
 

CHAPTER 3 
 

EXPERIMENTAL DESIGN 
 
 
 

OVERVIEW 
 
 

We begin analyzing the diagram of an experimental setting design for the 
observation of algebra learning and teaching phenomena. In this chapter we 
discuss a manner of studying the evolution and development of algebraic 
ideas through historical and epistemological analysis (based on the analysis of 
ancient pre-symbolic algebra texts), which in turn serves as a point of 
departure for experimental design in mathematical education for the particular 
case of the transition toward algebraic thought. The phenomenological 
analysis, as presented in general terms in Chapter 2, is applied to the case of 
algebraic language and to that of school algebra (didactic phenomenology). 
Here once again the notions of mathematical sign system and of language 
strata become relevant, especially when the historical analysis touches upon 
the genesis of modern algebra thus re-broaching the elements that correspond 
to said notions presented in Chapter 2. The chapter consists of the following 
sections: 1, Introduction; 2, Experimental observation; 3, On the role of 
historical analysis; and 4, The phenomenological analysis of school algebra. 
 
 
 

1. INTRODUCTION 
 
 

In this chapter we present two diagrams that give a general description of the 
design of a study in accordance with the guidelines of our research program 
(diagram A), and the general form of the development of the study (diagram 
B). In the rest of the chapter, we specify some of the terms used in those 
diagrams and set out in more detail how the historical analysis of algebraic 
ideas and phenomenological analysis intervene in it. 
 
 



60 EXPERIMENTAL DESIGN 

  

2. EXPERIMENTAL OBSERVATION 
 
 
2.1. The design and development of the experiment 
 
 
Both the design and the development of the experiment are presented in the 
form of a flow diagram (see Figures 3.1. and 3.2). We merely wish to 
emphasize that we have introduced our theoretical elements —local theoretical 
models (LTMs) and mathematical sign systems (MSSs)— as the theoretical 
counterpart with which the experimental observations are designed and 
interpreted. For this is a theory produced to provide support for observation, and 
that is how it should be interpreted. These ways of designing and developing 
experimentation are exemplified throughout the book, and they are in use in 
several research works (see Chapters 4, 6, 7, 8, and 9). 
 
 

theses 
 
 
Note that in diagram A there is a recurrence: the diagram begins with a box 
that represents the area under investigation, and at the end of the entire 
process there is a return to the beginning. In the case of diagram B the starting 
point is a local theoretical model, designed in the stages of diagram A, and 
after the performance of an experimental study, in which the theses of this 
first LTM are confronted with what occurs in the empirical development of 
the experiment, one finally comes to a phase of analysis and interpretation. 
On the basis of the results of this phase, the initial problem area is framed 
within the perspective of a new LTM, the design of which returns to the first 
stages of diagram A, so as to be able once again to start the process described 
in diagram B. 

In this recursiveness, it may well happen that the theoretical theses framed 
in the first LTM prove to be insufficient to study and interpret the empirical 
observations made in the stage of empirical development (see, for example, 
Chapter 9), or else some of the theses as elaborated might have to be 
discarded or differentiated into others that provide a better fit for the 
interpretation of what has been observed. In this respect one could speak of 
the ephemeral quality of certain theses that do not stand up to verification 
with the empirical facts observed. 

2.2. Recursiveness in the use of LTMs and the ephemeral quality of certain 
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Figure 3.1. Diagram A of the design of the study 
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Figure 3.2. Diagram B of the development of the study 

 

Imp leme ntation of a system
for controlled teaching

Local theoretical m odel

Selection of p opulation to be studied in
the controlled teaching system

Application of a diagnostic evaluation to the selected
population to measure its efficiency in the use of the
MSSs that are considered mo re concrete strata of the
new, more abstract M SS

Classification of the populati on into strata
or profiles according to their performance
in the diagnosis

Selection of a population s ubgroup in w hich the
various classes or profil es are present, for
observation in a clinical interview

Case studies:
Observation b y me ans o f videotaped individual c linical
interview w ith the subjects in the selected subgroup

Analysis and interpretation of the interviews carried out

Preparation of a report on the observations in terms of the theoretical aims of the s tudy

Cognition
Preparation of a catalog of
observations related w ith
the mo del for cognitive
processes

Teaching
Preparation of a catalog of
observations related w ith
the teaching m odel used

Comm unication
Preparation of a catalog of
observations related w ith
the comm unication m odel

The problem i n the perspective of a new local theoretical model and the design of the m odel
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2.3. On the didactic cut 
 
 
We mention first that it is advisable to choose the moment of the experimental 
observation at some point in the mathematics curriculum at which what has 
been learned (of the material taught up to that point) does not make it possible 
for the next topic that is to be taught to be discovered spontaneously without 
the intervention of the teaching that is to come. The ideal situation is to find a 
conceptual area in which, when the competences of the population with 
regard to the uses of those concepts are diagnosed, one sees that those 
competences lead to performances very far from what is expected (the aims of 
the education). For example, in the case of Thales’ Theorem in Chapter 7, 
through what had been learned previously the entire population had developed 
tendencies that caused all the learners to have mistaken responses concerning 
ratio and proportion when faced with the most elementary questions that can 
be asked in this field, questions that are the basis of the whole future 
development of trigonometry. 

Another example is the solving of equations and the transition from 
arithmetic to algebra, which is discussed in Chapter 4. On the other hand, in 
the ongoing studies that are mentioned at the end of Chapter 8, there are 
already indications that suggest that what is being studied in them would also 
constitute a didactic cut.1 

 
 

2.4. On controlled teaching 
 
 
Second, it is advisable that the population being studied should comprise 
several cohorts of the same age, belonging to the same grade level, at the 
same school, and that they should receive instruction in mathematics within a 
system of controlled teaching. This means that the population being studied 
receives instruction in mathematics with materials that allow them to do 
individual work in class, at their own pace, that there is monitoring of 
advances made by individuals and groups of students, that there is the 
possibility of intervening with supplementary teaching material where it is 
required. 
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2.5. On diagnosis 
 
 
The groups that receive the controlled teaching constitute the totality of the 
population being studied. During the period in which the controlled teaching 
is developed, mechanisms of measurement and classification are prepared and 
refined so as to make it possible eventually to construct a diagnostic test by 
which classes or profiles of individuals can be obtained. The diagnosis 
provides a detailed description of the performances of the students and has the 
further aim of delimiting the profiles so that one can see which students it 
would be interesting to observe in greater depth. For this purpose a case study 
is designed in which the clinical interview plays the main part with a view to 
setting up the observation environment. 

In general, it is advisable to classify the population in relation to three 
axes. The first has to do with the syntactic competences of the individuals  
in the use of the more concrete MSSs. The second has to do with the 
competences concerning the use of the semantics of those MSSs, when 
applying it to the solution of problem situations. The third axis of competence 
seeks to group together the competences that have to do with the intuitive and 
spontaneous uses of the strata of the more concrete MSSs that will be used in 
the decoding of the new teaching situations which the teaching model that is 
being used will require. 

We will see an illustration of this principle in Chapter 4, which contains a 
description of a study in which the population is classified by means of a 
written test on pre-algebra consisting of three subsections: arithmetic 
equations with literal notation (e.g., 5x + 3 = 90), arithmetic equations without 
literal notation (e.g.,  – 95 = 23), and problems corresponding to arithmetic 
equations. 

The classification of the population in relation to these three axes makes it 
possible subsequently to select pupils for the clinical interview who have 
different profiles with regard to one or more of the axes, and who therefore 
correspond to aspects of the MSSs brought into play in the teaching. 

