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Preface

Ordinary differential equations serve as mathematical models for many
exciting “real-world” problems, not only in science and technology, but also
in such diverse fields as economics, psychology, defense, and demography.
Rapid growth in the theory of differential equations and in its applications
to almost every branch of knowledge has resulted in a continued interest in
its study by students in many disciplines. This has given ordinary differen-
tial equations a distinct place in mathematics curricula all over the world
and it is now being taught at various levels in almost every institution of
higher learning.

Hundreds of books on ordinary differential equations are available. How-
ever, the majority of these are elementary texts which provide a battery of
techniques for finding explicit solutions. The size of some of these books has
grown dramatically—to the extent that students are often lost in deciding
where to start. This is all due to the addition of repetitive examples and ex-
ercises, and colorful pictures. The advanced books are either on specialized
topics or are encyclopedic in character. In fact, there are hardly any rigor-
ous and perspicuous introductory texts available which can be used directly
in class for students of applied sciences. Thus, in an effort to bring the sub-
ject to a wide audience we provide a compact, but thorough, introduction
to the subject in An Introduction to Ordinary Differential Equations. This
book is intended for readers who have had a course in calculus, and hence it
can be used for a senior undergraduate course. It should also be suitable for
a beginning graduate course, because in undergraduate courses, students
do not have any exposure to various intricate concepts, perhaps due to an
inadequate level of mathematical sophistication.

The subject matter has been organized in the form of theorems and
their proofs, and the presentation is rather unconventional. It comprises 42
class-tested lectures which the first author has given to mostly math-major
students at various institutions all over the globe over a period of almost 35
years. These lectures provide flexibility in the choice of material for a one-
semester course. It is our belief that the content in each lecture, together
with the problems therein, provides fairly adequate coverage of the topic
under study.

A brief description of the topics covered in this book is as follows:
Introductory Lecture 1 explains basic terms and notations that are used
throughout the book. Lecture 2 contains a concise account of the historical
development of the subject. Lecture 3 deals with exact differential equa-
tions, while first-order equations are studied in Lectures 4 and 5. Lecture 6
discusses second-order linear differential equations; variation of parameters
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is used here to find solutions to nonhomogeneous equations. Lectures 3–6
form the core of any course on differential equations.

Many very simple differential equations cannot be solved as finite com-
binations of elementary functions. It is, therefore, of prime importance to
know whether a given differential equation has a solution. This aspect of
the existence of solutions for first-order initial value problems is dealt with
in Lectures 8 and 9. Once the existence of solutions has been established, it
is natural to provide conditions under which a given problem has precisely
one solution; this is the content of Lecture 10. In an attempt to make the
presentation self-contained, the required mathematical preliminaries have
been included in Lecture 7. Differential inequalities, which are important
in the study of qualitative as well as quantitative properties of solutions,
are discussed in Lecture 11. Continuity and differentiability of solutions
with respect to initial conditions are examined in Lecture 12.

Preliminary results from algebra and analysis required for the study of
differential systems are contained in Lectures 13 and 14. Lectures 15 and
16 extend existence–uniqueness results and examine continuous dependence
on initial data for the systems of first-order initial value problems. Basic
properties of solutions of linear differential systems are given in Lecture 17.
Lecture 18 deals with the fundamental matrix solution, and some methods
for its computation in the constant-coefficient case are discussed in Lecture
19. These computational algorithms do not use the Jordan form and can
easily be mastered by students. In Lecture 20 necessary and sufficient
conditions are provided so that a linear system has only periodic solutions.
Lectures 21 and 22 contain restrictions on the known quantities so that
solutions of a linear system remain bounded or ultimately approach zero.
Lectures 23–29 are devoted to a self-contained introductory stability theory
for autonomous and nonautonomous systems. Here two-dimensional linear
systems form the basis for the phase plane analysis. In addition to the
study of periodic solutions and limit cycles, the direct method of Lyapunov
is developed and illustrated.

Higher-order exact and adjoint equations are introduced in Lecture 30,
and the oscillatory behavior of solutions of second-order equations is fea-
tured in Lecture 31.

The last major topic covered in this book is that of boundary value prob-
lems involving second-order differential equations. After linear boundary
value problems are introduced in Lecture 32, Green’s function and its con-
struction is discussed in Lecture 33. Lecture 34 describes conditions that
guarantee the existence of solutions of degenerate boundary value prob-
lems. The concept of the generalized Green’s function is also featured
here. Lecture 35 presents some maximum principles for second-order lin-
ear differential inequalities and illustrates their importance in initial and
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boundary value problems. Lectures 36 and 37 are devoted to the study
of Sturm–Liouville problems, while eigenfunction expansion is the subject
of Lectures 38 and 39. A detailed discussion of nonlinear boundary value
problems is contained in Lectures 40 and 41.

Finally, Lecture 42 addresses some topics for further study which extend
the material of this text and are of current research interest.

Two types of problems are included in the book—those which illustrate
the general theory, and others designed to fill out text material. The prob-
lems form an integral part of the book, and every reader is urged to attempt
most, if not all of them. For the convenience of the reader we have pro-
vided answers or hints for all the problems, except those few marked with
an asterisk.

In writing a book of this nature no originality can be claimed. Our goal
has been made to present the subject as simply, clearly, and accurately as
possible. Illustrative examples are usually very simple and are aimed at the
average student.

It is earnestly hoped that An Introduction to Ordinary Differential
Equations will provide an inquisitive reader with a starting point in this
rich, vast, and ever-expanding field of knowledge.

We would like to express our appreciation to Professors M. Bohner,
A. Cabada, M. Cecchi, J. Diblik, L. Erbe, J. Henderson, Wan-Tong Li,
Xianyi Li, M. Migda, Ch. G. Philos, S. Stanek, C. C. Tisdell, and P. J. Y.
Wong for their suggestions and criticisms. We also want to thank Ms.
Vaishali Damle at Springer New York for her support and cooperation.

Ravi P. Agarwal
Donal O’Regan
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Lecture 1
Introduction

An ordinary differential equation (ordinary DE hereafter) is a relation
containing one real independent variable x ∈ IR = (−∞,∞), the real de-
pendent variable y, and some of its derivatives y′, y′′, . . . , y(n) (′= d/dx).
For example,

xy′ + 3y = 6x3 (1.1)

y′2 − 4y = 0 (1.2)

x2y′′ − 3xy′ + 3y = 0 (1.3)

2x2y′′ − y′2 = 0. (1.4)

The order of an ordinary DE is defined to be the order of the highest
derivative in the equation. Thus, equations (1.1) and (1.2) are first order,
whereas (1.3) and (1.4) are second order.

Besides ordinary DEs, if the relation has more than one independent
variable, then it is called a partial DE. In these lectures we shall discuss
only ordinary DEs, and so the word ordinary will be dropped.

In general, an nth-order DE can be written as

F (x, y, y′, y′′, . . . , y(n)) = 0, (1.5)

where F is a known function.

A functional relation between the dependent variable y and the inde-
pendent variable x, that, in some interval J, satisfies the given DE is said
to be a solution of the equation. A solution may be defined in either of
the following intervals: (α, β), [α, β), (α, β], [α, β], (α,∞), [α,∞), (−∞,
β), (−∞, β], (−∞,∞), where α, β ∈ IR and α < β. For example, the
function y(x) = 7ex + x2 + 2x + 2 is a solution of the DE y′ = y − x2

in J = IR. Similarly, the function y(x) = x tan(x + 3) is a solution of the
DE xy′ = x2 + y2 + y in J = (−π/2 − 3, π/2 − 3). The general solution of
an nth-order DE depends on n arbitrary constants; i.e., the solution y de-
pends on x and the real constants c1, c2, . . . , cn. For example, the function
y(x) = x2 +cex is the general solution of the DE y′ = y−x2 +2x in J = IR.
Similarly, y(x) = x3 + c/x3, y(x) = x2 + cx+ c2/4, y(x) = c1x+ c2x

3 and
y(x) = (2x/c1)− (2/c21) ln(1+c1x)+c2 are the general solutions of the DEs
(1.1)–(1.4), respectively. Obviously, the general solution of (1.1) is defined
in any interval which does not include the point 0, whereas the general
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2 Lecture 1

solutions of (1.2) and (1.3) are defined in J = IR. The general solution of
(1.4) imposes a restriction on the constant c1 as well as on the variable x.
In fact, it is defined if c1 �= 0 and 1 + c1x > 0.

The function y(x) = x3 is a particular solution of the equation (1.1),
and it can be obtained easily by taking the particular value of c as 0 in
the general solution. Similarly, if c = 0 and c1 = 0, c2 = 1 in the general
solutions of (1.2) and (1.3), then x2 and x3, respectively, are the particular
solutions of the equations (1.2) and (1.3). It is interesting to note that
y(x) = x2 is a solution of the DE (1.4); however, it is not included in the
general solution of (1.4). This “extra” solution, which cannot be obtained
by assigning particular values of the constants, is called a singular solution
of (1.4). As an another example, for the DE y′2 − xy′ + y = 0 the general
solution is y(x) = cx − c2, which represents a family of straight lines, and
y(x) = x2/4 is a singular solution which represents a parabola. Thus, in
the “general solution,” the word general must not be taken in the sense of
complete. A totality of all solutions of a DE is called a complete solution.

A DE of the first order may be written as F (x, y, y′) = 0. The function
y = φ(x) is called an explicit solution provided F (x, φ(x), φ′(x)) = 0 in J.

A relation of the form ψ(x, y) = 0 is said to be an implicit solution of
F (x, y, y′) = 0 provided it determines one or more functions y = φ(x) which
satisfy F (x, φ(x), φ′(x)) ≡ 0. It is frequently difficult, if not impossible, to
solve ψ(x, y) = 0 for y. Nevertheless, we can test the solution by obtaining
y′ by implicit differentiation: ψx + ψyy

′ = 0, or y′ = −ψx/ψy, and check if
F (x, y,−ψx/ψy) ≡ 0.

The pair of equations x = x(t), y = y(t) is said to be a parametric
solution of F (x, y, y′) = 0 when F (x(t), y(t), (dy/dt)/(dx/dt)) ≡ 0.

Consider the equation y′′′2 − 2y′y′′′ + 3y′′3 = 0. This is a third-order
DE and we say that this is of degree 2, whereas the second-order DE xy′′ +
2y′ + 3y − 6ex = 0 is of degree 1. In general, if a DE has the form of an
algebraic equation of degree k in the highest derivative, then we say that
the given DE is of degree k.

We shall always assume that the DE (1.5) can be solved explicitly for
y(n) in terms of the remaining (n+ 1) quantities as

y(n) = f(x, y, y′, . . . , y(n−1)), (1.6)

where f is a known function. This will at least avoid having equation (1.5)
represent more than one equation of the form (1.6); e.g., y′2 = 4y represents
two DEs, y′ = ±2

√
y.

Differential equations are classified into two groups: linear and nonlin-
ear. A DE is said to be linear if it is linear in y and all its derivatives.
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Thus, an nth-order linear DE has the form

Pn[y] = p0(x)y(n) + p1(x)y(n−1) + · · · + pn(x)y = r(x). (1.7)

Obviously, DEs (1.1) and (1.3) are linear, whereas (1.2) and (1.4) are non-
linear. It may be remarked that every linear equation is of degree 1, but
every equation of degree 1 is not necessarily linear. In (1.7) if the function
r(x) ≡ 0, then it is called a homogeneous DE, otherwise it is said to be a
nonhomogeneous DE.

In applications we are usually interested in a solution of the DE (1.6)
satisfying some additional requirements called initial or boundary condi-
tions. By initial conditions for (1.6) we mean n conditions of the form

y(x0) = y0, y′(x0) = y1, . . . , y
(n−1)(x0) = yn−1, (1.8)

where y0, . . . , yn−1 and x0 are given constants. A problem consisting of the
DE (1.6) together with the initial conditions (1.8) is called an initial value
problem. It is common to seek a solution y(x) of the initial value problem
(1.6), (1.8) in an interval J which contains the point x0.

Consider the first-order DE xy′ − 3y + 3 = 0: it is disconcerting to
notice that it has no solution satisfying the initial condition y(0) = 0;
just one solution y(x) ≡ 1 satisfying y(1) = 1; and an infinite number of
solutions y(x) = 1 + cx3 satisfying y(0) = 1. Such diverse behavior leads
to the essential question about the existence of solutions. If we deal with
a DE which can be solved in a closed form (in terms of permutation and
combination of known functions xn, ex, sinx), then the answer to the
question of existence of solutions is immediate. However, unfortunately
the class of solvable DEs is very small, and today we often come across
DEs so complicated that they can only be solved, if at all, with the aid
of a computer. Any attempt to solve a DE with no solution is surely a
futile exercise, and the data so produced will not only be meaningless, but
actually chaotic. Therefore, in the theory of DEs, the first basic problem
is to provide sufficient conditions so that a given initial value problem has
at least one solution. For this, we shall give several easily verifiable sets of
sufficient conditions so that the first-order DE

y′ = f(x, y) (1.9)

together with the initial condition

y(x0) = y0 (1.10)

has at least one solution. Fortunately, these results can be extended to
the systems of such initial value problems which in particular include the
problem (1.6), (1.8).
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Once the existence of a solution of the initial value problem (1.9), (1.10)
has been established it is natural to ask, “Does the problem have just one
solution?” From an applications point of view the uniqueness of a solution
is as important as the existence of the solution itself. Thus, we shall provide
several results which guarantee the uniqueness of solutions of the problem
(1.9), (1.10), and extend them to systems of such initial value problems.

Of course, the existence of a unique solution of (1.9), (1.10) is a quali-
tative property and does not suggest the procedure for the construction of
the solution. Unfortunately, we shall not be dealing with this aspect of DEs
in these lectures. However, we will discuss elementary theory of differen-
tial inequalities, which provides upper and lower bounds for the unknown
solutions and guarantees the existence of maximal and minimal solutions.

There is another important property that experience suggests as a re-
quirement for mathematical formulation of a physical situation to be met.
As a matter of fact, any experiment cannot be repeated exactly in the same
way. But if the initial conditions in an experiment are almost exactly the
same, the outcome is expected to be almost the same. It is, therefore, de-
sirable that the solution of a given mathematical model should have this
property. In technical terms it amounts to saying that the solution of a DE
ought to depend continuously on the initial data. We shall provide sufficient
conditions so that the solutions of (1.9) depend continuously on the initial
conditions. The generalization of these results to systems of DEs is also
straightforward.

For the linear first-order differential systems which include the DE (1.7)
as a special case, linear algebra allows one to describe the structure of
the family of all solutions. We shall devote several lectures to examining
this important qualitative aspect of solutions. Our discussion especially in-
cludes the periodicity of solutions, i.e., the graph of a solution repeats itself
in successive intervals of a fixed length. Various results in these lectures
provide a background for treating nonlinear first-order differential systems
in subsequent lectures.

In many problems and applications we are interested in the behavior
of the solutions of the differential systems as x approaches infinity. This
ultimate behavior is termed the asymptotic behavior of the solutions. Specif-
ically, we shall provide sufficient conditions for the known quantities in a
given differential system so that all its solutions remain bounded or tend
to zero as x → ∞. The asymptotic behavior of the solutions of perturbed
differential systems is also featured in detail.

The property of continuous dependence on the initial conditions of so-
lutions of differential systems implies that a small change in the initial
conditions brings only small changes in the solutions in a finite interval
[x0, x0 + α]. Satisfaction of such a property for all x ≥ x0 leads us to the
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notion of stability in the sense of Lyapunov. This aspect of the qualitative
theory of DEs is introduced and examined in several lectures. In partic-
ular, here we give an elementary treatment of two-dimensional differential
systems which includes the phase portrait analysis and discuss in detail Lya-
punov’s direct method for autonomous as well as nonautonomous systems.

A solution y(x) of a given DE is said to be oscillatory if it has no last
zero; i.e., if y(x1) = 0, then there exists an x2 > x1 such that y(x2) = 0, and
the equation itself is called oscillatory if every solution is oscillatory. The
oscillatory property of solutions of differential equations is an important
qualitative aspect which has wide applications. We shall provide sufficiency
criteria for oscillation of all solutions of second-order linear DEs and show
how easily these results can be applied in practice.

We observe that the initial conditions (1.8) are prescribed at the same
point x0, but in many problems of practical interest, these n conditions are
prescribed at two (or more) distinct points of the interval J. These condi-
tions are called boundary conditions, and a problem consisting of DE (1.6)
together with n boundary conditions is called a boundary value problem.
For example, the problem of determining a solution y(x) of the second-
order DE y′′ + π2y = 0 in the interval [0, 1/2] which has preassigned values
at 0 and 1/2 : y(0) = 0, y(1/2) = 1 constitutes a boundary value prob-
lem. The existence and uniqueness theory of solutions of boundary value
problems is more complex than that for the initial value problems; thus, we
shall restrict ourselves only to the second-order linear and nonlinear DEs.
In our treatment for nonhomogeneous, and specially for nonlinear bound-
ary value problems, we will need their integral representations, and for this
Green’s functions play a very important role. Therefore, we shall present
the construction of Green’s functions systematically. We shall also dis-
cuss degenerate linear boundary value problems, which appear frequently
in applications.

In calculus the following result is well known: If y ∈ C(2)[α, β], y′′(x) >
0 in (α, β), and y(x) attains its maximum at an interior point of [α, β], then
y(x) is identically constant in [α, β]. Extensions of this result to differential
equations and inequalities are known as maximum principles. We shall
prove some maximum principles for second-order differential inequalities
and show how these results can be applied to obtain lower and upper bounds
for the solutions of second-order initial and boundary value problems which
cannot be solved explicitly.

If the coefficients of the DE and/or of the boundary conditions depend
on a parameter, then one of the fundamental problems of mathematical
physics is to determine the value(s) of the parameter for which nontrivial
solutions exist. These special values of the parameter are called eigenval-
ues and the corresponding nontrivial solutions are said to be eigenfunctions.
One of the most studied problems of this type is the Sturm–Liouville prob-
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lem, specially because it has an infinite number of real eigenvalues which can
be arranged as a monotonically increasing sequence, and the corresponding
eigenfunctions generate a complete set of orthogonal functions. We shall
use this fundamental property of eigenfunctions to represent functions in
terms of Fourier series. We shall also find the solutions of nonhomogeneous
boundary value problems in terms of eigenfunctions of the corresponding
Sturm–Liouville problem. This leads to a very important result in the
literature known as Fredholm’s alternative.



Lecture 2
Historical Notes

One of the major problems in which scientists of antiquity were involved
was the study of planetary motions. In particular, predicting the precise
time at which a lunar eclipse occurs was a matter of considerable pres-
tige and a great opportunity for an astronomer to demonstrate his skills.
This event had great religious significance, and rites and sacrifices were
performed. To make an accurate prediction, it was necessary to find the
true instantaneous motion of the moon at a particular point of time. In
this connection we can trace back as far as, Bhaskara II (486ad), who
conceived the differentiation of the function sin t. He was also aware that
a variable attains its maximum value at the point where the differential
vanishes. The roots of the mean value theorem were also known to him.
The idea of using integral calculus to find the value of π and the areas
of curved surfaces and the volumes was also known to Bhaskara II. Later
Madhava (1340–1429AD) developed the limit passage to infinity, which is
the kernel of modern classical analysis. Thus, the beginning of calculus goes
back at least 12 centuries before the phenomenal development of modern
mathematics that occurred in Europe around the time of Newton and Leib-
niz. This raises doubts about prevailing theories that, in spite of so much
information being known hundreds of years before Newton and Leibniz,
scientists never came across differential equations. The information which
historians have recorded is as follows:

The founder of the differential calculus, Newton, also laid the foundation
stone of DEs, then known as fluxional equations. Some of the first-order
DEs treated by him in the year 1671 were

y′ = 1 − 3x+ y + x2 + xy (2.1)

3x2 − 2ax+ ay − 3y2y′ + axy′ = 0 (2.2)

y′ = 1 +
y

a
+
xy

a2 +
x2y

a3 +
x3y

a4 , etc. (2.3)

y′ = −3x+ 3xy + y2 − xy2 + y3 − xy3 + y4 − xy4

+6x2y − 6x2 + 8x3y − 8x3 + 10x4y − 10x4, etc.
(2.4)

He also classified first-order DEs into three classes: the first class was com-
posed of those equations in which y′ is a function of only one variable, x
alone or y alone, e.g.,

y′ = f(x), y′ = f(y); (2.5)

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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8 Lecture 2

the second class embraced those equations in which y′ is a function of both
x and y, i.e., (1.9); and the third is made up of partial DEs of the first
order.

About five years later, in 1676, another independent inventor of calcu-
lus, Leibniz, coined the term differential equation to denote a relationship
between the differentials dx and dy of two variables x and y. This was
in connection with the study of geometrical problems such as the inverse
tangent problem, i.e., finding a curve whose tangent satisfies certain condi-
tions. For instance, if the distance between any point P (x, y) on the curve
y(x) and the point where the tangent at P crosses the axis of x (length of
the tangent) is a constant a, then y should satisfy first-order nonlinear DE

y′ = − y√
a2 − y2

. (2.6)

In 1691, he implicitly used the method of separation of variables to show
that the DEs of the form

y
dx

dy
= X(x)Y (y) (2.7)

can be reduced to quadratures. One year later he integrated linear homo-
geneous first-order DEs, and soon afterward nonhomogeneous linear first-
order DEs.

Among the devoted followers of Leibniz were the brothers James and
John Bernoulli, who played a significant part in the development of the
theory of DEs and the use of such equations in the solution of physical
problems. In 1690, James Bernoulli showed that the problem of determining
the isochrone, i.e., the curve in a vertical plane such that a particle will slide
from any point on the curve to its lowest point in exactly the same time, is
equivalent to that of solving a first-order nonlinear DE

dy(b2y − a3)1/2 = dx a3/2. (2.8)

Equation (2.8) expresses the equality of two differentials from which Ber-
noulli concluded the equality of the integrals of the two members of the
equation and used the word integral for the first time on record.

In 1696 John Bernoulli invited the brightest mathematicians of the world
(Europe) to solve the brachistochrone (quickest descent) problem: to find
the curve connecting two points A and B that do not lie on a vertical line
and possessing the property that a moving particle slides down the curve
from A to B in the shortest time, ignoring friction and resistance of the
medium. In order to solve this problem, one year later John Bernoulli
imagined thin layers of homogeneous media, he knew from optics (Fermat’s
principle) that a light ray with speed ν obeying the law of Snellius,

sinα = Kν,
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passes through in the shortest time. Since the speed is known to be pro-
portional to the square root of the fallen height, he obtained by passing
through thinner and thinner layers

sinα =
1√

1 + y′2
= K

√
2g(y − h), (2.9)

a differential equation of the first order. Among others who also solved
the brachistochrone problem are James Bernoulli, Leibniz, Newton, and
L’Hospital.

The term “separation of variables” is essentially due to John Bernoulli;
he also circumvented dx/x, not well understood at that time, by first ap-
plying an integrating factor. However, the discovery of integrating factors
proved almost as troublesome as solving a DE.

The problem of finding the general solution of what is now called Ber-
noulli’s equation,

a dy = yp dx+ bqyn dx, (2.10)

in which a and b are constants, and p and q are functions of x alone, was
proposed by James Bernoulli in 1695 and solved by Leibniz and John Ber-
noulli by using different substitutions for the dependent variable y. Thus,
the roots of the general tactic “change of the dependent variable” had al-
ready appeared in 1696–1697. The problem of determining the orthogonal
trajectories of a one-parameter family of curves was also solved by John
Bernoulli in 1698. And by the end of the 17th century most of the known
methods of solving first-order DEs had been developed.

Numerous applications of the use of DEs in finding the solutions of ge-
ometric problems were made before 1720. Some of the DEs formulated in
this way were of second or higher order; e.g., the ancient Greek’s isoperimet-
ric problem of finding the closed plane curve of given length that encloses
the largest area led to a DE of third order. This third-order DE of James
Bernoulli (1696) was reduced to one of the second order by John Bernoulli.
In 1761 John Bernoulli reported the second-order DE

y′′ =
2y
x2 (2.11)

to Leibniz, which gave rise to three types of curves—parabolas, hyperbolas,
and a class of curves of the third order.

As early as 1712, Riccati considered the second-order DE

f(y, y′, y′′) = 0 (2.12)

and treated y as an independent variable, p (= y′) as the dependent vari-
able, and making use of the relationship y′′ = p dp/dy, he converted the
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DE (2.12) into the form

f

(
y, p, p

(
dp

dy

))
= 0, (2.13)

which is a first-order DE in p.

The particular DE

y′ = p(x)y2 + q(x)y + r(x) (2.14)

christened by d’Alembert as the Riccati equation has been studied by a num-
ber of mathematicians, including several of the Bernoullis, Riccati himself,
as well as his son Vincenzo. By 1723 at the latest, it was recognized that
(2.14) cannot be solved in terms of elementary functions. However, later
it was Euler who called attention to the fact that if a particular solution
y1 = y1(x) of (2.14) is known, then the substitution y = y1 + z−1 converts
the Riccati equation into a first-order linear DE in z, which leads to its
general solution. He also pointed out that if two particular solutions of
(2.14) are known, then the general solution is expressible in terms of simple
quadrature.

For the first time in 1715, Taylor unexpectedly noted the singular solu-
tions of DEs. Later in 1734, a class of equations with interesting properties
was found by the precocious mathematician Clairaut. He was motivated
by the movement of a rectangular wedge, which led him to DEs of the form

y = xy′ + f(y′). (2.15)

In (2.15) the substitution p = y′, followed by differentiation of the terms
of the equation with respect to x, will lead to a first-order DE in x, p and
dp/dx. Its general solution y = cx + f(c) is a collection of straight lines.
The Clairaut DE has also a singular solution which in parametric form can
be written as x = −f ′(t), y = f(t) − tf ′(t). D’Alembert found the singular
solution of the somewhat more general type of DE

y = xg(y′) + f(y′), (2.16)

which is known as D’Alembert’s equation.

Starting from 1728, Euler contributed many important ideas to DEs:
various methods of reduction of order, notion of an integrating factor, the-
ory of linear equations of arbitrary order, power series solutions, and the
discovery that a first-order nonlinear DE with square roots of quartics as
coefficients, e.g.,

(1 − x4)1/2y′ + (1 − y4)1/2 = 0, (2.17)

has an algebraic solution. Euler also invented the method of variation
of parameters, which was elevated to a general procedure by Lagrange in
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1774. Most of the modern theory of linear differential systems appears
in D’Alembert’s work of 1748, while the concept of adjoint equations was
introduced by Lagrange in 1762.

The Jacobi equation

(a1 + b1x+ c1y)(xdy− ydx) − (a2 + b2x+ c2y)dy+ (a3 + b3x+ c3y)dx = 0

in which the coefficients ai, bi, ci, i = 1, 2, 3 are constants was studied
in 1842, and is closely connected with the Bernoulli equation. Another
important DE which was studied by Darboux in 1878 is

−Ldy +Mdx+N(xdy − ydx) = 0,

where L, M, N are polynomials in x and y of maximum degree m.

Thus, in early stages mathematicians were engaged in formulating DEs
and solving them, tacitly assuming that a solution always existed. The
rigorous proof of the existence and uniqueness of solutions of the first-order
initial value problem (1.9), (1.10) was first presented by Cauchy in his lec-
tures of 1820–1830. The proof exhibits a theoretical means for constructing
the solution to any desired degree of accuracy. He also extended his process
to the systems of such initial value problems. In 1876, Lipschitz improved
Cauchy’s technique with a view toward making it more practical. In 1893,
Picard developed an existence theory based on a different method of suc-
cessive approximations, which is considered more constructive than that
of Cauchy–Lipschitz. Other significant contributors to the method of suc-
cessive approximations are Liouville (1838), Caqué (1864), Fuchs (1870),
Peano (1888), and Bôcher (1902).

The pioneering work of Cauchy, Lipschitz, and Picard is of a qualitative
nature. Instead of finding a solution explicitly, it provides sufficient con-
ditions on the known quantities which ensure the existence of a solution.
In the last hundred years this work has resulted in an extensive growth
in the qualitative study of DEs. Besides existence and uniqueness results,
additional sufficient conditions (rarely necessary) to analyze the proper-
ties of solutions, e.g., asymptotic behavior, oscillatory behavior, stability,
etc., have also been carefully examined. Among other mathematicians who
have contributed significantly in the development of the qualitative theory
of DEs we would like to mention the names of R. Bellman, I. Bendixson,
G. D. Birkhoff, L. Cesari, R. Conti, T. H. Gronwall, J. Hale, P. Hart-
man, E. Kamke, V. Lakshmikantham, J. LaSalle, S. Lefschetz, N. Levin-
son, A. Lyapunov, G. Peano, H. Poincáre, G. Sansone, B. Van der Pol,
A. Wintner, and W. Walter.

Finally the last three significant stages of development in the theory
of DEs, opened with the application of Lie’s (1870–1880s) theory of con-
tinuous groups to DEs, particularly those of Hamilton–Jacobi dynamics;
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Picard’s attempt (1880) to construct for linear DEs an analog of the Galois
theory of algebraic equations; and the theory, started in 1930s, that paral-
leled the modern development of abstract algebra. Thus, the theory of DEs
has emerged as a major discipline of modern pure mathematics. Neverthe-
less, the study of DEs continues to contribute to the solutions of practical
problems in almost every branch of science and technology, arts and social
science, and medicine. In the last fifty years, some of these problems have
led to the creation of various types of new DEs, some which are of current
research interest.



Lecture 3
Exact Equations

Let, in the DE of first order and first degree (1.9), the function f(x, y) =
−M(x, y)/N(x, y), so that it can be written as

M(x, y) +N(x, y)y′ = 0, (3.1)

where M and N are continuous functions having continuous partial deriva-
tives My and Nx in the rectangle S : |x− x0| < a, |y − y0| < b (0 < a, b <
∞).

Equation (3.1) is said to be exact if there exists a function u(x, y) such
that

ux(x, y) = M(x, y) and uy(x, y) = N(x, y). (3.2)

The nomenclature comes from the fact that

M +Ny′ = ux + uyy
′

is exactly the derivative du/dx.

Once the DE (3.1) is exact its implicit solution is

u(x, y) = c. (3.3)

If (3.1) is exact, then from (3.2) we have uxy = My and uyx = Nx. Since
My and Nx are continuous, we must have uxy = uyx; i.e., for (3.1) to be
exact it is necessary that

My = Nx. (3.4)

Conversely, if M and N satisfy (3.4) then the equation (3.1) is exact.
To establish this we shall exhibit a function u satisfying (3.2). We integrate
both sides of ux = M with respect to x, to obtain

u(x, y) =
∫ x

x0

M(s, y)ds+ g(y). (3.5)

Here g(y) is an arbitrary function of y and plays the role of the constant of
integration. We shall obtain g by using the equation uy = N. Indeed, we
have

∂

∂y

∫ x

x0

M(s, y)ds+ g′(y) = N(x, y) (3.6)

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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and since

Nx − ∂2

∂x∂y

∫ x

x0

M(s, y)ds = Nx −My = 0

the function
N(x, y) − ∂

∂y

∫ x

x0

M(s, y)ds

must depend on y alone. Therefore, g can be obtained from (3.6), and
finally the function u satisfying (3.2) is given by (3.5).

We summarize this important result in the following theorem.

Theorem 3.1. Let the functions M(x, y) and N(x, y) together with
their partial derivatives My(x, y) and Nx(x, y) be continuous in the rect-
angle S : |x − x0| < a, |y − y0| < b (0 < a, b < ∞). Then the DE (3.1) is
exact if and only if condition (3.4) is satisfied.

Obviously, in this result S may be replaced by any region which does
not include any “hole.”

The above proof of this theorem is, in fact, constructive, i.e., we can
explicitly find a solution of (3.1). For this, we compute g(y) from (3.6),

g(y) =
∫ y

y0

N(x, t)dt−
∫ x

x0

M(s, y)ds+
∫ x

x0

M(s, y0)ds+ g(y0).

Therefore, from (3.5) it follows that

u(x, y) =
∫ y

y0

N(x, t)dt+
∫ x

x0

M(s, y0)ds+ g(y0)

and hence a solution of the exact equation (3.1) is given by∫ y

y0

N(x, t)dt+
∫ x

x0

M(s, y0)ds = c, (3.7)

where c is an arbitrary constant.

In (3.7) the choice of x0 and y0 is at our disposal, except that these
must be chosen so that the integrals remain proper.

Example 3.1. In the DE

(y + 2xey) + x(1 + xey)y′ = 0,

M = y + 2xey and N = x(1 + xey), so that My = Nx = 1 + 2xey for all
(x, y) ∈ S = IR2. Thus, the given DE is exact in IR2. Taking (x0, y0) = (0, 0)
in (3.7), we obtain∫ y

0
(x+ x2et)dt+

∫ x

0
2sds = xy + x2ey = c
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a solution of the given DE.

The equation 2y+ xy′ = 0 is not exact, but if we multiply it by x, then
2xy+x2y′ = d(x2y)/dx = 0 is an exact DE. The multiplier x here is called
an integrating factor. For the DE (3.1) a nonzero function µ(x, y) is called
an integrating factor if the equivalent DE

µM + µNy′ = 0 (3.8)

is exact.

If u(x, y) = c is a solution of (3.1), then y′ computed from (3.1) and
ux + uyy

′ = 0 must be the same, i.e.,

1
M
ux =

1
N
uy =: µ, (3.9)

where µ is some function of x and y. Thus, we have

µ(M +Ny′) = ux + uyy
′ =

du

dx

and hence the equation (3.8) is exact, and an integrating factor µ of (3.1)
is given by (3.9).

Further, let φ(u) be any continuous function of u, then

µφ(u)(M +Ny′) = φ(u)
du

dx
=

d

dx

∫ u

φ(s)ds.

Hence, µφ(u) is an integrating factor of (3.1). Since φ is an arbitrary
function, we have established the following result.

Theorem 3.2. If the DE (3.1) has u(x, y) = c as its solution, then it
admits an infinite number of integrating factors.

The function µ(x, y) is an integrating factor of (3.1) provided (3.8) is
exact, i.e., if and only if

(µM)y = (µN)x. (3.10)

This implies that an integrating factor must satisfy the equation

Nµx −Mµy = µ(My −Nx). (3.11)

A solution of (3.11) gives an integrating factor of (3.1), but finding a
solution of the partial DE (3.11) is by no means an easier task. However, a
particular nonzero solution of (3.11) is all we need for the solution of (3.1).
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If we assume µ = X(x)Y (y), then from (3.11) we have

N

X

dX

dx
− M

Y

dY

dy
= My −Nx. (3.12)

Hence, if
My −Nx = Ng(x) −Mh(y) (3.13)

then (3.12) is satisfied provided

1
X

dX

dx
= g(x) and

1
Y

dY

dy
= h(y),

i.e.,
X = e

∫
g(x)dx and Y = e

∫
h(y)dy. (3.14)

We illustrate this in the following example.

Example 3.2. Let the DE

(y − y2) + xy′ = 0

admit an integrating factor of the form µ = xmyn. In such a case (3.12)
becomes m − (1 − y)n = −2y, and hence m = n = −2, and µ = x−2y−2.
This gives an exact DE

x−2(y−1 − 1) + x−1y−2y′ = 0,

whose solution using (3.7) is given by
∫ y

1 x
−1t−2dt = c, which is the same

as y = 1/(1 − cx).

One may also look for an integrating factor of the form µ = µ(v), where
v is a known function of x and y. Then (3.11) leads to

1
µ

dµ

dv
=

My −Nx

Nvx −Mvy
. (3.15)

Thus, if the expression in the right side of (3.15) is a function of v alone,
say, φ(v) then the integrating factor is given by

µ = e
∫

φ(v)dv. (3.16)

Some special cases of v and the corresponding φ(v) are given in the
following table:

v : x y x− y xy
x

y
x2 + y2

φ(v) :
My−Nx

N

My−Nx

−M
My−Nx

N+M
My−Nx

yN−xM
(My−Nx)y2

yN+xM
My−Nx

2(xN−yM)
.
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If the expression in the second row is a function of the corresponding v
in the first row, then (3.1) has the integrating factor µ given in (3.16).

Example 3.3. For the DE

(x2y + y + 1) + x(1 + x2)y′ = 0,

we have

My −Nx

N
=

1
x(1 + x2)

(x2 + 1 − 1 − 3x2) = − 2x
1 + x2 ,

which is a function of x. Hence, from the above table and (3.16) we find
µ = (1 + x2)−1. Thus, the DE(

y +
1

1 + x2

)
+ xy′ = 0

is exact whose solution is given by xy + tan−1 x = c.

Example 3.4. For the DE in Example 3.2, we have

My −Nx

−M =
2

1 − y
,

which is a function of y. Hence, from the above table and (3.16) we find
µ = (1 − y)−2. Thus, the DE

y

1 − y
+

x

(1 − y)2
y′ = 0

is exact whose solution is once again given by y = 1/(1 − cx).

Example 3.5. For the DE

(xy3 + 2x2y2 − y2) + (x2y2 + 2x3y − 2x2)y′ = 0,

we have
My −Nx

yN − xM
= 1 − 2

xy
,

which is a function of xy. Hence, from the above table and (3.16) we find
µ = x−2y−2exy. The resulting exact DE

(yx−1 + 2 − x−2)exy + (1 + 2xy−1 − 2y−2)exyy′ = 0

has a solution exy(x−1 + 2y−1) = c.

Next we shall prove an interesting result which enables us to find the
solution of (3.1) provided it admits two linearly independent integrating
factors. For this, we need the following lemma.
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Lemma 3.3. Suppose (3.1) is exact and has an integrating factor
µ(x, y) (�= constant), then µ(x, y) = c is a solution of (3.1).

Proof. In view of the hypothesis, condition (3.11) implies that Nµx =
Mµy. Multiplying (3.1) by µy, we find

Mµy +Nµyy
′ = N(µx + µyy

′) = N
dµ

dx
= 0

and this implies the lemma.

Theorem 3.4. If µ1(x, y) and µ2(x, y) are two integrating factors of
(3.1) such that their ratio is not a constant, then µ1(x, y) = cµ2(x, y) is a
solution of (3.1).

Proof. Clearly, the DEs (i) µ1M+µ1Ny
′ = 0, and (ii) µ2M+µ2Ny

′ = 0
are exact. Multiplication of (ii) by µ1/µ2 converts it to the exact equa-
tion (i). Thus, the exact DE (ii) admits an integrating factor µ1/µ2 and
Lemma 3.3 implies that µ1/µ2 = c is a solution of (ii), i.e., of (3.1).

To illustrate the importance of Theorem 3.4, we consider the DE in
Example 3.2. It has two integrating factors, µ1 = x−2y−2 and µ2 = (1 −
y)−2, which are obtained in Examples 3.2 and 3.4, respectively. Hence, its
solution is given by (1−y)2 = c2x2y2, which is the same as the one obtained
in Example 3.2, as it should be.

We finish this lecture with the remark that, generally, integrating factors
of (3.1) are obtained by “trial-and-error” methods.

Problems

3.1. Let the hypothesis of Theorem 3.1 be satisfied and the equation
(3.1) be exact. Show that the solution of the DE (3.1) is given by∫ x

x0

M(s, y)ds+
∫ y

y0

N(x0, t)dt = c.

3.2. Solve the following initial value problems:

(i) (3x2y + 8xy2) + (x3 + 8x2y + 12y2)y′ = 0, y(2) = 1.
(ii) (4x3ex+y + x4ex+y + 2x) + (x4ex+y + 2y)y′ = 0, y(0) = 1.
(iii) (x− y cosx) − sinxy′ = 0, y(π/2) = 1.
(iv) (yexy + 4y3) + (xexy + 12xy2 − 2y)y′ = 0, y(0) = 2.

3.3. In the following DEs determine the constant a so that each equa-
tion is exact, and solve the resulting DEs:
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(i) (x3 + 3xy) + (ax2 + 4y)y′ = 0.

(ii) (x−2 + y−2) + (ax+ 1)y−3y′ = 0.

3.4. The DE (ex sec y− tan y) + y′ = 0 has an integrating factor of the
form e−ax cos y for some constant a. Find a, and then solve the DE.

3.5. The DE (4x + 3y2) + 2xyy′ = 0 has an integrating factor of the
form xn, where n is a positive integer. Find n, and then solve the DE.

3.6. Verify that (x2 +y2)−1 is an integrating factor of a DE of the form
(y + xf(x2 + y2)) + (yf(x2 + y2) − x)y′ = 0. Hence, solve the DE

(y + x(x2 + y2)2) + (y(x2 + y2)2 − x)y′ = 0.

3.7. If p and q are functions of x, then the DE (py − qyn) + y′ = 0
admits an integrating factor of the form X(x)Y (y). Find the functions X
and Y.

3.8. Solve the following DEs for which the type of integrating factor
has been indicated:

(i) (x− y2) + 2xyy′ = 0 [µ(x)].

(ii) y + (y2 − x)y′ = 0 [µ(y)].

(iii) y + x(1 − 3x2y2)y′ = 0 [µ(xy)].

(iv) (3xy + y2) + (3xy + x2)y′ = 0 [µ(x+ y)].

(v) (x+ x4 + 2x2y2 + y4) + yy′ = 0 [µ(x2 + y2)].

(vi) (4xy + 3y4) + (2x2 + 5xy3)y′ = 0 [µ(xmyn)].

3.9. By differentiating the equation

∫
g(xy) + h(xy)
g(xy) − h(xy)

d(xy)
(xy)

+ ln
(
x

y

)
= c

with respect to x, verify that 2/(xy(g(xy)−h(xy))) is an integrating factor
of the DE yg(xy) + xh(xy)y′ = 0. Hence, solve the DE

(x2y2 + xy + 1)y + (x2y2 − xy + 1)xy′ = 0.

3.10. Show the following:

(i) u(x, y) = c is the general solution of the DE (3.1) if and only if
Muy = Nux.

(ii) The DE (3.1) has an integrating factor (M2 +N2)−1 if Mx = Ny and
My = −Nx.
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Answers or Hints

3.1. Begin with uy = N and obtain an analog of (3.7).

3.2. (i) x3y+4x2y2+4y3 = 28. (ii) x4ex+y+x2+y2 = 1. (iii) x2−2y sinx =
(π2/4) − 2. (iv) exy + 4xy3 − y2 + 3 = 0.

3.3. (i) 3/2, x4 + 6x2y + 8y2 = c. (ii) −2, y2 = x(2x− 1)/[2(cx+ 1)].

3.4. 1, sin−1((c− x)ex).

3.5. 2, x4 + x3y2 = c.

3.6. 4 tan−1(x/y) + (x2 + y2)2 = c.

3.7. exp
(
(1 − n)

∫
pdx

)
, y−n.

3.8. (i) x−2, y2 + x lnx = cx. (ii) y−2, y2 + x = cy. (iii) (xy)−3, y6 =
c exp(−x−2y−2). (iv) (x+y), x3y+2x2y2 +xy3 = c, x+y = 0. (v) (x2 +
y2)−2, (c+ 2x)(x2 + y2) = 1. (vi) x2y, x4y2 + x3y5 = c.

3.9. xy + ln(x/y) = c+ 1/(xy).

3.10. (i) Note that ux + yyy
′ = 0 and M + Ny′ = 0. (ii) Mx = Ny and

My = −Nx imply ∂
∂y

(
M

M2+N2

)
= ∂

∂x

(
N

M2+N2

)
.



Lecture 4
Elementary First-Order

Equations

Suppose in the DE of first order (3.1), M(x, y) = X1(x)Y1(y) and
N(x, y) = X2(x)Y2(y), so that it takes the form

X1(x)Y1(y) +X2(x)Y2(y)y′ = 0. (4.1)

If Y1(y)X2(x) �= 0 for all (x, y) ∈ S, then (4.1) can be written as an exact DE

X1(x)
X2(x)

+
Y2(y)
Y1(y)

y′ = 0 (4.2)

in which the variables are separated. Such a DE (4.2) is said to be separable.
The solution of this exact equation is given by∫

X1(x)
X2(x)

dx+
∫
Y2(y)
Y1(y)

dy = c. (4.3)

Here both the integrals are indefinite and constants of integration have been
absorbed in c.

Equation (4.3) contains all the solutions of (4.1) for which Y1(y)X2(x) �=
0. In fact, when we divide (4.1) by Y1X2 we might have lost some solutions,
and the ones which are not in (4.3) for some c must be coupled with (4.3)
to obtain all solutions of (4.1).

Example 4.1. The DE in Example 3.2 may be written as

1
x

+
1

y(1 − y)
y′ = 0, xy(1 − y) �= 0

for which (4.3) gives the solution y = (1−cx)−1. Other possible solutions for
which x(y−y2) = 0 are x = 0, y = 0, and y = 1. However, the solution y = 1
is already included in y = (1 − cx)−1 for c = 0, and x = 0 is not a solution,
and hence all solutions of this DE are given by y = 0, y = (1 − cx)−1.

A function f(x, y) defined in a domain D (an open connected set in IR2)
is said to be homogeneous of degree k if for all real λ and (x, y) ∈ D

f(λx, λy) = λkf(x, y). (4.4)
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For example, the functions 3x2 − xy − y2, sin(x2/(x2 − y2)), (x4 +
7y4)1/5, (1/x2) sin(x/y) + (x/y3)(ln y− lnx), and (6ey/x/x2/3y1/3) are ho-
mogeneous of degree 2, 0, 4/5, − 2, and −1, respectively.

In (4.4) if λ = 1/x, then it is the same as

xkf
(
1,
y

x

)
= f(x, y). (4.5)

This implies that a homogeneous function of degree zero is a function of a
single variable v (= y/x).

The first-order DE (3.1) is said to be homogeneous if M(x, y) and
N(x, y) are homogeneous functions of the same degree, say, n. If (3.1) is
homogeneous, then in view of (4.5) it can be written as

xnM
(
1,
y

x

)
+ xnN

(
1,
y

x

)
y′ = 0. (4.6)

In (4.6) we use the substitution y(x) = xv(x), to obtain

xn(M(1, v) + vN(1, v)) + xn+1N(1, v)v′ = 0. (4.7)

Equation (4.7) is separable and admits the integrating factor

µ =
1

xn+1(M(1, v) + vN(1, v))
=

1
xM(x, y) + yN(x, y)

(4.8)

provided xM + yN �= 0.

The vanishing of xM + yN implies that (4.7) is simply

xn+1N(1, v)v′ = xN(x, y)v′ = 0

for which the integrating factor is 1/xN. Thus, in this case the general
solution of (3.1) is given by y = cx.

We summarize these results in the following theorem.

Theorem 4.1. The homogeneous DE (4.6) can be transformed to a
separable DE by the transformation y = xv which admits an integrating
factor 1/(xM + yN) provided xM + yN �= 0. Further, if xM + yN = 0,
then its integrating factor is 1/xN and it has y = cx as its general solution.

Example 4.2. The DE

y′ =
x2 + xy + y2

x2 , x �= 0
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is homogeneous. The transformation y = xv simplifies this DE to xv′ =
1 + v2. Thus, tan−1(y/x) = ln |cx| is the general solution of the given DE.
Alternatively, the integrating factor

[
x

(
x2 + xy + y2

x2

)
− y

]−1

=
(
x2 + y2

x

)−1

converts the given DE into the exact equation

1
x

+
y

x2 + y2 − x

x2 + y2 y
′ = 0

whose general solution using (3.7) is given by − tan−1(y/x) + lnx = c,
which is the same as obtained earlier.

Often, it is possible to introduce a new set of variables given by the
equations

u = φ(x, y), v = ψ(x, y) (4.9)

which convert a given DE (1.9) into a form that can be solved rather easily.
Geometrically, relations (4.9) can be regarded as a mapping of a region in
the xy-plane into the uv-plane. We wish to be able to solve these relations
for x and y in terms of u and v. For this, we should assume that the mapping
is one-to-one. In other words, we can assume that ∂(u, v)/∂(x, y) �= 0 over a
region in IR2, which implies that there is no functional relationship between
u and v. Thus, if (u0, v0) is the image of (x0, y0) under the transformation
(4.9), then it can be uniquely solved for x and y in a neighborhood of the
point (x0, y0). This leads to the inverse transformation

x = x(u, v), y = y(u, v). (4.10)

The image of a curve in the xy-plane is a curve in the uv-plane; and the
relation between slopes at the corresponding points of these curves is

y′ =
yu + yv

dv

du

xu + xv
dv

du

. (4.11)

Relations (4.10) and (4.11) can be used to convert the DE (1.9) in terms of
u and v, which hopefully can be solved explicitly. Finally, replacement of
u and v in terms of x and y by using (4.9) leads to an implicit solution of
the DE (1.9).

Unfortunately, for a given nonlinear DE there is no way to predict a
transformation which leads to a solution of (1.9). Finding such a trans-
formation can only be learned by practice. We therefore illustrate this
technique in the following examples.
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Example 4.3. Consider the DE

3x2yey + x3ey(y + 1)y′ = 0.

Setting u = x3, v = yey we obtain

3x2 dv

dy
= ey(y + 1)

du

dx
,

and this changes the given DE into the form v + u(dv/du) = 0 for which
the solution is uv = c, equivalently, x3yey = c is the general solution of the
given DE.

We now consider the DE

y′ = f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
(4.12)

in which a1, b1, c1, a2, b2 and c2 are constants. If c1 and c2 are not both
zero, then it can be converted to a homogeneous equation by means of the
transformation

x = u+ h, y = v + k (4.13)

where h and k are the solutions of the system of simultaneous linear equa-
tions

a1h+ b1k + c1 = 0
a2h+ b2k + c2 = 0, (4.14)

and the resulting homogeneous DE

dv

du
= f

(
a1u+ b1v

a2u+ b2v

)
(4.15)

can be solved easily.

However, the system (4.14) can be solved for h and k provided ∆ =
a1b2 − a2b1 �= 0. If ∆ = 0, then a1x+ b1y is proportional to a2x+ b2y, and
hence (4.12) is of the form

y′ = f(αx+ βy), (4.16)

which can be solved easily by using the substitution αx+ βy = z.

Example 4.4. Consider the DE

y′ =
1
2

(
x+ y − 1
x+ 2

)2

.

The straight lines h + k − 1 = 0 and h + 2 = 0 intersect at (−2, 3), and
hence the transformation x = u− 2, y = v+ 3 changes the given DE to the
form

dv

du
=

1
2

(
u+ v

u

)2

,
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which has the solution 2 tan−1(v/u) = ln |u| + c, and thus

2 tan−1 y − 3
x+ 2

= ln |x+ 2| + c

is the general solution of the given DE.

Example 4.5. The DE

(x+ y + 1) + (2x+ 2y + 1)y′ = 0

suggests that we should use the substitution x + y = z. This converts the
given DE to the form (2z + 1)z′ = z for which the solution is 2z + ln |z| =
x+c, z �= 0; or equivalently, x+2y+ln |x+y| = c, x+y �= 0. If z = x+y = 0,
then the given DE is satisfied by the relation x+ y = 0. Thus, all solutions
of the given DE are x+ 2y + ln |x+ y| = c, x+ y = 0.

Let f(x, y, α) = 0 and g(x, y, β) = 0 be the equations of two families
of curves, each dependent on one parameter. When each member of the
second family cuts each member of the first family according to a definite
law, any curve of either of the families is said to be a trajectory of the
family. The most important case is that in which curves of the families
intersect at a constant angle. The orthogonal trajectories of a given family
of curves are the curves that cut the given family at right angles. The slopes
y′
1 and y′

2 of the tangents to the curves of the family and to the sought
for orthogonal trajectories must at each point satisfy the orthogonality
condition y′

1y
′
2 = −1.

Example 4.6. For the family of parabolas y = ax2, we have y′ = 2ax
or y′ = 2y/x. Thus, the DE of the desired orthogonal trajectories is y′ =
−(x/2y). Separating the variables, we find 2yy′ +x = 0, and on integrating
this DE we obtain the family of ellipses x2 + 2y2 = c.

Problems

4.1. Show that if (3.1) is both homogeneous and exact, and Mx+Ny
is not a constant, then its general solution is given by Mx+Ny = c.

4.2. Show that if the DE (3.1) is homogeneous and M and N possess
continuous partial derivatives in some domain D, then

xMx + yMy

xNx + yNy
=

M

N
.

4.3. Solve the following DEs:

(i) x sin y + (x2 + 1) cos yy′ = 0.
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(ii) (x+ 2y − 1) + 3(x+ 2y)y′ = 0.
(iii) xy′ − y = xey/x.

(iv) xy′ − y = x sin[(y − x)/x].
(v) y′ = (x+ y + 1)2 − 2.
(vi) y′ = (3x− y − 5)/(−x+ 3y + 7).

4.4. Use the given transformation to solve the following DEs:

(i) 3x5 − y(y2 − x3)y′ = 0, u = x3, v = y2.
(ii) (2x+ y) + (x+ 5y)y′ = 0, u = x− y, v = x+ 2y.
(iii) (x+ 2y) + (y − 2x)y′ = 0, x = r cos θ, y = r sin θ.
(iv) (2x2 + 3y2 − 7)x− (3x2 + 2y2 − 8)yy′ = 0, u = x2, v = y2.

4.5. Show that the transformation y(x) = xv(x) converts the DE
ynf(x) + g(y/x)(y − xy′) = 0 into a separable equation.

4.6. Show that the change of variable y = xnv in the DE y′ =
xn−1f(y/xn) leads to a separable equation. Hence, solve the DE

x3y′ = 2y(x2 − y).

4.7. Show that the introduction of polar coordinates x = r cos θ, y =
r sin θ leads to separation of variables in a homogeneous DE y′ = f(y/x).
Hence, solve the DE

y′ =
ax+ by

bx− ay
.

4.8. Solve

y′ =
y − xy2

x+ x2y

by making the substitution y = vxn for an appropriate n.

4.9. Show that the families of parabolas y2 = 2cx+ c2, x2 = 4a(y+ a)
are self-orthogonal.

4.10. Show that the circles x2+y2 = px intersect the circles x2+y2 = qy
at right angles.

∗4.11. Show that if the functions f, fx, fy, and fxy are continuous on
some region D in the xy-plane, f is never zero on D, and ffxy = fxfy on
D, then the DE (1.9) is separable. The requirement f(x, y) �= 0 is essential,
for this consider the function

f(x, y) =

{
x2e2y, y ≤ 0

x2ey, y > 0.
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Answers or Hints

4.1. First use Theorem 4.1 and then Lemma 3.3.

4.2. Use Theorem 4.1.

4.3. (i) (x2 +1) sin2 y = c. (ii) x+3y+c = 3 ln(x+2y+2), x+2y+2 = 0.
(iii) exp(−y/x) + ln |x| = c, x �= 0. (iv) tan(y − x)/2x = cx, x �= 0.
(v) (x+ y + 1)(1 − ce2x) = 1 + ce2x. (vi) (x+ y + 1)2(y − x+ 3) = c.

4.4. (i) (y2−2x3)(y2+x3)2 = c. (ii) 2x2+2xy+5y2 = c. (iii)
√
x2 + y2 =

c exp(2 tan−1 y/x). (iv) (x2 − y2 − 1)5 = c(x2 + y2 − 3).

4.5. The given DE is reduced to vnxnf(x) = x2g(v)v′.

4.6. y(2 ln |x| + c) = x2, y = 0.

4.7.
√
x2 + y2 = c exp

(
b
a tan−1 y

x

)
.

4.8. yexy = cx.

4.9. For y2 = 2cx + c2, y′ = c/y and hence the DE for the orthogonal
trajectories is y′ = −y/c, but it can be shown that it is the same as y′ = c/y.

4.10. For the given families y′ = (y2 − x2)/2xy and y′ = 2xy/(x2 − y2),
respectively.



Lecture 5
First-Order Linear Equations

Let in the DE (3.1) the functions M and N be p1(x)y− r(x) and p0(x),
respectively, then it becomes

p0(x)y′ + p1(x)y = r(x), (5.1)

which is a first-order linear DE. In (5.1) we shall assume that the func-
tions p0(x), p1(x), r(x) are continuous and p0(x) �= 0 in J. With these
assumptions the DE (5.1) can be written as

y′ + p(x)y = q(x), (5.2)

where p(x) = p1(x)/p0(x) and q(x) = r(x)/p0(x) are continuous functions
in J.

The corresponding homogeneous equation

y′ + p(x)y = 0 (5.3)

obtained by taking q(x) ≡ 0 in (5.2) can be solved by separating the vari-
ables, i.e., (1/y)y′ + p(x) = 0, and now integrating it to obtain

y(x) = c exp
(

−
∫ x

p(t)dt
)
. (5.4)

In dividing (5.3) by y we have lost the solution y(x) ≡ 0, which is called the
trivial solution (for a linear homogeneous DE y(x) ≡ 0 is always a solution).
However, it is included in (5.4) with c = 0.

If x0 ∈ J, then the function

y(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

(5.5)

clearly satisfies the DE (5.3) in J and passes through the point (x0, y0).
Thus, it is the solution of the initial value problem (5.3), (1.10).

To find the solution of the DE (5.2) we shall use the method of variation
of parameters due to Lagrange. In (5.4) we assume that c is a function of
x, i.e.,

y(x) = c(x) exp
(

−
∫ x

p(t)dt
)

(5.6)
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and search for c(x) so that (5.6) becomes a solution of the DE (5.2). For
this, substituting (5.6) into (5.2), we find

c′(x) exp
(

−
∫ x

p(t)dt
)

−c(x)p(x) exp
(

−
∫ x

p(t)dt
)

+c(x)p(x) exp
(

−
∫ x

p(t)dt
)

= q(x),

which is the same as

c′(x) = q(x) exp
(∫ x

p(t)dt
)
. (5.7)

Integrating (5.7), we obtain the required function

c(x) = c1 +
∫ x

q(t) exp
(∫ t

p(s)ds
)
dt.

Now substituting this c(x) in (5.6), we find the solution of (5.2) as

y(x) = c1 exp
(

−
∫ x

p(t)dt
)

+
∫ x

q(t) exp
(

−
∫ x

t

p(s)ds
)
dt. (5.8)

This solution y(x) is of the form c1u(x) + v(x). It is to be noted that
c1u(x) is the general solution of (5.3) and v(x) is a particular solution
of (5.2). Hence, the general solution of (5.2) is obtained by adding any
particular solution of (5.2) to the general solution of (5.3).

From (5.8) the solution of the initial value problem (5.2), (1.10) where
x0 ∈ J is easily obtained as

y(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

+
∫ x

x0

q(t) exp
(

−
∫ x

t

p(s)ds
)
dt. (5.9)

This solution in the particular case when p(x) ≡ p and q(x) ≡ q simply
reduces to

y(x) =
(
y0 − q

p

)
e−p(x−x0) +

q

p
.

Example 5.1. Consider the initial value problem

xy′ − 4y + 2x2 + 4 = 0, x �= 0, y(1) = 1. (5.10)

Since x0 = 1, y0 = 1, p(x) = −4/x and q(x) = −2x− 4/x, from (5.9) the
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solution of (5.10) can be written as

y(x) = exp
(∫ x

1

4
t
dt

)
+
∫ x

1

(
−2t− 4

t

)
exp

(∫ x

t

4
s
ds

)
dt

= x4 +
∫ x

1

(
−2t− 4

t

)
x4

t4
dt

= x4 + x4
(

1
x2 +

1
x4 − 2

)
= − x4 + x2 + 1.

Alternatively, instead of using (5.9), we can find the solution of (5.10) as
follows. For the corresponding homogeneous DE y′−(4/x)y = 0 the general
solution is cx4, and a particular solution of the DE (5.10) is∫ x(

−2t− 4
t

)
exp

(∫ x

t

4
s
ds

)
dt = x2 + 1,

and hence the general solution of the DE (5.10) is y(x) = cx4+x2+1. Now in
order to satisfy the initial condition y(1) = 1 it is necessary that 1 = c+1+1,
or c = −1. The solution of (5.10) is therefore y(x) = −x4 + x2 + 1.

Suppose y1(x) and y2(x) are two particular solutions of (5.2), then

y′
1(x) − y′

2(x) = −p(x)y1(x) + q(x) + p(x)y2(x) − q(x)

= −p(x)(y1(x) − y2(x)),

which implies that y(x) = y1(x) − y2(x) is a solution of (5.3). Thus, if two
particular solutions of (5.2) are known, then y(x) = c(y1(x)−y2(x))+y1(x)
as well as y(x) = c(y1(x)− y2(x))+ y2(x) represents the general solution of
(5.2). For example, x+1/x and x are two solutions of the DE xy′ + y = 2x
and y(x) = c/x+ x is its general solution.

The DE (xf(y) + g(y))y′ = h(y) may not be integrable as it is, but if
the roles of x and y are interchanged, then it can be written as

h(y)
dx

dy
− f(y)x = g(y),

which is a linear DE in x and can be solved by the preceding procedure.
In fact, the solutions of (1.9) and dx/dy = 1/f(x, y) determine the same
curve in a region in IR2 provided the function f is defined, continuous,
and nonzero. For this, if y = y(x) is a solution of (1.9) in J and y′(x) =
f(x, y(x)) �= 0, then y(x) is monotonic function in J and hence has an
inverse x = x(y). This function x is such that

dx

dy
=

1
y′(x)

=
1

f(x, y(x))
in J.
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Example 5.2. The DE

y′ =
1

(e−y − x)

can be written as dx/dy + x = e−y which can be solved to obtain x =
e−y(y + c).

Certain nonlinear first-order DEs can be reduced to linear equations by
an appropriate change of variables. For example, it is always possible for
the Bernoulli equation

p0(x)y′ + p1(x)y = r(x)yn, n �= 0, 1. (5.11)

In (5.11), n = 0 and 1 are excluded because in these cases this equation is
obviously linear.

The equation (5.11) is equivalent to the DE

p0(x)y−ny′ + p1(x)y1−n = r(x) (5.12)

and now the substitution v = y1−n leads to the first-order linear DE

1
1 − n

p0(x)v′ + p1(x)v = r(x). (5.13)

Example 5.3. The DE xy′ + y = x2y2, x �= 0 can be written as
xy−2y′ + y−1 = x2. The substitution v = y−1 converts this DE into −xv′ +
v = x2, which can be solved to get v = (c − x)x, and hence the general
solution of the given DE is y(x) = (cx− x2)−1.

As we have remarked in Lecture 2, we shall show that if one solution
y1(x) of the Riccati equation (2.14) is known, then the substitution y =
y1 + z−1 converts it into a first-order linear DE in z. Indeed, we have

y′
1 − 1

z2 z
′ = p(x)

(
y1 +

1
z

)2

+ q(x)
(
y1 +

1
z

)
+ r(x)

= (p(x)y2
1 + q(x)y1 + r(x)) + p(x)

(
2y1
z

+
1
z2

)
+ q(x)

1
z

and hence
− 1
z2 z

′ = (2p(x)y1 + q(x))
1
z

+ p(x)
1
z2 ,

which is the first-order linear DE

z′ + (2p(x)y1 + q(x))z + p(x) = 0. (5.14)

Example 5.4. It is easy to verify that y1 = x is a particular solution of
the Riccati equation y′ = 1 + x2 − 2xy + y2. The substitution y = x+ z−1
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converts this DE to the first-order linear DE z′ + 1 = 0, whose general
solution is z = (c − x), x �= c. Thus, the general solution of the given
Riccati equation is y(x) = x+ 1/(c− x), x �= c.

In many physical problems the nonhomogeneous term q(x) in (5.2) is
specified by different formulas in different intervals. This is often the case
when (5.2) is considered as an input–output relation, i.e., the function q(x)
is an input and the solution y(x) is an output corresponding to the input
q(x). Usually, in such situations the solution y(x) is not defined at certain
points, so that it is not continuous throughout the interval of interest. To
understand such a case, for simplicity, we consider the initial value problem
(5.2), (1.10) in the interval [x0, x2], where the function p(x) is continuous,
and

q(x) =

{
q1(x), x0 ≤ x < x1

q2(x), x1 < x ≤ x2.

We assume that the functions q1(x) and q2(x) are continuous in the intervals
[x0, x1) and (x1, x2], respectively. With these assumptions the “solution”
y(x) of (5.2), (1.10) in view of (5.9) can be written as

y(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1(x) = y0 exp
(

−
∫ x

x0

p(t)dt
)

+
∫ x

x0

q1(t) exp
(

−
∫ x

t

p(s)ds
)
dt,

x0 ≤ x < x1

y2(x) = c exp
(

−
∫ x

x1

p(t)dt
)

+
∫ x

x1

q2(t) exp
(

−
∫ x

t

p(s)ds
)
dt,

x1 < x ≤ x2.

Clearly, at the point x1 we cannot say much about the solution y(x),
it may not even be defined. However, if the limits limx→x−

1
y1(x) and

limx→x+
1
y2(x) exist (which are guaranteed if both the functions q1(x) and

q2(x) are bounded at x = x1), then the relation

lim
x→x−

1

y1(x) = lim
x→x+

1

y2(x) (5.15)

determines the constant c, so that the solution y(x) is continuous on [x0, x2].

Example 5.5. Consider the initial value problem

y′ − 4
x
y =

⎧⎨
⎩ −2x− 4

x
, x ∈ [1, 2)

x2, x ∈ (2, 4]

y(1) = 1.

(5.16)

In view of Example 5.1 the solution of (5.16) can be written as

y(x) =

⎧⎨
⎩

−x4 + x2 + 1, x ∈ [1, 2)

c
x4

16
+
x4

2
− x3, x ∈ (2, 4].
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Now the relation (5.15) gives c = −11. Thus, the continuous solution of
(5.16) is

y(x) =

⎧⎨
⎩

−x4 + x2 + 1, x ∈ [1, 2)

− 3
16
x4 − x3, x ∈ (2, 4].

Clearly, this solution is not differentiable at x = 2.

Problems

5.1. Show that the DE (5.2) admits an integrating factor which is a
function of x alone. Use this to obtain its general solution.

5.2. (Principle of Superposition). If y1(x) and y2(x) are solutions of
y′ + p(x)y = qi(x), i = 1, 2, respectively, then show that c1y1(x) + c2y2(x)
is a solution of the DE y′ + p(x)y = c1q1(x) + c2q2(x), where c1 and c2 are
constants.

5.3. Find the general solution of the following DEs:

(i) y′ − (cotx)y = 2x sinx.
(ii) y′ + y + x+ x2 + x3 = 0.
(iii) (y2 − 1) + 2(x− y(1 + y)2)y′ = 0.
(iv) (1 + y2) = (tan−1 y − x)y′.

5.4. Solve the following initial value problems:

(i) y′ + 2y =
{

1, 0 ≤ x ≤ 1
0, x > 1 , y(0) = 0.

(ii) y′ + p(x)y = 0, y(0) = 1, where p(x) =
{

2, 0 ≤ x ≤ 1
1, x > 1.

5.5. Let q(x) be continuous in [0,∞) and limx→∞ q(x) = L. For the
DE y′ + ay = q(x), show the following:

(i) If a > 0, every solution approaches L/a as x → ∞.
(ii) If a < 0, there is one and only one solution which approaches L/a as
x → ∞.

5.6. Let y(x) be the solution of the initial value problem (5.2), (1.10)
in [x0,∞), and let z(x) be a continuously differentiable function in [x0,∞)
such that z′ + p(x)z ≤ q(x), z(x0) ≤ y0. Show that z(x) ≤ y(x) for all x in
[x0,∞). In particular, for the problem y′ + y = cosx, y(0) = 1 verify that
2e−x − 1 ≤ y(x) ≤ 1, x ∈ [0,∞).

5.7. Find the general solution of the following nonlinear DEs:
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(i) 2(1 + y3) + 3xy2y′ = 0.
(ii) y + x(1 + xy4)y′ = 0.
(iii) (1 − x2)y′ + y2 − 1 = 0.
(iv) y′ − e−xy2 − y − ex = 0.

∗5.8. Let the functions p0, p1, and r be continuous in J = [α, β] such
that p0(α) = p0(β) = 0, p0(x) > 0, x ∈ (α, β), p1(x) > 0, x ∈ J, and

∫ α+ε

α

dx

p0(x)
=

∫ β

β−ε

dx

p0(x)
= ∞, 0 < ε < β − α.

Show that all solutions of the DE (5.1) which exist in (α, β) converge to
r(β)/p1(β) as x → β. Further, show that one of these solutions converges
to r(α)/p1(α) as x → α, while all other solutions converge to ∞, or −∞.

Answers or Hints

5.1. Since M = p(x)y − q(x), N = 1, [(My −Nx)/N ] = p(x), and hence
the integrating factor is exp(

∫ x
p(t)dt).

5.2. Use the definition of a solution.

5.3. (i) c sinx+x2 sinx. (ii) ce−x−x3+2x2−5x+5. (iii) x(y−1)/(y+1) =
y2 + c. (iv) x = tan−1 y − 1 + ce− tan−1 y.

5.4. (i) y(x) =
{ 1

2 (1 − e−2x), 0 ≤ x ≤ 1
1
2 (e2 − 1)e−2x, x > 1

(ii) y(x) =
{
e−2x, 0 ≤ x ≤ 1
e−(x+1), x > 1.

5.5. (i) In y(x) = y(x0)e−a(x−x0) + [
∫ x

x0
eatq(t)dt]/eax take the limit x →

∞. (ii) In y(x) = e−ax
[
y(x0)eax0 +

∫∞
x0
eatq(t)dt− ∫∞

x
eatq(t)dt

]
choose

y(x0) so that y(x0)eax0 +
∫∞

x0
eatq(t)dt = 0 (limx→∞ q(x) = L). Now in

y(x) = −[
∫∞

x
eatq(t)dt]/eax take the limit x → ∞.

5.6. There exists a continuous function r(x) ≥ 0 such that z′ + p(x)z =
q(x) − r(x), z(x0) ≤ y0. Thus, for the function φ(x) = y(x) − z(x), φ′ +
p(x)φ = r(x) ≥ 0, φ(x0) = y0 − z(x0) ≥ 0.

5.7. (i) x2(1+ y3) = c. (ii) xy4 = 3(1+ cxy), y = 0. (iii) (y− 1)(1+x) =
c(1 − x)(1 + y). (iv) ex tan(x+ c).



Lecture 6
Second-Order Linear Equations

Consider the homogeneous linear second-order DE with variable coeffi-
cients

p0(x)y′′ + p1(x)y′ + p2(x)y = 0, (6.1)

where p0(x) (> 0), p1(x) and p2(x) are continuous in J. There does not exist
any method to solve it except in a few rather restrictive cases. However,
the results below follow immediately from the general theory of first-order
linear systems, which we shall present in later lectures.

Theorem 6.1. There exist exactly two solutions y1(x) and y2(x) of
(6.1) which are linearly independent (essentially different) in J ; i.e., there
does not exist a constant c such that y1(x) = cy2(x) for all x ∈ J.

Theorem 6.2. Two solutions y1(x) and y2(x) of (6.1) are linearly
independent in J if and only if their Wronskian defined by

W (x) = W (y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣ = y1(x)y′
2(x) − y2(x)y′

1(x)

(6.2)
is different from zero for some x = x0 in J.

Theorem 6.3. For the Wronskian defined in (6.2) the following Abel’s
identity (also known as the Ostrogradsky–Liouville formula) holds:

W (x) = W (x0) exp
(

−
∫ x

x0

p1(t)
p0(t)

dt

)
, x0 ∈ J. (6.3)

Thus, if the Wronskian is zero at some x0 ∈ J, then it is zero for all x ∈ J.

Theorem 6.4. If y1(x) and y2(x) are solutions of (6.1) and c1 and c2
are arbitrary constants, then c1y1(x) + c2y2(x) is also a solution of (6.1).
Further, if y1(x) and y2(x) are linearly independent, then any solution y(x)
of (6.1) can be written as y(x) = c1y1(x) + c2y2(x), where c1 and c2 are
suitable constants.

Now we shall show that, if one solution y1(x) of (6.1) is known (by
some clever method), then we can employ variation of parameters to find
the second solution of (6.1). For this we let y(x) = u(x)y1(x) and substitute
this in (6.1) to get

p0(uy1)′′ + p1(uy1)′ + p2(uy1) = 0,
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or
p0u

′′y1 + 2p0u
′y′

1 + p0uy
′′
1 + p1u

′y1 + p1uy
′
1 + p2uy1 = 0,

or
p0u

′′y1 + (2p0y
′
1 + p1y1)u′ + (p0y

′′
1 + p1y

′
1 + p2y1)u = 0.

However, since y1 is a solution of (6.1), the above equation with v = u′ is
the same as

p0y1v
′ + (2p0y

′
1 + p1y1)v = 0, (6.4)

which is a first-order equation, and it can be solved easily provided y1 �= 0
in J. Indeed, multiplying (6.4) by y1/p0, we get

(y2
1v

′ + 2y′
1y1v) +

p1

p0
y2
1v = 0,

which is the same as
(y2

1v)
′ +

p1

p0
(y2

1v) = 0

and hence

y2
1v = c exp

(
−
∫ x p1(t)

p0(t)
dt

)
,

or, on taking c = 1,

v(x) =
1

y2
1(x)

exp
(

−
∫ x p1(t)

p0(t)
dt

)
.

Hence, the second solution of (6.1) is

y2(x) = y1(x)
∫ x 1

y2
1(t)

exp
(

−
∫ t p1(s)

p0(s)
ds

)
dt. (6.5)

Example 6.1. It is easy to verify that y1(x) = x2 is a solution of
the DE

x2y′′ − 2xy′ + 2y = 0, x �= 0.

For the second solution we use (6.5), to obtain

y2(x) = x2
∫ x 1

t4
exp

(
−
∫ t(

−2s
s2

)
ds

)
dt = x2

∫ x 1
t4
t2dt = − x.

Now we shall find a particular solution of the nonhomogeneous equation

p0(x)y′′ + p1(x)y′ + p2(x)y = r(x). (6.6)

For this also we shall apply the method of variation of parameters. Let
y1(x) and y2(x) be two solutions of (6.1). We assume y(x) = c1(x)y1(x) +
c2(x)y2(x) is a solution of (6.6). Note that c1(x) and c2(x) are two unknown
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functions, so we can have two sets of conditions which determine c1(x) and
c2(x). Since

y′ = c1y
′
1 + c2y

′
2 + c′1y1 + c′2y2

as a first condition, we assume that

c′1y1 + c′2y2 = 0. (6.7)

Thus, we have
y′ = c1y

′
1 + c2y

′
2

and on differentiation

y′′ = c1y
′′
1 + c2y

′′
2 + c′1y

′
1 + c′2y

′
2.

Substituting these in (6.6), we find

c1(p0y
′′
1 + p1y

′
1 + p2y1) + c2(p0y

′′
2 + p1y

′
2 + p2y2) + p0(c′1y

′
1 + c′2y

′
2) = r(x).

Clearly, this equation in view of the fact that y1(x) and y2(x) are solutions
of (6.1) is the same as

c′1y
′
1 + c′2y

′
2 =

r(x)
p0(x)

. (6.8)

Solving (6.7), (6.8) we find

c′1 = − y2(x)r(x)/p0(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
, c′2 =

y1(x)r(x)/p0(x)∣∣∣∣ y1(x) y2(x)
y′
1(x) y′

2(x)

∣∣∣∣
;

and hence a particular solution of (6.6) is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= −y1(x)
∫ x y2(t)r(t)/p0(t)∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣
dt + y2(x)

∫ x y1(t)r(t)/p0(t)∣∣∣∣ y1(t) y2(t)
y′
1(t) y′

2(t)

∣∣∣∣
dt

=
∫ x

H(x, t)
r(t)
p0(t)

dt,

(6.9)
where

H(x, t) =
∣∣∣∣ y1(t) y2(t)
y1(x) y2(x)

∣∣∣∣
/ ∣∣∣∣ y1(t) y2(t)

y′
1(t) y′

2(t)

∣∣∣∣ . (6.10)

The general solution of (6.6) which is obtained by adding this particular
solution with the general solution of (6.1) appears as

y(x) = c1y1(x) + c2y2(x) + yp(x). (6.11)



38 Lecture 6

The following properties of the function H(x, t) are immediate:

(i) H(x, t) is defined for all (x, t) ∈ J × J ;

(ii) ∂jH(x, t)/∂xj , j = 0, 1, 2 are continuous for all (x, t) ∈ J × J ;

(iii) for each fixed t ∈ J the function z(x) = H(x, t) is a solution of the
homogeneous DE (6.1) satisfying z(t) = 0, z′(t) = 1; and

(iv) the function

v(x) =
∫ x

x0

H(x, t)
r(t)
p0(t)

dt

is a particular solution of the nonhomogeneous DE (6.6) satisfying y(x0) =
y′(x0) = 0.

Example 6.2. Consider the DE

y′′ + y = cotx.

For the corresponding homogeneous DE y′′ +y = 0, sinx and cosx are the
solutions. Thus, its general solution can be written as

y(x) = c1 cosx+ c2 sinx+
∫ x

∣∣∣∣ sin t cos t
sinx cosx

∣∣∣∣∣∣∣∣ sin t cos t
cos t − sin t

∣∣∣∣
cos t
sin t

dt

= c1 cosx+ c2 sinx−
∫ x

(sin t cosx− sinx cos t)
cos t
sin t

dt

= c1 cosx+ c2 sinx− cosx
∫ x

cos tdt+ sinx
∫ x cos2 t

sin t
dt

= c1 cosx+ c2 sinx− cosx sinx+ sinx
∫ x 1 − sin2 t

sin t
dt

= c1 cosx+ c2 sinx− cosx sinx− sinx
∫ x

sin tdt+ sinx
∫ x 1

sin t
dt

= c1 cosx+ c2 sinx+ sinx
∫ x cosec t(cosec t− cot t)

(cosec t− cot t)
dt

= c1 cosx+ c2 sinx+ sinx ln[cosecx− cotx].

From the general theory of first-order linear systems, which we shall
present in later lectures, it also follows that if the functions p0(x) (> 0),
p1(x), p2(x), and r(x) are continuous on J and x0 ∈ J, then the initial
value problem: (6.6) together with the initial conditions

y(x0) = y0, y′(x0) = y1 (6.12)

has a unique solution.
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Now we shall show that second-order DEs with constant coefficients can
be solved explicitly. In fact, to find the solution of the equation

y′′ + ay′ + by = 0, (6.13)

where a and b are constants, as a first step we look back at the equation
y′ + ay = 0 (a is a constant) for which all solutions are multiples of y =
e−ax. Thus, for (6.13) also some form of exponential function would be a
reasonable choice and would utilize the property that the differentiation of
an exponential function erx always yields a constant multiplied by erx.

