
Lecture 16
Existence and Uniqueness
of Solutions of Systems

(Contd.)

In this lecture we shall continue extending the results for the initial
value problem (15.4) some of which are analogous to those proved in earlier
lectures for the problem (7.1).

Theorem 16.1 (Continuation of Solutions). Assume that
g(x, u) is continuous in E and u(x) is a solution of the problem (15.4) in
an interval J. Then u(x) can be extended as a solution of (15.4) to the
boundary of E.

Corollary 16.2. Assume that g(x, u) is continuous in

E1 = {(x, u) ∈ E : x0 ≤ x < x0 + a, a < ∞, ‖u‖ < ∞} .

If u(x) is any solution of (15.4), then the largest interval of existence of u(x)
is either [x0, x0 + a] or [x0, x0 +α), α < a and ‖u(x)‖ → ∞ as x → x0 +α.

Theorem 16.3 (Perron’s Uniqueness Theorem). Let
f(x, y), f(x, 0) ≡ 0, be a nonnegative continuous function defined in the
rectangle x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. For every x1 ∈ (x0, x0 + a),
let y(x) ≡ 0 be the only differentiable function satisfying the initial value
problem

y′ = f(x, y), y(x0) = 0 (16.1)

in the interval [x0, x1). Further, let g(x, u) be continuous in Ω+ : x0 ≤ x ≤
x0 + a, ‖u− u0‖ ≤ b and

‖g(x, u) − g(x, v)‖ ≤ f(x, ‖u− v‖) (16.2)

for all (x, u), (x, v) ∈ Ω+. Then the problem (15.4) has at most one solution
in [x0, x0 + a].

Proof. Suppose u(x) and v(x) are any two solutions of (15.4) in [x0, x0+
a]. Let y(x) = ‖u(x) − v(x)‖, then clearly y(x0) = 0, and from Problem
11.5 it follows that

D+y(x) ≤ ‖u′(x) − v′(x)‖ = ‖g(x, u(x)) − g(x, v(x))‖. (16.3)
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Using inequality (16.2) in (16.3), we obtainD+y(x) ≤ f(x, y(x)). Therefore,
from Theorem 11.6 it follows that y(x) ≤ r(x), x ∈ [x0, x1) for any x1 ∈
(x0, x0 + a), where r(x) is the maximal solution of (16.1). However, from
the hypothesis r(x) ≡ 0, and hence y(x) ≡ 0 in [x0, x1). This proves the
theorem.

In Theorem 16.3 the function f(x, y) = h(x)y, where h(x) ≥ 0 is contin-
uous in [x0, x0 + a] is admissible, i.e., it includes the Lipschitz uniqueness
criterion.

For our next result we need the following lemma.

Lemma 16.4. Let f(x, y) be a nonnegative continuous function for
x0 < x ≤ x0 + a, 0 ≤ y ≤ 2b with the property that the only solution y(x)
of the DE y′ = f(x, y) in any interval (x0, x1) where x1 ∈ (x0, x0 + a) for
which y′

+(x0) exists, and

y(x0) = y′
+(x0) = 0 (16.4)

is y(x) ≡ 0. Further, let f1(x, y) be a nonnegative continuous function for
x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b, f1(x, 0) ≡ 0 and

f1(x, y) ≤ f(x, y), x �= x0. (16.5)

Then for every x1 ∈ (x0, x0+a), y1(x) ≡ 0 is the only differentiable function
in [x0, x1), which satisfies

y′
1 = f1(x, y1), y1(x0) = 0. (16.6)

Proof. Let r(x) be the maximal solution of (16.6) in [x0, x1). Since
f1(x, 0) ≡ 0, y1(x) ≡ 0 is a solution of the problem (16.6). Thus, r(x) ≥ 0
in [x0, x1). Hence, it suffices to show that r(x) = 0 in [x0, x1). Suppose, on
the contrary, that there exists a x2, x0 < x2 < x1 such that r(x2) > 0.
Then because of the inequality (16.5), we have

r′(x) ≤ f(x, r(x)), x0 < x ≤ x2.