 
 

2.6. On the clinical interview 
 
 
To be able to observe the phenomena studied with greater precision one needs 
an experimental situation that makes it possible to monitor certain disturbing 
factors that are always present in the classroom, and one needs observation 
mechanisms that allow a more exhaustive and precise analysis. However, this 
must be done in such a way that what is observed has to do with the problems 
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presented by the individual being observed and also that the components that 
the teaching brings into play are present. That is the nature of clinical 
interviews with teachers. 

The clinical interviews have a structured format, but the interviewer moves 
freely between the various steps that have been designed previously, allowing 
the line of thought of the interviewee to define each of the subparts of the 
interview. The first part of the interview is usually devoted to confirming that 
the interviewee has the profile given by the diagnosis. 

Except in cases where the interviewee has no difficulty in solving the 
problem that is set, the interviewer intervenes to put further questions that, 
through a process of discovery, help the interviewee to learn the problem that 
he was initially unable to solve. It is a question of discovering the difficulties 
presented by the learning of beginnings of algebra, given the ways in which 
one seeks to teach it nowadays. In these clinical interviews the focuses of 
observation are the ways of teaching and the particular ways of learning (with 
their typical obstructions and difficulties) that are seen in the students. 

 
 

2.7. On the preliminary analysis of the problems 
 
 
If we look at diagram A of the design of the experiment, in step 2, 
“Preliminary analysis of the problems,” many general disciplines combine to 
make it possible to perform the analysis: psychology, historical analysis, 
epistemology, mathematics, sociology, education in mathematics, etc. Many 
research studies nowadays favor one or more of these focuses, or else, in the 
case of the design of the experiment, there tends to be a tension between the 
studies that favor a quantitative approach (via the use of statistics) and those 
that favor a more qualitative approach (via the use of clinical observation). 

However, in favoring some general focus, such as the analysis of the 
history of mathematical ideas, it is possible that all the other items that are 
described in diagrams A and B may be left out. One might think, therefore, 
that such a study is a valid contribution only in the field of the general 
discipline with which it is concerned; nevertheless, experience shows that 
studies of this kind are ultimately of little interest in the general discipline, 
where there is a preference for certain working habits and focuses and for 
using all the antecedents so far established in that discipline. Moreover, they 
also generally prove to be of little importance in mathematics sducation, the 
main results of which are intended to be useful for students and teachers in  
the present educational systems. In the next section we show a way of using 
the analysis of mathematical ideas, which, in our view, makes it fruitful for 
research in mathematics education. 
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3. ON THE ROLE OF HISTORICAL ANALYSIS 
 
 

It is clear that any analysis that seeks to clarify educational problems —
analysis being the prime driving force in our research— must be performed in 
the specific framework of our educational systems; but also, as a unitary 
counterpart, such analysis cannot help seeking to transform the conditions in 
which the teaching of mathematics is taking place in our countries. This 
clearly conditions the problems and therefore the methodology of the study; 
but also, in an aspect usually overlooked, it imprints on the results the need to 
be used, to be put to the test in the very place where they supposedly seek to 
cast light, where their modifications will have to be taken into account in 
order to advance, to go deeper into the facts being investigated, to be able to 
construct new hypotheses that take the work done into account. 

This makes it necessary for the problems, in at least some of their aspects, 
to be closely linked with the actual process of teaching. However, this does 
not mean abandoning somewhat theoretical problems and their appropriate 
logical methods; rather, the studies take place within larger programs in which 
direct contact with students and teachers is present. 

In this section we show that the historic-critical analysis of the development 
of mathematical ideas makes it possible, for example, to construct learning 
sequences that reflect the achievements of theoretical research, and that it 
becomes fully meaningful when, in turn, in theoretical research the history of 
ideas is enriched by the new hypotheses formulated by putting teaching 
sequences to the test in educational systems. Then we will rightly be able to 
maintain that we are speaking of studies in the field of mathematics education 
and not in that of the history or epistemology of mathematics. 

 
 

3.1. Epistemological analysis 
 
 
At one time history was relegated to being a pastime of mathematicians, 
although with the production of dazzling works, such as Van der Waerden 
(1954), or general views seen through new eyes, such as Boyer (1968). Now, 
however, it has regained its proper stature and has even made its way into the 
textbooks (see Edwards, 1979). 

Even earlier, however, Boyer (1959) had offered us more profound 
attempts to capture other more intense moments: those of the evolution of 
ideas. Many titles could be added here to illustrate this great return of history 
as an instrument with which to view the present. We will only indicate, by 
way of example, that our ideas about the nature of the rudimentary processes  
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of constructing mathematical models have changed completely as a result of 
historical studies concerning the Babylonians (Neugebauer, 1969); that our 
conceptions about the origin of the theory of proportions, deduction, and 
axiomatization have begun to acquire subtle tonalities that we did not perceive 
before, thanks to Szabó (1977); and that Jens Høyrup, pursuing this evolution 
of algebraic ideas from Babylon to medieval Italian algebra in numerous 
studies, has made us see it in a different way (see, for example, Høyrup, 1985, 
1986, 1987, 1991, 1999a, 2002a, 2002b). 

This re-encounter between history and epistemology through the history of 
ideas has also begun to benefit the didactics of mathematics. 

 
 

3.2. The reading of texts 
 
 
The new approach consists of analyzing problems of teaching and learning 
mathematics with the historic-critical method, and then of putting the 
theoretical findings to the test in the educational systems so that, after this 
experimentation, one will once again have a new view of the problematics of 
the history of ideas that corresponds to the teaching results. 

A first example, taken from Filloy (1980), will make this idea clearer. 
Analyses of Diophantus’s Arithmetic, Bombelli’s Algebra and the contrast 
between it and Viète’s The Analytic Art2 lead to interesting hypotheses about 
the development of the first notions of algebra in secondary school (with 
pupils aged 12 to 15), as one can gather from the works of Jacob Klein 
(1968), for example. From these results one can infer that the most significant 
change in symbolization, in that stage of the beginning of algebra, is the step 
from the mathematical concept of unknown to the mathematical concept of 
variable. A transition that involves not only the feat of solving complicated 
arithmetic problems, already achieved in Diophantus’s Arithmetic in one 
sense more efficiently than by Viète, but also reflection on the operations that 
are always performed to solve such problems. This reflection on operations 
suggested to Viète the need to speak not only of unknowns but also of the fact 
that the coefficients of the equations that result from making the zetetic 
analysis of the problems are also variables; that is, such coefficients have to 
operate on each other, not just representing a number, unknown or not but 
ultimately only one number, but rather representing all the numbers that could 
come from equations resulting from the analysis of arithmetic problems. 

These facts would seem to complete the picture, especially when the 
analysis is continued along these lines, as is done by Klein (1968) or Jones 
(1978). This change of perspective (in Viète) immediately generated others, 
owing to the problems posed by operating on measurements, as can be seen 
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clearly in the work of Stevin. A change is generated, as we were saying, in the 
very concept of number, that is, new (ideal) objects become numbers: 
numbers that can be operated on in the same way; for example, decimals 
become numbers provided that they obtain the category of mathematical 
objects, the main argument in Stevin’s works, Arithmetic and Disme (Stevin, 
1634). 

