
 

CHAPTER 1 
 

INTRODUCTION 
 
 
 

OVERVIEW 
 
 

This book is based on an experience of ours in which the need to interpret 
unanticipated phenomena observed in empirical studies on the transition 
toward algebraic thought conducted in the 1980s, triggered a long-term 
research program that in turn led to a theoretical formulation that emphasizes 
local analyses. 

To illustrate that experience, we briefly examine a few of the phenomena 
observed in the transition from arithmetic to algebra, which represent an 
essential part of pre-algebra. The observations dealing with cognition are 
presented in Section 4.2.1, the reverse of multiplication syndrome in 4.2.2, 
different uses of the notion of equality. Polysemy of x; and in 4.2.3, 
difficulties in translations. We begin by indicating the role of historical 
analysis in Section 4.1, and complete the section with an example of a 
dialogue that took place during a clinical interview, in which additional 
phenomena appeared in translating algebraic language to natural language 
(Section 4.3). 

The book presents the theoretical elements developed and shows how the 
theory of local models, through their different components, has enabled a 
deeper study of phenomena in the field of acquiring algebraic language, 
considering aspects that are relevant to learning, teaching, and research. 

Use of the term “educational algebra” in the title of the book, instead of the 
more usual term “school algebra” is appropiate given the broad-based nature 
of the educational aspects we deal with. As will become patent in the rest of 
the book, besides working with children and teachers in schools we have 
used other sources as well to design and develop empirical studies: semiotics, 
epistemological analysis (primarily history of mathematical ideas), phenomeno-
logical analysis (mainly Freudenthal’s approach to curriculum development), 
formal mathematics, cognitive theories, etc. The term “educational algebra” is 
sufficiently broad to encompass the aspects that are educational, albeit not 
necessarily school-related. 

We also introduce two central terms, “mathematical sign systems” and 
“local theoretical models”, which are used throughout the book. They are 
discussed more extensively in Chapter 2 and in other chapters, where they  
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are used in the description of concrete examples arising from the empirical
studies. 

We conclude with a review of other literature on the subject of 
mathematical language and language and mathematics to place our work 
within a context and to demonstrate its contribution therein. 

The desire to achieve a profound understanding of both the origin and 
nature of the difficulties confronting those who seek to gain access to
algebraic thinking has set in motion great ideas and inquiries about them over 
the past three decades. The vast amount of literature produced from all this 
research activity makes the task of surveying and updating the state of the art 
in this field increasingly difficult. It is not so difficult, however, to identify a 
series of studies that concentrate on studying symbolic algebra as a language, 
together with the details of its acquisition. Because of the abstract nature of 
algebraic language and the highly syntactic competences required for its use, 
many of these studies use approaches that include semiotic concepts and 
linguistic analyses. This book is devoted to setting out a path of theoretical 
development for educational algebra, in which this very perspective is adop-
ted and in which an historical element becomes a contributing factor.  

Despite the deliberately theoretical character of this work, its direction 
differs from that of general models. This work incorporates elements that 
make it possible to develop local frameworks of analysis and methodological 
design for the study of specific phenomena. In these frameworks, it is possible 
to include evidence connected with such phenomena, the interpretation of 
which escapes general treatments. Such is the case when individuals who are 
beginning the study of algebra, produce personal sign systems that are located 
on a level prior to the mathematical sign system that is to be learned (that of 
symbolic algebra in this case). 

After the worldwide acknowledgment in the late 1970s that the educa-
tional system had largely failed to teach algebra in secondary schools, one of 
the great ideas put forward was Hans Freudenthal’s proposal. Freudenthal 
stressed the need to analyze the language of algebra by comparing it with 
other languages, such as natural language and the language of arithmetic, both 
of which were considered means of support (Freudenthal, 1983, ch. 16). His 
dissertation was followed by many other studies dealing with mathematics 
education seen through a linguistic hue. 

Most of the research carried out recently on the didactics of mathematics 
lacks paradigmatic theoretical models, even if one uses the term paradigm 
(somewhat in the sense of Kuhn, 1962) not as a synonym of theory, but in a 
more general sense, i.e, as the set of basic assumptions that one can make 
about the nature and limits of the actual subject to be studied, the method for 
studying it, and the decision as to what will be accepted as evidence. Nor has 
a consensus been reached about which of the basic assumptions should 
determine the form to be taken by the theoretical frameworks for interpreting 
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specific phenomena and for proposing new experimental designs that will 
carry theory further forward to embrace other evidence or new unrelated 
evidence. In short, it is still necessary to speak of the boundaries of many 
research projects. 