Thus, we try y = erx and find the value(s) of r. For this, we have

r2erx + arerx + berx = (r2 + ar + b)erx = 0,

which gives
r2 + ar + b = 0. (6.14)

Hence, erx is a solution of (6.13) if r is a solution of (6.14). Equation (6.14)
is called the characteristic equation. For the roots of (6.14) we have the
following three cases:

1. Distinct real roots. If r1 and r2 are real and distinct roots of
(6.14), then er1x and er2x are two solutions of (6.13) and its general solution
can be written as

y(x) = c1e
r1x + c2e

r2x.

In the particular case when r1 = r, r2 = −r (then the DE (6.13) is y′′ −
r2y = 0) we have

y(x) = c1e
rx + c2e

−rx =
(
A+B

2

)
erx +

(
A−B

2

)
e−rx

= A

(
erx + e−rx

2

)
+B

(
erx − e−rx

2

)
= A cosh rx+B sinh rx.

2. Repeated real roots. If r1 = r2 = r is a repeated root of
(6.14), then erx is a solution. To find the second solution, we let y(x) =
u(x)erx and substitute it in (6.13), to get

erx(u′′ + 2ru′ + r2u) + aeru(u′ + ru) + buerx = 0,

or
u′′ + (2r + a)u′ + (r2 + ar + b)u = u′′ + (2r + a)u′ = 0.

Now since r is a repeated root of (6.14) it follows that 2r+a = 0 and hence
u′′ = 0, i.e., u(x) = c1 + c2x. Thus,

y(x) = (c1 + c2x)erx = c1e
rx + c2xe

rx.
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Hence, the second solution of (6.13) is xerx.

3. Complex conjugate roots. Let r1 = µ+ iν and r2 = µ− iν
where i =

√−1, so that

e(µ±iν)x = eµx(cos νx± i sin νx).

Since for the DE (6.13) real part, i.e., eµx cos νx and the complex part, i.e.,
eµx sin νx both are solutions, the general solution of (6.13) can be written
as

y(x) = c1e
µx cos νx+ c2e

µx sin νx.

In the particular case when r1 = iν and r2 = −iν (then the DE (6.13) is
y′′ + ν2y = 0) we have y(x) = c1 cos νx+ c2 sin νx.

Finally, in this lecture we shall find the solution of the Cauchy–Euler
equation

x2y′′ + axy′ + by = 0, x > 0. (6.15)

We assume y(x) = xm to obtain

x2m(m− 1)xm−2 + axmxm−1 + bxm = 0,

or
m(m− 1) + am+ b = 0. (6.16)

This is the characteristic equation for (6.15), and as earlier for (6.14) the
nature of its roots determines the solution:

Real, distinct roots m1 �= m2: y(x) = c1x
m1 + c2x

m2 ,

Real, repeated roots m = m1 = m2: y(x) = c1x
m + c2(lnx)xm,

Complex conjugate roots m1 = µ + iν, m2 = µ − iν : y(x) =
c1x

µ cos(ν lnx) + c2x
µ sin(ν lnx).

In the particular case

x2y′′ + xy′ − λ2y = 0, x > 0, λ > 0 (6.17)

the characteristic equation is m(m− 1) +m− λ2 = 0, or m2 − λ2 = 0. The
roots are m = ±λ and hence the solution of (6.17) appears as

y(x) = c1x
λ + c2x

−λ. (6.18)

Problems

6.1. Let y1(x), y2(x), y3(x) and λ(x) be differentiable functions in J.
Show that for all x ∈ J ,
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(i) W (y1, y2 + y3)(x) = W (y1, y2)(x) +W (y1, y3)(x);
(ii) W (λy1, λy2)(x) = λ2(x)W (y1, y2)(x);
(iii) W (y1, λy1)(x) = λ′(x)y2

1(x).

6.2. Show that the functions y1(x) = c (�= 0) and y2(x) = 1/x2 satisfy
the nonlinear DE y′′ + 3xyy′ = 0 in (0,∞), but y1(x) + y2(x) does not
satisfy the given DE. (This shows that Theorem 6.4 holds good only for the
linear equations.)

6.3. Given the solution y1(x), find the second solution of the follow-
ing DEs:

(i) (x2 − x)y′′ + (3x− 1)y′ + y = 0 (x �= 0, 1), y1(x) = (x− 1)−1.
(ii) x(x− 2)y′′ + 2(x− 1)y′ − 2y = 0 (x �= 0, 2), y1(x) = (1 − x).
(iii) xy′′ − y′ − 4x3y = 0 (x �= 0), y1(x) = exp(x2).
(iv) (1 − x2)y′′ − 2xy′ + 2y = 0 (|x| < 1), y1(x) = x.

6.4. The differential equation

xy′′ − (x+ n)y′ + ny = 0

is interesting because it has an exponential solution and a polynomial so-
lution.

(i) Verify that one solution is y1(x) = ex.

(ii) Show that the second solution has the form y2(x) = cex
∫ x

tne−tdt.
Further, show that with c = −1/n!,

y2(x) = 1 +
x

1!
+
x2

2!
+ · · · +

xn

n!
.

Note that y2(x) is the first n+ 1 terms of the Taylor series about x = 0 for
ex, that is, for y1(x).

6.5. For the differential equation

y′′ + δ(xy′ + y) = 0,

verify that y1(x) = exp(−δx2/2) is one solution. Find its second solution.

6.6. Let y1(x) �= 0 and y2(x) be two linearly independent solutions of
the DE (6.1). Show that y(x) = y2(x)/y1(x) is a nonconstant solution of
the DE

y1(x)y′′ +
(

2y′
1(x) +

p1(x)
p0(x)

y1(x)
)
y′ = 0.

6.7. Let y1(x) and y2(x) be solutions of the DE

y′′ + p1(x)y′ + p2(x)y = 0 (6.19)



42 Lecture 6

in J. Show the following:

(i) If y1(x) and y2(x) vanish at the same point in J, then y1(x) is a
constant multiple of y2(x).
(ii) If y1(x) and y2(x) have maxima or minima at the same point in
the open interval J, then y1(x) and y2(x) are not the linearly independent
solutions.
(iii) If W (y1, y2)(x) is independent of x, then p1(x) = 0 for all x ∈ J .
(iv) If y1(x) and y2(x) are linearly independent, then y1(x) and y2(x)
cannot have a common point of inflexion in J unless p1(x) and p2(x) vanish
simultaneously there.
(v) If W (y1, y2)(x∗) = y1(x∗) = 0, then either y1(x) = 0 for all x ∈ J, or
y2(x) = (y′

2(x
∗)/y′

1(x
∗))y1(x).

6.8. Let y1(x) and y2(x) be linearly independent solutions of (6.19),
and W (x) be their Wronskian. Show that

y′′ + p1(x)y′ + p2(x)y =
W

y1

d

dx

(
y2
1

W

d

dx

(
y

y1

))
.

6.9. Show that the DE (6.1) can be transformed into a first-order
nonlinear DE by means of a change of dependent variable

y = exp
(∫ x

f(t)w(t)dt
)
,

where f(x) is any nonvanishing differentiable function. In particular, if
f(x) = p0(x), then show that (6.1) reduces to the Riccati equation,

w′ + p0(x)w2 +
p′
0(x) + p1(x)
p0(x)

w +
p2(x)
p2
0(x)

= 0. (6.20)

6.10. If w1(x) and w2(x) are two different solutions of the DE (6.20)
with p0(x) = 1, i.e.,

w′ + w2 + p1(x)w + p2(x) = 0, (6.21)

then show that its general solution w(x) is given by

w(x) − w1(x)
w(x) − w2(x)

exp
(∫ x

(w1(t) − w2(t))dt
)

= c1.

Further, if w3(x) is another known solution of (6.21), then

w(x) − w3(x)
w(x) − w2(x)

= c2
w1(x) − w3(x)
w1(x) − w2(x)

.
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6.11. Find the general solution of the following homogeneous DEs:

(i) y′′ + 7y′ + 10y = 0.
(ii) y′′ − 8y′ + 16y = 0.
(iii) y′′ + 2y′ + 3y = 0.

6.12. Find the general solution of the following nonhomogeneous DEs:

(i) y′′ + 4y = sin 2x.
(ii) y′′ + 4y′ + 3y = e−3x.
(iii) y′′ + 5y′ + 4y = e−4x.

6.13. Show that if the real parts of all solutions of (6.14) are negative,
then limx→∞ y(x) = 0 for every solution of (6.13).

6.14. Show that the solution of the initial value problem

y′′ − 2(r + β)y′ + r2y = 0, y(0) = 0, y′(0) = 1

can be written as

yβ(x) =
1

2
√
β(2r + β)

[
e[r+β+

√
β(2r+β)]x − e[r+β−

√
β(2r+β)]x

]
.

Further, show that limβ→0 yβ(x) = xerx.

6.15. Verify that y1(x) = x and y2(x) = 1/x are solutions of

x3y′′ + x2y′ − xy = 0.

Use this information and the variation of parameters method to find the
general solution of

x3y′′ + x2y′ − xy = x/(1 + x).

Answers or Hints

6.1. Use the definition of Wronskian.

6.2. Verify directly.

6.3. (i) lnx/(x−1). (ii) (1/2)(1−x) ln[(x−2)/x]−1. (iii) e−x2
. (iv) (x/2)×

ln[(1 + x)/(1 − x)] − 1.

6.4. (i) Verify directly. (ii) Use (6.5).

6.5. e−δx2/2
∫ x

eδt2/2dt.
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6.6. Use y2(x) = y1(x)y(x) and the fact that y1(x) and y2(x) are solutions.

6.7. (i) Use Abel’s identity. (ii) If both attain maxima or minima at x0,
then φ′

1(x0) = φ′
2(x0) = 0. (iii) Use Abel’s identity. (iv) If x0 is a common

point of inflexion, then φ′′
1(x0) = φ′′

2(x0) = 0. (v) W (x∗) = 0 implies
φ2(x) = cφ1(x). If φ′

1(x
∗) = 0, then φ1(x) ≡ 0, and if φ′

1(x
∗) �= 0 then

c = φ′
2(x

∗)/φ′
1(x

∗).

6.8. Directly show right-hand side is the same as left-hand side.

6.9. Verify directly.

6.10. Use the substitution w = z+w1 to obtain z′+(2w1+p1(x))z+z2 = 0,
which is a Bernoulli equation whose multiplier is z−2 exp(− ∫ x(2u1+p1)dt).
Hence, if w1 is a solution of (6.21), then its integrating factor is (w −
w1)−2 exp(− ∫ x(2u1 + p1)dt). Now use Theorem 3.4.

6.11. (i) c1e−2x + c2e
−5x. (ii) (c1 + c2x)e4x. (iii) c1e−x cos

√
2x+ c2e

−x×
sin

√
2x.

6.12. (i) c1 cos 2x+ c2 sin 2x− 1
4x cos 2x. (ii) c1e−x + c2e

−3x − 1
2xe

−3x

(iii) c1e−x + c2e
−4x − 1

3xe
−4x.

6.13. Use explicit forms of the solution.

6.14. Note that
√
β(β + 2r) → 0 as β → 0.

6.15. c1x+ (c2/x) + (1/2)[(x− (1/x)) ln(1 + x) − x lnx− 1].



Lecture 7
Preliminaries to Existence and

Uniqueness of Solutions

So far, mostly we have engaged ourselves in solving DEs, tacitly assum-
ing that there always exists a solution. However, the theory of existence
and uniqueness of solutions of the initial value problems is quite complex.
We begin to develop this theory for the initial value problem

y′ = f(x, y), y(x0) = y0, (7.1)

where f(x, y) will be assumed to be continuous in a domain D containing
the point (x0, y0). By a solution of (7.1) in an interval J containing x0, we
mean a function y(x) satisfying (i) y(x0) = y0, (ii) y′(x) exists for all x ∈ J,
(iii) for all x ∈ J the points (x, y(x)) ∈ D, and (iv) y′(x) = f(x, y(x)) for
all x ∈ J.

For the initial value problem (7.1) later we shall prove that the continu-
ity of the function f(x, y) alone is sufficient for the existence of at least one
solution in a sufficiently small neighborhood of the point (x0, y0). However,
if f(x, y) is not continuous, then the nature of the solutions of (7.1) is quite
arbitrary. For example, the initial value problem

y′ =
2
x

(y − 1), y(0) = 0

has no solution, while the problem

y′ =
2
x

(y − 1), y(0) = 1

has an infinite number of solutions y(x) = 1 + cx2, where c is an arbitrary
constant.

The use of integral equations to establish existence theorems is a stan-
dard device in the theory of DEs. It owes its efficiency to the smoothening
properties of integration as contrasted with coarsening properties of differ-
entiation. If two functions are close enough, their integrals must be close
enough, whereas their derivatives may be far apart and may not even exist.
We shall need the following result to prove the existence, uniqueness, and
several other properties of the solutions of the initial value problem (7.1).

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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Theorem 7.1. Let f(x, y) be continuous in the domain D, then any
solution of (7.1) is also a solution of the integral equation

y(x) = y0 +
∫ x

x0

f(t, y(t))dt (7.2)

and conversely.

Proof. Any solution y(x) of the DE y′ = f(x, y) converts it into an
identity in x, i.e., y′(x) = f(x, y(x)). An integration of this equality yields

y(x) − y(x0) =
∫ x

x0

f(t, y(t))dt.

Conversely, if y(x) is any solution of (7.2) then y(x0) = y0 and since
f(x, y) is continuous, differentiating (7.2) we find y′(x) = f(x, y(x)).

While continuity of the function f(x, y) is sufficient for the existence
of a solution of (7.1), it does not imply uniqueness. For example, the
function f(x, y) = y2/3 is continuous in the entire xy-plane, but the problem
y′ = y2/3, y(0) = 0 has at least two solutions y(x) ≡ 0 and y(x) = x3/27. To
ensure the uniqueness we shall begin with the assumption that the variation
of the function f(x, y) relative to y remains bounded, i.e.,

|f(x, y1) − f(x, y2)| ≤ L|y1 − y2| (7.3)

for all (x, y1), (x, y2) in the domain D. The function f(x, y) is said to satisfy
a uniform Lipschitz condition in any domain D if the inequality (7.3) holds
for all point-pairs (x, y1), (x, y2) in D having the same x. The nonnegative
constant L is called the Lipschitz constant.

The function y2/3 violates the Lipschitz condition in any domain con-
taining y = 0, whereas the function f(x, y) = x − y satisfies the Lipschitz
condition in D = IR2 with L = 1. As an another example, the function
f(x, y) = ey satisfies the Lipschitz condition in D = {(x, y) : x ∈ IR, |y| ≤
c} with L = ec, where c is some positive constant.

Obviously, if inequality (7.3) is satisfied in D, then the function f(x, y)
is continuous with respect to y in D; however, it is not necessarily differen-
tiable with respect to y, e.g., the function f(x, y) = |y| is not differentiable
in IR2 but satisfies (7.3) with L = 1.

If the function f(x, y) is differentiable with respect to y, then it is easy
to compute the Lipschitz constant. In fact, we shall prove the following
theorem.

Theorem 7.2. Let the domain D be convex and the function f(x, y)
be differentiable with respect to y in D. Then for the Lipschitz condition
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(7.3) to be satisfied, it is necessary and sufficient that

sup
D

∣∣∣∣∂f(x, y)
∂y

∣∣∣∣ ≤ L. (7.4)

Proof. Since f(x, y) is differentiable with respect to y and the domain
D is convex, for all (x, y1), (x, y2) ∈ D the mean value theorem provides

f(x, y1) − f(x, y2) =
∂f(x, y∗)

∂y
(y1 − y2),

where y∗ lies between y1 and y2. Thus, in view of (7.4) the inequality (7.3)
is immediate.

Conversely, inequality (7.3) implies that∣∣∣∣∂f(x, y1)
∂y1

∣∣∣∣ = lim
y2→y1

∣∣∣∣f(x, y1) − f(x, y2)
y1 − y2

∣∣∣∣ ≤ L.

To prove the existence, uniqueness, and several other properties of the
solutions of (7.1), we shall also need a Gronwall’s-type integral inequality,
which is contained in the following result.

Theorem 7.3. Let u(x), p(x) and q(x) be nonnegative continuous
functions in the interval |x− x0| ≤ a and

u(x) ≤ p(x) +
∣∣∣∣
∫ x

x0

q(t)u(t)dt
∣∣∣∣ for |x− x0| ≤ a. (7.5)

Then the following inequality holds:

u(x) ≤ p(x)+
∣∣∣∣
∫ x

x0

p(t)q(t) exp
(∣∣∣∣
∫ x

t

q(s)ds
∣∣∣∣
)
dt

∣∣∣∣ for |x−x0| ≤ a. (7.6)

Proof. We shall prove (7.6) for x0 ≤ x ≤ x0 + a whereas for x0 − a ≤
x ≤ x0 the proof is similar. We define

r(x) =
∫ x

x0

q(t)u(t)dt

so that r(x0) = 0, and
r′(x) = q(x)u(x).

Since from (7.5), u(x) ≤ p(x) + r(x), it follows that

r′(x) ≤ p(x)q(x) + q(x)r(x),
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which on multiplying by exp
(
− ∫ x

x0
q(s)ds

)
is the same as(

exp
(

−
∫ x

x0

q(s)ds
)
r(x)

)′
≤ p(x)q(x) exp

(
−
∫ x

x0

q(s)ds
)
.

Integrating the above inequality, we obtain

r(x) ≤
∫ x

x0

p(t)q(t) exp
(∫ x

t

q(s)ds
)
dt

and now (7.6) follows from u(x) ≤ p(x) + r(x).

Corollary 7.4. If in Theorem 7.3 the function p(x) ≡ 0, then u(x) ≡ 0.

Corollary 7.5. If in Theorem 7.3 the function p(x) is nondecreasing
in [x0, x0 + a] and nonincreasing in [x0 − a, x0], then

u(x) ≤ p(x) exp
(∣∣∣∣
∫ x

x0

q(t)dt
∣∣∣∣
)

for |x− x0| ≤ a. (7.7)

Proof. Once again we shall prove (7.7) for x0 ≤ x ≤ x0 + a and for
x0 −a ≤ x ≤ x0 the proof is similar. Since p(x) is nondecreasing from (7.6)
we find

u(x) ≤ p(x)
[
1 +

∫ x

x0

q(t) exp
(∫ x

t

q(s)ds
)
dt

]

= p(x)
[
1 −

∫ x

x0

d

dt
exp

(∫ x

t

q(s)ds
)
dt

]

= p(x) exp
(∫ x

x0

q(t)dt
)
.

Corollary 7.6. If in Theorem 7.3 functions p(x) = c0 + c1|x− x0| and
q(x) = c2, where c0, c1 and c2 are nonnegative constants, then

u(x) ≤
(
c0 +

c1
c2

)
exp(c2|x− x0|) − c1

c2
. (7.8)

Proof. For the given functions p(x) and q(x), in the interval [x0, x0 + a]
inequality (7.6) is the same as

u(x) ≤ c0 + c1(x− x0) +
∫ x

x0

[c0 + c1(t− x0)]c2ec2(x−t)dt

= c0 + c1(x− x0) +

{
−[c0 + c1(t− x0)ec2(x−t)

∣∣∣x
x0

− c1
c2
ec2(x−t)

∣∣∣∣
x

x0

}

= c0 + c1(x−x0)− c0− c1(x−x0) + c0e
c2(x−x0) − c1

c2
+
c1
c2
ec2(x−x0)

=
(
c0 +

c1
c2

)
exp(c2(x− x0)) − c1

c2
.
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Finally, in this lecture we recall several definitions and theorems from
real analysis which will be needed in Lectures 8 and 9.

Definition 7.1. The sequence of functions {ym(x)} is said to converge
uniformly to a function y(x) in the interval [α, β] if for every real number
ε > 0 there exists an integer N such that wheneverm ≥ N, |ym(x)−y(x)| ≤
ε for all x in [α, β].

Theorem 7.7. Let {ym(x)} be a sequence of continuous functions in
[α, β] that converges uniformly to y(x). Then y(x) is continuous in [α, β].

Theorem 7.8. Let {ym(x)} be a sequence converging uniformly to
y(x) in [α, β], and let f(x, y) be a continuous function in the domain D
such that for all m and x in [α, β] the points (x, ym(x)) are in D. Then

lim
m→∞

∫ β

α

f(t, ym(t))dt =
∫ β

α

lim
m→∞ f(t, ym(t))dt =

∫ β

α

f(t, y(t))dt.

Theorem 7.9 (Weierstrass’ M-Test). Let {ym(x)} be a se-
quence of functions with |ym(x)| ≤ Mm for all x in [α, β] with

∑∞
m=0Mm <

∞. Then
∑∞

m=0 ym(x) converges uniformly in [α, β] to a unique function
y(x).

Definition 7.2. A set S of functions is said to be equicontinuous in
an interval [α, β] if for every given ε > 0 there exists a δ > 0 such that if
x1, x2 ∈ [α, β], |x1 − x2| ≤ δ then |y(x1) − y(x2)| ≤ ε for all y(x) in S.

Definition 7.3. A set S of functions is said to be uniformly bounded
in an interval [α, β] if there exists a number M such that |y(x)| ≤ M for
all y(x) in S.

Theorem 7.10 (Ascoli–Arzela Theorem). An infinite set
S of functions uniformly bounded and equicontinuous in [α, β] contains a
sequence which converges uniformly in [α, β].

Theorem 7.11 (Implicit Function Theorem). Let f(x, y)
be defined in the strip T = [α, β]×IR, and continuous in x and differentiable
in y, also 0 < m ≤ fy(x, y) ≤ M < ∞ for all (x, y) ∈ T. Then the equation
f(x, y) = 0 has a unique continuous solution y(x) in [α, β].

Problems

7.1. Show that the initial value problem

y′′ = f(x, y), y(x0) = y0, y′(x0) = y1, (7.9)
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where f(x, y) is continuous in a domain D containing the point (x0, y0), is
equivalent to the integral equation

y(x) = y0 + (x− x0)y1 +
∫ x

x0

(x− t)f(t, y(t))dt.

7.2. Find the domains in which the following functions satisfy the
Lipschitz condition (7.3), also find the Lipschitz constants:

(i)
y

(1 + x2)
. (ii)

x

(1 + y2)
. (iii) x2 cos2 y + y sin2 x.

(iv) |xy|. (v) y + [x]. (vi) x2y2 + xy + 1.

7.3. By computing appropriate Lipschitz constants, show that the fol-
lowing functions satisfy the Lipschitz condition in the given domains:

(i) x sin y + y cosx, |x| ≤ a, |y| ≤ b.

(ii) x3e−xy2
, 0 ≤ x ≤ a, |y| < ∞.

(iii) x2ex+y, |x| ≤ a, |y| ≤ b.
(iv) p(x)y+ q(x), |x| ≤ 1, |y| < ∞ where p(x) and q(x) are continuous
functions in the interval |x| ≤ 1.

7.4. Show that the following functions do not satisfy the Lipschitz
condition (7.3) in the given domains:

(i) f(x, y) =

⎧⎨
⎩

x3y

x4 + y2 , (x, y) �= (0, 0)

0, (x, y) = (0, 0)
, |x| ≤ 1, |y| ≤ 2.

(ii) f(x, y) =

⎧⎨
⎩

sin y
x

, x �= 0

0, x = 0
, |x| ≤ 1, |y| < ∞.

7.5. Let u(x) be a nonnegative continuous function in the interval
|x− x0| ≤ a, and C ≥ 0 be a given constant, and

u(x) ≤
∣∣∣∣
∫ x

x0

Cuα(t)dt
∣∣∣∣ , 0 < α < 1.

Show that for all x in |x− x0| ≤ a,

u(x) ≤ [C(1 − α)|x− x0|](1−α)−1

.

7.6. Let c0 and c1 be nonnegative constants, and u(x) and q(x) be
nonnegative continuous functions for all x ≥ 0 satisfying

u(x) ≤ c0 + c1

∫ x

0
q(t)u2(t)dt.
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Show that for all x ≥ 0 for which c0c1
∫ x

0 q(t)dt < 1,

u(x) ≤ c0

[
1 − c0c1

∫ x

0
q(t)dt

]−1

.

7.7. Suppose that y = y(x) is a solution of the initial value problem
y′ = yg(x, y), y(0) = 1 on the interval [0, β], where g(x, y) is a bounded and
continuous function in the (x, y) plane. Show that there exists a constant
C such that |y(x)| ≤ eCx for all x ∈ [0, β].

∗7.8. Suppose α > 0, γ > 0, c0, c1, c2 are nonnegative constants and
u(x) is a nonnegative bounded continuous solution of either the inequality

u(x) ≤ c0e
−αx + c1

∫ x

0
e−α(x−t)u(t)dt+ c2

∫ ∞

0
e−γtu(x+ t)dt, x ≥ 0,

or the inequality

u(x) ≤ c0e
αx + c1

∫ 0

x

eα(x−t)u(t)dt+ c2

∫ 0

−∞
eγtu(x+ t)dt, x ≤ 0.

If
β =

c1
α

+
c2
γ

< 1,

then in either case, show that

u(x) ≤ (1 − β)−1c0e
−[α−(1−β)−1c1]|x|.

∗7.9. Suppose a, b, c are nonnegative continuous functions on [0,∞)
and u(x) is a nonnegative bounded continuous solution of the inequality

u(x) ≤ a(x) +
∫ x

0
b(x− t)u(t)dt+

∫ ∞

0
c(t)u(x+ t)dt, x ≥ 0,

where a(x) → 0, b(x) → 0 as x → ∞. If∫ ∞

0
[b(t) + c(t)]dt < 1,

then show that u(x) → 0 as x → ∞.

7.10. Show that the sequence {nx/(nx+ 1)} , 0 ≤ x ≤ 1 converges

pointwise to the function f(x) =
{

0, x = 0
1, 0 < x ≤ 1.

7.11. Show that the sequence
{
nx2/(nx+ 1)

}
, 0 ≤ x ≤ 1 converges

uniformly to the function f(x) = x. Further, verify that

lim
n→∞

∫ 1

0

nx2

nx+ 1
dx =

∫ 1

0
lim

n→∞
nx2

nx+ 1
dx =

1
2
.
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∗7.12. Show the following:

(i) In the Ascoli–Arzela theorem (Theorem 7.10), the interval [α, β] can
be replaced by any finite open interval (α, β).
(ii) The Ascoli–Arzela theorem remains true if instead of uniform bound-
edness on the whole interval (α, β), we have |f(x0)| < M for every f ∈ S
and some x0 ∈ (α, β).

Answers or Hints

7.1. y(x) = y0 + (x− x0)y1 +
∫ x

x0

[∫ t

x0
f(s, y(s))ds

]
dt

= y0 + (x− x0)y1 +
[
t
∫ t

x0
f(s, y(s))ds

∣∣∣x
x0

− ∫ x

x0
tf(t, y(t))dt

]
= y0 + (x− x0)y1 +

∫ x

x0
(x− t)f(t, y(t))dt.

7.2. (i) IR2, 1. (ii) |x| ≤ a, |y| < ∞, (3
√

3/8)a. (iii) |x| ≤ a, |y| < ∞, a2+
1. (iv) |x| ≤ a, |y| < ∞, a. (v) IR2, 1. (vi) |x| ≤ a, |y| ≤ b, 2a2b+ a.

7.3. (i) a+ 1. (ii) max{2a3, 2a4}. (iii) a2ea+b. (iv) max−1≤x≤1 |p(x)|.
7.4. (i) |f(x, y)−f(x, 0)| = |x3y/(x4 +y2)| ≤ L|y|, i.e., |x3/(x4 +y2)| ≤ L;
however, along the curve y = x2 this is impossible. (ii) |f(x, y)−f(x, 0)| =
|x−1 sin y| ≤ L|y|; but, this is impossible.

7.5. For x ∈ [x0, x0+a] let r(x) =
∫ x

x0
Cuα(t)dt so that r′(x) < C(r(x)+ε)α,

where ε > 0 and r(x0) = 0. Integrate this inequality and then let ε → 0.

7.6. Let r(x) = c0 + c1
∫ x

0 q(t)u
2(t)dt so that r′(x) < c1q(x)(r(x) + ε)2,

where ε > 0 and r(0) = c0. Integrate this inequality and then let ε → 0.

7.7. Use Corollary 7.6.

7.10. Verify directly.

7.11. Verify directly.



Lecture 8
Picard’s Method

of Successive Approximations

We shall solve the integral equation (7.2) by using the method of suc-
cessive approximations due to Picard. For this, let y0(x) be any continuous
function (we often pick y0(x) ≡ y0) which we assume to be the initial
approximation of the unknown solution of (7.2), then we define y1(x) as

y1(x) = y0 +
∫ x

x0

f(t, y0(t))dt.

We take this y1(x) as our next approximation and substitute this for y(x)
on the right side of (7.2) and call it y2(x). Continuing in this way, the
(m+ 1)st approximation ym+1(x) is obtained from ym(x) by means of the
relation

ym+1(x) = y0 +
∫ x

x0

f(t, ym(t))dt, m = 0, 1, 2, . . . . (8.1)

If the sequence {ym(x)} converges uniformly to a continuous function
y(x) in some interval J containing x0 and for all x ∈ J the points
(x, ym(x)) ∈ D, then using Theorem 7.8 we may pass to the limit in both
sides of (8.1), to obtain

y(x) = lim
m→∞ ym+1(x) = y0 + lim

m→∞

∫ x

x0

f(t, ym(t))dt = y0 +
∫ x

x0

f(t, y(t))dt,

so that y(x) is the desired solution.

Example 8.1. The initial value problem y′ = −y, y(0) = 1 is equivalent
to solving the integral equation

y(x) = 1 −
∫ x

0
y(t)dt.

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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Let y0(x) = 1, to obtain

y1(x) = 1 −
∫ x

0
dt = 1 − x

y2(x) = 1 −
∫ x

0
(1 − t)dt = 1 − x+

x2

2!
· · ·

ym(x) =
m∑

i=0

(−1)ix
i

i!
.

Recalling Taylor’s series expansion of e−x, we see that limm→∞ ym(x) =
e−x. The function y(x) = e−x is indeed the solution of the given initial
value problem in J = IR.

An important characteristic of this method is that it is constructive,
moreover bounds on the difference between iterates and the solution are
easily available. Such bounds are useful for the approximation of solutions
and also in the study of qualitative properties of solutions. The following
result provides sufficient conditions for the uniform convergence of the se-
quence {ym(x)} to the unique solution y(x) of the integral equation (7.2),
or equivalently of the initial value problem (7.1).

Theorem 8.1. Let the following conditions be satisfied

(i) f(x, y) is continuous in the closed rectangle S : |x−x0| ≤ a, |y−y0| ≤ b
and hence there exists a M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ S,

(ii) f(x, y) satisfies a uniform Lipschitz condition (7.3) in S,
(iii) y0(x) is continuous in |x− x0| ≤ a, and |y0(x) − y0| ≤ b.

Then the sequence {ym(x)} generated by the Picard iterative scheme (8.1)
converges to the unique solution y(x) of the initial value problem (7.1).
This solution is valid in the interval Jh : |x − x0| ≤ h = min{a, b/M}.
Further, for all x ∈ Jh the following error estimate holds:

|y(x) − ym(x)| ≤ NeLh min
{

1,
(Lh)m

m!

}
, m = 0, 1, . . . (8.2)

where maxx∈Jh
|y1(x) − y0(x)| ≤ N.

Proof. First we shall show that the successive approximations ym(x)
defined by (8.1) exist as continuous functions in Jh and (x, ym(x)) ∈ S for
all x ∈ Jh. Since y0(x) is continuous for all x : |x − x0| ≤ a, the function
F0(x) = f(x, y0(x)) is continuous in Jh, and hence y1(x) is continuous in
Jh. Also,

|y1(x) − y0| ≤
∣∣∣∣
∫ x

x0

|f(t, y0(t))|dt
∣∣∣∣ ≤ M |x− x0| ≤ Mh ≤ b.
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Assuming that the assertion is true for ym−1(x) (m ≥ 2), then it is sufficient
to prove that it is also true for ym(x). For this, since ym−1(x) is continuous
in Jh, the function Fm−1(x) = f(x, ym−1(x)) is also continuous in Jh.
Moreover,

|ym(x) − y0| ≤
∣∣∣∣
∫ x

x0

|f(t, ym−1(t))|dt
∣∣∣∣ ≤ M |x− x0| ≤ b.

Next we shall show that the sequence {ym(x)} converges uniformly in
Jh. Since y1(x) and y0(x) are continuous in Jh, there exists a constant
N > 0 such that |y1(x) − y0(x)| ≤ N. We need to show that for all x ∈ Jh

the following inequality holds:

|ym(x) − ym−1(x)| ≤ N
(L|x− x0|)m−1

(m− 1)!
, m = 1, 2, . . . . (8.3)

For m = 1, the inequality (8.3) is obvious, further if it is true for m =
k ≥ 1, then (8.1) and hypothesis (ii) give

|yk+1(x) − yk(x)| ≤
∣∣∣∣
∫ x

x0

|f(t, yk(t)) − f(t, yk−1(t))|dt
∣∣∣∣

≤ L

∣∣∣∣
∫ x

x0

|yk(t) − yk−1(t)|dt
∣∣∣∣

≤ L

∣∣∣∣
∫ x

x0

N
(L|t− x0|)k−1

(k − 1)!
dt

∣∣∣∣ = N
(L|x− x0|)k

k!
.

Thus, the inequality (8.3) is true for all m.

Next since

N
∞∑

m=1

(L|x− x0|)m−1

(m− 1)!
≤ N

∞∑
m=0

(Lh)m

m!
= NeLh < ∞,

from Theorem 7.9 it follows that the series

y0(x) +
∞∑

m=1

(ym(x) − ym−1(x))

converges absolutely and uniformly in the interval Jh, and hence its partial
sums y1(x), y2(x), . . . converge to a continuous function in this interval,
i.e., y(x) = limm→∞ ym(x). As we have seen earlier this y(x) is a solution
of (7.2).

To show that this y(x) is the only solution, we assume that z(x) is also
a solution of (7.2) which exists in the interval Jh and (x, z(x)) ∈ S for all
x ∈ Jh. Then hypothesis (ii) is applicable and we have
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|y(x) − z(x)| ≤
∣∣∣∣
∫ x

x0

|f(t, y(t)) − f(t, z(t))|dt
∣∣∣∣ ≤ L

∣∣∣∣
∫ x

x0

|y(t) − z(t)|dt
∣∣∣∣ .

However, for the above integral inequality Corollary 7.4 implies that |y(x)−
z(x)| = 0 for all x ∈ Jh, and hence y(x) = z(x) for all x ∈ Jh.

Finally, we shall obtain the error bound (8.2). For n > m the inequality
(8.3) gives

|yn(x) − ym(x)| ≤
n−1∑
k=m

|yk+1(x) − yk(x)| ≤
n−1∑
k=m

N
(L|x− x0|)k

k!

≤ N
n−1∑
k=m

(Lh)k

k!
= N(Lh)m

n−m−1∑
k=0

(Lh)k

(m+ k)!
.

(8.4)
However, since 1/(m+ k)! ≤ 1/(m! k!) it follows that

|yn(x) − ym(x)| ≤ N
(Lh)m

m!

n−m−1∑
k=0

(Lh)k

k!
≤ N

(Lh)m

m!
eLh

and hence as n → ∞, we get

|y(x) − ym(x)| ≤ N
(Lh)m

m!
eLh. (8.5)

Inequality (8.4) also provides

|yn(x) − ym(x)| ≤ N

n−1∑
k=m

(Lh)k

k!
≤ NeLh

and as n → ∞, we find

|y(x) − ym(x)| ≤ NeLh. (8.6)

Combining (8.5) and (8.6) we obtain the required error bound (8.2).

Theorem 8.1 is called a local existence theorem since it guarantees a
solution only in the neighborhood of the point (x0, y0).

Example 8.2. Consider the initial value problem

y′ = 1 + y2, y(0) = 0 (8.7)

for which the unique solution y(x) = tanx exists in the interval (−π/2,
π/2). To apply Theorem 8.1 we note that (i) the function 1+y2 is continuous
in the rectangle S : |x| ≤ a, |y| ≤ b, and 1 + y2 ≤ 1 + b2 = M ; (ii) in the
rectangle S the function 1+y2 satisfies (7.3) with L = 2b; and (iii) y0(x) ≡
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0 is continuous in |x| ≤ a and |y0(x)| ≤ b. Thus, there exists a unique
solution of (8.7) in the interval |x| ≤ h = min{a, b/(1 + b2)}. However,
since b/(1+ b2) ≤ 1/2 (with equality for b = 1) the optimum interval which
Theorem 8.1 can give is |x| ≤ 1/2. Further, the iterative scheme (8.1) for
the problem (8.7) takes the form

ym+1(x) = x+
∫ x

0
y2

m(t)dt, y0(x) ≡ 0, m = 0, 1, . . . . (8.8)

From (8.8) it is easy to obtain y1(x) = x, y2(x) = x+x3/3. Thus, the error
bound (8.2) with b = 1, h = 1/2 and m = 2 gives

∣∣∣∣tanx− x− x3

3

∣∣∣∣ ≤ 1
2
e min

{
1,

1
2

}
=

1
4
e, − 1

2
≤ x ≤ 1

2
. (8.9)

Obviously, in (8.9) the right side is too crude.

If the solution of the initial value problem (7.1) exists in the entire
interval |x−x0| ≤ a, we say that the solution exists globally. The following
result is called a global existence theorem.

Theorem 8.2. Let the following conditions be satisfied:

(i) f(x, y) is continuous in the strip T : |x− x0| ≤ a, |y| < ∞,

(ii) f(x, y) satisfies a uniform Lipschitz condition (7.3) in T,
(iii) y0(x) is continuous in |x− x0| ≤ a.

Then the sequence {ym(x)} generated by the Picard iterative scheme (8.1)
exists in the entire interval |x−x0| ≤ a, and converges to the unique solution
y(x) of the initial value problem (7.1).

Proof. For any continuous function y0(x) in |x−x0| ≤ a an easy inductive
argument establishes the existence of each ym(x) in |x− x0| ≤ a satisfying
|ym(x)| < ∞. Also, as in the proof of Theorem 8.1 it is easy to verify that
the sequence {ym(x)} converges to y(x) in |x − x0| ≤ a (replacing h by a
throughout the proof and recalling that the function f(x, y) satisfies the
Lipschitz condition in the strip T ).

Corollary 8.3. Let f(x, y) be continuous in IR2 and satisfy a uniform
Lipschitz condition (7.3) in each strip Ta : |x| ≤ a, |y| < ∞ with the
Lipschitz constant La. Then the initial value problem (7.1) has a unique
solution which exists for all x.

Proof. For any x there exists an a > 0 such that |x − x0| ≤ a. Since,
the strip T is contained in the strip Ta+|x0| the function f(x, y) satisfies
the conditions of Theorem 8.2 in the strip T. Hence, the result follows for
any x.
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Problems

8.1. Compute the first few Picard’s iterates with y0(x) ≡ 0 for the
initial value problem y′ = xy + 2x − x3, y(0) = 0 and show that they
converge to the solution y(x) = x2 for all x.

8.2. For the following initial value problems compute the first three
iterates with the initial approximation y0(x) ≡ x:

(i) y′ = x2 − y2 − 1, y(0) = 0.
(ii) y′ = (x+ 2y)/(2x+ y), y(1) = 1.
(iii) y′ = x2 + y2, y(0) = 0.

8.3. Discuss the existence and uniqueness of the solutions of the fol-
lowing initial value problems:

(i) y′ = 1 + y2/3, y(0) = 0.
(ii) y′ = sin(xy), y(0) = 1.
(iii) y′ = (x+ y)x2y2, y(0) = 1.
(iv) y′ = ex + x/y, y(0) = 1.

8.4. Show that the following initial value problems possess a unique
solution for all real x:

(i) y′ + p(x)y = q(x), y(x0) = y0, where p(x) and q(x) are continuous in
IR.
(ii) y′ = p(x)f(cos y) + q(x)g(sin y), y(x0) = y0, where p(x) and q(x)
are continuous in IR, and f and g are polynomials of degree m and n,
respectively.
(iii) y′ = y3ex(1 + y2)−1 + x2 cos y, y(x0) = y0.

(iv) y′ = (cosx)e−y2
+ sin y, y(x0) = y0.

8.5. Show that the initial value problem

y′ = (x2 − y2) sin y + y2 cos y, y(0) = 0

has a unique solution y(x) ≡ 0 in the closed rectangle S : |x| ≤ a, |y| ≤ b.

8.6. Show that Theorem 8.1 guarantees the existence of a unique
solution of the initial value problem y′ = e2y, y(0) = 0 in the interval
(−1/2e, 1/2e). Also, solve this problem and verify that the solution exists
in a larger interval.

8.7. The function f(x, y) = (tanx)y+1 is continuous in the open strip
|x| < π/2, |y| < ∞. Solve the initial value problem y′ = (tanx)y + 1, y(0)
= 1 and verify that the solution exists in a larger interval (−3π/2, π/2).
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8.8. Let f1(x) and f2(y) �= 0 be continuous in |x−x0| ≤ a, |y−y0| ≤ b,
respectively. Show that the initial value problem y′ = f1(x)f2(y), y(x0) =
y0 has a unique solution in the interval |x− x0| ≤ h where h ≤ a.

8.9. Consider the DE (3.1), where the functions M, N are continuous
and having continuous partial derivatives My, Nx in the rectangle S :
|x − x0| < a, |y − y0| < b (0 < a, b < ∞). Suppose that N(x, y) �= 0 for
all (x, y) ∈ S and the condition (3.4) holds. Show that the initial value
problem (3.1), (1.10) has a unique solution in the interval |x − x0| ≤ h
where h ≤ a.

8.10. If f(x, y) has continuous partial derivatives of all orders in a do-
mainD, then show that themth Picard’s approximation ym(x) of the initial
value problem (7.1) has the same value and the same derivatives up to order
m at x0 as the true solution.

8.11. Let f(x, y) be continuously p > 0 times differentiable with respect
to x and y. Show that every solution of the DE (1.9) is continuously p+ 1
times differentiable with respect to x.

8.12. Consider the initial value problem

y′ = f(x, y) =

{
y(1 − 2x), x > 0

y(2x− 1), x < 0

y(1) = 1.

(8.10)

Clearly, the function f(x, y) is discontinuous at all (0, y), y �= 0. Show that

y(x) =

{
ex−x2

, x ≥ 0

ex2−x, x ≤ 0

is the unique continuous (but not differentiable at x = 0) solution of (8.10)
which is valid for all x.

8.13. Let the conditions of Theorem 8.1 be satisfied. Show that the
successive approximations

ym+1(x) = y0 +(x−x0)y1 +
∫ x

x0

(x− t)f(t, ym(t))dt, m = 0, 1, . . . (8.11)

with the initial approximation y0(x) = y0 converge to the unique solution
of the initial value problem (7.9) in the interval Jh : |x − x0| ≤ h =
min{a, b/M1}, where M1 = |y1| +Ma/2.
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Answers or Hints

8.1. ym(x) = x2 − x2(m+1)/[4.6.8 · · · 2(m+ 1)].

8.2. (i) −x,−x,−x. (ii) x, x, x. (iii) 2x3/3, (x3/3)+(4x7/63), (x3/3)+
(x7/63) + (8x11/2079) + (16x15/59535).

8.3. (i) Unique solution 3(y1/3 − tan−1 y1/3) = x. (ii) Global unique
solution. (iii) Local unique solution. (iv) Local unique solution.

8.4. Apply Corollary 8.3.

8.5. The function (x2 − y2) sin y+ y2 cos y satisfies the Lipschitz condition
(7.3) for all (x, y) ∈ S.

8.6. The solution y(x) = ln 1/
√

(1 − 2x) exists for all x ∈ [−1/2, 1/2].

8.7. The solution y(x) = tan[(x/2) + (π/4)] exists in the interval (−3π/2,
π/2).

8.8. The function G(y) =
∫ y

y0
dt/f2(t) =

∫ x

x0
f1(s)ds exists and it is con-

tinuous and monotonic as long as |y − y0| ≤ b.

8.9. From (3.3), u(x, y) = u(x0, y0). Now use implicit function theorem.

8.10. y0(x0) = y0 = y(x0), y′
1(x) = f(x, y0(x)), y′

1(x0) = f(x0, y0(x0)) =
f(x0, y0) = y′(x0), y′′

2 (x0) = ∂f
∂x (x0, y1(x0)) + ∂f

∂y (x0, y1(x0))y′
1(x0) =

y′′(x0).

8.11. Use y′(x) = f(x, y(x)).

8.12. Verify directly.

8.13. The proof is similar to that of Theorem 8.1.



Lecture 9
Existence Theorems

As promised in Lecture 7, here we shall prove that the continuity of
the function f(x, y) alone is sufficient for the existence of a solution of the
initial value problem (7.1).

Theorem 9.1 (Peano’s Existence Theorem). Let f(x, y) be
continuous and bounded in the strip T : |x− x0| ≤ a, |y| < ∞. Then the
initial value problem (7.1) has at least one solution in |x− x0| ≤ a.

Proof. We shall give the existence proof in the interval [x0, x+ a], and
its extension to [x0 −a, x0] is immediate. We define a sequence of functions
{ym(x)} by the scheme

ym(x) = y0, x0 ≤ x ≤ x0 +
a

m

ym(x) = y0 +
∫ x−(a/m)

x0

f(t, ym(t))dt, x0 + k
a

m
≤ x ≤ x0 + (k + 1)

a

m
,

k = 1, 2, . . . ,m− 1.
(9.1)

The first equation defines ym(x) in [x0, x0 + a/m]; then the second equa-
tion defines ym(x) at first in [x0 + a/m, x0 + 2a/m] and then in [x0 +
2a/m, x0 + 3a/m] and so on. Since f(x, y) is bounded in T, we can assume
that |f(x, y)| ≤ M for all (x, y) ∈ T. Now for any two points x1, x2 in
[x0, x0 + a], we have

|ym(x2) − ym(x1)|
= 0 if x1, x2 ∈

[
x0, x0 +

a

m

]

=

∣∣∣∣∣
∫ x2−(a/m)

x0

f(t, ym(t))dt

∣∣∣∣∣ ≤ M
∣∣∣x2 − a

m
− x0

∣∣∣ ≤ M |x2 − x1|

if x1 ∈
[
x0, x0 +

a

m

]
, x2 ∈

[
x0 + k

a

m
, x0 + (k + 1)

a

m

]

=

∣∣∣∣∣
∫ x2−(a/m)

x1−(a/m)
f(t, ym(t))dt

∣∣∣∣∣ ≤ M |x2 − x1| otherwise.

Thus, it follows that

|ym(x2) − ym(x1)| ≤ M |x2 − x1|, x1, x2 ∈ [x0, x0 + a].
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Hence, |ym(x2) − ym(x1)| ≤ ε provided |x2 − x1| ≤ ε/M = δ; i.e., the
sequence {ym(x)} is equicontinuous. Moreover, for all x ∈ [x0, x0 + a],
we have

|ym(x)| ≤ |y0| +M
∣∣∣x− a

m
− x0

∣∣∣ ≤ |y0| +Ma,

i.e., the sequence {ym(x)} is uniformly bounded in [x0, x0 + a]. Therefore,
from Theorem 7.10 the sequence {ym(x)} contains a subsequence {ymp(x)}
which converges uniformly in [x0, x0 + a] to a continuous function y(x). To
show that the function y(x) is a solution of the initial value problem (7.1),
we let p → ∞ in the relation

ymp(x) = y0 +
∫ x

x0

f(t, ymp(t))dt−
∫ x

x−(a/mp)
f(t, ymp

(t))dt.

Since f(x, y) is continuous and the convergence is uniform, in the first inte-
gral we can take the limit inside the integral sign to obtain

∫ x

x0
f(t, y(t))dt.

The second integral does not exceed M(a/mp) and hence tends to zero.
Thus, y(x) is a solution of the integral equation (7.2).

Corollary 9.2. Let f(x, y) be continuous in S, and hence there exists
a M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ S. Then the initial value
problem (7.1) has at least one solution in Jh.

Proof. The proof is the same as that of Theorem 9.1 with some obvious
changes.

Example 9.1. The function f(x, y) = y2/3 is continuous for all (x, y) in
IR2. Thus, from Corollary 9.2 the initial value problem y′ = y2/3, y(0) = 0
has at least one solution in the interval |x| ≤ h = min{a, b1/3}. However,
we can choose b sufficiently large so that h = a. Hence, the given problem
in fact has at least one solution for all x in IR.

Next for a given continuous function f(x, y) in a domain D, we need
the following definition.

Definition 9.1. A function y(x) defined in J is said to be an ε-
approximate solution of the DE y′ = f(x, y) if (i) y(x) is continuous for all
x in J, (ii) for all x ∈ J the points (x, y(x)) ∈ D, (iii) y(x) has a piecewise
continuous derivative in J which may fail to be defined only for a finite
number of points, say, x1, x2, . . . , xk, and (iv) |y′(x) − f(x, y(x))| ≤ ε for
all x ∈ J, x �= xi, i = 1, 2, . . . , k.

The existence of an ε-approximate solution is proved in the following
theorem.

Theorem 9.3. Let f(x, y) be continuous in S and hence there exists a
M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ S. Then for any ε > 0, there
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exists an ε-approximate solution y(x) of the DE y′ = f(x, y) in the interval
Jh such that y(x0) = y0.

Proof. Since f(x, y) is continuous in the closed rectangle S, it is uni-
formly continuous in this rectangle. Thus, for a given ε > 0 there exists a
δ > 0 such that

|f(x, y) − f(x1, y1)| ≤ ε (9.2)

for all (x, y), (x1, y1) in S whenever |x− x1| ≤ δ and |y − y1| ≤ δ.

We shall construct an ε-approximate solution in the interval x0 ≤ x ≤
x0 + h and a similar process will define it in the interval x0 − h ≤ x ≤ x0.
For this, we divide the interval x0 ≤ x ≤ x0 + h into m parts x0 < x1 <
· · · < xm = x0 + h such that

xi − xi−1 ≤ min
{
δ,
δ

M

}
, i = 1, 2, . . . ,m. (9.3)

Next we define a function y(x) in the interval x0 ≤ x ≤ x0 + h by the
recursive formula

y(x) = y(xi−1)+(x−xi−1)f(xi−1, y(xi−1)), xi−1 ≤ x ≤ xi, i = 1, 2, . . . ,m.
(9.4)

Obviously, this function y(x) is continuous and has a piecewise contin-
uous derivative y′(x) = f(xi−1, y(xi−1)), xi−1 < x < xi, i = 1, 2, . . . ,m
which fails to be defined only at the points xi, i = 1, 2, . . . ,m − 1. Since
in each subinterval [xi−1, xi], i = 1, 2, . . . ,m the function y(x) is a straight
line, to prove (x, y(x)) ∈ S it suffices to show that |y(xi) − y0| ≤ b for all
i = 1, 2, . . . ,m. For this, in (9.4) let i = 1 and x = x1 to obtain

|y(x1) − y0| = (x1 − x0)|f(x0, y0)| ≤ Mh ≤ b.

Now let the assertion be true for i = 1, 2, . . . , k − 1 < m − 1, then from
(9.4), we find

y(x1) − y0 = (x1 − x0)f(x0, y0)
y(x2) − y(x1) = (x2 − x1)f(x1, y(x1))

· · ·
y(xk) − y(xk−1) = (xk − xk−1)f(xk−1, y(xk−1))

and hence,

y(xk) − y0 =
k∑


=1

(x
 − x
−1)f(x
−1, y(x
−1)),

which gives

|y(xk) − y0| ≤
k∑


=1

(x
 − x
−1)M = M(xk − x0) ≤ Mh ≤ b.
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Finally, if xi−1 < x < xi then from (9.4) and (9.3), we have

|y(x) − y(xi−1)| ≤ M |x− xi−1| ≤ M
δ

M
= δ

and hence from (9.2), we find

|y′(x) − f(x, y(x))| = |f(xi−1, y(xi−1)) − f(x, y(x))| ≤ ε

for all x ∈ Jh, x �= xi, i = 1, 2, . . . ,m−1. This completes the proof that y(x)
is an ε-approximate solution of the DE y′ = f(x, y). This method of con-
structing an approximate solution is known as Cauchy–Euler method.

Now we restate Corollary 9.2, and prove it as a consequence of Theo-
rem 9.3.

Theorem 9.4 (Cauchy–Peano’s Existence Theorem). Let
the conditions of Theorem 9.3 be satisfied. Then the initial value problem
(7.1) has at least one solution in Jh.

Proof. Once again we shall give the proof only in the interval x0 ≤
x ≤ x0 + h. Let {εm} be a monotonically decreasing sequence of positive
numbers such that εm → 0. For each εm we use Theorem 9.3 to construct an
ε-approximate solution ym(x). Now as in Theorem 9.1, for any two points
x and x∗ in [x0, x0 + h] it is easy to prove that

|ym(x) − ym(x∗)| ≤ M |x− x∗|

and from this it follows that the sequence {ym(x)} is equicontinuous. Fur-
ther, as in Theorem 9.3 for each x in [x0, x0 +h], we have |ym(x)| ≤ |y0|+b,
and hence the sequence {ym(x)} is also uniformly bounded. Therefore,
again Theorem 7.10 is applicable and the sequence {ym(x)} contains a sub-
sequence {ymp

(x)} which converges uniformly in [x0, x0+h] to a continuous
function y(x). To show that the function y(x) is a solution of (7.1), we define

em(x) = y′
m(x) − f(x, ym(x)), at the points where y′

m(x) exists

= 0, otherwise.

Thus, it follows that

ym(x) = y0 +
∫ x

x0

[f(t, ym(t)) + em(t)]dt (9.5)

and |em(x)| ≤ εm. Since f(x, y) is continuous in S and ymp(x) converges
to y(x) uniformly in [x0, x0 + h], the function f(x, ymp(x)) converges to
f(x, y(x)) uniformly in [x0, x0 + h]. Further, since εmp → 0 we find that
|εmp(x)| converges to zero uniformly in [x0, x0 + h]. Thus, by replacing m
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by mp in (9.5) and letting p → ∞, we find that y(x) is a solution of the
integral equation (7.2).

Corollary 9.2 essentially states the following: If in a domain D the
function f(x, y) is continuous, then for every point (x0, y0) in D there is
a rectangle S such that (7.1) has a solution y(x) in Jh. Since S lies in D,
by applying Corollary 9.2 to the point at which the solution goes out of S,
we can extend the region in which the solution exists. For example, the
function y(x) = 1/(1 − x) is the solution of the problem y′ = y2, y(0) = 1.
Clearly, this solution exists in (−∞, 1). For this problem

S : |x| ≤ a, |y − 1| ≤ b, M = max
S

y2 = (1 + b)2

and h = min{a, b/(1 + b)2}. Since b/(1 + b)2 ≤ 1/4 we can (independent of
the choice of a) take h = 1/4. Thus, Corollary 9.2 gives the existence of a
solution y1(x) only in the interval |x| ≤ 1/4. Now consider the continuation
of y1(x) to the right obtained by finding a solution y2(x) of the problem
y′ = y2, y(1/4) = 4/3. For this new problem S : |x−1/4| ≤ a, |y−4/3| ≤ b,
and maxS y

2 = (4/3+ b)2. Since b/(4/3+ b)2 ≤ 3/16 we can take h = 3/16.
Thus, y2(x) exists in the interval |x−1/4| ≤ 3/16. This ensures the existence
of a solution

y(x) =

{
y1(x), − 1/4 ≤ x ≤ 1/4

y2(x), 1/4 ≤ x ≤ 7/10

in the interval −1/4 ≤ x ≤ 7/16. This process of continuation of the solution
can be used further to the right of the point (7/16, 16/9), or to the left of
the point (−1/4, 4/5). In order to establish how far the solution can be
continued, we need the following lemma.

Lemma 9.5. Let f(x, y) be continuous in the domain D and let
supD |f(x, y)| ≤ M. Further, let the initial value problem (7.1) has a solu-
tion y(x) in an interval J = (α, β). Then the limits limx→α+ y(x) = y(α+0)
and limx→β− y(x) = y(β − 0) exist.

Proof. For α < x1 < x2 < β, integral equation (7.2) gives that

|y(x2) − y(x1)| ≤
∫ x2

x1

|f(t, y(t))|dt ≤ M |x2 − x1|.

Therefore, y(x2) − y(x1) → 0 as x1, x2 → α+. Thus, by the Cauchy cri-
terion of convergence limx→α+ y(x) exists. A similar argument holds for
limx→β− y(x).

Theorem 9.6. Let the conditions of Lemma 9.5 be satisfied and let
(β, y(β − 0)) ∈ D ((α, y(α+ 0)) ∈ D). Then the solution y(x) of the initial
value problem (7.1) in (α, β) can be extended over the interval (α, β +
γ] ([α− γ, β)) for some γ > 0.
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Proof. We define the function y1(x) as follows: y1(x) = y(x) for x ∈
(α, β) and y1(β) = y(β − 0). Then since for all x ∈ (α, β]

y1(x) = y(β − 0) +
∫ x

β

f(t, y1(t))dt

= y0 +
∫ β

x0

f(t, y1(t))dt+
∫ x

β

f(t, y1(t))dt

= y0 +
∫ x

x0

f(t, y1(t))dt,

the left-hand derivative y′
1(β− 0) exists and y′

1(β− 0) = f(β, y1(β)). Thus,
y1(x) is a continuation of y(x) in the interval (α, β]. Next let y2(x) be a
solution of the problem y′ = f(x, y), y(β) = y1(β) existing in the interval
[β, β + γ], then the function

y3(x) =
{
y1(x), x ∈ (α, β]
y2(x), x ∈ [β, β + γ]

is a continuation of y(x) in the interval (α, β + γ]. For this, it suffices to
note that

y3(x) = y0 +
∫ x

x0

f(t, y3(t))dt (9.6)

for all x ∈ (α, β + γ]. In fact (9.6) is obvious for all x ∈ (α, β] from the
definition of y3(x) and for x ∈ [β, β + γ], we have

y3(x) = y(β − 0) +
∫ x

β

f(t, y3(t))dt

= y0 +
∫ β

x0

f(t, y3(t))dt+
∫ x

β

f(t, y3(t))dt

= y0 +
∫ x

x0

f(t, y3(t))dt.

Problems

9.1. Let f(x, y) be continuous and |f(x, y)| ≤ c1 +c2|y|α for all (x, y) ∈
T : |x − x0| ≤ a, |y| < ∞ where c1 and c2 are nonnegative constants
and 0 ≤ α < 1. Show that the initial value problem (7.1) has at least one
solution in the interval |x− x0| ≤ a.

9.2. Let f(x, y) be continuous and satisfy the Lipschitz condition (7.3)
in a domain D. Further, let yi(x), i = 1, 2 be εi-approximate solutions of
the DE y′ = f(x, y) in J and x0 ∈ J. Show that for all x ∈ J

|y1(x) − y2(x)| ≤
(

|y1(x0) − y2(x0)| +
ε1 + ε2
L

)
exp(L|x− x0|) − ε1 + ε2

L
.
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9.3. Show that the solution of the problem y′ = −x/y, y(0) = 1 cannot
be extended beyond the interval −1 < x < 1.

9.4. Show that the solution of the problem y′ = y2, y(0) = 2 is ex-
tendable only to the interval −∞ < x < 1/2.

9.5. Show that the solution of the problem y′ = 2xy2, y(0) = 1 exists
only in the interval |x| < 1.

9.6. Show that the solution of the problem y′ = 1+y2, y(0) = 1 cannot
be extended beyond the interval −3π/4 < x < π/4.

9.7. Find the maximum interval in which the solution of the problem
y′ + (sinx)y2 = 3(xy)2, y(0) = 2 can be extended.

9.8. Find the maximum interval of existence of solutions of y′ +
3y4/3 sinx = 0 satisfying (i) y(π/2) = 0, (ii) y(π/2) = 1/8, and (iii) y(π/2)
= 8.

9.9. Solve the initial value problem

yy′ − 3x2(1 + y2) = 0, y(0) = 1.

Find also the largest interval on which the solution is defined.

Answers or Hints

9.1. In the rectangle S : |x−x0| ≤ a, |y−y0| ≤ b, |f(x, y)| ≤ c1 +c2(|y0|+
b)α = K. Note that b/K → ∞ as b → ∞.

9.2. For x ≥ x0, |y′
i(x) − f(x, yi(x))| ≤ εi, i = 1, 2 yields |yi(x) − yi(x0) −∫ x

x0
f(t, yi(t))dt| ≤ εi(x− x0). Now use |p− q| ≤ |p| + |q| and Corollary 7.6.

9.3. Although the solution y(x) =
√

1 − x2 is defined on [−1, 1] its deriva-
tive is not defined at x = ±1.

9.4. The solution is y(x) = 2/(1 − 2x).

9.5. The solution is y(x) = 1/(1 − x2).

9.6. The solution is y(x) = tan(x+ π/4).

9.7. The solution is y(x) = 1/[(3/2) − cosx − x3], which is defined in
(−∞, 0.9808696 · · ·).
9.8. (i) The solution is y(x) ≡ 0, which is defined on IR. (ii) The solution
is y(x) = 1/(2− cosx)3, which is defined on IR. (iii) The solution is y(x) =
1/[(1/2) − cosx]3, which is defined in (π/3, 5π/3).

9.9. y =
(
2e2x3 − 1

)1/2
, x >

( 1
2 ln 1

2

)1/3
.



Lecture 10
Uniqueness Theorems

In our previous lectures we have proved that the continuity of the func-
tion f(x, y) in the closed rectangle S is sufficient for the existence of at
least one solution of the initial value problem (7.1) in the interval Jh, and
to achieve the uniqueness (i.e., existence of at most one solution) some
additional condition on f(x, y) is required. In fact, continuous functions
f(x, y) have been constructed (see Lavrentev [30], Hartman [20]) so that
from any given point (x0, y0) the equation y′ = f(x, y) has at least two
solutions in every neighborhood of (x0, y0). In Theorem 8.1 this additional
condition was assumed to be the Lipschitz continuity. In the following, we
shall provide several such conditions which are sufficient for the uniqueness
of the solutions of (7.1).

Theorem 10.1 (Lipschitz Uniqueness Theorem). Let
f(x, y) be continuous and satisfy a uniform Lipschitz condition (7.3) in S.
Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. In Theorem 8.1 the uniqueness of the solutions of (7.1) is proved
in the interval Jh; however, it is clear that Jh can be replaced by the interval
|x− x0| ≤ a.

Theorem 10.2 (Peano’s Uniqueness Theorem). Let f(x, y)
be continuous in S+ : x0 ≤ x ≤ x0 + a, |y − y0| ≤ b and nonincreasing in
y for each fixed x in x0 ≤ x ≤ x0 + a. Then (7.1) has at most one solution
in x0 ≤ x ≤ x0 + a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in x0 ≤
x ≤ x0 + a which differ somewhere in x0 ≤ x ≤ x0 + a. We assume that
y2(x) > y1(x) in x1 < x < x1 + ε ≤ x0 + a, while y1(x) = y2(x) in
x0 ≤ x ≤ x1, i.e., x1 is the greatest lower bound of the set A consisting of
those x for which y2(x) > y1(x). This greatest lower bound exists because
the set A is bounded below by x0 at least. Thus, for all x ∈ (x1, x1 + ε)
we have f(x, y1(x)) ≥ f(x, y2(x)); i.e., y′

1(x) ≥ y′
2(x). Hence, the function

z(x) = y2(x) − y1(x) is nonincreasing, since if z(x1) = 0 we should have
z(x) ≤ 0 in (x1, x1 + ε). This contradiction proves that y1(x) = y2(x) in
x0 ≤ x ≤ x0 + a.

Example 10.1. The function |y|1/2sgn y, where sgn y = 1 if y ≥ 0,
and −1 if y < 0 is continuous, nondecreasing, and the initial value problem
y′ = |y|1/2sgn y, y(0) = 0 has two solutions y(x) ≡ 0, y(x) = x2/4 in the
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interval [0,∞). Thus, in Theorem 10.2 “nonincreasing” cannot be replaced
by “nondecreasing.”

For our next result, we need the following lemma.

Lemma 10.3. Let w(z) be continuous and increasing function in the
interval [0,∞), and w(0) = 0, w(z) > 0 for z > 0, with also

lim
ε→0+

∫
ε

dz

w(z)
= ∞. (10.1)

Let u(x) be a nonnegative continuous function in [0, a]. Then the inequality

u(x) ≤
∫ x

0
w(u(t))dt, 0 < x ≤ a (10.2)

implies that u(x) ≡ 0 in [0, a].

Proof. Define v(x) = max0≤t≤x u(t) and assume that v(x) > 0 for
0 < x ≤ a. Then u(x) ≤ v(x) and for each x there is an x1 ≤ x such that
u(x1) = v(x). From this, we have

v(x) = u(x1) ≤
∫ x1

0
w(u(t))dt ≤

∫ x

0
w(v(t))dt;

i.e., the nondecreasing function v(x) satisfies the same inequality as u(x)
does. Let us set

v(x) =
∫ x

0
w(v(t))dt,

then v(0) = 0, v(x) ≤ v(x), v′(x) = w(v(x)) ≤ w(v(x)). Hence, for 0 <
δ < a, we have ∫ a

δ

v′(x)
w(v(x))

dx ≤ a− δ < a.

However, from (10.1) it follows that∫ a

δ

v′(x)
w(v(x))

dx =
∫ α

ε

dz

w(z)
, v(δ) = ε, v(a) = α

becomes infinite when ε → 0 (δ → 0). This contradiction shows that v(x)
cannot be positive, so v(x) ≡ 0, and hence u(x) = 0 in [0, a].

Theorem 10.4 (Osgood’s Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ w(|y1 − y2|), (10.3)

where w(z) is the same as in Lemma 10.3. Then (7.1) has at most one
solution in |x− x0| ≤ a.
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Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
Then from (10.3) it follows that

|y1(x) − y2(x)| ≤
∣∣∣∣
∫ x

x0

w(|y1(t) − y2(t)|)dt
∣∣∣∣ .

For any x in [x0, x0 + a], we set u(x) = |y1(x0 + x) − y2(x0 + x)|. Then the
nonnegative continuous function u(x) satisfies the inequality (10.2), and
therefore, Lemma 10.3 implies that u(x) = 0 in [0, a], i.e., y1(x) = y2(x) in
[x0, x0+a]. If x is in [x0−a, x0], then the proof remains the same except that
we need to define the function u(x) = |y1(x0−x)−y2(x0−x)| in [0, a].

For our next result, we shall prove the following lemma.

Lemma 10.5. Let u(x) be nonnegative continuous function in |x−x0| ≤
a, and u(x0) = 0, and let u(x) be differentiable at x = x0 with u′(x0) = 0.
Then the inequality

u(x) ≤
∣∣∣∣
∫ x

x0

u(t)
t− x0

dt

∣∣∣∣ (10.4)

implies that u(x) = 0 in |x− x0| ≤ a.

Proof. It suffices to prove the lemma only for x0 ≤ x ≤ x0 + a. We
define

v(x) =
∫ x

x0

u(t)
t− x0

dt.

This integral exists since

lim
x→x0

u(x)
x− x0

= u′(x0) = 0.

Further, we have

v′(x) =
u(x)
x− x0

≤ v(x)
x− x0

and hence d/dx[v(x)/(x − x0)] ≤ 0, which implies that v(x)/(x − x0) is
nonincreasing. Since v(x0) = 0, this gives v(x) ≤ 0, which is a contradiction
to v(x) ≥ 0. So, v(x) ≡ 0, and hence u(x) = 0 in [x0, x0 + a].

Theorem 10.6 (Nagumo’s Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ k|x− x0|−1|y1 − y2|, x �= x0, k ≤ 1. (10.5)

Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
Then from (10.5) it follows that

|y1(x) − y2(x)| ≤
∣∣∣∣
∫ x

x0

|t− x0|−1|y1(t) − y2(t)|dt
∣∣∣∣ .
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We set u(x) = |y1(x) − y2(x)|; then the nonnegative function u(x) satisfies
the inequality (10.4). Further, since u(x) is continuous in |x−x0| ≤ a, and
u(x0) = 0, from the mean value theorem we have

u′(x0) = lim
h→0

u(x0 + h) − u(x0)
h

= lim
h→0

|y1(x0) + hy′
1(x0 + θ1h) − y2(x0) − hy′

2(x0 + θ2h)|
h

,

0 < θ1, θ2 < 1

= (sgn h) lim
h→0

|y′
1(x0 + θ1h) − y′

2(x0 + θ2h)| = 0.

Thus, the conditions of Lemma 10.5 are satisfied and u(x) ≡ 0, i.e., y1(x) =
y2(x) in |x− x0| ≤ a.

Example 10.2. It is easy to verify that the function

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ x ≤ 1, y ≤ 0
(1 + ε)y

x
0 ≤ x ≤ 1, 0 < y < x1+ε, ε > 0

(1 + ε)xε 0 ≤ x ≤ 1, x1+ε ≤ y

is continuous and satisfies the condition (10.5) (except k = 1 + ε > 1)
in S : [0, 1] × IR. For this function the initial value problem (7.1) with
(x0, y0) = (0, 0) has an infinite number of solutions y(x) = cx1+ε, where c
is an arbitrary constant such that 0 < c < 1. Thus, in condition (10.5) the
constant k ≤ 1 is the best possible, i.e., it cannot be replaced by k > 1.

Theorem 10.7 (Krasnoselski–Krein Uniqueness Theo-
rem). Let f(x, y) be continuous in S and for all (x, y1), (x, y2) ∈ S it
satisfies

|f(x, y1) − f(x, y2)| ≤ k|x− x0|−1|y1 − y2|, x �= x0, k > 0 (10.6)

|f(x, y1) − f(x, y2)| ≤ C|y1 − y2|α, C > 0, 0 < α < 1, k(1 − α) < 1.
(10.7)

Then (7.1) has at most one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
We shall show that y1(x) = y2(x) only in the interval [x0, x0 + a]. For this,
from (10.7) we have

u(x) = |y1(x) − y2(x)| ≤
∫ x

x0

Cuα(t)dt

and hence Problem 7.5 gives that

u(x) ≤ [C(1 − α)(x− x0)](1−α)−1 ≤ [C(x− x0)](1−α)−1
.
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Thus, the function v(x) = u(x)/(x− x0)k satisfies the inequality

0 ≤ v(x) ≤ C(1−α)−1
(x− x0)(1−α)−1−k. (10.8)

Since k(1−α) < 1, it is immediate that limx→x0 v(x) = 0.Hence, if we define
v(x0) = 0, then the function v(x) is continuous in [x0, x0 + a]. We wish to
show that v(x) = 0 in [x0, x0+a]. If v(x) > 0 at any point in [x0, x0+a], then
there exists a point x1 > x0 such that 0 < m = v(x1) = maxx0≤x≤x0+a v(x).
However, from (10.6) we obtain

m = v(x1) ≤ (x1 − x0)−k

∫ x1

x0

k(t− x0)−1u(t)dt

≤ (x1 − x0)−k

∫ x1

x0

k(t− x0)k−1v(t)dt

< m(x1 − x0)−k

∫ x1

x0

k(t− x0)k−1dt

= m(x1 − x0)−k(x1 − x0)k = m,

which is the desired contradiction. So, v(x) ≡ 0, and hence u(x) = 0 in
[x0, x0 + a].

Theorem 10.8 (Van Kampen Uniqueness Theorem). Let
f(x, y) be continuous in S and for all (x, y) ∈ S it satisfies

|f(x, y)| ≤ A|x− x0|p, p > −1, A > 0. (10.9)

Further, let for all (x, y1), (x, y2) ∈ S it satisfies

|f(x, y1) − f(x, y2)| ≤ C

|x− x0|r |y1 − y2|q, q ≥ 1, C > 0 (10.10)

with q(1 + p) − r = p, ρ = C(2A)q−1/(p+ 1)q < 1. Then (7.1) has at most
one solution in |x− x0| ≤ a.

Proof. Suppose y1(x) and y2(x) are two solutions of (7.1) in |x−x0| ≤ a.
We shall show that y1(x) = y2(x) only in the interval [x0 − a, x0]. For this,
from (10.9) we have

u(x) = |y1(x) − y2(x)| ≤
∫ x0

x

|f(t, y1(t)) − f(t, y2(t))|dt

≤ 2A
∫ x0

x

(x0 − t)pdt =
2A
p+ 1

(x0 − x)p+1.

Using this estimate and (10.10), we obtain

u(x) ≤ C

∫ x0

x

1
(x0 − t)r

uq(t)dt

≤ C

(
2A
p+ 1

)q ∫ x0

x

(x0 − t)q(p+1)−rdt = ρ

(
2A
p+ 1

)
(x0 − x)p+1.
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Now using this new estimate and (10.10), we get

u(x) ≤ ρ1+q

(
2A
p+ 1

)
(x0 − x)p+1.

Continuing in this way, we find

u(x) ≤ ρ1+q+q2+···+qm

(
2A
p+ 1

)
(x0 − x)p+1, m = 1, 2, . . . .

Since q ≥ 1 and ρ < 1, it follows that u(x) = 0 in |x0 − a, x0].

Problems

10.1. Consider the initial value problem

y′ = f(x, y) =

⎧⎨
⎩

4x3y

x4 + y2 , (x, y) �= (0, 0)

0, (x, y) = (0, 0)

y(0) = 0.

(10.11)

Show that the function f(x, y) is continuous but does not satisfy the Lips-
chitz condition in any region containing the origin (see Problem 7.4). Fur-
ther, show that (10.11) has an infinite number of solutions.

10.2. Given the equation y′ = xg(x, y), suppose that g and ∂g/∂y are
defined and continuous for all (x, y). Show the following:

(i) y(x) ≡ 0 is a solution.
(ii) If y = y(x), x ∈ (α, β) is a solution and if y(x0) > 0, x0 ∈ (α, β),
then y(x) > 0 for all x ∈ (α, β).
(iii) If y = y(x), x ∈ (α, β) is a solution and if y(x0) < 0, x0 ∈ (α, β),
then y(x) < 0 for all x ∈ (α, β).

10.3. Let f(x, y) be continuous and satisfy the generalized Lipschitz
condition

|f(x, y1) − f(x, y2)| ≤ L(x)|y1 − y2|
for all (x, y1), (x, y2) in S, where the function L(x) is such that the integral∫ x0+a

x0−a
L(t)dt exists. Show that (7.1) has at most one solution in |x−x0| ≤ a.

10.4. Give some examples to show that the Lipschitz condition in
Theorem 10.1 is just a sufficient condition for proving the uniqueness of the
solutions of (7.1) but not the necessary condition.
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10.5. Let f(x, y) be continuous in S+ and for all (x, y1), (x, y2) in S+
with y2 ≥ y1 satisfy one sided Lipschitz condition

f(x, y2) − f(x, y1) ≤ L(y2 − y1).

Show that (7.1) has at most one solution in x0 ≤ x ≤ x0 + a.

10.6. Let f(x, y) be continuous in S− : x0 − a ≤ x ≤ x0, |y − y0| ≤ b
and nondecreasing in y for each fixed x in x0 −a ≤ x ≤ x0. Show that (7.1)
has at most one solution in x0 − a ≤ x ≤ x0.

10.7. Show that the functions w(z) = Lzα (α ≥ 1), and

w(z) =

{
−z ln z, 0 ≤ z ≤ e−1

e−1, z > e−1

satisfy the conditions of Lemma 10.3.

10.8. Consider the function f(x, y) in the strip T : − ∞ < x ≤ 1,
−∞ < y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −∞ < x ≤ 0, − ∞ < y < ∞
2x 0 < x ≤ 1, − ∞ < y < 0

2x− 4y
x

0 < x ≤ 1, 0 ≤ y ≤ x2

−2x 0 < x ≤ 1, x2 < y < ∞.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in the
interval −∞ < x ≤ 1. Further, show that the Picard iterates with y0(x) ≡ 0
for this problem do not converge.

10.9. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 ≤ x ≤ 1, x1/(1−α) < y < ∞, 0 < α < 1

kxα/(1−α) − k
y

x
0 ≤ x ≤ 1, 0 ≤ y ≤ x1/(1−α), k > 0

kxα/(1−α) 0 ≤ x ≤ 1, − ∞ < y < 0, k(1 − α) < 1.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in [0, 1].

∗10.10 (Rogers’ Uniqueness Theorem). Let f(x, y) be continuous
in the strip T : 0 ≤ x ≤ 1, − ∞ < y < ∞ and satisfy the condition

f(x, y) = o
(
e−1/xx−2

)
uniformly for 0 ≤ y ≤ δ, δ > 0 arbitrary. Further, let for all (x, y1), (x, y2)
∈ T it satisfy

|f(x, y1) − f(x, y2)| ≤ 1
x2 |y1 − y2|.
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Show that the problem y′ = f(x, y), y(0) = 0 has at most one solution in
[0, 1].

10.11. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 +

1
x

)
e−1/x 0 ≤ x ≤ 1, xe−1/x ≤ y < ∞

y

x2 + e−1/x 0 ≤ x ≤ 1, 0 ≤ y ≤ xe−1/x

e−1/x 0 ≤ x ≤ 1, − ∞ < y ≤ 0.

Show that the problem y′ = f(x, y), y(0) = 0 has a unique solution in [0, 1].

10.12. Consider the function f(x, y) in the strip T : 0 ≤ x ≤ 1, −∞ <
y < ∞ defined by

f(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 0 ≤ x ≤ 1, − ∞ < y ≤ 0
y

x2 0 ≤ x ≤ 1, 0 ≤ y ≤ e−1/x

e−1/x

x2 0 ≤ x ≤ 1, e−1/x ≤ y < ∞.

Show that the problem y′ = f(x, y), y(0) = 0 has an infinite number of
solutions in [0, 1].

Answers or Hints

10.1. y = c2 − √
x4 + c4, where c is arbitrary.

10.2. (i) Verify directly. (ii) Use Theorem 10.1. (iii) Use Theorem 10.1.

10.3. Since
∫ x0+a

x0−a
L(t)dt exists, Corollary 7.4 is applicable.

10.4. Consider the Problem 8.3(i), or y′ = y ln(1/y), y(0) = α ≥ 0.

10.5. Suppose two solutions y1(x) and y2(x) are such that y2(x) > y1(x),
x1 < x < x1 + ε ≤ x0 + a and y1(x) = y2(x), x0 ≤ x ≤ x1. Now apply
Corollary 7.4.

10.6. The proof is similar to that of Theorem 10.2.

10.7. Verify directly.

10.8. The given function is continuous and bounded by 2 in T. Also it
satisfies the conditions of Theorem 10.2 (also, see Problem 10.6). The only

solution is y(x) =
{

0, − ∞ < x ≤ 0
x2/3, 0 < x ≤ 1. The successive approximations are

y2m−1(x) = x2, y2m(x) = −x2, m = 1, 2, . . . .



