
 

CHAPTER 5 
 

TEACHING MODELS 
 
 
 

OVERVIEW 
 
 

From the standpoint of symbolic algebra as a language, we characterize 
teaching models as successions of mathematical texts that are exchanged 
between pupil and teacher. Said characterization involves notions such as that 
of text and of textual space, the differentiation of which corresponds to the 
difference between meaning and sense, given that once one understands that 
a text is the result of reading a textual space, teaching and learning in 
mathematics class may be interpreted as a repeated reading process –
transformation of textual spaces into texts, which are in turn taken as textual 
spaces to be read, and so on and so forth. This theoretical treatment of 
teaching models is completed by use of the notions of mathematical sign 
system and of language strata, to be applied to the case of concrete modeling 
introduced in the previous chapter, as well as to the analysis of syntactic 
models in algebra and of the semantic – syntactic relationship in algebra, the 
discussion of which was also begun in the preceding chapter. 
 

 
 

1. INTRODUCTION 
 
 

The structuralist movement of the 1960s advocated teaching a mathematics in 
which school algebra was conceived as the explanation of the structural 
properties of numbers and of arithmetic-algebraic operations. In the texts and 
materials produced in that period there were many different presentations, for 
example, of the laws of commutation and association, which referred first to 
numbers (or a specific number system) and second to letters. This is an 
example of how the transition from arithmetic to algebra was reduced to a 
mere paraphrase of the laws that were valid for numbers, but applied on this 
occasion to algebraic expressions. 

This conception of algebra as simply an extension of arithmetic knowledge 
denies the conceptual and qualitative changes in the way of operating and of 
solving problems that the appropriation of algebraic language presupposes, 
and in the teaching of mathematics at middle school levels it gives rise to 
what one might call “a forgotten boundary” (Chevallard, 1983): the boundary 
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between arithmetic and an algebraic way of thinking, which is eliminated 
from the aspect of the structural properties common to both —for example, 
commutativity and associativity are properties that are equally valid for 
numbers and letters— since that viewpoint hides the characteristics that 
differentiate them. 

Despite the years that have elapsed and the fact that the structuralist 
movement is no longer in vogue, it is still necessary to talk about this in 
curriculum development because our teaching plans and syllabuses for 
mathematics are still influenced by it. With the reforms that have been carried 
out since then, perhaps the approach proposed has changed, and consequently 
there has been a development of syllabuses with a greater inclusion of the 
need to use the solving of problem situations. Nevertheless, there is still a 
need to insist on more profound changes, which have not yet taken place. In 
this book we discuss various problems that will have to be taken into account 
in the future, in the design of those parts of syllabuses that have to do with 
solving first-degree equations and arithmetic-algebraic word problems. 

The importance of algebra as a language of generalizations and as a 
method is precisely what distinguishes it from arithmetic, and what for 
centuries has set it in a privileged place in education. However, algebra has 
ceased to play that role in our current syllabuses. One cannot yet see a proper 
recovery of the significance of school algebra as a symbolic language whose 
potential lies in its use as a means for expressing situations and for solving 
problems posed in various areas of knowledge. 

In the last chapter we talked about a clinical study of 12- to 14-year-old 
children that showed the difficulties that secondary school students face when 
they have to read or write algebraic language. At the time of the observation, 
the children had already received instruction in pre-algebra and had been 
introduced to elementary algebra through solving linear equations and the 
corresponding word problems, but they had not yet received systematic 
instruction on the use of open expressions, the equivalence of expressions, or 
solving systems of equations. At this level it was still possible to see a tension 
in the students between the way of reading and expressing themselves using 
the language of arithmetic and the need to produce new meanings for 
mathematical texts in the context of algebra. The latter aspect is yet another 
indicator that the arithmetic-algebraic boundary cannot be avoided, because 
that would lead to false conceptions about the processes of acquiring the 
language of algebra and, consequently, about the role of teaching in such 
processes. On the other hand, the importance of considering the reading and 
writing of symbolic algebra as an educational goal for learners at middle 
school level is reaffirmed. 
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1.1. Problem-solving ability and competence in the use of the Mathematical 
Sign Systems (MSSs) of algebra 

 
 
Problem solving is an objective that has remained in the school curriculum 
despite all the educational reforms that have taken place, and at present it has 
particular importance in the curriculum of mathematics at middle school 
levels. Moreover, research on mathematics education has always considered 
that it was a matter worth studying in depth, and the many studies that have 
been performed in this field have constantly pointed out the role played by 
symbolization in problem solving. 

It might be said that the first tasks of mathematical symbolization that the 
learner performs at a higher level of generality than that of arithmetic come 
when he tries to solve a problem with the tool of algebra, and that then there is 
the beginning of a process of combined evolution of symbolization and 
problem solving that involves using algebra as a language in which to model 
and solve problems derived from various branches of knowledge (physics, 
biology, geometry, financial affairs, etc.), subsequently culminating in the use 
of algebra as a basic language for expressing statements and procedures 
performed in other branches of mathematics (analytic geometry, calculus, 
mathematical analysis, etc.). In Chapter 9 we explore the possibility of 
attaining the competences required for the use of the Cartesian method for 
solving problems when syntactic competences have recently been acquired 
using a concrete teaching model. In this chapter we also deal with concrete 
teaching models in general terms. 

