xy′ + y = 2x
and y(x) = c/x+ x is its general solution.

The DE (xf(y) + g(y))y′ = h(y) may not be integrable as it is, but if
the roles of x and y are interchanged, then it can be written as

h(y)
dx

dy
− f(y)x = g(y),

which is a linear DE in x and can be solved by the preceding procedure.
In fact, the solutions of (1.9) and dx/dy = 1/f(x, y) determine the same
curve in a region in IR2 provided the function f is defined, continuous,
and nonzero. For this, if y = y(x) is a solution of (1.9) in J and y′(x) =
f(x, y(x)) �= 0, then y(x) is monotonic function in J and hence has an
inverse x = x(y). This function x is such that

dx

dy
=

1
y′(x)

=
1

f(x, y(x))
in J.
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Example 5.2. The DE

y′ =
1

(e−y − x)

can be written as dx/dy + x = e−y which can be solved to obtain x =
e−y(y + c).

Certain nonlinear first-order DEs can be reduced to linear equations by
an appropriate change of variables. For example, it is always possible for
the Bernoulli equation

p0(x)y′ + p1(x)y = r(x)yn, n �= 0, 1. (5.11)

In (5.11), n = 0 and 1 are excluded because in these cases this equation is
obviously linear.

The equation (5.11) is equivalent to the DE

p0(x)y−ny′ + p1(x)y1−n = r(x) (5.12)

and now the substitution v = y1−n leads to the first-order linear DE

1
1 − n

p0(x)v′ + p1(x)v = r(x). (5.13)

Example 5.3. The DE xy′ + y = x2y2, x �= 0 can be written as
xy−2y′ + y−1 = x2. The substitution v = y−1 converts this DE into −xv′ +
v = x2, which can be solved to get v = (c − x)x, and hence the general
solution of the given DE is y(x) = (cx− x2)−1.

As we have remarked in Lecture 2, we shall show that if one solution
y1(x) of the Riccati equation (2.14) is known, then the substitution y =
y1 + z−1 converts it into a first-order linear DE in z. Indeed, we have

y′
1 − 1

z2 z
′ = p(x)

(
y1 +

1
z

)2

+ q(x)
(
y1 +

1
z

)
+ r(x)

= (p(x)y2
1 + q(x)y1 + r(x)) + p(x)

(
2y1
z

+
1
z2

)
+ q(x)

1
z

and hence
− 1
z2 z

′ = (2p(x)y1 + q(x))
1
z

+ p(x)
1
z2 ,

which is the first-order linear DE

z′ + (2p(x)y1 + q(x))z + p(x) = 0. (5.14)

Example 5.4. It is easy to verify that y1 = x is a particular solution of
the Riccati equation y′ = 1 + x2 − 2xy + y2. The substitution y = x+ z−1
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converts this DE to the first-order linear DE z′ + 1 = 0, whose general
solution is z = (c − x), x �= c. Thus, the general solution of the given
Riccati equation is y(x) = x+ 1/(c− x), x �= c.

In many physical problems the nonhomogeneous term q(x) in (5.2) is
specified by different formulas in different intervals. This is often the case
when (5.2) is considered as an input–output relation, i.e., the function q(x)
is an input and the solution y(x) is an output corresponding to the input
q(x). Usually, in such situations the solution y(x) is not defined at certain
points, so that it is not continuous throughout the interval of interest. To
understand such a case, for simplicity, we consider the initial value problem
(5.2), (1.10) in the interval [x0, x2], where the function p(x) is continuous,
and

q(x) =

{
q1(x), x0 ≤ x < x1

q2(x), x1 < x ≤ x2.

We assume that the functions q1(x) and q2(x) are continuous in the intervals
[x0, x1) and (x1, x2], respectively. With these assumptions the “solution”
y(x) of (5.2), (1.10) in view of (5.9) can be written as

y(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

+
∫ x

x0

q1(t) exp
(

−
∫ x

t

p(s)ds
)
dt,

x0 ≤ x < x1

y2(x) = c exp
(

−
∫ x

x1

p(t)dt
)

+
∫ x

x1

q2(t) exp
(

−
∫ x

t

p(s)ds
)
dt,

x1 < x ≤ x2.

Clearly, at the point x1 we cannot say much about the solution y(x),
it may not even be defined. However, if the limits limx→x−

1
y1(x) and

limx→x+
1
y2(x) exist (which are guaranteed if both the functions q1(x) and

q2(x) are bounded at x = x1), then the relation

lim
x→x−

1

y1(x) = lim
x→x+

1

y2(x) (5.15)

determines the constant c, so that the solution y(x) is continuous on [x0, x2].

Example 5.5. Consider the initial value problem

y′ − 4
x
y =

⎧⎨
⎩ −2x− 4

x
, x ∈ [1, 2)

x2, x ∈ (2, 4]

y(1) = 1.