76 Lecture 10

10.9. Show that conditions of Theorem 10.7 are satisfied. The only solution
is y(x) = k(1 − α)x1/(1−α)/[k(1 − α) + 1].

10.11. Show that conditions of Problem 10.10 are satisfied. The only so-
lution is y(x) = xe−1/x.

10.12. Show that the condition f(x, y) = o
(
e−1/xx−2

)
of Problem 10.10 is

not satisfied. For each 0 ≤ c ≤ 1, y(x) = ce−1/x is a solution.



Lecture 11
Differential Inequalities

Let the function f(x, y) be continuous in a given domain D. A function
y(x) is said to be a solution of the differential inequality y′ > f(x, y) in
J = [x0, x0 + a) if (i) y′(x) exists for all x ∈ J, (ii) for all x ∈ J the points
(x, y(x)) ∈ D, and (iii) y′(x) > f(x, y(x)) for all x ∈ J. The solutions of
the differential inequalities y′ ≥ f(x, y), y′ < f(x, y), and y′ ≤ f(x, y)
are defined analogously. For example, y(x) = cotx is a solution of the
differential inequality y′ < −y2 in the interval (0, π).

Our first basic result for differential inequalities is stated in the following
theorem.

Theorem 11.1. Let f(x, y) be continuous in the domain D and y1(x)
and y2(x) be the solutions of the differential inequalities

y′
1 ≤ f(x, y1), y′

2 > f(x, y2) (11.1)

on J. Then y1(x0) < y2(x0) implies that

y1(x) < y2(x) for all x ∈ J. (11.2)

Proof. If (11.2) is not true, then the set A = {x : x ∈ J, y1(x) ≥ y2(x)}
is nonempty. Let x∗ be the greatest lower bound of A, then x0 < x∗ and
y1(x∗) = y2(x∗). Now for h < 0 we have y1(x∗ +h) < y2(x∗ +h), and hence

y′
1(x

∗ − 0) = lim
h→0

y1(x∗ + h) − y1(x∗)
h

≥ lim
h→0

y2(x∗ + h) − y2(x∗)
h

= y′
2(x

∗ − 0).

Therefore, from (11.1) we obtain f(x∗, y1(x∗)) > f(x∗, y2(x∗)), which is
a contradiction to y1(x∗) = y2(x∗). Hence, the set A is empty and (11.2)
follows.

Obviously, Theorem 11.1 holds even when we replace ≤ by < and > by
≥ in (11.1).

Corollary 11.2. Let f(x, y) be continuous in the domain D. Further,
we assume the following:

(i) y(x) is a solution of the initial value problem (7.1) in J = [x0, x0 +a).
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(ii) y1(x) and y2(x) are the solutions of the differential inequalities y′
1 <

f(x, y1), y′
2 > f(x, y2) in J .

(iii) y1(x0) ≤ y0 ≤ y2(x0).

Then y1(x) < y(x) < y2(x) for all x ∈ (x0, x0 + a).

Proof. We shall prove only y(x) < y2(x) in the interval (x0, x0 + a).
If y0 < y2(x0), then the result follows from Theorem 11.1. Thus, we shall
assume that y0 = y2(x0). Let z(x) = y2(x) − y(x), then z′(x0) = y′

2(x0) −
y′(x0) > f(x0, y2(x0)) − f(x0, y(x0)) = 0, i.e., z(x) is increasing to the
right of x0 in a sufficiently small interval [x0, x0 + δ]. Therefore, we have
y(x0 + δ) < y2(x0 + δ). Now an application of Theorem 11.1 gives that
y(x) < y2(x) for all x ∈ [x0 + δ, x0 + a). Since δ can be chosen sufficiently
small, the conclusion follows.

In Theorem 11.1, and consequently in Corollary 11.2, several refinements
are possible, e.g., it is enough if the inequalities (11.1) hold in J except at
a countable subset of J.

Example 11.1. Consider the initial value problem

y′ = y2 + x2, y(0) = 1, x ∈ [0, 1). (11.3)

For the function y1(x) = 1 + x3/3, y1(0) = 1 and for x ∈ (0, 1), we have

y′
1(x) = x2 <

(
1 +

x3

3

)2

+ x2 = y2
1(x) + x2.

Similarly, for the function y2(x) = tan(x+π/4), y2(0) = 1 and for x ∈ (0, 1),
we find

y′
2(x) = sec2

(
x+

π

4

)
= tan2

(
x+

π

4

)
+ 1 > y2

2(x) + x2.

Thus, from Corollary 11.2 the solution y(x) of the problem (11.3) can be
bracketed between y1(x) and y2(x), i.e.,

1 +
x3

3
< y(x) < tan

(
x+

π

4

)
, x ∈ (0, 1).

As the first application of Theorem 11.1, we shall prove the following
result.

Theorem 11.3. Let f(x, y) be continuous in the domain D and for all
(x, y), (x, z) in D with x ≥ x0, y ≥ z

f(x, y) − f(x, z) ≤ L(y − z). (11.4)

Further, we assume that conditions (i)–(iii) of Corollary 11.2 with strict
inequalities in (ii) replaced by with equalities are satisfied. Then y1(x) ≤
y(x) ≤ y2(x) for all x ∈ J.
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Proof. We define z1(x) = y1(x) − εeλ(x−x0), where ε > 0 and λ > L.
Then from the above assumptions, we obtain

z′
1(x) = y′

1(x) − ελeλ(x−x0) ≤ f(x, y1(x)) − ελeλ(x−x0)

≤ f(x, z1(x)) + ε(L− λ)eλ(x−x0)

< f(x, z1(x)).

Similarly, for the function z2(x) = y2(x) + εeλ(x−x0), we find

z′
2(x) > f(x, z2(x)).

Also, z1(x0) < y1(x0) ≤ y0 ≤ y2(x0) < z2(x0) is obvious. Hence, the
conditions of Theorem 11.1 for the functions z1(x) and z2(x) are satisfied,
and we get

z1(x) < y(x) < z2(x) (11.5)

for all x ∈ J. The desired conclusion now follows by letting ε → 0 in
(11.5).

Corollary 11.4. Let the conditions of Theorem 11.3 with (11.4) re-
placed by the Lipschitz condition (7.3) be satisfied for all x ≥ x0, and
let (iii) of Corollary 11.2 be replaced by y1(x0) = y0 = y2(x0). Then for
any x1 ∈ J such that x1 > x0, either y1(x1) < y(x1) (y(x1) < y2(x1)) or
y1(x) = y(x) (y(x) = y2(x)) for all x ∈ [x0, x1].

Proof. For x ≥ x0 and y ≥ z the Lipschitz condition (7.3) is equivalent
to the following

−L(y − z) ≤ f(x, y) − f(x, z) ≤ L(y − z) (11.6)

and hence from Theorem 11.3 it follows that y1(x) ≤ y(x) ≤ y2(x). Now
since y1(x0) = y(x0) = y2(x0), unless y(x) = y1(x) (y(x) = y2(x)), there
is some x1 > x0 at which y1(x1) < y(x1) (y(x1) < y2(x1)). However, from
(11.6) we find

y′
1(x) − y′(x) ≤ f(x, y1(x)) − f(x, y(x)) ≤ L(y(x) − y1(x)),

which is the same as

d

dx

(
eLx(y1(x) − y(x))

) ≤ 0.

Hence, the function eLx(y1(x) − y(x)) cannot increase and for any x > x1

eLx(y1(x) − y(x)) ≤ eLx1(y1(x1) − y(x1)) < 0.

Thus, y1(x) < y(x) for all x > x1. Consequently, if y(x1) = y1(x1) at any
point x1, then y(x) = y1(x) in [x0, x1].
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For our next application of Theorem 11.1, we need the following defini-
tion.

Definition 11.1. A solution r(x) (ρ(x)) of the initial value problem
(7.1) which exists in an interval J is said to be a maximal (minimal) solution
if for an arbitrary solution y(x) of (7.1) existing in J, the inequality y(x) ≤
r(x) (ρ(x) ≤ y(x)) holds for all x ∈ J.

Obviously, if the maximal and minimal solutions exist, then these are
unique. The existence of these solutions is proved in the following theorem.

Theorem 11.5. Let f(x, y) be continuous in S+ : x0 ≤ x ≤ x0 +
a, |y − y0| ≤ b and hence there exists a M > 0 such that |f(x, y)| ≤ M for
all (x, y) ∈ S+. Then there exist a maximal solution r(x) and a minimal
solution ρ(x) of (7.1) in the interval [x0, x0 +α], where α = min{a, b/(2M+
b)}.
Proof. We shall prove the existence of the maximal solution r(x) only.
Let 0 < ε ≤ b/2, and consider the initial value problem

y′ = f(x, y) + ε, y(x0) = y0 + ε. (11.7)

Since the function fε(x, y) = f(x, y)+ ε is continuous in Sε : x0 ≤ x ≤ x0 +
a, |y− (y0 +ε)| ≤ b/2, and Sε ⊆ S+ we find that |fε(x, y)| ≤ M+b/2 in Sε.
Hence, from Corollary 9.2 it follows that the problem (11.7) has a solution
y(x, ε) in the interval [x0, x0 + α], where α = min{a, b/(2M + b)}. For
0 < ε2 < ε1 ≤ ε, we have y(x0, ε2) < y(x0, ε1) and y′(x, ε2) = f(x, y(x, ε2))+
ε2, y

′(x, ε1) > f(x, y(x, ε1)) + ε2, x ∈ [x0, x0 + α]. Thus, Theorem 11.1 is
applicable and we have y(x, ε2) < y(x, ε1) for all x ∈ [x0, x0 + α]. Now
as in Theorem 9.1 it is easy to see that the family of functions y(x, ε)
is equicontinuous and uniformly bounded in [x0, x0 + α], therefore, from
Theorem 7.10 there exists a decreasing sequence {εn} such that εn → 0 as
n → ∞, and limn→∞ y(x, εn) exists uniformly in [x0, x0+α]. We denote this
limiting function by r(x). Obviously, r(x0) = y0, and the uniform continuity
of f, with

y(x, εn) = y0 + εn +
∫ x

x0

[f(t, y(t, εn)) + εn]dt

yields r(x) as a solution of (7.1).

Finally, we shall show that r(x) is the maximal solution of (7.1) in
[x0, x0 + α]. For this, let y(x) be any solution of (7.1) in [x0, x0 + α]. Then
y(x0) = y0 < y0 + ε = y(x0, ε), and y′(x) < f(x, y(x)) + ε, y′(x, ε) =
f(x, y(x, ε)) + ε for all x ∈ [x0, x0 + α] and 0 < ε ≤ b/2. Thus, from
Theorem 11.1 it follows that y(x) < y(x, ε), x ∈ [x0, x0 + α]. Now the
uniqueness of the maximal solution shows that y(x, ε) tends uniformly to
r(x) in [x0, x0 + α] as ε → 0.



Differential Inequalities 81

Obviously, the process of continuation of the solutions of (7.1) discussed
in Lecture 9 can be employed for the maximal solution r(x) as well as for
the minimal solution ρ(x).

Example 11.2. For the initial value problem y′ = |y|1/2, y(0) = 0 it
is clear that r(x) = x2/4, ρ(x) = 0 if x ≥ 0; r(x) = 0, ρ(x) = −x2/4 if
x ≤ 0; and

r(x) =

⎧⎨
⎩

x2

4
if x ≥ 0

0 if x ≤ 0,
ρ(x) =

⎧⎨
⎩

0 if x ≥ 0

−x2

4
if x ≤ 0.

Finally, as an application of maximal solution r(x) we shall prove the
following theorem.

Theorem 11.6. Let f(x, y) be continuous in the domain D, and let
r(x) be the maximal solution of (7.1) in the interval J = [x0, x0 + a). Also,
let y(x) be a solution of the differential inequality

y′(x) ≤ f(x, y(x)) (11.8)

in J. Then y(x0) ≤ y0 implies that

y(x) ≤ r(x) for all x ∈ J. (11.9)

Proof. For x1 ∈ (x0, x0+a) an argument similar to that for Theorem 11.5
shows that there exists a maximal solution r(x, ε) of (11.7) in [x0, x1] for all
sufficiently small ε > 0 and limε→0 r(x, ε) = r(x) uniformly in x ∈ [x0, x1].
Now for (11.7) and (11.8) together with y(x0) ≤ y0 < r(x0, ε), Theorem
11.1 gives

y(x) < r(x, ε) (11.10)

in [x0, x1]. The inequality (11.9) follows by taking ε → 0 in (11.10).

Problems

11.1. Give an example to show that in Theorem 11.1 strict inequalities
cannot be replaced with equalities.

11.2. Let y(x) be a solution of the initial value problem y′ = y −
y2, y(0) = y0, 0 < y0 < 1. Show that y0 < y(x) ≤ 1 for all x ∈ (0,∞).

11.3. Let y(x) be a solution of the initial value problem y′ = y2 −
x, y(0) = 1. Show that 1 + x < y(x) < 1/(1 − x) for all x ∈ (0, 1).

11.4. Let f1(x, y) and f2(x, y) be continuous in the domain D, and
f1(x, y) < f2(x, y) for all (x, y) ∈ D. Further, let y1(x) and y2(x) be the
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solutions of the DEs y′
1 = f1(x, y1) and y′

2 = f2(x, y2), respectively, existing
in J = [x0, x0 + a) such that y1(x0) < y2(x0). Show that y1(x) < y2(x) for
all x ∈ J.

∗11.5. For a given function y(x) the Dini derivatives are defined as
follows:

D+y(x) = lim sup
h→0+

(
y(x+ h) − y(x)

h

)
(upper-right derivative)

D+y(x) = lim inf
h→0+

(
y(x+ h) − y(x)

h

)
(lower-right derivative)

D−y(x) = lim sup
h→0−

(
y(x+ h) − y(x)

h

)
(upper-left derivative)

D−y(x) = lim inf
h→0−

(
y(x+ h) − y(x)

h

)
(lower-left derivative).

In case D+y(x) = D+y(x), the right-hand derivative denoted by y′
+(x)

exists and y′
+(x) = D+y(x) = D+y(x).

In case D−y(x) = D−y(x), the left-hand derivative denoted by y′
−(x)

exists and y′
−(x) = D−y(x) = D−y(x).

In case y′
+(x) = y′

−(x), the derivative exists and y′(x) = y′
+(x) = y′

−(x).
Conversely, if y′(x) exists, then all the four Dini derivatives are equal.

Clearly, D+y(x) ≤ D+y(x) and D−y(x) ≤ D−y(x). Show the following:

(i) If y(x) ∈ C[x0, x0 + a), then a necessary and sufficient condition for
y(x) to be nonincreasing in [x0, x0 + a) is that Dy(x) ≤ 0, where D is a
fixed Dini derivative.
(ii) If y(x), z(x) ∈ C[x0, x0 + a), and Dy(x) ≤ z(x), where D is a fixed
Dini derivative, then D−y(x) ≤ z(x).
(iii) Theorem 11.1 remains true when in the inequalities (11.1) the deriva-
tive is replaced by any fixed Dini derivative.
(iv) If y(x) ∈ C(1)[x0, x0+a), then z(x) = |y(x)| has a right-hand derivative
z′
+(x) and z′

+(x) ≤ |y′(x)|.
∗11.6. Let f(x, y) be continuous in the domain D, and y(x) be a

solution of the differential inequality D−y ≤ f(x, y) in (x0 − a, x0] and
y(x0) ≥ y0. Show that ρ(x) ≤ y(x) as far as the minimal solution ρ(x) of
(7.1) exists to the left of x0.

Answers or Hints

11.1. The problem y′ = y2/3, y(0) = 0 has solutions y1(x) = x3/27, y2(x)
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≡ 0 in [0,∞). For these functions equalities hold everywhere in Theorem
11.1. However, x3/27 �≤ 0 in (0,∞).

11.2. Let y1(x) = y0, y2(x) = 1 + ε, ε > 0 and use Theorem 11.1 and
Corollary 11.2.

11.3. Let y1(x) = 1 + x, y2(x) = 1/(1 − x) and use Corollary 11.2.

11.4. Define f(x, y) = (f1(x, y) + f2(x, y))/2 so that y′
1 < f(x, y1), y′

2 >
f(x, y2) and y1(x0) < y2(x0). Now use Theorem 11.1.



Lecture 12
Continuous Dependence

on Initial Conditions

The initial value problem (7.1) describes a model of a physical problem
in which often some parameters such as lengths, masses, temperatures, etc.,
are involved. The values of these parameters can be measured only up to
certain degree of accuracy. Thus, in (7.1) the initial condition (x0, y0) as
well as the function f(x, y) may be subject to some errors either by necessity
or for convenience. Hence, it is important to know how the solution of (7.1)
changes when (x0, y0) and f(x, y) are slightly altered. We shall answer this
question quantitatively in the following theorem.

Theorem 12.1. Let the following conditions be satisfied:

(i) f(x, y) is continuous and bounded by M in a domain D containing
the points (x0, y0) and (x1, y1).

(ii) f(x, y) satisfies a uniform Lipschitz condition (7.3) in D.

(iii) g(x, y) is continuous and bounded by M1 in D.

(iv) y(x) and z(x), the solutions of the initial value problems (7.1) and

z′ = f(x, z) + g(x, z), z(x1) = y1,

respectively, exist in an interval J containing x0 and x1.

Then for all x ∈ J , the following inequality holds:

|y(x) − z(x)| ≤
(

|y0 − y1| + (M +M1)|x1 − x0| +
1
L
M1

)

× exp (L|x− x0|) − 1
L
M1.

(12.1)

Proof. From Theorem 7.1 for all x ∈ J it follows that

z(x) = y1 +
∫ x

x1

[f(t, z(t)) + g(t, z(t))]dt

= y1 +
∫ x

x0

f(t, z(t))dt+
∫ x0

x1

f(t, z(t))dt+
∫ x

x1

g(t, z(t))dt
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and hence, we find

y(x) − z(x) = y0 − y1 +
∫ x

x0

[f(t, y(t)) − f(t, z(t))]dt

+
∫ x1

x0

f(t, z(t))dt−
∫ x

x1

g(t, z(t))dt.
(12.2)

Now taking absolute values on both sides of (12.2) and using the hypotheses,
we get

|y(x) − z(x)| ≤ |y0 − y1| + (M +M1)|x1 − x0| +M1|x− x0|
+L

∣∣∣∣
∫ x

x0

|y(t) − z(t)|dt
∣∣∣∣ . (12.3)

Inequality (12.3) is exactly the same as that considered in Corollary
7.6 with c0 = |y0 − y1| + (M + M1)|x1 − x0|, c1 = M1, c2 = L and
u(x) = |y(x) − z(x)|, and hence the inequality (12.1) follows.

From the inequality (12.1) it is apparent that the difference between
the solutions y(x) and z(x) in the interval J is small provided the changes
in the initial point (x0, y0) as well as in the function f(x, y) do not exceed
prescribed amounts. Thus, the statement “if the function f(x, y) and the
initial point (x0, y0) vary continuously, then the solutions of (7.1) vary
continuously” holds. It is also clear that the solution z(x) of the initial
value problem z′ = f(x, z) + g(x, z), z(x1) = y1 need not be unique in J.

Example 12.1. Consider the initial value problem

y′ = sin(xy), y(0) = 1 (12.4)

in the rectangle S : |x| ≤ 1/2, |y − 1| ≤ 1/2. To apply Theorem 8.1 we
note that a = 1/2, b = 1/2 and maxS | sin(xy)| ≤ 1 ≤ M, and from
Theorem 7.2 the function sin(xy) satisfies the Lipschitz condition (7.3) in
S, and maxS |x cos(xy)| = 1/2 = L. Thus, the problem (12.4) has a unique
solution in the interval |x| ≤ h ≤ 1/2.

As an approximation of the initial value problem (12.4), we consider

z′ = xz, z(0) = 1.1, (12.5)

which also has a unique solution z(x) = 1.1 exp(x2/2) in the interval |x| ≤
1/2. Now by Taylor’s formula, we find

|g(x, y)| = | sin(xy) − xy| ≤ 1
6
|xy|3 ≤ 1

6

(
1
2

)3(3
2

)3

=
9

128
= M1.
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Using Theorem 12.1 for the above initial value problems, we obtain an
upper error bound for the difference between the solutions y(x) and z(x)

|y(x) − z(x)| ≤
(

0.1 +
9
64

)
exp

( |x|
2

)
− 9

64
for all |x| ≤ 1

2
.

To emphasize the dependence of the initial point (x0, y0), we shall denote
the solution of the initial value problem (7.1) as y(x, x0, y0). In our next
result we shall show that y(x, x0, y0) is differentiable with respect to y0.

Theorem 12.2. Let the following conditions be satisfied:

(i) f(x, y) is continuous and bounded by M in a domain D containing
the point (x0, y0).
(ii) ∂f(x, y)/∂y exists, continuous and bounded by L in D.
(iii) The solution y(x, x0, y0) of the initial value problem (7.1) exists in an
interval J containing x0.

Then we have that y(x, x0, y0) is differentiable with respect to y0 and z(x) =
∂y(x, x0, y0)/∂y0 is the solution of the initial value problem

z′ =
∂f

∂y
(x, y(x, x0, y0))z (12.6)

z(x0) = 1. (12.7)

The DE (12.6) is called the variational equation corresponding to the solu-
tion y(x, x0, y0).

Proof. Let (x0, y1) ∈ D be such that the solution y(x, x0, y1) of the
initial value problem y′ = f(x, y), y(x0) = y1 exists in an interval J1. Then
for all x ∈ J2 = J ∩ J1, Theorem 12.1 implies that

|y(x, x0, y0) − y(x, x0, y1)| ≤ |y0 − y1|eL|x−x0|,

i.e., |y(x, x0, y0) − y(x, x0, y1)| → 0 as |y0 − y1| → 0.

Now for all x ∈ J2 it is easy to verify that

y(x, x0, y0) − y(x, x0, y1) − z(x)(y0 − y1)

=
∫ x

x0

[
f(t, y(t, x0, y0))−f(t, y(t, x0, y1))− ∂f

∂y
(t, y(t, x0, y0))z(t)(y0−y1)

]
dt

=
∫ x

x0

∂f

∂y
(t, y(t, x0, y0))[y(t, x0, y0) − y(t, x0, y1) − z(t)(y0 − y1)]dt

+
∫ x

x0

δ{y(t, x0, y0), y(t, x0, y1)}dt,
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where δ{y(x, x0, y0), y(x, x0, y1)} → 0 as |y(x, x0, y0) − y(x, x0, y1)| → 0,
i.e., as |y0 − y1| → 0.

Hence, we find that

|y(x, x0, y0) − y(x, x0, y1) − z(x)(y0 − y1)|
≤ L

∣∣∣∣
∫ x

x0

|y(t, x0, y0) − y(t, x0, y1) − z(t)(y0 − y1)|dt
∣∣∣∣+ o(|y0 − y1|).

Now applying Corollary 7.6, we get

|y(x, x0, y0) − y(x, x0, y1) − z(x)(y0 − y1)| ≤ o(|y0 − y1|) exp(L|x− x0|).

Thus, |y(x, x0, y0) − y(x, x0, y1) − z(x)(y0 − y1)| → 0 as |y0 − y1| → 0.
This completes the proof.

In our next result we shall show that the conditions of Theorem 12.2 are
also sufficient for the solution y(x, x0, y0) to be differentiable with respect
to x0.

Theorem 12.3. Let the conditions of Theorem 12.2 be satisfied. Then
the solution y(x, x0, y0) is differentiable with respect to x0 and z(x) =
∂y(x, x0, y0)/∂x0 is the solution of the variational equation (12.6), satisfying
the initial condition

z(x0) = − f(x0, y0). (12.8)

Proof. The proof is similar to that of Theorem 12.2.

We note that the variational equation (12.6) can be obtained directly
by differentiating the relation y′(x, x0, y0) = f(x, y(x, x0, y0)) with respect
to y0 (or x0). Further, since y(x0, x0, y0) = y0, differentiation with respect
to y0 gives the initial condition (12.7). To obtain (12.8), we begin with the
integral equation

y(x, x0, y0) = y0 +
∫ x

x0

f(t, y(t, x0, y0))dt

and differentiate it with respect to x0, to obtain

∂y(x, x0, y0)
∂x0

∣∣∣∣
x=x0

= − f(x0, y0).

Finally, in this lecture we shall consider the initial value problem

y′ = f(x, y, λ), y(x0) = y0, (12.9)

where λ ∈ IR is a parameter. The proof of the following theorem is very
similar to earlier results.
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Theorem 12.4. Let the following conditions be satisfied:

(i) f(x, y, λ) is continuous and bounded by M in a domain D ⊂ IR3

containing the point (x0, y0, λ0).
(ii) ∂f(x, y, λ)/∂y, ∂f(x, y, λ)/∂λ exist, continuous and bounded, respec-
tively, by L and L1 in D.

Then the following hold:

(1) There exist positive numbers h and ε such that given any λ in the
interval |λ − λ0| ≤ ε, there exits a unique solution y(x, λ) of the initial
value problem (12.9) in the interval |x− x0| ≤ h.
(2) For all λ1, λ2 in the interval |λ − λ0| ≤ ε, and x in |x − x0| ≤ h the
following inequality holds:

|y(x, λ1) − y(x, λ2)| ≤ L1|λ1 − λ2|
L

(exp(L|x− x0|) − 1) . (12.10)

(3) The solution y(x, λ) is differentiable with respect to λ and z(x, λ) =
∂y(x, λ)/∂λ is the solution of the initial value problem

z′(x, λ) =
∂f

∂y
(x, y(x, λ), λ)z(x, λ) +

∂f

∂λ
(x, y(x, λ), λ), (12.11)

z(x0, λ) = 0. (12.12)

If λ is such that |λ− λ0| is sufficiently small, then we have a first-order
approximation of the solution y(x, λ) given by

y(x, λ)  y(x, λ0) + (λ− λ0)
[
∂y

∂λ
(x, λ)

]
λ=λ0

= y(x, λ0) + (λ− λ0)z(x, λ0).
(12.13)

We illustrate this important idea in the following example.

Example 12.2. Consider the initial value problem

y′ = λy2 + 1, y(0) = 0 (λ ≥ 0) (12.14)

for which the solution y(x, λ) = (1/
√
λ) tan(

√
λx) exists in the inter-

val (−π/(2√
λ), π/(2

√
λ)). Let in (12.14) the parameter λ = 0, so that

y(x, 0) = x. Since ∂f/∂y = 2λy and ∂f/∂λ = y2, the initial value problem
corresponding to (12.11), (12.12) is

z′(x, 0) = x2, z(0, 0) = 0,
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whose solution is z(x, 0) = x3/3. Thus, for λ near zero, (12.13) gives the
approximation

y(x, λ) =
1√
λ

tan(
√
λ x)  x+ λ

x3

3
.

Problems

12.1. Let y(x, λ) denote the solution of the initial value problem

y′ + p(x)y = q(x), y(x0) = λ

in the interval x0 ≤ x < ∞. Show that for each fixed x > x0 and for each
positive number ε there exists a positive number δ such that |y(x, λ+∆λ)−
y(x, λ)| ≤ ε, whenever |∆λ| ≤ δ, i.e., the solution y(x, λ) is continuous with
respect to the parameter λ.

12.2. Prove Theorem 12.3.

12.3. Prove Theorem 12.4.

12.4. For the initial value problem

y′ = x+ ex sin(xy), y(0) = 0 = y0

estimate the variation of the solution in the interval [0, 1] if y0 is perturbed
by 0.01.

12.5. For the initial value problem y′ = λ+ cos y, y(0) = 0 obtain an
upper estimate for |y(x, λ1) − y(x, λ2)| in the interval [0, 1].

12.6. For sufficiently small λ find a first-order approximation of the
solution y(x, λ) of the initial value problem y′ = y + λ(x+ y2), y(0) = 1.

12.7. State and prove an analog of Theorem 12.1 for the initial value
problem (7.9).

12.8. Find the error in using the approximate solution

y(x) = exp(−x3/6)

for the initial value problem y′′ +xy = 0, y(0) = 1, y′(0) = 0 in the interval
|x| ≤ 1/2.

Answers or Hints

12.1. Let z(x) = y(x, λ+∆λ)−y(x, λ). Then z′(x)+p(x)z(x) = 0, z(x0) =
∆λ, whose solution is z(x) = ∆λ exp

(
− ∫ x

x0
p(t)dt

)
.
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12.2. The proof is similar to that of Theorem 12.2.

12.3. For the existence and uniqueness of solutions of (12.9) see the remark
following Theorem 16.7. To prove inequality (12.10) use Corollary 7.6.

12.4. 0.01ee.

12.5. |λ1 − λ2|(e− 1).

12.6. ex + λ(e2x − x− 1).

12.7. The result corresponding to Theorem 12.1 for (7.9) can be stated
as follows: Let the conditions (i)–(iii) of Theorem 12.1 be satisfied and
(iv)′ y(x) and z(x), the solutions of (7.9) and z′′ = f(x, z)+g(x, z), z(x1) =
z0, z

′(x1) = z1, respectively, exist in J = (α, β) containing x0 and x1. Then
for all x ∈ J , the following inequality holds:

|y(x) − z(x)| ≤ {[|y0 − z0| + |x1 − x0|(|z1| + (β − α)(M +M1))] + γ}
× exp(L(β − α)|x− x0|) − γ,

where γ = [|y1 − z1| +M1(β − α)]/L(β − α).

12.8. (1/512)e1/12.



Lecture 13
Preliminary Results from

Algebra and Analysis

For future reference we collect here several fundamental concepts and
results from algebra and analysis.

A function Pn(x) defined by

Pn(x) = a0 + a1x+ · · · + anx
n =

n∑
i=0

aix
i, an �= 0

where ai ∈ IR, 0 ≤ i ≤ n, is called a polynomial of degree n in x. If
Pn(x1) = 0, then the number x = x1 is called a zero of Pn(x). The following
fundamental theorem of algebra of complex numbers is valid.

Theorem 13.1. Every polynomial of degree n ≥ 1 has at least one
zero.

Thus, Pn(x) has exactly n zeros; however, some of these may be the
same, i.e., Pn(x) can be written as

Pn(x) = an(x− x1)r1(x− x2)r2 · · · (x− xk)rk , ri ≥ 1, 1 ≤ i ≤ k,

where
∑k

i=1 ri = n. If ri = 1, then xi is called a simple zero, and if ri >
1, then multiple zero of multiplicity ri. Thus, if xi is a multiple zero of
multiplicity ri, then P (j)(xi) = 0, 0 ≤ j ≤ ri − 1 and P (ri)(xi) �= 0.

A rectangular table ofm×n elements arranged in m rows and n columns⎡
⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
am1 am2 · · · amn

⎤
⎥⎥⎦

is called an m × n matrix and in short represented as A = (aij). We shall
mainly deal with square matrices (m = n), row matrices or row vectors
(m = 1), and column matrices or column vectors (n = 1).

A matrix with aij = 0, 1 ≤ i, j ≤ n, is called null or zero matrix, which
we shall denote by 0.
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A matrix with aij = 0, 1 ≤ i �= j ≤ n is called a diagonal matrix ; if, in
addition, aii = 1, 1 ≤ i ≤ n, then it is an identity matrix which we shall
denote by I.

The transpose of a matrix denoted by AT is a matrix with elements aji.
A matrix is called symmetric if A = AT .

The sum of two matrices A = (aij) and B = (bij) is a matrix C = (cij)
with elements cij = aij + bij .

Let α be a constant and A be a matrix; then αA is a matrix C = (cij)
with elements cij = αaij .

Let A and B be two matrices; then the product AB is a matrix C = (cij)
with elements cij =

∑n
k=1 aikbkj . Note that in general AB �= BA, but

(AB)T = BTAT .

The trace of a matrix A is denoted by TrA and it is the sum of the
diagonal elements, i.e.,

TrA =
n∑

i=1

aii.

Associated with an n × n matrix A = (aij) there is a scalar called the
determinant of A

detA =

∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣
.

An (n − 1) × (n − 1) determinant obtained by deleting ith row and jth
column of the matrix A is called the minor ãij of the element aij . We
define the cofactor of aij as αij = (−1)i+j ãij . In terms of cofactors the
determinant of A is defined as

detA =
n∑

j=1

aijαij =
n∑

i=1

aijαij . (13.1)

Further,
n∑

j=1

aijαkj = 0 if i �= k. (13.2)

The following properties of determinants are fundamental:

(i) If two rows (or columns) of A are equal or have a constant ratio, then
detA = 0.
(ii) If any two consecutive rows (or columns) of A are interchanged, then
the determinant of the new matrix A1 is −detA.
(iii) If a row (or column) of A is multiplied by a constant α, then the
determinant of the new matrix A1 is α det A.
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(iv) If a constant multiple of one row (or column) of A is added to another,
then the determinant of the new matrix A1 is unchanged.
(v) detAT = detA.
(vi) detAB = (detA)(detB).

A linear system of n equations in n unknowns is a set of equations of
the following form:

a11u1 + · · · + a1nun = b1
a21u1 + · · · + a2nun = b2
· · ·
an1u1 + · · · + annun = bn,

(13.3)

where aij and bi, 1 ≤ i, j ≤ n, are given real numbers and n unknowns are
ui, 1 ≤ i ≤ n.

The system (13.3) can be written in a compact form as

Au = b, (13.4)

where A is an n×n matrix (aij), b is an n×1 vector (bi), and u is an n×1
unknown vector (ui). If b = 0, the system (13.4) is called homogeneous,
otherwise it is called nonhomogeneous.

The following result provides a necessary and sufficient condition for the
system (13.4) to have a unique solution.

Theorem 13.2. The system (13.4) has a unique solution if and only
if detA �= 0. Alternatively, if the homogeneous system has only the trivial
solution (u = 0), then detA �= 0.

If detA = 0 then the matrix A is said to be singular ; otherwise, non-
singular. Thus, the homogeneous system has nontrivial solutions if and
only if the matrix A is singular. The importance of this concept lies in
the fact that a nonsingular matrix A possesses a unique inverse denoted
by A−1. This matrix has the property that AA−1 = A−1A = I. Moreover,
A−1 = (AdjA)/(detA), where AdjA is an n×n matrix with elements αji.

A real vector space (linear space) V is a collection of objects called
vectors, together with an addition and a multiplication by real numbers
which satisfy the following axioms:

1. Given any pair of vectors u and v in V there exists a unique vector u+v
in V called the sum of u and v. It is required that

(i) addition be commutative, i.e., u+ v = v + u;
(ii) addition be associative, i.e., u+ (v + w) = (u+ v) + w;
(iii) there exists a vector 0 in V (called the zero vector) such that u+ 0 =
0 + u = u for all u in V ;
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(iv) for each u in V , there exists a vector −u in V such that u+(−u) = 0.

2. Given any vector u in V and any real number α, there exists a unique
vector α u in V called the product or scalar product of α and u. Given any
two real numbers α and β it is required that

(i) α(u+ v) = αu+ αv,

(ii) (α+ β)u = αu+ βu,

(iii) (αβ)u = α(βu),
(iv) 1u = u.

A complex vector space is defined analogously.

There are numerous examples of real (complex) vector spaces which are
of interest in analysis, some of these are the following:

(a) The space IRn(Cn) is a real (complex) vector space if for all u =
(u1, . . . , un), v = (v1, . . . , vn) in IRn(Cn), and α ∈ IR(C),

u+ v = (u1 + v1, . . . , un + vn)
αu = (αu1, . . . , α un).

(b) The space of all continuous functions in an interval J denoted by C(J)
is a real vector space if for all y(x), z(x) ∈ C(J), and α ∈ IR,

(y + z)(x) = y(x) + z(x)
(αy)(x) = αy(x).

(c) The function u(x) = (u1(x), . . . , un(x)), or (u1(x), . . . , un(x))T , where
ui(x), 1 ≤ i ≤ n, are continuous in an interval J , is called a vector-valued
function. The space of all continuous vector-valued functions in J denoted
by Cn(J) is a real vector space if for all u(x), v(x) ∈ Cn(J) and α ∈ IR

(u+ v)(x) = (u1(x) + v1(x), . . . , un(x) + vn(x))
(αu)(x) = (αu1(x), . . . , αun(x)).

(d) The matrix A(x) = (aij(x)), where aij(x), 1 ≤ i, j ≤ n, are continuous
in an interval J , is called a matrix-valued function. The space of all con-
tinuous matrix-valued functions in J denoted by Cn×n(J) is a real vector
space if for all A(x), B(x) ∈ Cn×n(J) and α ∈ IR

(A+B)(x) = (aij(x) + bij(x))
(αA)(x) = (αaij(x)).

The space of all m (nonnegative integer) times continuously differen-
tiable functions in J denoted by C(m)(J) is also a vector space. Similarly,
C

(m)
n (J) and C

(m)
n×n(J), where the derivatives of the function u(x) and of
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the matrix A(x) are defined as u′(x) = (u′
i(x)) and A′(x) = (a′

ij(x)), re-
spectively, are vector spaces.

From the definition of determinants it is clear that for a given matrix
A(x) ∈ C

(m)
n×n(J) the function detA(x) ∈ C(m)(J). Later we shall need

the differentiation of the function det A(x) which we shall now compute by
using the expansion of detA given in (13.1). Since

detA(x) =
n∑

j=1

aij(x)αij(x),

it follows that
∂ detA(x)
∂aij(x)

= αij(x),

and hence

(detA(x))′ =
n∑

j=1

n∑
i=1

∂ detA(x)
∂aij(x)

daij(x)
dx

=
n∑

j=1

n∑
i=1

αij(x)a′
ij(x),

which is equivalent to

(detA(x))′ =

∣∣∣∣∣∣∣∣
a′
11(x) · · · a′

1n(x)
a21(x) · · · a2n(x)

· · ·
an1(x) · · · ann(x)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
a11(x) · · · a1n(x)
a′
21(x) · · · a′

2n(x)
· · ·

an1(x) · · · ann(x)

∣∣∣∣∣∣∣∣
+ · · ·

+

∣∣∣∣∣∣∣∣
a11(x) · · · a1n(x)
a21(x) · · · a2n(x)

· · ·
a′

n1(x) · · · a′
nn(x)

∣∣∣∣∣∣∣∣
.

(13.5)
Let V be a vector space and let v1, . . . , vm ∈ V be fixed vectors.

These vectors are said to be linearly independent if the choice of con-
stants α1, . . . , αm for which α1v

1 + · · · + αmv
m = 0 is the trivial choice,

i.e., α1 = · · · = αm = 0. Conversely, these vectors are said to be lin-
early dependent if there exist constants α1, . . . , αm not all zero such that
α1v

1 + · · · + αmv
m = 0. The set {v1, . . . , vm} is a basis for V if for ev-

ery v ∈ V , there is a unique choice of constants α1, . . . , αm for which
v = α1v

1 + · · ·+αmv
m. Note that this implies v1, . . . , vm is independent. If

such a finite basis exists, we say that V is finite dimensional. Otherwise, it is
called infinite dimensional. If V is a vector space with a basis {v1, . . . , vm},
then every basis for V will contain exactly m vectors. The number m is
called the dimension of V. A nonempty subset W ⊂ V is called a subspace
if W is closed under the operations of addition and multiplication in V.

For a given n×nmatrix A, its columns (rows) generate a subspace whose
dimension is called the column (row) rank of A. It is well known that the
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row rank and the column rank of A are equal to the same number r. This
number r is called the rank of A. If r = n, i.e., detA �= 0, then Theorem 13.2
implies that the system (13.4) has a unique solution. However, if r < n,
then (13.4) may not have any solution. In this case, the following result
provides necessary and sufficient conditions for the system (13.4) to have
at least one solution.

Theorem 13.3. If the rank of A is n − m (1 ≤ m ≤ n), then the
system (13.4) possesses a solution if and only if

Bb = 0, (13.6)

where B is an m × n matrix whose row vectors are linearly independent
vectors bi, 1 ≤ i ≤ m, satisfying biA = 0.

Further, in the case when (13.6) holds, any solution of (13.4) can be
expressed as

u =
m∑

i=1

ciu
i + Sb,

where ci, 1 ≤ i ≤ m, are arbitrary constants, ui, 1 ≤ i ≤ m, are m linearly
independent column vectors satisfying Aui = 0, and S is an n × n matrix
independent of b such that ASv = v for any column vector v satisfying
Bv = 0.

The matrix S in the above result is not unique.



Lecture 14
Preliminary Results from

Algebra and Analysis (Contd.)

The number λ, real or complex, is called an eigenvalue of the matrix
A if there exists a nonzero real or complex vector v such that Av = λv.
The vector v is called an eigenvector corresponding to the eigenvalue λ.
From Theorem 13.2, λ is an eigenvalue of A if and only if it is a solution
of the characteristic equation p(λ) = det (A − λI) = 0. Since the matrix
A is n × n, p(λ) is a polynomial of degree exactly n, and it is called the
characteristic polynomial of A. Hence, from Theorem 13.1 it follows that A
has exactly n eigenvalues counting their multiplicities.

In the case when the eigenvalues λ1, . . . , λn of A are distinct it is easy to
find the corresponding eigenvectors v1, . . . , vn. For this, first we note that
for the fixed eigenvalue λj of A at least one of the cofactors of (aii − λj)
in the matrix (A − λjI) is nonzero. If not, then from (13.5) it follows
that p′(λ) = −[cofactor of (a11 − λ)] − · · · − [cofactor of (ann − λ)], and
hence p′(λj) = 0; i.e., λj was a multiple root, which is a contradiction to
our assumption that λj is simple. Now let the cofactor of (akk − λj) be
different from zero, then one of the possible nonzero solution of the system
(A − λjI)vj = 0 is vj

i = cofactor of aki in (A − λjI), 1 ≤ i ≤ n, i �= k,

vj
k = cofactor of (akk − λj) in (A − λjI). Since for this choice of vj , it

follows from (13.2) that every equation, except the kth one, of the system
(A− λjI)vj = 0 is satisfied, and for the kth equation from (13.1), we have

n∑
i = 1
i �= k

aki[cofactor of aki]+(akk−λj)[cofactor of (akk−λj)] = det (A−λjI),

which is also zero. In conclusion this vj is the eigenvector corresponding to
the eigenvalue λj .

Example 14.1. The characteristic polynomial for the matrix

A =

⎡
⎣ 2 1 0

1 3 1
0 1 2

⎤
⎦

is p(λ) = −λ3 + 7λ2 − 14λ + 8 = −(λ − 1)(λ − 2)(λ − 4) = 0. Thus, the
eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 4. To find the corresponding
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eigenvectors we have to consider the systems (A − λiI)vi = 0, i = 1, 2, 3.
For λ1 = 1, we find

(A− λ1I) =

⎡
⎣ 1 1 0

1 2 1
0 1 1

⎤
⎦ .

Since the cofactor of (a11 − λ1) = 1 �= 0, we can take v1
1 = 1, and then

v1
2 = cofactor of a12 = −1, v1

3 = cofactor of a13 = 1, i.e., v1 = [1 − 1 1]T .

Next for λ2 = 2 we have

(A− λ2I) =

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ .

Since the cofactor of (a22 −λ2) = 0, the choice v2
2 = cofactor of (a22 −λ2) is

not correct. However, cofactor of (a11−λ2) = cofactor of (a33−λ2) = −1 �=
0 and we can take v2

1 = −1 (v2
3 = −1), then v2

2 = cofactor of a12 = 0, v2
3 =

cofactor of a13 = 1 (v2
1 = cofactor of a31 = 1, v2

2 = cofactor of a32 = 0),
i.e., v2 = [−1 0 1]T ([1 0 − 1]T ).

Similarly, we can find v3 = [1 2 1]T .

For the eigenvalues and eigenvectors of an n× n matrix A, we have the
following basic result.

Theorem 14.1. Let λ1, . . . , λm be distinct eigenvalues of an n × n
matrix A and v1, . . . , vm be corresponding eigenvectors. Then v1, . . . , vm

are linearly independent.

Since p(λ) is a polynomial of degree n, and Am for all nonnegative
integers m is defined, p(A) is a well-defined matrix. For this matrix p(A)
we state the following well-known theorem.

Theorem 14.2 (Cayley–Hamilton Theorem). Let A be an
n× n matrix and let p(λ) = det (A− λI). Then p(A) = 0.

If A is a nonsingular matrix, then lnA is a well-defined matrix. This
important result is stated in the following theorem.

Theorem 14.3. Let A be a nonsingular n × n matrix. Then there
exists an n× n matrix B (called logarithm of A) such that A = eB .

A real normed vector space is a real vector space V in which to each
vector u there corresponds a real number ‖u‖, called the norm of u, which
satisfies the following conditions:

(i) ‖u‖ ≥ 0, and ‖u‖ = 0 if and only if u = 0;
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(ii) for each c ∈ IR, ‖cu‖ = |c|‖u‖;
(iii) the triangle inequality ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

From the triangle inequality it immediately follows that

|‖u‖ − ‖v‖| ≤ ‖u− v‖. (14.1)

The main conclusion we draw from this inequality is that the norm is a
Lipschitz function and, therefore, in particular, a continuous real-valued
function.

In the vector space IRn the following three norms are in common use

absolute norm ‖u‖1 =
n∑

i=1

|ui|,

Euclidean norm ‖u‖2 =

(
n∑

i=1

|ui|2
)1/2

,

and
maximum norm ‖u‖∞ = max

1≤i≤n
|ui|.

The notations ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are justified because of the fact
that all these norms are special cases of a more general norm

‖u‖p =

(
n∑

i=1

|ui|p
)1/p

, p ≥ 1.

The set of all n × n matrices with real elements can be considered as
equivalent to the vector space IRn2

, with a special multiplicative operation
added into the vector space. Thus, a matrix norm should satisfy the usual
three requirements of a vector norm and, in addition, we require

(iv) ‖AB‖ ≤ ‖A‖‖B‖ for all n× n matrices A, B;
(v) compatibility with the vector norm; i.e., if ‖ · ‖∗ is the norm in IRn,
then ‖Au‖∗ ≤ ‖A‖‖u‖∗ for all u ∈ IRn and any n× n matrix A.

Once in IRn a norm ‖ · ‖∗ is fixed, then an associated matrix norm is
usually defined by

‖A‖ = sup
u �=0

‖Au‖∗
‖u‖∗

. (14.2)

From (14.2) condition (v) is immediately satisfied. To show (iv) we use
(v) twice, to obtain

‖ABu‖∗ = ‖A(Bu)‖∗ ≤ ‖A‖‖Bu‖∗ ≤ ‖A‖‖B‖‖u‖∗
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and hence for all u �= 0, we have

‖ABu‖∗
‖u‖∗

≤ ‖A‖‖B‖,

or

‖AB‖ = sup
u�=0

‖ABu‖∗
‖u‖∗

≤ ‖A‖‖B‖.

The norm of the matrix A induced by the vector norm ‖u‖∗ will be denoted
by ‖A‖∗. For the three norms ‖u‖1, ‖u‖2 and ‖u‖∞ the corresponding
matrix norms are

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, ‖A‖2 =
√
ρ(ATA) and ‖A‖∞ = max

1≤i≤n

n∑
j=1

|aij |,

where for a given n×n matrix B with eigenvalues λ1, . . . , λn not necessarily
distinct ρ(B) is called the spectral radius of B and is defined as

ρ(B) = max{|λi|, 1 ≤ i ≤ n}.

A sequence {um} in a normed linear space V is said to converge to
u ∈ V if and only if ‖u− um‖ → 0 as m → ∞. In particular, a sequence of
n × n matrices {Am} is said to converge to a matrix A if ‖A − Am‖ → 0
as m → ∞. Further, if Am = (a(m)

ij ) and A = (aij), then it is same as

a
(m)
ij → aij for all 1 ≤ i, j ≤ n. Combining this definition with the Cauchy

criterion for sequences of real numbers, we have the following: the sequence
{Am} converges to a limit if and only if ‖Ak −A
‖ → 0 as k, � → ∞. The
series

∑∞
k=0Ak is said to converge if and only if the sequence of its partial

sums {∑m
k=0Ak} is convergent. For example, the exponential series

eA = I +
∞∑

k=1

Ak

k!

converges for any matrix A. Indeed, it follows from∥∥∥∥∥
m+p∑
k=0

Ak −
m∑

k=0

Ak

∥∥∥∥∥ =

∥∥∥∥∥
m+p∑

k=m+1

Ak

k!

∥∥∥∥∥ ≤
m+p∑

k=m+1

‖Ak‖
k!

≤ e‖A‖.

Hence, for any n × n matrix A, eA is a well-defined n × n matrix. Fur-
ther, from Problem 14.3 we have eAe−A = e(A−A) = I, and hence(
det eA

) (
det e−A

)
= 1; i.e., the matrix eA is always nonsingular.

Similarly, for a real number x, eAx is defined as

eAx = I +
∞∑

k=1

(Ax)k

k!
.
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Since each element of eAx is defined as a convergent power series, eAx is
differentiable and it follows that

(
eAx

)′
=

∞∑
k=1

Akxk−1

(k − 1)!
=

∞∑
k=1

A
(Ax)k−1

(k − 1)!
= AeAx = eAxA.

In a normed linear space V norms ‖·‖ and ‖·‖∗ are said to be equivalent
if there exist positive constants m and M such that for all u ∈ V, m‖u‖ ≤
‖u‖∗ ≤ M‖u‖. It is well known that in IRn all the norms are equivalent.
Hence, unless otherwise stated, in IRn we shall always consider ‖ · ‖1 norm
and the subscript 1 will be dropped.

Problems

14.1. Let λ1, . . . , λn be the (not necessarily distinct) eigenvalues of an
n× n matrix A. Show the following:

(i) The eigenvalues of AT are λ1, . . . , λn.
(ii) For any constant α the eigenvalues of αA are αλ1, . . . , αλn.
(iii)

∑n
i=1 λi = TrA.

(iv)
∏n

i=1 λi = detA.
(v) If A−1 exists, then the eigenvalues of A−1 are 1/λ1, . . . , 1/λn.
(vi) For any polynomial Pn(x) the eigenvalues of Pn(A) are Pn(λ1), . . . ,
Pn(λn).
(vii) If A is upper (lower) triangular, i.e., aij = 0, i > j (i < j), then the
eigenvalues of A are the diagonal elements of A.
(viii) If A is real and λ1 is complex with the corresponding eigenvector v1,
then there exists at least one i, 2 ≤ i ≤ n, such that λi = λ1 and for such
an i, v1 is the corresponding eigenvector.

14.2. Let n × n matrices A(x), B(x) ∈ C
(1)
n×n(J), and the function

u(x) ∈ C
(1)
n (J). Show the following:

(i)
d

dx
(A(x)B(x)) =

dA

dx
B(x) +A(x)

dB

dx
.

(ii)
d

dx
(A(x)u(x)) =

dA

dx
u(x) +A(x)

du

dx
.

(iii)
d

dx
(A−1(x)) = −A−1(x)

dA

dx
A−1(x), provided A−1(x) exists.

14.3. Prove the following:

(i) ‖Ak‖ ≤ ‖A‖k, k = 0, 1, . . . .
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(ii) For any nonsingular matrix C, C−1eAC = exp(C−1AC).
(iii) eAxeBx = e(A+B)x and BeAx = eAxB for all real x if and only if
BA = AB.
(iv) For any function u(x) ∈ Cn[α, β],∥∥∥∥∥

∫ β

α

u(t)dt

∥∥∥∥∥ ≤
∫ β

α

‖u(t)‖dt.

Answers or Hints

14.1. For each part use the properties of determinants. In particular, for
(iii), since

det (A− λI) = (−1)n(λ− λ1) · · · (λ− λn)
= (a11 − λ) · cofactor (a11 − λ) +

∑n
j=2 a1j · cofactor a1j ,

and since each term a1j · cofactor a1j is a polynomial of degree at most
n− 2, on comparing the coefficients of λn−1, we get

(−1)n+1∑n
i=1 λi = coefficient of λn−1 in (a11 − λ) · cofactor (a11 − λ).

Therefore, an easy induction implies

(−1)n+1∑n
i=1 λi = coefficient of λn−1 in (a11 − λ) · · · (ann − λ)

= (−1)n−1∑n
i=1 aii.

14.2. For part (iii) use A(x)A−1(x) = I.

14.3. (i) Use induction. (ii) C−1
(∑∞

i=0A
i/i!

)
C =

∑∞
i=0(C

−1AC)i/i!.
(iii) (A + B)2 = A2 + AB + BA + B2 = A2 + 2AB + B2 if and only if
AB = BA. (iv) Use the fact that ‖ ∫ β

α
u(t)dt‖ =

∑n
i=1 | ∫ β

α
ui(t)dt|.



Lecture 15
Existence and Uniqueness
of Solutions of Systems

So far we have concentrated on the existence and uniqueness of solutions
of scalar initial value problems. It is natural to extend these results to a
system of first-order DEs and higher-order DEs. We consider a system of
first-order DEs of the form

u′
1 = g1(x, u1, . . . , un)
u′

2 = g2(x, u1, . . . , un)

· · ·
u′

n = gn(x, u1, . . . , un).

(15.1)

Such systems arise frequently in many branches of applied sciences, espe-
cially in the analysis of vibrating mechanical systems with several degrees
of freedom. Furthermore, these systems have mathematical importance in
themselves, e.g., each nth-order DE (1.6) is equivalent to a system of n
first-order equations. Indeed, if we take y(i) = ui+1, 0 ≤ i ≤ n − 1, then
the equation (1.6) can be written as

u′
i = ui+1, 1 ≤ i ≤ n− 1
u′

n = f(x, u1, . . . , un), (15.2)

which is of the type (15.1).

Throughout, we shall assume that the functions g1, . . . , gn are continu-
ous in some domain E of (n+ 1)-dimensional space IRn+1. By a solution of
(15.1) in an interval J we mean a set of n functions u1(x), . . . , un(x) such
that (i) u′

1(x), . . . , u
′
n(x) exist for all x ∈ J, (ii) for all x ∈ J the points

(x, u1(x), . . . , un(x)) ∈ E, and (iii) u′
i(x) = gi(x, u1(x), . . . , un(x)) for all

x ∈ J. In addition to the differential system (15.1) there may also be given
initial conditions of the form

u1(x0) = u0
1, u2(x0) = u0

2, . . . , un(x0) = u0
n, (15.3)

where x0 is a specified value of x in J and u0
1, . . . , u

0
n are prescribed numbers

such that (x0, u
0
1, . . . , u

0
n) ∈ E. The differential system (15.1) together with

the initial conditions (15.3) forms an initial value problem.

To study the existence and uniqueness of the solutions of (15.1), (15.3),
there are two possible approaches, either directly imposing sufficient con-
ditions on the functions g1, . . . , gn and proving the results, or alternatively
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using vector notations to write (15.1), (15.3) in a compact form and then
proving the results. We shall prefer to use the second approach since then
the proofs are very similar to the scalar case.

By setting

u(x) = (u1(x), . . . , un(x)) and g(x, u) = (g1(x, u), . . . , gn(x, u))

and agreeing that differentiation and integration are to be performed com-
ponent-wise, i.e., u′(x) = (u′

1(x), . . . , u
′
n(x)) and

∫ β

α

u(x)dx =

(∫ β

α

u1(x)dx, . . . ,
∫ β

α

un(x)dx

)
,

the problem (15.1), (15.3) can be written as

u′ = g(x, u), u(x0) = u0, (15.4)

which is exactly the same as (7.1) except now u and u′ are the functions
defined in J ; and taking the values in IRn, g(x, u) is a function from E ⊆
IRn+1 to IRn and u0 = (u0

1, . . . , u
0
n).

The function g(x, u) is said to be continuous in E if each of its compo-
nents is continuous in E. The function g(x, u) is defined to be uniformly
Lipschitz continuous in E if there exists a nonnegative constant L (Lipschitz
constant) such that

‖g(x, u) − g(x, v)‖ ≤ L‖u− v‖ (15.5)

for all (x, u), (x, v) in the domain E. For example, let g(x, u) = (a11u1 +
a12u2, a21u1 + a22u2) and E = IR3, then

‖g(x, u) − g(x, v)‖
= ‖(a11(u1 − v1) + a12(u2 − v2), a21(u1 − v1) + a22(u2 − v2))‖
= |a11(u1 − v1) + a12(u2 − v2)| + |a21(u1 − v1) + a22(u2 − v2)|
≤ |a11||u1 − v1| + |a12||u2 − v2| + |a21|u1 − v1| + |a22||u2 − v2|
= [|a11| + |a21|]|u1 − v1| + [|a12| + |a22|]|u2 − v2|
≤ max{|a11| + |a21|, |a12| + |a22|}[|u1 − v1| + |u2 − v2|]
= max{|a11| + |a21|, |a12| + |a22|}‖u− v‖.

Hence, the Lipschitz constant is

L = max{|a11| + |a21|, |a12| + |a22|}.

The following result provides sufficient conditions for the function g(x,
u) to satisfy the Lipschitz condition (15.5).
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Theorem 15.1. Let the domain E be convex and for all (x, u) in E the
partial derivatives ∂g/∂uk, k = 1, . . . , n exist and ‖∂g/∂u‖ ≤ L. Then the
function g(x, u) satisfies the Lipschitz condition (15.5) in E with Lipschitz
constant L.

Proof. Let (x, u) and (x, v) be fixed points in E. Then since E is convex,
for all 0 ≤ t ≤ 1 the points (x, v+t(u−v)) are in E. Thus, the vector-valued
function G(t) = g(x, v + t(u− v)), 0 ≤ t ≤ 1 is well defined, also

G′(t) = (u1 − v1)
∂g

∂u1
(x, v + t(u− v)) + · · ·

+(un − vn)
∂g

∂un
(x, v + t(u− v))

and hence

‖G′(t)‖ ≤
n∑

i=1

∣∣∣∣ ∂gi

∂u1
(x, v + t(u− v))

∣∣∣∣ |u1 − v1| + · · ·

+
n∑

i=1

∣∣∣∣ ∂gi

∂un
(x, v + t(u− v))

∣∣∣∣ |un − vn|

≤ L[|u1 − v1| + · · · + |un − vn|] = L‖u− v‖.
Now from the relation

g(x, u) − g(x, v) = G(1) −G(0) =
∫ 1

0
G′(t)dt

we find that

‖g(x, u) − g(x, v)‖ ≤
∫ 1

0
‖G′(t)‖dt ≤ L‖u− v‖.

As an example once again we consider

g(x, u) = (a11u1 + a12u2, a21u1 + a22u2).

Since
∂g

∂u1
= (a11, a21),

∂g

∂u2
= (a12, a22),∥∥∥∥∂g∂u

∥∥∥∥ = max{|a11| + |a21|, |a12| + |a22|} = L,

as it should be.

Next arguing as in Theorem 7.1, we see that if g(x, u) is continuous in
the domain E, then any solution of (15.4) is also a solution of the integral
equation

u(x) = u0 +
∫ x

x0

g(t, u(t))dt (15.6)



106 Lecture 15

and conversely.

To find a solution of the integral equation (15.6) the Picard method of
successive approximations is equally useful. Let u0(x) be any continuous
function which we assume to be an initial approximation of the solution,
then we define approximations successively by

um+1(x) = u0 +
∫ x

x0

g(t, um(t))dt, m = 0, 1, . . . (15.7)

and, as before, if the sequence of functions {um(x)} converges uniformly
to a continuous function u(x) in some interval J containing x0 and for all
x ∈ J, the points (x, u(x)) ∈ E, then this function u(x) will be a solution
of the integral equation (15.6).

Example 15.1. For the initial value problem

u′
1 = x+ u2
u′

2 = x+ u1
u1(0) = 1, u2(0) = − 1

(15.8)

we take u0(x) = (1,−1), to obtain

u1(x) = (1,−1) +
∫ x

0
(t− 1, t+ 1)dt =

(
1 − x+

x2

2
,−1 + x+

x2

2

)

u2(x) = (1,−1) +
∫ x

0

(
t− 1 + t+

t2

2
, t+ 1 − t+

t2

2

)
dt

=
(

1 − x+
2x2

2
+
x3

3!
, − 1 + x+

x3

3!

)

u3(x) =
(

1 − x+
2x2

2
+
x4

4!
, − 1 + x+

2x3

3!
+
x4

4!

)

u4(x) =
(

1 − x+
2x2

2
+

2x4

4!
+
x5

5!
, − 1 + x+

2x3

3!
+
x5

5!

)

=
(

−(1 + x) +
(

2 +
2x2

2!
+

2x4

4!
+
x5

5!

)
,

−(1 + x) +
(

2x+
2x3

3!
+
x5

5!

))
· · · .

Hence, the sequence {um(x)} exists for all real x and converges to u(x) =
(−(1 + x) + ex + e−x, − (1 + x) + ex − e−x), which is the solution of the
initial value problem (15.8).

Now we shall state several results for the initial value problem (15.4)
which are analogous to those proved in earlier lectures for the problem (7.1).
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Theorem 15.2 (Local Existence Theorem). Let the following
conditions hold:

(i) g(x, u) is continuous in Ω : |x−x0| ≤ a, ‖u−u0‖ ≤ b and hence there
exists a M > 0 such that ‖g(x, u)‖ ≤ M for all (x, u) ∈ Ω.
(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in Ω.
(iii) u0(x) is continuous in |x− x0| ≤ a and ‖u0(x) − u0‖ ≤ b.

Then the sequence {um(x)} generated by the Picard iterative scheme (15.7)
converges to the unique solution u(x) of the problem (15.4). This solution
is valid in the interval Jh : |x − x0| ≤ h = min{a, b/M}. Further, for all
x ∈ Jh, the following error estimate holds

‖u(x) − um(x)‖ ≤ NeLh min
{

1,
(Lh)m

m!

}
, m = 0, 1, . . .

where ‖u1(x) − u0(x)‖ ≤ N.

Theorem 15.3 (Global Existence Theorem). Let the follow-
ing conditions hold:

(i) g(x, u) is continuous in ∆ : |x− x0| ≤ a, ‖u‖ < ∞.
(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in ∆.
(iii) u0(x) is continuous in |x− x0| ≤ a.

Then the sequence {um(x)} generated by the Picard iterative scheme (15.7)
exists in the entire interval |x−x0| ≤ a, and converges to the unique solution
u(x) of the problem (15.4).

Corollary 15.4. Let g(x, u) be continuous in IRn+1 and satisfy a
uniform Lipschitz condition (15.5) in each ∆a : |x| ≤ a, ‖u‖ < ∞ with
the Lipschitz constant La. Then the problem (15.4) has a unique solution
which exists for all x.

Theorem 15.5 (Peano’s Existence Theorem). Let g(x, u)
be continuous and bounded in ∆. Then the problem (15.4) has at least one
solution in |x− x0| ≤ a.

Definition 15.1. Let g(x, u) be continuous in a domain E. A function
u(x) defined in J is said to be an ε-approximate solution of the differential
system u′ = g(x, u) if (i) u(x) is continuous for all x in J, (ii) for all x ∈ J
the points (x, u(x)) ∈ E, (iii) u(x) has a piecewise continuous derivative
in J which may fail to be defined only for a finite number of points, say,
x1, x2, . . . , xk, and (iv) ‖u′(x) − g(x, u(x))‖ ≤ ε for all x ∈ J, x �= xi, i =
1, 2, . . . , k.

Theorem 15.6. Let g(x, u) be continuous in Ω, and hence there exists a
M > 0 such that ‖g(x, u)‖ ≤ M for all (x, u) ∈ Ω. Then for any ε > 0, there
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exists an ε-approximate solution u(x) of the differential system u′ = g(x, u)
in the interval Jh such that u(x0) = u0.

Theorem 15.7 (Cauchy–Peano’s Existence Theorem).
Let the conditions of Theorem 15.7 be satisfied. Then the problem (15.4)
has at least one solution in Jh.



Lecture 16
Existence and Uniqueness
of Solutions of Systems

(Contd.)

In this lecture we shall continue extending the results for the initial
value problem (15.4) some of which are analogous to those proved in earlier
lectures for the problem (7.1).

Theorem 16.1 (Continuation of Solutions). Assume that
g(x, u) is continuous in E and u(x) is a solution of the problem (15.4) in
an interval J. Then u(x) can be extended as a solution of (15.4) to the
boundary of E.

Corollary 16.2. Assume that g(x, u) is continuous in

E1 = {(x, u) ∈ E : x0 ≤ x < x0 + a, a < ∞, ‖u‖ < ∞} .

If u(x) is any solution of (15.4), then the largest interval of existence of u(x)
is either [x0, x0 + a] or [x0, x0 +α), α < a and ‖u(x)‖ → ∞ as x → x0 +α.

Theorem 16.3 (Perron’s Uniqueness Theorem). Let
f(x, y), f(x, 0) ≡ 0, be a nonnegative continuous function defined in the
rectangle x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. For every x1 ∈ (x0, x0 + a),
let y(x) ≡ 0 be the only differentiable function satisfying the initial value
problem

y′ = f(x, y), y(x0) = 0 (16.1)

in the interval [x0, x1). Further, let g(x, u) be continuous in Ω+ : x0 ≤ x ≤
x0 + a, ‖u− u0‖ ≤ b and

‖g(x, u) − g(x, v)‖ ≤ f(x, ‖u− v‖) (16.2)

for all (x, u), (x, v) ∈ Ω+. Then the problem (15.4) has at most one solution
in [x0, x0 + a].

Proof. Suppose u(x) and v(x) are any two solutions of (15.4) in [x0, x0+
a]. Let y(x) = ‖u(x) − v(x)‖, then clearly y(x0) = 0, and from Problem
11.5 it follows that

D+y(x) ≤ ‖u′(x) − v′(x)‖ = ‖g(x, u(x)) − g(x, v(x))‖. (16.3)
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Using inequality (16.2) in (16.3), we obtainD+y(x) ≤ f(x, y(x)). Therefore,
from Theorem 11.6 it follows that y(x) ≤ r(x), x ∈ [x0, x1) for any x1 ∈
(x0, x0 + a), where r(x) is the maximal solution of (16.1). However, from
the hypothesis r(x) ≡ 0, and hence y(x) ≡ 0 in [x0, x1). This proves the
theorem.

In Theorem 16.3 the function f(x, y) = h(x)y, where h(x) ≥ 0 is contin-
uous in [x0, x0 + a] is admissible, i.e., it includes the Lipschitz uniqueness
criterion.

For our next result we need the following lemma.

Lemma 16.4. Let f(x, y) be a nonnegative continuous function for
x0 < x ≤ x0 + a, 0 ≤ y ≤ 2b with the property that the only solution y(x)
of the DE y′ = f(x, y) in any interval (x0, x1) where x1 ∈ (x0, x0 + a) for
which y′

+(x0) exists, and

y(x0) = y′
+(x0) = 0 (16.4)

is y(x) ≡ 0. Further, let f1(x, y) be a nonnegative continuous function for
x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b, f1(x, 0) ≡ 0 and

f1(x, y) ≤ f(x, y), x �= x0. (16.5)

Then for every x1 ∈ (x0, x0+a), y1(x) ≡ 0 is the only differentiable function
in [x0, x1), which satisfies

y′
1 = f1(x, y1), y1(x0) = 0. (16.6)

Proof. Let r(x) be the maximal solution of (16.6) in [x0, x1). Since
f1(x, 0) ≡ 0, y1(x) ≡ 0 is a solution of the problem (16.6). Thus, r(x) ≥ 0
in [x0, x1). Hence, it suffices to show that r(x) = 0 in [x0, x1). Suppose, on
the contrary, that there exists a x2, x0 < x2 < x1 such that r(x2) > 0.
Then because of the inequality (16.5), we have

r′(x) ≤ f(x, r(x)), x0 < x ≤ x2.

If ρ(x) is the minimal solution of

y′ = f(x, y), y(x2) = r(x2),

then an application of Problem 11.6 implies that

ρ(x) ≤ r(x) (16.7)

as long as ρ(x) exists to the left of x2. The solution ρ(x) can be continued
to x = x0. If ρ(x3) = 0, for some x3, x0 < x3 < x2, we can affect the con-
tinuation by defining ρ(x) = 0 for x0 < x < x3. Otherwise, (16.7) ensures



Existence and Uniqueness of Solutions of Systems (Contd.) 111

the possibility of continuation. Since r(x0) = 0, limx→x+
0
ρ(x) = 0, and we

define ρ(x0) = 0. Furthermore, since f1(x, y) is continuous at (x0, 0) and
f1(x0, 0) = 0, r′

+(x0) exists and is equal to zero. This, because of (16.7), im-
plies that ρ′

+(x0) exists and ρ′
+(x0) = 0. Thus, ρ′(x) = f(x, ρ(x)), ρ(x0) =

0, ρ′
+(x0) = 0, and hence from the hypothesis on f(x, y) it follows that

ρ(x) ≡ 0. This contradicts the assumption that ρ(x2) = r(x2) > 0. There-
fore, r(x) ≡ 0.

Theorem 16.5 (Kamke’s Uniqueness Theorem). Let
f(x, y) be as in Lemma 16.4, and g(x, u) as in Theorem 16.3, except that
the condition (16.2) holds for all (x, u), (x, v) ∈ Ω+, x �= x0. Then the
problem (15.4) has at most one solution in [x0, x0 + a].

Proof. Define the function

fg(x, y) = sup
‖u−v‖=y

‖g(x, u) − g(x, v)‖ (16.8)

for x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. Since g(x, u) is continuous in Ω+, the
function fg(x, y) is continuous for x0 ≤ x ≤ x0 + a, 0 ≤ y ≤ 2b. From
(16.8) it is clear that the condition (16.2) holds for the function fg(x, y).
Moreover, fg(x, y) ≤ f(x, y) for x0 < x ≤ x0 + a, 0 ≤ y ≤ 2b. Lemma 16.4
is now applicable with f1(x, y) = fg(x, y) and therefore fg(x, y) satisfies the
assumptions of Theorem 16.3. This completes the proof.

Kamke’s uniqueness theorem is evidently more general than that of Per-
ron and it includes as special cases many known criteria, e.g., the following:

1. Osgood’s criterion in the interval [x0, x0 + a] : f(x, y) = w(y), where
the function w(y) is as in Lemma 10.3.
2. Nagumo’s criterion in the interval [x0, x0 + a] : f(x, y) = ky/(x− x0),
k ≤ 1.
3. Krasnoselski–Krein criterion in the interval [x0, x0 + a] :

f(x, y) = min
{

ky

x− x0
, Cyα

}
, C > 0, 0 < α < 1, k(1 − α) < 1.

Theorem 16.6 (Continuous Dependence on Initial Con-
ditions). Let the following conditions hold:

(i) g(x, u) is continuous and bounded by M in a domain E containing
the points (x0, u

0) and (x1, u
1).

(ii) g(x, u) satisfies a uniform Lipschitz condition (15.5) in E.
(iii) h(x, u) is continuous and bounded by M1 in E.
(iv) u(x) and v(x) are the solutions of the initial value problems (15.4)
and

v′ = g(x, v) + h(x, v), v(x1) = u1,
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respectively, which exist in an interval J containing x0 and x1.

Then for all x ∈ J , the following inequality holds:

‖u(x) − v(x)‖ ≤
(

‖u0 − u1‖ + (M +M1)|x1 − x0| +
1
L
M1

)

× exp (L|x− x0|) − 1
L
M1.

Theorem 16.7 (Differentiation with Respect to Initial
Conditions). Let the following conditions be satisfied:

(i) g(x, u) is continuous and bounded by M in a domain E containing
the point (x0, u

0).
(ii) The matrix ∂g(x, u)/∂u exists and is continuous and bounded by L
in E.
(iii) The solution u(x, x0, u

0) of the initial value problem (15.4) exists in
an interval J containing x0.

Then the following hold:

1. The solution u(x, x0, u
0) is differentiable with respect to u0, and for each

j (1 ≤ j ≤ n), vj(x) = ∂u(x, x0, u
0)/∂u0

j is the solution of the initial value
problem

v′ =
∂g

∂u
(x, u(x, x0, u

0))v (16.9)

v(x0) = ej = (0, . . . , 0, 1, 0, . . . , 0). (16.10)

2. The solution u(x, x0, u
0) is differentiable with respect to x0 and v(x) =

∂u(x, x0, u
0)/∂x0 is the solution of the differential system (16.9), satisfying

the initial condition
v(x0) = − g(x0, u

0). (16.11)

Finally, in this lecture we shall consider the differential system

u′ = g(x, u, λ), (16.12)

where λ = (λ1, . . . , λm) ∈ IRm is a parameter.

If in (16.12) we treat λ1, . . . , λm as new variables, then

dλi

dx
= 0, 1 ≤ i ≤ m. (16.13)

Thus, the new system consisting of (16.12) and (16.13) is exactly of the
form (15.1), but instead of n, now it is (n+m)-dimensional. Hence, for the
initial value problem

u′ = g(x, u, λ), u(x0) = u0, (16.14)
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the result analogous to Theorem 12.4 can be stated as follows.

Theorem 16.8. Let the following conditions be satisfied:

(i) g(x, u, λ) is continuous and bounded by M in a domain E ⊂ IRn+m+1

containing the point (x0, u
0, λ0).

(ii) The matrix ∂g(x, u, λ)/∂u exists and is continuous and bounded by L
in E.
(iii) The n×m matrix ∂g(x, u, λ)/∂λ exists and is continuous and bounded
by L1 in E.

Then the following hold:

1. There exist positive numbers h and ε such that for any λ satisfying
‖λ− λ0‖ ≤ ε, there exists a unique solution u(x, λ) of the problem (16.14)
in the interval |x− x0| ≤ h.

2. For all λi such that ‖λi − λ0‖ ≤ ε, i = 1, 2, and x in |x − x0| ≤ h the
following inequality holds:

‖u(x, λ1) − u(x, λ2)‖ ≤ L1

L
‖λ1 − λ2‖(exp(L|x− x0|) − 1).

3. The solution u(x, λ) is differentiable with respect to λ and for each
j (1 ≤ j ≤ m), vj(x, λ) = ∂u(x, λ)/∂λj is the solution of the initial value
problem

v′(x, λ) =
∂g

∂u
(x, u(x, λ), λ)v(x, λ) +

∂g

∂λj
(x, u(x, λ), λ) (16.15)

v(x0, λ) = 0. (16.16)

Problems

16.1. Solve the following problems by using Picard’s method of succes-
sive approximations:

(i) u′ =
[

0 1
−1 0

]
u, u(0) =

[
0
1

]
.

(ii) u′ =
[

0 1
1 0

]
u+

[
x
x

]
, u(0) =

[
2

−2

]
.

16.2. Show that the problem (1.6), (1.8) is equivalent to the integral
equation

y(x) =
n−1∑
i=0

(x−x0)i

i!
yi+

1
(n−1)!

∫ x

x0

(x−t)n−1f(t, y(t), y′(t), . . . , y(n−1)(t))dt.
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16.3. Let the following conditions hold:

(i) f(x, φ0, . . . , φn−1) is continuous in

Ω1 : |x− x0| ≤ a,

n−1∑
i=0

|φi − yi| ≤ b

and hence there exists a M > 0 such that supΩ1
|f(x, φ0, . . . , φn−1)| ≤ M .

(ii) f(x, φ0, . . . , φn−1) satisfies a uniform Lipschitz condition in Ω1, i.e.,
for all (x, φ0, . . . , φn−1), (x, ψ0, . . . , ψn−1) ∈ Ω1 there exists a constant L
such that

|f(x, φ0, . . . , φn−1) − f(x, ψ0, . . . , ψn−1)| ≤ L

n−1∑
i=0

|φi − ψi|.

Show that the problem (1.6), (1.8) has a unique solution in the interval
Jh : |x− x0| ≤ h = min{a, b/M1}, where M1 = M + b+

∑n−1
i=0 |yi|.

16.4. Let y(x) and z(x) be two solutions of the DE

y(n) + p1(x)y(n−1) + · · · + pn(x)y = r(x) (16.17)

in the interval J containing the point x0. Show that for all x in J

u(x0) exp(−2K|x− x0|) ≤ u(x) ≤ u(x0) exp(2K|x− x0|),
where

K = 1 +
n∑

i=1

sup
x∈J

|pi(x)| and u(x) =
n−1∑
i=0

(y(i)(x) − z(i)(x))2.

∗16.5. Consider the initial value problem

y′′ + α(y, y′)y′ + β(y) = f(x), y(0) = y0, y′(0) = y1

where α(y, y′), β(y) are continuous together with their first-order partial
derivatives, and f(x) is continuous and bounded on IR, α ≥ 0, yβ(y) ≥
0. Show that this problem has a unique solution and it can be extended
to [0,∞).

16.6. Using an example of the form

u′
1 = u2
u′

2 = −u1

observe that a generalization of Theorem 11.1 to systems of first-order DEs
with inequalities interpreted component-wise is in general not true.
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Answers or Hints

16.1. (i) (sinx, cosx)T . (ii) (ex + 2e−x − x− 1, ex − 2e−x − x− 1)T .

16.2. Use Taylor’s formula.

16.3. Write (1.6), (1.8) in system form and then apply Theorem 15.2.

16.4. Use the inequality 2|a||b| ≤ a2 + b2 to get −2Ku(x) ≤ u′(x) ≤
2Ku(x).

16.6. Let J = [0, π), u(x) = (sinx, cosx)T and v(x) = (−ε, 1 − ε)T , 0 <
ε < 1.



Lecture 17
General Properties
of Linear Systems

If the system (15.1) is linear, i.e.,

gi(x, u) = ai1(x)u1 + ai2(x)u2 + · · · + ain(x)un + bi(x), 1 ≤ i ≤ n,

then it can be written as

u′ = A(x)u+ b(x), (17.1)

where A(x) is an n × n matrix with elements aij(x), b(x) is an n × 1
vector with components bi(x), and u(x) is an n × 1 unknown vector with
components ui(x).

The existence and uniqueness of solutions of the differential system
(17.1) together with the initial condition

u(x0) = u0 (17.2)

in an interval J containing x0 follows from Corollary 15.4 provided the
functions aij(x), bi(x), 1 ≤ i, j ≤ n are continuous in J which we shall
assume throughout.

The principle of superposition for the first-order linear DEs given in
Problem 5.2 holds for the differential system (17.1) also, and it is stated as
follows: If u(x) is a solution of the differential system u′ = A(x)u + b1(x)
and v(x) is a solution of v′ = A(x)v + b2(x), then φ(x) = c1u(x) + c2v(x)
is a solution of the differential system φ′ = A(x)φ+ c1b

1(x) + c2b
2(x). For

this, we have

φ′(x) = c1u
′(x) + c2v

′(x)

= c1(A(x)u(x) + b1(x)) + c2(A(x)v(x) + b2(x))

= A(x)(c1u(x) + c2v(x)) + c1b
1(x) + c2b

2(x)

= A(x)φ(x) + c1b
1(x) + c2b

2(x).

