
Lecture 15
Existence and Uniqueness
of Solutions of Systems

So far we have concentrated on the existence and uniqueness of solutions
of scalar initial value problems. It is natural to extend these results to a
system of first-order DEs and higher-order DEs. We consider a system of
first-order DEs of the form

u′
1 = g1(x, u1, . . . , un)
u′

2 = g2(x, u1, . . . , un)

· · ·
u′

n = gn(x, u1, . . . , un).

(15.1)

Such systems arise frequently in many branches of applied sciences, espe-
cially in the analysis of vibrating mechanical systems with several degrees
of freedom. Furthermore, these systems have mathematical importance in
themselves, e.g., each nth-order DE (1.6) is equivalent to a system of n
first-order equations. Indeed, if we take y(i) = ui+1, 0 ≤ i ≤ n − 1, then
the equation (1.6) can be written as

u′
i = ui+1, 1 ≤ i ≤ n− 1
u′

n = f(x, u1, . . . , un), (15.2)

which is of the type (15.1).

Throughout, we shall assume that the functions g1, . . . , gn are continu-
ous in some domain E of (n+ 1)-dimensional space IRn+1. By a solution of
(15.1) in an interval J we mean a set of n functions u1(x), . . . , un(x) such
that (i) u′

1(x), . . . , u
′
n(x) exist for all x ∈ J, (ii) for all x ∈ J the points

(x, u1(x), . . . , un(x)) ∈ E, and (iii) u′
i(x) = gi(x, u1(x), . . . , un(x)) for all

x ∈ J. In addition to the differential system (15.1) there may also be given
initial conditions of the form

u1(x0) = u0
1, u2(x0) = u0

2, . . . , un(x0) = u0
n, (15.3)

where x0 is a specified value of x in J and u0
1, . . . , u

0
n are prescribed numbers

such that (x0, u
0
1, . . . , u

0
n) ∈ E. The differential system (15.1) together with

the initial conditions (15.3) forms an initial value problem.

To study the existence and uniqueness of the solutions of (15.1), (15.3),
there are two possible approaches, either directly imposing sufficient con-
ditions on the functions g1, . . . , gn and proving the results, or alternatively
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using vector notations to write (15.1), (15.3) in a compact form and then
proving the results. We shall prefer to use the second approach since then
the proofs are very similar to the scalar case.

By setting

u(x) = (u1(x), . . . , un(x)) and g(x, u) = (g1(x, u), . . . , gn(x, u))

and agreeing that differentiation and integration are to be performed com-
ponent-wise, i.e., u′(x) = (u′

1(x), . . . , u
′
n(x)) and

∫ β

α

u(x)dx =

(∫ β

α

u1(x)dx, . . . ,
∫ β

α

un(x)dx

)
,

the problem (15.1), (15.3) can be written as

u′ = g(x, u), u(x0) = u0, (15.4)

which is exactly the same as (7.1) except now u and u′ are the functions
defined in J ; and taking the values in IRn, g(x, u) is a function from E ⊆
IRn+1 to IRn and u0 = (u0

1, . . . , u
0
n).

The function g(x, u) is said to be continuous in E if each of its compo-
nents is continuous in E. The function g(x, u) is defined to be uniformly
Lipschitz continuous in E if there exists a nonnegative constant L (Lipschitz
constant) such that

‖g(x, u) − g(x, v)‖ ≤ L‖u− v‖ (15.5)

for all (x, u), (x, v) in the domain E. For example, let g(x, u) = (a11u1 +
a12u2, a21u1 + a22u2) and E = IR3, then

‖g(x, u) − g(x, v)‖
= ‖(a11(u1 − v1) + a12(u2 − v2), a21(u1 − v1) + a22(u2 − v2))‖
= |a11(u1 − v1) + a12(u2 − v2)| + |a21(u1 − v1) + a22(u2 − v2)|
≤ |a11||u1 − v1| + |a12||u2 − v2| + |a21|u1 − v1| + |a22||u2 − v2|
= [|a11| + |a21|]|u1 − v1| + [|a12| + |a22|]|u2 − v2|
≤ max{|a11| + |a21|, |a12| + |a22|}[|u1 − v1| + |u2 − v2|]
= max{|a11| + |a21|, |a12| + |a22|}‖u− v‖.