However, in addition to recognizing in algebra this fundamental role as a 
means of scientific expression, it is also necessary to recognize its importance 
in school education, that is, in the realm of teaching. Yet it is precisely in this 
area that the assimilation of the language of algebra by students presents 
difficulties that come from the interaction between this language which is in 
the process of being constructed and two languages that have already been 
mastered, namely, the language of arithmetic and natural language. In the 
translation between mathematical sign systems and natural language these 
difficulties were shown through the predominance of the meanings given to 
signs and words in the two languages in which the students were competent, 
natural language and the language of arithmetic prior to the sign system of 
algebra. The students would have to overcome these difficulties, therefore, in 
order to attain to the reading and writing of algebra and thus become 
competent users of the language of algebra. On the one hand, this would help 
them to achieve one of the goals of educational systems, which is precisely 
the mastery of the language of mathematics, and on the other it would assist 
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them to satisfy one of the most ancient social requirements of human beings, 
the capability of solving problems in a general, systematic way. 

Indeed, if we admit the above-mentioned suppositions about the funda-
mental role that algebra plays in the school curriculum, we must also admit 
the need to recover the conception of school algebra as a language which is 
essentially different from that of arithmetic, and as a language whose 
symbolic level made it the first language in the history of mathematics that 
was capable of explaining itself, and one that has subsequently served as a 
basis for the symbolic development of mathematics as a whole, to the point of 
achieving the algorithmic and expressive autonomy that characterize it now. 

 
 

1.2. The rest of the chapter 
 
 
In what follows we shall make a series of observations about mathematical 
texts in which we shall make use of the notions about mathematical sign 
systems that we introduced in the Introduction (Chapter 1) and Chapter 2. 
This will enable us to characterize teaching models as successions of 
mathematical texts (all this is treated in greater depth and with greater 
generality in Chapter 8), which are exchanged between the learner and the 
teacher. Having done this, we take a look at concrete teaching models and 
their strengths and weaknesses. 

 
 
 

2. MATHEMATICAL TEXTS AND TEACHING MODELS 
 
 

2.1. A teaching model is a sequence of mathematical texts 
 
 

Because we do not conceive mathematical texts as manifestations of 
mathematical language, and also because, in order to be able to give an 
account of those that are present in the processes of teaching and learning, we 
cannot identify them with written texts, it is pertinent to use a notion of text 
that conceives it as “the result of a reading/transformational labor made over 
the textual space” (Talens and Company, 1984, p. 32). Indeed, this idea was 
introduced in order to provide a notion of text that could be used in the 
analysis of any practice of production of sense (for example, the work of a 
learner with a teaching model, although this example may be rather far 
removed from the concerns of Talens and Company in their article), and for 
this purpose it is useful to introduce a distinction between “textual space” 
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(TS) and “text” (T), which corresponds to a distinction between “meaning” 
and “sense.” A text, therefore, is the result of a reading/transformational labor 
made with a textual space, the aim of which is not to extract or unravel a 
meaning inherent in the textual space, but to produce sense. The textual space 
has an empirical existence; it is a system that imposes a semantic restriction 
on the person who reads it; the text is a new articulation of that space, 
individual and unrepeatable, made by a person as a result of an act of reading. 

Moreover, the distinction between TS and T is a distinction between 
positions in a process, because any T resulting from a reading of a TS is 
immediately in the position of a TS for a new reading —and so on ad 
infinitum. 

Both the work of mathematicians and that of students in mathematics 

transformation of textual spaces into texts. In particular, from this viewpoint a 
teaching model is a sequence of texts that are taken as a TS to be 
read/transformed into other TSs as the learners create sense in their readings. 

 
 

2.2. Mathematical texts are produced by means of stratified mathematical 
sign systems and with heterogeneous matters of expression 

 
 
In saying this we wish, first, to go against the idea of the existence of a text 
written in a totally formalized language that, although never actualized, is on 
the horizon as the text alluded to by the text that is really produced, by 
operations that are conceived as “abuses of language.”1 But we also want to 
contrast it with Rotman’s idea that there is a rigorous text always present as 
the text belonging to a Code2 that establishes the rules of the rigorous 
mathematical text, but that is enveloped in an informal text organized by the 
metaCode, although Rotman states that, contrary to the previous case, the text 
of the metaCode is unavoidable because it is the only way of guaranteeing the 
persuasion that, according to him, is an intrinsic need pertaining to any 
mathematical text. 

Moreover, for Rotman, the fact that one cannot do without the metaCode 
“opens up mathematics to the sort of critical activity familiar in the 
humanities.” However, according to Rotman “it by no means follows from 
this that mathematics’ ways of making sense, communicating, signifying and 
allowing interpretations to be multiplied can be assimilated to those of 
conventionally written texts in the humanities,” because in mathematical texts 
there are signs that are not those of natural language. So, having avoided the 
danger of reduction of the mathematical text to the ideal text, it seems that for 
Rotman it is a question of avoiding the symmetrical danger of reduction to 

classes can be described from the aspect of this repeated process of reading/
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text written in the vernacular, since he asks himself “[w]hat, in short, is 
unsayable (in fact, unthinkable, unwritable) except via mathematical symbols.” 
We, however, do not find it so special to analyze a text in which not only 
natural language appears, since semiotics has set about the analysis of films, 
music or dance, for example, the expression of which is heterogeneous in that 
it combines matters of various origins; and we find that it is more suitable to 
study what type of combination of heterogeneous matter of expression is 
characteristic of mathematical texts than to undertake a search for something 
that can be expressed only by means of an expressive matter that is specific to 
mathematics. 