In particular, if b1(x) = b2(x) ≡ 0, i.e., u(x) and v(x) are solutions of
the homogeneous differential system

u′ = A(x)u, (17.3)
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then c1u(x) + c2v(x) is also a solution. Thus, solutions of the homoge-
neous differential system (17.3) form a vector space. Further, if b1(x) =
b2(x), c1 = 1, c2 = −1 and u(x) is a solution of (17.1), then v(x) is also a
solution of (17.1) if and only if u(x)−v(x) is a solution of (17.3). Thus, the
general solution of (17.1) is obtained by adding to a particular solution of
(17.1) the general solution of the corresponding homogeneous system (17.3).

To find the dimension of the vector space of the solutions of (17.3) we
need to define the concept of linear independence and dependence of vector-
valued functions. The vector-valued functions u1(x), . . . , um(x) defined in
an interval J are said to be linearly independent in J, if the relation c1u1(x)+
· · ·+cmum(x) = 0 for all x in J implies that c1 = · · · = cm = 0. Conversely,
these functions are said to be linearly dependent if there exist constants
c1, . . . , cm not all zero such that c1u1(x) + · · · + cmu

m(x) = 0 for all x ∈ J.

Let m functions u1(x), . . . , um(x) be linearly dependent in J and ck �= 0;
then we have

uk(x) = − c1
ck
u1(x) − · · · − ck−1

ck
uk−1(x) − ck+1

ck
uk+1(x) − · · · − cm

ck
um(x),

i.e., uk(x) (and hence at least one of these functions) can be expressed as a
linear combination of the remaining m− 1 functions. On the other hand, if
one of these functions, say, uk(x), is a linear combination of the remaining
m− 1 functions, so that

uk(x) = c1u
1(x) + · · · + ck−1u

k−1(x) + ck+1u
k+1(x) + · · · + cmu

m(x),

then obviously these functions are linearly dependent. Hence, if two func-
tions are linearly dependent in J, then each one of these functions is iden-
tically equal to a constant times the other function, while if two functions
are linearly independent, then it is impossible to express either function as
a constant times the other. The concept of linear independence allows us
to distinguish when the given functions are “essentially” different.

Example 17.1. (i) The functions 1, x, . . . , xm−1 are linearly inde-
pendent in every interval J. For this, c1 + c2x + · · · + cmx

m−1 ≡ 0 in J
implies that c1 = · · · = cm = 0. If any ck were not zero, then the equation
c1 + c2x + · · · + cmx

m−1 = 0 could hold for at most m − 1 values of x,
whereas it must hold for all x in J.

(ii) The functions

u1(x) =

[
ex

ex

]
, u2(x) =

[
e2x

3e2x

]

are linearly independent in every interval J. Indeed,

c1

[
ex

ex

]
+ c2

[
e2x

3e2x

]
= 0
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implies that c1ex + c2e
2x = 0 and c1ex + 3c2e2x = 0, which is possible only

for c1 = c2 = 0.

(iii) The functions

u1(x) =

[
sinx

cosx

]
, u2(x) =

[
0

0

]

are linearly dependent.

For the given n vector-valued functions u1(x), . . . , un(x) the determi-
nant W (u1, . . . , un)(x) or W (x), when there is no ambiguity, defined by∣∣∣∣∣∣∣∣∣∣∣

u1
1(x) · · · un

1 (x)

u1
2(x) · · · un

2 (x)

· · ·
u1

n(x) · · · un
n(x)

∣∣∣∣∣∣∣∣∣∣∣
is called the Wronskian of these functions. This determinant is closely
related to the question of whether u1(x), . . . , un(x) are linearly independent.
In fact, we have the following result.

Theorem 17.1. If the Wronskian W (x) of n vector-valued functions
u1(x), . . . , un(x) is different from zero for at least one point in an interval
J ; then these functions are linearly independent in J.

Proof. Let u1(x), . . . , un(x) be linearly dependent in J, then there exist
n constants c1, . . . , cn not all zero such that

∑n
i=1 ciu

i(x) = 0 in J. This is
the same as saying the homogeneous system of equations

∑n
i=1 u

i
k(x)ci =

0, 1 ≤ k ≤ n, x ∈ J, has a nontrivial solution. However, from Theorem
13.2 this homogeneous system for each x ∈ J has a nontrivial solution if
and only if W (x) = 0. But W (x) �= 0 for at least one x in J, and, therefore
u1(x), . . . , un(x) cannot be linearly dependent.

In general the converse of this theorem is not true. For instance, for

u1(x) =

[
x

1

]
, u2(x) =

[
x2

x

]
,

which are linearly independent in any interval J, W (u1, u2)(x) = 0 in J.
This example also shows that W (u1, u2)(x) �= 0 in J is not necessary for
the linear independence of u1(x) and u2(x) in J, and W (u1, u2)(x) = 0 in
J may not imply that u1(x) and u2(x) are linearly dependent in J. Thus,
the only conclusion we have is W (x) �= 0 in J implies that u1(x), . . . , un(x)
are linearly independent in J , and linear dependence of these functions in
J implies that W (x) = 0 in J.
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The converse of Theorem 17.1 holds if u1(x), . . . , un(x) are the solutions
of the homogeneous differential system (17.3) in J. This we shall prove in
the following theorem.

Theorem 17.2. Let u1(x), . . . , un(x) be linearly independent solutions
of the differential system (17.3) in J. Then W (x) �= 0 for all x ∈ J.

Proof. Let x0 be a point in J where W (x0) = 0, then from Theorem 13.2
there exist constants c1, . . . , cn not all zero such that

∑n
i=1 ciu

i(x0) = 0.
Since u(x) =

∑n
i=1 ciu

i(x) is a solution of (17.3), and u(x0) = 0, from the
uniqueness of the solutions it follows that u(x) =

∑n
i=1 ciu

i(x) = 0 in J.
However, the functions u1(x), . . . , un(x) are linearly independent in J so we
must have c1 = · · · = cn = 0. This contradiction completes the proof.

Thus, on combining the results of Theorems 17.1 and 17.2 we find that
the solutions u1(x), . . . , un(x) of the differential system (17.3) are linearly
independent in J if and only if there exists at least one point x0 ∈ J such
thatW (x0) �= 0, i.e, the vectors u1(x0), . . . , un(x0) are linearly independent.
Hence, the solutions u1(x), . . . , un(x) of the system (17.3) satisfying the
initial conditions

ui(x0) = ei, i = 1, . . . , n (17.4)

are linearly independent in J. This proves the existence of n linearly inde-
pendent solutions of the differential system (17.3) in J.

Now let u(x) be any solution of the differential system (17.3) in J
such that u(x0) = u0. Then from the existence and uniqueness of the
solutions of the initial value problem (17.3), (17.2) it is immediate that
u(x) =

∑n
i=1 u

0
i u

i(x), where ui(x) is the solution of the problem (17.3),
(17.4). Thus, every solution of (17.3) can be expressed as a linear combina-
tion of the n linearly independent solutions of (17.3), (17.4). In conclusion,
we find that the vector space of all solutions of (17.3) is of dimension n.

Finally, in this lecture we shall prove the following result, which gives a
relation between the Wronskian W (x) and the matrix A(x).

Theorem 17.3 (Abel’s Formula). Let u1(x), . . . , un(x) be the
solutions of the differential system (17.3) in J and x0 ∈ J. Then for all
x ∈ J ,

W (x) = W (x0) exp
(∫ x

x0

TrA(t)dt
)
. (17.5)

Proof. In view of (13.5) the derivative of the Wronskian W (x) can be
written as
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W ′(x) =
n∑

i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1
1(x) · · · un

1 (x)

· · ·
u1

i−1(x) · · · un
i−1(x)

u1 ′
i (x) · · · un ′

i (x)

u1
i+1(x) · · · un

i+1(x)

· · ·
u1

n(x) · · · un
n(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (17.6)

In the ith determinant of the right side of (17.6) we use the differential
system (17.3) to replace uj ′

i (x) by
∑n

k=1 aik(x)uj
k(x), and multiply the

first row by ai1(x), the second row by ai2(x), and so on—except the ith
row—and subtract their sum from the ith row, to get

W ′(x) =
n∑

i=1

aii(x)W (x) = (TrA(x))W (x). (17.7)

Integration of the first-order DE (17.7) from x0 to x gives the required
relation (17.5).

Example 17.2. For the differential system

u′ =

⎡
⎣ 0 1

− 2
(x2 + 2x− 1)

2(x+ 1)
(x2 + 2x− 1)

⎤
⎦u, x �= −1 ±

√
2

it is easy to verify that

u1(x) =
[
x+ 1

1

]
and u2(x) =

[
x2 + 1

2x

]

are two linearly independent solutions. Also,

W (u1, u2)(x) =

∣∣∣∣∣ x+ 1 x2 + 1

1 2x

∣∣∣∣∣ = x2 + 2x− 1

and

exp
(∫ x

x0

TrA(t)dt
)

= exp
(∫ x

x0

2(t+ 1)
(t2 + 2t− 1)

dt

)
=

x2 + 2x+ 1
x2

0 + 2x0 − 1
,

x0 �= −1 ± √
2.

Substituting these expressions in (17.5) we see that it holds for all x.

We finish this lecture with the remark that the relation (17.5) among
other things says that W (x) is either identically zero or never zero in J.
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Problems

17.1. Show that the linear differential system (17.1) remains linear
after the change of the independent variable x = p(t).

17.2. Matrices of the form⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1

−pn −pn−1 −pn−2 · · · −p1

⎤
⎥⎥⎥⎥⎦

are called companion matrices. Show the following:

(i) If y(x) satisfies the nth-order linear homogeneous DE

y(n) + p1(x)y(n−1) + · · · + pn(x)y = 0 (17.8)

and if the vector-valued function u(x) is defined by ui(x) = y(i−1)(x), i =
1, 2, . . . , n, then u′ = A(x)u with A(x) in the companion form.

(ii) If yk(x), 1 ≤ k ≤ n are n solutions of (17.8), then

uk(x) = (yk(x), y′
k(x), . . . , y(n−1)

k (x))T , 1 ≤ k ≤ n

satisfy the system u′ = A(x)u.

(iii) W (u1, . . . , un)(x) = W (u1, . . . , un)(x0) exp
(

−
∫ x

x0

p1(t)dt
)
.

17.3. The Wronskian of n functions y1(x), . . . , yn(x) which are (n− 1)
times differentiable in an interval J is defined by the determinant

W (y1, . . . , yn)(x) =

∣∣∣∣∣∣∣∣∣∣

y1(x) · · · yn(x)

y′
1(x) · · · y′

n(x)

· · ·
y
(n−1)
1 (x) · · · y

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
.

Show the following:

(i) If W (y1, . . . , yn)(x) is different from zero for at least one point in J,
then the functions y1(x), . . . , yn(x) are linearly independent in J .
(ii) If the functions y1(x), . . . , yn(x) are linearly dependent in J, then the
Wronskian W (y1, . . . , yn)(x) = 0 in J .
(iii) The converse of (i) as well as of (ii) is not necessarily true.
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(iv) If W (y1, . . . , yn)(x) = 0 in J, but for some set of (n − 1), y’s (say,
without loss of generality, all but yn(x)) W (y1, . . . , yn−1)(x) �= 0 for all
x ∈ J, then the functions y1(x), . . . , yn(x) are linearly dependent in J.

17.4. Let y1(x), . . . , yn(x) be n times continuously differentiable func-
tions in an interval J and W (y1, . . . , yn)(x) �= 0. Show that

W (y1, . . . , yn, y)(x)
W (y1, . . . , yn)(x)

= 0

is an nth-order linear homogeneous DE for which y1(x), . . . , yn(x) are so-
lutions.

17.5. Show that the DE (17.8) can be transformed to its normal form

z(n) + q2(x)z(n−2) + q3(x)z(n−3) + · · · + qn(x)z = 0,

where

z(x) = y(x) exp
(

1
n

∫ x

p1(t)dt
)
,

provided p1(x) is (n− 1) times differentiable in J. In particular for n = 2,
the normal form of (17.8) is

z′′ +
(
p2(x) − 1

2
p′
1(x) − 1

4
p2
1(x)

)
z = 0.

17.6. Let φ1(x) �= 0 in J be a solution of the DE (17.8). If v2, . . . , vn

are linearly independent solutions of the DE

φ1v
(n−1) + · · · + [nφ(n−1)

1 + p1(x)(n− 1)φ(n−2)
1 + · · · + pn−1(x)φ1]v = 0

and if vk = u′
k, k = 2, . . . , n, then φ1, u2φ1, . . . , unφ1 are linearly indepen-

dent solutions of (17.8) in J. In particular, for n = 2 the second linearly
independent solution of (17.8) is given by

φ2(x) = φ1(x)
∫ x

x0

1
(φ1(t))2

exp
(

−
∫ t

x0

p1(s)ds
)
dt

(see (6.5)).

17.7. Let u(x), v(x) and w(x) be the solutions of the DE y′′′ + y = 0
satisfying u(0) = 1, u′(0) = 0, u′′(0) = 0; v(0) = 0, v′(0) = 1, v′′(0) = 0;
w(0) = 0, w′(0) = 0, w′′(0) = 1. Without solving the DE, show the
following:

(i) u′(x) = −w(x).
(ii) v′(x) = u(x).
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(iii) w′(x) = v(x).
(iv) W (u, v, w) = u3 − v3 + w3 + 3uvw = 1.

Answers or Hints

17.1. For each k, 0 ≤ k ≤ n it is easy to find

dky
dxk =

∑k
i=0 pki(t)diy

dti ,

where pki(t) are some suitable functions.

17.2. To show (i) and (ii) write the equation (17.8) in a system form.
part (iii) follows from Abel’s formula (17.5).

17.3. (i) If yi(x), 1 ≤ i ≤ n are linearly dependent, then there exist non-
trivial ci, 1 ≤ i ≤ n such that

∑n
i=1 ciyi(x) = 0 for all x ∈ J. Differentiating

this, we obtain
∑n

i=1 ciy
(k)
i (x) = 0, k = 0, 1, . . . , n − 1 for all x ∈ J. But,

this implies W (x) = 0. (ii) Clear from part (i). (iii) Consider the functions
y1(x) = x3, y2(x) = x2|x|. (iv) W (y1, . . . , yn−1, y)(x) = 0 is a linear homo-
geneous DE such that the coefficient of y(n−1)(x) isW (y1, . . . , yn−1)(x) �= 0.
For this (n− 1)th-order DE there are n solutions yi(x), 1 ≤ i ≤ n.

17.4. See part (iv) of Problem 17.3.

17.5. Use Leibnitz’s formula.

17.6. Since φ1(x) is a solution of the DE (17.8), y = uφ1 will also be
its solution provided 0 = (uφ1)(n) + p1(x)(uφ1)(n−1) + · · · + pn(x)(uφ1) =
φ1v

(n−1) + (nφ′
1 + p1(x)φ1)v(n−2) + · · · + (nφ(n−1)

1 + (n− 1)p1(x)φ
(n−2)
1 +

· · ·+pn−1(x)φ1)v, where v = u′. The coefficient of v(n−1) is φ1, and hence if
φ1(x) �= 0 in J , then the above (n−1)th-order DE has n−1 linearly indepen-
dent solutions v2, . . . , vn in J. If x0 ∈ J, and uk(x) =

∫ x

x0
vk(t)dt, 2 ≤ k ≤ n

then the functions φ1, u2φ1, . . . , unφ1 are solutions of (17.8). To show that
these solutions are linearly independent, let c1φ1+c2u2φ1+· · ·+cnunφ1 = 0,
where not all c1, . . . , cn are zero. However, since φ1 �= 0 in J, this im-
plies that c1 + c2u2 + · · · + cnun = 0, and on differentiation we obtain
c2u

′
2 + · · · + cnu

′
n = 0, i.e., c2v2 + · · · + cnvn = 0. Since v2, . . . , vn are

linearly independent c2 = · · · = cn = 0, which in turn also imply that
c1 = 0.

17.7. Since W (u, v, w)(0) = 1, u, v, w are linearly independent solutions of
y′′′ + y = 0. Now since (u′)′′′ + (u′) = 0, u′ is also a solution of y′′′ + y = 0.
Hence, there exist nonzero constants c1, c2, c3 such that u′(x) = c1u(x) +
c2v(x) + c3w(x). Part (iv) follows from parts (i)–(iii) and Abel’s formula.



Lecture 18
Fundamental Matrix Solution

In our previous lecture we have seen that any solution u(x) of the dif-
ferential system (17.3) satisfying u(x0) = u0 can be written as u(x) =∑n

i=1 u
0
iu

i(x), where ui(x) is the solution of the initial value problem (17.3),
(17.4). In matrix notation this solution can be written as u(x) = Φ(x, x0)u0,
where Φ(x, x0) is an n × n matrix whose ith column is ui(x). The matrix
Φ(x, x0) is called the principal fundamental matrix ; however, some authors
prefer to call it evolution or transition matrix. It is easy to verify that
Φ(x, x0) is a solution of the matrix initial value problem

dΦ
dx

= A(x)Φ, Φ(x0) = I. (18.1)

The fact that the initial value problem (18.1) has a unique solution
Φ(x, x0) in J can be proved exactly as for the problem (17.1), (17.2). More-
over, the iterative scheme

Φm+1(x) = I +
∫ x

x0

A(t)Φm(t)dt, m = 0, 1, . . . (18.2)

Φ0(x) = I (18.3)

converges to Φ(x, x0), and

Φ(x, x0) = I +
∫ x

x0

A(t)dt+
∫ x

x0

∫ t

x0

A(t)A(t1)dt1dt+ · · · . (18.4)

The series (18.4) is called Peano–Baker series for the solution of (18.1). If
A is an n× n constant matrix, then it can be taken out from the integrals
and (18.4) becomes

Φ(x, x0) = I +A

∫ x

x0

dt+A2
∫ x

x0

∫ t

x0

dt1dt+ · · ·

= I +
∞∑

m=1

[A(x− x0)]m

m!
= exp(A(x− x0)).

Summarizing this discussion, specifically we have proved the following
theorem.

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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Theorem 18.1. The matrix

Φ(x, x0) = exp(A(x− x0)) (18.5)

is the principal fundamental matrix of the system

u′ = Au, (18.6)

where A is a constant matrix.

Example 18.1. For the matrix A =
[

0 1
−1 0

]
it is easily seen that

A4m+1 = A, A4m+2 = −I, A4m+3 = −A, A4m+4 = I for m = 0, 1, . . . and
hence the series (18.4) can be summed, to obtain[

cos(x− x0) sin(x− x0)

− sin(x− x0) cos(x− x0)

]
.

In our previous lecture we have also proved that the solutions u1(x), . . . ,
un(x) of the differential system (17.3) are linearly independent in J if and
only if there exists at least one point x0 ∈ J such that W (x0) �= 0. If these
solutions are linearly independent, then the set u1(x), . . . , un(x) is called
a fundamental system of solutions of (17.3). Further, the n × n matrix
Ψ(x) = [u1(x), . . . , un(x)] is called the fundamental matrix of (17.3). For
this matrix Ψ(x), we shall prove the following result.

Theorem 18.2. If Ψ(x) is a fundamental matrix of the differential
system (17.3), then for any constant nonsingular n × n matrix C, Ψ(x)C
is also a fundamental matrix of (17.3), and every fundamental matrix of
(17.3) is of the form Ψ(x)C for some constant nonsingular n× n matrix C.

Proof. Obviously, Ψ′(x) = A(x)Ψ(x), and hence Ψ′(x)C = A(x)Ψ(x)C,
which is the same as (Ψ(x)C)′ = A(x)(Ψ(x)C), i.e., Ψ(x) and Ψ(x)C both
are solutions of the same matrix differential system Φ′ = A(x)Φ. Further,
since det Ψ(x) �= 0 and detC �= 0 it follows that det (Ψ(x)C) �= 0, and
hence Ψ(x)C is also a fundamental matrix solution of (17.3). Conversely,
let Ψ1(x) and Ψ2(x) be two fundamental matrix solutions of (17.3). If
Ψ−1

2 (x)Ψ1(x) = C(x), i.e., Ψ1(x) = Ψ2(x)C(x), then we find that Ψ′
1(x) =

Ψ′
2(x)C(x) + Ψ2(x)C ′(x) which is the same as

A(x)Ψ1(x) = A(x)Ψ2(x)C(x)+Ψ2(x)C ′(x) = A(x)Ψ1(x)+Ψ2(x)C ′(x);

i.e., Ψ2(x)C ′(x) = 0, or C ′(x) = 0, and hence C(x) is a constant matrix.
Further, since both Ψ1(x) and Ψ2(x) are nonsingular, this constant matrix
is also nonsingular.

As a consequence of this theorem, we find

Φ(x, x0) = Ψ(x)Ψ−1(x0) (18.7)
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and the solution of the initial value problem (17.3), (17.2) can be written as

u(x) = Ψ(x)Ψ−1(x0)u0. (18.8)

Since the product of matrices is not commutative, for a given constant
nonsingular matrix C, CΨ(x) need not be a fundamental matrix solution of
the differential system (17.3). Further, two different homogeneous systems
cannot have the same fundamental matrix, i.e., Ψ(x) determines the matrix
A(x) in (17.3) uniquely by the relation A(x) = Ψ′(x)Ψ−1(x). However, from
Theorem 18.2 the converse is not true.

Now differentiating the relation Ψ(x)Ψ−1(x) = I, we obtain

Ψ′(x)Ψ−1(x) + Ψ(x)(Ψ−1(x))′ = 0

and hence
(Ψ−1(x))′ = − Ψ−1(x)A(x),

which is the same as(
(Ψ−1(x))T

)′
= −AT (x)(Ψ−1(x))T . (18.9)

Therefore, (Ψ−1(x))T is a fundamental matrix of the differential system

u′ = −AT (x)u. (18.10)

The system (18.10) is called the adjoint system to the differential system
(17.3). This relationship is symmetric in the sense that (17.3) is the adjoint
system to (18.10) and vice versa.

An important property of adjoint systems is given in the following result.

Theorem 18.3. If Ψ(x) is a fundamental matrix of the differential
system (17.3), then χ(x) is a fundamental matrix of its adjoint system
(18.10) if and only if

χT (x)Ψ(x) = C, (18.11)

where C is a constant nonsingular n× n matrix.

Proof. If Ψ(x) is a fundamental matrix of the differential system
(17.3), then from (18.9) it follows that (Ψ−1(x))T is a fundamental matrix
of the differential system (18.10), and hence Theorem 18.2 gives χ(x) =
(Ψ−1(x))TD, where D is a constant nonsingular n×n matrix. Thus, on us-
ing the fact that (Ψ−1(x))T is a fundamental matrix we have ΨT (x)χ(x) =
D, which is the same as χT (x)Ψ(x) = DT . Therefore, (18.11) holds with
C = DT . Conversely, if Ψ(x) is a fundamental matrix of (17.3) satisfying
(18.11), then we have ΨT (x)χ(x) = CT and hence χ(x) = (ΨT (x))−1CT .
Thus, by Theorem 18.2, χ(x) is a fundamental matrix of the adjoint system
(18.10).
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As a consequence of this theorem, if A(x) = −AT (x), then (ΨT (x))−1

being a fundamental matrix of (18.10) is also a fundamental matrix of the
differential system (17.3). Thus, Theorem 18.2 gives Ψ(x) = (ΨT (x))−1C,
which is the same as ΨT (x)Ψ(x) = C. Hence, in this particular case the
Euclidean length of any solution of the differential system (17.3) is a con-
stant.

Now we shall show that the method of variation of parameters used in
Lectures 5 and 6 to find the solutions of nonhomogeneous first and second-
order DEs is equally applicable for the nonhomogeneous system (17.1).
For this, we seek a vector-valued function v(x) such that Φ(x, x0)v(x) is a
solution of the system (17.1). We have

Φ′(x, x0)v(x) + Φ(x, x0)v′(x) = A(x)Φ(x, x0)v(x) + b(x),

which reduces to give
Φ(x, x0)v′(x) = b(x);

and hence from Problem 18.2, it follows that

v′(x) = Φ−1(x, x0)b(x) = Φ(x0, x)b(x).

Thus, the function v(x) can be written as

v(x) = v(x0) +
∫ x

x0

Φ(x0, t)b(t)dt.

Finally, since u(x0) = Φ(x0, x0)v(x0) = v(x0), the solution of the initial
value problem (17.1), (17.2) takes the form

u(x) = Φ(x, x0)u0 + Φ(x, x0)
∫ x

x0

Φ(x0, t)b(t)dt, (18.12)

which from Problem 18.2 is the same as

u(x) = Φ(x, x0)u0 +
∫ x

x0

Φ(x, t)b(t)dt. (18.13)

If we use the relation (18.7) in (18.12), then it is the same as

u(x) = Ψ(x)c+
∫ x

x0

Ψ(x)Ψ−1(t)b(t)dt, (18.14)

where the constant vector c = Ψ−1(x0)u0. Hence, we have an explicit rep-
resentation of the general solution of (17.1) in terms of any fundamental
matrix Ψ(x) of the differential system (17.3).

In the case when A(x) is a constant matrix A, relation (18.5) can be
used in (18.13), to obtain

u(x) = eA(x−x0)u0 +
∫ x

x0

eA(x−t)b(t)dt. (18.15)
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Example 18.2. Consider the system

u′ =
[

0 1
−2 3

]
u+

[
1
1

]
. (18.16)

For the corresponding homogeneous system

u′ =
[

0 1
−2 3

]
u

it is easy to verify that the principal fundamental matrix is

Φ(x, 0) =

[
2ex − e2x −ex + e2x

2ex − 2e2x −ex + 2e2x

]
=

[
ex e2x

ex 2e2x

][
2 −1

−1 1

]
.

Thus, the solution of (18.16) satisfying u(0) = u0 can be written as

u(x) =

[
ex e2x

ex 2e2x

][
2 −1

−1 1

]
u0

+

[
ex e2x

ex 2e2x

]∫ x

0

[
2e−t −e−t

−e−2t e−2t

][
1

1

]
dt

=

[
2ex − e2x −ex + e2x

2ex − 2e2x −ex + 2e2x

]
u0 + (ex − 1)

[
1

1

]
.

Problems

18.1. Show that the vector-valued function

u(x) = exp
(∫ x

x0

A(t)dt
)
u0

is not a solution of the differential system (17.3) unless A(x) and
∫ x

x0
A(t)dt

commute for all x.

18.2. Let Φ(x, x0) be the principal fundamental matrix of the system
(17.3) in an interval J. Show that Φ(x, x0) = Φ(x, x1)Φ(x1, x0), where x1 ∈
J, and hence, in particular, Φ−1(x, x0) = Φ(x0, x), and Φ(x, x) = I for all
x ∈ J.

18.3. For the n × n matrix Φ(x, t) appearing in (18.13), show the
following:

(i) ∂Φ(x, t)/∂x = A(x)Φ(x, t).



Fundamental Matrix Solution 129

(ii) ∂Φ(x, t)/∂t = −Φ(x, t)A(t).

(iii) Φ(x, t) = I +
∫ x

t
A(s)Φ(s, t)ds.

(iv) Φ(x, t) = I +
∫ x

t
Φ(x, s)A(s)ds.

18.4. Show that a square nonsingular matrix Φ(., .) which depends on
two arguments and is differentiable with respect to each argument in J is a
principal fundamental matrix if Φ(x0, x0) = I for all x0 in J and the matrix

[
d

dx
Φ(x, x0)

]
Φ−1(x, x0)

depends on x alone.

18.5. Let Φ(x) = Φ(x, 0) be the principal fundamental matrix of the
system (18.6). Show the following:

(i) For any real x0,Φ1(x) = Φ(x− x0) is a fundamental matrix.

(ii) Φ(x − x0) = Φ(x)Φ(−x0) = Φ(x)Φ−1(x0), and hence Φ(−x0) =
Φ−1(x0).

18.6. The linear differential system (17.3) is said to be self-adjoint when
A(x) = −AT (x) for all x in J. Let Φ(x, x0) be the principal fundamental
matrix of the system (17.3), and Ψ(x, x0) be the principal fundamental
matrix of the adjoint system (18.10). Show that the differential system
(17.3) is self-adjoint if and only if Φ(x, x0) = ΨT (x0, x).

18.7. Let the matrix A(x) be such that aij(x) ≥ 0 for all i �= j and all
x ≥ x0. Show the following:

(i) Every element of the principal fundamental matrix Φ(x, x0) of the
system (17.3) is nonnegative for all x ≥ x0.

(ii) If u(x) and v(x) are two solutions of the differential system (17.3)
satisfying ui(x0) ≥ vi(x0), 1 ≤ i ≤ n, then ui(x) ≥ vi(x), 1 ≤ i ≤ n for all
x ≥ x0.

18.8. Equations of the form

p0x
ny(n) + p1x

n−1y(n−1) + · · · + pny = 0, x > 0, p0 �= 0 (18.17)

are called Euler’s DEs. Show that there exist u1(x), . . . , un(x) such that the
differential system (18.17) can be converted to u′(x) = x−1Au(x), where A
is an n× n constant matrix.

18.9. For the given n linearly independent solutions y1(x), . . . , yn(x)
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of the homogeneous DE (17.8) in an interval J, we define

H(x, t) =
y1(x)∆1(t) + · · · + yn(x)∆n(t)

W (y1, . . . , yn)(t)

=

∣∣∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)

y′
1(t) · · · y′

n(t)

· · ·
y
(n−2)
1 (t) · · · y

(n−2)
n (t)

y1(x) · · · yn(x)

∣∣∣∣∣∣∣∣∣∣∣∣

/
∣∣∣∣∣∣∣∣∣∣

y1(t) · · · yn(t)

y′
1(t) · · · y′

n(t)

· · ·
y
(n−1)
1 (t) · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣
;

i.e., ∆i(t) is the cofactor of the element y
(n−1)
i (t) in the Wronskian

W (y1, . . . , yn)(t). Show the following:

(i) H(x, t) is defined for all (x, t) in J × J .
(ii) ∂iH(x, t)/∂xi, 0 ≤ i ≤ n, are continuous for all (x, t) in J × J .
(iii) For each fixed t in J the function z(x) = H(x, t) is a solution of the
DE (17.8) satisfying z(i)(t) = 0, 0 ≤ i ≤ n− 2, z(n−1)(t) = 1.
(iv) The function

y(x) =
∫ x

x0

H(x, t)r(t)dt

is a particular solution of the nonhomogeneous DE (16.17), satisfying
y(i)(x0) = 0, 0 ≤ i ≤ n− 1.
(v) The general solution of (16.17) can be written as

y(x) =
n∑

i=1

ciyi(x) +
∫ x

x0

H(x, t)r(t)dt,

where ci, 1 ≤ i ≤ n, are arbitrary constants.

18.10. Let v(x) be the solution of the initial value problem

y(n) + p1y
(n−1) + · · · + pny = 0

y(i)(0) = 0, 0 ≤ i ≤ n− 2, y(n−1)(0) = 1.
(18.18)

Show that the function

y(x) =
∫ x

x0

v(x− t)r(t)dt

is the solution of the nonhomogeneous DE

y(n) + p1y
(n−1) + · · · + pny = r(x) (18.19)

satisfying y(i)(x0) = 0, 0 ≤ i ≤ n− 1.
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18.11. Open-loop input–output control systems can be written in the
form

u′ = Au+ by(x), z = cTu+ dy(x),

where the functions y(x), z(x) and the constant d are scalar. Here y(x) is
the known input and z(x) is the unknown output. Show that if u(0) = u0

is known, then

(i) u(x) = eAxu0 +
∫ x

0
eA(x−t)by(t)dt;

(ii) z(x) = cT eAxu0 + dy(x) +
∫ x

0

(
cT eA(x−t)b

)
y(t)dt.

The function h(t) = cT eAxb is called the impulse response function for the
given control system.

Answers or Hints

18.1. Expand exp
(∫ x

x0
A(t)dt

)
and then compare u′(x) and A(x)u(x).

18.2. Verify that Ψ(x) = Φ(x, x1)Φ(x1, x0) is a fundamental matrix solu-
tion of (18.1). The result now follows from the uniqueness.

18.3. Use Φ(x, t) = Φ(x)Φ−1(t).

18.4.
[

d
dxΦ(x, x0)

]
Φ−1(x, x0) = A(x) is the same as d

dxΦ(x, x0) = A(x)
×Φ(x, x0).

18.5. (i) Verify directly. (ii) From Theorem 18.2, Φ(x− x0) = Φ(x)C.

18.6. Use Theorem 18.3 and Problems 18.2 and 18.3.

18.7. (i) If aij(x) ≥ 0, 1 ≤ i, j ≤ n, then the sequence {Φm(x)} generated
by Φ0(x) = I,

Φm+1(x) = I +
∫ x

x0

A(t)Φm(t)dt, m = 0, 1, . . . ,

converges to Φ(x, x0) and obviously each Φm(x) ≥ 0, and hence Φ(x, x0) ≥
0 for all x ≥ x0. Now note that (17.3) is the same as

u′
i − aii(x)ui =

n∑
j = 1
j �= i

aij(x)uj , 1 ≤ i ≤ n.

(ii) Use the representation u(x) = Φ(x, x0)u(x0).
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18.8. For n = 3 let y = u1, xu
′
1 = u2 so that u′

2 = xu′′
1 + u′

1, u
′′
2 =

xu′′′
1 + 2u′′

1 . Next let xu′
2 = u3 so that u′

3 = xu′′
2 + u′

2 = x(xu′′′
1 + 2u′′

1) + u′
2

and hence

xu′
3 = x3u′′′

1 + 2x2u′′
1 + xu′

2 = −p3

p0
u1 −

(
2 +

p2 − p1

p0

)
u2 +

(
3 − p1

p0

)
u3.

Now write these equations in the required system form.

18.9. Verify directly.

18.10. For each fixed t, z(x) = v(x− t) is also a solution of (18.18) satis-
fying z(i)(t) = 0, 0 ≤ i ≤ n− 2, z(n−1)(t) = 1. Now use Problem 18.9(iv).

18.11. Use (18.15).



Lecture 19
Systems with

Constant Coefficients

Our discussion in Lecture 18 has restricted usage of obtaining explicit
solutions of homogeneous and, in general, of nonhomogeneous differential
systems. This is so because the solution (18.4) involves an infinite series
with repeated integrations and (18.14) involves its inversion. In fact, even if
the matrix A(x) is of second order, no general method of finding the explicit
form of the fundamental matrix is available. Further, if the matrix A is
constant, then the computation of the elements of the fundamental matrix
eAx from the series (18.4) may turn out to be difficult, if not impossible.
However, in this case the notion of eigenvalues and eigenvectors of the
matrix A can be used to avoid unnecessary computation. For this, the first
result we prove is the following theorem.

Theorem 19.1. Let λ1, . . . , λn be the distinct eigenvalues of the matrix
A and v1, . . . , vn be the corresponding eigenvectors. Then the set

u1(x) = v1eλ1x, · · · , un(x) = vneλnx (19.1)

is a fundamental set of solutions of (18.6).

Proof. Since vi is an eigenvector of A corresponding to the eigenvalue
λi, we find

(ui(x))′ = (vieλix)′ = λiv
ieλix = Avieλix = Aui(x)

and hence ui(x) is a solution of (18.6). To show that (19.1) is a funda-
mental set, we note that W (0) = det [v1, . . . , vn] �= 0, since v1, . . . , vn are
linearly independent from Theorem 14.1. Thus, the result follows from
Theorem 17.1.

Obviously, from Theorem 19.1 it follows that

eAx =
[
v1eλ1x, . . . , vneλnx

]
[v1, . . . , vn]−1 (19.2)

and the general solution of (18.6) can be written as

u(x) =
n∑

i=1

civ
ieλix. (19.3)
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Example 19.1. Using the results of Example 14.1, Theorem 19.1
concludes that the set

u1(x) =

⎡
⎣ 1

−1
1

⎤
⎦ ex, u2(x) =

⎡
⎣ −1

0
1

⎤
⎦ e2x, u3(x) =

⎡
⎣ 1

2
1

⎤
⎦ e4x

is a fundamental set of solutions of the differential system

u′ =

⎡
⎣ 2 1 0

1 3 1
0 1 2

⎤
⎦u.

Unfortunately, when the matrix A has only k < n distinct eigenvalues,
then the computation of eAx is not easy. However, among several exist-
ing methods we shall discuss only two which may be relatively easier as
compared with others. The first method is given in the following result.

Theorem 19.2. Let λ1, . . . , λk, k ≤ n be distinct eigenvalues of the
matrix A with multiplicities r1, . . . , rk, respectively, so that

p(λ) = (λ− λ1)r1 · · · (λ− λk)rk ; (19.4)

then

eAx =
k∑

i=1

⎡
⎣eλixai(A)qi(A)

ri−1∑
j=0

{
1
j!

(A− λiI)jxi

}⎤⎦ , (19.5)

where
qi(λ) = p(λ)(λ− λi)−ri , 1 ≤ i ≤ k (19.6)

and ai(λ), 1 ≤ i ≤ k are the polynomials of degree less than ri in the
expansion

1
p(λ)

=
a1(λ)

(λ− λ1)r1
+ · · · +

ak(λ)
(λ− λk)rk

. (19.7)

Proof. Relations (19.6) and (19.7) imply that

1 = a1(λ)q1(λ) + · · · + ak(λ)qk(λ).

This relation has been derived from the characteristic equation p(λ) = 0
of A, and therefore, using the Cayley–Hamilton Theorem 14.2, we have

I = a1(A)q1(A) + · · · + ak(A)qk(A). (19.8)

Since the matrices λiI and A−λiI commute and eλiIx = eλixI, we have

eAx = eλiIxe(A−λiI)x = eλix
∞∑

j=0

{
1
j!

(A− λiI)jxj

}
.
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Premultiplying both sides of this equation by ai(A)qi(A), and observing
that qi(A)(A − λiI)ri = p(A) = 0, and consequently, qi(A)(A − λiI)j = 0
for all j ≥ ri, it follows that

ai(A)qi(A)eAx = eλixai(A)qi(A)
ri−1∑
j=0

{
1
j!

(A− λiI)jxj

}
.

Summing this relation from i = 1 to k and using (19.8), we get (19.5).

Corollary 19.3. If k = n, i.e., A has n distinct eigenvalues, then
ai(A) = (1/qi(λi))I, and hence (19.5) reduces to

eAx =
n∑

i=1

qi(A)
qi(λi)

eλix

=
n∑

i=1

(A− λ1I) · · · (A− λi−1I)(A− λi+1I) · · · (A− λnI)
(λi − λ1) · · · (λi − λi−1)(λi − λi+1) · · · (λi − λn)

eλix.

(19.9)
Corollary 19.4. If k = 1, i.e., A has all the eigenvalues equal to λ1,
then ai(A) = qi(A) = I, and hence (19.5) reduces to

eAx = eλ1x
n−1∑
j=0

{
1
j!

(A− λ1I)jxj

}
. (19.10)

Corollary 19.5. If k = 2 and r1 = (n− 1), r2 = 1 then we have

a1(A) =
1

(λ2 − λ1)n−1

[
(λ2 − λ1)n−1I − (A− λ1I)n−1] (A− λ2I)−1,

q1(A) = (A− λ2I), a2(A) =
1

(λ2 − λ1)n−1 I, q2(A) = (A− λ1I)n−1,

and hence (19.5) reduces to

eAx = eλ1x

[
I −

(
A− λ1I

λ2 − λ1

)n−1
]

n−2∑
j=0

{
1
j!

(A− λ1I)jxj

}

+eλ2x

(
A− λ1I

λ2 − λ1

)n−1

= eλ1x
n−2∑
j=0

{
1
j!

(A− λ1I)jxj

}
− eλ1x 1

(λ2 − λ1)n−1

×
n−2∑
j=0

{
1
j!

(A− λ1I)n−1+jxj

}
+ eλ2x

(
A− λ1I

λ2 − λ1

)n−1

.
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Now since (A− λ2I) = (A− λ1I) − (λ2 − λ1)I, we find

(A− λ1I)n−1(A− λ2I) = (A− λ1I)n − (λ2 − λ1)(A− λ1I)n−1.

Thus, by the Cayley–Hamilton Theorem 14.2, we get (A − λ1I)n = (λ2 −
λ1)(A−λ1I)n−1. Using this relation repeatedly, we obtain (A−λ1I)n+j−1 =
(λ2 − λ1)j(A− λ1I)n−1. It, therefore, follows that

eAx = eλ1x
n−2∑
j=0

{
1
j!

(A− λ1I)jxj

}

+

⎡
⎣eλ2x − eλ1x

n−2∑
j=0

{
1
j!

(λ2 − λ1)jxj

}⎤⎦(A− λ1I

λ2 − λ1

)n−1

.

(19.11)

The second method is discussed in the following theorem.

Theorem 19.6 (Putzer’s Algorithm). Let λ1, . . . , λn be the
eigenvalues of the matrix A which are arranged in some arbitrary, but
specified order. Then

eAx =
n−1∑
j=0

rj+1(x)Pj ,

where P0 = I, Pj =
∏j

k=1(A− λkI), j = 1, . . . , n and r1(x), . . . , rn(x) are
recursively given by

r′
1(x) = λ1r1(x), r1(0) = 1

r′
j(x) = λjrj(x) + rj−1(x), rj(0) = 0, j = 2, . . . , n.

(Note that each eigenvalue in the list is repeated according to its multiplic-
ity. Further, since the matrices (A− λiI) and (A− λjI) commute, we can
for convenience adopt the convention that (A − λjI) follows (A − λiI) if
i > j.)

Proof. It suffices to show that Φ(x) defined by

Φ(x) =
n−1∑
j=0

rj+1(x)Pj

satisfies Φ′ = AΦ, Φ(0) = I. For this, we define r0(x) ≡ 0. Then it fol-
lows that

Φ′(x) − λnΦ(x) =
n−1∑
j=0

(λj+1rj+1(x) + rj(x))Pj − λn

n−1∑
j=0

rj+1(x)Pj
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=
n−1∑
j=0

(λj+1 − λn)rj+1(x)Pj +
n−1∑
j=0

rj(x)Pj

=
n−2∑
j=0

(λj+1 − λn)rj+1(x)Pj +
n−2∑
j=0

rj+1(x)Pj+1

=
n−2∑
j=0

{(λj+1−λn)Pj + (A− λj+1I)Pj} rj+1(x) (19.12)

= (A− λnI)
n−2∑
j=0

Pjrj+1(x)

= (A− λnI)(Φ(x) − rn(x)Pn−1)
= (A− λnI)Φ(x) − rn(x)Pn, (19.13)

where to obtain (19.12) and (19.13) we have used Pj+1 = (A−λj+1I)Pj and
Pn = (A− λnI)Pn−1, respectively. Now by the Cayley–Hamilton Theorem
14.2, Pn = p(A) = 0, and therefore (19.13) reduces to Φ′(x) = AΦ(x).
Finally, to complete the proof we note that

Φ(0) =
n−1∑
j=0

rj+1(0)Pj = r1(0)I = I.

Example 19.2. Consider a 3×3 matrix A having all three eigenvalues
equal to λ1. To use Theorem 19.6, we note that r1(x) = eλ1x, r2(x) =
xeλ1x, r3(x) = (1/2)x2eλ1x is the solution set of the system

r′
1 = λ1r1, r1(0) = 1
r′
2 = λ1r2 + r1, r2(0) = 0
r′
3 = λ1r3 + r2, r3(0) = 0.

Thus, it follows that

eAx = eλ1x

[
I + x(A− λ1I) +

1
2
x2(A− λ1I)2

]
, (19.14)

which is exactly the same as (19.10) for n = 3.

In particular, the matrix

A =

⎡
⎣ 2 1 −1

−3 −1 1
9 3 −4

⎤
⎦

has all its eigenvalues equal to −1, and hence from (19.14) we obtain

eAx =
1
2
e−x

⎡
⎢⎣

2 + 6x− 3x2 2x −2x+ x2

−6x 2 2x

18x− 9x2 6x 2 − 6x+ 3x2

⎤
⎥⎦ .
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Example 19.3. Consider a 3 × 3 matrix A with eigenvalues λ1, λ1, λ2.
To use Theorem 19.6, we note that r1(x) = eλ1x, r2(x) = xeλ1x,

r3(x) =
xeλ1x

(λ1 − λ2)
+
eλ2x − eλ1x

(λ1 − λ2)2

and hence

eAx = eλ1x

[
I + x(A− λ1I) +

{
x

(λ1 − λ2)
+
e(λ2−λ1)x − 1
(λ1 − λ2)2

}
(A− λ1I)2

]
,

(19.15)
which is precisely the same as (19.11) for n = 3.

In particular, the matrix

A =

⎡
⎣ −1 0 4

0 −1 2
0 0 1

⎤
⎦

has the eigenvalues −1,−1, 1 and hence from (19.15) we find

eAx =

⎡
⎢⎣
e−x 0 2(ex − e−x)

0 e−x ex − e−x

0 0 ex

⎤
⎥⎦ .

Problems

19.1. (i) If A =
[

α β
−β α

]
, show that

eAx = eαx

[
cosβx sinβx

− sinβx cosβx

]
.

(ii) If A =
[

0 1
−1 −2δ

]
, show that

eAx =

⎡
⎢⎢⎣
e−δx

(
cosωx+

δ

ω
sinωx

)
1
ω
e−δx sinωx

− 1
ω
e−δx sinωx e−δx

(
cosωx− δ

ω
sinωx

)
⎤
⎥⎥⎦ ,

where ω =
√

1 − δ2.
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(iii) If

A =

⎡
⎢⎢⎣

0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

⎤
⎥⎥⎦ ,

show that

eAx =

⎡
⎢⎢⎢⎢⎢⎢⎣

4 − 3 cosωx
1
ω

sinωx 0
2
ω

(1 − cosωx)

3ω sinωx cosωx 0 2 sinωx

6(−ωx+ sinωx) − 2
ω

(1 − cosωx) 1
1
ω

(−3ωx+ 4 sinωx)

6ω(−1 + cosωx) −2 sinωx 0 −3 + 4 cosωx

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(iv) If A2 = αA, show that eAx = I + [(eαx − 1)/α]A.

19.2. Let A and P be n× n matrices given by

A =

⎡
⎢⎢⎢⎢⎣

λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · 1
0 0 0 · · · λ

⎤
⎥⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · ·
0 0 0 0 · · · 1
0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

Show the following:

(i) Pn = 0.
(ii) (λI)P = P (λI).

(iii) eAx = eλx

[
I + xP +

1
2!
x2P 2 + · · · +

1
(n− 1)!

xn−1Pn−1
]
.

19.3 (Kirchner’s Algorithm). Let λ1, . . . , λk be distinct eigenvalues
of the matrix A with multiplicities r1, . . . , rk, respectively. Define

p(λ) =
k∏

j=1

(λ− λj)rj , qi(λ) = p(λ)(λ− λi)−ri , q(λ) =
k∑

j=1

qj(λ),

fm(x) = 1 + x+ · · · +
xm−1

(m− 1)!
, pi(A) = (q(A))−1qi(A).

Show that

eAx =
k∑

j=1

pj(A)frj ((A− λjI)x)eλjx.

Further, deduce the result (19.10) when k = 1.
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19.4. Let A and B be two n × n matrices. We say that A and B
are similar if and only if there exists a nonsingular matrix P such that
P−1AP = B. Show the following:

(i) v(x) is a solution of the differential system v′ = Bv if and only if
u(x) = Pv(x), where u(x) is a solution of the differential system (18.6).

(ii) eAx = PeBxP−1.

19.5. Let u(x) be a solution of the differential system (18.6). Show
that both the real and imaginary parts of u(x) are solutions of (18.6).

19.6. Show the following:

(i) Every solution of the differential system (18.6) tends to zero as x → ∞
if and only if the real parts of the eigenvalues of the matrix A are negative.

(ii) Every solution of the differential system (18.6) is bounded in the
interval [0,∞) if and only if the real parts of the multiple eigenvalues of the
matrix A are negative, and the real parts of the simple eigenvalues of the
matrix A are nonpositive.

19.7. Find the general solution of the differential system (18.6), where
the matrix A is given by

(i)
[

4 −2
5 2

]
. (ii)

[
7 6
2 6

]
. (iii)

⎡
⎣ 0 1 1

1 0 1
1 1 0

⎤
⎦. (iv)

⎡
⎣ 1 −1 4

3 2 −1
2 1 −1

⎤
⎦.

(v)

⎡
⎣ −1 1 0

0 −1 0
0 0 3

⎤
⎦. (vi)

⎡
⎣ 5 −3 −2

8 −5 −4
−4 3 3

⎤
⎦ .

19.8. Find the general solution of the nonhomogeneous differential
system u′ = Au+b(x), where the matrix A and the vector b(x) are given by

(i)
[

0 −1
3 4

]
,

[
x

−2 − 4x

]
;

(ii)
[ −2 −4

−1 1

]
,

[
1 + 4x
(3/2)x2

]
;

(iii)

⎡
⎣ −1 1 1

1 −1 1
1 1 1

⎤
⎦ ,

⎡
⎣ ex

e3x

4

⎤
⎦;

(iv)

⎡
⎣ 2 1 −2

−1 0 0
1 1 −1

⎤
⎦ ,

⎡
⎣ 2 − x

1
1 − x

⎤
⎦ .

19.9. Find the solutions of the following initial value problems:



Systems with Constant Coefficients 141

(i) u′ =
[

1 5
−1 −3

]
u, u1(0) = −2, u2(0) = 1.

(ii) u′ =
[

0 1
−1 0

]
u, u1(π) = −1, u2(π) = 0.

(iii) u′ =

⎡
⎣ 1 0 0

2 1 −2
3 2 1

⎤
⎦u+

⎡
⎣ 0

0
ex cos 2x

⎤
⎦ , u1(0) = 0, u2(0) = 1, u3(0) = 1.

(iv) u′ =

⎡
⎣ −1 0 4

0 −1 2
0 0 1

⎤
⎦u+

⎡
⎣ ex

e−x

0

⎤
⎦ , u1(0) = 0, u2(0) = 1, u3(0) = 0.

(v) u′ =

⎡
⎣ 2 1 −1

−3 −1 1
9 3 −4

⎤
⎦u+

⎡
⎣ 0
x
0

⎤
⎦ , u1(0) = 0, u2(0) = 3, u3(0) = 0.

(vi) u′ =

⎡
⎣ 2 1 1

0 2 0
0 0 3

⎤
⎦u+

⎡
⎣ 1

0
x

⎤
⎦ , u1(0) = 1, u2(0) = 1, u3(0) = 1.

19.10. Consider the DE (18.18). Show the following:

(i) Its characteristic equation is

p(λ) = λn + p1λ
n−1 + · · · + pn = 0. (19.16)

(ii) If λ1 �= λ2 �= · · · �= λn are the roots of (19.16), then eλix, 1 ≤ i ≤ n
are n linearly independent solutions of the DE (18.18).
(iii) If λ1 �= λ2 �= · · · �= λk (k < n) are the roots of (19.16) with multiplici-
ties r1, . . . , rk, respectively, then eλix, xeλix, . . . , x(ri−1)eλix, 1 ≤ i ≤ k are
n linearly independent solutions of the DE (18.18).

Answers or Hints

19.1. Verify directly.

19.2. (i) Observe that in each multiplication the position of 1 is shifted
by one column, so in P 2 the nth and (n − 1)th rows are 0. (ii) Obvious.
(iii) Since A = λI + P, we can use parts (i) and (ii).

19.3. Clearly, q(λ) is a polynomial, and since q(λi) = qi(λi) �= 0, i =
1, . . . , k it follows that p(λ) and q(λ) have no common factor. Thus, there
exist polynomials q∗(λ) and p∗(λ) such that q(λ)q∗(λ) + p(λ)p∗(λ) = 1.
Hence, in view of p(A) = 0 we obtain q(A)q∗(A) = I, i.e., q∗(A) = q(A)−1.
Thus, q(A)−1 exists and is expressible as a polynomial in A. Now

eAx = q(A)−1q(A)eAx = q(A)−1∑k
j=1 qj(A)e(A−λjI)x · eλjIx.
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Finally, use qj(A)(A − λjI)i = 0 for all i ≥ rj . For k = 1 note that
q1(λ) = q(λ) = 1 and hence q(A)−1q∗(A) = I.

19.4. (i) Verify directly. (ii) Since P−1AP = B implies A = PBP−1, eAx

= ePBP −1x.

19.5. If u(x) = p(x)+iq(x) is a solution of u′ = A(x)u, then p′(x)+iq′(x) =
A(x)p(x) + iA(x)q(x).

19.6. Let λj = αj+iβj , 1 ≤ j ≤ k ≤ n be distinct eigenvalues of the matrix
A with multiplicities rj , 1 ≤ j ≤ k, respectively. If α = max1≤j≤k αj and
r = max1≤j≤k rj , then there exists x1 ≥ x0 ≥ 0 sufficiently large such that
for all x ≥ x1 the relation (19.5) gives ‖eAx‖ ≤ Ceαxxr.

19.7. (i) e3x

[
2c1 cos 3x+ 2c2 sin 3x

c1(cos 3x+ 3 sin 3x) + c2(sin 3x− 3 cos 3x)

]
.

(ii) c1e10x

[
2
1

]
+ c2e

3x

[
3

−2

]
. (iii)

⎡
⎣ e2x e−x 0
e2x 0 e−x

e2x −e−x −e−x

⎤
⎦
⎡
⎣ c1
c2
c3

⎤
⎦.

(iv) c1ex

⎡
⎣ −1

4
1

⎤
⎦+ c2e

−2x

⎡
⎣ 1

−1
−1

⎤
⎦+ c3e

3x

⎡
⎣ 1

2
1

⎤
⎦.

(v)

⎡
⎣ 0 −e−x xe−x

0 0 e−x

e3x 0 0

⎤
⎦
⎡
⎣ c1
c2
c3

⎤
⎦. (vi) ex

⎡
⎣ 1 0 2x

0 2 4x
2 −3 −2x− 1

⎤
⎦
⎡
⎣ c1
c2
c3

⎤
⎦.

19.8. (i) c1ex

[
1

−1

]
+ c2e

3x

[
1

−3

]
+
[

1
x

]
.

(ii) c1e2x

[
1

−1

]
+ c2e

−3x

[
4
1

]
+
[
x+ x2

− 1
2x

2

]
.

(iii) 1
6

⎡
⎣ 2 1 3

2 1 −3
−2 2 0

⎤
⎦
⎡
⎣ c1e

−x + 1
2e

x + 1
4e

3x − 4
c2e

2x − ex + e3x − 4
c3e

−2x + 1
3e

x − 1
5e

3x

⎤
⎦.

(iv) c1ex

⎡
⎣ 1

−1
0

⎤
⎦+ c2

⎡
⎣ sinx

cosx
sinx

⎤
⎦+ c3

⎡
⎣ cosx

− sinx
cosx

⎤
⎦+

⎡
⎣ 0
x
1

⎤
⎦.

19.9. (i) e−x

[ −2 cosx+ sinx
cosx

]
. (ii)

[
cosx

− sinx

]
.

(iii) ex

⎡
⎣ 0

cos 2x− (
1 + 1

2x
)
sin 2x(

1 + 1
2x
)
cos 2x+ 5

4 sin 2x

⎤
⎦. (iv)

⎡
⎣ 1

2 (ex − e−x)
e−x(x+ 1)

0

⎤
⎦.

(v)

⎡
⎣ 2(1 + 2x)e−x + x− 2

4e−x + x− 1
6(1 + 2x)e−x + 3(x− 2)

⎤
⎦.
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(vi) 1
36

⎡
⎣ 40e3x + 36xe2x + 9e2x + 6x− 13

36e2x

40e3x − 12x− 4

⎤
⎦.

19.10. (i) In system form the DE (18.18) is equivalent to (18.6), where

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 0 1

−pn −pn−1 −pn−2 · · · −p2 −p1

⎤
⎥⎥⎥⎥⎦ .

Now in det (A− λI) = 0 perform the operation C1 + λC2 + · · · + λn−1Cn.
(ii) If λi is a simple root of p(λ) = 0, then for the above matrix A,
[1, λi, λ

2
i , . . . , λ

n−1
i ]T is the corresponding eigenvector. In fact,

(A− λiI)[1, λi, . . . , λ
n−1
i ]T = [0, . . . , 0,−p(λi)]T = [0, . . . , 0]T .

Thus, corresponding to λi the solution vector of u′ = Au is ui(x) =[
eλix, λie

λix, . . . , λn−1
i eλix

]
.

(iii) If λi is a multiple root of p(λ) = 0 with multiplicity ri, then p(j)(λi) =
0, 0 ≤ j ≤ ri − 1. Let L = dn

dxn + p1
dn−1

dxn−1 + · · · + pn, so that (18.18) can be
written as L[y] = 0. Since L

[
eλx

]
= p(λ)eλx, j times differentiation with

respect to λ gives

∂j

∂λjL
[
eλx

]
= L

[
∂j

∂λj e
λx
]

= L
[
xjeλx

]
=

[∑j
i=0

(
j
i

)
p(j)(λ)xj−i

]
eλx.

Now to prove linear independence suppose we have n constants cij , 1 ≤
i ≤ k, 0 ≤ j ≤ ri − 1 such that∑k

i=1 Pi(x)eλix = 0,

where Pi(x) =
∑ri−1

j=0 cijx
j . If all constants cij are not zero, then there will

be at least one, say, Pk(x) not identically zero. The above relation can be
written as

P1(x) + P2(x)e(λ2−λ1)x + · · · + Pk(x)e(λk−λ1)x = 0.

Differentiating this r1 times reduces P1(x) to 0, and we obtain

Q2(x)e(λ2−λ1)x + · · · +Qk(x)e(λk−λ1)x = 0,

or

Q2(x)eλ2x + · · · +Qk(x)eλkx = 0,

where degQi(x) = degPi(x), 2 ≤ i ≤ k and Qk(x) �≡ 0. Continuing this
process, we arrive at

Rk(x)eλkx = 0,

where degRk(x) = degPk(x) and Rk(x) �≡ 0. However, the above relation
implies that Rk(x) ≡ 0.



Lecture 20
Periodic Linear Systems

A function y(x) is called periodic of period ω > 0 if for all x in the
domain of the function

y(x+ ω) = y(x). (20.1)

Geometrically, this means that the graph of y(x) repeats itself in successive
intervals of length ω. For example, the functions sinx and cosx are periodic
of period 2π. For convenience, we shall assume that ω is the smallest positive
number for which (20.1) holds. If each component ui(x), 1 ≤ i ≤ n of u(x)
and each element aij(x), 1 ≤ i, j ≤ n of A(x) are periodic of period ω, then
u(x) and A(x) are said to be periodic of period ω. Periodicity of solutions
of differential systems is an interesting and important aspect of qualitative
study. Here we shall provide certain characterizations for the existence of
such solutions of linear differential systems.

To begin with we shall provide necessary and sufficient conditions for
the differential system (17.1) to have a periodic solution of period ω.

Theorem 20.1. Let the matrix A(x) and the function b(x) be contin-
uous and periodic of period ω in IR. Then the differential system (17.1) has
a periodic solution u(x) of period ω if and only if u(0) = u(ω).

Proof. Let u(x) be a periodic solution of period ω, then by definition
it is necessary that u(0) = u(ω). To show sufficiency, let u(x) be a solution
of (17.1) satisfying u(0) = u(ω). If v(x) = u(x + ω), then it follows that
v′(x) = u′(x+ω) = A(x+ω)u(x+ω)+b(x+ω) = A(x)v(x)+b(x); i.e., v(x)
is a solution of (17.1). However, since v(0) = u(ω) = u(0), the uniqueness
of the initial value problems implies that u(x) = v(x) = u(x+ω), and hence
u(x) is periodic of period ω.

Corollary 20.2. Let the matrix A(x) be continuous and periodic of
period ω in IR. Further, let Ψ(x) be a fundamental matrix of the differential
system (17.3). Then the differential system (17.3) has a nontrivial periodic
solution u(x) of period ω if and only if det (Ψ(0) − Ψ(ω)) = 0.

Proof. We know that the general solution of the differential system
(17.3) is u(x) = Ψ(x)c, where c is an arbitrary constant vector. This u(x)
is periodic of period ω if and only if Ψ(0)c = Ψ(ω)c, i.e., the system (Ψ(0)−
Ψ(ω))c = 0 has a nontrivial solution vector c. But, from Theorem 13.2 this
system has a nontrivial solution if and only if det (Ψ(0) − Ψ(ω)) = 0.
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Corollary 20.3. The differential system (18.6) has a nontrivial periodic
solution of period ω if and only if the matrix (I − eAω) is singular.

Corollary 20.4. Let the conditions of Theorem 20.1 be satisfied. Then
the differential system (17.1) has a unique periodic solution of period ω if
and only if the differential system (17.3) does not have a periodic solution
of period ω other than the trivial one.

Proof. Let Ψ(x) be a fundamental matrix of the differential system
(17.3). Then from (18.14) the general solution of (17.1) can be written as

u(x) = Ψ(x)c+
∫ x

0
Ψ(x)Ψ−1(t)b(t)dt,

where c is an arbitrary constant. This u(x) is periodic of period ω if and
only if

Ψ(0)c = Ψ(ω)c+
∫ ω

0
Ψ(ω)Ψ−1(t)b(t)dt;

i.e., the system

(Ψ(0) − Ψ(ω))c =
∫ ω

0
Ψ(ω)Ψ−1(t)b(t)dt

has a unique solution vector c. But, from Theorem 13.2 this system has a
unique solution if and only if det (Ψ(0) − Ψ(ω)) �= 0. Now the conclusion
follows from Corollary 20.2.

In the case when the conditions of Corollary 20.2 are satisfied, the fun-
damental matrix Ψ(x) can be represented as a product of a periodic matrix
of period ω and a fundamental matrix of a differential system with constant
coefficients. This basic result is known as Floquet’s theorem.

Theorem 20.5 (Floquet’s Theorem). Let the conditions of
Corollary 20.2 be satisfied. Then the following hold:

(i) The matrix χ(x) = Ψ(x + ω) is also a fundamental matrix of the
differential system (17.3).
(ii) There exists a periodic nonsingular matrix P (x) of period ω and a
constant matrix R such that

Ψ(x) = P (x)eRx. (20.2)

Proof. Since Ψ(x) is a fundamental matrix of the differential system
(17.3) it follows that

χ′(x) = Ψ′(x+ ω) = A(x+ ω)Ψ(x+ ω) = A(x)χ(x);

i.e., χ(x) is a solution matrix of the differential system (17.3). Further,
since det Ψ(x + ω) �= 0 for all x, we have detχ(x) �= 0 for all x. Hence,
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we conclude that χ(x) is a fundamental matrix of the differential system
(17.3). This completes the proof of part (i).

Next we shall prove part (ii), since Ψ(x) and Ψ(x+ ω) are both funda-
mental matrices of the differential system (17.3) from Theorem 18.2 there
exists a nonsingular constant matrix C such that

Ψ(x+ ω) = Ψ(x)C. (20.3)

Now from Theorem 14.3 there exists a constant matrix R such that C =
eRω. Thus, from (20.3) it follows that

Ψ(x+ ω) = Ψ(x)eRω. (20.4)

Let P (x) be a matrix defined by the relation

P (x) = Ψ(x)e−Rx. (20.5)

Then using (20.4) we have

P (x+ω) = Ψ(x+ω)e−R(x+ω) = Ψ(x)eRωe−R(x+ω) = Ψ(x)e−Rx = P (x).

Hence, P (x) is periodic of period ω. Further, since Ψ(x) and e−Rx are
nonsingular detP (x) �= 0 in IR.

In relation (20.3) the matrix C is in fact Ψ−1(0)Ψ(ω), and hence eRω =
Ψ−1(0)Ψ(ω), which gives the matrix R = ln(Ψ−1(0)Ψ(ω))/ω. Thus, in
(20.5) if the matrix Ψ(x) is known only in the interval [0, ω] the periodic-
ity property of P (x) can be used to determine it in the whole interval IR.
Hence, from (20.2) the fundamental matrix Ψ(x) can be determined in the
interval IR provided it is known only in the interval [0, ω].

Theorem 20.5 is particularly interesting because it suggests a transfor-
mation which reduces the differential system (17.3) to a differential system
of the type (18.6). Precisely, we shall prove the following result.

Theorem 20.6. Let P (x) and R be the matrices obtained in Theorem
20.5. Then the transformation u(x) = P (x)v(x) reduces the differential
system (17.3) to the system

v′ = Rv. (20.6)

Proof. Since Ψ′(x) = A(x)Ψ(x), the relation (20.2) gives

(
P (x)eRx

)′
= A(x)P (x)eRx,

which yields
P ′(x) + P (x)R−A(x)P (x) = 0. (20.7)
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Now using the transformation u = P (x)v in the differential system (17.3),
we obtain

P (x)v′ + P ′(x)v = A(x)P (x)v,

which is the same as

P (x)v′ + [P ′(x) −A(x)P (x)]v = 0. (20.8)

Combining the relations (20.7) and (20.8) we get (20.6).

Once again we assume that the conditions of Corollary 20.2 are satisfied,
and Ψ1(x) is another fundamental matrix of the differential system (17.3).
Then from Theorem 18.2 there exists a nonsingular matrix M such that
Ψ(x) = Ψ1(x)M holds. Thus, from (20.4) it follows that Ψ1(x + ω)M =
Ψ1(x)MeRω, i.e.,

Ψ1(x+ ω) = Ψ1(x)MeRωM−1. (20.9)

Hence, we conclude that every fundamental matrix Ψ1(x) of the differ-
ential system (17.3) determines a matrix MeRωM−1 which is similar to
eRω. Conversely, if M is any constant nonsingular matrix, then there ex-
ists a fundamental matrix Ψ1(x) of the differential system (17.3) such that
the relation (20.9) holds. The nonsingular matrix C associated with the
fundamental matrix Ψ(x) in (20.3) is called the monodromy matrix of the
differential system (17.3). For example, monodromy matrix for Ψ1(x) is
MeRωM−1. The eigenvalues of C are called the multipliers of (17.3), and
the eigenvalues of R are called the exponents of (17.3).

Let σ1, . . . , σn and λ1, . . . , λn, respectively, be the multipliers and ex-
ponents of (17.3), then from the relation C = eRω it follows that σi =
eλiω, 1 ≤ i ≤ n. It should be noted that the exponents of (17.3) are de-
termined only mod(2πi/ω), because even though C is determined uniquely,
the matrix R is not unique. Further, since the matrix C is nonsingular,
none of the multipliers σ1, . . . , σn of (17.3) is zero.

From the relation (20.4), we have Ψ(ω) = Ψ(0)eRω, and hence we con-
clude that σ1, . . . , σn are the eigenvalues of Ψ−1(0)Ψ(ω), or of the matrix
Φ(ω, 0) if Ψ(x) = Φ(x, 0), i.e., Ψ(x) is the principal fundamental matrix of
(17.3). Thus, from Theorem 17.3 and Problem 14.1 it follows that

det Φ(ω, 0) =
n∏

i=1

σi = det Φ(0, 0) exp
(∫ ω

0
TrA(t)dt

)
= exp

(
n∑

i=1

λiω

)
.

(20.10)
The final result is a direct consequence of Theorem 20.5.

Theorem 20.7. Let the conditions of Corollary 20.2 be satisfied. Then
a complex number λ is an exponent of the differential system (17.3) if and
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only if there exists a nontrivial solution of (17.3) of the form eλxp(x), where
p(x+ ω) = p(x). In particular, there exists a periodic solution of (17.3) of
period ω (2ω) if and only if there is a multiplier 1 (−1) of (17.3).

Proof. Suppose u(x) = eλxp(x), p(x+ω) = p(x) is a nontrivial solution
of (17.3) with u(0) = u0, then u(x) = Φ(x, 0)u0 = eλxp(x), where Φ(x, 0)
is the principal fundamental matrix of (17.3). From Theorem 20.5, we also
have u(x) = Φ(x, 0)u0 = P (x)eRxu0, where P (x) is a periodic matrix of
period ω. Therefore, eλ(x+ω)p(x) = P (x)eR(x+ω)u0, which is the same as
P (x)eRx

(
eλωI − eRω

)
u0 = 0, and hence det

(
eλωI − eRω

)
= 0, i.e., λ is an

exponent of the differential system (17.3). Conversely, if λ is an exponent
of (17.3), then we have eRxu0 = eλxu0 for all x, and hence P (x)eRxu0 =
P (x)u0eλx. However, u(x) = P (x)eRxu0 is the solution of (17.3), and hence
the conclusion follows. To prove the second assertion it suffices to note
that the multiplier of (17.3) is 1 (−1) provided λ = 0 (πi/ω), and then
the solution eλxp(x) reduces to p(x)(eπix/ωp(x)) which is periodic of period
ω (2ω).

Example 20.1. In system form Hill’s equation y′′ + p(x)y = 0, where
p(x) is periodic of period π, can be written as

u′ =
[

0 1
−p(x) 0

]
u. (20.11)

This, as a special case, includes Mathieu’s equation for p(x) = λ+16d cos 2x.

Obviously, in (20.11) the matrix A(x) is periodic of period π. Thus,
for the principal fundamental matrix Φ(x, 0) of (20.11) the relation (20.3)
gives Φ(x+π, 0) = Φ(x, 0)C, and hence C = Φ(π, 0). Further, in the system
(20.11), TrA(x) = 0, and hence Theorem 17.3 gives det Φ(x, 0) = 1 for all
x. Thus, from Problem 14.1 the eigenvalues σ1 and σ2 of C are the roots of
the quadratic equation σ2 − aσ + 1 = 0, where a = u1

1(π) + u2
2(π). Let λ1

and λ2 be the exponents of (20.11), then it follows that σi = eλiπ, i = 1, 2.

Now we shall discuss various cases.

(i) If a > 2, then σ1 and σ2 are real, distinct, and positive, and hence the
exponents are real and distinct.
(ii) If a < −2, then σ1 and σ2 are real, distinct, and negative, and hence the
exponents are complex with real and imaginary parts different from zero.
(iii) If |a| < 2, then σ1 and σ2 are complex conjugates with the absolute
value 1, and hence the exponents are purely imaginary.

If the roots σ1 and σ2 are unequal, then there exists a pair of linearly
independent solutions p1(x)eλ1x, p2(x)eλ2x where p1(x) and p2(x) are con-
tinuous periodic functions of period π.

(iv) If |a| = 2, then the quadratic equation has a double root. When
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a = 2, the double root is σ = 1, and if a = −2, the double root is σ = −1.
In this case two linearly independent solutions of (20.11) are ±p1(x) and
±xp2(x). One of these solutions is periodic with period π for σ = 1, period
2π for σ = −1, and the other is unbounded.

Problems

20.1. Consider the equation y′ = ay+sinx. Discuss the cases (i) a = 0,
(ii) a > 0, and (iii) a < 0 separately for the existence of a unique periodic
solution.

20.2. Verify that in the DE y′ = (cos2 x)y even though the function
cos2 x is periodic of period π, the solutions are not periodic.

20.3. Consider the DE y′′ + y = cosx.

(i) Show that the general solution of this DE is

y(x) = c1 sin(x+ c2) +
1
2
x sinx,

where c1 and c2 are arbitrary constants. Observe that y(x) is not periodic.
(ii) Does this example contradict Corollary 20.4?

20.4. Consider the DE y′′ + y = sin 2x.

(i) Show that y(x) = −(1/3) sin 2x is a solution of this DE and it is
periodic of period 2π.
(ii) Show that the DE y′′ +y = 0 also admits nontrivial periodic solutions
of period 2π.
(iii) Does this contradict Corollary 20.4?

20.5. The DE for the undamped mass–spring system with a given
periodic external force can conveniently be written as y′′ + k2

0y = A cos kx,
where k0 is the natural frequency of the system and k the applied frequency.

If k �= k0, a particular solution of this DE is given by

y(x) =
A

k2
0 − k2 cos kx.

Thus, if the applied frequency k is close to the natural frequency k0, then
this particular solution represents an oscillation with large amplitude. This
phenomenon is called resonance. If k = k0, a particular solution cannot be
obtained from this solution. Show that this particular solution is given by

y(x) =
A

2k0
x sin k0x,
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which is nonperiodic.

20.6. Let y1(x) and y2(x) be two solutions of the DE y′′ + p(x)y = 0
such that y1(0) = 1, y′

1(0) = 0; y2(0) = 0, y′
2(0) = 1. Further, let p(x) be

continuous and periodic of period ω in IR. Show the following:

(i) The Wronskian W (y1, y2)(x) = 1 for all x ∈ IR.
(ii) There is at least one nontrivial periodic solution y(x) of period ω if
and only if y1(ω) + y′

2(ω) = 2.
(iii) There is at least one nontrivial antiperiodic solution y(x), i.e., y(x +
ω) = −y(x), x ∈ IR if and only if y1(ω) + y′

2(ω) = −2.

20.7. Consider the DE (6.19), where p1(x) and p2(x) are continuous
and periodic of period ω in IR. Show that a nontrivial solution y(x) is
periodic of period ω if and only if y(0) = y(ω) and y′(0) = y′(ω). Further,
if y1(x) and y2(x) are two solutions such that y1(0) = 1, y′

1(0) = 0; y2(0) =
0, y′

2(0) = 1, then show that there exist constants a, b, c, d such that for
all x,

y1(x+ ω) = ay1(x) + by2(x)
y2(x+ ω) = cy1(x) + dy2(x).

20.8. Let f(x, y) be a continuous function defined for all (x, y) ∈ IR2.
Further, let f(x, y) satisfy a Lipschitz condition in y, f(x+ ω, y) = f(x, y)
for some ω > 0, and f(x, y1)f(x, y2) < 0 for all x and some y1, y2. Show
that the DE (1.9) has at least one periodic solution of period ω. Apply this
result to the DE (5.2) where p(x) �≡ 0 and q(x) are continuous periodic
functions of period ω.

∗20.9. Let p(x) be continuous and p(x+ π) = p(x) �≡ 0 for all x. If

0 ≤ π

∫ π

0
|p(t)|dt ≤ 4,

then show that all solutions of the DE y′′ + p(x)y = 0 are bounded on IR.

Answers or Hints

20.1. (i) Infinite number of periodic solutions of period 2π. (ii) and
(iii) (a sinx− cosx)/(1 + a2) is the only periodic solution of period 2π.

20.2. The general solution is c exp
( 1

2

(
x+ 1

2 sin 2x
))
.

20.3. (i) Verify directly. (ii) The corresponding homogeneous system has
nontrivial periodic solutions of period 2π.

20.4. The function −1
3 sin 2x is periodic of period π (smallest period).

20.5. Verify directly.
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20.6. (i) Use (6.3). (ii) Use Corollary 20.2. (iii) See the proof of Corol-
lary 20.2.

20.7. Use Theorem 20.1.

20.8. A continuous function mapping a closed interval into itself has at
least one fixed point.



Lecture 21
Asymptotic Behavior of

Solutions of Linear Systems

In this lecture we shall begin with the study of ultimate behavior of
solutions of linear differential systems. In particular, we shall provide suf-
ficient conditions on the known quantities in a given system so that all its
solutions remain bounded or tend to zero as x → ∞. Thus, from the prac-
tical point of view the results we shall discuss are very important because
an explicit form of the solutions is not needed.

We begin with the differential system (18.6) and note that Problem
19.6 does provide necessary and sufficient conditions for all its solutions to
remain bounded or tend to zero. Further, if in Theorem 19.2 each λj =
αj + iβj and α = max1≤j≤k αj , and r = max1≤j≤k rj ; then there exists
an x1 ≥ x0 ≥ 0 such that for all x ≥ x1 the relation (19.5) gives ‖eAx‖ ≤
ceαxxr, where c is some suitable constant. Let α < η, then there exists a
x2 ≥ x1 such that for all x ≥ x2 the inequality eαxxr ≤ eηx holds. Thus,
for x ≥ x2 it follows that

‖eAx‖ ≤ ceηx. (21.1)

However, since the interval [0, x2] is finite in (21.1) we can always choose c
sufficiently large so that it holds for all x ≥ 0.

From (21.1) it is immediate that for any solution u(x) of (18.6)

‖u(x)‖ ≤ c1e
ηx, (21.2)

where c1 is some suitable constant.

Now we shall consider the differential system

v′ = (A+B(x))v, (21.3)

where B(x) is an n×n matrix with continuous elements bij(x), 1 ≤ i, j ≤ n
in the interval [x0,∞). System (21.3) can be regarded as a perturbed system
of (18.6). Our first result gives sufficient conditions on the matrix B(x) so
that all solutions of the differential system (21.3) remain bounded provided
all solutions of (18.6) are bounded.

Theorem 21.1. Let all solutions of the differential system (18.6) be
bounded in [0,∞). Then all solutions of the differential system (21.3) are
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bounded in [x0,∞) provided∫ ∞
‖B(t)‖dt < ∞. (21.4)

Proof. In (18.15) let the nonhomogeneous term b(x) be B(x)v, so that
each solution v(x) such that v(x0) = v0 of the differential system (21.3)
satisfies the integral equation

v(x) = eA(x−x0)v0 +
∫ x

x0

eA(x−t)B(t)v(t)dt. (21.5)

Now since all solutions of (18.6) are bounded there exists a constant c such
that supx≥0 ‖eAx‖ = c. Hence, for all x ≥ x0 we have

‖v(x)‖ ≤ c0 + c

∫ x

x0

‖B(t)‖‖v(t)‖dt, (21.6)

where c0 = c‖v0‖.
Applying Corollary 7.6 to the inequality (21.6), we obtain

‖v(x)‖ ≤ c0 exp
(
c

∫ x

x0

‖B(t)‖dt
)

for all x ≥ x0. The result now follows from (21.4).

Our next result gives sufficient conditions on the matrix B(x) so that all
solutions of the differential system (21.3) tend to zero as x → ∞ provided
all solutions of (18.6) tend to zero as x → ∞.