But when one constructs teaching sequences that try to follow this 
connecting theme, as in Alarcón and others (1981–1982), and one observes 
the behaviour of the population (in the statistical sense) in the distributions 
that indicate the evolution of mathematical abilities, one finds that there are 
other elements which have not been taken into account. It then becomes 
apparent that first of all one would have to seek out the history of operational 
aspects, of the syntax of arithmetic-algebraic language, in its development in 
the East, and also, secondly, study the evolution of another history, apparently 
unconnected but one that in practice is revealed to be totally related to that of 
operational aspects: the history of the analysis of variation and change; either, 
in the first instance, purely arithmetic methods (such as those of proportional 
variation), or, on a deeper level, those entailed by pictographic representation 
of the first and second variations of movement, of the change in the intensity 
of light, or of the propagation of heat. 

At this point it would seem to be very important to go back to history and 
analyze the works of the Middle Ages in regard to this. Our debt to historians 
(see Grant 1969, 1971; Clagett 1959, 1968; Van Egmond, 1980; Hughes, 
1981; and Høyrup, 1999b, for example) is inestimable in this context, for their 
compilations, translations, and commentaries provide us with living material 
which is waiting for us to go to them with new eyes: those of the problematics 
of the teaching of algebra, at the very point where algebra was to make  
it possible to introduce analytical ideas in geometry, and, immediately 
afterwards, the methods of infinite calculus. Similarly, in order to understand 
the jump between arithmetic and algebra (and the appearance of arithmetic-
algebraic language) it is necessary to cast light on the period immediately 
before the publication of Bombelli’s and Viète’s books. 

In Viète’s The Analytic Art we find the construction of an algebraic 
language in which, in addition to being able to model the problem situations 
solved by the languages used by Bombelli and Diophantus, we can also find a 
language in which one can describe the syntheses and algebraic properties of 
the operations introduced in the older texts. What is new in Viète’s language 
lies in the fact that, whereas in those earlier texts operations were used only 
by performing them or employing them problem by problem, in Viète there is 
the possibility of describing the syntheses (algebraic theorems) and the 
syntactic properties of operations, because they can all be described with that 
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language stratum and they can also be added to the store of knowledge on 
which someone who has mastered that new language stratum can draw. 

In the following sections we describe language strata prior to the intro-
duction of the language of Viète’s The Analytic Art. As examples we use 
certain differences between the abbacus books and Jordanus de Nemore’s  
De Numeris Datis. 

 
 

3.3. The abbacus books 
 
 
As can be seen in the work of compilation by Van Egmond (1980), the 
abbacus books represent the most feasible path for the assimilation of the 
mathematics of the East by Western European civilization; and in this 
adaptation of Indo-Arabic mathematics to the problems characteristic of a 
society with a vigorously rising economy (the society of Italy in the 15th and 
16th centuries) a new kind of mathematics was born. 

This mathematics was present and ready to be applied in the so-called 
abbacus books, the content of which essentially comprised the presentation of 
the Indo-Arabic positional system of numeration, the four elementary arithmetic 
operations, and the solution of commercial problems. These problems involved 
the four elementary operations, and also the use of the simple and compound 
rule of three, simple and compound interest, and the solution of some simple 
algebraic equations. Some books also included multiplication tables, tables of 
monetary equivalents, and tables of weights and measures. 

The first abbacus book of which we know was written in Latin in the Near 
East (Greece) and was introduced in Western Europe, in its first vernacular 
version, between the 12th and 13th centuries. 

The meaning of the word abbacus in the name of these books was that of 
“the art of calculating, counting and arithmetic.” The term was first used in 
this sense by Leonardo of Pisa, better known as Fibonacci, who in the 13th 
century wrote a compendium on the mathematical practice known up to that 
point. This happened naturally, because his father was a merchant from Pisa 
who visited and stayed in Arab countries in the East and in the Maghreb, 
particularly in the town now known as Bejaia (in what is now Algeria), and so 
Fibonacci was taught by Arabic teachers and learned the Arabic systems, both 
of commerce and of mathematics, with the result that his book contained 
knowledge of practical commercial mathematics, in accordance with the Indo-
Arabic system, and with a particular influence exercised by his own experi-
ence in merchant life and by his instruction in a great variety of Arabic texts 
on algebra, geometry, and commercial mathematics. 
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The production of abbacus books increased greatly in Italy in the 15th 
century; it is estimated that there were then 400, with about 400 different 
problems solved in each one; so, with regard to problems, even if we 
eliminate the repetitions between books, the production was of the order of 
tens of thousands. 

The first abbacus schools appeared in the West almost at the same time as 
the arrival of the first abbacus books. It is known that the first school was 
founded in 1284 in the commune of Verona, and that these schools were 
attended mainly by the sons of merchants and, in general, by men of affairs, in 
order to practice commercial mathematics and continue their basic education 
in grammar. The abbacus schools tended to proliferate in the 14th century; it 
is known that in Florence alone, in about 1343, there were six schools in 
which over a thousand students were taught. And, although this growth did 
not remain stable in subsequent centuries, there are references for about three 
or four schools in each important city (Florence, Milan, Pisa, Venice, Lucca), 
which functioned continuously from the 14th century and throughout the 
Renaissance. 

The most plausible historical explanation (see Van Egmond, 1980) for the 
appearance and multiplication of abbacus books, schools, and teachers in the 
West is of a social and economic nature. With the so-called Commercial 
Revolution in Italy in the 13th century there was a substantial social change: 
monetary power began to count more than feudal power, with the result that 
there was a greater desire for control of trading and financial activities, 
together with the skills required for their performance, than for possession 
even of land. Consequently, the rise of this new social class that came to 
power imposed the need to create the means to make this new kind of 
inheritance effective: the skills required in order to be able to participate in 
commercial power. These skills naturally included the contents of the abbacus 
books, originally produced to serve as reference books for the accountants and 
merchants of the time, and the need to make them accessible to the 
merchants’ sons led to the creation of abbacus schools and teachers, financed, 
initially at least, by the parents themselves. 

The children who attended the abbacus schools were 10 or 11 years old, 
and they were trained in the basic principles of arithmetic and practical 
mathematics (writing Indo-Arabic digits, the four operations with integers and 
fractions, solving commercial problems, and handling monetary equivalents 
and weights and measures), and also in grammar. It might be considered that 
the abbacus schools functioned as a kind of basic secondary education, acting 
as a bridge between basic education (the classical Roman school) and 
university (the first universities having been founded in Europe in the 12th 
and 13th centuries). 
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Although the abbacus schools might be viewed as an integral part of 
school education at that time, in reality they constituted a genuine innovation 
in educational circles because, unlike the universities, which provided instruc-
tion for the elites and functioned primarily as places for discussion and 
reflection about knowledge, the abbacus schools acted as transmitters of 
knowledge applicable to daily life. In the 15th century commercial activity 
was not just transacted between merchants and men of affairs, but rather those 
activities began to form part of the everyday life of what had become an urban 
population. 

Thus the abbacus schools and contents served to satisfy a social demand in 
the new Europe civilization, with such success that they became a tradition 
that endured for centuries as a companion to the new pattern of culture, the 
mentality created by the commercial revolution. 

To appreciate the full extent of the social and educational role of the 
abbacus books one would only need to review some of the mathematical 
contents of current textbooks for basic education in any country in the world 
to realise that, essentially, they are the same as what could be extracted from a 
typical abbacus book (see Van Egmond, 1980). This gave them the character 
of assimilators of Eastern mathematics to the needs of the new Western 
culture (which now stretches back over more than five centuries) through 
school education. 
 