As a start, other disciplines have already begun research on the very 
subjects that pervade most of the work on which mathematics educators have 
reported. Some of these subjects include linguistics, logic, psycholinguistics, 
semiotics, general cognitive psychology, the psychology of mathematics, the 
epistemology of mathematics, the history of mathematics, the psychology of 
education, the theory of the development of mathematics curricula, and the 
didactics of mathematics. 

Many research studies have recently incorporated the results of these 
disciplines and have redefined results within their own theoretical frame-
works. Here we interpret various recent theoretical assumptions to reorganize 
the research undertaken on the processes of teaching/learning algebra during 
the past few years. To accomplish this, it is necessary to work with a good 
deal of new terminology to be able to describe recent research. 

To this end, in Chapter 2 we introduce the methodological concept of local 
theoretical models (LTMs). Although LTMs are dealt with in greater detail in 
Chapter 2, we can state here that the subject is considered in terms of four 
interrelated components: (1) teaching models, (2) models for the cognitive 
processes, (3) models of formal competence and (4) models of communi-
cation. Here we shall refer only to their local character. 

 
 
 

AND ITS COMPONENTS 
 
 

One of the chief reasons for resorting to local theoretical elaborations was the 
need to interpret phenomena that arose during the study. These phenomena 
could not have been anticipated from the design of the observation and did not 
fit into schemes of analysis based on general theories derived from mathe-
matics education itself or from neighboring disciplines such as psychology, 
pedagogy, sociology, history, epistemology, or linguistics. Studies on the 
transition from arithmetical thought to algebraic thought carried out in the 
1980s came up against this situation, giving rise to a long-term research 
program that envisaged the development of theoretical elements that would 
make it possible to refine the analysis of such phenomena. An initial 
hypothesis is that although we set out from a general notion —that of the 
mathematical sign system— it is the local character of the theoretical 

1.. ON THE LOCAL CHARACTER OF THE THEORETICAL FORMULATION  
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knowledge about the subject. Hence LTMs (Filloy, 1990) represent the central 
idea in this work. Rather than partializing the problems of mathematics 
education research, LTMs open up paths of communication between the various 
components that usually contribute to them. In fact, each local model con-
templates the study of cognitive aspects, formal mathematical competence, 
teaching, and communication. This comprehensive approach offers possibilities 
of making a substantive contribution to a highly focused study, based on a 
multiplicity of disciplines and drawing on the work of specialists and com-
munities connected with those disciplinary fields. The contents of this book are 
the result of progress in the research agenda that we set ourselves when, in our 
studies on algebraic thought among adolescents in the 1980s, we were first 
faced with the limitations of general analytical schemes in trying to interpret the 
phenomenon of the polysemy of x or that of the reverse of multiplication 
syndrome, for instance. Later in this chapter we provide a detailed description 
of those phenomena, as well as others that arose during our research. For our 
descriptions, we shall be using the notion of mathematical sign system (MSS), a 
brief introduction to which is provided in the following section. 

 
 
 

2. MATHEMATICAL SIGN SYSTEMS 
 
 

2.1. Sign 
 
 
This section discusses the phenomena that take place in mathematics 
education, using the jargon of semiotics. We do so not to embellish our 
observations with cryptic language, but because we consider these phenomena 
as processes of signification and communication, and semiotics deals with 
processes of precisely this type. 

The fact that semiotics studies these processes rather than signs is 
especially clear in the semiotics developed by Charles Sanders Peirce. In 
Peirce’s semiotics, this emphasis on processes is present even in the very idea 
of sign. Peirce gave countless definitions of “sign” throughout his extensive 
writings, in which he repeatedly outlined the concept. In all of his definitions, 
three characteristics are worthy of special emphasis. The first is the fact that 
the sign is not characterized by a dyadic relation such as that of Saussure’s 
signifier/signified pair; the relationship to which any sign belongs is triadic. 
And one of the elements, which Peirce calls the “interpretant,” is the cognition 
produced in a mind. The second is the fact that the sign is not a static entity 
but is instead open within a series. Since all cognition is in turn a sign, that 
sign therefore stands within a triadic relationship to another interpretant  
 

elaboration that makes it possible to delve deeper and thus generate new 
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(which is another cognition), and so on and so forth. The third is the fact that 
the sign is not arbitrary or rather that the triadic relation to which it belongs is 
not arbitrary. 