Theorem 21.2. Let all solutions of the differential system (18.6) tend
to zero as x → ∞. Then all solutions of the differential system (21.3) tend
to zero as x → ∞ provided

‖B(x)‖ → 0 as x → ∞. (21.7)

Proof. Since all solutions of (18.6) tend to zero as x → ∞, Problem 19.6
ensures that all eigenvalues of A have negative real parts. Thus, there exist
constants c and η = −δ (δ > 0) such that (21.1) holds, i.e., ‖eAx‖ ≤ ce−δx

for all x ≥ 0. Further, because of (21.7) for a given constant c1 > 0 there
exists a sufficiently large x1 ≥ x0 such that ‖B(x)‖ ≤ c1 for all x ≥ x1.
Hence, for all x ≥ x1 equation (21.5) gives

‖v(x)‖ ≤ ce−δ(x−x0)‖v0‖ +
∫ x1

x0

ce−δ(x−t)‖B(t)‖‖v(t)‖dt

+
∫ x

x1

ce−δ(x−t)c1‖v(t)‖dt,
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which is the same as

w(x) ≤ c0 + c2

∫ x

x1

w(t)dt, (21.8)

where w(x) = ‖v(x)‖eδx,

c0 = ceδx0‖v0‖ + c

∫ x1

x0

eδt‖B(t)‖‖v(t)‖dt,

and c2 = cc1.

Now in view of Corollary 7.6 from inequality (21.8), we obtain

w(x) ≤ c0 exp(c2(x− x1))

and hence
‖v(x)‖ ≤ c0 exp((c2 − δ)x− c2x1). (21.9)

Finally, because of (21.7) we can always choose c1 so small that c2 = cc1 < δ,
and then the result follows from (21.9).

Conditions (21.4) and (21.7) are restricted to a smallness property on
B(x) as x → ∞. Obviously, condition (21.4) is stronger than (21.7) and
hence in Theorem 21.2 condition (21.7) can be replaced by (21.4); however,
in Theorem 21.1 condition (21.4) cannot be replaced by (21.7). For this,
we have the following example.

Example 21.1. Consider the differential systems[
u′

1

u′
2

]
=

[
0 1

−1 0

][
u1

u2

]
(21.10)

and [
v′
1

v′
2

]
=

[
0 1

−1 0

][
v1

v2

]
+

⎡
⎣ 0 0

0
2a

ax+ b

⎤
⎦[ v1

v2

]
, (21.11)

where a and b are positive constants.

A fundamental system of solutions of (21.10) is [cosx, − sinx]T , [sinx,
cosx]T and hence all solutions of (21.10) are bounded. However, a funda-
mental system of solutions of (21.11) is[

a sinx− (ax+ b) cosx

(ax+ b) sinx

]
,

[
a cosx+ (ax+ b) sinx

(ax+ b) cosx

]
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and hence all nontrivial solutions of (21.11) are unbounded as x → ∞.
Further, we note that ‖B(x)‖ → 0 as x → ∞, while∫ x

0
‖B(t)‖dt =

∫ x

0

2a
ax+ b

dx = ln
(
ax+ b

b

)2

→ ∞
as x → ∞.

Next we shall consider the differential system

v′ = Av + b(x), (21.12)

where b(x) is an n× 1 vector with continuous components bi(x), 1 ≤ i ≤ n
in the interval [x0,∞). Once again we shall consider (21.12) as a perturbed
system of (18.6) with the perturbation term b(x). From (18.15) we know
that each solution v(x) such that v(x0) = v0 of the differential system
(21.12) satisfies the integral equation

v(x) = eA(x−x0)v0 +
∫ x

x0

eA(x−t)b(t)dt.

Hence, for all x ≥ x0 inequality (21.1) gives

‖v(x)‖ ≤ c0e
ηx + c

∫ x

x0

eη(x−t)‖b(t)‖dt, (21.13)

where c0 = ce−ηx0‖v0‖.
From (21.13) the following result is immediate.

Theorem 21.3. Suppose the function b(x) is such that

‖b(x)‖ ≤ c3e
νx (21.14)

for all large x, where c3 and ν are constants with c3 ≥ 0. Then every solution
v(x) of the system (21.12) satisfies

‖v(x)‖ ≤ c4e
ζx (21.15)

for all x ≥ x0, where c4 and ζ are constants with c4 ≥ 0.

Proof. From the given hypothesis on b(x) there exists an x1 ≥ x0 such
that (21.14) holds for all x ≥ x1. Hence, from (21.13) if ν �= η, we have

‖v(x)‖ ≤ eηx

[
c0 + c

∫ x1

x0

e−ηt‖b(t)‖dt+ cc3

∫ x

x1

e(ν−η)tdt

]

= eηx

[
c0 + c

∫ x1

x0

e−ηt‖b(t)‖dt+
cc3
ν − η

(e(ν−η)x − e(ν−η)x1)
]

≤ eηx

[
c0 + c

∫ x1

x0

e−ηt‖b(t)‖dt+
cc3

|ν−η|e
(ν−η)x1

]
+

cc3
|ν−η|e

νx

≤ c4e
ζx,
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where ζ = max{η, ν}, and

c4 =
[
c0 + c

∫ x1

x0

e−ηt‖b(t)‖dt+
cc3

|ν − η|
(
e(ν−η)x1 + 1

)]
.

For the case ν = η, the above proof requires obvious modifications.

As a consequence of (21.15) we find that every solution of the system
(21.12) tends to zero as x → ∞ provided ζ < 0.

Now we shall study the behavior of solutions of the differential system
(17.3) as x → ∞. We shall prove two results which involve the eigenvalues
of the matrix (A(x) +AT (x)), which obviously are functions of x.

Theorem 21.4. Let the matrix A(x) be continuous in [x0,∞) and
M(x) be the largest eigenvalue of the matrix (A(x) + AT (x)). Then every
solution of the differential system (17.3) tends to zero as x → ∞ provided∫ ∞

M(t)dt = − ∞. (21.16)

Proof. Let u(x) be a solution of the differential system (17.3), then
|u(x)|2 = uT (x)u(x). Thus, it follows that

d

dx
|u(x)|2 = uT (x)u′(x) + (uT (x))′u(x)

= uT (x)A(x)u(x) + uT (x)AT (x)u(x)

= uT (x)(A(x) +AT (x))u(x).

Now since the matrix (A(x) +AT (x)) is symmetric and M(x) is its largest
eigenvalue, it is clear that

uT (x)(A(x) +AT (x))u(x) ≤ M(x)|u(x)|2.
Hence, for all x ≥ x0 it follows that

0 ≤ |u(x)|2 ≤ |u(x0)|2 +
∫ x

x0

M(t)|u(t)|2dt.

Next using Corollary 7.6, we obtain

|u(x)|2 ≤ |u(x0)|2 exp
(∫ x

x0

M(t)dt
)
. (21.17)

The result now follows from (21.16).

If in Theorem 21.4 the condition (21.16) is replaced by
∫∞

M(t)dt < ∞,
then (21.17) implies that the solution u(x) of (17.3) remains bounded as
x → ∞.
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Theorem 21.5. Let the matrix A(x) be continuous in [x0,∞), and
m(x) be the smallest eigenvalue of the matrix (A(x) +AT (x)). Then every
solution of the differential system (17.3) is unbounded as x → ∞ provided

lim sup
x→∞

∫ x

m(t)dt = ∞. (21.18)

Proof. As in the proof of Theorem 21.4 for all x ≥ x0, it is easy to see
that

|u(x)|2 ≥ |u(x0)|2 +
∫ x

x0

m(t)|u(t)|2dt,

which implies that

|u(x)|2 ≥ |u(x0)|2 exp
(∫ x

x0

m(t)dt
)
.

Now the conclusion follows from (21.18).

Example 21.2. For the matrix

A(x) =

⎡
⎣ 1

(1 + x)2
x2

−x2 −1

⎤
⎦ ,

we have

(A(x) +AT (x)) =

⎡
⎣ 2

(1 + x)2
0

0 −2

⎤
⎦ ,

and hence

M(x) =
2

(1 + x)2
,

∫ ∞

0
M(t)dt =

∫ ∞

0

2
(1 + t)2

dt = 2 < ∞.

Thus, all solutions of the differential system u′ = A(x)u remain bounded
as x → ∞.

Example 21.3. For the matrix

A(x) =

⎡
⎣ − 1

1 + x
(1 + x2)

−(1 + x2) −2

⎤
⎦ ,

we have

(A(x) +AT (x)) =

⎡
⎣ − 2

1 + x
0

0 −4

⎤
⎦ ,
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and hence

M(x) = − 2
1 + x

,

∫ ∞

0
M(t)dt =

∫ ∞

0
− 2

1 + t
dt = − ∞.

Thus, all solutions of the differential system u′ = A(x)u tend to zero as
x → ∞.



Lecture 22
Asymptotic Behavior of

Solutions of Linear Systems
(Contd.)

With respect to the differential system (17.3) we shall consider the per-
turbed system

v′ = (A(x) +B(x))v, (22.1)

where B(x) is an n×n matrix with continuous elements bij(x), 1 ≤ i, j ≤ n
in the interval [x0,∞). We begin with an interesting example which shows
that the boundedness of all solutions of (17.3), and the condition (21.4) do
not imply boundedness of solutions of the differential system (22.1), i.e.,
when the matrix A is a function of x, then the conclusion of Theorem 21.1
need not be true.

Example 22.1. Consider the differential system

u′
1 = −au1

u′
2 = (sin lnx+ cos lnx− 2a)u2, 1 < 2a < 1 + e−π/2

(22.2)

whose general solution is

u1(x) = c1e
−ax

u2(x) = c2 exp((sin lnx− 2a)x).

Since a > 1/2, every solution of (22.2) tends to zero as x → ∞.

Now we consider the perturbed differential system

v′
1 = −av1
v′
2 = (sin lnx+ cos lnx− 2a)v2 + e−axv1;

(22.3)

i.e., the perturbing matrix is

B(x) =

[
0 0

e−ax 0

]
.
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It is easily seen that
∫∞ ‖B(t)‖dt < ∞, and the general solution of the

differential system (22.3) is

v1(x) = c1e
−ax

v2(x) = exp((sin lnx− 2a)x)
(
c2 + c1

∫ x

0
exp(−t sin ln t)dt

)
.

(22.4)
Let x = xn = exp((2n+ 1/2)π), n = 1, 2, . . . then we have

sin lnxn = 1

− sin ln t ≥ 1/2 for all exp((2n− 1/2)π) ≤ t ≤ exp((2n− 1/6)π),

i.e., for all xne
−π ≤ t ≤ xne

−2π/3.

Thus, it follows that

∫ xn

0
exp(−t sin ln t)dt >

∫ exp((2n−1/6)π)

exp((2n−1/2)π)
exp(−t sin ln t)dt

≥
∫ xne−2π/3

xne−π

et/2dt

> exp
(

1
2
xne

−π

)
(e−2π/3 − e−π)xn.

(22.5)

Therefore, if c1 > 0 (c1 < 0) we have

v2(xn) > (<) e(1−2a)xn

(
c2 + c1xn(e−2π/3 − e−π) exp

(
1
2
xne

−π

))

= c2e
(1−2a)xn + c1xn(e−2π/3 − e−π) exp

((
1 − 2a+

1
2
e−π

)
xn

)
.

Since 2a < 1 + e−π/2, we see that v2(xn) → ∞ (−∞) as n → ∞. Thus,
v2(x) remains bounded only if c1 = 0.

This example also shows that for (17.3) and (22.1) Theorem 21.2 need
not hold even when condition (21.7) is replaced by the stronger condition
(21.4). Therefore, to prove results similar to Theorems 21.1 and 21.2, we
need some additional conditions on A(x). The following result is analogous
to Theorem 21.1.

Theorem 22.1. Let all solutions of the differential system (17.3) be
bounded in [x0,∞), and the condition (21.4) be satisfied. Then all solutions
of the differential system (22.1) are bounded in [x0,∞) provided

lim inf
x→∞

∫ x

TrA(t)dt > − ∞, or TrA(x) = 0. (22.6)



Asymptotic Behavior of Solutions of Linear Systems (Contd.) 161

Proof. Let Ψ(x) be a fundamental matrix of the differential system
(17.3). Since all solutions of the differential system (17.3) are bounded,
‖Ψ(x)‖ is bounded. Next from Theorem 17.3, we have

det Ψ(x) = det Ψ(x0) exp
(∫ x

x0

TrA(t)dt
)

and hence

Ψ−1(x) =
adj Ψ(x)
det Ψ(x)

=
adj Ψ(x)

det Ψ(x0) exp
(∫ x

x0
TrA(t)dt

) . (22.7)

Thus, from (22.6) it follows that ‖Ψ−1(x)‖ is bounded.

Now in (18.14) let the nonhomogeneous term b(x) be B(x)v, so that
each solution v(x) such that v(x0) = v0 of the differential system (22.1)
satisfies the integral equation

v(x) = Ψ(x)Ψ−1(x0)v0 +
∫ x

x0

Ψ(x)Ψ−1(t)B(t)v(t)dt. (22.8)

Thus, if

c = max
{

sup
x≥x0

‖Ψ(x)‖, sup
x≥x0

‖Ψ−1(x)‖
}

(22.9)

it follows that

‖v(x)‖ ≤ c0 + c2
∫ x

x0

‖B(t)‖‖v(t)‖dt,

where c0 = c‖Ψ−1(x0)v0‖.
This inequality immediately implies that

‖v(x)‖ ≤ c0 exp
(
c2
∫ x

x0

‖B(t)‖dt
)
.

The result now follows from (21.4).

The next result is parallel to that of Theorem 21.2.

Theorem 22.2. Let the fundamental matrix Ψ(x) of the differential
system (17.3) be such that

‖Ψ(x)Ψ−1(t)‖ ≤ c, x0 ≤ t ≤ x < ∞ (22.10)

where c is a positive constant. Further, let condition (21.4) be satisfied.
Then all solutions of the differential system (22.1) are bounded in [x0,∞).
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Moreover, if all solutions of (17.3) tend to zero as x → ∞, then all solutions
of the differential system (22.1) tend to zero as x → ∞.

Proof. Using (22.10) in (22.8), we get

‖v(x)‖ ≤ c‖v0‖ + c

∫ x

x0

‖B(t)‖‖v(t)‖dt

and hence

‖v(x)‖ ≤ c‖v0‖ exp
(
c

∫ ∞

x0

‖B(t)‖dt
)

=: M < ∞.

Thus, each solution of the differential system (22.1) is bounded in [x0,∞).

Now since (22.8) is the same as

v(x) = Ψ(x)Ψ−1(x0)v0 +
∫ x1

x0

Ψ(x)Ψ−1(t)B(t)v(t)dt

+
∫ x

x1

Ψ(x)Ψ−1(t)B(t)v(t)dt

it follows that

‖v(x)‖ ≤ ‖Ψ(x)‖‖Ψ−1(x0)‖‖v0‖ + ‖Ψ(x)‖
∫ x1

x0

‖Ψ−1(t)‖‖B(t)‖‖v(t)‖dt

+cM
∫ ∞

x1

‖B(t)‖dt.

Let ε > 0 be a given number. Then in view of (21.4), the last term in
the above inequality can be made less than ε/2 by choosing x1 sufficiently
large. Further, since all solutions of (17.3) tend to zero, it is necessary
that ‖Ψ(x)‖ → 0 as x → ∞. Thus, the sum of first two terms on the right
side can be made arbitrarily small by choosing x large enough, say, less
than ε/2. Hence, ‖v(x)‖ < ε for large x. But, this immediately implies that
‖v(x)‖ → 0 as x → ∞.

In our next result we shall show that in Theorems 22.1 and 22.2 con-
ditions (22.6) and (22.10) can be replaced by the periodicity of the ma-
trix A(x).

Theorem 22.3. Let the matrix A(x) be periodic of period ω in [x0,∞).
Further, let the condition (21.4) be satisfied. Then the following hold:

(i) All solutions of the differential system (22.1) are bounded in [x0,∞)
provided all solutions of (17.3) are bounded in [x0,∞).
(ii) All solutions of the differential system (22.1) tend to zero as x → ∞
provided all solutions of (17.3) tend to zero as x → ∞.
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Proof. For a given fundamental matrix Ψ(x) of (17.3), Theorem 20.5
implies that Ψ(x) = P (x)eRx, where P (x) is a nonsingular periodic matrix
of period ω, and R is a constant matrix. Using this in (22.8), we find

v(x) = P (x)eR(x−x0)P−1(x0)v0 +
∫ x

x0

P (x)eRxe−RtP−1(t)B(t)v(t)dt.

Hence, it follows that

‖v(x)‖ ≤ ‖P (x)‖‖eRx‖‖e−Rx0P−1(x0)v0‖
+
∫ x

x0

‖P (x)‖‖eR(x−t)‖‖P−1(t)‖‖B(t)‖‖v(t)‖dt. (22.11)

Now since P (x) is nonsingular and periodic, detP (x) is periodic and does
not vanish; i.e., it is bounded away from zero in [x0,∞). Hence, P (x)
along with its inverse P−1(x) = [adjP (x)/detP (x)] is bounded in [x0,∞).
Thus, if

c4 = max
{

sup
x≥x0

‖P (x)‖, sup
x≥x0

‖P−1(x)‖
}

inequality (22.11) can be replaced by

‖v(x)‖ ≤ c5‖eRx‖ + c24

∫ x

x0

‖eR(x−t)‖‖B(t)‖‖v(t)‖dt, (22.12)

where c5 = c4‖e−Rx0P−1(x0)v0‖.
Now if all solutions of the differential system (17.3) are bounded, then

it is necessary that ‖eRx‖ ≤ c6 for all x ≥ 0, and hence from (22.12) we
have

‖v(x)‖ ≤ c5c6 + c24c6

∫ x

x0

‖B(t)‖‖v(t)‖dt,

which immediately gives that

‖v(x)‖ ≤ c5c6 exp
(
c24c6

∫ x

x0

‖B(t)‖dt
)

and now part (i) follows from (21.4).

On the other hand, if all solutions of (17.3) tend to zero as x → ∞,
then there exist positive constants c7 and α such that ‖eRx‖ ≤ c7e

−αx for
all x ≥ 0. Thus, inequality (22.12) implies that

‖v(x)‖ ≤ c5c7e
−αx + c24c7

∫ x

x0

e−α(x−t)‖B(t)‖‖v(t)‖dt,
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which easily gives

‖v(x)‖ ≤ c5c7 exp
(
c24c7

∫ x

x0

‖B(t)‖dt − αx

)
.

Hence, in view of condition (21.4) we find that v(x) → 0 as x → ∞.

Finally, we shall consider the differential system (17.1) as a perturbed
system of (17.3) and prove the following two results.

Theorem 22.4. Suppose every solution of the differential system (17.3)
is bounded in [x0,∞). Then every solution of (17.1) is bounded provided
at least one of its solutions is bounded.

Proof. Let u1(x) and u2(x) be two solutions of the differential system
(17.1). Then φ(x) = u1(x) − u2(x) is a solution of the differential system
(17.3). Hence, u1(x) = u2(x)+φ(x). Now since φ(x) is bounded in [x0,∞),
if u2(x) is a bounded solution of (17.1), it immediately follows that u1(x)
is also a bounded solution of (17.1).

From the above theorem it is also clear that if every solution of (17.3)
tends to zero as x → ∞, and if one solution of (17.1) tends to zero as
x → ∞, then every solution of (17.1) tends to zero as x → ∞.

Theorem 22.5. Suppose every solution of the differential system
(17.3) is bounded in [x0,∞), and the condition (22.6) is satisfied. Then
every solution of (17.1) is bounded provided∫ ∞

x0

‖b(t)‖dt < ∞. (22.13)

Proof. Let Ψ(x) be a fundamental matrix of the differential system
(17.3). Since each solution of (17.3) is bounded, as in Theorem 22.1 both
‖Ψ(x)‖ and ‖Ψ−1(x)‖ are bounded in [x0,∞). Thus, there exists a finite
constant c as defined in (22.9). Hence, for any solution u(x) of (17.1) such
that u(x0) = u0 relation (18.14) gives

‖u(x)‖ ≤ c‖Ψ−1(x0)u0‖ + c2
∫ x

x0

‖b(t)‖dt.

The conclusion now follows from the condition (22.13).

Problems

22.1. Consider the second-order DE

y′′ + p(x)y = 0 (22.14)
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and its perturbed equation

z′′ + (p(x) + q(x))z = 0, (22.15)

where p(x) and q(x) are continuous functions in [x0,∞). Show that, if all
solutions of (22.14) are bounded in [x0,∞), then all solutions of (22.15) are
bounded in [x0,∞) provided

∫∞ |q(t)|dt < ∞.

22.2. Consider the second-order DE (22.14), where p(x) → ∞ mono-
tonically as x → ∞. Show that all solutions of (22.14) are bounded in
[x0,∞).

22.3. Consider the second-order DE (22.14), where
∫∞

t|p(t)|dt < ∞.
Show that, for any solution y(x) of (22.14), limx→∞ y′(x) exists, and every
nontrivial solution is asymptotic to d0x+ d1 for some constants d0 and d1
not both zero.

22.4. Consider the second-order DE y′′ + (1 + p(x))y = 0, where
p ∈ C(1)[x0,∞), limx→∞ p(x) = 0, and

∫∞ |p′(t)|dt < ∞. Show that all
solutions of this DE are bounded in [x0,∞).

22.5. Show that all solutions of the following DEs are bounded in
[0,∞):

(i) y′′ + [1 + 1/(1 + x4)]y = 0.
(ii) y′′ + exy = 0.
(iii) y′′ + cy′ + [1 + 1/(1 + x2)]y = 0, c > 0.
(iv) y′′ + cy′ + [1 + 1/(1 + x4)]y = sinx, c > 0.

22.6. Show that there are no bounded solutions of the DE

y′′ +
[
1 +

1
1 + x4

]
y = cosx, x ∈ [0,∞).

22.7. Show that all solutions of the differential system (17.3), where

(i) A(x) =

⎡
⎢⎣

−x 0 0

0 −x2 0

0 0 −x2

⎤
⎥⎦, (ii) A(x) =

⎡
⎢⎣

−ex −1 − cosx

1 −e2x x2

cosx −x2 −e3x

⎤
⎥⎦

tend to zero as x → ∞.

22.8. Show that all solutions of the differential system (17.1), where

(i) A(x) =

[
−e−x 0

0 e−3x

]
, b(x) =

[
cosx

x cosx2

]
,
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(ii) A(x) =

⎡
⎢⎣

(1 + x)−2 sinx 0

− sinx 0 x

0 −x 0

⎤
⎥⎦ , b(x) =

⎡
⎢⎣

0

(1 + x)−2

(1 + x)−4

⎤
⎥⎦

are bounded in [0,∞).

22.9. With respect to the differential system (18.6) let the perturbed
system be

v′ = Av + g(x, v), (22.16)

where g ∈ C[[x0,∞) × IRn, IRn] and ‖g(x, v)‖ ≤ λ(x)‖v‖, where λ(x) is a
nonnegative continuous function in [x0,∞). Show the following:

(i) If all solutions of (18.6) are bounded, then all solutions of (22.16) are
bounded provided

∫∞
λ(t)dt < ∞.

(ii) If all solutions of (18.6) tend to zero as x → ∞, then all solutions of
(22.16) tend to zero as x → ∞ provided λ(x) → 0 as x → ∞.

22.10. With respect to the differential system (17.3) let the perturbed
system be

v′ = A(x)v + g(x, v), (22.17)

where g ∈ C[[x0,∞) × IRn, IRn] and ‖g(x, v)‖ ≤ λ(x)‖v‖, here λ(x) is
a nonnegative continuous function in [x0,∞) such that

∫∞
λ(t)dt < ∞.

Show the following:

(i) If all solutions of (17.3) are bounded and condition (22.6) is satisified,
then all solutions of (22.17) are bounded.
(ii) If all solutions of (17.3) tend to zero as x → ∞ and condition (22.10)
is satisifed, then all solutions of (22.17) tend to zero as x → ∞.

Answers or Hints

22.1. Write (22.14) and (22.15) in system form and then apply Theo-
rem 22.1.

22.2. Use the fact that p(x) → ∞ monotonically to get an inequality of
the form

y2(x)p(x)
2 ≤ |C| +

∫ x

x0

y2(t)p(t)
2

dp(t)
p(t) .

Now apply Corollary 7.5.

22.3. Clearly, (22.14) is equivalent to the integral equation

y(x) = y(1) + (x− 1)y′(1) − ∫ x

1 (x− t)p(t)y(t)dt.

Thus, for x ≥ 1 it follows that
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|y(x)|
x ≤ c+

∫ x

1 t|p(t)| |y(t)|
t dt,

where c ≥ 0 is a constant. Now Corollary 7.5 implies |y(x)| ≤ c1x, where
c1 is a positive constant. We choose x0 ≥ 1 sufficiently large so that∫ x

x0
|p(t)||y(t)|dt ≤ c1

∫ x

x0
t|p(t)|dt < 1.

Let y1(x) be a solution of (22.14) satisfying y′
1(x0) = 1, then since y′

1(x) =
1−∫ x

x0
p(t)y1(t)dt, the above inequality implies that y′

1(x) → d1 �= 0 as x →
∞, i.e., y(x) → d1x as x → ∞. Finally, since y2(x) = y1(x)

∫∞
x
y−2
1 (t)dt is

another solution of (22.14), it follows that y2(x) → d0 as x → ∞. Hence,
the general solution y(x) of (22.14) is asymptotic to d0 + d1x.

22.4. Multiply the given DE by y′. Use Corollary 7.5.

22.5. (i) Use Problem 22.1. (ii) Use Problem 22.2. (iii) Use Theorem
21.1. (iv) Write in system form. Finally, apply Corollary 7.5.

22.6. Note that for the DE w′′ + w = cosx the solution w(x) = 1
2x sinx

is unbounded. Let y(x) be a bounded solution of the given DE; then the
function z(x) = y(x) − w(x) satisfies the DE z′′ + z = − 1

1+x4 y(x). Now it
is easy to show that z(x) is bounded, which leads to a contradiction.

22.7. Use Theorem 21.4.

22.8. (i) For the given differential system,
u1(x) = c1 exp(e−x) + exp(e−x)

∫ x

0 exp(−e−t) cos tdt
u2(x) = c2 exp

(− 1
3e

−3x
)

+ exp
(− 1

3e
−3x

) ∫ x

0 exp
( 1

3e
−3t

)
t cos t2dt.

Now find upper bounds of |u1(x)| and |u2(x)|. (ii) First use remark follow-
ing Theorem 21.4 and then Theorem 22.5.

22.9. (i) System (22.16) satisfying v(x0) = v0 is equivalent to the integral
equation

v(x) = eA(x−x0)v0 +
∫ x

x0
eA(x−t)g(t, v(t))dt.

Now use the given conditions and Corollary 7.5. (ii) The proof is similar
to that of Theorem 21.2.

22.10. System (22.17) satisfying v(x0) = v0 is equivalent to the integral
equation

v(x) = Φ(x)Φ−1(x0)v0 +
∫ x

x0
Φ(x)Φ−1(t)g(t, v(t))dt,

where Φ(x) is a fundamental matrix of (17.3). (i) Similar to Theorem 22.1.
(ii) Similar to Theorem 22.2.



Lecture 23
Preliminaries to

Stability of Solutions

In Lecture 16 we have provided smoothness conditions so that the solu-
tion u(x, x0, u

0) of the initial value problem (15.4) is a continuous function
of x, x0, and u0 at the point (x, x0, u

0), where x is in some finite interval
J = [x0, x0 + α]. Geometrically, this means that for all ε > 0 there exists
‖∆u0‖ sufficiently small so that the solution u(x, x0, u

0 +∆u0) remains in a
strip of width 2ε surrounding the solution u(x, x0, u

0) for all x ∈ [x0, x0+α].
Thus, a small change in u0 brings about only a small change in the solu-
tions of (15.4) in a finite interval [x0, x0 +α]. However, the situation is very
much different when the finite interval [x0, x0 + α] is replaced by [x0,∞).
For example, let us consider the initial value problem y′ = ay, y(0) = y0
whose unique solution is y(x, 0, y0) = y0e

ax. It follows that

|∆y| = |y(x, 0, y0 + ∆y0) − y(x, 0, y0)| = |∆y0|eax

for all x ≥ 0. Hence, if a ≤ 0 then |∆y| = |∆y0|eax ≤ ε for all x ≥ 0 provided
|∆y0| ≤ ε. But, if a > 0, then |∆y| ≤ ε holds only if |∆y0| ≤ εe−ax, which
is possible only for finite values of x no matter how small |∆y0| is, i.e., |∆y|
becomes large for large x even for small values of |∆y0|.

A solution u(x, x0, u
0) of the initial value problem (15.4) existing in the

interval [x0,∞) is said to be stable if small changes in u0 bring only small
changes in the solutions of (15.4) for all x ≥ x0. Otherwise, we say that
the solution u(x, x0, u

0) is unstable. Thus, the solution y(x) = y0e
ax of the

problem y′ = ay, y(0) = y0 is stable only if a ≤ 0, and unstable for a > 0.
We shall now give a few definitions which classify various types of behavior
of solutions.

Definition 23.1. A solution u(x) = u(x, x0, u
0) of the initial value

problem (15.4) is said to be stable, if for each ε > 0 there is a δ = δ(ε, x0) > 0
such that ‖∆u0‖ < δ implies that ‖u(x, x0, u

0 + ∆u0) − u(x, x0, u
0)‖ < ε.

Definition 23.2. A solution u(x) = u(x, x0, u
0) of the initial value

problem (15.4) is said to be unstable if it is not stable.

Definition 23.3. A solution u(x) = u(x, x0, u
0) of the initial value

problem (15.4) is said to be asymptotically stable if it is stable and there
exists a δ0 > 0 such that ‖∆u0‖ < δ0 implies that

‖u(x, x0, u
0 + ∆u0) − u(x, x0, u

0)‖ → 0 as x → ∞.

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  
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The above definitions were introduced by A. M. Lyapunov in 1892, and
hence some authors prefer to call a stable solution as Lyapunov stable, or
stable in the sense of Lyapunov.

Example 23.1. Every solution of the DE y′ = x is of the form y(x) =
y(x0) − x2

0/2 + x2/2, and hence it is stable but not bounded.

Example 23.2. Every solution of the DE y′ = 0 is of the form y(x) =
y(x0), and hence stable but not asymptotically stable.

Example 23.3. Every solution of the DE y′ = p(x)y is of the form
y(x) = y(x0) exp

(∫ x

x0
p(t)dt

)
, and hence its trivial solution y(x) ≡ 0 is

asymptotically stable if and only if
∫ x

x0
p(t)dt → −∞ as x → ∞.

From Example 23.1 it is clear that the concepts of stability and bound-
edness of solutions are independent. However, in the case of homogeneous
linear differential system (17.3) these concepts are equivalent as seen in the
following theorem.

Theorem 23.1. All solutions of the differential system (17.3) are stable
if and only if they are bounded.

Proof. Let Ψ(x) be a fundamental matrix of the differential system
(17.3). If all solutions of (17.3) are bounded, then there exists a constant
c such that ‖Ψ(x)‖ ≤ c for all x ≥ x0. Now given any ε > 0, we choose
‖∆u0‖ < ε/(c‖Ψ−1(x0)‖) = δ(ε) > 0, so that

‖u(x, x0, u
0 + ∆u0) − u(x, x0, u

0)‖ = ‖Ψ(x)Ψ−1(x0)∆u0‖
≤ c‖Ψ−1(x0)‖‖∆u0‖ < ε,

i.e., all solutions of (17.3) are stable.

Conversely, if all solutions of (17.3) are stable, then, in particular,
the trivial solution, i.e., u(x, x0, 0) ≡ 0 is stable. Therefore, given any
ε > 0, there exists a δ = δ(ε) > 0 such that ‖∆u0‖ < δ implies that
‖u(x, x0,∆u0)‖ < ε, for all x ≥ x0. However, since u(x, x0,∆u0) =
Ψ(x)Ψ−1(x0)∆u0, we find that ‖u(x, x0,∆u0)‖ = ‖Ψ(x)Ψ−1(x0)∆u0‖ < ε.
Now let ∆u0 be a vector (δ/2)ej , then we have

‖Ψ(x)Ψ−1(x0)∆u0‖ = ‖ψj(x)‖δ
2
< ε,

where ψj(x) is the jth column of Ψ(x)Ψ−1(x0). Therefore, it follows that

‖Ψ(x)Ψ−1(x0)‖ = max
1≤j≤n

‖ψj(x)‖ ≤ 2ε
δ
.
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Hence, for any solution u(x, x0, u
0) of the differential system (17.3) we have

‖u(x, x0, u
0)‖ = ‖Ψ(x)Ψ−1(x0)u0‖ <

2ε
δ

‖u0‖,

i.e., all solutions of (17.3) are bounded.

Corollary 23.2. If the real parts of the multiple eigenvalues of the
matrix A are negative, and the real parts of the simple eigenvalues of the
matrix A are nonpositive, then all solutions of the differential system (18.6)
are stable.

Our next result gives necessary and sufficient conditions so that all
solutions of the differential system (17.3) are asymptotically stable.

Theorem 23.3. Let Ψ(x) be a fundamental matrix of the differen-
tial system (17.3). Then all solutions of the differential system (17.3) are
asymptotically stable if and only if

‖Ψ(x)‖ → 0 as x → ∞. (23.1)

Proof. Every solution u(x, x0, u
0) of the differential system (17.3) can

be expressed as u(x, x0, u
0) = Ψ(x)Ψ−1(x0)u0. Since Ψ(x) is continuous,

condition (23.1) implies that there exists a constant c such that ‖Ψ(x)‖ ≤ c
for all x ≥ x0. Thus, ‖u(x, x0, u

0)‖ ≤ c‖Ψ−1(x0)‖‖u0‖, and hence every
solution of (17.3) is bounded, and now from Theorem 23.1 it follows that
every solution of (17.3) is stable. Further, since

‖u(x, x0, u
0 + ∆u0) − u(x, x0, u

0)‖ = ‖Ψ(x)Ψ−1(x0)∆u0‖
≤ ‖Ψ(x)‖‖Ψ−1(x0)∆u0‖ → 0

as x → ∞, it follows that every solution of (17.3) is asymptotically stable.

Conversely, if all solutions of (17.3) are asymptotically stable, then,
in particular, the trivial solution, i.e., u(x, x0, 0) ≡ 0 is asymptotically
stable. Hence, ‖u(x, x0,∆u0)‖ → 0 as x → ∞. However, this implies that
‖Ψ(x)‖ → 0 as x → ∞.

Corollary 23.4. If the real parts of the eigenvalues of the matrix A
are negative, then all solutions of the differential system (18.6) are asymp-
totically stable.

It is interesting to note that for the perturbed differential system (21.3)
Theorems 21.1 and 23.1 can be combined, to obtain the following result.

Theorem 23.5. Let all solutions of the differential system (18.6) be
stable, and the condition (21.4) be satisfied. Then all solutions of the
differential system (21.3) are stable.
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Similarly, a combination of Theorems 21.2 and 23.3 gives the following
result.

Theorem 23.6. Let all solutions of the differential system (18.6)
be asymptotically stable, and the condition (21.7) be satisfied. Then all
solutions of the differential system (21.3) are asymptotically stable.

From Example 21.1 it is clear that in Theorem 23.5 condition (21.4)
cannot be replaced by (21.7).

For our later applications we need a stronger definition of stability which
is as follows.

Definition 23.4. A solution u(x) = u(x, x0, u
0) of the initial value

problem (15.4) is said to be uniformly stable, if for each ε > 0 there is a
δ = δ(ε) > 0 such that for any solution u1(x) = u(x, x0, u

1) of the problem
u′ = g(x, u), u(x0) = u1 the inequalities x1 ≥ x0 and ‖u1(x1) − u(x1)‖ < δ
imply that ‖u1(x) − u(x)‖ < ε for all x ≥ x1.

Example 23.4. Every solution of the DE y′ = p(x)y is of the form
y(x) = y(x0) exp

(∫ x

x0
p(t)dt

)
, and hence its trivial solution y(x) ≡ 0 is

uniformly stable if and only if
∫ x

x1
p(t)dt is bounded above for all x ≥ x1 ≥

x0. In particular, if we choose p(x) = sin lnx+cos lnx− 1.25, then we have∫ x

x0

p(t)dt = (t sin ln t− 1.25t)
∣∣∣∣
x

x0

→ − ∞

as x → ∞, and hence from Example 23.3 the trivial solution is asymptoti-
cally stable. But, if we choose x = e(2n+1/3)π and x1 = e(2n+1/6)π, then it
can easily be seen that∫ x

x1

p(t)dt = e2nπ
[
eπ/3

(
sin

π

3
− 1.25

)
− eπ/6

(
sin

π

6
− 1.25

)]
 0.172e2nπ → ∞ as n → ∞,

and hence the trivial solution is not uniformly stable. Thus, asymptotic
stability does not imply uniform stability.

Example 23.5. Every solution of the DE y′ = 0 is of the form y(x) =
y(x0), and hence uniformly stable but not asymptotically stable. Hence,
uniform stability does not imply asymptotic stability.

Our final result provides necessary and sufficient conditions so that all
solutions of the differential system (17.3) are uniformly stable.

Theorem 23.7. Let Ψ(x) be a fundamental matrix of the differen-
tial system (17.3). Then all solutions of the differential system (17.3) are
uniformly stable if and only if the condition (22.10) holds.
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Proof. Let u(x) = u(x, x0, u
0) be a solution of the differential system

(17.3). Then for any x1 ≥ x0, we have u(x) = Ψ(x)Ψ−1(x1)u(x1). If
u1(x) = Ψ(x)Ψ−1(x1)u1(x1) is any other solution, and the condition (22.10)
is satisfied, then we have

‖u1(x) − u(x)‖ ≤ ‖Ψ(x)Ψ−1(x1)‖‖u1(x1) − u(x1)‖ ≤ c‖u1(x1) − u(x1)‖
for all x0 ≤ x1 ≤ x < ∞. Thus, if ε > 0 then x1 ≥ x0 and ‖u1(x1)−u(x1)‖ <
ε/c = δ(ε) > 0 imply that ‖u1(x) − u(x)‖ < ε, and hence the solution u(x)
is uniformly stable.

Conversely, if all solutions of (17.3) are uniformly stable, then, in par-
ticular, the trivial solution, i.e., u(x, x0, 0) ≡ 0 is uniformly stable. There-
fore, given any ε > 0, there exists a δ = δ(ε) > 0 such that x1 ≥ x0
and ‖u1(x1)‖ < δ imply that ‖u1(x)‖ < ε for all x ≥ x1. Thus, we have
‖Ψ(x)Ψ−1(x1)u1(x1)‖ < ε for all x ≥ x1. The rest of the proof is the same
as that of Theorem 23.1.

Problems

23.1. Test the stability, asymptotic stability or unstability for the trivial
solution of each of the following systems:

(i) u′ =
[

0 1
−1 0

]
u. (ii) u′ =

[ −1 e2x

0 −1

]
u.

(iii) u′ =

⎡
⎣ 0 1 0

0 0 1
−1 −6 −5

⎤
⎦u. (iv) u′ =

⎡
⎣ 1 2 0

0 1 1
1 3 1

⎤
⎦u.

(v) u′ =

⎡
⎣ 1 −1 −1

1 1 −3
1 −5 −3

⎤
⎦u.

23.2 (Hurwitz’s Theorem). A necessary and sufficient condition
for the negativity of the real parts of all zeros of the polynomial

xn + a1x
n−1 + · · · + an−1x+ an

with real coefficients is the positivity of all the leading principal minors of
the Hurwitz matrix⎡

⎢⎢⎢⎢⎢⎣

a1 1 0 0 0 · · · 0
a3 a2 a1 1 0 · · · 0
a5 a4 a3 a2 a1 · · · 0

· · ·
0 0 0 0 0 · · · an

⎤
⎥⎥⎥⎥⎥⎦ .

Use the Hurwitz theorem to find the parameter a in the differential systems
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(i) u′ =

⎡
⎣ 0 0 1

−3 0 0
a 2 −1

⎤
⎦u; (ii) u′ =

⎡
⎣ 0 1 0

0 0 1
a −3 −2

⎤
⎦u

so that the trivial solution is asymptotically stable.

23.3. In the differential system (17.1) let A(x) and b(x) be continuous
in [x0,∞). Show the following:

(i) If all solutions are bounded in [x0,∞), then they are stable.
(ii) If all solutions are stable and one is bounded, then all solutions are
bounded in [x0,∞).

23.4. In the differential system (17.3) let A(x) be continuous in [x0,∞).
System (17.3) is said to be stable if all its solutions are stable, and it
is called restrictively stable if the system (17.3) together with its adjoint
system (18.10) are stable. Show the following:

(i) A necessary and sufficient condition for restrictive stability is that there
exists a constant c > 0 such that ‖Φ(x, x0)Φ(x0, t)‖ ≤ c, x ≥ x0, t ≥ x0
where Φ(x, x0) is the principal fundamental matrix of (17.3).
(ii) If the system (17.3) is stable and the condition (22.6) is satisfied, then
it is restrictively stable.
(iii) If the adjoint system (18.10) is stable and

lim sup
x→∞

∫ x

TrA(t)dt < ∞,

then the system (17.3) is restrictively stable.

23.5. Show that the stability of any solution of the nonhomogeneous
differential system (17.1) is equivalent to the stability of the trivial solution
of the homogeneous system (17.3).

23.6. If the Floquet multipliers σi of (17.3) satisfy |σi| < 1, i = 1, . . . , n,
then show that the trivial solution is asymptotically stable.

23.7. Show that the question of stability of the solution u(x) =
u(x, x0, u

0) of (15.1) can always be reduced to the question of stability of the
trivial solution of the differential system v′ = G(x, v), where v = u − u(x)
and G(x, v) = g(x, v + u(x)) − g(x, u(x)).

Answers or Hints

23.1. (i) Stable. (ii) Unstable. (iii) Asymptotically stable. (iv) Unstable.
(v) Unstable.
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23.2. (i) a < −6. (ii) −6 < a < 0.

23.3. If u1(x) and u2(x) are solutions of (17.1), then u1(x) − u2(x) =
Φ(x, x0)(u1(x0) − u2(x0)).

23.4. (i) Condition ‖Φ(x, x0)Φ(x0, t)‖ ≤ c, x ≥ x0, t ≥ x0 is equivalent to
the existence of a constant c1 such that ‖Φ(x, x0)‖ ≤ c1, ‖Φ−1(x, x0)‖ ≤ c1.
Now use Theorems 18.3 and 23.1. (ii) Use Theorem 17.3 to deduce that
|det Φ(x, x0)| > d > 0 for all x ≥ x0. Now the relation Φ−1(x, x0) =
adj Φ(x, x0)/det Φ(x, x0) ensures that Φ−1(x, x0) is bounded for all x ≥ x0.
(iii) Use part (ii) and the relation Tr (−AT (x)) = −TrA(x).

23.5. See Problem 23.6.

23.6. The asymptotic stability of the trivial solution of (20.6) implies the
same of the trivial solution of (17.3). Now since eω(real part of λi) = |σi| <
1, the real parts of the Floquet exponents must be negative.

23.7. Let v = u − u(x), then v′ = u′ − u′(x) = g(x, u) − g(x, u(x)) =
g(x, v + u(x)) − g(x, u(x)) = G(x, v). Clearly, in the new system v′ =
G(x, v), G(x, 0) = 0.



Lecture 24
Stability of

Quasi-Linear Systems

In Problems 22.9 and 22.10 we have considered the differential systems
(22.16) and (22.17) as the perturbed systems of (18.6) and (17.3), respec-
tively, and provided sufficient conditions on the nonlinear perturbed func-
tion g(x, v) so that the asymptotic properties of the unperturbed systems
are maintained for the perturbed systems. Analogously, we expect that
under certain conditions on the function g(x, v) stability properties of the
unperturbed systems carry through for the perturbed systems. For obvi-
ous reasons, systems (22.16) and (22.17) are called quasi-linear differential
systems.

Let the function g(x, v) satisfy the condition

‖g(x, v)‖ = o(‖v‖) (24.1)

uniformly in x as ‖v‖ approaches zero. This implies that for v in a suffi-
ciently small neighborhood of the origin, ‖g(x, v)‖/‖v‖ can be made arbi-
trarily small. Condition (24.1) assures that g(x, 0) ≡ 0, and hence v(x) ≡ 0
is a solution of the perturbed differential systems.

We begin with an interesting example which shows that the asymptotic
stability of the trivial solution of the unperturbed system (17.3) and the
condition (24.1) do not imply the asymptotic stability of the trivial solution
of the perturbed system (22.17).

Example 24.1. Consider the differential system

u′
1 = −au1

u′
2 = (sin 2x+ 2x cos 2x− 2a)u2, 1 < 2a < 3/2

(24.2)

whose general solution is

u1(x) = c1e
−ax

u2(x) = c2 exp((sin 2x− 2a)x).

Since a > 1/2, every solution of (24.2) tends to zero as x → ∞, and hence
the trivial solution of (24.2) is asymptotically stable.
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Now we consider the perturbed differential system

v′
1 = −av1
v′
2 = (sin 2x+ 2x cos 2x− 2a)v2 + v2

1 ,
(24.3)

i.e., the perturbing function g(x, v) = [0 , v2
1 ]T . Obviously, for this g(x, v)

the condition (24.1) is satisfied.

The general solution of the differential system (24.3) is

v1(x) = c1e
−ax

v2(x) =
(
c2 + c21

∫ x

0
e−t sin 2tdt

)
exp((sin 2x− 2a)x).

Let x = xn = (n+ 1/4)π, n = 1, 2, . . . then we have

− sin 2t ≥ 1
2

for all xn +
π

3
≤ t ≤ xn +

π

2
.

Thus, it follows that∫ xn+1

0
e−t sin 2tdt >

∫ xn+π/2

xn+π/3
e−t sin 2tdt

>

∫ xn+π/2

xn+π/3
et/2dt > 0.4 exp

(
1
2
xn +

π

4

)
.

Therefore, we have

v2(xn+1) > c2e
(1−2a)xn + 0.4c21 exp

(
π

4
+
(

3
2

− 2a
)
xn

)
.

Since 2a < 3/2, we see that v2(xn+1) → ∞ as n → ∞ if c1 �= 0. Thus, the
trivial solution of (24.3) is unstable.

In our first result we shall show that the asymptotic stability of the
trivial solution of the differential system (18.6) and the condition (24.1) do
imply the asymptotic stability of the trivial solution of (22.16).

Theorem 24.1. Suppose that the real parts of the eigenvalues of the
matrix A are negative, and the function g(x, v) satisfies the condition (24.1).
Then the trivial solution of the differential system (22.16) is asymptotically
stable.

Proof. In (18.15) let the nonhomogeneous term b(x) be g(x, v(x)), so
that each solution v(x) such that v(x0) = v0 of the differential system
(22.16) satisfies the integral equation

v(x) = eA(x−x0)v0 +
∫ x

x0

eA(x−t)g(t, v(t))dt. (24.4)
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Now since the real parts of the eigenvalues of the matrix A are negative,
there exist constants c and η = −δ (δ > 0) such that ‖eAx‖ ≤ ce−δx for all
x ≥ 0. Hence, from (24.4) we have

‖v(x)‖ ≤ ce−δ(x−x0)‖v0‖ + c

∫ x

x0

e−δ(x−t)‖g(t, v(t))‖dt, x ≥ x0. (24.5)

In view of the condition (24.1) for a given m > 0 there exists a positive
number d such that

‖g(t, v)‖ ≤ m‖v‖ (24.6)

for all x ≥ x0, ‖v‖ ≤ d.

Let us assume that ‖v0‖ < d. Then there exists a number x1 such that
‖v(x)‖ < d for all x ∈ [x0, x1). Using (24.6) in (24.5), we obtain

‖v(x)‖eδx ≤ ceδx0‖v0‖ + cm

∫ x

x0

‖v(t)‖eδtdt, x ∈ [x0, x1). (24.7)

Applying Corollary 7.6 to the inequality (24.7), we get

‖v(x)‖ ≤ c‖v0‖ exp((cm− δ)(x− x0)), x ∈ [x0, x1). (24.8)

But since v0 and m are at our disposal, we may choose m such that
cm < δ, and v(x0) = v0 so that ‖v0‖ < d/c implies that ‖v(x)‖ < d for all
x ∈ [x0, x1).

Next since the function g(x, v) is continuous in [x0,∞) × IRn, we can
extend the solution v(x) interval by interval by preserving the bound δ.
Hence, given any solution v(x) = v(x, x0, v

0) with ‖v0‖ < d/c, we see that
v is defined in [x0,∞) and satisfies ‖v(x)‖ < d. But d can be made as small
as desired, therefore the trivial solution of the differential system (22.16) is
stable. Further, cm < δ implies that it is asymptotically stable.

In the above result the magnitude of ‖v0‖ cannot be arbitrary. For
example, the solution

y(x) =
y0

y0 − (y0 − 1)ex

of the initial value problem y′ = −y+y2, y(0) = y0 > 1 becomes unbounded
as x → ln[y0/(y0 − 1)].

Example 24.2. The motion of a simple pendulum with damping is
governed by a DE of the form

θ′′ +
k

m
θ′ +

g

L
sin θ = 0,
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which is usually approximated by a simpler DE

θ′′ +
k

m
θ′ +

g

L
θ = 0.

In system form these equations can be written as (18.6) and (22.16), re-
spectively, where

A =

⎡
⎣ 0 1

− g

L
− k

m

⎤
⎦ and g(x, v) =

⎡
⎣ 0

g

L
(v1 − sin v1)

⎤
⎦ .

Since the matrix A has eigenvalues

− k

2m
±
(
k2

4m2 − g

L

)1/2

,

both of which have negative real parts if k, m, g, and L are positive, and
since

‖g(x, v)‖ =
∣∣∣ g
L

(v1 − sin v1)
∣∣∣ =

g

L

∣∣∣∣v3
1

3!
− · · ·

∣∣∣∣ ≤ M |v1|3

for some constant M, Theorem 24.1 is applicable. Thus, we see that when
‖v‖ is sufficiently small the use of more refined differential system, i.e.,
including the nonlinear function g(x, v) does not lead to a radically different
behavior of the solution from that obtained from the linear differential
system as x → ∞.

Now we state the following result whose proof differs slightly from The-
orem 24.1.

Theorem 24.2. Suppose that the matrix A possesses at least one
eigenvalue with a positive real part, and the function g(x, v) satisfies the
condition (24.1). Then the trivial solution of the differential system (22.16)
is unstable.

Theorems 24.1 and 24.2 fail to embrace the critical case, i.e., when the
real parts of all the eigenvalues of the matrix A are nonpositive, and when
at least one eigenvalue is zero. In this critical case, the nonlinear function
g(x, v) begins to influence the stability of the trivial solution of the system
(22.16), and generally it is impossible to test for stability on the basis of
eigenvalues of A. For example, the trivial solution of the DE y′ = ay3 is
asymptotically stable if a < 0, stable if a = 0, and unstable if a > 0.

Our final result in this lecture is for the differential system (22.17),
where as in Problem 22.10 we shall assume that

‖g(x, v)‖ ≤ λ(x)‖v‖, (24.9)
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where λ(x) is a nonnegative continuous function such that
∫∞

λ(t)dt < ∞.

Obviously, condition (24.9) implies that v(x) ≡ 0 is a solution of the
differential system (22.17).

Theorem 24.3. Suppose that the solutions of the differential sys-
tem (17.3) are uniformly (uniformly and asymptotically) stable, and the
function g(x, v) satisfies condition (24.9). Then the trivial solution of the
differential system (22.17) is uniformly (uniformly and asymptotically) sta-
ble.

Proof. Since all the solutions of the differential system (17.3) are uni-
formly stable, by Theorem 23.7 there exists a constant c such that for
any fundamental matrix Ψ(x) of (17.3) we have ‖Ψ(x)Ψ−1(t)‖ ≤ c for all
x0 ≤ t ≤ x < ∞.

In (18.14) let the nonhomogeneous term b(x) be g(x, v(x)), so that each
solution v(x) such that v(x1) = v1, x1 ≥ x0 of the differential system
(22.17) satisfies the integral equation

v(x) = Ψ(x)Ψ−1(x1)v1 +
∫ x

x1

Ψ(x)Ψ−1(t)g(t, v(t))dt. (24.10)

Thus, it follows that

‖v(x)‖ ≤ c‖v1‖ + c

∫ x

x1

λ(t)‖v(t)‖dt.

From this, we find

‖v(x)‖ ≤ c‖v1‖ exp
(
c

∫ x

x1

λ(t)dt
)

≤ K‖v1‖,

where

K = c exp
(
c

∫ ∞

x0

λ(t)dt
)
.

Hence, for a given ε > 0, if ‖v1‖ < K−1ε then ‖v(x)‖ < ε for all x ≥ x1;
i.e., the trivial solution of the differential system (22.17) is uniformly stable.

Finally, if the solutions of the differential system (17.3) are, in addition,
asymptotically stable, then from Theorem 23.3 it follows that ‖Ψ(x)‖ → 0
as x → ∞. Thus, given any ε > 0 we can choose x2 large enough so that
‖Ψ(x)Ψ−1(x0)v0‖ ≤ ε for all x ≥ x2. For the solution v(x) = v(x, x0, v

0)
we then have

‖v(x)‖ ≤ ‖Ψ(x)Ψ−1(x0)v0‖ +
∫ x

x0

‖Ψ(x)Ψ−1(t)‖‖g(t, v(t))‖dt

≤ ε+ c

∫ x

x0

λ(t)‖v(t)‖dt, x ≥ x2.
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From this, we get

‖v(x)‖ ≤ ε exp
(
c

∫ x

x0

λ(t)dt
)

≤ Lε, x ≥ x2

where L = exp
(
c
∫∞

x0
λ(t)dt

)
.

Since ε is arbitrary and L does not depend on ε or x2, we conclude that
‖v(x)‖ → 0 as x → ∞, i.e., the trivial solution of the differential system
(22.17) is, in addition, asymptotically stable.

Problems

24.1. Test the stability, asymptotic stability, or unstability for the
trivial solution of each of the following systems:

(i)
u′

1 = −2u1 + u2 + 3u3 + 8u2
1 + u3

2
u′

2 = −6u2 − 5u3 + 7u4
3

u′
3 = −u3 + u4

1 + u2
2 + u3

3.

(ii)
u′

1 = 2u1 + u2 − u2
1 − u2

2
u′

2 = u1 + 3u2 − u3
1 sinu3

u′
3 = u2 + 2u3 + u2

1 + u2
2.

(iii)
u′

1 = ln(1 − u3)
u′

2 = ln(1 − u1)
u′

3 = ln(1 − u2).

(iv)
u′

1 = u1 − cosu2 − u3 + 1
u′

2 = u2 − cosu3 − u1 + 1
u′

3 = u3 − cosu1 − u2 + 1.

24.2. Test the stability, asymptotic stability or unstability for the trivial
solution of each of the following equations:

(i) y′′′ + 2y′′ + 3y′ + 9 sinh y = 0.
(ii) y′′′ + 3y′′ − 4y′ + 7y + y2 = 0.
(iii) y′′′′ + y + cosh y − 1 = 0.
(iv) y′′′′ + 2y′′′ + 3y′′ + 11y + y sin y = 0.

Answers or Hints

24.1. (i) Asymptotically stable. (ii) Unstable. (iii) Unstable. (iv) Unsta-
ble.

24.2. (i) Unstable. (ii) Unstable. (iii) Unstable. (iv) Unstable.



Lecture 25
Two-Dimensional

Autonomous Systems

The differential system (15.1) is said to be autonomous if the function
g(x, u) is independent of x. Thus, two-dimensional autonomous systems are
of the form

u′
1 = g1(u1, u2)

u′
2 = g2(u1, u2).

(25.1)

Throughout, we shall assume that the functions g1 and g2 together with
their first partial derivatives are continuous in some domain D of the u1u2-
plane. Thus, for all (u0

1, u
0
2) ∈ D the differential system (25.1) together

with u1(x0) = u0
1, u2(x0) = u0

2 has a unique solution in some interval J
containing x0. The main interest in studying (25.1) is twofold:

1. A large number of dynamic processes in applied sciences are governed
by such systems.
2. The qualitative behavior of its solutions can be illustrated through the
geometry in the u1u2-plane.

For the autonomous differential system (25.1) the following result is
fundamental.

Theorem 25.1. If u(x) = (u1(x), u2(x)) is a solution of the differential
system (25.1) in the interval (α, β), then for any constant c the function
v(x) = (u1(x + c), u2(x + c)) is also a solution of (25.1) in the interval
(α− c, β − c).

Proof. Since v′(x) = u′(x + c) and u′(x) = g(u(x)) it follows that
v′(x) = u′(x + c) = g(u(x + c)) = g(v(x)), i.e., v(x) is also a solution of
(25.1).

Obviously, the above property does not usually hold for nonautonomous
differential systems, e.g., a solution of u′

1 = u1, u
′
2 = xu1 is u1(x) =

ex, u2(x) = xex − ex, and u′
2(x + c) = (x + c)ex+c �= xu1(x + c) unless

c = 0.

In the domainD of the u1u2-plane any solution of the differential system
(25.1) may be regarded as a parametric curve given by (u1(x), u2(x)) with
x as the parameter. This curve (u1(x), u2(x)) is called a trajectory or an
orbit or a path of (25.1), and the u1u2-plane is called the phase plane. Thus,
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from Theorem 25.1 for any constant c both (u1(x), u2(x)), x ∈ (α, β) and
(u1(x+ c), u2(x+ c)), x ∈ (α− c, β− c) represent the same trajectory. For
the trajectories of the differential system (25.1) the following property is
very important.

Theorem 25.2. Through each point (u0
1, u

0
2) ∈ D there passes one and

only one trajectory of the differential system (25.1).

Proof. Suppose, on the contrary, there are two different trajectories
(u1(x), u2(x)) and (v1(x), v2(x)) passing through (u0

1, u
0
2), i.e., u1(x0) =

u0
1 = v1(x1) and u2(x0) = u0

2 = v2(x1), where x0 �= x1 follows by the
uniqueness of solutions of the initial value problems. By Theorem 25.1,
u1

1(x) = u1(x − x1 + x0), u1
2(x) = u2(x − x1 + x0) is also a solution of

(25.1). Note u1
1(x1) = u1(x0) = u0

1 = v1(x1), and u1
1(x1) = u2(x0) = u0

2 =
v2(x1). Hence, from the uniqueness of solutions of the initial value problems
we find that u1

1(x) ≡ v1(x) and u1
2(x) ≡ v2(x). Thus, (u1(x), u2(x)) and

(v1(x), v2(x)) are the same trajectories with different parameterizations.

Example 25.1. For the differential system u′
1 = u2, u

′
2 = −u1 there are

an infinite number of solutions u1(x) = sin(x+ c), u2(x) = cos(x+ c), 0 ≤
c < 2π, − ∞ < x < ∞. However, they represent the same trajectory, i.e.,
the circle u2

1 + u2
2 = 1.

Thus, it is important to note that a trajectory is a curve in D that is
represented parametrically by more than one solution. Hence, in conclu-
sion, u(x) = (u1(x), u2(x)) and v(x) = (u1(x + c), u2(x + c)), c �= 0 are
distinct solutions of (25.1), but they represent the same curve parametri-
cally.

Definition 25.1. Any point (u0
1, u

0
2) ∈ D at which both g1 and g2

vanish simultaneously is called a critical point of (25.1). A critical point is
also referred to as a point of equilibrium or stationary point or rest point or
singular point.

If (u0
1, u

0
2) is a critical point of (25.1), then obviously u1(x) = u0

1, u2(x)
= u0

2 is a solution of (25.1), and from Theorem 25.2 no trajectory can pass
through the point (u0

1, u
0
2).

A critical point (u0
1, u

0
2) is said to be isolated if there exists no other

critical point in some neighborhood of (u0
1, u

0
2). By a critical point, we shall

hereafter mean an isolated critical point.

Example 25.2. For the differential system

u′
1 = a11u1 + a12u2

u′
2 = a21u1 + a22u2, a11a22 − a21a12 �= 0

(25.2)

there is only one critical point, namely, (0, 0) in D = IR2.
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Example 25.3. For the simple undamped pendulum system u′
1 =

u2, u
′
2 = −(g/L) sinu1 there are an infinite number of critical points

(nπ, 0), n = 0,±1,±2, . . . in D = IR2.

If (u0
1, u

0
2) is a critical point of (25.1), then the substitution v1 = u1 −

u0
1, v2 = u2 − u0

2 transforms (25.1) into an equivalent system with (0, 0) as
a critical point, thus without loss of generality we can assume that (0, 0) is
a critical point of the system (25.1). An effective technique in studying the
differential system (25.1) near the critical point (0, 0) is to approximate it by
a linear system of the form (25.2), and expect that a “good” approximation
(25.2) will provide solutions which themselves are “good” approximations
to the solutions of the system (25.1). For example, if the system (25.1) can
be written as

u′
1 = a11u1 + a12u2 + h1(u1, u2)

u′
2 = a21u1 + a22u2 + h2(u1, u2),

(25.3)

where h1(0, 0) = h2(0, 0) = 0 and

lim
u1,u2→0

h1(u1, u2)
(u2

1 + u2
2)1/2 = lim

u1,u2→0

h2(u1, u2)
(u2

1 + u2
2)1/2 = 0,

then the results of the previous lecture immediately give the following the-
orem.

Theorem 25.3. (i) If the zero solution of the system (25.2) is asymp-
totically stable, then the zero solution of the system (25.3) is asymptotically
stable.

(ii) If the zero solution of the system (25.2) is unstable, then the zero
solution of the system (25.3) is unstable.

(iii) If the zero solution of the system (25.2) is stable, then the zero solution
of the system (25.3) may be asymptotically stable, stable, or unstable.

Of course, if the functions g1(u1, u2) and g2(u1, u2) possess continuous
second-order partial derivatives in the neighborhood of the critical point
(0, 0), then by Taylor’s formula, differential system (25.1) can always be
written in the form (25.3) with

a11 =
∂g1
∂u1

(0, 0), a12 =
∂g1
∂u2

(0, 0), a21 =
∂g2
∂u1

(0, 0), a22 =
∂g2
∂u2

(0, 0).

The picture of all trajectories of a system is called the phase portrait
of the system. Since the solutions of (25.2) can be determined explicitly,
a complete description of its phase portrait can be given. However, as
we have seen earlier the nature of the solutions of (25.2) depends on the
eigenvalues of the matrix
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A =

[
a11 a12

a21 a22

]
;

i.e., the roots of the equation

λ2 − (a11 + a22)λ+ a11a22 − a21a12 = 0. (25.4)

The phase portrait of (25.2) depends almost entirely on the roots λ1 and λ2
of (25.4). For this, there are several different cases which must be studied
separately.

Case 1. λ1 and λ2 are real, distinct, and of the same
sign. If v1, v2 are the corresponding eigenvectors of A, then from Theo-
rem 19.1 the general solution of (25.2) can be written as

[
u1(x)

u2(x)

]
= c1

[
v1
1

v1
2

]
eλ1x + c2

[
v2
1

v2
2

]
eλ2x, (25.5)

where c1 and c2 are arbitrary constants.

For simplicity, we can always assume that λ1 > λ2. Thus, if λ2 < λ1 < 0
then all solutions of (25.2) tend to (0, 0) as x → ∞. Therefore, the critical
point (0, 0) of (25.2) is asymptotically stable. In case c1 = 0 and c2 �= 0, we
have u2 = (v2

2/v
2
1)u1, i.e., the trajectory is a straight line with slope v2

2/v
2
1 .

Similarly, if c1 �= 0 and c2 = 0 we obtain the straight line u2 = (v1
2/v

1
1)u1.

To obtain other trajectories, we assume that c1 and c2 both are different
from zero. Then since

u2(x)
u1(x)

=
c1v

1
2e

λ1x + c2v
2
2e

λ2x

c1v1
1e

λ1x + c2v2
1e

λ2x
=

c1v
1
2 + c2v

2
2e

(λ2−λ1)x

c1v1
1 + c2v2

1e
(λ2−λ1)x

, (25.6)

which tends to v1
2/v

1
1 as x → ∞, all trajectories tend to (0, 0) with the

slope v1
2/v

1
1 . Similarly, as x → −∞ all trajectories become asymptotic to

the line with the slope v2
2/v

2
1 . This situation is illustrated in Figure 25.1 for

two different values of the slope v1
2/v

1
1 and v2

2/v
2
1 . Here the critical point

(0, 0) is called a stable node.
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u1

u2

v1
2

v1
1

= 0 ,
v2
2

v2
1

= ∞

Figure 25.1

u1

u2

v1
2

v1
1

= −3
2

,
v2
2

v2
1

=
3
2

If λ1 > λ2 > 0, then all nontrivial solutions tend to infinity as x tends
to ∞. Therefore, the critical point (0, 0) is unstable. The trajectories are
the same as for λ2 < λ1 < 0 except that the direction of the motion is
reversed as depicted in Figure 25.2. As x → −∞, the trajectories tend to
(0, 0) with the slope v2

2/v
2
1 , and as x → ∞ trajectories become asymptotic

to the line with the slope v1
2/v

1
1 . Here the critical point (0, 0) is called an

unstable node.

u1

u2

v1
2

v1
1

= 0 ,
v2
2

v2
1

= ∞

Figure 25.2

u1

u2

v1
2

v1
1

= −3
2

,
v2
2

v2
1

=
3
2
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Case 2. λ1 and λ2 are real with opposite signs. Of
course, the general solution of the differential system (25.2) remains the
same (25.5). Let

u1

u2

Figure 25.3

u2 =
v2
2

v2
1
u1

u2 =
v1
2

v1
1
u1

λ1 > 0 > λ2. If c1 = 0 and c2 �= 0, then as in Case 1 we have u2 = (v2
2/v

2
1)u1,

and as x → ∞ both u1(x) and u2(x) tend to zero. If c1 �= 0 and c2 = 0,
then u2 = (v1

2/v
1
1)u1 and both u1(x) and u2(x) tend to infinity as x → ∞,

and approach zero as x → −∞. If c1 and c2 both are different from zero,
then from (25.6) it follows that u2/u1 tends to v1

2/v
1
1 as x → ∞. Hence,

all trajectories are asymptotic to the line with slope v1
2/v

1
1 as x → ∞.

Similarly, as x → −∞ all trajectories are asymptotic to the line with slope
v2
2/v

2
1 . Also, it is obvious that both u1(x) and u2(x) tend to infinity as

x → ±∞. This type of critical point is called a saddle point. Obviously,
the saddle point displayed in Figure 25.3 is an unstable critical point of the
system.
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Two-Dimensional

Autonomous Systems (Contd.)

We shall continue our study of the phase portrait of the differential
system (25.2).

Case 3. λ1 = λ2 = λ. In this case from Corollary 19.4 the general
solution of the differential system (25.2) can be written as

[
u1(x)

u2(x)

]
= c1

[
1 + (a11 − λ)x

a21x

]
eλx + c2

[
a12x

1 + (a22 − λ)x

]
eλx,

(26.1)
where c1 and c2 are arbitrary constants.

If λ < 0, both u1(x) and u2(x) tend to 0 as x → ∞ and hence the
critical point (0, 0) of (25.2) is asymptotically stable. Further, from (26.1)
it follows that

u2

u1
=

c2 + [a21c1 + (a22 − λ)c2]x
c1 + [a12c2 + (a11 − λ)c1]x

. (26.2)

Thus, in particular, if a12 = a21 = 0, a11 = a22 �= 0, then equation (25.4)
gives λ = a11 = a22, and (26.2) reduces to u2/u1 = c2/c1. Therefore, all
trajectories are straight lines with slope c2/c1. The phase portrait in this
case is illustrated in Figure 26.1(a). Here, the origin is called stable proper
(star-shaped) node. In the general case as x → ±∞, (26.2) tends to

a21c1 + (a22 − λ)c2
a12c2 + (a11 − λ)c1

.

But, since (a11 − λ)(a22 − λ) = a12a21 this ratio is the same as a21/(a11 −
λ). Thus, as x → ±∞, all trajectories are asymptotic to the line u2 =
(a21/(a11 − λ))u1. The origin (0, 0) here is called stable improper node; see
Figure 26.1(b).

If λ > 0, all solutions tend to ∞ as x → ∞ and hence the critical point
(0, 0) of (25.2) is unstable. The trajectories are the same as for λ < 0 except
that the direction of the motion is reversed (see Figure 26.2(a)–(b)).
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u1

u2

Figure 26.1(a)

u1

u2

Figure 26.1(b)

u2 =
a21

(a11 − λ)
u1

u1

u2

Figure 26.2(a)

u1

u2

Figure 26.2(b)

u2 =
a21

(a11 − λ)
u1

Case 4. λ1 and λ2 are complex conjugates. Let λ1 = µ+ iν
and λ2 = µ − iν, where we can assume that ν > 0. If v = v1 + iv2 is
the eigenvector of A corresponding to the eigenvalue λ1 = µ + iν, then a
solution of (25.2) can be written as

u(x) = e(µ+iν)x(v1 + iv2) = eµx(cos νx+ i sin νx)(v1 + iv2)

= eµx[v1 cos νx− v2 sin νx] + ieµx[v1 sin νx+ v2 cos νx].

Therefore, from Problem 19.5,

u1(x) = eµx[v1 cos νx−v2 sin νx] and u2(x) = eµx[v1 sin νx+v2 cos νx]

are two real-valued linearly independent solutions of (25.2), and every solu-
tion u(x) of (25.2) is of the form u(x) = c1u

1(x)+ c2u
2(x). This expression

can easily be rewritten as

u1(x) = r1e
µx cos(νx− δ1)

u2(x) = r2e
µx cos(νx− δ2),

(26.3)
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where r1 ≥ 0, r2 ≥ 0, δ1 and δ2 are some constants.

If µ = 0, then both u1(x) = r1 cos(νx− δ1) and u2(x) = r2 cos(νx− δ2)
are periodic of period 2π/ν. The function u1(x) varies between −r1 and
r1, while u2(x) varies between −r2 and r2. Thus, each trajectory beginning
at the point (u∗

1, u
∗
2) when x = x∗ will return to the same point when

x = x∗ + 2π/ν. Thus, the trajectories are closed curves, and the phase
portrait of (25.2) has the form described in Figure 26.3(a). In this case the
critical point (0, 0) is stable but not asymptotically stable, and is called a
center.

If µ < 0, then the effect of the factor eµx in (26.3) is to change the
simple closed curves of Figure 26.3(a) into the spirals of Figure 26.3(b).
This is because the point(

u1

(
2π
ν

)
, u2

(
2π
ν

))
= exp

(
2πµ
ν

)
(u1(0), u2(0))

is closer to the origin (0, 0) than (u1(0), u2(0)). In this case the critical point
(0, 0) is asymptotically stable, and is called a stable focus.

If µ > 0, then all trajectories of (25.2) spiral away from the origin (0, 0)
as x → ∞ and are illustrated in Figure 26.3(c). In this case the critical
point (0, 0) is unstable, and is named an unstable focus.

u1

u2

Figure 26.3(a)

u1

u2

Figure 26.3(b)

u1

u2

Figure 26.3(c)

We summarize the above analysis in the following theorem.

Theorem 26.1. For the differential system (25.2), let λ1 and λ2 be
the eigenvalues of the matrix A. Then the behavior of its trajectories near
the critical point (0, 0) is as follows:

(i) stable node, if λ1 and λ2 are real, distinct, and negative;
(ii) unstable node, if λ1 and λ2 are real, distinct, and positive;
(iii) saddle point (unstable), if λ1 and λ2 are real, distinct, and of oppo-
site sign;



190 Lecture 26

(iv) stable node, if λ1 and λ2 are real, equal, and negative;
(v) unstable node, if λ1 and λ2 are real, equal, and positive;
(vi) stable center, if λ1 and λ2 are pure imaginary;
(vii) stable focus, if λ1 and λ2 are complex conjugates, with negative
real part;
(viii) unstable focus, if λ1 and λ2 are complex conjugates with positive
real part.

The behavior of the linear system (25.2) near the origin also determines
the nature of the trajectories of the nonlinear system (25.3) near the critical
point (0, 0). We state the following result whose proof can be found in
advanced books.

Theorem 26.2. For the differential system (25.2), let λ1 and λ2 be
the eigenvalues of the matrix A. Then we have the following

(a) The nonlinear system (25.3) has the same type of critical point at the
origin as the linear system (25.2) whenever
(i) λ1 �= λ2 and (0, 0) is a node of the system (25.2);
(ii) (0, 0) is a saddle point of the system (25.2);
(iii) λ1 = λ2 and (0, 0) is not a star-shaped node of the system (25.2);
(iv) (0, 0) is a focus of the system (25.2).

(b) The origin is not necessarily the same type of critical point for the two
systems:

(i) If λ1 = λ2 and (0, 0) is a star-shaped node of the system (25.2), then
(0, 0) is either a node or a focus of the system (25.3).
(ii) If (0, 0) is a center of the system (25.2), then (0, 0) is either a center
or a focus of the system (25.3).

Example 26.1. Consider the nonlinear differential system

u′
1 = 1 − u1u2

u′
2 = u1 − u3

2.
(26.4)

The equations 1−u1u2 = 0 and u1 −u3
2 = 0 imply that (1, 1) and (−1,−1)

are the only critical points of the system (26.4).

For the point (1, 1), in (26.4) we use the substitution v1 = u1 − 1, v2 =
u2 − 1 to obtain the new system

v′
1 = 1 − (v1 + 1)(v2 + 1) = − v1 − v2 − v1v2

v′
2 = (v1 + 1) − (v2 + 1)3 = v1 − 3v2 − 3v2

2 − v3
2 ,

(26.5)
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which plays the role of the differential system (25.3). Obviously, in (26.5)
the functions h1(v1, v2) = −v1v2 and h2(v1, v2) = −3v2

2 − v3
2 are such that

lim
v1,v2→0

h1(v1, v2)
(v2

1 + v2
2)1/2 = 0 = lim

v1,v2→0

h2(v1, v2)
(v2

1 + v2
2)1/2 .

Corresponding to (26.5) the associated linear system is

v′
1 = − v1 − v2
v′
2 = v1 − 3v2.

(26.6)

Since for the matrix [
−1 −1

1 −3

]

the eigenvalues λ1 = λ2 = −2, the zero solution of the system (26.6) is
asymptotically stable. Thus, from Theorem 25.3 the zero solution of (26.5)
is asymptotically stable. Hence, the critical point (1, 1) of the differential
system (26.4) is asymptotically stable. Further, from Theorem 26.1 the
zero solution of the differential system (26.6) is a stable node. Thus, from
Theorem 26.2 the zero solution of (26.5) is a stable node. Hence the critical
point (1, 1) of (26.4) is a stable node.

Similarly, for the point (−1,−1), we use the substitution v1 = u1 +
1, v2 = u2 + 1 to obtain the new system

v′
1 = 1 − (v1 − 1)(v2 − 1) = v1 + v2 − v1v2

v′
2 = (v1 − 1) − (v2 − 1)3 = v1 − 3v2 + 3v2

2 − v3
2 .

(26.7)

Corresponding to (26.7) the associated linear system is

v′
1 = v1 + v2

v′
2 = v1 − 3v2.

(26.8)

Since for the matrix [
1 1
1 −3

]

the eigenvalues λ1 = −1 +
√

5 > 0 and λ2 = −1 − √
5 < 0, the zero

solution of the system (26.8) is an unstable saddle point. Therefore, for
the nonlinear system (26.7) the zero solution is an unstable saddle point.
Hence, the critical point (−1,−1) of the differential system (26.4) is an
unstable saddle point.

Remark 26.1. For the nonlinear systems

u′
1 = −u2 − u2

1

u′
2 = u1

(26.9)
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and
u′

1 = −u2 − u3
1

u′
2 = u1

(26.10)

the corresponding homogeneous system is

u′
1 = −u2

u′
2 = u1.

(26.11)

Clearly, for (26.11) the critical point (0, 0) is a center. It is known that the
critical point (0, 0) of (26.9) is a center, while the same point for (26.10) is
a focus.

Remark 26.2. If the general nonlinear system (25.1) does not contain
linear terms, then an infinite number of critical points are possible. Further,
the nature of these points depend on the nonlinearity in (25.1), and hence
it is rather impossible to classify these critical points.

Problems

26.1. Show that any solution u(x) = (u1(x), u2(x)) of the differential
system

u′
1 = u2 (eu1 − 1)

u′
2 = u1 + eu2

which starts in the right half-plane (u1 > 0) must remain there for all x.

26.2. Let u(x) = (u1(x), u2(x)) be a solution of the differential system
(25.1). Show that if u(x0+ω) = u(x0) for some ω > 0, then u(x+ω) = u(x)
for all x ≥ x0, i.e., u(x) is periodic of period ω.

26.3. Let u(x) = (u1(x), u2(x)) be a solution of the differential system
(25.1). Show the following:

(i) If u(x) is periodic of period ω, then the trajectory of this solution is
a closed curve in the u1u2-plane.
(ii) If the trajectory of u(x) is a closed curve containing no critical points
of (25.1), then this solution is periodic.

26.4. Prove that all solutions of the following DEs are periodic:

(i) y′′ + a2y + by3 = 0, b > 0 (Duffing’s equation).
(ii) y′′ + y3/(1 + y4) = 0.

(iii) y′′ + ey2 − 1 = 0.
(iv) y′′ + y + y7 = 0.
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26.5. Show that all solutions of the following differential systems are
periodic:

(i)
u′

1 = u2(1 + u2
1 + u2

2)
u′

2 = −2u1(1 + u2
1 + u2

2).
(ii)

u′
1 = u2 exp(1 + u2

1)
u′

2 = −u1 exp(1 + u2
1).

26.6. Find all critical points of each of the following differential systems
and determine whether they are stable or unstable:

(i)
u′

1 = u1 + 4u2
u′

2 = u1 + u2 − u2
1.

(ii)
u′

1 = u1 − u2 + u2
1

u′
2 = 12u1 − 6u2 + u1u2.

(iii)
u′

1 = 8u1 − u2
2

u′
2 = u2 − u2

1.
(iv)

u′
1 = u1 − u3

1 − u1u
2
2

u′
2 = 2u2 − u5

2 − u4
1u2.

26.7. Determine the type of stability of the critical point (0, 0) of each
of the following linear systems and sketch the phase portraits:

(i)
u′

1 = −2u1 + u2
u′

2 = −5u1 − 6u2.
(ii)

u′
1 = 4u1 + u2
u′

2 = 3u1 + 6u2.

(iii)
u′

1 = u2
u′

2 = 2u1 − u2.
(iv)

u′
1 = u1 + u2
u′

2 = 3u1 − u2.

(v)
u′

1 = 3u1 + u2
u′

2 = u2 − u1.
(vi)

u′
1 = −2u1 − 5u2
u′

2 = 2u1 + 2u2.

(vii)
u′

1 = −u1 − u2
u′

2 = u1 − u2.
(viii)

u′
1 = 7u1 + u2
u′

2 = −3u1 + 4u2.