However, abandoning the idea of a formalized or rigorous text as the 
background that in one way or another governs the analysis of mathematical 
texts does not make us deny the role effectively played in practice by the 
illusion of the formalized text, because this illusion has formed part of the 
idea that mathematicians have had of the rules of their practice. The way of 
combining matters of expression from different languages and the way of 
forming relations between the strata of mathematical sign systems is deter-
mined by this non-discursive component of the practice of mathematics, 
among other things, as are the texts produced in a given historical period 
among all those that might have been produced. 

 
 

2.3. The heterogeneity of the matter of expression is revealed in the presence 
in the texts of segments of natural language, algebraic language, 
geometric figures and other diagrams, etc. 

 
 
Although these segments come from languages with which it is possible to 
produce texts according to systems of rules that belong to each of them, they 
are not governed separately in mathematical texts by the rules of each of those 
languages. What really happens is that the rules of some languages conta-
minate those of others, so that mathematical sign systems are governed by 
new rules, created from those of the various languages that they incorporate. 

We shall show this contamination between languages with an example in 
which the rules of natural language have been modified by copying them from 
the rules of arithmetic language. An expression such as “siete menos cuatro” 
[seven minus four], for example, is constructed by importing the form of the 
arithmetic expression 7 – 4 into Spanish. The way of expressing the task of 
subtracting one number from another in Spanish is what we have just used in 
this sentence: “sustraer, quitar o restar cuatro de siete” [subtract, remove or  
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take four from seven], a phrase in which the operation appears first —and not 
between the numbers— and the numbers appear in reverse order. 

The strangeness in Spanish of expressions such as this, which we may not 
notice now, is evident when we examine school texts from the 19th century 
and see that, in any of them, these expressions are introduced as something 
whose meaning has to be explained by resorting to the expression in the 
vernacular “restar tanto de tanto” [take so much from so much]. Thus, in the 
school text most frequently used in Spain in the 19th century, Vallejo writes: 
“la espresión 5 – 3 = 2, quiere decir que después de quitar 3 unidades del  
5 quedan 2, y se lee cinco menos tres igual ó es igual á dos” [the expression  
5 – 3 = 2 means that, after taking 3 units from 5, 2 remain, and it is read as 
five minus three equals or is equal to two] (Vallejo, 1841, p. 26). Freudenthal 
(1983) points to this phenomenon in other languages, such as German and 
Dutch. Thus, in German, until the early 20th century subtractions were 
formulated with the expression “vier von sieben“ [four from seven], until 
textbooks began to introduce “sieben minus vier” [seven minus four] for élite 
schools and “sieben weniger vier” [seven less four], for ordinary schools —
expressions that were foreign to German in both cases. 

 
 

2.4. Inscribed in mathematical texts there are deictics that refer to elements  
of segments of different natures 

 
 
Thus, for example, in a text in which the expression “point A, point B, 
segment AB” is accompanied by the corresponding geometric figure, whether 
drawn physically or imagined, the letters A and B link together words, figures, 
and expressions formed exclusively by these letters, and manipulation of the 
letters or the figures in the expression itself makes up for the lack of 
manipulation of natural language. 
 
 
2.5. Through these deictics, indications of translations between elements that 

refer to each other are inscribed in the text, which are marks, borne by the 
text itself, of the semantic field that the reader has to use to produce sense 

 
 
Unless one admits a drift toward aberrant readings, these indications are 
necessary because any reading of a mathematical text constitutes a learning 
process, in a non-trivial sense, for the empirical reader. Thus, in a school text 
in which Pythagoras’ Theorem is stated, the many references between the 
expression “the hypotenuse c,” the letter c written next to one of the sides of a 
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triangle drawn on the page, and the algebraic expression a2 + b2 = c2 enable 
one to understand that the text stipulates that the drawn figure which looks 
like a right-angled triangle effectively represents that geometric object, and 
that a2 + b2 = c2 states Pythagoras’ Theorem. 
 
 
2.6. The objects with which mathematics deals are created in a movement  

of phenomena/means of organization by the mathematical sign systems 
that describe them 

 
 
Since this movement of promotion from phenomena to means of organization 
does not always develop on the same level, that is, what is taken as 
phenomena asking to be organized by new means is not in an immutable 
world whose collection of phenomena is the subject of study of mathematics, 
mathematics generates its own content (see Section 4.1 in Chapter 2). An 
important aspect of this movement can be called “abstraction.” The stratifi-
cation of the mathematical sign systems with which mathematical texts are 
produced has to do with these processes of abstraction. 
 