If ρ(x) is the minimal solution of

y′ = f(x, y), y(x2) = r(x2),

then an application of Problem 11.6 implies that

ρ(x) ≤ r(x) (16.7)

as long as ρ(x) exists to the left of x2. The solution ρ(x) can be continued
to x = x0. If ρ(x3) = 0, for some x3, x0 < x3 < x2, we can affect the con-
tinuation by defining ρ(x) = 0 for x0 < x < x3. Otherwise, (16.7) ensures
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the possibility of continuation. Since r(x0) = 0, limx→x+
0
ρ(x) = 0, and we

define ρ(x0) = 0. Furthermore, since f1(x, y) is continuous at (x0, 0) and
f1(x0, 0) = 0, r′

+(x0) exists and is equal to zero. This, because of (16.7), im-
plies that ρ′

+(x0) exists and ρ′
+(x0) = 0. Thus, ρ′(x) = f(x, ρ(x)), ρ(x0) =

0, ρ′
+(x0) = 0, and hence from the hypothesis on f(x, y) it follows that

ρ(x) ≡ 0. This contradicts the assumption that ρ(x2) = r(x2) > 0. There-
fore, r(x) ≡ 0.

Theorem 16.5 (Kamke’s Uniqueness Theorem). Let
f(x, y) be as in Lemma 16.4, and g(x, u) as in Theorem 16.3, except that
the condition (16.2) holds for all (x, u), (x, v) ∈ Ω+, x �= x0. Then the
problem (15.4) has at most one solution in [x0, x0 + a].

Proof. Define the function

fg(x, y) = sup
‖u−v‖=y

‖g(x, u) − g(x, v)‖ (16.8)

for x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. Since g(x, u) is continuous in Ω+, the
function fg(x, y) is continuous for x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. From
(16.8) it is clear that the condition (16.2) holds for the function fg(x, y).
Moreover, fg(x, y) ≤ f(x, y) for x0 < x ≤ x0 + a, 0 ≤ y ≤ 2b. Lemma 16.4
is now applicable with f1(x, y) = fg(x, y) and therefore fg(x, y) satisfies the
assumptions of Theorem 16.3. This completes the proof.

Kamke’s uniqueness theorem is evidently more general than that of Per-
ron and it includes as special cases many known criteria, e.g., the following:

1. Osgood’s criterion in the interval [x0, x0 + a] : f(x, y) = w(y), where
the function w(y) is as in Lemma 10.3.
2. Nagumo’s criterion in the interval [x0, x0 + a] : f(x, y) = ky/(x− x0),
k ≤ 1.
3. Krasnoselski–Krein criterion in the interval [x0, x0 + a] :

f(x, y) = min
{

ky

x− x0
, Cyα

}
, C > 0, 0 < α < 1, k(1 − α) < 1.

Theorem 16.6 (Continuous Dependence on Initial Con-
ditions). Let the following conditions hold:

(i) g(x, u) is continuous and bounded by M in a domain E containing
the points (x0, u

0) and (x1, u
1).

(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in E.
(iii) h(x, u) is continuous and bounded by M1 in E.
(iv) u(x) and v(x) are the solutions of the initial value problems (15.4)
and

v′ = g(x, v) + h(x, v), v(x1) = u1,
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respectively, which exist in an interval J containing x0 and x1.

Then for all x ∈ J , the following inequality holds:

‖u(x) − v(x)‖ ≤
(

‖u0 − u1‖ + (M +M1)|x1 − x0| +
1
L
M1

)

× exp (L|x− x0|) − 1
L
M1.

Theorem 16.7 (Differentiation with Respect to Initial
Conditions). Let the following conditions be satisfied:

(i) g(x, u) is continuous and bounded by M in a domain E containing
the point (x0, u

0).
(ii) The matrix ∂g(x, u)/∂u exists and is continuous and bounded by L
in E.
(iii) The solution u(x, x0, u

0) of the initial value problem (15.4) exists in
an interval J containing x0.

Then the following hold:

1. The solution u(x, x0, u
0) is differentiable with respect to u0, and for each

j (1 ≤ j ≤ n), vj(x) = ∂u(x, x0, u
0)/∂u0

j is the solution of the initial value
problem

v′ =
∂g

∂u
(x, u(x, x0, u

0))v (16.9)

v(x0) = ej = (0, . . . , 0, 1, 0, . . . , 0). (16.10)

2. The solution u(x, x0, u
0) is differentiable with respect to x0 and v(x) =

∂u(x, x0, u
0)/∂x0 is the solution of the differential system (16.9), satisfying

the initial condition
v(x0) = − g(x0, u

0). (16.11)

Finally, in this lecture we shall consider the differential system

u′ = g(x, u, λ), (16.12)

where λ = (λ1, . . . , λm) ∈ IRm is a parameter.

If in (16.12) we treat λ1, . . . , λm as new variables, then

dλi

dx
= 0, 1 ≤ i ≤ m. (16.13)

Thus, the new system consisting of (16.12) and (16.13) is exactly of the
form (15.1), but instead of n, now it is (n+m)-dimensional. Hence, for the
initial value problem

u′ = g(x, u, λ), u(x0) = u0, (16.14)
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the result analogous to Theorem 12.4 can be stated as follows.