 
3.4. An abbacus problem 
 
 
In the section of recreational problems in the Trattato di Fioretti (Mazzinghi, 
1967), we can find problems such as the following: 
 
Fa’ di 19, 3 parti nella proportionalità chontinua che, multiplichato la prima 
chontro all’altre 2 e lla sechonda parte multiplichato all’altre 2 e lla terza parte 
multiplichate all’altre 2, e quelle 3 somme agunte insieme faccino 228. 
Adimandasi qualj sono le dette parti. [From 19 make 3 continually pro-
portional parts such that, if the first is multiplied by the other 2 and the second 
part is multiplied by the other 2 and the third part is multiplied by the other 2 
and those 3 are added, together they make 228. The question is what the 
aforementioned parts are.] 
 

We can state this problem by translating it into the MSS of current algebra 
as follows: 

 
Find three numbers x, y, z such that 



72 EXPERIMENTAL DESIGN 

  

 

  

x + y + z = 19
x
y
=

y
z

x y + z( )+ y x + z( )+ z x + y( )= 228

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 

 
In Puig and Rojano (2004) there is a transcription of the original version in 

old Italian of the solution of this problem, accompanied by a translation into 
the MSS of algebra. For our present purposes, the solution presented in the 
treatise consists in applying a series of rules, in particular a rule of doubles3 
and the Babylonian method of completing squares. In both cases, but more 
obviously in the rule of doubles, each time that the rule is used it is reworded 
for the specific numbers with which it is necessary to operate. We will see 
that this is one of the characteristics that make the MSSs of the abbacus books 
more concrete than Viète’s MSSs, but also more concrete than that of 
Jordanus de Nemore’s book, De Numeris Datis. 

 
 

3.5. De Nemore and his work 
 
 
The bibliographic information about Jordanus de Nemore is very diffuse, but 
the authenticity of his work has been established. He lived during the period 
that ranges from the middle of the 12th century to the middle of the 13th 
century, and on the basis of annotations in the margins of his writings it is 
believed that he taught at the University of Toulouse. Research on his life and 
work has led him to be considered, since the last century, one of the most 
prestigious natural philosophers of the 13th century. It is also known that he 
devoted himself to physics-mathematics, laying the foundations for the whole 
area of medieval statics. Among his mathematical works, those devoted to 
arithmetic (and algebra) continued to be reproduced until the 16th century. 

If we consider only the treatises of a strictly mathematical character, we 
can identify six works attributed to Jordanus: Demonstratio de algorismo, 
which is a practical explanation of the Arabic number system with regard to 
integers and their use; Demonstratio de minutiis, which deals with fractions; 
De elementis arithmetice artis, which became the classic source of theoretical 
arithmetic in the Middle Ages; Liber philotegni de triangulis, which stands 
out in medieval Latin geometry particularly because it gives geometric proofs 
of theorems; Demonstratio de plana sphera, which consists of five multi-
partite propositions that clarify various aspects of stereographic projection; 
and, lastly, De numeris datis, considered the first book of advanced algebra 
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written in Western Europe, after Diophantus’s Arithmetic (which was written 
in about 250 BC but did not reappear in the Christian West until the 15th 
century, whereas in the Islamic East there is an Arabic translation of the 9th 
century; see Sesiano, 1982, and Rashed, 1984). 

 
 

3.6. De Numeris Datis 
 
 
Our description of this work is based on the version edited, translated, and 
interpreted by Barnabas Hughes and published by the University of Berkeley 
(Hughes, 1981). The book includes a critical edition in Latin of the complete 
De Numeris Datis, together with an English translation of the entire text and a 
translation into modern symbology of the statement and canonical form of 
each proposition (it does not include the symbolic translation of the solving 
procedure). In Puig (1994) there is a detailed description of the MSSs of this 
work, together with a translation of parts of book one, more literal than the 
translation by Hughes, precisely with the aim of bringing out the charac-
teristics of the MSSs. Here we will limit ourselves to outlining what is of 
interest for our present purpose. 

Unlike the abbacus books, employed as elementary algebra texts in 
secondary education for use in commercial life, De Numeris Datis was a text 
aimed at university students of the time, with the intention of setting them 
non-routine “algebraic” problems and teaching how to solve them. Indeed, De 
Numeris Datis presents a treatment of quadratic, simultaneous and propor-
tional equations which presupposes handling contents equivalent to those of 
al-Khwârizmî’s Concise book of the calculation of al-jabr and al-muqâbala 
(Rosen, 1831) and Fibonacci’s Liber abbaci (Boncompagni, ed., 1857; Sigler, 
ed., 2002). Both texts begin with some definitions and the development of the 
equations   x

2 = bx, x 2 = c  and bx = c , very rapidly arriving at the equations 

  x
2 + bx = c, x 2 + c = bx  and bx + c = x2 . 

The part played by De Numeris Datis in the history of mathematics is 
comparable to that of Euclid’s Data (Taisbak, 2003), in Hughes’s opinion, in 
the sense that the former constitutes the first book of advanced algebra, in the 
same way that the latter is the first book of advanced geometry and implies a 
good knowledge of fundamental geometry (contained in the Elements), 
confronting the ambitious student with the proof and solution of non-standard 
problems by the method of analysis. 

The propositions of De Numeris Datis are useful for analysis, therefore, 
just as a box of tools is, but the very structure of the book is also an exercise 
in analysis. In fact, unlike what happens in the problem of the Trattato di 
Fioretti, which we have just mentioned and that can be taken as representative 
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of the abbacus type of problem, in the propositions of De Numeris Datis it is 
a question of finding numbers for which some numerical relationships are 
known, but these relationships are given by constants, that is, the book says, 
for example, that the sum of three numbers has been given instead of saying 
that the sum of three numbers is equal to a certain specific number, 228 in the 
case mentioned, as it appears in an abbacus book. In fact, the statements of 
the propositions in De Numeris Datis are not problems but theorems, as they 
always have the form “if such numbers or ratios and relationships between 
them have been given, then such numbers or ratios have been given,” and they 
are proved like theorems, and are accompanied by a particular problem with 
specific numbers that is solved with the rule derived from the steps of the 
proof of the theorem or from the steps of the theorems to which this theorem 
is reduced. 

This second point is fundamental for the character of De Numeris Datis 
that interests us here: the sequence in which the propositions in De Numeris 
Datis are solved explicitly shows the reduction of each proposition to one that 
has been proved previously, and, therefore, the solution of the corresponding 
problems to the solutions of others solved previously. This kind of sequence is 
not entirely absent in abbacus texts, that is, in abbacus problems we also see 
repeated application of rules or algorithms when the solving procedure has led 
to a well-identified situation in which the application is feasible: this is the 
case with the rule of doubles or the Babylonian method in the problem 
mentioned. However, this aim of reducing to situations or forms already 
encountered and solved previously does not appear explicitly in the abbacus 
texts, whereas in De Numeris Datis it forms part of the method of solution. 
This might be due to the fact that expressions that we would write as 
 x + y + z = a and  x + y + z = b  with a ≠ b  are not fully identified as equi-
valents for the purposes of the solving procedures and strategies, which in the 
abbacus books depend strongly on the specific properties of the specific 
number a (or b) and its relationships with the other numbers that appear in the 
other equations of the system in question. 

It is in this sense that De Numeris Datis might be located in a more 
evolved stage, as it makes it possible to group problems that can be solved in 
the same way into large families by identifying more general forms. By this 
we do not wish to suggest that the actual strategies and skills required for the 
solution of problems in De Numeris Datis are on a higher level of abstraction 
or a more evolved level in terms of symbolization than those developed by the 
abbacus texts. These ideas about establishing a clear difference between 
levels of symbolization and solving strategies and skills are developed in 
Filloy and Rojano (1983). The point of view developed there considers the 
construction of symbolic algebra as the final identification within a single 
language of earlier strata of that language in which the absence of abstract 



 CHAPTER 3 75 

  

symbolism causes the posing of the problems and the procedures for solving 
them to be carried out in the vernacular (Latin, Italian). This imprints 
peculiarities on the operations performed, peculiarities that vary from one 
stratum to another and that cause those operations to be irreducible from one 
stratum to another unless one has developed what we call a more abstract 
MSS. 