Hence, the Lipschitz constant is

L = max{|a11| + |a21|, |a12| + |a22|}.

The following result provides sufficient conditions for the function g(x,
u) to satisfy the Lipschitz condition (15.5).
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Theorem 15.1. Let the domain E be convex and for all (x, u) in E the
partial derivatives ∂g/∂uk, k = 1, . . . , n exist and ‖∂g/∂u‖ ≤ L. Then the
function g(x, u) satisfies the Lipschitz condition (15.5) in E with Lipschitz
constant L.

Proof. Let (x, u) and (x, v) be fixed points in E. Then since E is convex,
for all 0 ≤ t ≤ 1 the points (x, v+t(u−v)) are in E. Thus, the vector-valued
function G(t) = g(x, v + t(u− v)), 0 ≤ t ≤ 1 is well defined, also

G′(t) = (u1 − v1)
∂g

∂u1
(x, v + t(u− v)) + · · ·

+(un − vn)
∂g

∂un
(x, v + t(u− v))

and hence

‖G′(t)‖ ≤
n∑

i=1

∣∣∣∣ ∂gi

∂u1
(x, v + t(u− v))

∣∣∣∣ |u1 − v1| + · · ·

+
n∑

i=1

∣∣∣∣ ∂gi

∂un
(x, v + t(u− v))

∣∣∣∣ |un − vn|

≤ L[|u1 − v1| + · · · + |un − vn|] = L‖u− v‖.
Now from the relation

g(x, u) − g(x, v) = G(1) −G(0) =
∫ 1

0
G′(t)dt

we find that

‖g(x, u) − g(x, v)‖ ≤
∫ 1

0
‖G′(t)‖dt ≤ L‖u− v‖.

As an example once again we consider

g(x, u) = (a11u1 + a12u2, a21u1 + a22u2).

Since
∂g

∂u1
= (a11, a21),

∂g

∂u2
= (a12, a22),∥∥∥∥∂g∂u

∥∥∥∥ = max{|a11| + |a21|, |a12| + |a22|} = L,

as it should be.

Next arguing as in Theorem 7.1, we see that if g(x, u) is continuous in
the domain E, then any solution of (15.4) is also a solution of the integral
equation

u(x) = u0 +
∫ x

x0

g(t, u(t))dt (15.6)
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and conversely.

To find a solution of the integral equation (15.6) the Picard method of
successive approximations is equally useful. Let u0(x) be any continuous
function which we assume to be an initial approximation of the solution,
then we define approximations successively by

um+1(x) = u0 +
∫ x

x0

g(t, um(t))dt, m = 0, 1, . . . (15.7)

and, as before, if the sequence of functions {um(x)} converges uniformly
to a continuous function u(x) in some interval J containing x0 and for all
x ∈ J, the points (x, u(x)) ∈ E, then this function u(x) will be a solution
of the integral equation (15.6).

Example 15.1. For the initial value problem

u′
1 = x+ u2
u′

2 = x+ u1
u1(0) = 1, u2(0) = − 1

(15.8)

we take u0(x) = (1,−1), to obtain

u1(x) = (1,−1) +
∫ x

0
(t− 1, t+ 1)dt =

(
1 − x+

x2

2
,−1 + x+

x2

2

)

u2(x) = (1,−1) +
∫ x

0

(
t− 1 + t+

t2

2
, t+ 1 − t+

t2

2

)
dt

=
(

1 − x+
2x2

2
+
x3

3!
, − 1 + x+

x3

3!