(5.16)

In view of Example 5.1 the solution of (5.16) can be written as

y(x) =

⎧⎨
⎩

−x4 + x2 + 1, x ∈ [1, 2)

c
x4

16
+
x4

2
− x3, x ∈ (2, 4].
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Now the relation (5.15) gives c = −11. Thus, the continuous solution of
(5.16) is

y(x) =

⎧⎨
⎩

−x4 + x2 + 1, x ∈ [1, 2)

− 3
16
x4 − x3, x ∈ (2, 4].

Clearly, this solution is not differentiable at x = 2.

Problems

5.1. Show that the DE (5.2) admits an integrating factor which is a
function of x alone. Use this to obtain its general solution.

5.2. (Principle of Superposition). If y1(x) and y2(x) are solutions of
y′ + p(x)y = qi(x), i = 1, 2, respectively, then show that c1y1(x) + c2y2(x)
is a solution of the DE y′ + p(x)y = c1q1(x) + c2q2(x), where c1 and c2 are
constants.

5.3. Find the general solution of the following DEs:

(i) y′ − (cotx)y = 2x sinx.
(ii) y′ + y + x+ x2 + x3 = 0.
(iii) (y2 − 1) + 2(x− y(1 + y)2)y′ = 0.
(iv) (1 + y2) = (tan−1 y − x)y′.

5.4. Solve the following initial value problems:

(i) y′ + 2y =
{

1, 0 ≤ x ≤ 1
0, x > 1 , y(0) = 0.

(ii) y′ + p(x)y = 0, y(0) = 1, where p(x) =
{

2, 0 ≤ x ≤ 1
1, x > 1.

5.5. Let q(x) be continuous in [0,∞) and limx→∞ q(x) = L. For the
DE y′ + ay = q(x), show the following:

(i) If a > 0, every solution approaches L/a as x → ∞.
(ii) If a < 0, there is one and only one solution which approaches L/a as
x → ∞.

5.6. Let y(x) be the solution of the initial value problem (5.2), (1.10)
in [x0,∞), and let z(x) be a continuously differentiable function in [x0,∞)
such that z′ + p(x)z ≤ q(x), z(x0) ≤ y0. Show that z(x) ≤ y(x) for all x in
[x0,∞). In particular, for the problem y′ + y = cosx, y(0) = 1 verify that
2e−x − 1 ≤ y(x) ≤ 1, x ∈ [0,∞).

5.7. Find the general solution of the following nonlinear DEs:
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(i) 2(1 + y3) + 3xy2y′ = 0.
(ii) y + x(1 + xy4)y′ = 0.
(iii) (1 − x2)y′ + y2 − 1 = 0.
(iv) y′ − e−xy2 − y − ex = 0.

∗5.8. Let the functions p0, p1, and r be continuous in J = [α, β] such
that p0(α) = p0(β) = 0, p0(x) > 0, x ∈ (α, β), p1(x) > 0, x ∈ J, and

∫ α+ε

α

dx

p0(x)
=

∫ β

β−ε

dx

p0(x)
= ∞, 0 < ε < β − α.

Show that all solutions of the DE (5.1) which exist in (α, β) converge to
r(β)/p1(β) as x → β. Further, show that one of these solutions converges
to r(α)/p1(α) as x → α, while all other solutions converge to ∞, or −∞.

Answers or Hints

5.1. Since M = p(x)y − q(x), N = 1, [(My −Nx)/N ] = p(x), and hence
the integrating factor is exp(

∫ x
p(t)dt).

5.2. Use the definition of a solution.

5.3. (i) c sinx+x2 sinx. (ii) ce−x−x3+2x2−5x+5. (iii) x(y−1)/(y+1) =
y2 + c. (iv) x = tan−1 y − 1 + ce− tan−1 y.

5.4. (i) y(x) =
{ 1

2 (1 − e−2x), 0 ≤ x ≤ 1
1
2 (e2 − 1)e−2x, x > 1

(ii) y(x) =
{
e−2x, 0 ≤ x ≤ 1
e−(x+1), x > 1.

5.5. (i) In y(x) = y(x0)e−a(x−x0) + [
∫ x

x0
eatq(t)dt]/eax take the limit x →

∞. (ii) In y(x) = e−ax
[
y(x0)eax0 +

∫∞
x0
eatq(t)dt− ∫∞

x
eatq(t)dt

]
choose

y(x0) so that y(x0)eax0 +
∫∞

x0
eatq(t)dt = 0 (limx→∞ q(x) = L). Now in

y(x) = −[
∫∞

x
eatq(t)dt]/eax take the limit x → ∞.

5.6. There exists a continuous function r(x) ≥ 0 such that z′ + p(x)z =
q(x) − r(x), z(x0) ≤ y0. Thus, for the function φ(x) = y(x) − z(x), φ′ +
p(x)φ = r(x) ≥ 0, φ(x0) = y0 − z(x0) ≥ 0.

5.7. (i) x2(1+ y3) = c. (ii) xy4 = 3(1+ cxy), y = 0. (iii) (y− 1)(1+x) =
c(1 − x)(1 + y). (iv) ex tan(x+ c).