 
 
 

4. THE PHENOMENOLOGICAL ANALYSIS OF SCHOOL ALGEBRA 
 
 

Modern algebra organizes phenomena that have to do with the structural 
properties of arbitrary sets of objects in which there are defined operations. 
Those properties and those objects come from the objectification of means of 
organisation of other phenomena of a lower level and they are the product of a 
long history with successive rises in level. 
 
 
4.1. Characteristics of algebra in al-Khwârizmî 
 
 
One way of viewing this history consists in placing oneself in the 9th century 
at the time when al-Khwârizmî wrote the Concise Book of the Calculation of 
Al-jabr and Al-muqâbala and taking that event as the birth of algebra as a 
clearly defined discipline within mathematics. What al-Khwârizmî did, and 
what separates his work from all the others that have been seen as algebra 
after him, was that he began by establishing “all the types or species of 
numbers that are required for calculations.” 

The context in which he seems to have examined those species is that of 
the exchange of money in trading or inheritances, and from it he takes the 
names that he uses for the species of numbers. The world of commercial 
problems and inheritances is linear or quadratic: in the course of the 
calculations there are numbers that are multiplied by themselves, in which 
case they are “roots” of other numbers, and the numbers that result from 
multiplying a number by itself are mâl, literally “possession” or “treasure”; 
other numbers are not multiplied by themselves and are not the result of 
multiplying a number by itself, and therefore they are neither roots nor 
treasures, they are “simple numbers” or dirhams (the monetary unit). 
Treasures, roots, and simple numbers are thus the species of numbers that  
al-Khwârizmî considers. 

In his Arithmetic, Diophantus had already distinguished different species 
(eidei) of numbers, with a different conceptualization (ways in which a 
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number may have been given), using the names monas, arithmos, dynamis, 
cubos, dynamodynamis, dynamocubos, etc., and thus a longer series than al-
Khwârizmî’s. 

Calculating with al-Khwârizmî’s or Diophantus’s species of numbers 
follows similar rules: what is obtained is always an expression equivalent to 
our polynomials or rational expressions, as the numbers of the same species 
are added together, or are taken that many times, or that many parts are taken, 
and the result is a number of that species a certain number of times or a 
certain number of parts of a number of that species; and if numbers of 
different species are added, the sum cannot be performed and is simply 
indicated. Thus, “four ninths of treasure and nine dirhams minus four roots, 
equal to one root” (Rosen, 1831, p. 41 of the text in Arabic) is an algebraic 
equation in al-Khwârizmî’s book, since al-Khwârizmî’s MSS uses vernacular 
language (Arabic in his case) exclusively; and 

 ∆
ϒβΜ

o

σŹισαŹΜ
o

ση  (Tannery, 1893, vol. I, p. 64, l. 8) 
is an equation in Diophantus’s MSS, which is read as “dynamis 2 monas 200 
equals monas 208,” since Diophantus uses abbreviations for the names of the 
species of numbers, which in this case consist of the first two letters of the 
word, and the Greek system of numeration uses the letters of the alphabet 
marked with a horizontal stroke, in a system that is not positional but additive, 
with codes for the nine units, the nine tens and the nine hundreds. There is 
almost no conceptual difference between the algebraic expressions and the 
equations of the two authors, as what is represented in them is the names of 
the species, the specific numbers that indicate how many of each species there 
are, the operations indicated between the quantities of each species, and the 
relationship of equality between quantities. 

Al-Khwârizmî’s book might thus be seen as more elementary or situated 
one step behind Diophantus, as the set of species of numbers is smaller and 
the expression uses only the signs of the vernacular. However, what is new in 
al-Khwârizmî’s book is that it suggests having a complete set of possibilities 
of combinations of the different kinds of numbers. It is clear that initially the 
possibilities are infinite, and that therefore it is necessary to reduce them to 
canonical forms in order to be able to consider obtaining a complete set. But 
al-Khwârizmî’s aim then is also to find an algorithmic rule that makes it 
possible to solve each of the canonical forms, and to establish a set of 
operations of calculation with the expressions that makes it possible to reduce 
any equation consisting of those species of numbers to one of the canonical 
forms. All the possible equations would then be soluble in his calculation. 
Moreover, al-Khwârizmî also establishes a method for translating any 
(quadratic) problem into an equation expressed in terms of those species, so 
that all quadratic problems would then be soluble in his calculation. 
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Al-Khwârizmî obtains the set of canonical forms by combining all the 
possible forms of the three species, taken two at a time and taken three at a 
time. He thus obtains the three forms which he calls “simple,” making the 
species equal two at a time: 

 
treasure equal to roots 
treasure equal to numbers 
roots equal to numbers 
 

and the three forms that he calls “compound,” adding two of them without 
taking order into account and making them equal to the third: 
 

treasure and roots equal to numbers 
treasure and numbers equal to roots 
roots and numbers equal to treasure. 
 
As al-Khwârizmî is able to present an algorithm to solve each of these 

canonical forms simply by collecting and justifying methods that are 
established and that have been in use since the time of the Babylonians, all 
that remains is to establish a procedure for translating the statements of the 
problems into their algebraic expressions and a calculation that makes it 
possible to transform any equation into one of the canonical forms. 

The species of numbers refer to concrete numbers with which calculations 
are performed, so that in order to be able to translate the statements of the 
problems into those algebraic expressions it is necessary to be able to refer 
also to unknown quantities as if they were concrete numbers and calculate 
with them, that is, it is necessary to name the unknown and treat it like a 
known number. What al-Khwârizmî does to achieve this is to use the word 
shay’, literally “thing,” to name an unknown quantity. He then uses it to 
perform the calculations which the analysis of the quantities and relationships 
present in the problem indicates to him as being necessary, and in the course 
of the calculations he sees what species of number that thing is: a root if it is 
multiplied by itself, or a treasure if it is the result of a quantity that has been 
multiplied by itself; so that he can translate the statement of the problem into 
two expressions that represent the same quantity and make them equal so as to 
have an equation. In Chapter 11 we will see that these are in fact the steps of 
the Cartesian method. 

“Thing,” incidentally, is a common noun for representing any unknown 
quantity, not the proper name of a specific unknown quantity, unlike what is 
established by the Cartesian method; in fact, al-Khwârizmî does not say “the 
thing” but “thing,” that is, “a thing,” when he refers to the unknown quantity 
which he calls “thing.” In the course of the construction of the equation that 
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translates the problem, however, “thing” is bound to one of the unknown 
quantities, functioning as the proper name of that quantity. 

The operations in the calculation are algebraic transformations of the equa-
tions that seek to obtain one of the canonical forms. However, the canonical 
forms have three features that characterize them (and that cause the complete 
set of canonical forms to have 6 items), and the operations are directed at 
achieving each of those three features. 

The first is that there are no negative terms, or, to use al-Khwârizmî’s 
terminology, there is nothing “that is lacking” on either of the two sides of the 
equation. 