)

u3(x) =
(

1 − x+
2x2

2
+
x4

4!
, − 1 + x+

2x3

3!
+
x4

4!

)

u4(x) =
(

1 − x+
2x2

2
+

2x4

4!
+
x5

5!
, − 1 + x+

2x3

3!
+
x5

5!

)

=
(

−(1 + x) +
(

2 +
2x2

2!
+

2x4

4!
+
x5

5!

)
,

−(1 + x) +
(

2x+
2x3

3!
+
x5

5!

))
· · · .

Hence, the sequence {um(x)} exists for all real x and converges to u(x) =
(−(1 + x) + ex + e−x, − (1 + x) + ex − e−x), which is the solution of the
initial value problem (15.8).

Now we shall state several results for the initial value problem (15.4)
which are analogous to those proved in earlier lectures for the problem (7.1).
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Theorem 15.2 (Local Existence Theorem). Let the following
conditions hold:

(i) g(x, u) is continuous in Ω : |x−x0| ≤ a, ‖u−u0‖ ≤ b and hence there
exists a M > 0 such that ‖g(x, u)‖ ≤ M for all (x, u) ∈ Ω.
(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in Ω.
(iii) u0(x) is continuous in |x− x0| ≤ a and ‖u0(x) − u0‖ ≤ b.

Then the sequence {um(x)} generated by the Picard iterative scheme (15.7)
converges to the unique solution u(x) of the problem (15.4). This solution
is valid in the interval Jh : |x − x0| ≤ h = min{a, b/M}. Further, for all
x ∈ Jh, the following error estimate holds

‖u(x) − um(x)‖ ≤ NeLh min
{

1,
(Lh)m

m!

}
, m = 0, 1, . . .

where ‖u1(x) − u0(x)‖ ≤ N.

Theorem 15.3 (Global Existence Theorem). Let the follow-
ing conditions hold:

(i) g(x, u) is continuous in ∆ : |x− x0| ≤ a, ‖u‖ < ∞.
(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in ∆.
(iii) u0(x) is continuous in |x− x0| ≤ a.

Then the sequence {um(x)} generated by the Picard iterative scheme (15.7)
exists in the entire interval |x−x0| ≤ a, and converges to the unique solution
u(x) of the problem (15.4).

Corollary 15.4. Let g(x, u) be continuous in IRn+1 and satisfy a
uniform Lipschitz condition (15.5) in each ∆a : |x| ≤ a, ‖u‖ < ∞ with
the Lipschitz constant La. Then the problem (15.4) has a unique solution
which exists for all x.

Theorem 15.5 (Peano’s Existence Theorem). Let g(x, u)
be continuous and bounded in ∆. Then the problem (15.4) has at least one
solution in |x− x0| ≤ a.

Definition 15.1. Let g(x, u) be continuous in a domain E. A function
u(x) defined in J is said to be an ε-approximate solution of the differential
system u′ = g(x, u) if (i) u(x) is continuous for all x in J, (ii) for all x ∈ J
the points (x, u(x)) ∈ E, (iii) u(x) has a piecewise continuous derivative
in J which may fail to be defined only for a finite number of points, say,
x1, x2, . . . , xk, and (iv) ‖u′(x) − g(x, u(x))‖ ≤ ε for all x ∈ J, x �= xi, i =
1, 2, . . . , k.

Theorem 15.6. Let g(x, u) be continuous in Ω, and hence there exists a
M > 0 such that ‖g(x, u)‖ ≤ M for all (x, u) ∈ Ω. Then for any ε > 0, there



108 Lecture 15

exists an ε-approximate solution u(x) of the differential system u′ = g(x, u)
in the interval Jh such that u(x0) = u0.

Theorem 15.7 (Cauchy–Peano’s Existence Theorem).
Let the conditions of Theorem 15.7 be satisfied. Then the problem (15.4)
has at least one solution in Jh.