 
In a manuscript written in 1873, Peirce gives his briefest and most compact 

definition of a sign: 
 

A sign is an object which stands for another to some mind (Peirce, W 3, p. 66).1 
 

The relation is established between the sign (S), its object (O), and a mind 
for which the sign is related to its object in such a way that, for certain 
purposes, it can be treated as if it were that other.2 Let us see how Peirce 
defines the interpretant (I): 

 
A sign […] addresses somebody, that is, creates in the mind of that person an equivalent sign, 
or perhaps a more developed sign. That sign which it creates I call the interpretant of the first 
sign. The sign stands for something, its object. (Peirce, CP, 2.228, p. 135.) 
 

The triadic relation (S, O, I) is, therefore, a relation in which both S and I 
are signs, so that I is a new sign, S’, which enters into another triadic relation, 
i.e., it creates in a mind another sign as interpretant, I’, of object O, a new 
cognition I’, such that object O links the two triadic relations (S, O, I) and (S’, 
O, I’). This leads to the open nature of the sign in a process of semiosis that 
has no end. Peirce expressed it thus in another definition, subsequent to that 
quoted above: 

 
Sign [Lat. signum, a mark, a token]: Ger. Zeichen; Fr. signe; It. segno. (I) Anything which 
determines something else (its interpretant) to refer to an object to which itself refers (its 
object) in the same way, the interpretant becoming in turn a sign, and so on ad infinitum. 
(Peirce, CP, 2.303, p. 169.) 
 

Also present in this definition is the third aforementioned characteristic: 
the fact that the relation is not arbitrary. The sign forces the interpretant to 
refer to the same object as the one to which it refers. In a more extensive 
definition, quoted later, Peirce is even more exigent and adds that the sign 
forces the interpretant to refer to the same object and, furthermore, in the 
same way as it refers. Moreover, there must also be an interpretant, I1, of 
interpretant I, which has as object O1, the relation between the sign and its 
object. 

 
A Sign, or Representamen, is a First which stands in such a genuine triadic relation to a Second, 
called its Object, as to be capable of determining a Third, called its Interpretant, to assume the 
same triadic relation to its Object in which it stands itself to the same Object. The triadic 
relation is genuine, that is its three members are bound together by it in a way that does not 
consist in any complexus of dyadic relations. […] The Third must indeed stand in such a 
relation, and thus must be capable of determining a Third of its own; but besides that, it must 



 INTRODUCTION 

 

6 

 

have a second triadic relation in which the Representamen, or rather the relation thereof to its 
Object, shall be its own (the Third’s) Object, and must be capable of determining a Third to this 
relation. All this must equally be true of the Third’s Third and so on endlessly […] (Peirce, CP, 
2.274, p. 156). 
 
 

 
 
The examples presented throughout the book have enabled us to make use of 
Peirce’s concept of the sign and its typology, and to explore the sense through 
which it casts light on what we wish to examine. The examples also show 
something else: the signs that are used in mathematics are not all of a 
linguistic nature, which makes it advisable not to use the terminology or 
concept of the sign that belong to linguistics (derived, to a greater or lesser 
extent, from the work of Saussure), and therefore not to speak of the 
signifier/signified pair. In the preceding text we have not done so, using 
instead the term “expression,” from the expression/content pair —terminology 
that has been introduced in semiotics (the science of signs in general, and not 
just of linguistic signs). This is also very convenient because in mathematics 
one is accustomed to speaking of “algebraic expressions” or “arithmetic 
expressions” to refer to the corresponding written forms. 

However, in putting the emphasis on individual signs, what we have seen 
so far may conceal the crucial fact that there are no isolated signs in any text 
(whether mathematical or not). 

It is very common for a description of the language in which mathematical 
texts are written to distinguish between two subsets of signs: one consisting of 
signs conceived as strictly mathematical and another consisting of signs in 
some vernacular language. From the viewpoint of signification processes, 
however, this distinction ceases to be crucial although it can still be made. 
What seems to be crucial is the sign system taken as a whole, and what must 
be described as mathematical is the system and not the signs, because the 
system is responsible for the meaning of the texts. One must therefore 
understand the term “mathematical sign systems” as mathematical systems of 
signs and not systems of mathematical signs,3 for what is of a mathematical 
nature is the system and not just the individual signs. Consequently, what is of 
interest for the development of mathematics education is to study the 
characteristics of these (mathematical) sign systems which are due not just to 
the fact that they are sign systems but also precisely to the fact that they are 
mathematical systems. 

Filloy (1990) and Kieran and Filloy (1989) introduced the need to use  
a sufficiently broad notion of mathematical sign systems. It had to serve as  
a tool to analyze the texts produced by students when they are taught 

2.2. Mathematical sign systems 
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mathematics in school systems —and those texts are conceived as the result of 
processes of production of sense— as well as to analyze historical mathe-
matical texts, taken as monuments, petrifactions of human action, or processes 
of cognition belonging to an episteme. In taking these mathematical texts as 
the object of study, rather than supposedly ideal texts conceived as 
manifestations of “mathematical language” or texts that are measured by 
them, the notions of mathematical sign systems and of text must both open up 
in various directions. 

