
Lecture 10
Uniqueness Theorems

In our previous lectures we have proved that the continuity of the func-
tion f(x, y) in the closed rectangle S is sufficient for the existence of at
least one solution of the initial value problem (7.1) in the interval Jh, and
to achieve the uniqueness (i.e., existence of at most one solution) some
additional condition on f(x, y) is required. In fact, continuous functions
f(x, y) have been constructed (see Lavrentev [30], Hartman [20]) so that
from any given point (x0, y0) the equation y′ = f(x, y) has at least two
solutions in every neighborhood of (x0, y0). In Theorem 8.1 this additional
condition was assumed to be the Lipschitz continuity. In the following, we
shall provide several such conditions which are sufficient for the uniqueness
of the solutions of (7.1).

Theorem 10.1 (Lipschitz Uniqueness Theorem). Let
f(x, y) be continuous and satisfy a uniform Lipschitz condition (7.3) in S.
Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. In Theorem 8.1 the uniqueness of the solutions of (7.1) is proved
in the interval Jh; however, it is clear that Jh can be replaced by the interval
|x− x0| ≤ a.

Theorem 10.2 (Peano’s Uniqueness Theorem). Let f(x, y)
be continuous in S+ : x0 ≤ x ≤ x0 + a, |y − y0| ≤ b and nonincreasing in
y for each fixed x in x0 ≤ x ≤ x0 + a. Then (7.1) has at most one solution
in x0 ≤ x ≤ x0 + a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in x0 ≤
x ≤ x0 + a which differ somewhere in x0 ≤ x ≤ x0 + a. We assume that
y2(x) > y1(x) in x1 < x < x1 + ε ≤ x0 + a, while y1(x) = y2(x) in
x0 ≤ x ≤ x1, i.e., x1 is the greatest lower bound of the set A consisting of
those x for which y2(x) > y1(x). This greatest lower bound exists because
the set A is bounded below by x0 at least. Thus, for all x ∈ (x1, x1 + ε)
we have f(x, y1(x)) ≥ f(x, y2(x)); i.e., y′

1(x) ≥ y′
2(x). Hence, the function

z(x) = y2(x) − y1(x) is nonincreasing, since if z(x1) = 0 we should have
z(x) ≤ 0 in (x1, x1 + ε). This contradiction proves that y1(x) = y2(x) in
x0 ≤ x ≤ x0 + a.

Example 10.1. The function |y|1/2sgn y, where sgn y = 1 if y ≥ 0,
and −1 if y < 0 is continuous, nondecreasing, and the initial value problem
y′ = |y|1/2sgn y, y(0) = 0 has two solutions y(x) ≡ 0, y(x) = x2/4 in the
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interval [0,∞). Thus, in Theorem 10.2 “nonincreasing” cannot be replaced
by “nondecreasing.”

For our next result, we need the following lemma.

Lemma 10.3. Let w(z) be continuous and increasing function in the
interval [0,∞), and w(0) = 0, w(z) > 0 for z > 0, with also

lim
ε→0+

∫
ε

dz

w(z)
= ∞. (10.1)

Let u(x) be a nonnegative continuous function in [0, a]. Then the inequality

u(x) ≤
∫ x

0
w(u(t))dt, 0 < x ≤ a (10.2)

implies that u(x) ≡ 0 in [0, a].

Proof. Define v(x) = max0≤t≤x u(t) and assume that v(x) > 0 for
0 < x ≤ a. Then u(x) ≤ v(x) and for each x there is an x1 ≤ x such that
u(x1) = v(x). From this, we have

v(x) = u(x1) ≤
∫ x1

0
w(u(t))dt ≤

∫ x

0
w(v(t))dt;

i.e., the nondecreasing function v(x) satisfies the same inequality as u(x)
does. Let us set

v(x) =
∫ x

0
w(v(t))dt,

then v(0) = 0, v(x) ≤ v(x), v′(x) = w(v(x)) ≤ w(v(x)). Hence, for 0 <
δ < a, we have ∫ a

δ

v′(x)
w(v(x))

dx ≤ a− δ < a.

However, from (10.1) it follows that∫ a

δ

v′(x)
w(v(x))

dx =
∫ α

ε

dz

w(z)
, v(δ) = ε, v(a) = α

becomes infinite when ε → 0 (δ → 0). This contradiction shows that v(x)
cannot be positive, so v(x) ≡ 0, and hence u(x) = 0 in [0, a].