26.8. Find all critical points of each of the following differential systems
and determine their nature:

(i)
u′

1 = 4u2
2 − u2

1
u′

2 = 2u1u2 − 4u2 − 8. (ii)
u′

1 = u1u2
u′

2 = 4 − 4u1 − 2u2.

(iii)
u′

1 = 2u1(u1 − u2)
u′

2 = 2 + u2 − u2
1.

(iv)
u′

1 = u1(2u2 − u1 + 5)
u′

2 = u2
1 + u2

2 − 6u1 − 8u2.

26.9. Consider the Van der Pol equation

y′′ + µ(y2 − 1)y′ + y = 0, (26.12)

which is equivalent to the system u′
1 = u2, u

′
2 = µ(1 − u2

1)u2 − u1. Show
that (0, 0) is the only critical point of the system. Determine the nature of
the critical point when µ < 2, µ = 2, and µ > 2.

26.10. Rayleigh’s equation is

y′′ + µ

(
1
3
(y′)2 − 1

)
y′ + y = 0,
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where µ is a constant. Show that differentiation of this equation and setting
y′ = z reduces Rayleigh’s equation to the Van der Pol equation.

26.11. Consider the DE y′′ + py′ + qy = 0, q �= 0 which is equivalent to
the system u′

1 = u2, u
′
2 = −pu2 − qu1. Determine the nature of the critical

point (0, 0) in each of the following cases:

(i) p2 > 4q, q > 0, and p < 0.

(ii) p2 > 4q, q > 0, and p > 0.

(iii) p2 > 4q and q < 0.

(iv) p2 = 4q and p > 0.

(v) p2 = 4q and p < 0.

(vi) p2 < 4q and p > 0.

(vii) p2 < 4q and p < 0.

(viii) p = 0 and q > 0.

Answers or Hints

26.1. Use uniqueness property.

26.2. Use uniqueness property.

26.3. (i) In every time interval x0 ≤ x ≤ x0 +ω (x0 fixed) the trajectory C
of this solution moves once around C. (ii) Such a solution moves along its
trajectory C with velocity [g2

1(u1, u2) + g2
2(u1, u2)]1/2, which has a positive

minimum for (u1, u2) on C. Hence, the trajectory must return to its starting
point u0

1 = u1(x0), u0
2 = u2(x0) in some finite time ω. But this implies that

u(x+ ω) = u(x) (cf. Problem 26.2).

26.4. (i) In system form the given DE is the same as u′
1 = u2, u

′
2 =

−a2u1 − bu3
1. The trajectories of this system are the solution curves 1

2u
2
2 +

a2

2 u
2
1 + b

4u
4
1 = c2 of the scalar equation du2

du1
= −a2u1+bu3

1
u2

. Obviously these
curves are closed in u1u2-plane. (ii) 1

2u
2
2 + 1

4 ln(1 + u4
1) = c2. (iii) 1

2u
2
2 +

u1 − ∫ u1

0 et2dt = c2. (iv) 1
2u

2
2 + 1

2u
2
1 + 1

8u
8
1 = c2.

26.5. (i) 1
2u

2
2 + u2

1 = c2. (ii) u2
2 + u2

1 = c2.

26.6. (i) (0, 0) unstable, (3/4,−3/16) unstable. (ii) (0, 0) stable, (2, 6)
unstable, (3, 12) unstable. (iii) (0, 0) unstable, (2, 4) unstable. (iv) (0, 0)
unstable, (1, 0) unstable, (−1, 0) unstable, (0, 21/4) stable, (0,−21/4) stable.

26.7. (i) Stable focus. (ii) Unstable node. (iii) Saddle point. (iv) Saddle
point. (v) Unstable node. (vi) Center. (vii) Stable focus. (viii) Unstable
focus.



Two-Dimensional Autonomous Systems (Contd.) 195

26.8. (i) (4, 2) saddle point, (−2,−1) saddle point. (ii) (0, 2) saddle point,
(1, 0) stable focus. (iii) (0,−2) unstable node, (2, 2) saddle point, (−1,−1)
saddle point. (iv) (0, 0) saddle point, (0, 8) unstable node, (7, 1) saddle
point, (3,−1) stable node.

26.9. µ > 0 : µ < 2 unstable focus, µ = 2 unstable node, µ > 2 unstable
node. µ < 0 : −2 < µ stable focus, µ = −2 stable node, µ < −2 stable node.

26.10. Verify directly.

26.11. (i) Unstable node. (ii) Stable node. (iii) Saddle point. (iv) Sta-
ble node. (v) Unstable node. (vi) Stable focus. (vii) Unstable focus.
(viii) Stable center.



Lecture 27
Limit Cycles and
Periodic Solutions

We begin this lecture with the following well-known example.

Example 27.1. Consider the nonlinear differential system

u′
1 = −u2 + u1(1 − u2

1 − u2
2)

u′
2 = u1 + u2(1 − u2

1 − u2
2).

(27.1)

Since the term u2
1 + u2

2 appears in both the equations, we introduce polar
coordinates (r, θ), where u1 = r cos θ, u2 = r sin θ to obtain

d

dx
r2 = 2r

dr

dx
= 2u1

du1

dx
+ 2u2

du2

dx
= 2(u2

1 + u2
2) − 2(u2

1 + u2
2)

2

= 2r2(1 − r2)

and hence
dr

dx
= r(1 − r2).

Similarly, we find

dθ

dx
=

d

dx
tan−1 u2

u1
=

1
u2

1

u1
du2

dx
− u2

du1

dx
1 + (u2/u1)2

=
u2

1 + u2
2

u2
1 + u2

2
= 1.

Thus, the system (27.1) is equivalent to the differential system

dr

dx
= r(1 − r2)

dθ

dx
= 1,

(27.2)

which can be solved easily to obtain the general solution

r(x) =
r0

[r20 + (1 − r20)e−2x]1/2

θ(x) = x+ θ0,
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where r0 = r(0) and θ0 = θ(0). Hence, the general solution of (27.1) ap-
pears as

u1(x) =
r0

[r20 + (1 − r20)e−2x]1/2 cos(x+ θ0)

u2(x) =
r0

[r20 + (1 − r20)e−2x]1/2 sin(x+ θ0).
(27.3)

Obviously, (27.3) defines the trajectories of (27.1) in the u1u2-plane. Ex-
amining these trajectories, we note the following:

(i) If r0 = 1, the trajectory defined by (27.3) is the unit circle

u1(x) = cos(x+ θ0)

u2(x) = sin(x+ θ0)
(27.4)

described in the anticlockwise direction. This solution is periodic of period
2π.

(ii) If r0 �= 1, the trajectories defined by (27.3) are not closed (and hence
from Problem 26.3 are not the periodic solutions) but rather have a spiral
behavior. If r0 < 1, the trajectories are spirals lying inside the circle (27.4).
As x → +∞, they approach this circle, while as x → −∞, they approach
the only critical point (0, 0) of (27.1). If r0 > 1, the trajectories are spirals
lying outside the circle (27.4). These outer trajectories also approach this
circle as x → +∞; while as

x → 1
2

ln
(

1 − 1
r20

)
,

both u1 and u2 become infinite. This situation is depicted in Figure 27.1.

u1

u2

Figure 27.1

The differential system (27.1) shows that the trajectories of a nonlinear
system of DEs may spiral into a simple closed curve. This, of course, is not
possible for linear systems. This leads to the following important definition,
which is due to Poincaré.
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Definition 27.1. A closed trajectory of the differential system (25.1)
which is approached spirally from either the inside or the outside by a
nonclosed trajectory of (25.1) either as x → +∞ or as x → −∞ is called a
limit cycle of (25.1).

The following result provides sufficient conditions for the existence of
limit cycles of the differential system (25.1).

Theorem 27.1 (Poincaré–Bendixson Theorem). Suppose
that a solution u(x) = (u1(x), u2(x)) of the differential system (25.1) re-
mains in a bounded region of the u1u2-plane which contains no critical
points of (25.1). Then its trajectory must spiral into a simple closed curve,
which itself is the trajectory of a periodic solution of (25.1).

While the proof of this celebrated theorem is not given here, we give an
example illustrating the importance of this result.

Example 27.2. Consider the DE

y′′ + (2y2 + 3y′2 − 1)y′ + y = 0, (27.5)

which is equivalent to the system

u′
1 = u2

u′
2 = −u1 + (1 − 2u2

1 − 3u2
2)u2.

(27.6)

For any given solution u(x) = (u1(x), u2(x)) of (27.6) we note that

d

dx
(u2

1(x) + u2
2(x)) = 2u1(x)u′

1(x) + 2u2(x)u′
2(x)

= 2(1 − 2u2
1(x) − 3u2

2(x))u
2
2(x).

Since (1 − 2u2
1 − 3u2

2) is positive for u2
1 + u2

2 < 1/3, and negative for u2
1 +

u2
2 > 1/2, the function u2

1(x) + u2
2(x) is increasing when u2

1 + u2
2 < 1/3

and decreasing when u2
1 + u2

2 > 1/2. Thus, if u(x) starts in the annulus
1/3 < u2

1 +u2
2 < 1/2 at x = x0, it will remain in this annulus for all x ≥ x0.

Further, since this annulus does not contain any critical point of (27.6), the
Poincaré–Bendixson theorem implies that the trajectory of this solution
must spiral into a simple closed curve, which itself is a nontrivial periodic
solution of (27.6).

The next result provides sufficient conditions for the nonexistence of
closed trajectories, and hence, in particular, limit cycles of the differential
system (25.1).

Theorem 27.2 (Bendixson’s Theorem). If

∂g1(u1, u2)
∂u1

+
∂g2(u1, u2)

∂u2
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has the same sign throughout the domain D, then the differential system
(25.1) has no closed trajectory in D.

Proof. Let S be a region in D which is bounded by a closed curve C.
The Green’s theorem states that∫

C

[g1(u1, u2)du2−g2(u1, u2)du1] =
∫∫

S

[
∂g1(u1, u2)

∂u1
+
∂g2(u1, u2)

∂u2

]
du1du2.

(27.7)
Let u(x) = (u1(x), u2(x)) be a solution of (25.1) whose trajectory is a closed
curve C in D, and let ω denote the period of this solution. Then it follows
that∫

C

[g1(u1, u2)du2 − g2(u1, u2)du1]

=
∫ ω

0

[
g1(u1(x), u2(x))

du2(x)
dx

− g2(u1(x), u2(x))
du1(x)
dx

]
dx = 0.

Thus, from (27.7) we have∫∫
S

[
∂g1(u1, u2)

∂u1
+
∂g2(u1, u2)

∂u2

]
du1du2 = 0.

But this double integral can be zero only if its integrand changes sign. This
contradiction completes the proof.

Example 27.3. Consider the nonlinear differential system

u′
1 = u1(u2

1 + u2
2 − 2u1 − 3) − u2

u′
2 = u2(u2

1 + u2
2 − 2u1 − 3) + u1.

(27.8)

Since for this system

∂g1
∂u1

+
∂g2
∂u2

= 4u2
1 + 4u2

2 − 6u1 − 6 = 4

[(
u1 − 3

4

)2

+ u2
2 − 33

16

]

we find that
∂g1
∂u1

+
∂g2
∂u2

< 0

in the disc D of radius 1.436 centered at (3/4, 0). Thus, the Bendixson’s
theorem implies that the system (27.8) has no closed trajectory in this
disc D.

Finally, in this lecture we shall state the following theorem.

Theorem 27.3 (Liénard–Levinson–Smith Theorem).
Consider the DE

y′′ + f(y)y′ + g(y) = 0, (27.9)
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where we assume the following:

(i) f is even and continuous for all y.

(ii) There exists a number y0 > 0 such that

F (y) =
∫ y

0
f(t)dt < 0

for 0 < y < y0, and F (y) > 0 and monotonically increasing for y > y0, also
F (y) → ∞ as y → ∞.

(iii) g is odd, has a continuous derivative for all y, and is such that g(y) > 0
for y > 0,

(iv) G(y) =
∫ y

0
g(t)dt → ∞ as y → ∞.

Then the DE (27.9) possesses an essentially unique nontrivial periodic so-
lution.

By “essentially unique” in the above result we mean that if y = y(x)
is a nontrivial periodic solution of (27.9), then all other nontrivial periodic
solutions of (27.9) are of the form y = y(x − x1) where x1 is a real num-
ber. This, of course, implies that the equivalent system u′

1 = u2, u
′
2 =

−f(u1)u2 − g(u1) has a unique closed trajectory in the u1u2-plane.

Example 27.4. In Van der Pol’s equation (26.12), f(y) = µ(y2 − 1)
and g(y) = y. Thus, it is easy to check the following:

(i) f(−y) = µ(y2 − 1) = f(y), the function f is even and continuous for
all y.

(ii) F (y) = µ(y3/3 − y) < 0 for 0 < y <
√

3, F (y) > 0 and monotonically
increasing for y >

√
3, also F (y) → ∞ as y → ∞.

(iii) g(−y) = −y = −g(y), the function g is odd; dg/dy = 1, and the
derivative of g is continuous for all y; g(y) > 0 for y > 0.

(iv) G(y) = y2/2 → ∞ as y → ∞.

Hence, all the conditions of Theorem 27.3 for the DE (26.12) are satisfied.
In conclusion we find that the DE (26.12) possesses an essentially unique
nontrivial periodic solution. In other words, the equivalent system u′

1 =
u2, u

′
2 = µ(1−u2

1)u2 −u1 has a unique closed trajectory in the u1u2-plane.
For µ = 0.1, 1, and 10, these trajectories are illustrated in Figure 27.2.
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Figure 27.2

u1

u2

µ = 0.1 µ = 1.0 µ = 10.0

u1

u2

u1

u2

Problems

27.1. Show that the differential system

u′
1 = u2 + u1

f(r)
r

u′
2 = −u1 + u2

f(r)
r
,

where r2 = u2
1 + u2

2, has limit cycles corresponding to the zeros of f(r).

27.2. Find all limit cycles of each of the following differential systems:

(i)
u′

1 = u2 + u1(u2
1 + u2

2)
1/2(u2

1 + u2
2 − 3)

u′
2 = −u1 + u2(u2

1 + u2
2)

1/2(u2
1 + u2

2 − 3).

(ii)
u′

1 = −u2 +
u1(u2

1 + u2
2 − 2)

(u2
1 + u2

2)1/2

u′
2 = u1 +

u2(u2
1 + u2

2 − 2)
(u2

1 + u2
2)1/2 .
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(iii)
u′

1 = u2

u′
2 = −u1 + u2(1 − u2

1 − u2
2).

(iv)
u′

1 = −u2

u′
2 = u1 + u2(u2

1 + u2
2 − 1).

(v)
u′

1 = u2 + u1(u2
1 + u2

2 − 1)(u2
1 + u2

2 − 2)

u′
2 = −u1 + u2(u2

1 + u2
2 − 1)(u2

1 + u2
2 − 2).

(vi)
u′

1 = −u2 − u1(u2
1 + u2

2 − 9)2

u′
2 = u1 − u2(u2

1 + u2
2 − 9)2.

27.3. Use the Poincaré–Bendixson theorem to prove the existence of a
nontrivial periodic solution of each of the following differential systems:

(i)
u′

1 = 2u1 − 2u2 − u1(u2
1 + u2

2)

u′
2 = 2u1 + 2u2 − u2(u2

1 + u2
2).

(ii)
u′

1 = u2 − u1(u2
1 + u2

2 − 1)
(u2

1 + u2
2)1/2

u′
2 = −u1 − u2(u2

1 + u2
2 − 1)

(u2
1 + u2

2)1/2 .

27.4. Show that the following nonlinear differential systems do not
have nontrivial periodic solutions in the given domains:

(i)
u′

1 = u1 + 7u2
2 + 2u3

1

u′
2 = −u1 + 3u2 + u2u

2
1, D = IR2 .

(ii)
u′

1 = u1 − u1u
2
2 + u3

2

u′
2 = 3u2 − u2u

2
1 + u3

1, D = {(u1, u2) : u2
1 + u2

2 < 4}.
27.5. Show that the following DEs do not have nontrivial periodic

solutions:

(i) y′′ + y′ + 2y′3 + y = 0.
(ii) y′′ + (2y2 + 3y4)y′ − (y + 5y3) = 0.

27.6. Use the Liénard–Levinson–Smith theorem to prove the existence
of an essentially nontrivial periodic solution of each of the following DEs:

(i) y′′ + (y4 − 1)y′ + y = 0.
(ii) y′′ + (5y4 − 6y2)y′ + y3 = 0.

Answers or Hints

27.1. Let r0 < r1 < · · · be the zeros of f(r). Transforming the given
differential system into polar coordinates (r, θ), we obtain dr

dx = f(r), dθ
dx =

−1. Thus, if f(r) > 0 for 0 < r < r0, then dr
dx > 0 if 0 < r < r0, i.e.,
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as x increases r increases, and the path curves spiral outward as long as
they lie within the circle r = r0. However, if f(r) < 0 for 0 < r < r0, then
dr
dx < 0 if 0 < r < r0, i.e., as x increases r decreases, and the path curves
tend to the critical point (0, 0). Now if f(r) < 0 for r0 < r < r1, then
dr
dx < 0 if r0 < r < r1, i.e., as x increases r decreases, and the path curves
spiral inward as long as they lie within the annulus r0 < r < r1. However,
if f(r) > 0 for r0 < r < r1 then dr

dx > 0 if r0 < r < r1, i.e., as x increases r
increases, and the path curves spiral outward as long as they lie within the
annulus. The points r2, r3, . . . can be treated similarly.

27.2. (i) r =
√

3. (ii) r =
√

2. (iii) r = 1. (iv) r = 1. (v) r = 1,
√

2.
(vi) r = 3.

27.3. Use Theorem 27.1.

27.4. Use Theorem 27.2.

27.5. Use Theorem 27.2.

27.6. Use Theorem 27.3.



Lecture 28
Lyapunov’s Direct Method
for Autonomous Systems

It is well known that a mechanical system is stable if its total energy,
which is the sum of potential energy and the kinetic energy, continuously
decreases. These two energies are always positive quantities and are zero
when the system is completely at rest. Lyapunov’s direct method uses a
generalized energy function to study the stability of the solutions of the
differential systems. This function is called Lyapunov function and is, gen-
erally, denoted by V. The main advantage of this approach is that the
stability can be discussed without any prior knowledge of the solutions.
In this lecture we shall study this fruitful technique for the autonomous
differential system

u′ = g(u), (28.1)

where the function g = (g1, . . . , gn) and its partial derivatives ∂gi/∂uj , 1 ≤
i, j ≤ n, are assumed to be continuous in an open set Ω ⊆ IRn containing
the origin. Thus, for all u0 ∈ Ω the initial value problem (28.1), (15.3) has
a unique solution in some interval containing x0. Further, we shall assume
that g(0) = 0 and g(u) �= 0 for u �= 0 in some neighborhood of the origin so
that (28.1) admits the trivial solution, and the origin is an isolated critical
point of the differential system (28.1).

Let V (u) be a scalar continuous function defined in Ω, i.e., V ∈ C[Ω, IR]
and V (0) = 0. For this function we need the following.

Definition 28.1. V (u) is said to be positive definite in Ω if and only
if V (u) > 0 for u �= 0, u ∈ Ω.

Definition 28.2. V (u) is said to be positive semidefinite in Ω if V (u) ≥
0 (with equality only at certain points) for all u ∈ Ω.

Definition 28.3. V (u) is said to be negative definite (negative semidef-
inite) in Ω if and only if −V (u) is positive definite (positive semidefinite)
in Ω.

In this and the next lecture, for the sake of easy geometric interpretation,
instead of the absolute norm we shall use the Euclidean norm ‖ · ‖2, and
the subscript 2 will be dropped.

Definition 28.4. A function φ(r) is said to belong to the class K if
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and only if φ ∈ C[[0, ρ), IR+], φ(0) = 0, and φ(r) is strictly monotonically
increasing in r.

Since V (u) is continuous, for sufficiently small r, 0 < c ≤ r ≤ d we have

V (u) ≤ max
‖v‖≤r

V (v), V (u) ≥ min
r≤‖v‖≤d

V (v) (28.2)

on the hypersphere ‖u‖ = r. In (28.2) the right sides are monotonic func-
tions of r and can be estimated in terms of functions belonging to the class
K. Thus, there exist two functions a, b ∈ K such that

a(‖u‖) ≤ V (u) ≤ b(‖u‖). (28.3)

The left side of (28.3) provides an alternative definition for the positive
definiteness of V (u) as follows.

Definition 28.5. The function V (u) is said to be positive definite in
Ω if and only if V (0) = 0 and there exists a function a(r) ∈ K such that
a(r) ≤ V (u), ‖u‖ = r, u ∈ Ω.

Example 28.1. The function V (u1, u2) = c1u
2
1 + c2u

2
2, where c1 >

0, c2 > 0 is positive definite in Ω = IR2.

Example 28.2. The function V (u1, u2, u3) = c1u
2
1 + c2u

2
2, where c1 >

0, c2 > 0 is positive semidefinite in Ω = IR3 since it vanishes on the u3-axis.

Example 28.3. The function V (u1, u2, u3) = c1u
2
1 + (c2u2 + c3u3)2,

where c1 > 0 is positive semidefinite in Ω = IR3 because it vanishes not
only at the origin but also on the line c2u2 + c3u3 = 0, u1 = 0.

Example 28.4. The function V (u1, u2) = u2
1 + u2

2 − (u4
1 + u4

2) is
positive definite in the interior of the unit circle because V (u1, u2) ≥ ‖u‖2−
‖u‖4, ‖u‖ < 1.

Let Sρ be the set {u ∈ IRn : ‖u‖ < ρ}, and u(x) = u(x, x0, u
0) be

any solution of (28.1), (15.3) such that ‖u(x)‖ < ρ for all x ≥ x0. Since
(28.1) is autonomous we can always assume that x0 = 0. If the function
V ∈ C(1)[Sρ, IR], then the chain rule can be used to obtain

dV (u)
dx

= V ∗(u) =
∂V (u)
∂u1

du1

dx
+ · · · +

∂V (u)
∂un

dun

dx

=
n∑

i=1

∂V (u)
∂ui

gi(u) = gradV (u) · g(u).
(28.4)

Thus, the derivative of V (u) with respect to x along the solution u(x)
of (28.1) is known, although we do not have the explicit solution.
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Now we shall provide three theorems regarding the stability, asymptotic
stability, and unstability of the trivial solution of the differential system
(28.1).

Theorem 28.1. If there exists a positive definite scalar function V (u) ∈
C(1)[Sρ, IR+] (called a Lyapunov function) such that V ∗(u) ≤ 0 in Sρ, then
the trivial solution of the differential system (28.1) is stable.

Proof. Since V (u) is positive definite, there exists a function a ∈ K
such that a(‖u‖) ≤ V (u) for all u ∈ Sρ. Let 0 < ε < ρ be given. Since
V (u) is continuous and V (0) = 0, we can find a δ = δ(ε) > 0 such that
‖u0‖ < δ implies that V (u0) < a(ε). If the trivial solution of (28.1) is
unstable, then there exists a solution u(x) = u(x, 0, u0) of (28.1) such that
‖u0‖ < δ satisfying ‖u(x1)‖ = ε for some x1 > 0. However, since V ∗(u) ≤ 0
in Sρ, we have V (u(x1)) ≤ V (u0), and hence

a(ε) = a(‖u(x1)‖) ≤ V (u(x1)) ≤ V (u0) < a(ε),

which is not true. Thus, if ‖u0‖ < δ then ‖u(x)‖ < ε for all x ≥ 0. This
implies that the trivial solution of (28.1) is stable.

Theorem 28.2. If there exists a positive definite scalar function V (u) ∈
C(1)[Sρ, IR+] such that V ∗(u) is negative definite in Sρ, then the trivial
solution of the differential system (28.1) is asymptotically stable.

Proof. Since all the conditions of Theorem 28.1 are satisfied, the trivial
solution of (28.1) is stable. Therefore, given 0 < ε < ρ, suppose that there
exist δ > 0, λ > 0 and a solution u(x) = u(x, 0, u0) of (28.1) such that

λ ≤ ‖u(x)‖ < ε, x ≥ 0, ‖u0‖ < δ. (28.5)

Since V ∗(u) is negative definite, there exists a function a ∈ K such that

V ∗(u(x)) ≤ − a(‖u(x)‖).

Furthermore, since ‖u(x)‖ ≥ λ > 0 for x ≥ 0, there exists a constant d > 0
such that a(‖u(x)‖) ≥ d for x ≥ 0. Hence, we have

V ∗(u(x)) ≤ − d < 0, x ≥ 0.

This implies that

V (u(x)) = V (u0) +
∫ x

0
V ∗(u(t))dt ≤ V (u0) − x d

and for sufficiently large x the right side will become negative, which contra-
dicts V (u) being positive definite. Hence, no such λ exists for which (28.5)
holds. Further, since V (u(x)) is positive and a decreasing function of x, it
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follows that limx→∞ V (u(x)) = 0. Therefore, limx→∞ ‖u(x)‖ = 0, and this
implies that the trivial solution of (28.1) is asymptotically stable.

Theorem 28.3. If there exists a scalar function V (u) ∈ C(1)[Sρ, IR],
V (0) = 0 such that V ∗(u) is positive definite in Sρ, and if in every neigh-
borhood N of the origin, N ⊂ Sρ, there is a point u0 where V (u0) > 0,
then the trivial solution of the differential system (28.1) is unstable.

Proof. Let r > 0 be sufficiently small so that the hypersphere

Sr = {u ∈ IRn : ‖u‖ ≤ r} ⊂ Sρ.

Let M = max‖u‖≤r V (u), where M is finite since V is continuous. Let
r1 be such that 0 < r1 < r; then by the hypotheses there exists a point
u0 ∈ IRn such that 0 < ‖u0‖ < r1 and V (u0) > 0. Along the solution
u(x) = u(x, 0, u0), x ≥ 0, V ∗(u) is positive, and therefore V (u(x)), x ≥ 0
is an increasing function and V (u(0)) = V (u0) > 0. This implies that this
solution u(x) cannot approach the origin. Thus, it follows that

inf
x≥0

V ∗(u(x)) = m > 0,

and therefore, V (u(x)) ≥ V (u0) + mx for x ≥ 0. But the right side of
this inequality can be made greater than M for x sufficiently large, which
implies that u(x) must leave the hypersphere Sr. Thus, the trivial solution
of (28.1) is unstable.

Example 28.5. For the differential system

u′
1 = u2 + u1(r2 − u2

1 − u2
2)

u′
2 = −u1 + u2(r2 − u2

1 − u2
2)

(28.6)

we consider the positive definite function V (u1, u2) = u2
1 + u2

2 in Ω = IR2.
A simple computation gives

V ∗(u1, u2) = − 2(u2
1 + u2

2)(u
2
1 + u2

2 − r2).

Obviously, V ∗(u) is negative definite when r = 0, and hence the trivial
solution of (28.6) is asymptotically stable. On the other hand, when r �=
0, V ∗(u) is positive definite in the region u2

1+u2
2 < r2. Therefore, the trivial

solution of (28.6) is unstable.

Example 28.6. For the differential system

u′
1 = −u1u

4
2

u′
2 = u2u

4
1

(28.7)

we choose the positive definite function V (u1, u2) = u4
1 + u4

2 in Ω = IR2.
For this function we find V ∗(u1, u2) ≡ 0 and hence the trivial solution of
(28.7) is stable.
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Example 28.7. Consider the differential system (17.3) with aij(x) =
−aji(x), i �= j and aii(x) ≤ 0 for all x ≥ 0, and i, j = 1, 2, . . . , n. Let
V (u) = u2

1 + · · · + u2
n, which is obviously positive definite in Ω = IRn, and

V ∗(u) = 2
n∑

i=1

ui(x)u′
i(x) = 2

n∑
i=1

ui(x)

⎡
⎣ n∑

j=1

aij(x)uj(x)

⎤
⎦

= 2
n∑

i=1

n∑
j=1

aij(x)ui(x)uj(x) = 2
n∑

i=1

aii(x)u2
i (x),

i.e., V ∗(u) is negative semidefinite. Therefore, the trivial solution of (17.3)
is stable. If aii(x) < 0 for all x ≥ 0, then V ∗(u) is negative definite and the
trivial solution of (17.3) is asymptotically stable.

Example 28.8. Consider the Liénard equation (27.9), where the func-
tions f(y) and g(y) are continuously differentiable for all y ∈ IR, g(0) = 0
and yg(y) > 0 for all y �= 0, and for some positive constant k, yF (y) > 0
for y �= 0, − k < y < k, where

F (y) =
∫ y

0
f(t)dt.

Equation (27.9) is equivalent to the system

u′
1 = u2 − F (u1)

u′
2 = −g(u1).

(28.8)

A suitable Lyapunov function for the differential system (28.8) is the total
energy function V (u1, u2) = (1/2)u2

2 +G(u1), where

G(u1) =
∫ u1

0
g(t)dt.

Obviously, V (u1, u2) is positive definite in Ω = IR2. Further, it is easy
to find V ∗(u) = −g(u1)F (u1). Thus, from our hypotheses it follows that
V ∗(u) ≤ 0 in the strip {(u1, u2) ∈ IR2 : −k < u1 < k, − ∞ < u2 < ∞}.
Therefore, the trivial solution of (28.8) is stable.

Problems

28.1. Show that the function V (u1, u2) = c1u
2
1 + c2u1u2 + c3u

2
2 in

Ω = IR2 is positive definite if and only if c1 > 0 and c22 − 4c1c3 < 0, and is
negative definite if and only if c1 < 0 and c22 − 4c1c3 < 0.
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28.2. For each of the following systems construct a Lyapunov function
of the form c1u

2
1 + c2u

2
2 to determine whether the trivial solution is stable,

asymptotically stable, or unstable:

(i)
u′

1 = −u1 + eu1u2

u′
2 = −eu1u1 − u2.

(ii)
u′

1 = −u3
1 + u2

1u2

u′
2 = −u3

1 − u2
1u2.

(iii)
u′

1 = 2u2 − u1(1 + 4u2
2)

u′
2 = (1/2)u1 − u2 + u2

1u2.
(iv)

u′
1 = 2u2 − 2u2 sinu1

u′
2 = −u1 − 4u2 + u1 sinu1.

(v)
u′

1 = −u1 + 2u2
1 + u2

2

u′
2 = −u2 + u1u2.

(vi)
u′

1 = −u1 − u2 − u3
1

u′
2 = u1 − u2 − u3

2.

(vii)
u′

1 = 2u1u2 + u3
1

u′
2 = −u2

1 + u5
2.

(viii)
u′

1 = u3
1 − u2

u′
2 = u1 + u3

2.

28.3. Consider the system

u′
1 = u2 − u1f(u1, u2)

u′
2 = −u1 − u2f(u1, u2),

where f(u1, u2) has a convergent power series expansion in Ω ⊆ IR2 con-
taining the origin, and f(0, 0) = 0. Show that the trivial solution of the
above system is

(i) stable if f(u1, u2) ≥ 0 in some region around the origin;
(ii) asymptotically stable if f(u1, u2) is positive definite in some region
around the origin;
(iii) unstable if in every region around the origin there are points (u1, u2)
such that f(u1, u2) < 0.

28.4. Use Problem 28.3 to determine whether the trivial solution is
stable, asymptotically stable or unstable for each of the following systems:

(i)
u′

1 = u2 − u1(eu1 sin2 u2)

u′
2 = −u1 − u2(eu1 sin2 u2).

(ii)
u′

1 = u2 − u1(u4
1 + u6

2 + 2u2
1u

2
2 sin2 u1)

u′
2 = −u1 − u2(u4

1 + u6
2 + 2u2

1u
2
2 sin2 u1).

(iii)
u′

1 = u2 − u1(u3
2 sin2 u1)

u′
2 = −u1 − u2(u3

2 sin2 u1).

28.5. Consider the equation of undamped simple pendulum y′′+ω2 sin y
= 0, − π/2 ≤ y ≤ π/2. Prove by means of an appropriate Lyapunov
function that its trivial solution is stable.

28.6. Prove by means of an appropriate Lyapunov function that the
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trivial solution of the Van der Pol equation (26.12) is asymptotically stable
when µ < 0.

Answers or Hints

28.1. Completing the squares, we have

V (u1, u2) = c1

[(
u1 + c2

2c1
u2

)2
+ 1

4c2
1

(
4c1c3 − c22

)
u2

2

]
.

28.2. (i) Asymptotically stable. (ii) Stable. (iii) Stable. (iv) Stable.
(v) Asymptotically stable. (vi) Asymptotically stable. (vii) Unstable.
(viii) Unstable.

28.3. Let V (u1, u2) = u2
1 + u2

2, then V ∗(u1, u2) = −2f(u1, u2)(u2
1 + u2

2).

28.4. (i) Stable. (ii) Asymptotically stable. (iii) Unstable.

28.5. Write the equation in system form and then use Lyapunov’s function
V (u1, u2) = g(u1) + 1

2u
2
2, where g(u1) =

∫ u1

0 ω2 sin tdt.

28.6. Use V (u1, u2) = u2
1 + u2

2.



Lecture 29
Lyapunov’s Direct Method

for Nonautonomous Systems

In this lecture we shall extend the method of Lyapunov functions to
study the stability properties of the solutions of the differential system
(15.1). For this, we shall assume that the function g(x, u) is continuous for
all (x, u) ∈ [x0,∞)×Sρ, x0 ≥ 0 and smooth enough so that the initial value
problem (15.4) has a unique solution in [x0,∞) for all u0 ∈ Sρ. Further, we
shall assume that g(x, 0) ≡ 0 so that the differential system (15.1) admits
the trivial solution. It is clear that a Lyapunov function for the system
(15.1) must depend on x and u both, i.e., V = V (x, u).

Definition 29.1. A real-valued function V (x, u) defined in [x0,∞)×Sρ

is said to be positive definite if and only if V (x, 0) ≡ 0, x ≥ x0, and there
exists a function a(r) ∈ K such that a(r) ≤ V (x, u), ‖u‖ = r, (x, u) ∈
[x0,∞) × Sρ. It is negative definite if V (x, u) ≤ −a(r).
Definition 29.2. A real-valued function V (x, u) defined in [x0,∞)×Sρ

is said to be decrescent if and only if V (x, 0) ≡ 0, x ≥ x0 and there exists
an h, 0 < h ≤ ρ and a function b(r) ∈ K such that V (x, u) ≤ b(‖u‖) for
‖u‖ < h and x ≥ x0.

Example 29.1. The function

V (x, u1, u2) = (1 + sin2 x)u2
1 + (1 + cos2 x)u2

2

is positive definite in [0,∞) × IR2 since V (x, 0, 0) ≡ 0 and a(r) = r2 ∈ K
satisfies the inequality a(r) ≤ V (x, u1, u2). This function is also decrescent
since b(r) = 2r2 ∈ K satisfies V (x, u1, u2) ≤ b(r).

Example 29.2. The function

V (x, u1, u2) = u2
1 + (1 + x2)u2

2

is positive definite in [0,∞) × IR2 but not decrescent since it can be arbi-
trarily large for sufficiently small ‖u‖.
Example 29.3. The function

V (x, u1, u2) = u2
1 +

1
(1 + x2)

u2
2
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is decrescent. However, since

V (x, 0, u2) =
1

(1 + x2)
u2

2 → 0 as x → ∞,

we cannot find a suitable function a(r) ∈ K such that V (x, u1, u2) ≥ a(‖u‖),
i.e., it is not positive definite.

Now we shall assume that V (x, u) ∈ C(1)[[x0,∞) × Sρ, IR] so that the
chain rule can be used, to obtain

dV (x, u)
dx

= V ∗(x, u) =
∂V

∂x
+

n∑
i=1

∂V

∂ui

dui

dx
.

Our interest is in the derivative of V (x, u) along a solution u(x) =
u(x, x0, u

0) of the differential system (15.1). Indeed, we have

V ∗(x, u) =
∂V

∂x
+

n∑
i=1

∂V

∂ui
gi(x, u) =

∂V

∂x
+ gradV (x, u) · g(x, u).

The following two theorems regarding the stability and asymptotic sta-
bility of the trivial solution of the differential system (15.1) are parallel to
the results in the autonomous case.

Theorem 29.1. If there exists a positive definite scalar function
V (x, u) ∈ C(1)[[x0,∞) × Sρ, IR+] (called a Lyapunov function) such that
V ∗(x, u) ≤ 0 in [x0,∞) × Sρ, then the trivial solution of the differential
system (15.1) is stable.

Theorem 29.2. If there exists a positive definite and decrescent scalar
function V (x, u) ∈ C(1)[[x0,∞) × Sρ, IR+] such that V ∗(x, u) is negative
definite in [x0,∞) × Sρ, then the trivial solution of the differential system
(15.1) is asymptotically stable.

Example 29.4. Consider the DE y′′ + p(x)y = 0, where p(x) ≥ δ > 0
and p′(x) ≤ 0 for all x ∈ [0,∞). This is equivalent to the system

u′
1 = u2

u′
2 = −p(x)u1.

(29.1)

For the differential system (29.1) we consider the scalar function
V (x, u1, u2) = p(x)u2

1+u2
2, which is positive definite in [0,∞)×IR2. Further,

since

V ∗(x, u) = p′(x)u2
1 + 2p(x)u1u2 + 2u2(−p(x)u1) = p′(x)u2

1 ≤ 0

in [0,∞) × IR2, the trivial solution of (29.1) is stable.
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Example 29.5. Consider the system

u′
1 = −a11(x)u1 − a12(x)u2

u′
2 = a21(x)u1 − a22(x)u2,

(29.2)

where a21(x) = a12(x), and a11(x) ≥ δ > 0, a22(x) ≥ δ > 0 for all x ∈
[0,∞). For the differential system (29.2) we consider the scalar function
V (x, u1, u2) = u2

1 + u2
2 which is obviously positive definite and decrescent

in [0,∞) × IR2. Further, since

V ∗(x, u) = 2u1(−a11(x)u1 − a12(x)u2) + 2u2(a21(x)u1 − a22(x)u2)

= −2a11(x)u2
1 − 2a22(x)u2

2 ≤ − 2δ(u2
1 + u2

2)

in [0,∞) × IR2, the trivial solution of (29.2) is asymptotically stable.

We shall now formulate a result which provides sufficient conditions for
the trivial solution of the differential system (15.1) to be unstable.

Theorem 29.3. If there exists a scalar function V (x, u) ∈ C(1)[[x0,∞)
×Sρ, IR] such that

(i) |V (x, u)| ≤ b(‖u‖) for all (x, u) ∈ [x0,∞) × Sρ, where b ∈ K;
(ii) for every δ > 0 there exists an u0 with ‖u0‖ < δ such that V (x0, u

0) <
0;
(iii) V ∗(x, u) ≤ −a(‖u‖) for (x, u) ∈ [x0,∞) × Sρ, where a ∈ K,
then the trivial solution of the differential system (15.1) is unstable.

Proof. Let the trivial solution of (15.1) be stable. Then for every ε > 0
such that ε < ρ, there exists a δ = δ(ε) > 0 such that ‖u0‖ < δ implies that
‖u(x)‖ = ‖u(x, x0, u

0)‖ < ε for all x ≥ x0. Let u0 be such that ‖u0‖ < δ
and V (x0, u

0) < 0. Since ‖u0‖ < δ, we have ‖u(x)‖ < ε. Hence, condition
(i) gives

|V (x, u(x))| ≤ b(‖u(x)‖) < b(ε) for all x ≥ x0. (29.3)

Now from condition (iii), it follows that V (x, u(x)) is a decreasing function,
and therefore for every x ≥ x0, we have V (x, u(x)) ≤ V (x0, u

0) < 0. This
implies that |V (x, u(x))| ≥ |V (x0, u

0)|. Hence, from condition (i) we get
‖u(x)‖ ≥ b−1(|V (x0, u

0)|).
From condition (iii) again, we have V ∗(x, u(x)) ≤ −a(‖u(x)‖), and

hence on integrating this inequality between x0 and x, we obtain

V (x, u(x)) ≤ V (x0, u
0) −

∫ x

x0

a(‖u(t)‖)dt.
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However, since ‖u(x)‖ ≥ b−1(|V (x0, u
0)|), it is clear that a(‖u(x)‖) ≥

a(b−1(|V (x0, u
0)|)). Thus, we have

V (x, u(x)) ≤ V (x0, u
0) − (x− x0)a(b−1(|V (x0, u

0)|)).

But this shows that limx→∞ V (x, u(x)) = −∞, which contradicts (29.3).
Hence, the trivial solution of (15.1) is unstable.

Example 29.6. Consider the system

u′
1 = a11(x)u1 − a12(x)u2

u′
2 = a21(x)u1 + a22(x)u2,

(29.4)

where a21(x) = a12(x), and a11(x) ≥ δ > 0, a22(x) ≥ δ > 0 for all x ∈
[0,∞). For the differential system (29.4) we consider the scalar function
V (x, u1, u2) = −(u2

1 + u2
2), and note that for all (x, u) ∈ [0,∞) × IR2,

|V (x, u1, u2)| ≤ (u2
1 +u2

2) = r2 = b(r) for (u1, u2) �= (0, 0), V (x, u1, u2) < 0,
and V ∗(x, u1, u2) = −2(a11(x)u2

1 + a22(x)u2
2) ≤ −2δ(u2

1 + u2
2) = −2δr2 =

−a(r). Thus, the conditions of Theorem 29.3 are satisfied and the trivial
solution of (29.4) is unstable.

Our final result in this lecture gives sufficient conditions for the trivial
solution of the differential system (15.1) to be uniformly stable.

Theorem 29.4. If there exists a positive definite and decrescent
scalar function V (x, u) ∈ C(1)[[x0,∞) × Sρ, IR+] such that V ∗(x, u) ≤ 0
in [x0,∞) × Sρ, then the trivial solution of the differential system (15.1) is
uniformly stable.

Proof. Since V (x, u) is positive definite and decrescent, there exist
functions a, b ∈ K such that

a(‖u‖) ≤ V (x, u) ≤ b(‖u‖) (29.5)

for all (x, u) ∈ [x0,∞)×Sρ. For each ε, 0 < ε < ρ, we choose a δ = δ(ε) > 0
such that b(δ) < a(ε). We now claim that the trivial solution of (15.1) is
uniformly stable, i.e., if x1 ≥ x0 and ‖u(x1)‖ < δ, then ‖u(x)‖ < ε for all
x ≥ x1. Suppose this is not true. Then there exists some x2 > x1 such that
x1 ≥ x0 and ‖u(x1)‖ < δ imply that

‖u(x2)‖ = ε. (29.6)

Integrating V ∗(x, u(x)) ≤ 0 from x1 to x, we get V (x, u(x)) ≤ V (x1, u(x1)),
and hence for x = x2, we have

a(ε) = a(‖u(x2)‖) ≤ V (x2, u(x2)) ≤ V (x1, u(x1))

≤ b(‖u(x1)‖) ≤ b(δ) < a(ε).
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This contradicts relation (29.6), and therefore no such x2 exists. Hence,
the trivial solution of (15.1) is uniformly stable.

Corollary 29.5. If there exists a scalar function V (x, u) ∈ C[[x0,∞)×
Sρ, IR+] such that the inequality (29.5) holds, and V (x, u(x)) is nonincreas-
ing in x for every solution u(x) of (15.1) with ‖u(x)‖ < ρ, then the trivial
solution of (15.1) is uniformly stable.

Example 29.7. For the differential system (29.2) once again we con-
sider the scalar function V (x, u) = u2

1 + u2
2 and note that the inequality

(29.5) with a(r) = b(r) = r2 is satisfied. Further, since V ∗(x, u(x)) ≤ 0 for
all solutions of (29.2), the trivial solution of (29.2) is uniformly stable.

To conclude, we remark that the main drawback of Lyapunov’s direct
method is that there is no sufficiently general constructive method for find-
ing the function V (x, u). Nevertheless, for a series of important classes of
differential systems such a construction is possible.

Problems

29.1. Show the following:

(i) (u2
1 + u2

2) cos2 x is decrescent.
(ii) u2

1 + exu2
2 is positive definite but not decrescent.

(iii) u2
1 + e−xu2

2 is decrescent.
(iv) (1 + cos2 x+ e−2x)(u4

1 + u4
2) is positive definite and decrescent.

29.2. For the DE

y′ = (sin lnx+ cos lnx− 1.25)y, (29.7)

consider the function

V (x, y) = y2 exp(2(1.25 − sin lnx)x).

Show the following:

(i) V (x, y) is positive definite but not decrescent.
(ii) The trivial solution of (29.7) is stable.

29.3. Show that the trivial solution of the differential system

u′
1 = p(x)u2 + q(x)u1(u2

1 + u2
2)

u′
2 = −p(x)u1 + q(x)u2(u2

1 + u2
2),

where p, q ∈ C[0,∞) is stable if q(x) ≤ 0, asymptotically stable if q(x) ≤
δ < 0, and unstable if q(x) ≥ δ > 0.
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29.4. If there exists a positive definite scalar function V (x, u) ∈
C(1)[[x0,∞) × Sρ, IR+] such that V ∗(x, u) ≤ −a(V (x, u)), where a ∈ K in
[x0,∞) × Sρ, then show that the trivial solution of the differential system
(15.1) is asymptotically stable.

29.5. For the DE
y′ = (x sinx− 2x)y, (29.8)

consider the function

V (x, y) = y2 exp
(∫ x

0
(2t− t sin t)dt

)
.

Show the following:

(i) V (x, y) is positive definite but not decrescent.
(ii) V ∗(x, y) ≤ −λV (x, y) for all x ≥ λ > 0.
(iii) The trivial solution of (29.8) is asymptotically stable.

Answers or Hints

29.1. Verify directly.

29.2. Verify directly.

29.3. Use functions V (x, u1, u2) = u2
1 + u2

2 and V (x, u1, u2) = −(u2
1 + u2

2).

29.4. The stability of the trivial solution of (15.1) follows from Theorem
29.1. Hence, given ε > 0 (0 < ε < ρ) there exists a δ = δ(ε) > 0 such that
‖u0‖ < δ implies that ‖u(x, x0, u

0)‖ < ε for all x ≥ x0. Since V ∗(x, u) ≤
−a(V (x, u)) along the trajectory through (x0, u

0), we have for all x ≥ x0∫ V (x,u)
V (x0,u0)

dV
a(V ) ≤ −(x− x0).

Thus, as x → ∞, the integral tends to −∞. But this is possible only if
V (x, u) → 0 as x → ∞. Now use the fact that V (x, u) is positive definite.

29.5. Verify directly.



Lecture 30
Higher-Order Exact

and Adjoint Equations

The concept of exactness which was discussed for the first-order DEs in
Lecture 3 can be extended to higher-order DEs. The nth-order DE (1.5)
is called exact if the function F (x, y, y′, . . . , y(n)) is a derivative of some
differential expression of (n − 1)th order, say, φ(x, y, y′, . . . , y(n−1)). Thus,
in particular, the second-order DE (6.1) is exact if

p0(x)y′′ + p1(x)y′ + p2(x)y = (p(x)y′ + q(x)y)′, (30.1)

where the functions p(x) and q(x) are differentiable in J.

Expanding (30.1), we obtain

p0(x)y′′ + p1(x)y′ + p2(x)y = p(x)y′′ + (p′(x) + q(x))y′ + q′(x)y,

and hence it is necessary that p0(x) = p(x), p1(x) = p′(x) + q(x), and
p2(x) = q′(x) for all x ∈ J. These equations in turn imply that

p′′
0(x) − p′

1(x) + p2(x) = 0. (30.2)

Thus, the DE (6.1) is exact if and only if condition (30.2) is satisfied.

Similarly, the second-order nonhomogeneous DE (6.6) is exact if the
expression p0(x)y′′ + p1(x)y′ + p2(x)y is exact, and in such a case (6.6) is

[p0(x)y′ + (p1(x) − p′
0(x))y]

′ = r(x). (30.3)

On integrating (30.3), we find

p0(x)y′ + (p1(x) − p′
0(x))y =

∫ x

r(t)dt+ c, (30.4)

which is a first-order linear DE and can be integrated to find the general
solution of (6.6).

Example 30.1. For the DE

x2y′′ + xy′ − y = x4, x > 0

we have p′′
0(x)− p′

1(x)+ p2(x) = 2− 1− 1 = 0, and hence it is an exact DE.
Using (30.4), we get

x2y′ − xy =
1
5
x5 + c,
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which is a first-order linear DE. The general solution of this DE is

y(x) =
1
15
x4 +

c1
x

+ c2x.

If the DE (6.1) is not exact, then we may seek an integrating factor
z(x) that will make it exact. Such an integrating factor must satisfy the
condition

(p0(x)z(x))′′ − (p1(x)z(x))′ + p2(x)z(x) = 0. (30.5)

Equation (30.5) is a second-order DE in z(x) and it can be written as

q0(x)z′′ + q1(x)z′ + q2(x)z = 0, (30.6)

where

q0(x) = p0(x), q1(x) = 2p′
0(x)−p1(x), q2(x) = p′′

0(x)−p′
1(x)+p2(x).

(30.7)
Equation (30.5), or equivalently (30.6), is in fact the adjoint equation of

(6.1). To show this, we note that the DE (6.1) is equivalent to the system[
u′

1
u′

2

]
=

[
0 1/p0(x)

−p2(x) (p′
0(x) − p1(x))/p0(x)

] [
u1
u2

]
,

and its adjoint system is[
v′
1
v′
2

]
=

[
0 p2(x)

−1/p0(x) −(p′
0(x) − p1(x))/p0(x)

] [
v1
v2

]
,

which is the same as
v′
1 = p2(x)v2 (30.8)

p0(x)v′
2 = − v1 − (p′

0(x) − p1(x))v2. (30.9)

Now using (30.8) in (30.9), we obtain

p0(x)v′′
2 + p′

0(x)v
′
2 = − p2(x)v2 − (p′′

0(x) − p′
1(x))v2 − (p′

0(x) − p1(x))v′
2,

or

p0(x)v′′
2 + (2p′

0(x) − p1(x))v′
2 + (p′′

0(x) − p′
1(x) + p2(x))v2 = 0,

which is exactly the same as (30.6).

Obviously, relations (30.7) can be rewritten as

p0(x) = q0(x), p′
0(x) − p1(x) = q1(x) − q′

0(x)

2p2(x) − p′
1(x) = 2q2(x) − q′

1(x)
(30.10)
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and hence when pi’s and qi’s are interchanged these equations are unaltered;
thus the relation between equations (6.1) and (30.6) is of a reciprocal nature
and each equation is the adjoint of the other.

When an equation and its adjoint are the same, it is said to be self-
adjoint. Thus, the DE (6.1) is self-adjoint if p0(x) = q0(x), p1(x) =
q1(x), p2(x) = q2(x). In such a situation, relations (30.7) give

p1(x) = p′
0(x). (30.11)

Thus, the self-adjoint equation takes the form

p0(x)y′′ + p′
0(x)y

′ + p2(x)y = 0,

which is the same as

(p0(x)y′)′ + p2(x)y = 0. (30.12)

Further, any self-adjoint equation can be written in the form (30.12).

The condition (30.11) shows that the DE (6.1) will become self-adjoint
after multiplication by a function σ(x) that satisfies the relation

σ(x)p1(x) = (σ(x)p0(x))′,

which is the same as
(σ(x)p0(x))′

σ(x)p0(x)
=

p1(x)
p0(x)

. (30.13)

On integrating (30.13), we easily find the function σ(x) which appears as

σ(x) =
1

p0(x)
exp

(∫ x p1(t)
p0(t)

dt

)
. (30.14)

Thus, with this choice of σ(x) the DE

σ(x)p0(x)y′′ + σ(x)p1(x)y′ + σ(x)p2(x)y = 0 (30.15)

is a self-adjoint equation.

Since (30.15) is self-adjoint its solutions are also its integrating factors.
But since (30.15) is the same as (6.1) multiplied by σ(x), the solutions of
(6.1) are the solutions of (30.15). Hence the statement “the solutions of
(30.15) are the integrating factors of (30.15)” is equivalent to saying that
“σ(x) times the solutions of (6.1) are the integrating factors of (6.1).” But,
since the integrating factors of (6.1) are the solutions of its adjoint equation
(30.6), i.e., z(x) = σ(x)y(x) it follows that

z(x)
y(x)

= σ(x) =
1

p0(x)
exp

(∫ x p1(t)
p0(t)

dt

)
, (30.16)
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where y(x) and z(x) are solutions of (6.1) and (30.6), respectively.

Since (6.1) is adjoint of (30.6) it is also clear from (30.16) that

y(x)
z(x)

=
1

q0(x)
exp

(∫ x q1(t)
q0(t)

dt

)
. (30.17)

Example 30.2. The DE

xy′′ + 2y′ + a2xy = 0, x > 0

is not exact since p′′
0 − p′

1 + p2 = a2x �= 0. Its adjoint equation is

(xz)′′ − 2z′ + a2xz = x(z′′ + a2z) = 0,

whose general solution can be written as z(x) = c1 cos ax + c2 sin ax. The
function

σ(x) =
1
x

exp
(∫ x 2

t
dt

)
= x.

Therefore, the general solution of the given DE is

y(x) =
z(x)
x

=
c1 cos ax

x
+
c2 sin ax

x
.

Now let the linear operator

P2 = p0(x)
d2

dx2 + p1(x)
d

dx
+ p2(x)

and its adjoint

Q2 = q0(x)
d2

dx2 + q1(x)
d

dx
+ q2(x),

so that the DEs (6.1) and (30.6), respectively, can be written as

P2[y] = p0(x)
d2y

dx2 + p1(x)
dy

dx
+ p2(x)y = 0 (30.18)

and

Q2[z] = q0(x)
d2z

dx2 + q1(x)
dz

dx
+ q2(x)z = 0. (30.19)
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Multiplying (30.18) by z and (30.19) by y and subtracting, we get

zP2[y] − yQ2[z]

= z(p0(x)y′′ + p1(x)y′ + p2(x)y) − y(q0(x)z′′ + q1(x)z′ + q2(x)z)

= z(p0(x)y′′ + p1(x)y′ + p2(x)y) − y((p0(x)z)′′ − (p1(x)z)′ + p2(x)z)

= (p0(x)z)y′′ − (p0(x)z)′′y + (p1(x)z)y′ + (p1(x)z)′y

=
d

dx
[(p0(x)z)y′ − (p0(x)z)′y] +

d

dx
(p1(x)yz)

=
d

dx
[p0(x)(zy′ − z′y) + (p1(x) − p′

0(x))yz].

(30.20)
Relation (30.20) is known as Lagrange’s identity. Further, the expression
in square brackets on the right side is called the bilinear concomitant of the
functions y and z.

Integrating (30.20), we find

∫ β

α

(zP2[y] − yQ2[z])dx = [p0(x)(zy′ − z′y) + (p1(x) − p′
0(x))yz]

∣∣∣∣∣
β

α

.

(30.21)
The relation (30.21) is called Green’s identity.

In the special case when the operator P2 is self-adjoint, i.e., p′
0(x) =

p1(x), the Lagrange identity (30.20) reduces to

zP2[y] − yP2[z] =
d

dx
[p0(x)(zy′ − z′y)]. (30.22)

Thus, if y and z both are solutions of the DE (30.12), then (30.22) gives

p0(x)W (y, z)(x) = constant. (30.23)

Further, in this case Green’s identity (30.21) becomes

∫ β

α

(zP2[y] − yP2[z])dx = [p0(x)(zy′ − z′y)]

∣∣∣∣∣
β

α

. (30.24)

Problems

30.1. Verify that the following DEs are exact and find their general
solutions:

(i) y′′ + xy′ + y = 0.
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(ii) yy′′ + y′2 = 0.
(iii) x2y′′ + (1 + 4x)y′ + 2y = 0, x > 0.
(iv) (1 − x)y′′ + xy′ + y = 0, x �= 1.

(v) (x+ 2xy)y′′ + 2xy′2 + 2y′ + 4yy′ = 0, x > 0.
(vi) sinx y′′′ + cosx y′′ + sinx y′ + cosx y = 0, (0 < x < π).

30.2. If p1(x) = 2p′
0(x), p2(x) = p′′

0(x), show that

p0(x)y′′ + p1(x)y′ + p2(x)y = (p0(x)y)′′

and hence find the general solution of the DE

(x2 + 3)y′′ + 4xy′ + 2y = e−x.

30.3. Show that the DE

p0(x)y(n) + p1(x)y(n−1) + · · · + pn(x)y = 0 (30.25)

is exact if and only if

p
(n)
0 (x) − p

(n−1)
1 (x) + · · · + (−1)npn(x) = 0.

30.4. Show that the Euler equation (18.17) is exact if and only if

p0 − p1

n
+

p2

n(n− 1)
− · · · + (−1)n pn

n!
= 0.

30.5. Transform the following equations to their self-adjoint forms:

(i) xy′′ − y′ + x3y = 0.
(ii) x2y′′ + xy′ + (x2 − 1)y = 0.
(iii) xy′′ + (1 − x)y′ + y = 0.

30.6. Solve the following equations with the help of their respective
adjoint equations:

(i) xy′′ + (2x− 1)y′ + (x− 1)y = x2 + 2x− 2.
(ii) x2y′′ + (3x2 + 4x)y′ + (2x2 + 6x+ 2)y = 0.

30.7. If z1(x) and z2(x) are linearly independent solutions of (30.6),
show that y1(x) = z1(x)/σ(x) and y2(x) = z2(x)/σ(x) are linearly inde-
pendent solutions of (6.1).

30.8. Show that the DE (6.19) has two solutions whose product is a
constant provided 2p1(x)p2(x) + p′

2(x) = 0. Hence, solve the DE

(x+ 1)x2y′′ + xy′ − (x+ 1)3y = 0.
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30.9. Show that a necessary and sufficient condition for transform-
ing (6.19) into an equation with constant coefficients by a change of the
independent variable

φ = φ(x) =
∫ x

[p2(t)]1/2dt

is that the function (p′
2(x) + 2p1(x)p2(x))/p

3/2
2 (x) is a constant.

30.10. Show that if z(x) is an integrating factor of the DE (30.25); then
z(x) satisfies the adjoint DE

q0(x)z(n) − q1(x)z(n−1) + · · · + (−1)nqn(x)z = 0,

where

qk(x) =
k∑

i=0

(−1)i

(
n− k + i

i

)
p
(i)
k−i(x)

= pk(x) −
(
n− k + 1

1

)
p′

k−1(x) +
(
n− k + 2

2

)
p′′

k−2(x) − · · · ,
k = 0, 1, . . . , n.

Answers or Hints

30.1. (i) y′′ + xy′ + y = (y′ + xy)′, y = c1 exp(−x2/2) + c2 exp(−x2/2)×∫ x exp(t2/2)dt. (ii) yy′′ + (y′)2 = (yy′)′, y2 = c1x + c2. (iii) x2y′′ + (1 +
4x)y′ +2y = (x2y′ +(1+2x)y)′, y = (c1/x2) exp(1/x)+ (c2/x2) exp(1/x)×∫ x exp(−1/t)dt. (iv) (1−x)y′′+xy′+y = ((1−x)y′+(1+x)y)′, y = c1e

x(1−
x)2+c2ex(1−x)2 ∫ x[e−t/(1−t)3]dt. (v) (x+2xy)y′′+2x(y′)2+2y′+4yy′ =
(xy(y+1))′′, xy(y+1) = c1x+c2. (vi) sinxy′′′+cosxy′′+sinxy′+cosxy =
(sinxy′′ + sinxy)′, y = c1 cosx+ c2 sinx+ c3(−x cosx+ sinx ln sinx).

30.2. y = (c1 + c2x+ e−x)/(x2 + 3).

30.3.
∑n

k=0 pk(x)y(n−k) = (
∑n−1

k=0 qk(x)y(n−1−k))′ gives the relations p0 =
q0, pk = qk + q′

k−1, k = 1, 2, . . . , n− 1, pn = q′
n−1, which are equivalent to∑n

k=0(−1)kp
(n−k)
k (x) = 0.

30.4. Use Problem 30.3.

30.5. (i) σ(x) = 1/x2, (1/x)y′′−(1/x2)y′+xy = 0. (ii) σ(x) = 1/x, xy′′+
y′ + [x− (1/x)]y = 0. (iii) σ(x) = e−x, xe−xy′′ + (1 − x)e−xy′ + e−xy = 0.

30.6. (i) e−x(c1 + c2x
2) + 1 + x. (ii) e−x(c1 + c2e

−x)/x2.
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30.7. If z1(x), z2(x) are linearly independent solutions of (30.6), then
y1(x) = z1(x)/σ(x), y2(x) = z2(x)/σ(x) are solutions of (6.1). Drive
W (y1, y2)(x) = W (z1, z2)(x)/σ2(x).

30.8. Use y(x) = c/y1(x) in (6.19) to get the relation p2(x)y2
1 + y′2 = 0.

Differentiation of this relation and the fact that y1(x) is a solution gives
p′
2(x)y

2
1 − 2p1(x)y′

1
2 = 0, c1xex + c2e

−x/x.

30.9. Verify directly.

30.10. If z(x) is an integrating factor of (30.25), then it is necessary that
zp0y

(n) + zp1y
(n−1) + · · · + zpny =

(
q0y

(n−1) + q1y
(n−2) + · · · + qn−1y

)′

= q0y
(n) +(q1 + q′

0)y
(n−1) +(q2 + q′

1)y
(n−2) + · · ·+(qn−1 + q′

n−2)y
′ + q′

n−1y,
which implies that zp0 = q0, zpk = qk + q′

k−1, 1 ≤ k ≤ n− 1, zpn = qn−1
and hence

(zp0)(n) − (zp1)(n−1) + (zp2)(n−2) − · · · + (−1)n(zpn) = 0.



Lecture 31
Oscillatory Equations

In this lecture we shall consider the following second-order linear DE

(p(x)y′)′ + q(x)y = 0 (31.1)

and its special case
y′′ + q(x)y = 0, (31.2)

where the functions p, q ∈ C(J), and p(x) > 0 for all x ∈ J. By a solution
of (31.1) we mean a nontrivial function y ∈ C(1)(J) and py′ ∈ C(1)(J). A
solution y(x) of (31.1) is said to be oscillatory if it has no last zero, i.e., if
y(x1) = 0, then there exists an x2 > x1 such that y(x2) = 0. Equation (31.1)
itself is said to be oscillatory if every solution of (31.1) is oscillatory. A
solution y(x) which is not oscillatory is called nonoscillatory. For example,
the DE y′′ + y = 0 is oscillatory, whereas y′′ − y = 0 is nonoscillatory in
J = [0,∞).

From the practical point of view the following result is fundamental.

Theorem 31.1 (Sturm’s Comparison Theorem). If α, β ∈
J are the consecutive zeros of a nontrivial solution y(x) of (31.2), and if
q1(x) is continuous and q1(x) ≥ q(x), q1(x) �≡ q(x) in [α, β], then every
nontrivial solution z(x) of the DE

z′′ + q1(x)z = 0 (31.3)

has a zero in (α, β).

Proof. Multiplying (31.2) by z(x) and (31.3) by y(x) and subtracting,
we obtain

z(x)y′′(x) − y(x)z′′(x) + (q(x) − q1(x))y(x)z(x) = 0,

which is the same as

(z(x)y′(x) − y(x)z′(x))′ + (q(x) − q1(x))y(x)z(x) = 0.

Since y(α) = y(β) = 0, an integration yields

z(β)y′(β) − z(α)y′(α) +
∫ β

α

(q(x) − q1(x))y(x)z(x)dx = 0. (31.4)
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From the linearity of (31.2) we can assume that y(x) > 0 in (α, β), then
y′(α) > 0 and y′(β) < 0. Thus, from (31.4) it follows that z(x) cannot be
of fixed sign in (α, β), i.e., it has a zero in (α, β).

Corollary 31.2. If q(x) ≥ (1 + ε)/4x2, ε > 0 for all x > 0, then the
DE (31.2) is oscillatory in J = (0,∞).

Proof. For ε > 0, all nontrivial solutions of the DE

y′′ +
ε

4
y = 0 (31.5)

are oscillatory. Let t = ex in (31.5), to obtain

t2
d2y

dt2
+ t

dy

dt
+
ε

4
y = 0. (31.6)

Now using the substitution y = z/
√
t in (31.6), we find

d2z

dt2
+

1 + ε

4t2
z = 0. (31.7)

Since z(t) = ex/2y(ex) the equation (31.7) is also oscillatory. Therefore,
from Theorem 31.1 between any two zeros of a solution of (31.7) there
is a zero of every solution of (31.2); i.e., DE (31.2) is oscillatory in J =
(0,∞).

Example 31.1. Obviously the DE y′′ = 0 is nonoscillatory. Thus, if
the function q(x) ≤ 0 (�≡ 0) in J, Theorem 31.1 immediately implies that
each solution of the DE (31.2) cannot have more than one zero in J. Thus,
in particular, the DE y′′ − x2y = 0 is nonoscillatory in J = IR.

Example 31.2. Obviously the DE y′′ + y = 0 is oscillatory. Thus, by
Theorem 31.1 it follows that the DE y′′ + (1 + x)y = 0 is also oscillatory in
J = [0,∞).

Example 31.3. From Corollary 31.2 it is obvious that each solution of
the DE y′′ +(c/x2)y = 0 has an infinite number of positive zeros if c > 1/4,
and only a finite number of zeros if c < 1/4.

Example 31.4. Using the substitution y = u/
√
x it is easy to see that

the Bessel DE
x2y′′ + xy′ + (x2 − a2)y = 0 (31.8)

can be transformed into a simple DE

u′′ +
(

1 +
1 − 4a2

4x2

)
u = 0. (31.9)
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We will use Theorem 31.1 to find the behavior of zeros of the solutions u(x)
of the DE (31.9) in the interval J = (0,∞). For this, three cases are to be
discussed:

Case 1. If 0 ≤ a < 1/2, then 1 + [(1 − 4a2)/4x2] > 1 and hence from
Theorem 31.1 it follows that every solution u(x) of (31.9) must vanish at
least once between any two zeros of a nontrivial solution of z′′+z = 0. Since
for a given p, sin(x− p) is a solution of z′′ + z = 0, we find that the zeros
of this solution are p, p±π, p±2π, . . . . Thus, every solution u(x) of (31.9)
has at least one zero in every subinterval of the positive x-axis of length π,
i.e., the distance between successive zeros of u(x) does not exceed π.

Case 2. If a = 1/2, then the DE (31.9) reduces to u′′ + u = 0 and hence
the zeros of every solution u(x) of (31.9) are equally spaced by the distance
π on the positive x-axis.

Case 3. If a > 1/2, then 1 + [(1 − 4a2)/4x2] < 1 and comparison with
z′′ + z = 0 implies that every solution u(x) of (31.9) has at most one zero
in any subinterval of the positive x-axis of length π. To prove the existence
of zeros we reason as follows: For any fixed a, (1 − 4a2)/4x2 → 0 as
x → ∞. Hence, there exists a x0 > 0 such that 1 + [(1 − 4a2)/4x2] > 1/2
whenever x > x0, and now comparison with z′′ + (1/2)z = 0 implies that
every solution u(x) of (31.9) has infinitely many zeros and that the distance
between successive zeros eventually becomes less than

√
2π.

We leave the proof of the fact that the distance between the successive
zeros of every solution of (31.9) for every a tends to π (Problem 31.4).

Next we shall extend Sturm’s comparison theorem for the DE (31.1).
For this, we need the following lemma.

Lemma 31.3 (Picone’s Identity). Let the functions y, z, py′,
p1z

′ be differentiable and z(x) �= 0 in J. Then the following identity holds:[y
z
(zpy′ − yp1z

′)
]′

= y(py′)′ − y2

z
(p1z

′)′ + (p− p1)y′2 + p1

(
y′ − y

z
z′
)2
.

(31.10)
Proof. Expanding the left side, we have

y

z
(z(py′)′ + z′py′ − y(p1z

′)′ − y′p1z
′) +

(
y′

z
− y

z2 z
′
)

(zpy′ − yp1z
′)

= y(py′)′ − y2

z
(p1z

′)′ + py′2 − 2yy′p1z
′

z
+
y2p1z

′2

z2

= y(py′)′ − y2

z
(p1z

′)′ + (p− p1)y′2 + p1

(
y′ − y

z
z′
)2
.

Theorem 31.4 (Sturm–Picone’s Theorem). If α, β ∈ J
are the consecutive zeros of a nontrivial solution y(x) of (31.1), and if
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p1(x), q1(x) are continuous and 0 < p1(x) ≤ p(x), q1(x) ≥ q(x) in [α, β],
then every nontrivial solution z(x) of the DE

(p1(x)z′)′ + q1(x)z = 0 (31.11)

has a zero in [α, β].

Proof. Let z(x) �= 0 in [α, β], then Lemma 31.3 is applicable and from
(31.10) and the DEs (31.1) and (31.11), we find[y

z
(zpy′ − yp1z

′)
]′

= (q1 − q)y2 + (p− p1)y′2 + p1

(
y′ − y

z
z′
)2
.

Integrating the above identity and using y(α) = y(β) = 0, we obtain∫ β

α

[
(q1 − q)y2 + (p− p1)y′2 + p1

(
y′ − y

z
z′
)2
]
dx = 0,

which is a contradiction unless q1(x) ≡ q(x), p1(x) ≡ p(x) and y′ −
(y/z)z′ ≡ 0. The last identity is the same as d(y/z)/dx ≡ 0, and hence
y(x)/z(x) ≡ constant. However, since y(α) = 0 this constant must be zero,
and so y(x)/z(x) ≡ 0, or y(x) ≡ 0. This contradiction implies that z must
have a zero in [α, β].

Corollary 31.5 (Sturm’s Separation Theorem). If y1(x)
and y2(x) are two linearly independent solutions of the DE (31.1) in J, then
their zeros are interlaced, i.e., between two consecutive zeros of one there
is exactly one zero of the other.

Proof. Since y1(x) and y2(x) cannot have common zeros, Theorem 31.4
(p1(x) ≡ p(x), q1(x) ≡ q(x)) implies that the solution y2(x) has at least
one zero between two consecutive zeros of y1(x). Interchanging y1(x) and
y2(x) we see that y2(x) has at most one zero between two consecutive zeros
of y1(x).

Example 31.5. It is easy to see that the functions y1(x) = c1 cosx+
c2 sinx and y2(x) = c3 cosx+ c4 sinx are linearly independent solutions of
the DE y′′ + y = 0 if and only if c1c4 − c2c3 �= 0. Thus, from Corollary 31.5
it follows that these functions y1(x) and y2(x) have alternating zeros.

In a finite interval J = [α, β] the DE (31.1) can have at most finite
number of zeros, and this we shall prove in the following result.

Theorem 31.6. The only solution of the DE (31.1) which vanishes
infinitely often in J = [α, β] is the trivial solution.

Proof. We assume that the solution y(x) of the DE (31.1) has an
infinite number of zeros in J. The set of zeros will then have a limit point
x∗ ∈ J, and there will exist a sequence {xm} of zeros converging to x∗ with
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xm �= x∗, m = 0, 1, . . . . We shall show that y(x∗) = y′(x∗) = 0, then from
the uniqueness of solutions it will follow that y(x) ≡ 0 in J. For this, the
continuity of the solution y(x) implies that y(x∗) = limm→∞ y(xm) = 0.
Next from the differentiability of the solution y(x), we have

y′(x∗) = lim
m→∞

y(xm) − y(x∗)
xm − x∗ = 0.

The final result in this lecture gives an easier test for the DE (31.1) to
be oscillatory in J = (0,∞).

Theorem 31.7 (Leighton’s Oscillation Theorem). If∫∞(1/p(x))dx = ∞ and
∫∞

q(x)dx = ∞, then the DE (31.1) is oscilla-
tory in J = (0,∞).

Proof. Let y(x) be a nonoscillatory solution of the DE (31.1) which we
assume to be positive in [x0,∞), where x0 > 0. Then from Problem 31.7
the Riccati equation

z′ + q(x) +
z2

p(x)
= 0 (31.12)

has a solution z(x) in [x0,∞). This solution obviously satisfies the equation

z(x) = z(x0) −
∫ x

x0

q(t)dt−
∫ x

x0

z2(t)
p(t)

dt. (31.13)

Since
∫∞

q(t)dt = ∞, we can always find an x1 > x0 such that

z(x0) −
∫ x

x0

q(t)dt < 0

for all x in [x1,∞). Thus, from (31.13) it follows that

z(x) < −
∫ x

x0

z2(t)
p(t)

dt

for all x ∈ [x1,∞). Let

r(x) =
∫ x

x0

z2(t)
p(t)

dt, x ∈ [x1,∞)

then z(x) < −r(x) and

r′(x) =
z2(x)
p(x)

>
r2(x)
p(x)

(31.14)

for all x in [x1,∞). Integrating (31.14) from x1 > x0 to ∞, we obtain

− 1
r(∞)

+
1

r(x1)
>

∫ ∞

x1

1
p(t)

dt
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and hence ∫ ∞

x1

1
p(t)

dt <
1

r(x1)
< ∞,

which is a contradiction. Thus, the solution y(x) is oscillatory.

Example 31.6. Once again we consider the DE (31.9). For all a,
there exists a sufficiently large x0 such that 1 + [(1 − 4a2)/4x2] > 1/2 for
all x ≥ x0, and hence ∫ ∞(

1 +
1 − 4a2

4x2

)
dx = ∞.

Thus, Theorem 31.7 implies that (31.9) is oscillatory for all a.

Problems

31.1. Let the function q1(x) be continuous and q1(x) ≥ q(x) in J. Show
the following:

(i) If DE (31.2) is oscillatory, then the DE (31.3) is oscillatory.
(ii) If DE (31.3) is nonoscillatory, then the DE (31.2) is nonoscillatory.

31.2. Show that the DE (31.2) is oscillatory if any one of the following
conditions is satisfied:
(i) q(x) ≥ m2 > 0 eventually.
(ii) q(x) = 1 + φ(x), where φ(x) → 0 as x → ∞.
(iii) q(x) → ∞ as x → ∞.

31.3. Let the function q(x) be such that 0 < m ≤ q(x) ≤ M in [α, β].
Further, let α ≤ x1 < x2 < · · · < xn ≤ β be the zeros of a solution y(x) of
the DE (31.2). Then show the following:

(i) π/
√
m ≥ xi+1 − xi ≥ π/

√
M, i = 1, 2, . . . , n− 1.

(ii) n > (β − α)(
√
m/π) − 1.

31.4. Use Problem 31.3 to show that the distance between the succes-
sive zeros of every solution of (31.9) for each a tends to π.

31.5. Let the function q1(x) be continuous and q1(x) ≥ q(x), q1(x) �≡
q(x) in [α, β]. Further, let y(x) and z(x) be respective solutions of (31.2)
and (31.3) such that y′(α)/y(α) ≥ z′(α)/z(α), y(α) �= 0, z(α) �= 0, or
y(α) = z(α) = 0.

(i) Use Sturm’s comparison theorem to show that z(x) has at least as
many zeros in [α, β] as y(x).
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(ii) Further, if y(x) and z(x) have the same number of zeros, then show
that y′(β)/y(β) > z′(β)/z(β) provided y(β) �= 0.

31.6. Give an example to show that Sturm’s separation theorem need
not be true for DEs of order higher than two.

31.7. Show that the DE (31.1) has a solution without zeros in an
interval J if and only if the Riccati equation (31.12) has a solution defined
throughout J.

31.8. Show that every solution of the Hermite DE y′′ − 2xy′ + 2ay =
0 (a ≥ 0) has at most finitely many zeros in the interval J = IR.

31.9. Let p, q ∈ C(1)(J), q(x) �= 0 in J and p(x)q(x) be nonincreasing
(nondecreasing) in J. Then show that the absolute values of the relative
maxima and minima of every solution y(x) of the DE (31.1) are nonde-
creasing (nonincreasing) as x increases.

31.10. Use Problem 31.9 to show that the magnitude of the oscillations
of each solution of the Bessel equation (31.8) is nonincreasing in the interval
(a,∞).

Answers or Hints

31.1. (i) Use Theorem 31.1. (ii) Use part (i).

31.2. Use Problem 31.1.

31.3. (i) Compare (31.2) with y′′ +my = 0 and y′′ +My = 0 and apply
Theorem 31.1. (ii) Note that each of the intervals [α, x1] and [xn, β] is of
length less than π/

√
m.

31.4. Note that 1 − ε ≤ q(x) = 1 + 1−4a2

4x2 ≤ 1 + ε for all sufficiently large
x, say, x ≥ x∗. Thus, in view of Problem 31.3(i), if xi, xi+1(≥ x∗) are two
consecutive zeros of the solution u(x) of (31.9), then

π√
(1+ε)

≤ xi+1 − xi ≤ π√
(1−ε)

.

31.5. (i) If the zeros of y(x) are (α ≤)x1 < x2 < · · · < xn(≤ β), then by
Theorem 31.1, z(x) has at least (n − 1) zeros in (x1, xn). Thus, it suffices
to show that z(x) has a zero in [α, x1]. If y(α) = z(α) = 0, then the proof
is complete, otherwise, as in Theorem 31.1 we have

(z(x)y′(x) − y(x)z′(x))|x1
α =

∫ x1

α
(q1(x) − q(x))y(x)z(x)dx.

Thus, if y(x) > 0, x ∈ [α, x1) and z(x) > 0, x ∈ [α, x1], then z(x1)y′(x1) −
(z(α)y′(α) − y(α)z′(α)) > 0. But, now y′(x1) < 0 and y′(α)

y(α) ≥ z′(α)
z(α) leads

to a contradiction. (ii) Use part (i).
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31.6. Consider y′′′ + y = 0.

31.7. Use py′ = zy.

31.8. Use z(x) = e−x2/2y(x) to obtain z′′ + (1 + 2a− x2)z = 0.

31.9. For a nontrivial solution y(x) of (31.1) consider the function g =

y2 + 1
pq (py′)2; then g′ = −

(
y′

q

)2
(pq)′. Now if (pq)′ ≤ 0 then g′ ≥ 0.

31.10. The self-adjoint form of (31.8) is (xy′)′ +
(

x2−a2

x

)
y = 0. Clearly,

p(x)q(x) = x2 − a2 is increasing and positive in (a,∞).



Lecture 32
Linear Boundary
Value Problems

So far, we have concentrated only on initial value problems, in which
for a given DE the supplementary conditions on the unknown function and
its derivatives are prescribed at a fixed value x0 of the independent variable
x. However, as we have indicated in Lecture 1 there are a variety of other
possible conditions that are important in applications. In many practical
problems the additional requirements are given in the form of boundary
conditions: the unknown function and some of its derivatives are fixed at
more than one value of the independent variable x. The DE together with
the boundary conditions are referred to as a boundary value problem.