 
2.7. The fact that mathematical sign systems are the product of a process of 

progressive abstraction, whether in the history of mathematics or in the 
personal history of an empirical subject, has the effect that the ones that 
are really used are made up of strata that come from different points in 
the process, interrelated by the correspondences that it has established 

 
 
In the Introduction (Chapter 1) and in Chapter 4 we have dealt with various 
phenomena that show this use of different strata of an MSS. 
 
 
2.8. The reading/transformation of a text/textual space can therefore be 

performed using different strata of the mathematical sign system, making 
use of concepts, actions, or properties of concepts or actions that are 
described in one of those strata 

 
 
The texts produced by readings that use different strata or a different 
combination of strata can be translated into one another and recognized as 
“equivalent” on condition that the pertinent correspondences between the 
elements used are also described in the mathematical sign system. When this 
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is not the case, only the creation of a new MSS will make it possible. The 
process of creating new MSSs for this purpose is actually a process of 
abstraction, and the new MSS is more abstract than the preceding ones. 

To express this with more precision, if it happens that two textual spaces 
ET and ET' cannot be read/transformed by means of a stratified mathematical 
sign system L by using the same concepts, actions, or properties of concepts 
or actions as are described in one of the strata, whereas in another mathe-
matical sign system M it can be done, then M is “more abstract” than L with 
respect to ET and ET'. This is what happens in the book De Numeris Datis, 
for example, with two propositions that Jordanus Nemorarius transforms by 
means of different procedures, but that could be transformed in the same way 
using the sign system of modern elementary algebra. The MSS of this 13th-
century text is less abstract than the MSS of modern elementary algebra, and 
in the history of mathematics the creation of the latter MSS was a process of 
abstraction that resulted, among other things, in the fact that texts such as 
those that could not be seen as equivalent for Jordanus Nemorarius are now 
equivalent (see Chapter 3 and Puig, 1994). 

The creation of more abstract MSSs that takes place in the history of 
mathematics in this way has its correspondence in school systems. Indeed, 
during a teaching and learning process a student is sometimes incapable of 
transforming a textual space ET' by means of a stratified mathematical sign 
system L, using the same concepts, actions, or properties of concepts or 
actions as those with which he transformed a textual space ET; the breaking 
down of this impossibility is precisely what is sought by the teaching model 
and what constitutes true learning, and it occurs when the student modifies the 
language stratum in which the means of transformation are described, creating 
a new mathematical sign system M, in which the textual spaces ET and ET' 
are identified as being transformable by the same means (see Chapter 4). The 
creation of this M is a “process of abstraction” that also entails the creation of 
“more abstract” concepts or actions (the ones described in the modified 
language stratum). 

 
 

2.9. In these modifications of language strata that lead to identifying concepts 
or actions, an important part is played by the autonomization of the 
trans-formations of the expression with respect to the content 

 
 
The importance of this autonomization resides in the fact that these 
transformations can then be made in accordance with the rules without having 
to verify the result of the transformations of the expression with respect to the 
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content in each of the steps, but only occasionally or once the complete set of 
transformations has been concluded. 

Umberto Eco points out that in algebraic expressions, as in all the signs 
that he calls “diagrams” and which for us, following Peirce, are icons, “there 
are one-to-one correspondences between expression and content,” so that “the 
operations that I perform on the expression modify the content. If these 
operations are performed following certain rules, the result provides me with 
new information about the content” (Eco, 1984, p. 16). Geometric figures are 
also diagrams in this sense, whether they are drawn to represent geometric 
objects —as in Euclid’s Elements— or to represent algebraic quantities. In the 
didactic device that we describe at the end of this chapter, geometric figures 
are used precisely for this purpose. Al-Khwârizmî had already done so in his 
Concise Book of the Calculation of Al-jabr and Al-muqâbala,3 in which he 
used geometric figures to prove the correctness of the algorithmic rules that 
he gave to solve the six canonic forms of equations that we now call first- and 
second-degree equations, in what he called “proofs by means of figures” —
and not “geometric proofs,” since he did not make use of the propositions of 
Euclid’s Elements. 

However, we would not say, with Eco, that what the result of the trans-
formations of the expression provides can always be described as “new 
information about the content.” Sometimes, producing sense for the result of a 
transformation in the expression involves expanding the semantic field of the 
objects or actions involved, as is shown by the simple example of the 
identification of a0 with 1, by virtue of the fact that certain rules produce  
an/an = an–n = a0 and others produce an/an = 1, so that the expression a0, 
literally meaning “a multiplied by itself zero times,” which does not mean 
anything, is given sense by expanding the semantic field of “multiply” and 
“times.” The autonomization of the expression thus brings with it a power to 
generate content. 

Since the inscription of the first written arithmetic signs, which, as we 
indicated in Chapter 2, lacked operational capability, during the course of 
history mathematicians have gradually developed sign systems the expression 
of which has had increasingly greater power to generate content. Hence, as we 
see it, examining mathematics as a sign system and showing the crucial role 
played by the autonomization of the expression does not have to lead to 
Russell’s famous conclusion that “the propositions of logic and mathematics 
are purely linguistic, and they are concerned with syntax” (Russell, 1973,  
p. 306). 
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2.10. The development of new competences in mathematics can be seen as the 
result of working with an MSS that one has already mastered to some 
extent 

 
 
This happens both in the history of mathematics and in the history of 
individuals. In the school system, this work consists in an exchange of 
messages between teacher and student that is produced by means of the 
reading/transformation of the sequence of texts that we call a teaching model. 
As a result of this reading/transformation, new concepts are produced through 
the production of new senses and the establishment of new meanings for the 
MSS (or MSSs) in which what is taught is described and produced, which 
even entail the creation of new MSSs. 