Thus one must speak of mathematical sign systems, with their corres-
ponding code, when there is a socially conventionalized possibility of 
generating sign functions (by the use of a sign functor, see Chapter 7), even 
when the functional correlations have been established in the use of didactic 
artefacts in a teaching situation with the intention that they should be imper-
manent. But one must also consider the sign systems or strata of sign systems 
that learners produce in order to give sense to what is presented to them in the 
teaching model,4 although they may be governed by a system of corres-
pondences that has not been socially established but is idiosyncratic. 

 
 
 

3. DIFFERENT ANSWERS TO SAME QUESTIONS? 
 
 
We point out, however, that not only semiotics but also information processing 
theory and the didactics of mathematics (Brousseau, 1997) have done 
important work on the notion of code. This notion is emerging as a key concept 
to interpret what comes from using the idea of representation in the models that 
explain the cognitive problems presented by alternative teaching approaches or 
technology learning environments. Or, to provide another example, consider 
the emphasis that psycholinguistics and artificial intelligence place on a 
process-based model of human capabilities and relate it to the way in which the 
model explains how and why users of mathematical language naturally and 
commonly make mistakes in its syntactic procedures. To these developments, 
one must add the attention that a pragmatic viewpoint has given to meaning in 
use rather than formal meaning. 

By accumulation, these approaches —and others of a similar nature— have 
led to a change of direction in recent work, which is shifting away from the 
competence of mathematical language users and moving toward performance. 
This change of viewpoint has basic and essential implications for the manner in 
which mathematical language is seen. Essentially, the claim is that grammar —
the formal abstract system— and pragmatics —the principles of language 
usage— are complementary domains in our studies. In addition, that both  
are domains related to the various teaching models, be they innovative or 
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traditional, that are used to achieve the objective of guiding students in order for 
them to become competent users of the language of mathematics. Since one of 
our aims is to observe what happens in mathematics classrooms, however, we 
must also confront the complexities of teaching and learning phenomena within 
that particular setting. 

Indeed, one of the simplest phenomena demonstrated by classroom 
observation, for instance, reading level permanence among children who have 
just finished primary education (approximately 12 years old), is what arises 
when they are confronted with questions like those in Figure 1.1, which shows 
the evolution of the equation Ax = B in school teaching. 

 
 Evolution of the equation Ax = B  
 1) 3 ×  = 12 

2) 3 ×  = 672 

3)

 672

×3

 
4) 3 × x = 672 
5) 3x = 672 

 

Between the ages of 10 and 12 it is easy to direct some students so that all 
the questions are read like [2]: What is the number that, when multiplied by 
3, gives 672? 

 
Figure 1.1 

 
When one analyzes the responses of children within this age group, many 

issues arise. Apart from the fact that these questions are deemed as different 
because some can be answered and others cannot, we also find that it is fairly 
easy to get a certain student profile bogged down in their use of the preferred 
arithmetic method, trial and error. It is even quite easy to induce them to 
continue using that method for a considerable time despite the fact that the 
numbers become progressively larger, which eventually means that they no 
longer have sufficient arithmetic skills to be able to answer the question 
without making mistakes. We call this phenomenon “the reverse of multi-
plication syndrome.” 

To be able to observe phenomena of this kind experimentally, we therefore 
need an experimental framework that will enable us to interpret the facts and 
propose new observations that will unravel the relations existing between the 
different components in play. 
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 4. THE TRANSITION FROM ARITHMETIC TO ALGEBRA. PRE-ALGEBRA. SOME 
OBSERVATIONS ABOUT COGNITION 

 
 

Several studies have indicated conceptual and/or symbolic changes that mark 
the difference between arithmetic and algebraic thought. Examples of the 
foregoing are those related to the various interpretations of letters (Booth, 
1984), those dealing with the notion of equality (Kieran, 1980, 1981), and 
those produced with respect to the symbolic or graphic conventions for coding 
operations and transformations in solving of equations (Matz, 1982). From 
such indications, one can imagine paths of evolution from arithmetic to 
algebraic thought that correspond to the representative notions and forms for 
the objects and operations involved in the mechanisms of change. Thus, the 
changes deemed essential for a person to attain algebraic knowledge can be 
visualized along each of these paths as points where there is a cut between one 
kind of thought and another. 