Theorem 10.4 (Osgood’s Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ w(|y1 − y2|), (10.3)

where w(z) is the same as in Lemma 10.3. Then (7.1) has at most one
solution in |x− x0| ≤ a.
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Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
Then from (10.3) it follows that

|y1(x) − y2(x)| ≤
∣∣∣∣
∫ x

x0

w(|y1(t) − y2(t)|)dt
∣∣∣∣ .

For any x in [x0, x0 + a], we set u(x) = |y1(x0 + x) − y2(x0 + x)|. Then the
nonnegative continuous function u(x) satisfies the inequality (10.2), and
therefore, Lemma 10.3 implies that u(x) = 0 in [0, a], i.e., y1(x) = y2(x) in
[x0, x0+a]. If x is in [x0−a, x0], then the proof remains the same except that
we need to define the function u(x) = |y1(x0−x)−y2(x0−x)| in [0, a].

For our next result, we shall prove the following lemma.

Lemma 10.5. Let u(x) be nonnegative continuous function in |x−x0| ≤
a, and u(x0) = 0, and let u(x) be differentiable at x = x0 with u′(x0) = 0.
Then the inequality

u(x) ≤
∣∣∣∣
∫ x

x0

u(t)
t− x0

dt

∣∣∣∣ (10.4)

implies that u(x) = 0 in |x− x0| ≤ a.

Proof. It suffices to prove the lemma only for x0 ≤ x ≤ x0 + a. We
define

v(x) =
∫ x

x0

u(t)
t− x0

dt.

This integral exists since

lim
x→x0

u(x)
x− x0

= u′(x0) = 0.

Further, we have

v′(x) =
u(x)
x− x0

≤ v(x)
x− x0

and hence d/dx[v(x)/(x − x0)] ≤ 0, which implies that v(x)/(x − x0) is
nonincreasing. Since v(x0) = 0, this gives v(x) ≤ 0, which is a contradiction
to v(x) ≥ 0. So, v(x) ≡ 0, and hence u(x) = 0 in [x0, x0 + a].

Theorem 10.6 (Nagumo’s Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ k|x− x0|−1|y1 − y2|, x �= x0, k ≤ 1. (10.5)

Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
Then from (10.5) it follows that

|y1(x) − y2(x)| ≤
∣∣∣∣
∫ x

x0

|t− x0|−1|y1(t) − y2(t)|dt
∣∣∣∣ .
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We set u(x) = |y1(x) − y2(x)|; then the nonnegative function u(x) satisfies
the inequality (10.4). Further, since u(x) is continuous in |x−x0| ≤ a, and
u(x0) = 0, from the mean value theorem we have

u′(x0) = lim
h→0

u(x0 + h) − u(x0)
h

= lim
h→0

|y1(x0) + hy′
1(x0 + θ1h) − y2(x0) − hy′

2(x0 + θ2h)|
h

,

0 < θ1, θ2 < 1

= (sgn h) lim
h→0

|y′
1(x0 + θ1h) − y′

2(x0 + θ2h)| = 0.

Thus, the conditions of Lemma 10.5 are satisfied and u(x) ≡ 0, i.e., y1(x) =
y2(x) in |x− x0| ≤ a.

Example 10.2. It is easy to verify that the function

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ x ≤ 1, y ≤ 0
(1 + ε)y

x
0 ≤ x ≤ 1, 0 < y < x1+ε, ε > 0

(1 + ε)xε 0 ≤ x ≤ 1, x1+ε ≤ y

is continuous and satisfies the condition (10.5) (except k = 1 + ε > 1)
in S : [0, 1] × IR. For this function the initial value problem (7.1) with
(x0, y0) = (0, 0) has an infinite number of solutions y(x) = cx1+ε, where c
is an arbitrary constant such that 0 < c < 1. Thus, in condition (10.5) the
constant k ≤ 1 is the best possible, i.e., it cannot be replaced by k > 1.

Theorem 10.7 (Krasnoselski–Krein Uniqueness Theo-
rem). Let f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it
satisfies

|f(x, y1) − f(x, y2)| ≤ k|x− x0|−1|y1 − y2|, x �= x0, k > 0 (10.6)

|f(x, y1) − f(x, y2)| ≤ C|y1 − y2|α, C > 0, 0 < α < 1, k(1 − α) < 1.
(10.7)

Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
We shall show that y1(x) = y2(x) only in the interval [x0, x0 + a]. For this,
from (10.7) we have

u(x) = |y1(x) − y2(x)| ≤
∫ x

x0

Cuα(t)dt

and hence Problem 7.5 gives that

u(x) ≤ [C(1 − α)(x− x0)](1−α)−1 ≤ [C(x− x0)](1−α)−1
.
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Thus, the function v(x) = u(x)/(x− x0)k satisfies the inequality