In his Remarks on the Foundations of Mathematics (Part III, 31), 
Wittgenstein wrote that “the proof changes the grammar of our language, 
changes our concepts. It makes new connections, and it creates the concept of 
these connexions. (It does not establish that they are there; they do not exist 
until it makes them.) [der Beweis ändert die Grammatik unserer Sprache, 
ändert unsere Begriffe. Er macht neue Zusammenhänge, und er schafft den 
Begriff dieser Zusammenhänge. (Er stellt nicht fest, daß sie da sind, sondern 
sie sind nicht da, ehe er sie nicht macht.)]” This observation by Wittgenstein 
about the effect of proof in the grammar of our language and in our concepts 
can be paraphrased by transferring it to what we have just expounded and 
simply replacing “proof” by “work with an MSS” and “our language” by “an 
MSS that we have mastered.” Thereby one is being at the same time more 
general and less precise. One is more general because proving is obviously a 
kind of work with an MSS and it is not only this kind of work that changes 
mathematical concepts (see Section 4.7 in Chapter 2). One is less precise 
because we do not specify what kind of work with an MSS changes concepts 
and MSSs and we are not claiming that it is any kind. 

However, Wittgenstein’s remark is about the work of mathematicians and 
not about the work of students in the school system. As our viewpoint and our 
area of interest is the school system, we will have to use a version of 
Wittgenstein’s remark adapted to the fact that we are only dealing with the 
processes of teaching and learning mathematics in school systems where 
mathematical concepts are not created for the first time but have to be 
recreated— or “reinvented,” to use Freudenthal’s expression —by students 
using the guide of the teaching process. In this sense, the aim of the teaching 
model, of the sequence of texts that are read and transformed, must be that the 
new senses produced by the students should be felicitous, that is, that they 
should be in agreement with the socially established meanings, and that the 
new, “more abstract” MSSs created should become non-idiosyncratic MSSs. 
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2.11. A teaching model is a sequence of problem situations. This is the sense 
of teaching through problem solving 

 
 
As the teaching model is a sequence of texts, produced both by the teacher 
and by the student, and those texts are the result of the work of both in 
teaching situations that are in fact problem situations (which are taken as 
textual spaces), it is pertinent also to add what we have learned from our 
studies and inquiries about problem solving. In particular, we have evidence 
that, when a problem is solved, one inevitably makes an initial logical 
conscious or unconscious analysis (which in Chapter 9 we will call a “logico-
semiotic outline”), however quick and fleeting it may be, which seeks to 
rough out the solution, that is, to indicate the path that must be followed in the 
solution of the problem in accordance with some mathematical text produced 
with the use of a certain MSS. 

A competent user who makes such a logic-semiotic outline uses cognitive 
mechanisms that enable him to anticipate the key relations of the problem 
and, from various MSSs or strata of MSSs, decide which one, more abstract 
or more concrete, he is going to use to outline the steps of the solution. Only 
then does he develop a process of analysis and synthesis that enables him to 
decode the problem situation. 

Along these lines, the age-old idea in reforming declarations of basing 
teaching on problem solving can begin to make sense for us. A teaching 
model is also a sequence of problem situations, a sequence of mathematical 
texts Tn, the production and decoding of which by the learner finally enables 
him to interpret all the texts Tn in a more abstract MSS. This “changes the 
grammar of our language,” because the new, more abstract MSS is of such a 
nature that its code makes it possible to decode the texts Tn as messages with 
a socially established mathematical code, precisely the code proposed by the 
educational aims that fixed the model of competence that the teaching model 
pursues. 

Sense is produced in the new MSS by the use of new signs in each step of 
the analysis and solution in the way in which they have to be used —as 
Wittgenstein says: “I go through the proof and say: ‘Yes, this is how it has to 
be; I must fix the use of my language in this way’ [Ich gehe den Beweis durch 
and sage: ‘Ja, so muß es sein; ich muß den Gebrauch meiner Sprache so 
festlegen’.]” (Wittgenstein, 1956, III, 30). This is possible when the MSS as a 
whole is bound by the concatenation of the actions set in motion during the 
problem-solving processes in all the problem situations that were previously 
seen as different and irreducible, but that now, thanks to the new MSS, are 
solved by means of processes that are established as being the same, i.e., that 
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are transferred from one problem to another, at the same time converting what 
was a diversity of problems into a family of problems. 

Teaching organizes the transition from an MSS that has to some extent 
been mastered by the learner, through its use in problem situations and the 
chain of readings/transformations ET/T = ET'/T' = ET"/T" …, to a new MSS 
from which the previous one is seen as being more concrete, and with which 
what was previously described as separate and unconnected is now described 
as being the same, and as a result is produced as new concepts and new signs. 