Consider the second-order linear DE (6.6) in the interval J = [α, β],
where, as we did earlier, we assume that the functions p0(x), p1(x), p2(x)
and r(x) are continuous in J. Together with the DE (6.6) we shall consider
the boundary conditions of the form

�1[y] = a0y(α) + a1y
′(α) + b0y(β) + b1y

′(β) = A

�2[y] = c0y(α) + c1y
′(α) + d0y(β) + d1y

′(β) = B,
(32.1)

where ai, bi, ci, di, i = 0, 1 and A, B are given constants. Throughout,
we shall assume that these are essentially two conditions, i.e., there does
not exist a constant c such that (a0 a1 b0 b1) = c(c0 c1 d0 d1). Boundary
value problem (6.6), (32.1) is called a nonhomogeneous two point linear
boundary value problem, whereas the homogeneous DE (6.1) together with
the homogeneous boundary conditions

�1[y] = 0, �2[y] = 0 (32.2)

will be called a homogeneous boundary value problem.

Boundary conditions (32.1) are quite general and, in particular, in-
clude the

(i) first boundary conditions (Dirichlet conditions)

y(α) = A, y(β) = B, (32.3)

(ii) second boundary conditions (mixed conditions)

y(α) = A, y′(β) = B, (32.4)

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  

 

 
doi: 10.1007/978-0-387-71276-5_32, © Springer Science + Business Media, LLC 2008 

233



234 Lecture 32

or
y′(α) = A, y(β) = B, (32.5)

(iii) separated boundary conditions (third boundary conditions)

a0y(α) + a1y
′(α) = A

d0y(β) + d1y
′(β) = B,

(32.6)

where both a2
0 + a2

1 and d2
0 + d2

1 are different from zero, and
(iv) periodic boundary conditions

y(α) = y(β), y′(α) = y′(β). (32.7)

Boundary value problem (6.6), (32.1) is called regular if both α and β
are finite, and the function p0(x) �= 0 for all x ∈ J. If α = −∞ and/or
β = ∞ and/or p0(x) = 0 for at least one point x in J, then the problem
(6.6), (32.1) is said to be singular. We shall consider only regular boundary
value problems.

By a solution of the boundary value problem (6.6), (32.1) we mean a
solution of the DE (6.6) satisfying the boundary conditions (32.1).

The existence and uniqueness theory for the boundary value problems
is more difficult than that of initial value problems. In fact, in the case of
boundary value problems a slight change in the boundary conditions can
lead to significant changes in the behavior of the solutions. For example, the
initial value problem y′′+y = 0, y(0) = c1, y

′(0) = c2 has a unique solution
y(x) = c1 cosx+c2 sinx for any set of values c1, c2. However, the boundary
value problem y′′ + y = 0, y(0) = 0, y(π) = ε(�= 0) has no solution; the
problem y′′ + y = 0, y(0) = 0, y(β) = ε, 0 < β < π has a unique solution
y(x) = ε sinx/ sinβ, while the problem y′′ + y = 0, y(0) = 0, y(π) = 0
has an infinite number of solutions y(x) = c sinx, where c is an arbitrary
constant. Similarly, since for the DE (1+x2)y′′ −2xy′ +2y = 0 the general
solution is y(x) = c1(x2 − 1)+ c2x, there exists a unique solution satisfying
the boundary conditions y′(α) = A, y′(β) = B; an infinite number of
solutions satisfying y(−1) = 0 = y(1); and no solution satisfying y(−1) =
0, y(1) = 1.

Obviously, for the homogeneous problem (6.1), (32.2) the trivial so-
lution always exists. However, from the above examples it follows that
besides having the trivial solution, homogeneous boundary value problems
may have nontrivial solutions also. Our first result provides necessary and
sufficient condition so that the problem (6.1), (32.2) has only the trivial
solution.

Theorem 32.1. Let y1(x) and y2(x) be any two linearly independent
solutions of the DE (6.1). Then the homogeneous boundary value problem
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(6.1), (32.2) has only the trivial solution if and only if

∆ =

∣∣∣∣∣ �1[y1] �1[y2]

�2[y1] �2[y2]

∣∣∣∣∣ �= 0. (32.8)

Proof. Any solution of the DE (6.1) can be written as

y(x) = c1y1(x) + c2y2(x).

This is a solution of the problem (6.1), (32.2) if and only if

�1[c1y1 + c2y2] = c1�1[y1] + c2�1[y2] = 0

�2[c1y1 + c2y2] = c1�2[y1] + c2�2[y2] = 0.
(32.9)

However, from Theorem 13.2, system (32.9) has only the trivial solution if
and only if ∆ �= 0.

Clearly, Theorem 32.1 is independent of the choice of the solutions y1(x)
and y2(x). Thus, for convenience we can always take y1(x) and y2(x) to be
the solutions of (6.1) satisfying the initial conditions

y1(α) = 1, y′
1(α) = 0 (32.10)

and
y2(α) = 0, y′

2(α) = 1. (32.11)

Corollary 32.2. The homogeneous boundary value problem (6.1),
(32.2) has an infinite number of nontrivial solutions if and only if ∆ = 0.

Example 32.1. Consider the boundary value problem

xy′′ − y′ − 4x3y = 0 (32.12)

�1[y] = y(1) = 0

�2[y] = y(2) = 0.
(32.13)

For the DE (32.12), y1(x) = cosh(x2 − 1) and y2(x) = (1/2) sinh(x2 − 1)
are two linearly independent solutions. Further, since for the boundary
conditions (32.13), we have

∆ =

∣∣∣∣∣ 1 0

cosh 3 (1/2) sinh 3

∣∣∣∣∣ �= 0

the problem (32.12), (32.13) has only the trivial solution.

Example 32.2. Consider once again the DE (32.12) together with the
boundary conditions

�1[y] = y′(1) = 0

�2[y] = y′(2) = 0.
(32.14)
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Since y′
1(x) = 2x sinh(x2 − 1) and y′

2(x) = x cosh(x2 − 1), for the boundary
conditions (32.14), we find

∆ =

∣∣∣∣∣ 0 1

4 sinh 3 2 cosh 3

∣∣∣∣∣ �= 0.

Thus, the problem (32.12), (32.14) has only the trivial solution.

Example 32.3. Consider the boundary value problem

y′′ + 2y′ + 5y = 0 (32.15)

�1[y] = y(0) = 0

�2[y] = y(π/2) = 0.
(32.16)

For the DE (32.15), y1(x) = e−x cos 2x and y2(x) = e−x sin 2x are two
linearly independent solutions. Further, since for the boundary conditions
(32.16),

∆ =

∣∣∣∣∣ 1 0

−e−π/2 0

∣∣∣∣∣ = 0

the problem (32.15), (32.16) besides having the trivial solution also has
nontrivial solutions. Indeed it has an infinite number of solutions y(x) =
ce−x sin 2x, where c is an arbitrary constant.

Theorem 32.3. The nonhomogeneous boundary value problem (6.6),
(32.1) has a unique solution if and only if the homogeneous boundary value
problem (6.1), (32.2) has only the trivial solution.

Proof. Let y1(x) and y2(x) be any two linearly independent solutions of
the DE (6.1) and z(x) be a particular solution of (6.6). Then the general
solution of (6.6) can be written as

y(x) = c1y1(x) + c2y2(x) + z(x). (32.17)

This is a solution of the problem (6.6), (32.1) if and only if

�1[c1y1 + c2y2 + z] = c1�1[y1] + c2�1[y2] + �1[z] = A

�2[c1y1 + c2y2 + z] = c1�2[y1] + c2�2[y2] + �2[z] = B.
(32.18)

However, from Theorem 13.2, nonhomogeneous system (32.18) has a unique
solution if and only if ∆ �= 0, i.e., if and only if the homogeneous system
(32.9) has only the trivial solution. From Theorem 32.1, ∆ �= 0 is equivalent
to the homogeneous boundary value problem (6.1), (32.2) having only the
trivial solution.

Example 32.4. Consider the boundary value problem

xy′′ − y′ − 4x3y = 1 + 4x4 (32.19)
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�1[y] = y(1) = 0

�2[y] = y(2) = 1.
(32.20)

Since the corresponding homogeneous problem (32.12), (32.13) has only the
trivial solution, Theorem 32.3 implies that the problem (32.19), (32.20) has
a unique solution. Further, to find this solution once again we choose the
linearly independent solutions of (32.12) to be y1(x) = cosh(x2 − 1) and
y2(x) = (1/2) sinh(x2 −1), and note that z(x) = −x is a particular solution
of (32.19). Thus, the system (32.18) for the boundary conditions (32.20)
reduces to

c1 − 1 = 0

cosh 3 c1 + (1/2) sinh 3 c2 − 2 = 1.

This system can be solved easily, and we obtain c1 = 1 and c2 =
2(3 − cosh 3)/ sinh 3. Now substituting these quantities in (32.17) we find
the solution of (32.19), (32.20) as

y(x) = cosh(x2 − 1) +
(3 − cosh 3)

sinh 3
sinh(x2 − 1) − x.

Problems

32.1. Solve the following boundary value problems:

(i)
y′′ − y = 0
y(0) = 0, y(1) = 1. (ii)

y′′ + 4y′ + 7y = 0
y(0) = 0, y′(1) = 1.

(iii)
y′′ − 6y′ + 25y = 0
y′(0) = 1, y(π/4) = 0. (iv)

x2y′′ + 7xy′ + 3y = 0
y(1) = 1, y(2) = 2.

(v)
y′′ + y = 0
y(0) + y′(0) = 10
y(1) + 3y′(1) = 4.

(vi)
y′′ + y = x2

y(0) = 0, y(π/2) = 1.

(vii)
y′′ + 2y′ + y = x
y(0) = 0, y(2) = 3. (viii)

y′′ + y′ + y = x
y(0) + 2y′(0) = 1
y(1) − y′(1) = 8.

32.2. Show that the following boundary value problem has no solution:

y′′ + y = x, y(0) + y′(0) = 0, y(π/2) − y′(π/2) = π/2.

32.3. Solve the following periodic boundary value problems:

(i)
y′′ + 2y′ + 10y = 0
y(0) = y(π/6)
y′(0) = y′(π/6).

(ii)
y′′ + π2y = 0
y(−1) = y(1)
y′(−1) = y′(1).
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32.4. Show that the boundary value problem y′′ = r(x), (32.6) has a
unique solution if and only if

∆ = a0d0(β − α) + a0d1 − a1d0 �= 0.

32.5. Determine the values of the constants β, A, and B so that the
boundary value problem y′′ + 2py′ + qy = 0, y(0) = A, y(β) = B with
p2 − q < 0 has only one solution.

32.6. Show that the boundary value problem y′′ +p(x)y = q(x), (32.3)
where p(x) ≤ 0 in [α, β] has a unique solution.

32.7. Let z(x) be the solution of the initial value problem (6.6), z(α) =
A, z′(α) = 0 and y2(x) be the solution of the initial value problem (6.1),
(32.11). Show that the boundary value problem (6.6), (32.3) has a unique
solution y(x) if and only if y2(β) �= 0 and it can be written as

y(x) = z(x) +
(B − z(β))
y2(β)

y2(x).

32.8. Let y1(x) and y2(x) be the solutions of the initial value problems
(6.1), y1(α) = a1, y

′
1(α) = −a0 and (6.1), y2(β) = −d1, y

′
2(β) = d0,

respectively. Show that the boundary value problem (6.6), (32.6) has a
unique solution if and only if W (y1, y2)(α) �= 0.

32.9. Let y1(x) and y2(x) be the solutions of the boundary value
problems (6.1), (32.1) and (6.6), (32.2), respectively. Show that y(x) =
y1(x) + y2(x) is a solution of the problem (6.6), (32.1).

32.10. For the homogeneous DE

L2[y] = (x2 + 1)y′′ − 2xy′ + 2y = 0 (32.21)

x and (x2 −1) are two linearly independent solutions. Use this information
to show that the boundary value problem

L2[y] = 6(x2 + 1)2, y(0) = 1, y(1) = 2 (32.22)

has a unique solution, and find it.

Answers or Hints

32.1. (i) sinh x
sinh 1 . (ii) e2(1−x) sin

√
3x

(
√

3 cos
√

3−2 sin
√

3)
. (iii) 1

4e
3x sin 4x. (iv) 1

(2
√

6−2−√
6)

×
[(16−2−√

6)x−3+
√

6+(2
√

6−16)x−3−√
6]. (v) 1

2 sin 1+cos 1 [{5(sin 1+3 cos 1)−
2} cosx+{5(3 sin 1−cos 1)+2} sinx]. (vi) 2 cosx+

(
3 − π2

4

)
sinx+x2 −2.
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(vii) e−x
[
2 +

( 3
2e

2 − 1
)
x
]
+ x− 2. (viii) 18

3 cos
√

3
2 +

√
3 sin

√
3

2

e(1−x)/2 cos
√

3
2 x

+x− 1.

32.2. Leads to an inconsistent system of equations.

32.3. (i) Trivial solution. (ii) c1 cosπx + c2 sinπx, where c1 and c2 are
arbitrary constants.

32.4. For the DE y′′ = 0 two linearly independent solutions are 1, x. Now
apply Theorem 32.3.

32.5. β �= nπ√
q−p2

, e−px

[
A cos

√
q−p2x+ Bepβ−A cos

√
q−p2β

sin
√

q−p2β
sin

√
q − p2x

]
.

32.6. Use Theorem 32.3 and Example 31.1.

32.7. The function y(x) = z1(x) + cy1(x) is a solution of the DE (6.6).

32.8. Use Theorem 32.3.

32.9. Verify directly.

32.10. Use variation of parameters to find the particular solution z(x) =
x4 + 3x2. The solution of (32.22) is x4 + 2x2 − 2x+ 1.



Lecture 33
Green’s Functions

The function H(x, t) defined in (6.10) is a solution of the homogeneous
DE (6.1) and it helps in finding an explicit representation of a particular
solution of the nonhomogeneous DE (6.6) (also see Problem 18.9 for higher-
order DEs). In this lecture, we shall find an analog of this function called
Green’s functionG(x, t) for the homogeneous boundary value problem (6.1),
(32.2) and show that the solution of the nonhomogeneous boundary value
problem (6.6), (32.2) can be explicitly expressed in terms of G(x, t). The
solution of the problem (6.6), (32.1) then can be obtained easily as an
application of Problem 32.9. For this, in what follows throughout we shall
assume that the problem (6.1), (32.2) has only the trivial solution. Green’s
function G(x, t) for the boundary value problem (6.1), (32.2) is defined in
the square [α, β]×[α, β] and possesses the following fundamental properties:

(i) G(x, t) is continuous in [α, β] × [α, β].

(ii) ∂G(x, t)/∂x is continuous in each of the triangles α ≤ x ≤ t ≤ β and
α ≤ t ≤ x ≤ β; moreover

∂G

∂x
(t+, t) − ∂G

∂x
(t−, t) =

1
p0(t)

,

where

∂G

∂x
(t+, t) = lim

x → t
x > t

∂G(x, t)
∂x

and
∂G

∂x
(t−, t) = lim

x → t
x < t

∂G(x, t)
∂x

.

(iii) For every t ∈ [α, β], z(x) = G(x, t) is a solution of the DE (6.1) in
each of the intervals [α, t) and (t, β].

(iv) For every t ∈ [α, β], z(x) = G(x, t) satisfies the boundary conditions
(32.2).

These properties completely characterize Green’s function G(x, t). To
show this, let y1(x) and y2(x) be two linearly independent solutions of
the DE (6.1). From the property (iii) there exist four functions, say,
λ1(t), λ2(t), µ1(t), and µ2(t) such that

G(x, t) =

{
y1(x)λ1(t) + y2(x)λ2(t), α ≤ x ≤ t

y1(x)µ1(t) + y2(x)µ2(t), t ≤ x ≤ β.
(33.1)
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Now using properties (i) and (ii), we obtain the following two equations:

y1(t)λ1(t) + y2(t)λ2(t) = y1(t)µ1(t) + y2(t)µ2(t) (33.2)

y′
1(t)µ1(t) + y′

2(t)µ2(t) − y′
1(t)λ1(t) − y′

2(t)λ2(t) =
1

p0(t)
. (33.3)

Let ν1(t) = µ1(t)−λ1(t) and ν2(t) = µ2(t)−λ2(t), so that (33.2) and (33.3)
can be written as

y1(t)ν1(t) + y2(t)ν2(t) = 0 (33.4)

y′
1(t)ν1(t) + y′

2(t)ν2(t) =
1

p0(t)
. (33.5)

Since y1(x) and y2(x) are linearly independent the WronskianW (y1, y2)(t)
�= 0 for all t ∈ [α, β]. Thus, the relations (33.4), (33.5) uniquely determine
ν1(t) and ν2(t).

Now using the relations µ1(t) = λ1(t) + ν1(t) and µ2(t) = λ2(t) + ν2(t),
Green’s function can be written as

G(x, t) =

{
y1(x)λ1(t) + y2(x)λ2(t), α ≤ x ≤ t

y1(x)λ1(t) + y2(x)λ2(t) + y1(x)ν1(t) + y2(x)ν2(t), t ≤ x ≤ β.

(33.6)
Finally, using the property (iv), we find

�1[y1]λ1(t) + �1[y2]λ2(t) = −b0(y1(β)ν1(t) + y2(β)ν2(t))
−b1(y′

1(β)ν1(t) + y′
2(β)ν2(t))

�2[y1]λ1(t) + �2[y2]λ2(t) = −d0(y1(β)ν1(t) + y2(β)ν2(t))
−d1(y′

1(β)ν1(t) + y′
2(β)ν2(t)).

(33.7)

Since the problem (6.1), (32.2) has only the trivial solution, from Theorem
32.1 it follows that the system (33.7) uniquely determines λ1(t) and λ2(t).

From the above construction it is clear that no other function exists
which has properties (i)–(iv), i.e., Green’s function G(x, t) of the boundary
value problem (6.1), (32.2) is unique.

As claimed earlier, we shall now show that the unique solution y(x) of
the problem (6.6), (32.2) can be represented in terms of G(x, t) as follows:

y(x) =
∫ β

α

G(x, t)r(t)dt =
∫ x

α

G(x, t)r(t)dt+
∫ β

x

G(x, t)r(t)dt. (33.8)

Since G(x, t) is differentiable with respect to x in each of the intervals, we
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find

y′(x) = G(x, x)r(x) +
∫ x

α

∂G(x, t)
∂x

r(t)dt−G(x, x)r(x) +
∫ β

x

∂G(x, t)
∂x

r(t)dt

=
∫ x

α

∂G(x, t)
∂x

r(t)dt+
∫ β

x

∂G(x, t)
∂x

r(t)dt

=
∫ β

α

∂G(x, t)
∂x

r(t)dt.

(33.9)
Next since ∂G(x, t)/∂x is a continuous function of (x, t) in the triangles

α ≤ t ≤ x ≤ β and α ≤ x ≤ t ≤ β, for any point (s, s) on the diagonal of
the square, i.e., t = x it is necessary that

∂G

∂x
(s, s−) =

∂G

∂x
(s+, s) (33.10)

and
∂G

∂x
(s, s+) =

∂G

∂x
(s−, s). (33.11)

Now differentiating the relation (33.9), we obtain

y′′(x) =
∂G(x, x−)

∂x
r(x) +

∫ x

α

∂2G(x, t)
∂x2 r(t)dt

−∂G(x, x+)
∂x

r(x) +
∫ β

x

∂2G(x, t)
∂x2 r(t)dt,

which in view of (33.10) and (33.11) is the same as

y′′(x) =
[
∂G(x+, x)

∂x
− ∂G(x−, x)

∂x

]
r(x) +

∫ β

α

∂2G(x, t)
∂x2 r(t)dt.

Using property (ii) this relation gives

y′′(x) =
r(x)
p0(x)

+
∫ β

α

∂2G(x, t)
∂x2 r(t)dt. (33.12)

Thus, from (33.8), (33.9), and (33.12), and the property (iii), we get

p0(x)y′′(x) + p1(x)y′(x) + p2(x)y(x)

= r(x) +
∫ β

α

[
p0(x)

∂2G(x, t)
∂x2 + p1(x)

∂G(x, t)
∂x

+ p2(x)G(x, t)
]
r(t)dt

= r(x),

i.e., y(x) as given in (33.8) is a solution of the DE (6.6).



Green’s Functions 243

Finally, since

y(α) =
∫ β

α

G(α, t)r(t)dt, y(β) =
∫ β

α

G(β, t)r(t)dt

y′(α) =
∫ β

α

∂G(α, t)
∂x

r(t)dt, y′(β) =
∫ β

α

∂G(β, t)
∂x

r(t)dt,

it is easy to see that

�1[y] =
∫ β

α

�1[G(x, t)]r(t)dt = 0 and �2[y] =
∫ β

α

�2[G(x, t)]r(t)dt = 0

and hence y(x) as given in (33.8) satisfies the boundary conditions (32.2)
as well.

We summarize these results in the following theorem.

Theorem 33.1. Let the homogeneous problem (6.1), (32.2) have only
the trivial solution. Then the following hold:

(i) there exists a unique Green’s function G(x, t) for the problem (6.1),
(32.2),
(ii) the unique solution y(x) of the nonhomogeneous problem (6.6), (32.2)
can be represented by (33.8).

Example 33.1. We shall construct Green’s function of the problem

y′′ = 0 (33.13)

a0y(α) + a1y
′(α) = 0

d0y(β) + d1y
′(β) = 0. (33.14)

For the DE (33.13) two linearly independent solutions are y1(x) = 1 and
y2(x) = x. Thus, the problem (33.13), (33.14) has only the trivial solution if
and only if ∆ = a0d0(β−α)+a0d1 −a1d0 �= 0 (see Problem 32.4). Further,
equalities (33.4) and (33.5) reduce to

ν1(t) + tν2(t) = 0 and ν2(t) = 1.

Thus, ν1(t) = −t and ν2(t) = 1.

Next for (33.13), (33.14) the system (33.7) reduces to

a0λ1(t) + (a0α+ a1)λ2(t) = 0

d0λ1(t) + (d0β + d1)λ2(t) = − d0(−t+ β) − d1,

which easily determines λ1(t) and λ2(t) as

λ1(t) =
1
∆

(a0α+a1)(d0β−d0t+d1) and λ2(t) =
1
∆
a0(d0t−d0β−d1).
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Substituting these functions in (33.6), we get the required Green’s func-
tion

G(x, t) =
1
∆

{
(d0β − d0t+ d1)(a0α− a0x+ a1), α ≤ x ≤ t

(d0β − d0x+ d1)(a0α− a0t+ a1), t ≤ x ≤ β,
(33.15)

which is symmetric, i.e., G(x, t) = G(t, x).

Example 33.2. Consider the periodic boundary value problem

y′′ + k2y = 0, k > 0 (33.16)

y(0) = y(ω)
y′(0) = y′(ω), ω > 0. (33.17)

For the DE (33.16) two linearly independent solutions are y1(x) = cos kx
and y2(x) = sin kx. Hence, in view of Theorem 32.1 the problem (33.16),
(33.17) has only the trivial solution if and only if

∆ = 4k sin2 kω

2
�= 0, i.e., ω ∈

(
0,

2π
k

)
.

Further, equalities (33.4) and (33.5) reduce to

cos kt ν1(t) + sin kt ν2(t) = 0

−k sin kt ν1(t) + k cos kt ν2(t) = 1.

These relations easily give

ν1(t) = − 1
k

sin kt and ν2(t) =
1
k

cos kt.

Next for (33.16), (33.17) the system (33.7) reduces to

(1 − cos kω)λ1(t) − sin kω λ2(t) =
1
k

sin k(ω − t)

sin kω λ1(t) + (1 − cos kω)λ2(t) =
1
k

cos k(ω − t),

which determines λ1(t) and λ2(t) as

λ1(t) =
1

2k sin k
2ω

cos k
(
t− ω

2

)
and λ2(t) =

1
2k sin k

2ω
sin k

(
t− ω

2

)
.

Substituting these functions in (33.6), we get Green’s function of the
boundary value problem (33.16), (33.17) as

G(x, t) =
1

2k sin k
2ω

⎧⎪⎨
⎪⎩

cos k
(
x− t+

ω

2

)
, 0 ≤ x ≤ t

cos k
(
t− x+

ω

2

)
, t ≤ x ≤ ω

(33.18)



Green’s Functions 245

which as expected is symmetric.

Example 33.3. We shall construct Green’s function for the boundary
value problem (6.1), (33.14) where the DE (6.1) is assumed to be self-
adjoint.

Let y1(x) and y2(x) be as in Problem 32.8. Since the homogeneous
problem (6.1), (33.14) has only the trivial solution, from the same problem
it follows that y1(x) and y2(x) are linearly independent solutions of the DE
(6.1). Thus, in view of (6.11) the general solution of (6.6) can be written as

y(x) = c1y1(x) + c2y2(x) +
∫ x

α

[y1(t)y2(x) − y2(t)y1(x)]
p0(t)W (y1, y2)(t)

r(t)dt. (33.19)

However, since (6.1) is self-adjoint, from (30.23) we have p0(x)W (y1, y2)(x)
= C, a nonzero constant. Hence, (33.19) is the same as

y(x) = c1y1(x) + c2y2(x) +
1
C

∫ x

α

[y1(t)y2(x) − y2(t)y1(x)]r(t)dt. (33.20)

This solution also satisfies the boundary conditions (33.14) if and only if

a0(c1a1 + c2y2(α))+a1(c1(−a0)+ c2y
′
2(α)) = (a0y2(α)+a1y

′
2(α))c2 = 0,

(33.21)

d0

(
c1y1(β) + c2(−d1) +

1
C

∫ β

α

[y1(t)(−d1) − y2(t)y1(β)]r(t)dt

)

+ d1

(
c1y

′
1(β) + c2d0 +

1
C

∫ β

α

[y1(t)d0 − y2(t)y′
1(β)]r(t)dt

)

= (d0y1(β) + d1y
′
1(β))c1 − 1

C

∫ β

α

y2(t)[d0y1(β) + d1y
′
1(β)]r(t)dt

= (d0y1(β) + d1y
′
1(β))

[
c1 − 1

C

∫ β

α

y2(t)r(t)dt

]
= 0.

(33.22)
But from our assumptions a0y2(α) + a1y

′
2(α) as well as d0y1(β) + d1y

′
1(β)

is different from zero. Hence, equations (33.21) and (33.22) immediately
determine

c2 = 0 and c1 =
1
C

∫ β

α

y2(t)r(t)dt.

Substituting these constants in (33.20), we find the solution of the prob-
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lem (6.6), (33.14) as

y(x) =
1
C

∫ β

α

y2(t)y1(x)r(t)dt+
1
C

∫ x

α

[y1(t)y2(x) − y2(t)y1(x)]r(t)dt

=
1
C

∫ x

α

y1(t)y2(x)r(t)dt+
1
C

∫ β

x

y2(t)y1(x)r(t)dt

=
∫ β

α

G(x, t)r(t)dt.

Hence, the required Green’s function is

G(x, t) =
1
C

{
y2(t)y1(x), α ≤ x ≤ t

y1(t)y2(x), t ≤ x ≤ β,

which is also symmetric.

Problems

33.1. Show that

G(x, t) =
{ − cos t sinx, 0 ≤ x ≤ t

− sin t cosx, t ≤ x ≤ π/2

is the Green function of the problem y′′ +y = 0, y(0) = y(π/2) = 0. Hence,
solve the boundary value problem

y′′ + y = 1 + x, y(0) = y(π/2) = 1.

33.2. Show that

G(x, t) =
1

sinh 1

{
sinh(t− 1) sinhx, 0 ≤ x ≤ t
sinh t sinh(x− 1), t ≤ x ≤ 1

is the Green function of the problem y′′ − y = 0, y(0) = y(1) = 0. Hence,
solve the boundary value problem

y′′ − y = 2 sinx, y(0) = 0, y(1) = 2.

33.3. Construct Green’s function for each of the boundary value prob-
lems given in Problem 32.1 parts (vi) and (vii) and then find their solutions.

33.4. Verify that Green’s function of the problem (32.21), y(0) =
0, y(1) = 0 is

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

t(x2 − 1)
(t2 + 1)2

, 0 ≤ t ≤ x

x(t2 − 1)
(t2 + 1)2

, x ≤ t ≤ 1.
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Hence, solve the boundary value problem (32.22).

33.5. Show that the solution of the boundary value problem

y′′ − 1
x
y′ = r(x), y(0) = 0, y(1) = 0

can be written as

y(x) =
∫ 1

0
G(x, t)r(t)dt,

where

G(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

− (1 − t2)x2

2t
, x ≤ t

− t(1 − x2)
2

, x ≥ t.

33.6. Show that the solution of the boundary value problem

y′′ − y = r(x), y(−∞) = 0, y(∞) = 0

can be written as
y(x) =

1
2

∫ ∞

−∞
e−|x−t|r(t)dt.

33.7. Consider the DE

y′′ = f(x, y, y′) (33.23)

together with the boundary conditions (32.3). Show that y(x) is a solution
of this problem if and only if

y(x) =
(β − x)
(β − α)

A+
(x− α)
(β − α)

B +
∫ β

α

G(x, t)f(t, y(t), y′(t))dt, (33.24)

where G(x, t) is the Green function of the problem y′′ = 0, y(α) = y(β) = 0
and is given by

G(x, t) =
1

(β − α)

{
(β − t)(α− x), α ≤ x ≤ t
(β − x)(α− t), t ≤ x ≤ β.

(33.25)

Also establish the following:

(i) G(x, t) ≤ 0 in [α, β] × [α, β].

(ii) |G(x, t)| ≤ 1
4
(β − α).

(iii)
∫ β

α

|G(x, t)|dt =
1
2
(β − x)(x− α) ≤ 1

8
(β − α)2.
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(iv)
∫ β

α

|G(x, t)| sin π(t− α)
(β − α)

dt =
(β − α)2

π2 sin
π(x− α)
(β − α)

.

(v)
∫ β

α

∣∣∣∣∂G(x, t)
∂x

∣∣∣∣ dt =
(x− α)2 + (β − x)2

2(β − α)
≤ 1

2
(β − α).

33.8. Consider the boundary value problem (33.23), (32.4). Show that
y(x) is a solution of this problem if and only if

y(x) = A+ (x− α)B +
∫ β

α

G(x, t)f(t, y(t), y′(t))dt, (33.26)

where G(x, t) is the Green function of the problem y′′ = 0, y(α) = y′(β) = 0
and is given by

G(x, t) =
{

(α− x), α ≤ x ≤ t
(α− t), t ≤ x ≤ β.

(33.27)

Also establish the following:

(i) G(x, t) ≤ 0 in [α, β] × [α, β].
(ii) |G(x, t)| ≤ (β − α).

(iii)
∫ β

α

|G(x, t)|dt =
1
2
(x− α)(2β − α− x) ≤ 1

2
(β − α)2.

(iv)
∫ β

α

∣∣∣∣∂G(x, t)
∂x

∣∣∣∣ dt = (β − x) ≤ (β − α).

33.9. Consider the DE

y′′ − ky = f(x, y, y′), k > 0 (33.28)

together with the boundary conditions (32.3). Show that y(x) is a solution
of this problem if and only if

y(x) =
sinh

√
k(β − x)

sinh
√
k(β − α)

A+
sinh

√
k(x− α)

sinh
√
k(β − α)

B+
∫ β

α

G(x, t)f(t, y(t), y′(t))dt,

where G(x, t) is the Green function of the problem y′′ − ky = 0, y(α) =
y(β) = 0 and is given by

G(x, t) =
−1√

k sinh
√
k(β − α)

{
sinh

√
k(x− α) sinh

√
k(β − t), α ≤ x ≤ t

sinh
√
k(t− α) sinh

√
k(β − x), t ≤ x ≤ β.

(33.29)
Also establish the following:

(i) G(x, t) ≤ 0 in [α, β] × [α, β].
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(ii)
∫ β

α

|G(x, t)|dt =
1
k

⎛
⎝1 −

cosh
√
k
(

β+α
2 − x

)
cosh

√
k
(

β−α
2

)
⎞
⎠

≤ 1
k

⎛
⎝1 − 1

cosh
√
k
(

β−α
2

)
⎞
⎠ .

Answers or Hints

33.1. 1 + x− π
2 sinx.

33.2. (2+sin 1)
sinh 1 sinhx− sinx.

33.3. The associated Green’s functions are as follows:

For Problem 32.1(vi), G(x, t) =
{ − cos t sinx, 0 ≤ x ≤ t

− sin t cosx, t ≤ x ≤ π/2

For Problem 32.1(vii), G(x, t) =
{ −x

2 (2 − t)e−(x−t), 0 ≤ x ≤ t
− t

2 (2 − x)e−(x−t), t ≤ x ≤ 2.

33.4. Verify directly. x4 + 2x2 − 2x+ 1.

33.5. Verify directly.

33.6. Verify directly.

33.7. Verify (33.24) directly. For part (ii) note that |G(x, t)| ≤ (β−x)(x−
α)/(β − α).

33.8. Verify directly.

33.9. Verify directly.



Lecture 34
Degenerate Linear

Boundary Value Problems

From Corollary 32.2 we know that if ∆ = 0, then the homogeneous
boundary value problem (6.1), (32.2) has an infinite number of solutions.
However, the following examples suggest that the situation is entirely dif-
ferent for the nonhomogeneous problem (6.6), (32.1).

Example 34.1. Consider the nonhomogeneous DE

y′′ + 2y′ + 5y = 4e−x (34.1)

together with the boundary conditions (32.16). As in Example 32.3 we
take y1(x) = e−x cos 2x and y2(x) = e−x sin 2x as two linearly independent
solutions of the homogeneous DE (32.15). It is easy to verify that z(x) =
e−x is a solution of (34.1). Thus, the general solution of (34.1) can be
written as

y(x) = c1e
−x cos 2x+ c2e

−x sin 2x+ e−x.

This solution satisfies the boundary conditions (32.16) if and only if

c1 + 1 = 0

−c1e−π/2 + e−π/2 = 0,
(34.2)

which is impossible. Hence, the problem (34.1), (32.16) has no solution.

Example 34.2. Consider the nonhomogeneous DE

y′′ + 2y′ + 5y = 4e−x cos 2x (34.3)

together with the boundary conditions (32.16). For the DE (34.3), z(x) =
xe−x sin 2x is a particular solution, and hence as in Example 34.1 its general
solution is

y(x) = c1e
−x cos 2x+ c2e

−x sin 2x+ xe−x sin 2x.

This solution satisfies the boundary conditions (32.16) if and only if

c1 = 0

−c1e−π/2 = 0,
(34.4)
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i.e., c1 = 0. Thus, the problem (34.3), (32.16) has an infinite number of
solutions

y(x) = ce−x sin 2x+ xe−x sin 2x,

where c is an arbitrary constant.

In systems (34.2) and (34.4) the unknowns are c1 and c2 and the coef-
ficient matrix is [

1 0

−e−π/2 0

]
,

whose rank is 1. Thus, from Theorem 13.3 the conclusions in the above
examples are not surprising. As a matter of fact using this theorem we
can provide necessary and sufficient conditions for the existence of at least
one solution of the nonhomogeneous problem (6.6), (32.1). For this, it is
convenient to write this problem in system form as

u′ = A(x)u+ b(x)

L0u(α) + L1u(β) = �,
(34.5)

where

A(x) =

⎡
⎣ 0 1

−p2(x)
p0(x)

−p1(x)
p0(x)

⎤
⎦ , b(x) =

⎡
⎣ 0

r(x)
p0(x)

⎤
⎦ ,

L0 =

[
a0 a1

c0 c1

]
, L1 =

[
b0 b1

d0 d1

]
, and � =

[
A

B

]
.

Theorem 34.1. Let Ψ(x) be a fundamental matrix solution of the
homogeneous system u′ = A(x)u, and let the rank of the matrix P =
L0Ψ(α)+L1Ψ(β) be 2−m (1 ≤ m ≤ 2). Then the boundary value problem
(34.5) has a solution if and only if

Q�−QL1Ψ(β)
∫ β

α

Ψ−1(t)b(t)dt = 0, (34.6)

where Q is a m × 2 matrix whose row vectors are linearly independent
vectors qi, 1 ≤ i ≤ m satisfying qiP = 0.

Further, if (34.6) holds, then any solution of (34.5) can be given by

u(x) =
m∑

i=1

kiu
i(x) + Ψ(x)S�+

∫ β

α

G(x, t)b(t)dt, (34.7)

where ki, 1 ≤ i ≤ m are arbitrary constants, ui(x), 1 ≤ i ≤ m are
m linearly independent solutions of the homogeneous system u′ = A(x)u
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satisfying the homogeneous boundary conditions L0u(α) + L1u(β) = 0, S
is a 2 × 2 matrix independent of b(x) and � such that PSv = v for any
column vector v satisfying Qv = 0, and G(x, t) is the piecewise continuous
matrix called the generalized Green’s matrix

G(x, t) =

{
−Ψ(x)SL1Ψ(β)Ψ−1(t), α ≤ x ≤ t

Ψ(x)[I − SL1Ψ(β)]Ψ−1(t), t ≤ x ≤ β.
(34.8)

Proof. From (18.14) any solution of the above nonhomogeneous system
can be written as

u(x) = Ψ(x)c+ Ψ(x)
∫ x

α

Ψ−1(t)b(t)dt, (34.9)

where c is an arbitrary constant vector.

Thus, the problem (34.5) has a solution if and only if the system

(L0Ψ(α) + L1Ψ(β))c+ L1Ψ(β)
∫ β

α

Ψ−1(t)b(t)dt = �,

i.e.,

Pc = �− L1Ψ(β)
∫ β

α

Ψ−1(t)b(t)dt (34.10)

has a solution. However, since the rank of the matrix P is 2 − m, from
Theorem 13.3 the system (34.10) has a solution if and only if (34.6) holds.
This proves the first conclusion of the theorem.

When (34.6) holds, by Theorem 13.3 the constant vector c satisfying
(34.10) can be given by

c =
m∑

i=1

kic
i + S

[
�− L1Ψ(β)

∫ β

α

Ψ−1(t)b(t)dt

]
, (34.11)

where ki, 1 ≤ i ≤ m are arbitrary constants, ci, 1 ≤ i ≤ m are m linearly
independent column vectors satisfying Pci = 0, and S is a 2 × 2 matrix
independent of

�− L1Ψ(β)
∫ β

α

Ψ−1(t)b(t)dt

such that PSv = v for any column vector v satisfying Qv = 0.

Substituting (34.11) into (34.9), we obtain a solution of the problem
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(34.5) as

u(x) =
m∑

i=1

kiΨ(x)ci + Ψ(x)S�− Ψ(x)SL1Ψ(β)
∫ β

α

Ψ−1(t)b(t)dt

+Ψ(x)
∫ x

α

Ψ−1(t)b(t)dt

=
m∑

i=1

kiu
i(x) + Ψ(x)S�+

∫ x

α

Ψ(x)[I − SL1Ψ(β)]Ψ−1(t)b(t)dt

−
∫ β

x

Ψ(x)SL1Ψ(β)Ψ−1(t)b(t)dt

=
m∑

i=1

kiu
i(x) + Ψ(x)S�+

∫ β

α

G(x, t)b(t)dt,

where ui(x) = Ψ(x)ci are evidently linearly independent solutions of the
homogeneous system u′ = A(x)u, and moreover since Pci = 0 it follows
that

L0u
i(α) + L1u

i(β) = L0Ψ(α)ci + L1Ψ(β)ci

= (L0Ψ(α) + L1Ψ(β))ci = Pci = 0.

Example 34.3. Consider the boundary value problem

y′′ + y = r(x) (34.12)

y(0) − y(2π) = 0

y′(0) − y′(2π) = − π,
(34.13)

which in the system form is the same as (34.5) with

A(x) =

[
0 1

−1 0

]
, b(x) =

[
0

r(x)

]
,

L0 =

[
1 0

0 1

]
, L1 =

[
−1 0

0 −1

]
, and � =

[
0

−π

]
.

For this problem we choose

Ψ(x) =

[
cosx sinx

− sinx cosx

]
,

so that

P =

[
0 0

0 0

]
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whose rank is 0, i.e., m = 2. Let the matrix

Q =

[
1 0

0 1

]

whose row vectors q1 and q2 are linearly independent and satisfy q1P =
q2P = 0. Thus, the condition (34.6) reduces to[

1 0

0 1

][
0

−π

]
−
[

1 0

0 1

][
−1 0

0 −1

][
1 0

0 1

]

×
∫ 2π

0

[
cos t − sin t

sin t cos t

][
0

r(t)

]
dt = 0,

which is the same as ∫ 2π

0
sin t r(t)dt = 0

π −
∫ 2π

0
cos t r(t)dt = 0.

(34.14)

Further,

u1(x) =

[
cosx

− sinx

]
and u2(x) =

[
sinx

cosx

]

are linearly independent solutions of u′ = A(x)u, and satisfy the boundary
conditions L0u(0) + L1u(2π) = 0. Also, we note that Qv = 0 implies that
v = [0 0]T , and hence we can choose the matrix

S =

[
0 0

0 0

]
.

Thus, if the conditions (34.14) are satisfied, then any solution of the above
problem can be written as

u(x) = k1

[
cosx

− sinx

]
+ k2

[
sinx

cosx

]
+
∫ 2π

0
G(x, t)b(t)dt,

where the generalized Green’s matrix G(x, t) is

G(x, t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ x ≤ t[
cos(x− t) sin(x− t)

− sin(x− t) cos(x− t)

]
, t ≤ x ≤ 2π.
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Hence, any solution of (34.12), (34.13) is given by

y(x) = k1 cosx+ k2 sinx+
∫ x

0
sin(x− t)r(t)dt. (34.15)

In particular, for the function r(x) = cosx, conditions (34.14) are sat-
isfied, and (34.15) reduces to

y(x) = k1 cosx+ k2 sinx+
1
2
x sinx.

Example 34.4. Consider the boundary value problem

y′′ = r(x) (34.16)

y(0) = 0

y(1) − y′(1) = 0,
(34.17)

which in system form is the same as (34.5) with

A(x) =

[
0 1

0 0

]
, b(x) =

[
0

r(x)

]
,

L0 =

[
1 0

0 0

]
, L1 =

[
0 0

1 −1

]
, and � =

[
0

0

]
.

For this problem we take

Ψ(x) =

[
1 x

0 1

]
,

so that

P =

[
1 0

1 0

]

whose rank is 1; i.e., m = 1. Let the matrix Q = q1 = (1 − 1) which
satisfies the condition q1P = 0. Thus, the condition (34.6) reduces to

−(1 − 1)

[
0 0

1 −1

][
1 1

0 1

]∫ 1

0

[
1 −t
0 1

][
0

r(t)

]
dt = 0,

which is the same as ∫ 1

0
t r(t)dt = 0. (34.18)
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Further, u1(x) = [x 1]T is a solution of u′ = A(x)u, and satisfies the
boundary conditions L0u(0) + L1u(1) = 0. Also, we note that Qv = 0
implies that we can take v = [1 1]T and then

S =

[
1 0

0 0

]

satisfies the condition PSv = v. Thus, if the condition (34.18) is satisfied
then any solution of the above problem can be written as

u(x) = k1

[
x

1

]
+
∫ 1

0
G(x, t)b(t)dt,

where the generalized Green’s matrix is

G(x, t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ x ≤ t[
1 x− t

0 1

]
, t ≤ x ≤ 1.

Hence, any solution of (34.16), (34.17) is given by

y(x) = k1x+
∫ x

0
(x− t)r(t)dt. (34.19)

In particular, for the function r(x) = 2−3x the condition (34.18) is satisfied,
and (34.19) simplifies to

y(x) = k1x+ x2 − 1
2
x3.

Problems

34.1. Find necessary and sufficient conditions so that the following
boundary value problems have a solution:

(i)
y′′ + y = r(x)
y(0) = y(π) = 0. (ii)

y′′ = r(x)
y′(0) = y′(1) = 0.

(iii)
y′′ + y = r(x)
y(0) = y(2π)
y′(0) = y′(2π).

(iv)
y′′ = r(x)
y(−1) = y(1)
y′(−1) = y′(1).

(v)
y′′ + y = r(x)
y(0) = 1, y(π) = 1/2. (vi)

y′′ = r(x)
y′(0) = 1, y′(1) = 2.
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34.2. Solve the following boundary value problems:

(i)
y′′ + y = cosx
y(0) = y(π) = 0. (ii)

y′′ = cosπx
y′(0) = y′(1) = 0.

(iii)
y′′ + (1/4)y = sinx/2
y′(0) = −1, y(π) = 0. (iv)

y′′ = x3

y(−1) − y(1) + (1/10) = 0
y′(−1) − y′(1) = 0.

34.3. Let the DE (6.1) be self-adjoint and y0(x) be a nontrivial solution
of the homogeneous problem (6.1), (33.14). Show that the nonhomogeneous
boundary value problem (6.6), (33.14) has a solution if and only if

∫ β

α

y0(x)r(x)dx = 0.

Answers or Hints

34.1. (i)
∫ π

0 r(x) sinxdx = 0. (ii)
∫ 1
0 r(x)dx = 0. (iii)

∫ 2π

0 r(x) sinxdx =
0,

∫ 2π

0 r(x) cosxdx = 0. (iv)
∫ 1

−1 r(x)dx = 0. (v)
∫ π

0 r(x) sinxdx = 3
2 .

(vi)
∫ 1
0 r(x)dx = 1.

34.2. (i) k1 sinx+ 1
2x sinx. (ii) k1 − 1

π2 cosπx. (iii) k1 cos 1
2x− x cos 1

2x.
(iv) k1 + 1

20x
5.

34.3. Let y0(x), y1(x) be linearly independent solutions of (6.1). Now
write the general solution of (6.6) in the form (33.20).



Lecture 35
Maximum Principles

Maximum principles which are known for ordinary as well as partial dif-
ferential inequalities play a key role in proving existence–uniqueness results
and in the construction of solutions of DEs. In this lecture, we shall dis-
cuss the known maximum principle for a function satisfying a second-order
differential inequality and extend it to a general form which is extremely
useful in studying second-order initial and boundary value problems.

Theorem 35.1. If y ∈ C(2)[α, β], y′′(x) ≥ 0 in (α, β), and y(x) attains
its maximum at an interior point of [α, β], then y(x) is identically constant
in [α, β].

Proof. First, suppose that y′′(x) > 0 in (α, β); if y(x) attains its
maximum at an interior point, say, x0 of [α, β], then y′(x0) = 0 and
y′′(x0) ≤ 0, which is a contradiction to our assumption that y′′(x) > 0.
Thus, if y′′(x) > 0 in (α, β), then the function y(x) cannot attain its
maximum at an interior point of [α, β]. Now suppose that y′′(x) ≥ 0 in
(α, β) and that y(x) attains its maximum at an interior point of [α, β],
say, x1. If y(x1) = M, then y(x) ≤ M in [α, β]. Suppose that there ex-
ists a point x2 ∈ (α, β) such that y(x2) < M. If x2 > x1, then we set
z(x) = exp(γ(x−x1))− 1, where γ is a positive constant. For this function
z(x), it is immediate that

z(x) < 0, x ∈ [α, x1), z(x1) = 0, z(x) > 0, x ∈ (x1, β] (35.1)

and
z′′(x) = γ2 exp(γ(x− x1)) > 0, x ∈ [α, β].

Now we define w(x) = y(x) + εz(x), where 0 < ε < (M − y(x2))/z(x2).
Since y(x2) < M and z(x2) > 0, such an ε always exists. From (35.1), it
follows that w(x) < y(x) ≤ M, x ∈ (α, x1), w(x2) = y(x2) + εz(x2) < M,
and w(x1) = M.

Since w′′(x) = y′′(x) + εz′′(x) > 0 in (α, x2), the function w(x) can-
not attain a maximum in the interior of [α, x2]. However, since w(α) <
M, w(x2) < M and w(x1) = M where x1 ∈ (α, x2), w(x) must attain a
maximum greater than or equal toM at an interior point of (α, x2), which is
a contradiction. Therefore, there does not exist a point x2 ∈ (α, β), x2 > x1
such that y(x2) < M.
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If x2 < x1, we can set z(x) = exp(−γ(x−x1))− 1, where γ is a positive
constant and again by similar arguments we can show that such an x2
cannot exist. Therefore, y(x) = M in [α, β].

The above result holds if we reverse the inequality and replace “maxi-
mum” by “minimum.”

We shall now consider a more general inequality y′′+p(x)y′+q(x)y ≥ 0.
However, for this inequality the following examples show that no matter
whether q(x) is negative or positive the preceding result need not hold.
Hence, we can at most expect a restricted form of maximum principle.

Example 35.1. The function y(x) = sinx is a solution of y′′ + y = 0.
However, in the interval [0, π], y(x) attains its maximum at x = π/2 which
is an interior point.

Example 35.2. For y′′ − y = 0, y(x) = −ex − e−x is a solution which
attains its maximum value −2 at x = 0 in the interval [−1, 1].

Theorem 35.2. Let y(x) satisfy the differential inequality

y′′(x) + p(x)y′(x) + q(x)y(x) ≥ 0, x ∈ (α, β) (35.2)

in which p(x) and q(x) (≤ 0) are bounded in every closed subinterval of
(α, β). If y(x) assumes a nonnegative maximum value M at an interior
point of [α, β], then y(x) ≡ M.

Proof. If the inequality in (35.2) is strict and y(x) assumes a nonnegative
maximum M at an interior point x0 of [α, β], then y(x0) = M, y′(x0) = 0
and y′′(x0) ≤ 0. Since p(x) and q(x) are bounded in a closed subinterval
containing x0 and q(x) ≤ 0, we have

y′′(x0) + p(x0)y′(x0) + q(x0)y(x0) ≤ 0,

contrary to our assumption of strict inequality in (35.2). Hence, if the
inequality (35.2) is strict, y(x) cannot attain its nonnegative maximum at
an interior point of [α, β].

Now if (35.2) holds and y(x1) = M for some x1 ∈ (α, β), we suppose
that there exists a point x2 ∈ (α, β) such that y(x2) < M. If x2 > x1, then
once again we set z(x) = exp(γ(x−x1)) − 1, where γ is a positive constant
yet to be determined. This function z(x) satisfies (35.1), and since q(x) ≤ 0
it follows that

z′′ + p(x)z′ + q(x)z

= [γ2 + p(x)γ + q(x)(1 − exp(−γ(x− x1)))] exp(γ(x− x1))

≥ [γ2 + p(x)γ + q(x)] exp(γ(x− x1)).
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We choose γ such that γ2+p(x)γ+q(x) > 0 in (α, β). This is always possible
since p(x) and q(x) are bounded in every closed subinterval of (α, β). With
such a choice of γ, we see that

z′′ + p(x)z′ + q(x)z > 0.

The rest of the proof is word for word the same as that of Theorem
35.1, except for the function w instead of w′′(x) > 0 we now have w′′(x) +
p(x)w′(x) + q(x)w(x) > 0.

If q(x) is not identically zero in (α, β), then the only nonnegative con-
stant M for which y(x) = M satisfies (35.2) is M = 0. For this, we
have y(x) = M ≥ 0, y′(x) = y′′(x) = 0, x ∈ (α, β) and therefore
y′′(x) + p(x)y′(x) + q(x)y(x) = q(x)M ≥ 0, but q(x) ≤ 0, and hence it
is necessary that M = 0.

Next we shall prove the following corollaries.

Corollary 35.3. Suppose that y(x) is a nonconstant solution of the
differential inequality (35.2) having one-sided derivatives at α and β, and
p(x) and q(x) (≤ 0) are bounded in every closed subinterval of (α, β). If y(x)
has a nonnegative maximum at α and if the function p(x) + (x − α)q(x)
is bounded from below at α, then y′(α) < 0. If y(x) has a nonnegative
maximum at β and if p(x) − (β − x)q(x) is bounded from above at β, then
y′(β) > 0.

Proof. Suppose that y(x) has a nonnegative maximum at α, say, y(α) =
M ≥ 0, then y(x) ≤ M, x ∈ [α, β], and since y(x) is nonconstant, there
exists a x0 ∈ (α, β) such that y(x0) < M.

We define z(x) = exp(γ(x− α)) − 1, where γ is a positive constant yet
to be determined. Then since q(x) ≤ 0 and 1 − exp(−γ(x−α)) ≤ γ(x−α)
for x ≥ α it follows that

z′′ + p(x)z′ + q(x)z

= [γ2 + p(x)γ + q(x)(1 − exp(−γ(x− α)))] exp(γ(x− α))

≥ [γ2 + γ(p(x) + q(x)(x− α))] exp(γ(x− α)).

We choose γ such that γ2 +γ(p(x)+q(x)(x−α)) > 0 for x ∈ [α, x0]. This is
always possible since p(x) and q(x) are bounded in every closed subinterval
and p(x)+(x−α)q(x) is bounded from below at α. Then z′′+p(x)z′+q(x)z >
0.

Now we define w(x) = y(x) + εz(x), where 0 < ε < (M − y(x0))/z(x0).
Then w(α) = y(α) = M which implies that w(x) has a maximum greater
than or equal to M in [α, x0]. However, since w′′ + p(x)w′ + q(x)w > 0,
the nonnegative maximum must occur at one of the endpoints of [α, x0].
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Finally, w(x0) = y(x0) + εz(x0) < M implies that the maximum occurs at
α. Therefore, the one-sided derivative of w(x) at α cannot be positive, i.e.,
w′(α) ≤ 0, and w′(α) = y′(α) + εz′(α) ≤ 0. However, since z′(α) = γ > 0,
we must have y′(α) < 0.

If the nonnegative maximum M of y(x) occurs at β, then by similar
arguments we can show that y′(β) > 0.

Corollary 35.4. Suppose that y(x) is a solution of the differential
inequality (35.2), which is continuous in [α, β] and y(α) ≤ 0, y(β) ≤ 0, and
p(x) and q(x) (≤ 0) are bounded in every closed subinterval of (α, β). Then
y(x) < 0 in (α, β) unless y(x) = 0 in [α, β].

Proof. If y(x) has a negative maximum, then y(x) < 0 in [α, β]. Oth-
erwise, by Theorem 35.2, the nonnegative maximum of y(x) must occur at
the endpoints. However, since y(α) ≤ 0, y(β) ≤ 0 we must have y(x) < 0
in (α, β) unless y(x) = 0 in [α, β].

The following two examples illustrate how maximum principles can be
applied to obtain lower and upper bounds for the solutions of DEs which
cannot be solved explicitly.

Example 35.3. Consider the boundary value problem

y′′ − x2y = 0, x ∈ (α, β)

y(α) = γ1, y(β) = γ2
(35.3)

for which a unique solution y(x) always exists.

Suppose there exists a function z(x) such that

z′′ − x2z ≤ 0, z(α) ≥ γ1, z(β) ≥ γ2. (35.4)

For such a function z(x), we define w(x) = y(x) − z(x). Clearly, w(x)
satisfies

w′′ − x2w ≥ 0, w(α) ≤ 0, w(β) ≤ 0 (35.5)

and hence Corollary 35.4 is applicable, and we find that w(x) ≤ 0 in [α, β],
i.e., y(x) ≤ z(x) in [α, β].

Now we shall construct such a function z(x) as follows: we set z1(x) =
A{2 − exp(−γ(x−α))} where A and γ are constants yet to be determined.
Since

z′′
1 − x2z1 = A{(−γ2 + x2) exp(−γ(x− α)) − 2x2},

we choose A = max{γ1, γ2, 0}, and γ = max{|α|, |β|} + 1, so that A ≥
0, γ > 0, − γ2 + x2 < 0, x ∈ [α, β]. Thus, with this choice of A and γ, it
follows that z′′

1 − x2z1 ≤ 0, z1(α) = A ≥ γ1, z1(β) ≥ A ≥ γ2. Hence, z1(x)
satisfies (35.4) and we have y(x) ≤ z1(x), x ∈ [α, β].
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Similarly, to obtain a lower bound for y(x), we let z2(x) = B{2 −
exp(−γ(x−α))} where γ is chosen as before and B = min{γ1, γ2, 0}. Then
B ≤ 0, and z2(x) satisfies z′′

2 − x2z2 ≥ 0, z2(α) = B ≤ γ1, z2(β) ≤
B ≤ γ2. Hence, z2(x) satisfies (35.4) with the inequalities reversed, and
the function w(x) = z2(x) − y(x) satisfies (35.5). Therefore, it follows that
z2(x) ≤ y(x), x ∈ [α, β].

In conclusion, we have

Bφ(x) ≤ y(x) ≤ Aφ(x),

where A = max{γ1, γ2, 0}, B = min{γ1, γ2, 0}, φ(x) = 2 − exp(−γ(x−α))
and γ = max{|α|, |β|} + 1.

Example 35.4. Once again we consider the DE y′′ − x2y = 0 in the
interval (0, 1), but with initial conditions y(0) = 1, y′(0) = 0.

To obtain an upper bound for y(x), it suffices to find a function z1(x)
satisfying

z′′
1 − x2z1 ≥ 0, x ∈ (0, 1), z1(0) ≥ 1, z′

1(0) ≥ 0. (35.6)

For this, we define v1(x) = z1(x) − y(x), and note that

v′′
1 − x2v1 ≥ 0, x ∈ (0, 1), v1(0) ≥ 0, v′

1(0) ≥ 0.

Since v1(0) ≥ 0, the function v1(x) has a nonnegative maximum in every
subinterval [0, x0] of [0, 1]. Thus, from Theorem 35.2 it follows that this
maximum must occur either at 0 or x0. Since v′

1(0) ≥ 0, from Corollary
35.3, the maximum must occur at x0 unless v1(x) is constant in [0, x1].
Hence, for x0 ∈ (0, 1), v1(x0) ≥ v1(0) ≥ 0, and by Corollary 35.3 we find
that v′

1(x0) ≥ 0. Therefore, it follows that for each x ∈ (0, 1), v1(x) =
z1(x) − y(x) ≥ v1(0) ≥ 0, and hence y(x) ≤ z1(x).

To construct such a function z1(x), we set z1(x) = c1x
2 + 1, where c1 is

a constant yet to be determined. Since

z′′
1 − x2z1 = 2c1 − x2(c1x2 + 1) = c1(2 − x4) − x2

we need to choose c1 such that c1 ≥ x2/(2 − x4), x ∈ [0, 1]. Since x2/(2 −
x4) ≤ 1 for all x ∈ [0, 1], we can let c1 = 1. Then z1(x) = x2 + 1 and it
satisfies (35.6). Therefore, it follows that y(x) ≤ x2 + 1, x ∈ [0, 1].

Similarly, to obtain a lower bound we need to find a function z2(x)
satisfying

z′′
2 − x2z2 ≤ 0, x ∈ (0, 1), z2(0) ≤ 1, z′

2(0) ≤ 0. (35.7)

To construct such a function z2(x), once again we set z2(x) = c2x
2 + 1,

where c2 is a constant yet to be determined. Since

z′′
2 − x2z2 = c2(2 − x4) − x2
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we need to choose c2 such that c2 ≤ x2/(2 − x4), x ∈ [0, 1]. Therefore, we
can choose c2 = 0, to obtain z2(x) = 1 which satisfies (35.7). Hence, it
follows that 1 ≤ y(x), x ∈ [0, 1].

In conclusion, we have

1 ≤ y(x) ≤ 1 + x2, x ∈ [0, 1].

Finally, we remark that in Examples 35.3 and 35.4 above we can use
polynomials, rational functions, exponentials, etc., for the construction of
the functions z1(x) and z2(x).

Problems

35.1. The function y = sinx, x ∈ (0, π) attains its positive maximum
at x = π/2, and is a solution of the DE

y′′ + (tanx)y′ = 0.

Does this contradict Theorem 35.2?

35.2. Consider the DE

y′′ + αeβy = − x2, x ∈ (0, 1),

where α and β are positive constants. Show that its solution cannot attain
a minimum in (0, 1).

35.3. Consider the DE

y′′ − α cos(y′) = βx4, x ∈ (−1, 1),

where α and β are positive constants. Show that its solution cannot attain
a maximum in (−1, 1).

35.4. Consider the boundary value problem

y′′ + x2y′ = − x4, x ∈ (0, 1)

y(0) = 0 = y(1).

Show that its solution cannot attain a minimum in (0, 1). Further, show
that y′(0) > 0, y′(1) < 0.

35.5. Show that the boundary value problem

y′′ + p(x)y′ + q(x)y = r(x), x ∈ (α, β)

y(α) = A, y(β) = B
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where p(x) and q(x) are as in Theorem 35.2, has at most one solution.

35.6. Show that the solution y(x) of the boundary value problem

y′′ − xy = 0, x ∈ (0, 1), y(0) = 0, y(1) = 1

satisfies the inequalities (x+ x2)/2 ≤ y(x) ≤ x, x ∈ [0, 1].

35.7. Show that the solution y(x) of the initial value problem

y′′ +
1
x
y′ − y = 0, x ∈ (0, 1), y(0) = 1, y′(0) = 0

satisfies the inequalities 1 + x2/4 ≤ y(x) ≤ 1 + x2/3, x ∈ [0, 1].

Answers or Hints

35.1. No.

35.2. Use contradiction.

35.3. Use contradiction.

35.4. Use contradiction.

35.5. Use Corollary 35.4.

35.6. See Example 35.3.

35.7. See Example 35.4.



Lecture 36
Sturm–Liouville Problems

In our previous lectures we have seen that homogeneous boundary value
problem (6.1), (32.2) may have nontrivial solutions. If the coefficients of
the DE and/or of the boundary conditions depend upon a parameter, then
one of the pioneer problems of mathematical physics is to determine the
value(s) of the parameter for which such nontrivial solutions exist. These
special values of the parameter are called eigenvalues and the corresponding
nontrivial solutions are called eigenfunctions. The boundary value problem
which consists of the self-adjoint DE

(p(x)y′)′ + q(x)y + λr(x)y = P2[y] + λr(x)y = 0 (36.1)

and the boundary conditions (33.14) is called the Sturm–Liouville problem.
In the DE (36.1), λ is a parameter, and the functions q, r ∈ C(J), p ∈
C1(J), and p(x) > 0, r(x) > 0 in J.

The problem (36.1), (33.14) satisfying the above conditions is said to be
a regular Sturm–Liouville problem. Solving such a problem means finding
values of λ (eigenvalues) and the corresponding nontrivial solutions φλ(x)
(eigenfunctions). The set of all eigenvalues of a regular problem is called
its spectrum.

The computation of eigenvalues and eigenfunctions is illustrated in the
following examples.

Example 36.1. Consider the boundary value problem

y′′ + λy = 0 (36.2)

y(0) = y(π) = 0. (36.3)

If λ = 0, then the general solution of (36.2) is y(x) = c1 + c2x, and this
solution satisfies the boundary conditions (36.3) if and only if c1 = c2 = 0,
i.e., y(x) ≡ 0 is the only solution of (36.2), (36.3). Hence, λ = 0 is not an
eigenvalue of the problem (36.2), (36.3).

If λ �= 0, it is convenient to replace λ by µ2, where µ is a new parameter
not necessarily real. In this case the general solution of (36.2) is y(x) =
c1e

iµx + c2e
−iµx, and this solution satisfies the boundary conditions (36.3)

if and only if
c1 + c2 = 0

c1e
iµπ + c2e

−iµπ = 0.
(36.4)
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The system (36.4) has a nontrivial solution if and only if

e−iµπ − eiµπ = 0. (36.5)

If µ = a+ ib, where a and b are real, condition (36.5) reduces to

ebπ(cos aπ − i sin aπ) − e−bπ(cos aπ + i sin aπ)

= (ebπ − e−bπ) cos aπ − i(ebπ + e−bπ) sin aπ

= 2 sinh bπ cos aπ − 2i cosh bπ sin aπ = 0,

i.e.,
sinh bπ cos aπ = 0 (36.6)

and
cosh bπ sin aπ = 0. (36.7)

Since cosh bπ > 0 for all values of b, equation (36.7) requires that a = n,
where n is an integer. Further, for this choice of a, cos aπ �= 0, and equation
(36.6) reduces to sinh bπ = 0, i.e., b = 0. However, if b = 0, then we
cannot have a = 0, because then µ = 0, and we have seen that it is not
an eigenvalue. Hence, µ = n, where n is a nonzero integer. Thus, the
eigenvalues of (36.2), (36.3) are λn = µ2 = n2, n = 1, 2, . . . . Further, from
(36.4) since c2 = −c1 for λn = n2 the corresponding nontrivial solutions of
the problem (36.2), (36.3) are

φn(x) = c1(einx − e−inx) = 2ic1 sinnx,

or, simply φn(x) = sinnx.

Example 36.2. Consider again the DE (36.2), but with the boundary
conditions

y(0) + y′(0) = 0, y(1) = 0. (36.8)

If λ = 0, then the general solution y(x) = c1 +c2x of (36.2) also satisfies
the boundary conditions (36.8) if and only if c1 + c2 = 0, i.e., c2 = −c1.
Hence, λ = 0 is an eigenvalue of (36.2), (36.8) and the corresponding eigen-
function is φ1(x) = 1 − x.

If λ �= 0, then once again we replace λ by µ2 and note that the general
solution y(x) = c1e

iµx + c2e
−iµx of (36.2) satisfies the boundary conditions

(36.8) if and only if

(c1 + c2) + iµ(c1 − c2) = 0

c1e
iµ + c2e

−iµ = 0.
(36.9)

The system (36.9) has a nontrivial solution if and only if

(1 + iµ)e−iµ − (1 − iµ)eiµ = 0,
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which is equivalent to
tanµ = µ. (36.10)

To find the real roots of (36.10) we graph the curves y = µ and y = tanµ
and observe the values of µ where these curves intersect.

µ

y
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5π
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Figure 36.1

From Figure 36.1 it is clear that the equation (36.10) has an infinite
number of positive roots µn, n = 1, 2, . . . , which are approaching the odd
multiples of π/2, i.e., µn  (2n+1)π/2. Further, since the equation (36.10)
remains unchanged if µ is replaced by −µ, we find that the only nonzero
real roots of (36.10) are µn  ±(2n+ 1)π/2, n = 1, 2, . . . .

Thus, the problem (36.2), (36.8) also has an infinite number of eigenval-
ues, λ1 = 0, λn+1  (2n+1)2π2/4, n = 1, 2, . . . . Further, from (36.9) since
c2 = −c1e2iµ for these λn, n > 1 the corresponding nontrivial solutions of
the problem (36.2), (36.8) are

y(x) = c1e
i
√

λnx − c1e
−i

√
λnxe2i

√
λn = − 2c1iei

√
λn sin

√
λn(1 − x).

Hence, the eigenfunctions of (36.2), (36.8) are

φ1(x) = 1 − x
φn(x) = sin

√
λn(1 − x), n = 2, 3, . . . .
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From Example 36.1 it is clear that the problem (36.2), (36.3) has an
infinite number of real eigenvalues λn, which can be arranged as a mono-
tonic increasing sequence λ1 < λ2 < · · · such that λn → ∞ as n → ∞.
Also, corresponding to each eigenvalue λn of (36.2), (36.3) there exists a
one-parameter family of eigenfunctions φn(x), which has exactly (n−1) ze-
ros in the open interval (0, π). Further, these eigenfunctions are orthogonal.
This concept is defined in the following definition.

Definition 36.1. The set of functions {φn(x) : n = 0, 1, . . .} each of
which is piecewise continuous in an infinite or a finite interval [α, β] is said
to be orthogonal in [α, β] with respect to the nonnegative function r(x) if

(φm, φn) =
∫ β

α

r(x)φm(x)φn(x)dx = 0 for all m �= n

and ∫ β

α

r(x)φ2
n(x)dx �= 0 for all n.

The function r(x) is called the weight function. In what follows we shall
assume that the function r(x) has only a finite number of zeros in [α, β]
and the integrals

∫ β

α
r(x)φn(x)dx, n = 0, 1, . . . exist.

The orthogonal set {φn(x) : n = 0, 1, . . .} in [α, β] with respect to the
weight function r(x) is said to be orthonormal if

∫ β

α

r(x)φ2
n(x)dx = 1 for all n.

Thus, orthonormal functions have the same properties as orthogonal func-
tions, but, in addition, they have been normalized, i.e., each function φn(x)
of the orthogonal set has been divided by the norm of that function, which
is defined as

‖φn‖ =

(∫ β

α

r(x)φ2
n(x)dx

)1/2

.

Now since ∫ π

0
sin kx sin �xdx = 0,

for all k �= �, the set of eigenfunctions {φn(x) = sinnx, n = 1, 2, . . .} of
(36.2), (36.3) is orthogonal in [0, π] with the weight function r(x) = 1.

Clearly, the above properties of eigenvalues and eigenfunctions of (36.2),
(36.3) are also valid for the problem (36.2), (36.8). In fact, these properties
hold for the general regular Sturm–Liouville problem (36.1), (33.14). We
shall state these properties as theorems and prove the results.
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Theorem 36.1. The eigenvalues of the regular Sturm–Liouville prob-
lem (36.1), (33.14) are simple, i.e., if λ is an eigenvalue of (36.1), (33.14)
and φ1(x) and φ2(x) are the corresponding eigenfunctions, then φ1(x) and
φ2(x) are linearly dependent.

Proof. Since φ1(x) and φ2(x) both are solutions of (36.1), from (30.23)
it follows that p(x)W (φ1, φ2)(x) = c (constant). To find the value of c, we
note that φ1 and φ2 satisfy the boundary conditions, and hence

a0φ1(α) + a1φ
′
1(α) = 0

a0φ2(α) + a1φ
′
2(α) = 0,

which implies W (φ1, φ2)(α) = 0, and hence c is zero. Thus, p(x)W (φ1,
φ2)(x) ≡ 0, i.e., φ1(x) and φ2(x) are linearly dependent.

Theorem 36.2. Let λn, n = 1, 2, . . . be the eigenvalues of the reg-
ular Sturm–Liouville problem (36.1), (33.14) and φn(x), n = 1, 2, . . . be
the corresponding eigenfunctions. Then the set {φn(x) : n = 1, 2, · · ·} is
orthogonal in [α, β] with respect to the weight function r(x).

Proof. Let λk and λ
, (k �= �) be eigenvalues, and φk(x) and φ
(x) be
the corresponding eigenfunctions of (36.1), (33.14). Since φk(x) and φ
(x)
are solutions of (36.1), we have

P2[φk] + λkr(x)φk(x) = 0

and
P2[φ
] + λ
r(x)φ
(x) = 0.

Thus, from Green’s identity (30.24) it follows that

(λ
 − λk)
∫ β

α

r(x)φk(x)φ
(x)dx =
∫ β

α

(φ
P2[φk] − φkP2[φ
])dx

= p(x)[φ
(x)φ′
k(x) − φ′


(x)φk(x)]
∣∣∣β
α
.

(36.11)
Next since φk(x) and φ
(x) satisfy the boundary conditions (33.14), i.e.,

a0φk(α) + a1φ
′
k(α) = 0, d0φk(β) + d1φ

′
k(β) = 0

a0φ
(α) + a1φ
′

(α) = 0, d0φ
(β) + d1φ

′

(β) = 0

it is necessary that

φk(α)φ′

(α) − φ′

k(α)φ
(α) = φk(β)φ′

(β) − φ′

k(β)φ
(β) = 0.

Hence, the identity (36.11) reduces to

(λ
 − λk)
∫ β

α

r(x)φk(x)φ
(x)dx = 0. (36.12)
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However, since λ
 �= λk, it follows that

∫ β

α

r(x)φk(x)φ
(x)dx = 0.

Corollary 36.3. Let λ1 and λ2 be two eigenvalues of the regular
Sturm–Liouville problem (36.1), (33.14) and φ1(x) and φ2(x) be the cor-
responding eigenfunctions. Then φ1(x) and φ2(x) are linearly dependent
only if λ1 = λ2.

Proof. The proof is a direct consequence of equality (36.12).

Theorem 36.4. For the regular Sturm–Liouville problem (36.1),
(33.14) eigenvalues are real.

Proof. Let λ = a+ ib be a complex eigenvalue and φ(x) = µ(x) + iν(x)
be the corresponding eigenfunction of (36.1), (33.14). Then we have

(p(x)(µ+ iν)′)′ + q(x)(µ+ iν) + (a+ ib)r(x)(µ+ iν) = 0

and hence
P2[µ] + (aµ(x) − bν(x))r(x) = 0

P2[ν] + (bµ(x) + aν(x))r(x) = 0

a0µ(α) + a1µ
′(α) = 0, d0µ(β) + d1µ

′(β) = 0

and
a0ν(α) + a1ν

′(α) = 0, d0ν(β) + d1ν
′(β) = 0.

Thus, as in Theorem 36.2, we find

∫ β

α

(νP2[µ] − µP2[ν])dx

=
∫ β

α

[−(aµ(x) − bν(x))ν(x)r(x) + (bµ(x) + aν(x))µ(x)r(x)]dx

= b

∫ β

α

(ν2(x) + µ2(x))r(x)dx

= p(x)(νµ′ − ν′µ)
∣∣∣β
α

= 0.

Hence, it is necessary that b = 0, i.e., λ is real.

Since (36.2), (36.8) is a regular Sturm–Liouville problem, from Theorem
36.4 it is immediate that the equation (36.10) has only real roots.
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Sturm–Liouville Problems
(Contd.)

In Lecture 36 we have established several properties of the eigenvalues
and eigenfunctions of the regular Sturm–Liouville problem (36.1), (33.14).
In all these results the existence of eigenvalues is tacitly assumed. We now
state and prove the following important result.

Theorem 37.1. For the regular Sturm–Liouville problem (36.1),
(33.14) there exists an infinite number of eigenvalues λn, n = 1, 2, . . . .
These eigenvalues can be arranged as a monotonic increasing sequence
λ1 < λ2 < · · · such that λn → ∞ as n → ∞. Further, eigenfunction
φn(x) corresponding to the eigenvalue λn has exactly (n − 1) zeros in the
open interval (α, β).

Proof. We shall establish this result first for the particular problem
(36.1),

y(α) = y(β) = 0. (37.1)
For this, we observe the following:

(i) If eigenvalues of (36.1), (37.1) exist, then these are all real numbers
(cf. Theorem 36.4).
(ii) For each fixed λ there exists a unique solution y(x, λ) of the initial
value problem (36.1),

y(α, λ) = 0, y′(α, λ) = 1. (37.2)

Further, y(x, λ) as well as y′(x, λ) vary continuously with λ (cf. Theo-
rem 16.8).

(iii) There exist constants p, P, q, Q, r, and R such that for all x ∈
[α, β], 0 < p ≤ p(x) ≤ P , q ≤ q(x) ≤ Q, and 0 < r ≤ r(x) ≤ R. Thus, for
a fixed λ > 0 the solution y(x, λ) of (36.1), (37.2) oscillates more rapidly
than the solution y0(x, λ) of the problem

(Py′
0)

′ + qy0 + λry0 = 0

y0(α, λ) = 0, y′
0(α, λ) = 1

(37.3)

and less rapidly than the solution y1(x, λ) of the problem

(py′
1)

′ +Qy1 + λRy1 = 0

y1(α, λ) = 0, y′
1(α, λ) = 1

(37.4)
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(cf. Theorem 31.4). When λ is negative, r and R in (37.3) and (37.4) need
to be interchanged.

The problems (37.3) and (37.4) are with constant coefficients (modified
as indicated when λ is negative), and hence can be solved explicitly. If
λ > 0 is so large that 0 < (q+λr)/P = a2, then the solution of the problem
(37.3) is y0(x) = (1/a) sin a(x−α), which vanishes at least once in the open
interval (α, β) provided a(β−α) > π, i.e., (q+λr)/P > π2/(β−α)2. Thus,
for each

λ > max
{

0,
1
r

(
Pπ2

(β − α)2
− q

)}
= λ0

the solution of the problem (36.1), (37.2) has at least one zero in (α, β).
Similarly, if λ < 0 is so small that

−a2 =
Q+ λr

P
< 0, i.e., λ < min

{
0, − Q

r

}
= λ1,

then the solution of the modified problem (37.4) is y(x) = (1/a) sinh a(x−
α), which does not vanish again at x = β or, indeed, anywhere else. Hence,
for each λ < λ1 the solution of the problem (36.1), (37.2) has no zero in
the interval (α, β]. Now since the solution y(x, λ) of (36.1), (37.2) varies
continuously with λ, if y(x, λ) has a zero in (α, β), then its position also
varies continuously with λ. Thus, if λ increases steadily from λ1 (for which
the solution of (36.1), (37.2) has no zero in (α, β]) towards λ0, then there
will be a specific value of λ, say, λ1, for which y(x, λ) first vanishes at
x = β. This proves that there exists a smallest eigenvalue λ1 of the problem
(36.1), (37.1) and y(x, λ1) the solution of (36.1), (37.2) is the corresponding
eigenfunction. By allowing λ to increase from the value λ1 one argues that
there is a number λ2 > λ1 for which y(x, λ2), the solution of (36.1), (37.2)
has precisely one zero in (α, β) and y(β, λ2) = 0. As λ continues to increase
there results a sequence of eigenvalues λ1 < λ2 < · · · and a corresponding
sequence of eigenfunctions y(x, λ1), y(x, λ2), . . . . Further, y(x, λn) will have
precisely (n− 1) zeros in the open interval (α, β). This completes the proof
of Theorem 37.1 for the problem (36.1), (37.1).

Next for the problem (36.1),

a0y(α) + a1y
′(α) = 0, y(β) = 0 (37.5)

we note that the above proof holds if the solution y(x, λ) of (36.1), (37.2)
is replaced by the solution z(x, λ) of the initial value problem (36.1),

z(α, λ) = a1, z′(α, λ) = − a0. (37.6)

Thus, the problem (36.1), (37.5) also has a sequence of eigenvalues λ′
1 <

λ′
2 < · · · and a corresponding sequence of eigenfunctions z(x, λ′

1), z(x, λ
′
2),

· · · such that z(x, λ′
n) has precisely (n−1) zeros in the open interval (α, β).
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Finally, we shall consider the problem (36.1), (33.14). For the solu-
tion z(x, λ) of (36.1), (37.6), Theorem 16.8 implies that ∂z(x, λ)/∂λ is the
solution of the initial value problem

P2

[
∂

∂λ
z(x, λ)

]
+ λ r(x)

∂

∂λ
z(x, λ) + r(x)z(x, λ) = 0

∂

∂λ
z(α, λ) =

∂

∂λ
z′(α, λ) = 0.