In fact, in al-Khwârizmî’s or Diophantus’s algebraic expressions there are 
quantities that are being subtracted from other quantities. There are not 
positive and negative quantities, but quantities that are being added to others 
(additive quantities) and quantities that are being subtracted from others, and 
the latter cannot be conceived on their own but only as being subtracted from 
others. Thus, al-Khwârizmî may even go so far as to speak of “minus thing” 
when he is explaining the sign rules, but he is always referring to a situation 
in which that thing is being subtracted from something: 

 
When you say ten minus thing by ten and thing, you say ten by ten, a hundred, and minus thing 
by ten, ten “subtractive” things, and thing by ten, ten “additive” things, and minus thing by 
thing, “subtractive” treasure; therefore, the product is a hundred dirhams minus one treasure. 
(Rosen, 1831, p. 17 of the text in Arabic) 

 
However, as the subtractive quantities are conceived as something that has 

been subtracted from something, an expression in which there is a subtractive 
quantity represents a quantity with a defect, a quantity in which something is 
lacking. Diophantus’s sign system expresses this way of conceiving the 
subtractive in an especially explicit way, as in his work all the additive 
quantities are written together, juxtaposed in a sequence one after another, and 
all the subtractive quantities are written afterwards, also juxtaposed, preceded 
by the word leipsis (what is lacking). Thus, the algebraic expression 

  x3 − 3x 2 + 3x −1  
is written as 

Κϒ α ς γ Λ ∆ϒ γ Μ
o

α (Tannery, 1893, vol. I, p. 424, l. 10),  
 

an abbreviation of “cubos 1 arithmos 3 what is lacking dynamis 3 monas 1,” 
in which the expressions corresponding to x3 and 3x are juxtaposed on one 
side, and x2 and 1 on the other, separated by the abbreviation for “what is 
lacking.” 

It is precisely this idea that there is something lacking in the quantity that 
is directly responsible for the form adopted by the operation that eventually 
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gave its name to algebra. In fact, the objective of the operation that  
al-Khwârizmî calls al-jabr is that nothing should be “lacking” on either side 
of the equation. That is why the operation is called al-jabr, literally 
“restoration,” because it restores what is lacking. In terms of the language of 
modern algebra, al-jabr eliminates the negative terms in an equation by 
adding them to the other side, but al-jabr is not equivalent to the transposition 
of terms because the modern transposition of terms can also transfer a positive 
term to the other side by making it negative, which goes against the intention 
of the al-jabr operation (but is consistent with the fact that the canonical form 
that one now seeks to attain with algebraic transformations is ax2 + bx + c = 0, 
with a, b, and c being real numbers). 

The second characteristic feature of al-Khwârizmî’s canonical forms is that 
each species of number appears only once. The algebraic transformation that 
this pursues is al-muqâbala, literally “opposition.” As al-Khwârizmî always 
performs this operation after al-jabr, at this point there is nothing lacking; 
there are no negative terms in the equation. The operation consists in 
compensating for the number of times that a given species of number appears 
on each side of the equation, leaving the difference on the appropriate side. 

Lastly, the third characteristic is that there is only one treasure, or, in 
modern terms, that the coefficient of the treasure is 1. This is achieved by 
means of two operations that al-Khwârizmî calls “reduction” (radd) and 
“completion” (ikmâl or takmîl). “Reduction” is used when the coefficient of 
the treasure is greater than one, and it consists in dividing the complete 
equation by the coefficient; and “completion” is used when the coefficient of 
the treasure is less than one (it is “part of a treasure,” in al-Khwârizmî’s 
words), and it consists in multiplying the complete equation by the inverse of 
the coefficient. 

The first two operations, al-jabr and al-muqâbala, appear in the title of  
al-Khwârizmî’s book as the characteristic operations of calculation, and they 
are also mentioned, although not by name, in the introduction to Diophantus’s 
Arithmetic (Tannery, 1893, vol. I, p. 14, ll. 16–20). 

What makes all these calculations meaningful, therefore, is the idea of the 
establishment of a complete set of canonical forms, which then organizes 
algebraic expressions through transformations, and it organizes problems into 
families of problems that are solved in the same way. 

 
 

4.2. Steps toward modern algebra 
 
 
Al-Khwârizmî’s complete set of canonical forms was complete only with the 
condition of restricting the species of numbers to the three that he considered. 
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The continuation, including the cube as the fourth species, was developed by 
cUmar al-Khayyâm, who established that the complete set of canonical forms 
had 25 items, but that he could not find an algorithm for solving the 25. What 
al-Khayyâm did as a result of his inability to give a strictly algebraic solution 
for the matter was to show how the solution of the canonical forms could be 
constructed in the cases that resisted him by means of intersecting conical 
sections.4 As a response to the same inability, Sharaf al-Dîn al-Tûsî added to 
this the establishment of procedures for the approximate calculation of roots.5 
For the historical phenomenology that we are outlining, these non-algebraic 
responses to the lack of ability to find algorithms for all the canonical forms 
do not interest us. Nor are we interested in the fact that eventually algorithms 
were found not only for al-Khayyâm’s 25 canonical forms but also for fourth-
degree equations. What interests us is the response given to the inability to 
find algorithms for the canonical forms of equations of a degree higher than 
the fourth from Lagrange onwards. 

In fact, in his memoir written in 1771, “Réflexions sur la résolution 
algébrique des équations” (Lagrange, 1899, vol. III, pp. 205-424), Lagrange 
explicitly proposed an aim which was not that of continuing to search for 
algorithms, but of examining why it had been possible to find them. 

 
I propose to examine the various methods that have been found so far for the algebraic solution 
of equations, and reduce them to general principles and show a priori why these methods 
succeed for the third and fourth degree and are lacking for higher degrees. (Lagrange, 1899, 
vol. III, p. 206) 

 
Here, therefore, Lagrange explicitly takes the methods themselves as the 

object of study, so that the problematics of algebra is shifted to a higher level, 
beyond the organization of problems into families by the establishment of 
canonical forms in a more abstract MSS than that of the problems themselves. 
Now it is the characteristics of the canonical forms themselves that have to be 
organized in order to account for the success or failure of algebraic methods 
of solution. What Lagrange does is to make a critique of the methods, a 
critique in the sense of establishing limits. To do this, he studies the 
relationships in the methods between a given equation that one is trying to 
solve and the reduced equation, a second-degree auxiliary equation that can 
therefore be solved algebraically, to which one can proceed from the given 
equation by a rational relationship; and, on the basis of this study, in a crucial 
movement he reverses the relationship by finding a way of expressing the 
reduced equation in terms of the roots of the given equation (what Lagrange 
calls the resolvent). From this point he is able to establish the reason for the 
success of the methods, and also the fact that the same reason cannot exist for 
degrees higher than the fourth (which does not exclude the possibility of an 
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algebraic solution, but does rule out the possibility of it belonging to the same 
structure). 

The shift made by Lagrange, from the search for methods of solution to the 
explanation of why they are successful or not, led Abel in 1824 to jump to a 
new level, in his Mémoire sur les équations algébriques, où l’on démontre 
l’impossibilité de la résolution de l’équation générale du cinquième degré 
(Abel, 1881, I, pp. 28-33), in which he shows, as the title says, that the 
inability to find an algebraic method of solution for equations of a degree 
higher than the fourth really is an impossibility, thereby giving the previously 
insoluble problem a formulation in which it is soluble, changing the problem 
of finding a method into the problem of proving whether such a method 
exists. 