0 ≤ v(x) ≤ C(1−α)−1
(x− x0)(1−α)−1−k. (10.8)

Since k(1−α) < 1, it is immediate that limx→x0 v(x) = 0.Hence, if we define
v(x0) = 0, then the function v(x) is continuous in [x0, x0 + a]. We wish to
show that v(x) = 0 in [x0, x0+a]. If v(x) > 0 at any point in [x0, x0+a], then
there exists a point x1 > x0 such that 0 < m = v(x1) = maxx0≤x≤x0+a v(x).
However, from (10.6) we obtain

m = v(x1) ≤ (x1 − x0)−k

∫ x1

x0

k(t− x0)−1u(t)dt

≤ (x1 − x0)−k

∫ x1

x0

k(t− x0)k−1v(t)dt

< m(x1 − x0)−k

∫ x1

x0

k(t− x0)k−1dt

= m(x1 − x0)−k(x1 − x0)k = m,

which is the desired contradiction. So, v(x) ≡ 0, and hence u(x) = 0 in
[x0, x0 + a].

Theorem 10.8 (Van Kampen Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y) ∈ S it satisfies

|f(x, y)| ≤ A|x− x0|p, p > −1, A > 0. (10.9)

Further, let for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ C

|x− x0|r |y1 − y2|q, q ≥ 1, C > 0 (10.10)

with q(1 + p) − r = p, ρ = C(2A)q−1/(p+ 1)q < 1. Then (7.1) has at most
one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
We shall show that y1(x) = y2(x) only in the interval [x0 − a, x0]. For this,
from (10.9) we have

u(x) = |y1(x) − y2(x)| ≤
∫ x0

x

|f(t, y1(t)) − f(t, y2(t))|dt

≤ 2A
∫ x0

x

(x0 − t)pdt =
2A
p+ 1

(x0 − x)p+1.

Using this estimate and (10.10), we obtain

u(x) ≤ C

∫ x0

x

1
(x0 − t)r

uq(t)dt

≤ C

(
2A
p+ 1

)q ∫ x0

x

(x0 − t)q(p+1)−rdt = ρ

(
2A
p+ 1

)
(x0 − x)p+1.
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Now using this new estimate and (10.10), we get

u(x) ≤ ρ1+q

(
2A
p+ 1

)
(x0 − x)p+1.

Continuing in this way, we find

u(x) ≤ ρ1+q+q2+···+qm

(
2A
p+ 1

)
(x0 − x)p+1, m = 1, 2, . . . .

Since q ≥ 1 and ρ < 1, it follows that u(x) = 0 in |x0 − a, x0].

Problems

10.1. Consider the initial value problem

y′ = f(x, y) =

⎧⎨
⎩

4x3y

x4 + y2 , (x, y) �= (0, 0)

0, (x, y) = (0, 0)

y(0) = 0.

(10.11)

Show that the function f(x, y) is continuous but does not satisfy the Lips-
chitz condition in any region containing the origin (see Problem 7.4). Fur-
ther, show that (10.11) has an infinite number of solutions.

10.2. Given the equation y′ = xg(x, y), suppose that g and ∂g/∂y are
defined and continuous for all (x, y). Show the following:

(i) y(x) ≡ 0 is a solution.
(ii) If y = y(x), x ∈ (α, β) is a solution and if y(x0) > 0, x0 ∈ (α, β),
then y(x) > 0 for all x ∈ (α, β).
(iii) If y = y(x), x ∈ (α, β) is a solution and if y(x0) < 0, x0 ∈ (α, β),
then y(x) < 0 for all x ∈ (α, β).

10.3. Let f(x, y) be continuous and satisfy the generalized Lipschitz
condition

|f(x, y1) − f(x, y2)| ≤ L(x)|y1 − y2|
for all (x, y1), (x, y2) in S, where the function L(x) is such that the integral∫ x0+a

x0−a
L(t)dt exists. Show that (7.1) has at most one solution in |x−x0| ≤ a.

10.4. Give some examples to show that the Lipschitz condition in
Theorem 10.1 is just a sufficient condition for proving the uniqueness of the
solutions of (7.1) but not the necessary condition.
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10.5. Let f(x, y) be continuous in S+ and for all (x, y1), (x, y2) in S+
with y2 ≥ y1 satisfy one sided Lipschitz condition

f(x, y2) − f(x, y1) ≤ L(y2 − y1).