Thus, from Green’s identity (30.24) it follows that∫ β

α

(
∂

∂λ
z(x, λ)P2[z(x, λ)] − z(x, λ)P2

[
∂

∂λ
z(x, λ)

])
dx

=
∫ β

α

r(x)z2(x, λ)dx

=
(
p(x)

(
∂

∂λ
z(x, λ)z′(x, λ) − ∂

∂λ
z′(x, λ)z(x, λ)

))∣∣∣∣
β

α

= p(β)W
(
∂

∂λ
z(β, λ), z(β, λ)

)
;

i.e.,

W

(
∂

∂λ
z(β, λ), z(β, λ)

)
> 0.

Now in the interval (λ′
n, λ

′
n+1) we know that z(β, λ) �= 0, thus for all

λ ∈ (λ′
n, λ

′
n+1) the function φ(λ) = z′(β, λ)/z(β, λ) is well defined. Further,

since

φ′(λ) = − W
(

∂
∂λz(β, λ), z(β, λ)

)
z2(β, λ)

it follows that φ′(λ) < 0, i.e., in the interval (λ′
n, λ

′
n+1) the function φ(λ)

monotonically decreases. Also, since z(β, λ′
n) = z(β, λ′

n+1) = 0, z′(β, λ′
n) �=

0, and z′(β, λ′
n+1) �= 0, it is necessary that φ(λ′

n) = ∞, and φ(λ′
n+1) = −∞,

i.e., φ(λ) monotonically decreases from +∞ to −∞. Therefore, there exists
a unique λ′′

n ∈ (λ′
n, λ

′
n+1) such that

z′(β, λ′′
n)

z(β, λ′′
n)

= − d0

d1
.

Hence, for the problem (36.1), (33.14) there exists a sequence of eigenvalues
λ′′

1 < λ′′
2 < · · · such that λ′′

n ∈ (λ′
n, λ

′
n+1), and z(x, λ′′

n), n = 1, 2, . . . are the
corresponding eigenfunctions. Obviously, z(x, λ′′

n) has exactly (n− 1) zeros
in (α, β).

Now we shall give some examples of singular Sturm–Liouville problems
which show that the properties of eigenvalues and eigenfunctions for regular
problems do not always hold.
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Example 37.1. For the singular Sturm–Liouville problem (36.2),

y(0) = 0, |y(x)| ≤ M < ∞ for all x ∈ (0,∞) (37.7)

each λ ∈ (0,∞) is an eigenvalue and sin
√
λx is the corresponding eigenfunc-

tion. Thus, in comparison with the regular problems where the spectrum
is always discrete, the singular problems may have continuous spectrum.

Example 37.2. Consider the singular Sturm–Liouville problem (36.2),

y(−π) = y(π), y′(−π) = y′(π). (37.8)

This problem has eigenvalues λ1 = 0, λn+1 = n2, n = 1, 2, . . . . The eigen-
value λ1 = 0 is simple and 1 is its corresponding eigenfunction. The eigen-
value λn+1 = n2, n ≥ 1 is not simple and two independent eigenfunctions
are sinnx and cosnx. Thus, in contrast with regular problems where the
eigenvalues are simple, there may be multiple eigenvalues for singular prob-
lems.

Finally, we remark that the properties of the eigenvalues and eigenfunc-
tions of regular Sturm–Liouville problems can be extended under appro-
priate assumptions to singular problems also in which the function p(x) is
zero at α or β, or both, but remains positive in (α, β). This case includes,
in particular, the following examples.

Example 37.3. Consider the singular Sturm–Liouville problem

(1 − x2)y′′ − 2xy′ + λy = ((1 − x2)y′)′ + λy = 0 (37.9)

lim
x→−1

y(x) < ∞, lim
x→1

y(x) < ∞. (37.10)

The eigenvalues of this problem are λn = n(n − 1), n = 1, 2, . . . and the
corresponding eigenfunctions are the Legendre polynomials Pn−1(x) which
in terms of Rodrigues’ formula are defined by

Pn(x) =
1

2n (n)!
dn

dxn
(x2 − 1)n, n = 0, 1, . . . . (37.11)

Example 37.4. Consider the singular Sturm–Liouville problem (37.9),

y′(0) = 0, lim
x→1

y(x) < ∞. (37.12)

The eigenvalues of this problem are λn = (2n − 2)(2n − 1), n = 1, 2, . . .
and the corresponding eigenfunctions are the even Legendre polynomials
P2n−2(x).
Example 37.5. Consider the singular Sturm–Liouville problem (37.9),

y(0) = 0, lim
x→1

y(x) < ∞. (37.13)
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The eigenvalues of this problem are λn = (2n−1)(2n), n = 1, 2, . . . and the
corresponding eigenfunctions are the odd Legendre polynomials P2n−1(x).

Example 37.6. Consider the singular Sturm–Liouville problem

y′′ − 2xy′ + λy = 0 =
(
e−x2

y′
)′

+ λe−x2
y (37.14)

lim
x→−∞

y(x)
|x|k < ∞, lim

x→∞
y(x)
xk

< ∞ for some positive integer k.

(37.15)
The eigenvalues of this problem are λn = 2(n − 1), n = 1, 2, . . . and the
corresponding eigenfunctions are the Hermite polynomials Hn−1(x) which
in terms of Rodrigues’ formula are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

, n = 0, 1, . . . . (37.16)

Example 37.7. Consider the singular Sturm–Liouville problem

xy′′ + (1 − x)y′ + λy = 0 =
(
xe−xy′)′ + λe−xy (37.17)

lim
x→0

|y(x)| < ∞, lim
x→∞

y(x)
xk

< ∞ for some positive integer k.

(37.18)
The eigenvalues of this problem are λn = n − 1, n = 1, 2, . . . and the
corresponding eigenfunctions are the Laguerre polynomials Ln−1(x) which
in terms of Rodrigues’ formula are defined by

Ln(x) =
ex

n!
dn

dxn

(
xne−x

)
. (37.19)

Problems

37.1. Show that the set {1, cosnx, n = 1, 2, . . .} is orthogonal on [0, π]
with r(x) = 1.

37.2. Show that the set
{√

2
π sinnx, n = 1, 2, . . .

}
is orthonormal on

[0, π] with r(x) = 1.

37.3. Show that the set
{

1√
2π
, 1√

π
cosnx, 1√

π
sinnx, n = 1, 2, . . .

}
is

orthonormal on [−π, π] with r(x) = 1.

37.4. Show that the substitution x = cos θ transforms the Cheby-
shev DE

(1 − x2)y′′ − xy′ + n2y = 0 (37.20)
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into an equation with constant coefficients. Hence, find its linearly inde-
pendent solutions cos(n cos−1 x) and sin(n cos−1 x). Further, deduce that

(i) Tn(x) = cos(n cos−1 x) =
n

2

[n/2]∑
m=0

(−1)m (n−m− 1)!
m! (n− 2m)!

(2x)n−2m, n ≥ 1;

(ii)
∫ 1

−1
(1 − x2)−1/2Tm(x)Tn(x)dx =

⎧⎨
⎩

0, m �= n
π/2, m = n �= 0
π, m = n = 0.

37.5. Show that for the Legendre polynomials Pn(x), n = 0, 1, . . .
defined in (37.11) the following hold:

∫ 1

−1
Pn(x)Pm(x)dx =

⎧⎨
⎩

0 if m �= n

2
2n+ 1

if m = n.

37.6. Find the eigenvalues and eigenfunctions of the problem (36.2)
with the following boundary conditions:

(i) y(0) = 0, y′(β) = 0.
(ii) y′(0) = 0, y(β) = 0.
(iii) y′(0) = 0, y′(β) = 0.
(iv) y(0) = 0, y(β) + y′(β) = 0.
(v) y(0) − y′(0) = 0, y′(β) = 0.
(vi) y(0) − y′(0) = 0, y(β) + y′(β) = 0.

37.7. Find the eigenvalues and eigenfunctions of each of the following
Sturm–Liouville problems:

(i) y′′ + λy = 0, y(0) = y(π/2) = 0.
(ii) y′′ + (1 + λ)y = 0, y(0) = y(π) = 0.
(iii) y′′ + 2y′ + (1 − λ)y = 0, y(0) = y(1) = 0.
(iv) (x2y′)′ + λx−2y = 0, y(1) = y(2) = 0.
(v) x2y′′ + xy′ + (λx2 − (1/4))y = 0, y(π/2) = y(3π/2) = 0.
(vi) ((x2 + 1)y′)′ + λ(x2 + 1)−1y = 0, y(0) = y(1) = 0.

37.8. Consider the boundary value problem

x2y′′ + xy′ + λy = 0, 1 < x < e
y(1) = 0, y(e) = 0. (37.21)

(i) Show that (37.21) is equivalent to the Sturm–Liouville problem

(xy′)′ +
λ

x
y = 0, 1 < x < e

y(1) = 0, y(e) = 0.
(37.22)
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(ii) Verify that for (37.22) the eigenvalues are λn = n2π2, n = 1, 2, . . .
and the corresponding eigenfunctions are φn(x) = sin(nπ lnx).
(iii) Show that ∫ e

1

1
x
φm(x)φn(x)dx =

{
0, m �= n
1/2, m = n.

37.9. Verify that for the Sturm–Liouville problem

(xy′)′ +
λ

x
y = 0, 1 < x < e2π

y′(1) = 0, y′(e2π) = 0

the eigenvalues are λn = n2/4, n = 0, 1, . . . and the corresponding eigen-
functions are φn(x) = cos

(
n ln x

2

)
. Show that

∫ e2π

1

1
x
φm(x)φn(x)dx = 0, m �= n.

37.10. Consider Mathieu’s DE (see Example 20.1)

y′′ + (λ+ 16d cos 2x)y = 0, 0 ≤ x ≤ π

together with the periodic boundary conditions

y(0) = y(π), y′(0) = y′(π).

Show that the eigenfunctions of this problem are orthogonal.

37.11. Consider the DE

x4y′′ + k2y = 0. (37.23)

(i) Verify that the general solution of (37.23) is

y(x) = x

(
A cos

k

x
+B sin

k

x

)
.

(ii) Find the eigenvalues and eigenfunctions of the Sturm–Liouville prob-
lem (37.23), y(α) = y(β) = 0, 0 < α < β.

37.12. Show that the problem

y′′ − 4λy′ + 4λ2y = 0, y(0) = 0, y(1) + y′(1) = 0

has only one eigenvalue, and find the corresponding eigenfunction.
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37.13. Show that for the singular Sturm–Liouville problem (36.1),
(32.7) with p(α) = p(β) eigenfunctions corresponding to different eigen-
values are orthogonal in [α, β] with respect to the weight function r(x).

37.14. Solve the following singular Sturm–Liouville problems

(i) y′′ + λy = 0, y′(0) = 0, |y(x)| < ∞ for all x ∈ (0,∞)
(ii) y′′ + λy = 0, |y(x)| < ∞ for all x ∈ (−∞,∞).

Answers or Hints

37.1. Verify directly.

37.2. Verify directly.

37.3. Verify directly.

37.4. Equation (37.20) reduces to d2y
dθ2 + n2y = 0. (i) Use induction and

the identity
cos((n+1) cos−1 x)+cos((n−1) cos−1 x) = 2 cos(n cos−1 x) cos(cos−1 x),

i.e., Tn+1(x) = 2xTn(x) − Tn−1(x). (ii) Use x = cos θ.

37.5. From (37.11) it follows that

2n n!
∫ 1

−1 Pm(x)Pn(x)dx =
∫ 1

−1 Pm(x) dn

dxn (x2 − 1)ndx

= − ∫ 1
−1

d
dxPm(x) dn−1

dxn−1 (x2 − 1)ndx.

37.6. (i)
(

2n−1
2β

)2
π2, sin

(
2n−1
2β

)
πx. (ii)

(
2n−1
2β

)2
π2, cos

(
2n−1
2β

)
πx

(iii)
(

n−1
β

)2
π2, cos

(
n−1

β

)
πx. (iv) λ2

n, where λ = λn is a solution of

tanλβ + λ = 0, sinλnx. (v) λ2
n, where λ = λn is a solution of cotλβ =

λ, sinλnx + λn cosλnx. (vi) λ2
n, where λ = λn is a solution of tanλβ =

2λ/(λ2 − 1), sinλnx+ λn cosλnx.

37.7. (i) 4n2, sin 2nx. (ii) n2 − 1, sinnx. (iii) −n2π2, e−x sinnπx.
(iv) 4n2π2, sin 2nπ

(
1 − 1

x

)
. (v) n2, 1√

x
sinn

(
x− π

2

)
. (vi) 16n2,

sin(4n tan−1 x).

37.8. Verify directly.

37.9. Verify directly.

37.10. Follow the proof of Theorem 36.2.

37.11. (i) Verify directly. (ii) kn = nπαβ
β−α , x sin

[
nπβ(x−α)

x(β−α)

]
.

37.12. −1, xe−2x.

37.13. Use (36.11).

37.14. (i) λ ≥ 0, φ(x) = cos
√
λx. (ii) λ ≥ 0, φ(x) = c1 cos

√
λx +

c2 sin
√
λx.



Lecture 38
Eigenfunction Expansions

The basis {e1, . . . , en} (ek is the unit vector) of IRn has an important
characteristic, namely, for every u ∈ IRn there is a unique choice of constants
α1, . . . , αn for which

u =
n∑

i=1

αie
i.

Further, from the orthonormality of the vectors ei, 1 ≤ i ≤ n we can
determine αi, 1 ≤ i ≤ n as follows:

< u , ej > =

〈
n∑

i=1

αie
i , ej

〉
=

n∑
i=1

αi < ei , ej > = αj , 1 ≤ j ≤ n.

Thus, the vector u has a unique representation

u =
n∑

i=1

< u , ei > ei.

A natural generalization of this result which is widely applicable and
has led to a vast amount of advanced mathematics can be stated as follows:
Let {φn(x), n = 0, 1, 2, . . .} be an orthogonal set of functions in the interval
[α, β] with respect to the weight function r(x). Then an arbitrary function
f(x) can be expressed as an infinite series involving orthogonal functions
φn(x), n = 0, 1, 2, . . . as

f(x) =
∞∑

n=0

cnφn(x). (38.1)

It is natural to ask the meaning of equality in (38.1), i.e., the type of
convergence, if any, of the infinite series on the right so that we will have
some idea as to how well this represents f(x). We shall also determine the
constant coefficients cn, n = 0, 1, 2, . . . in (38.1).

Let us first proceed formally without considering the question of con-
vergence. We multiply (38.1) by r(x)φm(x) and integrate from α to β, to
obtain ∫ β

α

r(x)φm(x)f(x)dx =
∫ β

α

∞∑
n=0

cnr(x)φn(x)φm(x)dx.

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  

 

 
doi: 10.1007/978-0-387-71276-5_38, © Springer Science + Business Media, LLC 2008 

279



280 Lecture 38

Now assuming that the operations of integration and summation on the
right of the above equality can be interchanged, we find∫ β

α

r(x)φm(x)f(x)dx =
∞∑

n=0

cn

∫ β

α

r(x)φm(x)φn(x)dx

= cm

∫ β

α

r(x)φ2
m(x)dx = cm‖φm‖2.

Thus, under suitable convergence conditions, the constant coefficients cn,
n = 0, 1, 2, . . . are given by the formula

cn =
∫ β

α

r(x)φn(x)f(x)dx

/
‖φn‖2. (38.2)

However, if the set {φn(x)} is orthonormal, so that ‖φn‖ = 1, then we have

cn =
∫ β

α

r(x)φn(x)f(x)dx. (38.3)

If the series
∑∞

n=0 cnφn(x) converges uniformly to f(x) in [α, β], then
the above formal procedure is justified, and then the coefficients cn are
given by (38.2).

The coefficients cn obtained in (38.2) are called the Fourier coefficients
of the function f(x) with respect to the orthogonal set {φn(x)} and the
series

∑∞
n=0 cnφn(x) with coefficients (38.2) is called the Fourier series of

f(x).

We shall write

f(x) ∼
∞∑

n=0

cnφn(x)

which, in general, is just a correspondence, i.e., often f(x) �= ∑∞
n=0 cnφn(x),

unless otherwise proved.

Example 38.1. In Problem 37.5 we have seen that the set of Legendre
polynomials {φn(x) = Pn(x), n = 0, 1, . . .} is orthogonal on [−1, 1] with
r(x) = 1. Also,

‖Pn‖2 =
∫ 1

−1
P 2

n(x)dx =
2

2n+ 1
.

Thus, from (38.2) for a given function f(x) the coefficients in the Fourier–
Legendre series f(x) ∼ ∑∞

n=0 cnPn(x) are given by

cn =
2n+ 1

2

∫ 1

−1
Pn(x)f(x)dx, n ≥ 0.
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Example 38.2. The set of functions{
1, cos

nπx

L
, sin

nπx

L
, L > 0, n ≥ 1

}
is orthogonal with respect to the weight function r(x) = 1 in the interval
[−L,L]. For the norms of these functions, we have∫ L

−L

cos2
nπx

L
dx =

{
2L, n = 0
L, n ≥ 1∫ L

−L

sin2 nπx

L
dx = L, n ≥ 1.

The general trigonometric–Fourier series of a given function f(x) is defined
to be

f(x) ∼ 1
2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (38.4)

where

an =
1
L

∫ L

−L

f(x) cos
nπx

L
dx, n ≥ 0

bn =
1
L

∫ L

−L

f(x) sin
nπx

L
dx, n ≥ 1.

(38.5)

Now we shall examine the convergence of the Fourier series to the func-
tion f(x). For this, to make the analysis widely applicable we assume that
the functions φn(x), n = 0, 1, . . . and f(x) are only piecewise continuous
in [α, β]. Let the sum of first N + 1 terms

∑N
n=0 cnφn(x) be denoted by

SN (x). We consider the difference |SN (x) − f(x)| for various values of N
and x. If for an arbitrary ε > 0 there is an integer N(ε) > 0 such that
|SN (x) − f(x)| < ε, then the Fourier series converges (uniformly) to f(x)
for all x in [α, β]. On the other hand, if N depends on x and ε both, then
the Fourier series converges pointwise to f(x). However, for the moment
both of these type of convergence are too demanding, and we will settle for
something less. To this end, we need the following definition.

Definition 38.1. Let each of the functions ψn(x), n ≥ 0 and ψ(x) be
piecewise continuous in [α, β]. We say that the sequence {ψn(x)} converges
in the mean to ψ(x) (with respect to the weight function r(x) in the interval
[α, β]) if

lim
n→∞ ‖ψn − ψ‖2 = lim

n→∞

∫ β

α

r(x)(ψn(x) − ψ(x))2dx = 0. (38.6)

Thus, the Fourier series converges in the mean to f(x) provided

lim
N→∞

∫ β

α

r(x)(SN (x) − f(x))2dx = 0. (38.7)
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Before we prove the convergence of the Fourier series, let us consider
the possibility of representing f(x) by a series of the form

∑∞
n=0 dnφn(x),

where the coefficients dn are not necessarily the Fourier coefficients. Let

TN (x; d0, d1, . . . , dN ) =
N∑

n=0

dnφn(x)

and let eN be the quantity ‖TN − f‖. Then from the orthogonality of the
functions φn(x) it is clear that

e2N = ‖TN − f‖2 =
∫ β

α

r(x)

(
N∑

n=0

dnφn(x) − f(x)

)2

dx

=
N∑

n=0

d2
n

∫ β

α

r(x)φ2
n(x)dx− 2

N∑
n=0

dn

∫ β

α

r(x)φn(x)f(x)dx

+
∫ β

α

r(x)f2(x)dx

=
N∑

n=0

d2
n‖φn‖2 − 2

N∑
n=0

dncn‖φn‖2 + ‖f‖2

=
N∑

n=0

‖φn‖2(dn − cn)2 −
N∑

n=0

‖φn‖2c2n + ‖f‖2.

(38.8)
Thus, the quantity eN is least when dn = cn for n = 0, 1, . . . , N. Therefore,
we have established the following theorem.

Theorem 38.1. For any given nonnegative integer N, the best ap-
proximation in the mean to a function f(x) by an expression of the form∑N

n=0 dnφn(x) is obtained when the coefficients dn are the Fourier coeffi-
cients of f(x).

Now in (38.8) let dn = cn, n = 0, 1, . . . , N to obtain

‖SN − f‖2 = ‖f‖2 −
N∑

n=0

‖φn‖2c2n. (38.9)

Thus, it follows that

‖Tn − f‖2 =
N∑

n=0

‖φn‖2(dn − cn)2 + ‖SN − f‖2. (38.10)

Hence, we find
0 ≤ ‖SN − f‖ ≤ ‖TN − f‖. (38.11)



Eigenfunction Expansions 283

If the series
∑∞

n=0 dnφn(x) converges in the mean to f(x), i.e., if
limN→∞ ‖TN − f‖ = 0, then from (38.11) it is clear that the Fourier series
converges in the mean to f(x), i.e., limN→∞ ‖SN − f‖ = 0. However, then
(38.10) implies that

lim
N→∞

N∑
n=0

‖φn‖2(dn − cn)2 = 0.

But this is possible only if dn = cn, n = 0, 1, . . . . Thus, we have proved the
following result.

Theorem 38.2. If a series of the form
∑∞

n=0 dnφn(x) converges in the
mean to f(x), then the coefficients dn must be the Fourier coefficients of
f(x).

Now from the equality (38.9) we note that

0 ≤ ‖SN+1 − f‖ ≤ ‖SN − f‖.

Thus, the sequence {‖SN −f‖, N = 0, 1, . . .} is nonincreasing and bounded
below by zero, and therefore, it must converge. If it converges to zero, then
the Fourier series of f(x) converges in the mean to f(x). Further, from
(38.9) we have the inequality

N∑
n=0

‖φn‖2c2n ≤ ‖f‖2.

Since the sequence {CN , N = 0, 1, . . .} where CN =
∑N

n=0 ‖φn‖2c2n is
nondecreasing and bounded above by ‖f‖2, it must converge. Therefore,
we have ∞∑

n=0

‖φn‖2c2n ≤ ‖f‖2. (38.12)

Hence, from (38.9) we see that the Fourier series of f(x) converges in the
mean to f(x) if and only if

‖f‖2 =
∞∑

n=0

‖φn‖2c2n. (38.13)

For the particular case when φn(x), n = 0, 1, 2, . . . are orthonormal,
(38.12) reduces to Bessel’s inequality

∞∑
n=0

c2n ≤ ‖f‖2 (38.14)
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and (38.13) becomes the well-known Parseval’s equality

‖f‖2 =
∞∑

n=0

c2n. (38.15)

We summarize the above considerations in the following theorem.

Theorem 38.3. Let {φn(x), n = 0, 1, . . .} be an orthonormal set,
and let cn be the Fourier coefficients of f(x) given in (38.3). Then the
following hold:

(i) The series
∑∞

n=0 c
2
n converges, and therefore

lim
n→∞ cn = lim

n→∞

∫ β

α

r(x)φn(x)f(x)dx = 0.

(ii) The Bessel inequality (38.14) holds.
(iii) The Fourier series of f(x) converges in the mean to f(x) if and only
if Parseval’s equality (38.15) holds.

Now let Cp[α, β] be the space of all piecewise continuous functions in
[α, β]. The orthogonal set {φn(x), n = 0, 1, . . .} is said to be complete in
Cp[α, β] if for every function f(x) of Cp[α, β] its Fourier series converges
in the mean to f(x). Clearly, if {φn(x), n = 0, 1, . . .} is orthonormal then
it is complete if and only if Parseval’s equality holds for every function in
Cp[α, β]. The following property of an orthogonal set is fundamental.

Theorem 38.4. If an orthogonal set {φn(x), n = 0, 1, . . .} is complete
in Cp[α, β], then any function of Cp[α, β] that is orthogonal to every φn(x)
must be zero except possibly at a finite number of points in [α, β].

Proof. Without loss of generality, let the set {φn(x), n = 0, 1, . . .}
be orthonormal. If f(x) is orthogonal to every φn(x), then from (38.3) all
Fourier coefficients cn of f(x) are zero. But, then from the Parseval equality
(38.15) the function f(x) must be zero except possibly at a finite number
of points in [α, β].

The importance of this result lies in the fact that if we delete even one
member from an orthogonal set, then the remaining functions cannot form
a complete set. For example, the set {cosnx, n = 1, 2, . . .} is not complete
in [0, π] with respect to the weight function r(x) = 1.

Unfortunately, there is no single procedure for establishing the com-
pleteness of a given orthogonal set. However, the following results are
known.

Theorem 38.5. The orthogonal set {φn(x), n = 0, 1, . . .} in the inter-
val [α, β] with respect to the weight function r(x) is complete in Cp[α, β] if
φn(x) is a polynomial of degree n.
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As a consequence of this result, it is clear that the Fourier–Legendre
series of a piecewise continuous function f(x) in [−1, 1] converges in the
mean to f(x).

Theorem 38.6. The set of all eigenfunctions {φn(x), n = 1, 2, . . .}
of the regular Sturm–Liouville problem (36.1), (33.14) is complete in the
space Cp[α, β].

Theorem 38.6 can be extended to encompass the periodic eigenvalue
problem (36.1), (32.7). In such a case, if necessary, two linearly independent
mutually orthogonal eigenfunctions corresponding to one eigenvalue are
chosen. Thus, from the problem (36.2), y(−L) = y(L), y′(−L) = y′(L)
(cf. Example 37.2) it is clear that the set {1, cos(nπx/L), sin(nπx/L),
L > 0, n ≥ 1} considered in Example 38.2 is complete in Cp[−L,L], and
therefore the trigonometric–Fourier series of any function f(x) in Cp[−L,L]
converges in the mean to f(x).



Lecture 39

Eigenfunction Expansions
(Contd.)

The analytical discussions of uniform and pointwise convergence of the
Fourier series of the function f(x) to f(x) are too difficult to be included
here. Therefore, we state the following result without its proof.

Theorem 39.1. Let {φn(x), n = 1, 2, . . .} be the set of all eigen-
functions of the regular Sturm–Liouville problem (36.1), (33.14). Then the
following hold:

(i) The Fourier series of f(x) converges to [f(x+)+f(x−)]/2 at each point
in the open interval (α, β) provided f(x) and f ′(x) are piecewise continuous
in [α, β].

(ii) The Fourier series of f(x) converges uniformly and absolutely to f(x) in
[α, β] provided f(x) is continuous having a piecewise continuous derivative
f ′(x) in [α, β], and is such that f(α) = 0 if φn(α) = 0 and f(β) = 0 if
φn(β) = 0.

Example 39.1. To obtain the Fourier series of the function f(x) = 1 in
the interval [0, π] in terms of the eigenfunctions φn(x) = sinnx, n = 1, 2, . . .
of the eigenvalue problem (36.2), (36.3) we recall that

‖φn‖2 =
∫ π

0
sin2 nxdx =

π

2
.

Thus, it follows that

cn =
1

‖φn‖2

∫ π

0
f(x) sinnxdx =

2
π

∫ π

0
sinnxdx =

2
nπ

(1 − (−1)n) .

Hence, we have

1 =
4
π

∞∑
n=1

1
(2n− 1)

sin(2n− 1)x. (39.1)

From Theorem 39.1 it is clear that equality in (39.1) holds at each point of
the open interval (0, π).

Example 39.2. We shall obtain the Fourier series of the function
f(x) = x − x2, x ∈ [0, 1] in terms of the eigenfunctions φ1(x) = 1 − x,
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φn(x) = sin
√
λn(1 − x), n = 2, 3, . . . of the eigenvalue problem (36.2),

(36.8). For this, we note that

‖φ1‖2 =
∫ 1

0
(1 − x)2dx =

1
3
,

‖φn‖2 =
∫ 1

0
sin2

√
λn(1 − x)dx =

1
2

∫ 1

0
(1 − cos 2

√
λn(1 − x))dx

=
1
2

[
x+

1
2
√
λn

sin 2
√
λn(1 − x)

]∣∣∣∣
1

0
=

1
2

[
1 − 1

2
√
λn

sin 2
√
λn

]

=
1
2

[
1 − 1

2
√
λn

2 sin
√
λn cos

√
λn

]
=

1
2
[1 − cos2

√
λn]

=
1
2

sin2
√
λn, n ≥ 2,

where we have used the fact that tan
√
λn =

√
λn.

Thus, it follows that

c1 = 3
∫ 1

0
(1 − x)(x− x2)dx =

1
4

and for n ≥ 2,

cn =
2

sin2 √
λn

∫ 1

0
(x− x2) sin

√
λn(1 − x)dx

=
2

sin2 √
λn

[
(x−x2)

cos
√
λn(1−x)√
λn

∣∣∣∣
1

0
−
∫ 1

0
(1−2x)

cos
√
λn(1−x)√
λn

dx

]

=
−2√

λn sin2 √
λn

[
(1−2x)

sin
√
λn(1−x)

−√
λn

∣∣∣∣
1

0
−
∫ 1

0
−2

sin
√
λn(1−x)

−√
λn

dx

]

=
−2√

λn sin2 √
λn

[
sin

√
λn√

λn

− 2√
λn

cos
√
λn(1 − x)√
λn

∣∣∣∣
1

0

]

=
−2

λ
3/2
n sin2 √

λn

[√
λn sin

√
λn − 2 + 2 cos

√
λn

]

=
−2

λ
3/2
n sin2 √

λn

[
λn cos

√
λn − 2 + 2 cos

√
λn

]

=
2

λ
3/2
n sin2 √

λn

[
2 − (2 + λn) cos

√
λn

]
.

Hence, we have

x−x2 =
1
4
(1−x)+

∞∑
n=2

2

λ
3/2
n sin2 √

λn

(2−(2+λn) cos
√
λn) sin

√
λn(1−x).

(39.2)
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From Theorem 39.1 we find that equality in (39.2) holds uniformly in [0, 1].

The convergence of Fourier–Legendre and trigonometric–Fourier series
cannot be concluded from Theorem 39.1. For these, we have the following
results.

Theorem 39.2. Let f(x) and f ′(x) be piecewise continuous in the
interval [−1, 1] . Then the Fourier–Legendre series of f(x) converges to
[f(x+)+f(x−)]/2 at each point in the open interval (−1, 1), and at x = −1
the series converges to f(−1+) and at x = 1 it converges to f(1−).

Theorem 39.3. Let f(x) and f ′(x) be piecewise continuous in the
interval [−L,L] (L > 0). Then the trigonometric–Fourier series of f(x)
converges to [f(x+) + f(x−)]/2 at each point in the open interval (−L,L)
and at x = ±L the series converges to [f(−L+) + f(L−)]/2.

Example 20.3. Consider the function

f(x) =
{

0, x ∈ [−π, 0)
1, x ∈ [0, π].

Clearly, f(x) is piecewise continuous in [−π, π], with a single jump discon-
tinuity at 0. From (38.5), we obtain a0 = 1, and for n ≥ 1,

an =
1
π

∫ π

0
cosnxdx = 0, bn =

1
π

∫ π

0
sinnxdx =

2
nπ

(1 − (−1)n) .

Thus, we have

f(x) =
1
2

+
2
π

∞∑
n=1

1
(2n− 1)

sin(2n− 1)x. (39.3)

From Theorem 39.3, equality (39.3) holds at each point in the open intervals
(−π, 0) and (0, π), whereas at x = 0 the right-hand side is 1/2, which is the
same as [f(0+) + f(0−)]/2. Also, at x = ±π the right-hand side is again
1/2, which is the same as [f(−π+) + f(π−)]/2.

Now we shall consider the nonhomogeneous self-adjoint DE

(p(x)y′)′ + q(x)y + µr(x)y = P2[y] + µr(x)y = f(x) (39.4)

together with the homogeneous boundary conditions (33.14). In (39.4) the
functions p(x), q(x) and r(x) are assumed to satisfy the same restrictions
as in (36.1), µ is a given constant and f(x) is a given function in [α, β].
For the nonhomogeneous boundary value problem (39.4), (33.14) we shall
assume that the solution y(x) can be expanded in terms of eigenfunctions
φn(x), n = 1, 2, . . . of the corresponding homogeneous Sturm–Liouville
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problem (36.1), (33.14), i.e., y(x) =
∑∞

n=1 cnφn(x). To compute the coeffi-
cients cn in this expansion first we note that the infinite series

∑∞
n=1 cnφn(x)

does satisfy the boundary conditions (33.14) since each φn(x) does so. Next
consider the DE (39.4) that y(x) must satisfy. For this, we have

P2

[ ∞∑
n=1

cnφn(x)

]
+ µr(x)

∞∑
n=1

cnφn(x) = f(x).

Thus, if we can interchange the operations of summation and differentiation,
then ∞∑

n=1

cnP2[φn(x)] + µr(x)
∞∑

n=1

cnφn(x) = f(x).

Since P2[φn(x)] = −λnr(x)φn(x), this relation is the same as
∞∑

n=1

(µ− λn)cnφn(x) =
f(x)
r(x)

. (39.5)

Now we assume that the function f(x)/r(x) satisfies the conditions of The-
orem 39.1, so that it can be written as

f(x)
r(x)

=
∞∑

n=1

dnφn(x),

where from (38.2) the coefficients dn are given by

dn =
1

‖φn‖2

∫ β

α

r(x)φn(x)
f(x)
r(x)

dx =
1

‖φn‖2

∫ β

α

φn(x)f(x)dx. (39.6)

With this assumption (39.5) takes the form
∞∑

n=1

[(µ− λn)cn − dn]φn(x) = 0.

Since this equation holds for each x in [α, β], it is necessary that

(µ− λn)cn − dn = 0, n = 1, 2, . . . . (39.7)

Thus, if µ is not equal to any eigenvalue of the corresponding homoge-
neous Sturm–Liouville problem (36.1), (33.14), i.e., µ �= λn, n = 1, 2, . . . ,
then

cn =
dn

µ− λn
, n = 1, 2, . . . . (39.8)

Hence, the solution y(x) of the nonhomogeneous problem (39.4), (33.14)
can be written as

y(x) =
∞∑

n=1

dn

µ− λn
φn(x). (39.9)
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Of course, the convergence of (39.9) is yet to be established.

If µ = λm, then for n = m equation (39.7) is of the form 0 · cm −
dm = 0. Thus, if dm �= 0 then it is impossible to solve (39.7) for cm,
and hence the nonhomogeneous problem (39.4), (33.14) has no solution.
Further, if dm = 0 then (39.7) is satisfied for any arbitrary value of cm, and
hence the nonhomogeneous problem (39.4), (33.14) has an infinite number
of solutions. From (39.6), dm = 0 if and only if

∫ β

α

φm(x)f(x)dx = 0,

i.e., f(x) in (39.4) is orthogonal to the eigenfunction φm(x).

This formal discussion for the problem (39.4), (33.14) is summarized in
the following theorem.

Theorem 39.4. Let f(x) be continuous in the interval [α, β]. Then
the nonhomogeneous boundary value problem (39.4), (33.14) has a unique
solution provided µ is different from all eigenvalues of the corresponding
homogeneous Sturm–Liouville problem (36.1), (33.14). This solution y(x)
is given by (39.9), and the series converges for each x in [α, β]. If µ is equal
to an eigenvalue λm of the corresponding homogeneous Sturm–Liouville
problem (36.1), (33.14), then the nonhomogeneous problem (39.4), (33.14)
has no solution unless f(x) is orthogonal to φm(x), i.e., unless

∫ β

α

φm(x)f(x)dx = 0.

Further, in this case the solution is not unique.

Alternatively, this result can be stated as follows.

Theorem 39.5 (Fredholm’s Alternative). For a given con-
stant µ and a continuous function f(x) in [α, β] the nonhomogeneous prob-
lem (39.4), (33.14) has a unique solution, or else the corresponding homo-
geneous problem (36.1), (33.14) has a nontrivial solution.

Example 39.4. Consider the nonhomogeneous boundary value prob-
lem

y′′ + π2y = x− x2

y(0) + y′(0) = 0 = y(1).
(39.10)

This problem can be solved directly to obtain the unique solution

y(x) =
2
π4 cosπx− 1

π3

(
1 +

4
π2

)
sinπx+

1
π2

(
x− x2 +

2
π2

)
. (39.11)
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From Example 36.2 we know that π2 is not an eigenvalue of the Sturm–
Liouville problem (36.2), (36.8). Thus, from Theorem 39.4 the nonhomoge-
neous problem (39.10) has a unique solution. To find this solution in terms
of the eigenvalues λn and eigenfunctions φn(x) of (36.2), (36.8) we note
that the function f(x) = x − x2 has been expanded in Example 39.2, and
hence from (39.2) we have

d1 =
1
4
, dn =

2

λ
3/2
n sin2 √

λn

(2 − (2 + λn) cos
√
λn), n ≥ 2.

Thus, from (39.9) we find that the solution y(x) of (39.10) has the expansion

y(x) =
1

4π2 (1 − x) +
∞∑

n=2

2

(π2 − λn)λ3/2
n sin2 √

λn

× (2 − (2 + λn) cos
√
λn) sin

√
λn(1 − x).

(39.12)

Problems

39.1. For a given function f(x) find the Fourier coefficients that corre-
spond to the set of Chebyshev polynomials Tn(x) defined in Problem 37.4.

39.2. Expand a given piecewise continuous function f(x), x ∈ [0, π]

(i) in a Fourier–cosine series

f(x) ∼ a0

2
+

∞∑
n=1

an cosnx where an =
2
π

∫ π

0
f(t) cosntdt, n ≥ 0;

(ii) in a Fourier–sine series

f(x) ∼
∞∑

n=1

bn sinnx where bn =
2
π

∫ π

0
f(t) sinntdt, n ≥ 1.

39.3. Show that the Fourier–Legendre series of the function f(x) =
cosπx/2 up to P4(x) in the interval [−1, 1] is

2
π
P0(x) − 10

π3 (12 − π2)P2(x) +
18
π5 (π4 − 180π2 + 1680)P4(x).

39.4. Find the trigonometric–Fourier series of each of the following
functions:

(i) f(x) =
{

1, − π < x < 0
2, 0 < x < π.

(ii) f(x) = x− π, − π < x < π.
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(iii) f(x) = |x|, − π < x < π. (iv) f(x) = x2, − π < x < π.

(v) f(x) =

⎧⎨
⎩

x, − π < x < 0
2, x = 0
e−x, 0 < x < π.

(vi) f(x) = x4, − π < x < π.

39.5. (i) Let ψn(x) = n
√
xe−nx2/2, x ∈ [0, 1]. Show that ψn(x) → 0 as

n → ∞ for each x in [0, 1]. Further, show that

e2n =
∫ 1

0
(ψn(x) − 0)2dx =

n

2
(1 − e−n),

and hence en → ∞ as n → ∞. Thus, pointwise convergence does not imply
convergence in the mean.
(ii) Let ψn(x) = xn, x ∈ [0, 1], and f(x) = 0 in [0, 1]. Show that

e2n =
∫ 1

0
(ψn(x) − f(x))2dx =

1
2n+ 1

,

and hence ψn(x) converges in the mean to f(x). Further, show that ψn(x)
does not converge to f(x) pointwise in [0, 1]. Thus, mean convergence does
not imply pointwise convergence.

39.6. Show that the sequence {x/(x+n)} converges pointwise on [0,∞)
and uniformly on [0, a], a > 0.

39.7. Let f(x) =
{

0, x ∈ [−1, 0)
1, x ∈ [0, 1]. Show that

∫ 1

−1

(
f(x) − 1

2
− 3

4
x

)2

dx ≤
∫ 1

−1
(f(x) − c0 − c1x− c2x

2)2dx

for any set of constants c0, c1 and c2.

39.8. Show that the following cannot be the Fourier series representa-
tion for any piecewise continuous function:

(i)
∞∑

n=1

n1/nφn(x). (ii)
∞∑

n=1

1√
n
φn(x).

39.9. Find Parseval’s equality for the function f(x) = 1, x ∈ [0, c] with

respect to the orthonormal set
{√

2
c sin nπx

c , n = 1, 2, . . .
}
.

39.10. Let f(x) and g(x) be piecewise continuous in the interval [α, β]
and have the same Fourier coefficients with respect to a complete orthonor-
mal set. Show that f(x) = g(x) at each point of [α, β] where both functions
are continuous.
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39.11. Let f(x) be a twice continuously differentiable, periodic function
with a period 2π. Show the following:

(i) The trigonometric–Fourier coefficients an and bn of f(x) satisfy

|an| ≤ M

n2 and |bn| ≤ M

n2 , n = 1, 2, . . . ,

where M = 1
π

∫ π

−π
|f ′′(x)|dx.

(ii) The trigonometric–Fourier series of f(x) converges uniformly to f(x)
on [−π, π].

39.12. Solve the following nonhomogeneous boundary value problems
by means of an eigenfunction expansion:

(i) y′′ + 3y = ex, y(0) = 0 = y(1).
(ii) y′′ + 2y = −x, y′(0) = 0 = y(1) + y′(1).

Answers or Hints

39.1. cn = 2dn

π

∫ 1
−1

f(x)Tn(x)√
1−x2 dx, where d0 = 1/2 and dn = 1 for n ≥ 1.

39.2. (i) Use Problem 37.1. (ii) Use Problem 37.2.

39.3. Use (37.11) and f(x) = cosπx/2 in Example 38.1.

39.4. (i) 3
2 + 2

π

(
sinx+ 1

3 sin 3x+ · · ·). (ii) −π +
∑∞

n=1
2(−1)n+1

n sinnx.
(iii) π

2 +
∑∞

n=1
2

πn2 ((−1)n − 1) cosnx. (iv) π2

3 + 4
∑∞

n=1
(−1)n

n2 cosnx.

(v) −
(

e−π−1
2π + π

4

)
+ 1

π

∑∞
n=1

[(
1+(−1)n+1

n2 + 1+(−1)n+1e−π

1+n2

)
cosnx

+
(

n
1+n2

(
1 + (−1)n+1e−π

)
+ π(−1)n+1

n

)
sinnx

]
.

(vi) π4

5 + 8
∑∞

n=1

(
π2

n2 − 6
n4

)
(−1)n cosnx.

39.5. Verify directly.

39.6. Use definition.

39.7. For the given function Fourier–Legendre coefficients are c0 = 1/2, c1
= 3/4, c2 = 0.

39.8. Use Theorem 38.3(i).

39.9. ‖f‖2 = c, c2n =
{

0, n even
8c/(n2π2), n odd. Thus, c = 8c

π2

∑∞
n=1

1
(2n−1)2 .

39.10. Let h(x) = f(x) − g(x) and {φn(x)} be a complete orthonormal
set on the interval [α, β] with respect to the weight function r(x). Note
that for the function h(x) Fourier coefficients cn = 0, n ≥ 0. Now apply
Theorem 38.4.
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39.11. (i) an = 1
π

∫ π

−π
f(x) cosnxdx = − 1

n2π

∫ π

−π
f ′′(x) cosnxdx. (ii)

∣∣ 1
2a0

+
∑∞

n=1(an cosnx+ bn sinnx)| ≤ 1
2 |a0| +

∑∞
n=1(|an| + |bn|).

39.12. (i) 2
∑∞

n=1
nπ(1+e(−1)n+1) sin nπx

(1+n2π2)(3−n2π2) . (ii) 2
∑∞

n=1
(2 cos

√
λn−1) cos

√
λnx

λn(λn−2)(1+sin2
√

λn)
,

where cot
√
λn =

√
λn.



Lecture 40
Nonlinear Boundary

Value Problems

Theorem 32.3 provides necessary and sufficient conditions for the ex-
istence of a unique solution to the linear boundary value problem (6.6),
(32.1). Unfortunately, this result depends on the explicit knowledge of
two linearly independent solutions y1(x) and y2(x) to the homogeneous DE
(6.1), which may not always be available. The purpose of this and the
following lecture is to provide easily verifiable sets of sufficient conditions
so that the second-order nonlinear DE

y′′ = f(x, y) (40.1)

together with the boundary conditions (32.3) has at least and/or at most
one solution.

We begin with the following examples which indicate possible difficulties
that may arise in nonlinear problems.

Example 40.1. The boundary value problem

y′′ = beay, y(0) = y(1) = 0 (40.2)

arises in applications involving the diffusion of heat generated by positive
temperature-dependent sources. For instance, if a = 1, it arises in the
analysis of Joule losses in electrically conducting solids, with b representing
the square of the constant current and ey the temperature-dependent resis-
tance, or in frictional heating with b representing the square of the constant
shear stress and ey the temperature dependent fluidity.

If ab = 0, the problem (40.2) has a unique solution:

(i) If b = 0, then y(x) ≡ 0.
(ii) If a = 0, then y(x) = (b/2)x(x− 1).

If ab < 0, the problem (40.2) has as many solutions as the number of
roots of the equation c =

√
2|ab| cosh c/4, and also for each such ci, the

solution is

yi(x) = − 2
a

{
ln
(

cosh
(

1
2
ci

(
x− 1

2

)))
− ln

(
cosh

(
1
4
ci

))}
.

From the equation c =
√

2|ab| cosh c/4, it follows that if
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< 1, (40.2) has two solutions√
|ab|
8

min
c≥0

cosh c
4

c
4

= 1, (40.2) has one solution
> 1, (40.2) has no solution.

If ab > 0, the problem (40.2) has a unique solution

y1(x) =
2
a

ln (c1/ cos
(

1
2
c1

(
x− 1

2

)))
− 1
a

ln(2ab),

where c1/4 ∈ (−π/2, π/2) is the root of the equation

c

4
=

√
ab

8
cos

c

4
.

Example 40.2. Consider the nonlinear boundary value problem

y′′ + |y| = 0, y(0) = 0, y(β) = B, (40.3)

where β and B are parameters.

It is clear that a solution y(x) of y′′ + |y| = 0 is a solution of y′′ − y = 0
if y(x) ≤ 0, and of y′′ + y = 0 if y(x) ≥ 0.

Since the function f(x, y) = |y| satisfies the uniform Lipschitz condition
(7.3), for each m the initial value problem y′′ + |y| = 0, y(0) = 0, y′(0) = m
has a unique solution y(x,m). Further, it is easy to obtain

y(x,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for all x ∈ [0, β], if m = 0

m sinhx for all x ∈ [0, β], if m < 0

m sinx for all x ∈ [0, π], if m > 0

−m sinh(x− π) for all x ∈ [π, β], if m > 0.

Thus, the boundary value problem (40.3) has a unique solution y(x) if
β < π, and it is given by

y(x) =

⎧⎪⎨
⎪⎩

0, if B = 0

B(sinhβ)−1 sinhx if B < 0

B(sinβ)−1 sinx if B > 0.

If β ≥ π, and B > 0 then (40.3) has no solution, whereas it has an infinite
number of solutions y(x) = c sinx if β = π, and B = 0, where c is an
arbitrary constant. If β > π, and B = 0 then y(x) ≡ 0 is the only solution
of (40.3). Finally, if β > π, and B < 0 then (40.3) has two solutions y1(x)
and y2(x) which are given by

y1(x) = B(sinhβ)−1 sinhx
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and

y2(x) =

{
−B(sinh(β − π))−1 sinx, x ∈ [0, π]

B(sinh(β − π))−1 sinh(x− π), x ∈ [π, β].

The following result provides sufficient conditions on the function f(x, y)
so that the boundary value problem (40.1), (32.3) has at least one solution.

Theorem 40.1. Suppose that the continuous function f(x, y) satisfies
a uniform Lipschitz condition (7.3) in [α, β]×IR, and in addition, is bounded
for all values of its arguments, i.e., |f(x, y)| ≤ M. Then the boundary value
problem (40.1), (32.3) has at least one solution.

Proof. From Theorem 15.3, for each m the initial value problem (40.1),
y(α) = A, y′(α) = m has a unique solution y(x,m) in [α, β]. Now since

y′(x,m) = y′(α,m) +
∫ x

α

y′′(t,m)dt

= m+
∫ x

α

f(t, y(t,m))dt

≥ m−
∫ x

α

Mdt = m−M(x− α)

we find that

y(x,m) = y(α,m) +
∫ x

α

y′(t,m)dt

≥ A+
∫ x

α

(m−M(t− α))dt

= A+m(x− α) − M

2
(x− α)2.

Thus, in particular

y(β,m) ≥ A+m(β − α) − M

2
(β − α)2. (40.4)

Clearly, for m = m1 sufficiently large and positive, (40.4) implies that
y(β,m1) > B. In the same way we obtain

y(β,m) ≤ A+m(β − α) +
M

2
(β − α)2

and hence, for m = m2 sufficiently large and negative, y(β,m2) < B. From
Theorem 16.6 we know that y(β,m) is a continuous function of m, so there
is at least one m3 such that m2 < m3 < m1 and y(β,m3) = B. Thus, the
solution of the initial value problem (40.1), y(α) = A, y′(α) = m3 is also a
solution of the boundary value problem (40.1), (32.3).
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Example 40.3. Since the function f(x, y) = x sin y satisfies the con-
ditions of Theorem 40.1 in [0, 2π] × IR, the boundary value problem

y′′ = x sin y, y(0) = y(2π) = 0 (40.5)

has at least one solution. Indeed y(x) ≡ 0 is a solution of (40.5).

The following result gives sufficient conditions so that the problem
(40.1), (32.3) has at most one solution.

Theorem 40.2. Suppose that the function f(x, y) is continuous, and
nondecreasing in y for all (x, y) ∈ [α, β] × IR. Then the boundary value
problem (40.1), (32.3) has at most one solution.

Proof. Let y1(x) and y2(x) be two solutions of (40.1), (32.3). Then it
follows that

y′′
1 (x) − y′′

2 (x) = f(x, y1(x)) − f(x, y2(x)),

which is the same as

(y1(x)−y2(x))(y′′
1 (x)−y′′

2 (x)) = (y1(x)−y2(x))(f(x, y1(x))−f(x, y2(x))).
(40.6)

Since f(x, y) is nondecreasing in y, the right side of (40.6) is nonnegative.
Thus, we have ∫ β

α

(y1(x) − y2(x))(y′′
1 (x) − y′′

2 (x))dx ≥ 0,

i.e.,

(y1(x) − y2(x))(y′
1(x) − y′

2(x))
∣∣∣∣
β

α

−
∫ β

α

(y′
1(x) − y′

2(x))
2dx ≥ 0. (40.7)

In (40.7) the first term is zero, and hence it is necessary that∫ β

α

(y′
1(x) − y′

2(x))
2dx = 0. (40.8)

Equation (40.8) holds if and only if y′
1(x)−y′

2(x) ≡ 0, i.e., y1(x)−y2(x) =
c (constant). However, since y1(α) − y2(α) = 0 the constant c = 0. Hence,
y1(x) ≡ y2(x).

Example 40.4. If ab > 0, then the function beay is nondecreasing in
y, and hence for this case Theorem 40.2 implies that the boundary value
problem (40.2) has at most one solution.

Since the boundary value problem y′′ = −y, y(0) = y(π) = 0 has an
infinite number of solutions, conclusion of Theorem 40.2 does not remain
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true when f(x, y) is decreasing with respect to y. Thus, in Theorem 40.2
“nondecreasing” cannot be replaced by “decreasing.”

In Theorem 40.1 the condition that f(x, y) is bounded for all values of
its arguments in [α, β] × IR makes it too restrictive. This condition is not
satisfied in both the Examples 40.1 and 40.2. In fact even a linear function
in y, i.e., f(x, y) = p(x)y + q(x) does not meet this requirement. Thus, we
state without proof a result which is very useful in applications.

Theorem 40.3. Suppose that K > 0 is a given number, and the
function f(x, y) is continuous in the setD = {(x, y) : α ≤ x ≤ β, |y| ≤ 2K},
and hence there exists a M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ D.
Further, we assume that

1
8
(β − α)2M ≤ K, and max{|A|, |B|} ≤ K. (40.9)

Then the boundary value problem (40.1), (32.3) has at least one solution
y(x) such that |y(x)| ≤ 2K for all x ∈ [α, β].

Corollary 40.4. Suppose that the function f(x, y) is continuous and
bounded, i.e., |f(x, y)| ≤ M for all (x, y) ∈ [α, β] × IR. Then the boundary
value problem (40.1), (32.3) has at least one solution.

Thus, we see that in Theorem 40.1 the hypothesis that f(x, y) is uniform
Lipschitz, is superfluous. We also note that for the given length of the
interval (β −α), the inequality (1/8)(β −α)2M ≤ K in (40.9) restricts the
upper bound M on the function |f(x, y)| in D. Alternatively, for fixed M
it provides an upper bound on the length of the interval, i.e.,

(β − α) ≤
√

8K
M

. (40.10)

Because of (40.10) Theorem 40.3 is called a local existence theorem, which
corresponds to the local existence result for the initial value problems. Fur-
ther, Corollary 40.4 is a global existence result.

Example 40.5. For the problem (40.2) the conditions of Theorem 40.3
are satisfied provided (1/8)|b|e2|a|K ≤ K. Thus, in particular, the problem
y′′ = ey, y(0) = y(1) = 0 has at least one solution y(x) if (1/8)e2K ≤ K,
i.e., K  1.076646182. Further, |y(x)| ≤ 2.153292364.

Example 40.6. For the problem (40.3) the conditions of Theorem
40.3 hold provided (1/8)β2(2K) ≤ K, i.e., β ≤ 2 and |B| ≤ K. Thus, as a
special case the problem y′′ + |y| = 0, y(0) = 0, y(2) = 1 has at least one
solution y(x), satisfying |y(x)| ≤ 2.



Lecture 41
Nonlinear Boundary

Value Problems (Contd.)

Picard’s method of successive approximations for the initial value prob-
lems discussed in Lecture 8 is equally useful for the boundary value problem
(40.1), (32.3). For this, from Problem 33.7 we note that this problem is
equivalent to the integral equation

y(x) = �(x) +
∫ β

α

G(x, t)f(t, y(t))dt, (41.1)

where

�(x) =
(β − x)
(β − α)

A+
(x− α)
(β − α)

B (41.2)

and the Green’s function G(x, t) is defined in (33.25).

The following result provides sufficient conditions on the function f(x, y)
so that the sequence {ym(x)} generated by the iterative scheme

y0(x) = �(x)

ym+1(x) = �(x) +
∫ β

α

G(x, t)f(t, ym(t))dt, m = 0, 1, 2, . . .
(41.3)

converges to the unique solution of the integral equation (41.1).

Theorem 41.1. Suppose that the function f(x, y) is continuous and
satisfies a uniform Lipschitz condition (7.3) in [α, β] × IR, and in addition

θ =
1
8
L(β − α)2 < 1. (41.4)

Then the sequence {ym(x)} generated by the iterative scheme (41.3) con-
verges to the unique solution y(x) of the boundary value problem (40.1),
(32.3). Further, for all x ∈ [α, β] the following error estimate holds:

|y(x) − ym(x)| ≤ θm

1 − θ
max

α≤x≤β
|y1(x) − y0(x)|, m = 0, 1, 2, . . . . (41.5)

Proof. From (41.3) it is clear that the successive approximations ym(x)
exist as continuous functions in [α, β]. We need to prove that

|ym+1(x) − ym(x)| ≤ θm max
α≤x≤β

|y1(x) − y0(x)|. (41.6)
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When m = 1, (41.3) gives

|y2(x) − y1(x)| ≤
∫ β

α

|G(x, t)||f(t, y1(t)) − f(t, y0(t))|dt

≤ L

∫ β

α

|G(x, t)||y1(t) − y0(t)|dt

≤ L max
α≤x≤β

|y1(x) − y0(x)|
∫ β

α

|G(x, t)|dt

≤ 1
8
L(β − α)2 max

α≤x≤β
|y1(x) − y0(x)|,

where we have used the Lipschitz condition and Problem 33.7. Thus, (41.6)
holds for m = 1. Now let (41.6) be true for m = k ≥ 1; then from (41.3),
we have

|yk+2(x) − yk+1(x)| ≤
∫ β

α

|G(x, t)||f(t, yk+1(t)) − f(t, yk(t))|dt

≤ L

∫ β

α

|G(x, t)||yk+1(t) − yk(t)|dt

≤ Lθk max
α≤x≤β

|y1(x) − y0(x)|
∫ β

α

|G(x, t)|dt

≤ 1
8
(β − α)2θk max

α≤x≤β
|y1(x) − y0(x)|

≤ θk+1 max
α≤x≤β

|y1(x) − y0(x)|.

Hence, the inequality (41.6) is true for all m.

Now for n > m inequality (41.6) gives

|yn(x) − ym(x)| ≤
n−1∑
k=m

|yk+1(x) − yk(x)|

≤
n−1∑
k=m

θk max
α≤x≤β

|y1(x) − y0(x)|

≤ θm

1 − θ
max

α≤x≤β
|y1(x) − y0(x)|.

(41.7)

Since θ < 1, an immediate consequence of (41.7) is that the sequence
{ym(x)} is uniformly Cauchy in [α, β], and hence converges uniformly to a
function y(x) in [α, β]. Clearly, this limit function y(x) is continuous. Let-
ting m → ∞ in (41.3), it follows that y(x) is a solution of (41.1). Also,
letting n → ∞ in (41.7) results in (41.5).
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To prove the uniqueness of the solution y(x) of (41.1), let z(x) be another
solution of (41.1). Then once again from Problem 33.7 it follows that

|y(x) − z(x)| ≤
∫ β

α

|G(x, t)||f(t, y(t)) − f(t, z(t))|dt

≤ L

∫ β

α

|G(x, t)||y(t) − z(t)|dt

≤ 1
8
L(β − α)2 max

α≤x≤β
|y(x) − z(x)|.

(41.8)

However, since θ < 1 inequality (41.8) implies that maxα≤x≤β |y(x) −
z(x)| = 0, i.e., y(x) = z(x) for all x ∈ [α, β]. This completes the proof
of the theorem.

For a given function the Lipschitz constant L is known, so the condition
(41.4) restricts the length of the interval (β − α). Similarly, for the given
boundary conditions the length of the interval (β − α) is known, so the
condition (41.4) restricts the Lipschitz constant L. The problem of finding
the largest interval of existence of the unique solution y(x) of (40.1), (32.3)
is of interest. By modifying the above proof it can be shown that the
inequality (41.4) can indeed be replaced by

1
π2L(β − α)2 < 1. (41.9)

Obviously, from Example 40.2 inequality (41.9) is the best possible in the
sense that < cannot be replaced by ≤ .

Example 41.1. Consider the boundary value problem

y′′ = sin y, y(0) = 0, y(1) = 1. (41.10)

For this problem L = 1, β − α = 1 and hence θ = 1/8, so from Theorem
41.1, (41.10) has a unique solution. Further, since

y0(x) = x

y1(x) = x+
∫ 1

0
G(x, t) sin tdt = x+ x sin 1 − sinx

it follows that

|y1(x) − y0(x)| = |x sin 1 − sinx| ≤ 0.06

and hence from (41.5), we have

|y(x) − ym(x)| ≤ 8
7

(
1
8

)m

(0.06), m = 0, 1, 2, . . . .
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Since the function beay satisfies Lipschitz condition (7.3) only in com-
pact subsets of [α, β] × IR, Theorem 41.1 cannot be applied to Exam-
ple 40.1. To accommodate such a situation we need to modify Theorem
40.1. For this, we note that if y(x) is a solution of (40.1), (32.3) then
w(x) = y(x) − �(x) is a solution of the problem

w′′ = F (x,w) (41.11)

w(α) = w(β) = 0, (41.12)

where F (x,w) = f(x,w+ �(x)). Clearly, F satisfies the Lipschitz condition
(7.3) with the same Lipschitz constant as that for f. For the boundary value
problem (41.11), (41.12) we state the following result which generalizes
Theorem 41.1.

Theorem 41.2. Suppose that the function F (x,w) is continuous and
satisfies a uniform Lipschitz condition (7.3) in [α, β]×[−N,N ], whereN > 0
is a constant. Further, let inequality (41.4) hold and either

1
8
(β − α)2 max

α≤x≤β
|F (x, 0)| ≤ N(1 − θ), (41.13)

or
1
8
(β − α)2 max

α≤x≤β
|w|≤N

|F (x,w)| ≤ N. (41.14)

Then the boundary value problem (41.11), (41.12) has a unique solution
w(x) such that |w(x)| ≤ N for all x ∈ [α, β]. Further, the iterative scheme

w0(x) = 0

wm+1(x) =
∫ β

α

G(x, t)F (t, wm(t))dt, m = 0, 1, 2, . . .
(41.15)

converges to w(x), and

|w(x) − wm(x)| ≤ θm

1 − θ
max

α≤x≤β
|w1(x)|, m = 0, 1, 2, . . . . (41.16)

Example 41.2. The function F (x,w) = f(x, y) = −ey satisfies Lip-
schitz condition in [α, β] × [−N,N ] with the Lipschitz constant L = eN .
Thus, for the problem (40.2) with b = −1, a = 1 conditions of Theorem
41.2 reduce to

1
8
eN < 1, i.e., 0 < N ≤ 2.0794 (41.17)

and

1
8

≤ N

(
1 − 1

8
eN

)
, i.e., 0.14615 ≤ N ≤ 2.0154 (41.18)
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or
1
8
eN ≤ N, i.e., 0.14443 ≤ N ≤ 3.26167. (41.19)

Thus, from (41.17) and (41.19) the problem y′′ + ey = 0, y(0) = y(1) =
0 has a unique solution y(x) in the region [0, 1] × [−2.0794, 2.0794], and
|y(x)| ≤ 0.14443. Further, since from (41.15), w0(x) = y0(x) = 0, w1(x) =
y1(x) = (1/2)x(1 − x), (41.16) reduces to

|y(x) − ym(x)| ≤ θm

1 − θ

∣∣∣∣12x(1 − x)
∣∣∣∣ ≤ 1

8
θm

1 − θ

and hence for N = 0.14443, i.e., θ  0.14441, the error estimate becomes

|y(x) − ym(x)| ≤ (0.1461)(0.14441)m, m = 0, 1, 2, . . . .

Finally, in this lecture we shall prove the following result.

Theorem 41.3. Suppose that F (x,w) and ∂F (x,w)/∂w are continuous
and 0 ≤ ∂F (x,w)/∂w ≤ L in [α, β]× IR. Then the boundary value problem
(41.11), (41.12) has a unique solution w(x). Further, for any k such that
k ≥ L the iterative scheme

w0(x) = 0

wm+1(x) =
∫ β

α

G(x, t)[−kwm(t) + F (t, wm(t))]dt, m = 0, 1, 2, . . .

(41.20)
converges to w(x), where the Green’s function G(x, t) is defined in (33.29).

Proof. As in Theorem 41.1, first we shall show that the sequence
{wm(x)} generated by (41.20) is a Cauchy sequence. For this, we have

wm+1(x) − wm(x)

=
∫ β

α

G(x, t)[−k(wm(t) − wm−1(t)) + (F (t, wm(t)) − F (t, wm−1(t)))]dt

= −
∫ β

α

G(x, t)
[
k − ∂F

∂w
(t, wm(t) − θ(t)(wm(t) − wm−1(t)))

]
×[wm(t) − wm−1(t)]dt,

where the mean value theorem has been used and 0 ≤ θ(t) ≤ 1. Since
0 ≤ ∂F (x,w)/∂w ≤ L and k ≥ L, we find that 0 ≤ k − ∂F/∂w ≤ k. Thus,
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from Problem 33.9 it follows that

|wm+1(x) − wm(x)| ≤
(∫ β

α

|G(x, t)|kdt
)
Zm

≤
⎛
⎝1 −

cosh
√
k
(

β+α
2 − x

)
cosh

√
k
(

β−α
2

)
⎞
⎠ Zm

≤ µ Zm,

where Zm = maxα≤x≤β |wm(x) − wm−1(x)|, and

µ =

⎛
⎝1 − 1

cosh
√
k
(

β−α
2

)
⎞
⎠ < 1.

From this it is immediate that

|wm+1(x) − wm(x)| ≤ µm max
α≤x≤β

|w1(x) − w0(x)|

and hence {wm(x)} is a Cauchy sequence. Thus, in (41.20) we may take
the limit as m → ∞ to obtain

w(x) =
∫ β

α

G(x, t)[−kw(t) + F (t, w(t))]dt,

which is equivalent to the boundary value problem (41.11), (41.12). The
uniqueness of this solution w(x) can be proved as in Theorem 41.1.

Example 41.3. The linear boundary value problem

y′′ = p(x)y + q(x), y(α) = y(β) = 0

where p, q ∈ C[α, β] and p(x) ≥ 0 for all x ∈ [α, β] has a unique solution.

Problems

41.1. Show that the following boundary value problems have at least
one solution:

(i) y′′ = 1 + x2e−|y|, y(0) = 1, y(1) = 7.
(ii) y′′ = sinx cos y + ex, y(0) = 0, y(1) = 1.

41.2. Use Theorem 40.3 to obtain optimum value of β > 0 so that the
following boundary value problems have at least one solution:
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(i) y′′ = y cos y + sinx, y(0) = y(β) = 0.
(ii) y′′ = y2 sinx+ e−x cosx, y(0) = 1, y(β) = 2.

41.3. Show that the following boundary value problems have at most
one solution:

(i) y′′ = y3 + x, y(0) = 0, y(1) = 1.
(ii) y′′ = y + cos y + x2, y(0) = 1, y(1) = 5.

41.4. Find first two Picard’s iterates for the following boundary value
problems:

(i) y′′ + |y| = 0, y(0) = 0, y(1) = 1.
(ii) y′′ + e−y = 0, y(0) = y(1) = 0.

Further, give a bound on the error introduced by stopping the computations
at the second iterate.

41.5. State and prove a result analogous to Theorem 41.1 for the bound-
ary value problem (40.1), (32.4).

41.6. Prove the following result: Suppose that the function f(x, y, y′)
is continuous and satisfies a uniform Lipschitz condition

|f(x, y, y′) − f(x, z, z′)| ≤ L|y − z| +M |y′ − z′|

in [α, β] × IR2, and in addition

µ =
1
8
L(β − α)2 +

1
2
M(β − α) < 1.

Then the sequence {ym(x)} generated by the iterative scheme

y0(x) = �(x)

ym+1(x) = �(x) +
∫ β

α

G(x, t)f(t, ym(t), y′
m(t))dt, m = 0, 1, 2, . . .

where �(x) and G(x, t) are, respectively, defined in (41.2) and (33.25), con-
verges to the unique solution y(x) of the boundary value problem (33.23),
(32.3). Further, the following error estimate holds:

‖y − ym‖ ≤ µm

1 − µ
‖y1 − y0‖, m = 0, 1, 2, . . . ,

where ‖y‖ = Lmaxα≤x≤β |y(x)| +M maxα≤x≤β |y′(x)|.
41.7. State and prove a result analogous to Problem 41.6 for the bound-

ary value problem (33.23), (32.4).
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41.8. Solve the following boundary value problems:

(i) y′′ = −2yy′, y(0) = 1, y(1) = 1/2.
(ii) y′′ = −(y′)2/y, y(0) = 1, y′(1) = 3/4.
(iii) y′′ = 2y3, y(1) = 1, y(2) = 1/2

(iv) y′′ = −(y′)3, y(0) =
√

2, y(1) = 2.

∗41.9. Suppose f(x, y) is continuous and has a continuous first-order
derivative with respect to y for 0 ≤ x ≤ 1, y ∈ IR, and the boundary value
problem y′′ = f(x, y), y(0) = A, y(1) = B has a solution y(x), 0 ≤ x ≤ 1.
If ∂f(x, y)/∂y > 0 for x ∈ [0, 1] and y ∈ IR, show that there is an ε > 0
such that the boundary value problem y′′ = f(x, y), y(0) = A, y(1) = B1
has a solution for 0 ≤ x ≤ 1 and |B −B1| ≤ ε.

Answers or Hints

41.1. (i) Use Corollary 40.4. (ii) Use Corollary 40.4.

41.2. (i) 2. (ii) 4
√

17/17.

41.3. (i) Use Theorem 40.2. (ii) Use Theorem 40.2.

41.4. (i) y1(x) = 1
6 (7x − x3), y2(x) = 1

360 (417x − 70x3 + 3x5), error =√
3/1,512. (ii) y1(x) = 1

2 (x−x2), y2(x) = (1−x) ∫ x

0 t exp
(− 1

2 (t− t2)
)
dt+

x
∫ 1
0 (1 − t) exp

(− 1
2 (t− t2)

)
dt, error = same as in Example 41.2.

41.5. The statement and the proof remain the same, except now �(x) =
A + (x − α)B, θ = 1

2L(β − α)2 < 1 and the Green’s function G(x, t) is as
in (33.27).

41.6. Use Problem 33.7 and modify the proof of Theorem 41.1.

41.7. The statement and the proof remain the same, except now �(x) =
A + (x − α)B, µ = 1

2L(β − α)2 +M(β − α) < 1 and the Green’s function
G(x, t) is as in (33.27).

41.8. (i) 1/(1 + x). (ii)
√

3x+ 1. (iii) 1/x. (iv)
√

2x+ 2.



Lecture 42
Topics for Further Studies

We begin this lecture with a brief description of a selection of topics re-
lated to ordinary differential equations which have motivated a vast amount
of research work in the last 30 years. It is clear from our previous lectures
that one of the main areas of research in differential equations is the exis-
tence, uniqueness, oscillation, and stability of solutions to nonlinear initial
value problems [2, 3, 10, 12, 18, 21–25, 33, 36–38], and the existence and
uniqueness of solutions to nonlinear boundary value problems [1, 5, 6, 9,
11, 31, 32, 34, 35]. When modeling a physical or biological system one
must first decide what structure best fits the underlying properties of the
system under investigation. In the past a continuous approach was usually
adopted. For example, if one wishes to model a fluid flow, a continuous ap-
proach would be appropriate; and the evolution of the system can then be
described by ordinary or partial differential equations. On the other hand,
if data are only known at distinct times, a discrete approach may be more
appropriate; and the evolution of the system in this case can be described
by difference equations [4–9, 14]. However, the model variables may evolve
in time in a way which involves both discrete and continuous elements. For
example, suppose the life span of a species of insect is one time unit, and at
the end of its life span the insect mates, lays eggs, and then dies. Suppose
the eggs lie dormant for a further one time unit before hatching. The time
scale on which the insect population evolves is therefore best represented
by a set of continuous intervals separated by discrete gaps. As a result,
recently time scale calculus (differentiation and integration) has been in-
troduced. This has led to the study of dynamic equations of so-called time
scales which unifies the theories of differential and difference equations and
to cases in between [15]. Other types of differential equations which have
made a significant impact in mathematics and are being continuously stud-
ied are functional differential equations [8, 13, 19], impulsive differential
equations [27], differential equations in abstract spaces [16, 26], set and
multivalued differential equations [17, 29], and fuzzy differential equations
[28]. Now, instead of going into detail on any one of these topics (which is
outside the scope of this book), we will describe a number of physical prob-
lems which have motivated some of the current research in the presented
literature.

First, we describe an initial value problem. Consider a spherical cloud
of gas and denote its total pressure at a distance r from the center by p(r).
The total pressure is due to the usual gas pressure and a contribution from

R.P. Agarwal and D. O’Regan, An Introduction to Ordinary Differential Equations,  

 

 
doi: 10.1007/978-0-387-71276-5_42, © Springer Science + Business Media, LLC 2008 

308



Topics for Further Studies 309

radiation,

p =
1
3
aT 4 +

RT

v
,

where a, T, R and v are, respectively, the radiation constant, the absolute
temperature, the gas constant, and the volume. Pressure and density ρ =
v−1 vary with r and p = Kργ , where γ and K are constants. Let m be the
mass within a sphere of radius r and G be the constant of gravitation. The
equilibrium equations for the configuration are

dp

dr
= − Gmρ

r2
and

dm

dr
= 4πr2ρ.

Elimination of m yields

1
r2

d

dr

(
r2

ρ

dp

dr

)
+ 4πGρ = 0.

Now let γ = 1 + µ−1 and set ρ = λ φµ, so that

p = Kρ1+µ−1
= Kλ1+µ−1

φµ+1.

Thus, we have
1
r2

d

dr

(
r2
dφ

dr

)
+ k2φµ = 0,

where

k2 =
4πGλ1−µ−1

(µ+ 1)K
.

Next let x = kr, to obtain

d2φ

dx2 +
2
x

dφ

dr
+ φµ = 0.

If we let λ = ρ0, the density at r = 0, then we may take φ = 1 at x = 0.
By symmetry the other condition is dφ/dx = 0 when x = 0. A solution of
the differential equation satisfying these initial conditions is called a Lane–
Emden function of index µ = (γ − 1)−1.

The differential equation

y′′ +
2
t
y′ + g(y) = 0 (42.1)

was first studied by Emden when he examined the thermal behavior of
spherical clouds of gas acting on gravitational equilibrium subject to the
laws of thermodynamics. The usual interest is in the case g(y) = yn, n ≥ 1,
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which was treated by Chandrasekhar in his study of stellar structure. The
natural initial conditions for (42.1) are

y(0) = 1, y′(0) = 0. (42.2)

It is easy to check that (42.1), (42.2) can be solved exactly if n = 1 with
the solution

y(t) =
sin t
t

and if n = 5 with the solution

y(t) =
(

1 +
1
3
t2
)−1/2

.

It is also of interest to note that the Emden differential equation y′′−ta yb =
0 arises in various astrophysical problems, including the study of the density
of stars. Of course, one is interested only in positive solutions in the above
models.

Next we describe four boundary value problems, namely, (i) a problem in
membrane theory, (ii) a problem in non-Newtonian flow, (iii) a problem in
spherical caps, and (iv) a problem in the theory of colloids. These problems
have motivated the study of singular differential equations with boundary
conditions over finite and infinite intervals, and have led to new areas in
the qualitative theory of differential equations [6, 9, 11, 31, 32].

Our first problem examines the deformation shape of a membrane cap
which is subjected to a uniform vertical pressure P and either a radial
displacement or a radial stress on the boundary. Assuming the cap is
shallow (i.e., nearly flat), the strains are small, the pressure P is small, and
the undeformed shape of the membrane is radially symmetric and described
in cylindrical coordinates by z = C(1 − rγ) (0 ≤ r ≤ 1 and γ > 1) where
the undeformed radius is r = 1 and C > 0 is the height at the center of
the cap. Then for any radially symmetric deformed state, the scaled radial
stress Sr satisfies the differential equation

r2S′′
r + 3rS′

r =
λ2r2γ−2

2
+
βνr2

Sr
− r2

8S2
r

,

the regularity condition

Sr(r) bounded as r → 0+,

and the boundary condition

b0Sr(1) + b1S
′
r(1) = A,

where λ and β are positive constants depending on the pressure P, the
thickness of the membrane and Young’s modulus, b0 > 0, b1 ≥ 0, and
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A > 0. For the stress problem b0 = 1, b1 = 0, whereas for the displacement
problem, b0 = 1 − ν, b1 = 1, where ν (0 ≤ ν < 0.5) is the Poisson ratio.

For the second problem, recall that the Cauchy stress T in an incom-
pressible homogeneous fluid of third grade has the form

T = −ρI+µA1 +α1A2 +α2A2
1 +β1A3 +β2[A1A2 +A2A1]+β3(trA2

1)A2,
(42.3)

where −ρI is the spherical stress due to the constraint of incompressibility,
µ, α1, α2, β1, β2, β3 are material moduli, and A1, A2, A3 are the first
three Rivlin–Ericksen tensors given by

A1 = L + LT , A2 =
dA1

dt
+ LT A1 + A1L

and

A3 =
dA2

dt
+ LT A2 + A2L;

here L represents the spatial gradient of velocity and d/dt the material
time derivative. Now consider the flow of a third grade fluid, obeying
(42.3), maintained at a cylinder (of radius R) by its angular velocity (Ω).
The steady state equation for this fluid is

0 = µ

[
d2ṽ

dr̃2
+

1
r̃

dṽ

dr̃
− ṽ

r̃2

]
+ β

(
dṽ

dr̃
− ṽ

r̃

)2 [
6
d2ṽ

dr̃2
− 2
r̃

dṽ

dr̃
+

2ṽ
r̃2

]

with the boundary conditions

ṽ = RΩ at r̃ = R, and ṽ → 0 as r̃ → ∞;

here ṽ is the nonzero velocity in polar coordinates and µ and β are material
constants. Making the change of variables

r =
r̃

R
and v =

ṽ

RΩ
,

our problem is transformed to

d2v

dr2
+

1
r

dv

dr
− v

r2
+ ε

(
dv

dr
− v

r

)2 [
6
d2v

dr2
− 2
r

dv

dr
+

2v
r2

]
= 0

for 1 < r < ∞, with the boundary conditions

v = 1 if r = 1, v → 0 as r → ∞;

here ε = Ω2β/µ. As a result our non-Newtonian fluid problem reduces to a
second-order boundary value problem on the infinite interval.
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Our third problem concerns

⎧⎨
⎩ y′′ +

(
t2

32y2 − λ2

8

)
= 0, 0 < t < 1

y(0) = 0, 2y′(1) − (1 + ν)y(1) = 0, 0 < ν < 1 and λ > 0,

which models the large deflection membrane response of a spherical cap.
Here Sr = y/t is the radial stress at points on the membrane, d(ρSr)/dρ
is the circumferential stress (ρ = t2), λ is the load geometry and ν is the
Poisson ratio.

For our fourth problem we note that in the theory of colloids it is possible
to relate particle stability with the charge on the colloidal particle. We
model the particle and its attendant electrical double layer using Poisson’s
equation for a flat plate. If Ψ is the potential, ρ the charge density, D the
dielectric constant, and y the displacement, then we have

d2Ψ
dy2 = − 4πρ

D
.

We assume that the ions are point charged and their concentrations in the
double layer satisfies the Boltzmann distribution

ci = c∗i exp
(−zieΨ

κT

)
,

where ci is the concentration of ions of type i, c∗i = limΨ→0 ci, κ the
Boltzmann constant, T the absolute temperature, e the electrical charge,
and z the valency of the ion. In the neutral case, we have

ρ = c+z+e+ c−z−e, or ρ = ze(c+ − c−),

where z = z+ − z−. Then using

c+ = c exp
(−zeΨ

κT

)
and c− = c exp

(
zeΨ
κT

)
,

it follows that
d2Ψ
dy2 =

8πcze
D

sinh
(
zeΨ
κT

)
,

where the potential initially takes some positive value Ψ(0) = Ψ0 and tends
to zero as the distance from the plate increases, i.e., Ψ(∞) = 0. Using the
transformation

φ(y) =
zeΨ(y)
κT

and x =

√
4πcz2e2

κTD
y,
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the problem becomes

d2φ

dx2 = 2 sinh φ, 0 < x < ∞
φ(0) = c1, lim

x→∞ φ(x) = 0,
(42.4)

where c1 = zeΨ0/(κT ) > 0. From a physical point of view, we wish the
solution φ in (42.4) also to satisfy limx→∞ φ′(x) = 0.

Finally, we remark that the references provided include an up-to-date
account on many areas of research on the theory of ordinary differential
equations. An inquisitive reader can easily select a book which piques his
interest and pursue further research in the field.
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