 
 
 

3. CONCRETE MODELING 
 
 

In discussions about the kind of teaching resources that should be used in the 
curricular development of any teaching model, two conflicting positions 
usually appear. In the case of the solution of equations, one of the positions 
proposes modeling the new operations and new objects in (more) concrete 
contexts (with “concrete” understood as contexts that are familiar for the 
learner), with the aim of endowing them with meanings and constructing the 
first elements of manipulative operations, taking this context as a starting 
point. A contrasting position proposes starting from the syntactic level and 
teaching the rules of syntax so that they can later be applied in the solving of 
equations and problems. This is the traditional treatment in the teaching of the 
solving of equations, based on the syntactic models of Viète —transposition 
of terms from one side of the equation to the other— and Euler —addition 
and multiplication of the additive and multiplicative inverses, respectively, in 
the two sides of the equation. 

If one adopts the first of the two positions just indicated in order to 
develop teaching strategies at the beginnings of the acquisition of the 
competences of a MSS, it is necessary to possess knowledge about the 
processes that intervene between the actions performed on a more concrete 
level —i.e., the actions in the model— and the corresponding elements of 
syntax that may be obtained from them. These processes, which we will here 
call processes “of abstraction of operations,” and that are processes of 
recovery, on a syntactic level, of the elements common to the actions 
performed in the repeated use of a model or a concrete teaching situation, 
present regular characteristics in the course of their development by 
individuals; but they also move along paths that may differ greatly from one 
individual to another, owing to the presence in individuals of tendencies with 
respect to their use and learning of mathematics (we have looked at this area 
in more detail at the end of Chapter 4). 
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Moreover, although there is a set of regular characteristics or charac-
teristics that are repeated from individual to another in these processes of 
abstraction of operations, some of them may vary with variations in the 
concrete situation from which one sets out in order to obtain or construct the 
corresponding syntactic elements —or in the model from which one sets out. 

 
 

3.1. Algebraic semantics versus syntax 
 
 
In the study expounded in other chapters, in which a teaching model con-
cerning the solution of first-degree equations was developed, the interrelations 
between two overall strategies for the design of learning sequences that 
occupy long periods of time in the middle school algebra curriculum were 
basic. These strategies were: 
 

a) Modeling of more abstract situations in more concrete languages in 
order to develop syntactic abilities. 

b) Producing codes to develop problem-solving abilities and using 
syntactic abilities to develop solving strategies. 

 
Broadly speaking, in (a) the objective was to give meanings to new 

expressions and operations, modeling them on more concrete situations and 
operations. In (b) the objective was to give senses to the new expressions and 
operations so that problem-solving codes would be generated, setting out from 
the supposition of the presence of certain abilities of syntactic use of the new 
signs and their utilization as a more abstract language. In the Introduction 
(Chapter 1) we show the problems that learners present when they have just 
finished primary education. 

In what follows we will see that the development of syntax and semantics 
produces a dialectic relation in which an advance in one of these two aspects 
is necessary for an advance in the other, although sometimes the development 
of one may inhibit development of the other. 

 
 

3.2. Components of concrete modeling 
 
 
If one thinks about the introduction of certain mathematical notions by means 
of models (as is done in Chapter 4 for the solution of algebraic equations), it 
is advisable to bear in mind some of the main components of modeling, 
especially two components that are fundamental. The first component is 
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translation, by means of which sense and meaning are given in a more 
concrete context to the new objects and operations that are introduced, which, 
from a more abstract viewpoint, are the same as those that appear in more 
abstract situations. In other words, through translation these objects and 
operations are related to elements of a more abstract situation and, on the 
basis of what is known about the solution of such situations on the more 
concrete level, operations are introduced which, although carried out on the 
concrete level, are also intended to be performed on the corresponding objects 
on the more abstract level. Consequently, there is a need for a two-way 
translation between one context and the other, so that it may be possible to 
identify each operation on the more abstract level with the corresponding 
operation in the concrete model. 

The second component is the separation of the new objects and operations 
from the more concrete meanings with which they were introduced. In other 
words, in the modeling one also seeks to relinquish the semantics of the 
concrete model, because what one wishes to achieve ultimately is not the 
solution of a situation that one already knows can be solved, but the discovery 
of ways of solving more abstract situations by means of more abstract 
operations. This second component is a driving principle that directs the 
modeling function toward the construction of a syntax external to the model. 

 
 

3.3. Concrete modeling versus mechanization and practice 
 
 
In his book The Psychology of Algebra, published in the early 1920s, 
Thorndike proposed the integration of everything that seemed pertinent at the 
time so that the teaching of algebra could advance. That aspiration can still be 
seen now as a program yet to be fulfilled for any other theoretical and 
experimental approach —leaving aside, perhaps, certain emphases and pre-
occupations belonging only to the theoretical perspective, in accordance with 
the psychological knowledge of the time. Among matters that are still of great 
relevance today we find the central motivation: 
 
Algebraic computation as actually found is then emphatically an intellectual ability. It is not so 
indicative of intellect as problem solving, partly because it involves less abstraction, selection, 
and original thinking, partly because it involves only numbers, not numbers and words. It is, 
however, far above the reproach of being a mechanical routine which can be learned and 
operated without thought. (Thorndike, 1923, p. 451.) 