Show that (7.1) has at most one solution in x0 ≤ x ≤ x0 + a.

10.6. Let f(x, y) be continuous in S− : x0 − a ≤ x ≤ x0, |y − y0| ≤ b
and nondecreasing in y for each fixed x in x0 −a ≤ x ≤ x0. Show that (7.1)
has at most one solution in x0 − a ≤ x ≤ x0.

10.7. Show that the functions w(z) = Lzα (α ≥ 1), and

w(z) =

{
−z ln z, 0 ≤ z ≤ e−1

e−1, z > e−1

satisfy the conditions of Lemma 10.3.

10.8. Consider the function f(x, y) in the strip T : − ∞ < x ≤ 1,
−∞ < y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −∞ < x ≤ 0, − ∞ < y < ∞
2x 0 < x ≤ 1, − ∞ < y < 0

2x− 4y
x

0 < x ≤ 1, 0 ≤ y ≤ x2

−2x 0 < x ≤ 1, x2 < y < ∞.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in the
interval −∞ < x ≤ 1. Further, show that the Picard iterates with y0(x) ≡ 0
for this problem do not converge.

10.9. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ x ≤ 1, x1/(1−α) < y < ∞, 0 < α < 1

kxα/(1−α) − k
y

x
0 ≤ x ≤ 1, 0 ≤ y ≤ x1/(1−α), k > 0

kxα/(1−α) 0 ≤ x ≤ 1, − ∞ < y < 0, k(1 − α) < 1.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in [0, 1].

∗10.10 (Rogers’ Uniqueness Theorem). Let f(x, y) be continuous
in the strip T : 0 ≤ x ≤ 1, − ∞ < y < ∞ and satisfy the condition

f(x, y) = o
(
e−1/xx−2

)
uniformly for 0 ≤ y ≤ δ, δ > 0 arbitrary. Further, let for all (x, y1), (x, y2)
∈ T it satisfy

|f(x, y1) − f(x, y2)| ≤ 1
x2 |y1 − y2|.
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Show that the problem y′ = f(x, y), y(0) = 0 has at most one solution in
[0, 1].

10.11. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 +

1
x

)
e−1/x 0 ≤ x ≤ 1, xe−1/x ≤ y < ∞

y

x2 + e−1/x 0 ≤ x ≤ 1, 0 ≤ y ≤ xe−1/x

e−1/x 0 ≤ x ≤ 1, − ∞ < y ≤ 0.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in [0, 1].

10.12. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 ≤ x ≤ 1, − ∞ < y ≤ 0
y

x2 0 ≤ x ≤ 1, 0 ≤ y ≤ e−1/x

e−1/x

x2 0 ≤ x ≤ 1, e−1/x ≤ y < ∞.

Show that the problem y′ = f(x, y), y(0) = 0 has an infinite number of
solutions in [0, 1].

Answers or Hints

10.1. y = c2 − √
x4 + c4, where c is arbitrary.

10.2. (i) Verify directly. (ii) Use Theorem 10.1. (iii) Use Theorem 10.1.

10.3. Since
∫ x0+a

x0−a
L(t)dt exists, Corollary 7.4 is applicable.

10.4. Consider the Problem 8.3(i), or y′ = y ln(1/y), y(0) = α ≥ 0.

10.5. Suppose two solutions y1(x) and y2(x) are such that y2(x) > y1(x),
x1 < x < x1 + ε ≤ x0 + a and y1(x) = y2(x), x0 ≤ x ≤ x1. Now apply
Corollary 7.4.

10.6. The proof is similar to that of Theorem 10.2.

10.7. Verify directly.

10.8. The given function is continuous and bounded by 2 in T. Also it
satisfies the conditions of Theorem 10.2 (also, see Problem 10.6). The only

solution is y(x) =
{

0, − ∞ < x ≤ 0
x2/3, 0 < x ≤ 1. The successive approximations are

y2m−1(x) = x2, y2m(x) = −x2, m = 1, 2, . . . .
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10.9. Show that conditions of Theorem 10.7 are satisfied. The only solution
is y(x) = k(1 − α)x1/(1−α)/[k(1 − α) + 1].

10.11. Show that conditions of Problem 10.10 are satisfied. The only so-
lution is y(x) = xe−1/x.

10.12. Show that the condition f(x, y) = o
(
e−1/xx−2

)
of Problem 10.10 is

not satisfied. For each 0 ≤ c ≤ 1, y(x) = ce−1/x is a solution.