Theorem 16.8. Let the following conditions be satisfied:

(i) g(x, u, λ) is continuous and bounded by M in a domain E ⊂ IRn+m+1

containing the point (x0, u
0, λ0).

(ii) The matrix ∂g(x, u, λ)/∂u exists and is continuous and bounded by L
in E.
(iii) The n×m matrix ∂g(x, u, λ)/∂λ exists and is continuous and bounded
by L1 in E.

Then the following hold:

1. There exist positive numbers h and ε such that for any λ satisfying
‖λ− λ0‖ ≤ ε, there exists a unique solution u(x, λ) of the problem (16.14)
in the interval |x− x0| ≤ h.

2. For all λi such that ‖λi − λ0‖ ≤ ε, i = 1, 2, and x in |x − x0| ≤ h the
following inequality holds:

‖u(x, λ1) − u(x, λ2)‖ ≤ L1

L
‖λ1 − λ2‖(exp(L|x− x0|) − 1).

3. The solution u(x, λ) is differentiable with respect to λ and for each
j (1 ≤ j ≤ m), vj(x, λ) = ∂u(x, λ)/∂λj is the solution of the initial value
problem

v′(x, λ) =
∂g

∂u
(x, u(x, λ), λ)v(x, λ) +

∂g

∂λj
(x, u(x, λ), λ) (16.15)

v(x0, λ) = 0. (16.16)

Problems

16.1. Solve the following problems by using Picard’s method of succes-
sive approximations:

(i) u′ =
[

0 1
−1 0

]
u, u(0) =

[
0
1

]
.

(ii) u′ =
[

0 1
1 0

]
u+

[
x
x

]
, u(0) =

[
2

−2

]
.

16.2. Show that the problem (1.6), (1.8) is equivalent to the integral
equation

y(x) =
n−1∑
i=0

(x−x0)i

i!
yi+

1
(n−1)!

∫ x

x0

(x−t)n−1f(t, y(t), y′(t), . . . , y(n−1)(t))dt.
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16.3. Let the following conditions hold:

(i) f(x, φ0, . . . , φn−1) is continuous in

Ω1 : |x− x0| ≤ a,

n−1∑
i=0

|φi − yi| ≤ b

and hence there exists a M > 0 such that supΩ1
|f(x, φ0, . . . , φn−1)| ≤ M .

(ii) f(x, φ0, . . . , φn−1) satisfies a uniform Lipschitz condition in Ω1, i.e.,
for all (x, φ0, . . . , φn−1), (x, ψ0, . . . , ψn−1) ∈ Ω1 there exists a constant L
such that

|f(x, φ0, . . . , φn−1) − f(x, ψ0, . . . , ψn−1)| ≤ L

n−1∑
i=0

|φi − ψi|.

Show that the problem (1.6), (1.8) has a unique solution in the interval
Jh : |x− x0| ≤ h = min{a, b/M1}, where M1 = M + b+

∑n−1
i=0 |yi|.

16.4. Let y(x) and z(x) be two solutions of the DE

y(n) + p1(x)y(n−1) + · · · + pn(x)y = r(x) (16.17)

in the interval J containing the point x0. Show that for all x in J

u(x0) exp(−2K|x− x0|) ≤ u(x) ≤ u(x0) exp(2K|x− x0|),
where

K = 1 +
n∑

i=1

sup
x∈J

|pi(x)| and u(x) =
n−1∑
i=0

(y(i)(x) − z(i)(x))2.

∗16.5. Consider the initial value problem

y′′ + α(y, y′)y′ + β(y) = f(x), y(0) = y0, y′(0) = y1

where α(y, y′), β(y) are continuous together with their first-order partial
derivatives, and f(x) is continuous and bounded on IR, α ≥ 0, yβ(y) ≥
0. Show that this problem has a unique solution and it can be extended
to [0,∞).

16.6. Using an example of the form

u′
1 = u2
u′

2 = −u1

observe that a generalization of Theorem 11.1 to systems of first-order DEs
with inequalities interpreted component-wise is in general not true.
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Answers or Hints

16.1. (i) (sinx, cosx)T . (ii) (ex + 2e−x − x− 1, ex − 2e−x − x− 1)T .

16.2. Use Taylor’s formula.

16.3. Write (1.6), (1.8) in system form and then apply Theorem 15.2.

16.4. Use the inequality 2|a||b| ≤ a2 + b2 to get −2Ku(x) ≤ u′(x) ≤
2Ku(x).

16.6. Let J = [0, π), u(x) = (sinx, cosx)T and v(x) = (−ε, 1 − ε)T , 0 <
ε < 1.