Galois’s works provided the final and definitive jump in level, by linking 
the solubility of an equation to the properties of the equation’s group and 
tackling the problem by studying the properties of those groups, so that what 
is studied is not what equations are soluble but what groups are soluble. He 
shows this clearly in a memoir written in 1831, Sur les conditions de 
résolubilité des équations par radicaux, where he says: 

 
Problem. “In what case is an equation soluble by simple radicals?” 
First of all I will observe that in order to solve an equation one must lower its group 
progressively until it contains only one permutation. 
[…] let us seek the condition that must be satisfied by an equation’s group so that it can thus be 
lowered by the adjunction of radical quantities. (Galois, 1846, p. 426) 

 
With this step, from Galois onward algebra becomes modern algebra. As 

Vuillemin says, 
 

[…] Galois’s theory has shifted the interest of algebra: whereas, essentially, it set out to solve 
equations, in future it will tend rather to seek the nature of the magnitudes that must be added to 
the base field in order to determine the factorising field in which it becomes possible to express 
and ascertain roots rationally. (Vuillemin, 1962, p. 247) 

 
 

4.3. The phenomenological analysis of the language of algebra 
 
 
After Galois we enter a different history, that of modern algebra, which is 
absent from current school algebra, yet the historical phenomenology that we 
have expounded in the two previous sections does not exhaust the phenol-
menology of school algebra. It is at least necessary to consider what 
phenomena are organized by the language of algebra, and in what way it 
organizes them. Once again, this can be done as historical phenomenology or 
as didactical phenomenology. The historical view is developed in Section 1.3, 
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“Algebraic Language: A History of Symbolisation,” in Puig and Rojano 
(2004); the didactical phenomenology can be found in Freudenthal’s 
Didactical Phenomenology of Mathematical Structures, Chapter 16, “The 
Algebraic Language.” In this section we refer to what is expounded in the two 
texts. 

 
 

4.3.1. The representation of unknown quantities and species of numbers 
 
 
In Puig and Rojano (2004) there is an analysis of how the central core of the 
evolution of the language of algebra has to do with the way in which 
unknown quantities, on the one hand, and species of numbers, on the other, 
are represented in algebraic expressions and therefore in equations. 

In most of the sign systems of medieval algebra there is only one name to 
represent the unknown, “thing,” which is in fact a common noun although 
used as a proper name. Consequently, those MSSs cannot represent different 
unknown quantities with different proper names. Instead, once an unknown 
quantity has been named as “a thing,” the others have to be named with 
compound names constructed more or less algorithmically from the relation-
ships between it and each new unknown quantity (for example, “ten minus 
thing” is the name that one could give to an unknown quantity of which it is 
known that when it is added to “thing” the result is ten). However, the 
network of relationships between the quantities in the problem might be so 
complex that it is extremely intricate, or even impossible, to name all the 
quantities with compound names: for these problems, the fact that only the 
term “thing” is available makes the sign system not very efficient. 

Medieval algebraists resorted to various devices to get around this. 
Sometimes they used the term “thing” again, but with a qualifier. This is the 
case with Abû Kâmil, who in one problem in his book of algebra (cf. Levey, 
ed. 1966, pp. 142-144) uses the names “large thing” and “small thing” (“res 
magna” and “res parva” in the Latin version edited by Sesiano, 1993, p. 388). 
Sometimes they used names of coins for the other unknown quantities. This is 
also the case with Abû Kâmil, who uses dînâr and fals (cf. Levey, ed. 1966, p. 
133, n. 140, although on this occasion Abû Kâmil is expounding a different 
solution for a problem that has already been solved using “thing” on its own), 
or with Leonardo of Pisa, who uses denaro, as well as res (cf. Boncompagni, 
1857, pp. 435-436 and p. 455). In the part devoted to inheritances in  
al-Khwârizmî’s book, at one point he does not even use the term “thing” but 
calls the inheritance mâl, treasure, using it in its vernacular sense, and he calls 
what corresponds to each of the heirs “share” or “part share,” and he 
constructs the indeterminate linear equation “five shares and two parts of 
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eleven of share equal to the treasure.” According to Anbouba (1978), in the 
same part of al-Khwârizmî’s book there is also a problem in which he 
constructs a linear system of two equations using “thing” and “part of thing” 
to name two different unknown quantities.6 

Moreover, what appears in the algebraic expressions is the names of the 
species of numbers (simple number or dirham, root, treasure, cube, etc.; or, in 
the translation into Latin, numerus, radix, census,7 cubus, etc.), but the 
quantity by which this species is qualified is not named. From the identi-
fication of “thing” with “root” it is assumed that the treasure is the thing 
multiplied by itself, but there is no way of expressing another quantity 
represented with another proper name that has been multiplied by itself. The 
algebraic expressions of these sign systems do not say “five treasures of 
thing” but just “five treasures,” unlike the sign system of modern algebra, 
which uses 5x2 to say “five times the square of x,” and, therefore, is 
structurally prepared for designating another unknown quantity with another 
proper name, y, and saying “five times the square of y”, 5y2. 

The sign system of Indian algebra does have proper names for different 
unknown quantities (it uses names of colors for this purpose), and it forms 
algebraic expressions by juxtaposing the name of the unknown quantity and 
the name of the species (cf. Colebrooke, ed., 1817), but this system did not 
have any impact on medieval Arabic algebra, or therefore, on algebra in the 
Christian West. It was not until Viète that a sign system was developed in 
which there were proper names for different quantities, together with the 
names of the species. But Viète’s sign system also used letters as proper 
names, and not just for unknown quantities but also for known quantities. 
This freed the algebraic expressions from ambiguities and made them capable 
of providing a direct representation of the quantities analyzed in the state-
ments of the problems. 

However, in Puig and Rojano (2004) it is shown that Viète’s sign system 
lacks full operational capacity on the syntactic level because the species of 
numbers are represented by words or abbreviations of them, although these 
words are constructed algorithmically from certain basic words. It is also shown 
that this syntactic operativity is attained when one combines the representation 
of quantities by letters, introduced by Viète, with the representation of species 
by means of numbers that indicate the position of the species in the series of 
species (in continual proportion).8 The algorithmic rules for the construction of 
the names of the species can then be replaced by those numbers and converted 
into part of the calculation. 
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4.3.2. Aspects of the didactical phenomenology of the language of algebra 
 
 
In the “Variables in the Vernacular” section of his phenomenological analysis 
of the language of algebra, Hans Freudenthal recounts that 

 
When my daughter was at the age when children play the game “what does this mean?” and I 
asked her what is “thing” she answered: Thing is if you mean something and you do not know 
what is its name. (Freudenthal, 1983, p. 474) 

 
The didactical phenomenology of the language of algebra that Freudenthal 

expounds is based precisely on the examination of the phenomena that are 
organized by the language of algebra, seen with regard to how those 
phenomena are organized in the vernacular and in the language of arithmetic, 
which are the languages that provide the starting point or context from which 
pupils have to acquire the language of algebra. 

We will not repeat Freudenthal’s observations here, but simply indicate 
some of the aspects that he analyzes. 

 
1) The rules of transformation in languages 
 
We have already seen that the need for the development of rules of 
transformation in the language of algebra comes from the aim of being able to 
solve all problems without needing to have a specific algorithm for each one, 
and that this is done by the establishment of canonical forms and calculation 
on the syntactic level. In teaching, only awareness of the overall aim can give 
sense to the use of such syntactic transformations. Freudenthal examines the 
fact that rules of transformation also exist in the vernacular, but that the 
correctness of the transformations performed in the vernacular cannot 
generally be decided without resorting to the contextual meaning, whereas in 
the language of algebra the part played by the context in this sense is 
generally nil. 