 
During the 84 years that have elapsed since then the emphasis placed by 

researchers has varied greatly, leading, in the middle of the last century, to the 
granting of total pre-eminence, not to what is called “problem solving” in the 
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remark just quoted, but to the structural components of the matter studied. 
The result of this was that, in French middle school syllabuses, it was possible 
to find a so-called algebra in which what had been the traditional teaching 
situations until then, based on considering algebra as a continuation of 
arithmetic, did not appear anywhere. As a reaction to this, there was a swing 
toward the use of teaching models based on situations similar to those 
proposed by Thorndike, but more concrete, mechanizing the handling of 
algebraic expressions, with an expeditious use of the rules of syntax. 

 
 

3.4. Syntactic models 
 
 
The idea of a concrete teaching model can be extended to the strategies 
proposed in the 1920s, which we here call “syntactic models,” in contrast to 
concrete models, which we call “semantic,” because in them emphasis is 
placed on working with a considerable semantic load in all the signs and 
operations involved. In the syntactic model, conversely, the emphasis is 
placed on the general rule used to construct the habits that set the operations 
in motion. 

With respect to these models, empirical evidence indicates that, apart from 
the generation of private semantics of the individual that give meaning to the 
terms proposed by the general rule and to the operations involved, phenomena 
of reading of the situations proposed appear, guided by the senses given to the 
rules that must be set in motion in order to carry out the syntactic task. For 
example, when someone first comes across equations of the type Ax – B = C 
(A, B, C > 0), he may always attribute the positive sign to B and the negative 
sign to A, guided by the sense that he has obtained from previous practices 
performed with the solution of equations of the type Ax + B = C. In other 
words, a syntactic context guides a mistaken but natural reading, due to the 
individual’s anticipatory mechanisms —a cognitive tendency that we 
presented in the last chapter. 

In this respect, the emphasis placed not only on mechanisation but also on 
the concern for practice, and the consequences that this has on the practice 
times that learning experiments propose, acquire a new sense in view of the 
need to correct spontaneous readings, here generated not by semantics but by 
syntax. 
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3.5. Modeling and teaching algebra 
 
 
The results described in this book allow us to state that the correction of 
mistakes of algebraic syntax and the operational mishaps that appear amid 
complex processes of solving problems or equations generated during the 
learning of algebra cannot be left to the spontaneity with which students 
make use of the first elements with which they are provided in order to 
penetrate into the realm of algebra. The paths traced by those spontaneous 
developments are not directed toward what the teaching of algebra seeks to 
achieve: that is precisely why this correction is a task of teaching. So that, if 
one thinks of introducing certain notions of algebra by means of models 
(including the syntactic model), it is advisable to bear in mind the main 
components of modeling, as described above. 

The studies described in this book show that mastery of the first of the 
components of modeling (translation) may weaken or inhibit the development 
of the second: such is the case with learners such as Vt, mentioned in Chapter 
4, who achieve a good command of the concrete model, but as a result also 
develop a tendency to remain and progress within that context, and this 
anchoring to the model goes against the other component, that of the 
abstraction of operations toward a syntactic level, which involves breaking 
away from the semantics of the concrete model. 

This indication about the interaction between the two basic components of 
modeling does not depend on the tendency of the individual, for even in cases 
of a syntactic tendency, such as that of Mt, mentioned in Chapter 4, during the 
processes of abbreviation of actions and production of intermediate notations 
(between the concrete situation and the level of algebraic syntax) obstructions 
to the processes of abstraction of the operations effected in the concrete model 
are generated as a result of not possessing, in that period of transition, suitable 
ways of representing the results or states to which the operations lead. Once 
again, this is a deficiency in the second of the components of the action of 
modeling. 

The obstructions indicated earlier constitute a kind of essential insuffi-
ciency, in the sense that, if modeling is left to spontaneous development by 
the learner, one of its components is strengthened, and this tends to hide 
precisely what one is essentially trying to teach, which is new concepts and 
operations (a more detailed description can be found in Chapter 4). 

This kind of dialectic between the processes that correspond to the two 
components of modeling must be taken into account by teaching, which 
should try to develop the two kinds of process harmoniously, so that neither 
obstructs the other. Indeed, from the analysis of the cases presented in 
Chapter 4 it is clear that this is a task of teaching, given that this second aspect 
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of modeling, that of breaking away from the earlier notions and operations on 
which the introduction of the new knowledge is based, is a process that 
consists in the negation of parts of the semantics of the model, and these 
partial negations take place during the transfer of the use of the model from 
one problem situation to another —in the case of the geometric model it is a 
transfer of its application from one variety of equation to another. However, 
when this generalization in the use of the model is at the expense of 
spontaneous development by the learner, the partial negations may take place 
in essential parts of it —in the geometric model, the presence of the unknown 
and operation on it are negated. Consequently, intervention with teaching 
becomes necessary in the development of these processes of relinquishing and 
negation of the model, in order to channel them toward the construction of the 
new notions. 

The transfer of the problematic of algebraic semantics versus syntax to a 
level of actions of modeling makes it possible to narrow the distance between 
teaching and this problematic, since analysis of the interaction on this other 
level reveals didactic phenomena that show the need for the intervention of 
teaching at key points in the processes set in motion at the beginnings of the 
acquisition of the language of algebra. 

 
 
 

SUMMARY 
 
 

In this chapter we use the notions of textual space and stratified mathematical 
sign systems (from “less abstract” to “more abstract”) to describe teaching 
models in terms of sequences of mathematical texts (produced by the teacher 
or pupils) and in terms of sequences of problem situations. These theoretical 
notions generalize the examples of teaching models used to teach the syntax 
required for solving first-degree equations with the unknown appearing on 
both sides of the equality, presented in Chapter 4. In this chapter we speak of 
concrete models (the balance scales and a geometric model) and of “abstract” 
or syntactic models (the model of “doing the same on both sides” and the 
model of transposing terms). In the study “Operating on the Unknown” these 
models were used to observe the processes of transferring actions performed 
in simple cases to cases of equations with more complex characteristics, and 
also the processes of abstraction of actions performed in all the cases of 
equations presented to the pupils. In the next chapter we analyze the first steps 
toward the use of algebraic syntax in problem solving. 
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ENDNOTES 
 

1 The illusion of a text written in a formalized mathematical language, which is never present 
but to which the text that is really written refers, could not be better expressed than it is in the 
Introduction to Book I of Nicolas Bourbaki’s Éléments de Mathématique (Bourbaki, 1966): 
“Nous abandonnerons donc très tôt la Mathématique formalisée […] Les facilités qu’apportent 

[…] comme le sont en pratique tous les textes mathématiques, c’est-à-dire en partie en langage 
courant et en partie au moyen de formules constituant des formalisations partielles, particulières 
et incomplètes, et dont celles du calcul algébrique fournissent l’exemple le plus connu. Souvent 
même on se servira du langage courant d’une manière bien plus libre encore, par des abus de 
langage volontaires, par l’omission pur et simple des passages qu’on présume pouvoir être 
restitués aisément par un lecteur tant soit peu exercé, par des indications intraduisibles en 
langage formalisé […] Ainsi, rédigé suivant la méthode axiomatique, et conservant toujours 
présente, comme une sorte d’horizon, la possibilité d’une formalisation totale, notre Traité vise 
à une rigueur parfaite […]” (pp. 6-7). The expression “abuse of language,” which describes the 
fundamental operation that makes it possible to abandon the writing of the formalized text and 
refer to it, appears repeatedly throughout the treatise. 
2 Rotman presented a first version of his semiotic model of mathematical activity in Rotman 
(1988). A more recent version, modified and more extensive, is in Chapter 3 of Rotman (1993), 
which begins by announcing that “What I propose here is a semiotic model of mathematical 
activity fabricated around the idea of a thought experiment. The model identifies mathematical 
reasoning in its entirety —proofs, justifications, validation, demonstrations, verifications – with 
the carrying out of chains of imagined actions that detail the step-by-step realization of a certain 
kind of symbolically instituted, mentally experienced narrative” (Rotman, 1993, p. 66). His 
distinction between Code and metaCode seeks to account for the fact that “contemporary 
mathematicians divide their activity […] into two modes: the formal and the informal” (p. 69). 
Code is, therefore, “the unified system of all such rules, conventions, protocols, and associated 
linguistic devices which sanction what is to be understood as a correct or acceptable use of 
signs by the mathematical community,” metaCode is a “heterogeneous and divergent collection 
of semiotic and discursive means” which give an account of “the mass of signifying and 
communicational activities that in practice accompany the first mode of presenting 
mathematics” (p. 69). In his model there is also a third element, which Rotman calls the 
“subCode” or “virtual Code,” and three characters: the Subject, who uses the signs of the Code; 
the Person, who uses those of the metaCode; and the Agent, who uses those of the virtual Code. 
Rotman (1988) is also included in Rotman (2000) as its first chapter. 
3 As was usual in the 9th century in the Arab world, this book by Muhammad ibn Mûsa  
al-Khwârizmî did not have a title. Two manuscripts of it have been conserved, one of which 
was edited and translated into English by Frederic Rosen, with the title The Algebra of 
Mohammed ben Musa (Rosen, 1831). According to Høyrup (1991), both this manuscript and 
Rosen’s translation are less close to the original text than the Latin translation produced by 
Gerardo de Cremona in the 12th century in the school of translators in Toledo. There is a recent 
edition of this manuscript (Hughes, 1986). Gerardo de Cremona heads his translation with the 
words “Liber Maumeti filli Moysi alchoarismi de algebra et almuchabala incipit” [“here begins 
the book of algebra and almuchabala by Mahomet the son of Moses alchoarismi”], leaving the 
Arabic words al-jabr and al-muqâbala untranslated, as we have just done. It is precisely 
because al-jabr remained untranslated that this part of mathematics, which in a sense  
al-Khwârizmî founded, was eventually called algebra. See an analysis of one of al-Khwârizmî’s 
proofs by means of figures in Puig (1998). 
 
 
 

les premiers “abus de langage” ainsi introduits nous permettront d’écrire le reste de ce Traité 