 
2) The algorithmic construction of proper names 
 
We have seen that this is an outstanding aspect of the language of algebra. 
Freudenthal points out that algorithmic features are not unusual in vernacular 
languages. But these algorithmic procedures of sign construction are not very 
systematic and are not generalized (plurals, conjugations and declensions, 
etc.). The first experience that children have of an algorithmic construction of 
proper names is the learning of numbers in their mother tongue: an area of 
contact between the vernacular and the language of arithmetic. 
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3) Structuring devices 
 
The rules of transformation and the algorithmic construction of proper names 
are based on the structure of the language. The language of algebra has a 
wide range of structuring devices, many of them shared with the language  
of arithmetic, especially parentheses, priority between operations, and the 
arrangement of signs in relation to the text line (exponents, subscripts and 
superscripts, the fraction bar and the positions above and below the text line 
that it determines, roots, etc.). Once again, Freudenthal analyzes the existence 

 
4) Variables in the vernacular versus algebra variables 
 
We have already analyzed the use of “thing” in the language of algebra, and 
the differences between it and the variables of modern school algebra. 
Freudenthal points out that the use of letters must also be examined in 
geometry, where Euclid’s Elements already used letters to refer to points, 
lines, and figures, and he indicates the origin of the expression “point A,” in 
which A is the proper name of the point, in an abbreviation of an earlier 
expression, “the point at A,” which simply describes a drawn figure to which 
letters have been added in order to be able to refer to it in the oral discourse 
which was customary in teaching. 

Freudenthal also examines the fact that in order to use a variable as a 
proper name it is necessary to bind the variable. “Variables,” says Freudenthal 
(1983, pp. 474-475), “can be bound independently of any context, by 
linguistic logic devices, or in dependence of a context.” The logic devices are 
the universal and existential quantifiers, the definite article (including “the 
thing” as opposed to “thing”), the set former, the function or species former 
and the interrogative, whereas the devices that depend on context are the 
demonstratives. 

 
5) Formal substitution and algebraic transformations 
 
Formal substitution is the culminating point in the constitution of the MSS in 
the teaching of school algebra. For this to take place it is necessary that the 
algebraic expressions should have completely relinquished the character of 
representing actions that their antecedents in the MSS of arithmetic possess, 
and should have completely acquired the static character of a relationship. 
One of the key elements in this transition from language as action to the 

are based on content, whereas this is not the case (or not so much) in the 
of such structuring devices in the vernacular, and the fact that there they 

language of algebra. 
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language of algebra is the exceedingly well-known change of meaning from 
the arithmetic equals sign to the algebraic equals sign. 

However, in the context of algebraic transformations, which are performed 
between expressions with a static character that represent relationships, the 
meaning of the arithmetic equals sign reappears. The algebraic transformation 
par excellence consists in “reducing” an expression to a simpler form or a 
canonical form, so that (x + a)(x – a) = is an indication that an action must be 
performed and that the result of the transformation is expected on the other 
side of the equals sign; it is not just the construction of an equivalence. Yet 
the reversibility of algebraic transformations may give that appearance: for 
example, the action that is the opposite of “reducing” is “factorizing” (and one 
would have to decide which is simpler, the classical canonical forms resulting 
from reducing, or the expressions that explicitly show the roots that result 
from factoring). 

At the origin of formal substitution there is the possibility that the letter that 
names a quantity may be replaced by a compound expression that names the 
same quantity. This makes it necessary for the user of the MSS to accept the 
fact that, as the letter and the compound expression represent the same thing, 
not only can they be made equal but also the calculations or relationships 
represented in an expression in which the letter appears can also be carried out 
with the equivalent expression and the new expression will represent the same 
thing. On the other hand, the user will have to face syntax problems9 that derive 
from the structuring devices, such as the priority between operations, which 
sometimes makes it necessary to introduce other structuring devices such as 
parentheses where they were not present; or the problems posed by having to 
replace a letter with an expression in which that letter may also appear. This is 
the case with the difficulty that pupils find in replacing n with n + 1, for 
example, when using the method of complete induction. 

However, the substitution becomes definitively formal when the expres-
sions are no longer the result of the translation of the statement of a problem 
but are algebraic expressions which are studied as such. 
 
 
 

SUMMARY 
 
 

This chapter goes over part of a diagram of the design of the experimental 
setting for the observation of phenomena of learning and teaching algebra. 

In the next chapter we shall apply the methodological diagram to the study 
“Operating on the Unknown,” with a view to studying the processes of 
transition from arithmetic thinking to algebraic thinking at the point when  
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pupils first encounter the need to operate on what is represented. In order to 
locate this point (called a “didactic cut” in the study), we use historical and 
epistemological analysis of mathematical sign systems found in old texts on 
algebra from the pre-symbolic period (before the appearance of François 
Viète’s The Analytic Art). This analysis and the phenomenological analysis of 
algebraic language illustrate the power of the methodology proposed by local 
models, in the part corresponding to the choice of the moment of observation. 
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 ENDNOTES 
 
1 See Filloy, Rojano and Solares (2004) 
2 The canonic edition of the Greek text of Diophantus’s Arithmetic is the one by Paul Tannery 
(Tannery, 1893); we have also consulted the French translation by Paul Ver Eecke (Ver Eecke, 
1959). The canonic edition of Bombelli’s Algebra is the one by Ettore Bortolotti (Bortolotti, 
1966). The original Latin text of Viète’s book, In Artem Analyticen Isagoge, is included in the 
complete works of Viète compiled and published by Franciscus van Schooten (Van Schooten, 
1646); there is an English translation included as an appendix in Klein (1968), and another one 
in Witmer, ed. (1983). 
3 In the text of the Trattato di Fioretti the rule is not stated generally but with reference to the 
concrete case to which it is applied, as follows: “E a multiplichare la seconda parte nella 
somma di tutte e 3 due volte è chome a multiplichare la seconda parte nel doppio della somma 
di tutte a 3, overo quanto a multiplichare lo doppio della seconda parte nella somma di tutte et 
3.” [And multiplying the second part by the sum of the 3 two times is like multiplying the 
second by double the sum of all 3, or like multiplying double the second part by the sum of all 
3] (Mazzinghi, 1967, p. 16). Stated in a general form, the rule would say: “multiplying one 
quantity by another one twice is equal to multiplying the first quantity by double the second 
one, or also multiplying double the first quantity by the second.” 
4 There is a recent edition of the Arabic text of al-Khayyâm’s Treatise on Algebra, accom-
panied by a translation into French, in Rashed and Vahebzadeh (1999). One can also consult 
the English translation by Kasir (1931). 
5 There is an edition by Roshdi Rashed of the Arabic text of Sharaf al-Dîn al-Tûsî’s Treatise on 
Equations, accompanied by a translation into French, in al-Tûsî (1986). 
6 Diophantus also has a single name for unknown quantities (arithmos). In problem 28 in Book 
II of his Arithmetic (Tannery, 1893, vol. I, pp. 124–127), he resorts to the device of saying that 
a second unknown quantity is one unit (monas 1), performing the calculations using this 
supposition, and then in the result changing the units to arithmos and calculating again. 
7 “Census” was the term chosen by Gerardo de Cremona for mâl, treasure, in his translation of 
al-Khwârizmî’s book of algebra, and it was the one that caught on in the Christian Mediaeval 
West (cf. the edition by Hughes, 1986). 
8 This is already present in Chuquet’s Triparty, written in French in 1484. However, this book 
by Chuquet remained unpublished and was therefore scarcely known until the end of the 19th 
century, when Aristide Marre published it (Marre, 1880). Bombelli used the same kind of 
representation in his Algebra, from which it became more widely known among algebraists. 
9 See our ongoing work reported in Chapter 8 and in Filloy, Rojano and Solares (2004). 
 
 
 