One of the foregoing points that is of particular interest to the topic of 
equation solving is suggested by analyzing the strategies and methods used to 
solve equation systems in texts of pre-symbolic algebra from the 13th to 15th 
centuries. An important factor in this analysis for developing solution 
strategies and methods is that of operating unknowns. This arises as a result of 
the limitations imposed by the frameworks that belong to the pre-symbolic 
representation of equations and their characteristic elements. Thus, for ex-
ample, the solution that led to equations that we now write as x2 + c = 2bx and 
x2 = 2bx + c are completely different in each case. Yet this would not happen 
if the rules for transposing terms from one side of an equation to the other 
were known because, for instance, then it would be possible to reduce the case 
of one of the equations on a syntactic level to that of the other, which would 
correspond to a more developed level of operation on unknowns. 

 
 

4.1. The role of historical analysis 
 
 
The propositions contained in Leonardo of Pisa’s Liber Quadratorum (Book 
of Squares)5 can quickly be proved using the mathematical sign system of 
secondary school algebra. Indeed, they are propositions that can be proved in 
less space than that taken up by one of the pages of this text, and their 
mathematical content does not go beyond what is presently learned in 
secondary school. Nevertheless, it is easy to perceive the intensity of thought 
required to follow the reasoning depicted in Leonardo’s book. And it is not as 
if he were rhetorically playing with trivial matters. On the contrary, his work 
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is very possibly the pinnacle of mathematical thought in Middle Age Europe. 
Frozen in time on those pages one finds reasoning that drew —and still 
draws— great admiration because of its freshness and intensity. It is a thought 
that comes to us from the 13th century and that shows us how a mathematical 
sign system predetermines the ways in which we analyze problems, advocates 
our solution strategies, and draws the lines of strength that guide the sense of 
all our inferences. This strikes us as odd within the context of developing the 
thought processes of children, but it is even more amazing in the thought 
process of a first-class mathematician, perhaps the greatest mathematician of 
that era. At the same time it provides us with the opportunity to discover 
unknown terrain on which we can observe and describe the same cognitive 
tendencies as we find in today’s children as they attempt to become competent 
users of the mathematical sign systems that they are taught in secondary 
school. It further enables us to draw plausible hypotheses, and then observe 
those hypotheses in the behavior of present-day students as one tries to have 
them make competent use of the sign systems currently used to articulate the 
messages through which today’s mathematics education is communicated. 

As one confronts mathematical texts such as those of Leonardo, one’s 
attention is first drawn to the fact that no one speaks that language now. Were 
they translated into the mathematical sign system of current symbolic algebra 
they might appear to be advanced problems typical of a modern textbook. They, 
however, differ in that their solution strategies do not conform to customs. In 
addition, today one would not perform many of the operations and intermediate 
steps that seem to be necessarily present in those texts. The language of the 
abbacus books6 is today a dead language. Their translation to modern algebraic 
language fill us with amazement for the novel actions that led to the same 
results as ours, but that follow unheard of paths. Their very presence in problem 
after problem and in book after book are indicative of skills unrelated to those 
we have developed in building and using our algebraic language —skills, one 
might add, that we have never felt the need to build, develop, or use when 
confronting problems with our arithmetic abilities and knowledge. 

Clearly, as we build new conceptual apparatuses that have imposed 
themselves upon us without the possibility of erecting them within a proper 
structure, connecting them to others that have previously been firmly rooted, 
those new skills tend to overshadow older skills. Moreover, given the fragile 
means at one’s disposal to use at that point any new resources and solution 
techniques, even problems that had been mastered for quite some time are 
now difficult to model in the new language within which the infant conceptual 
apparatus that is in the process of being constructed is expressed. 

Nonetheless, well anchored intellectual structures tend to perpetuate 
themselves and compel us to reconsider situations that, when modeled in the 
new language, could be solved with simple, routine operations. 
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Indeed we do realize that we began speaking of reading and interpreting 
ancient texts, and have now taken a leap onto the plane of psychological 
processes. We now feel confident in saying that it is precisely this leap, 
forward and backward, that enables us to produce hypotheses founded on the 
development of general knowledge and to convert them into hypotheses about 
the didactics of mathematics, which then seeks to reconsider that process on 
the level of individuals –children, in this case. The MSS of arithmetic has  
to make way for that of algebra, and this has become an increasingly per-
tinent matter even for situations that have always before been modelled in 
arithmetic. 

Building the new MSS, whose point of departure must necessarily be 
elementary arithmetic operations, will involve the need to operate on new 
objects. These objects will signify not only numbers but also numerical 
representations, whether as individual items (e.g., unknowns), sets of numbers 
(e.g., coefficients of equations), an expression of relations between sets of 
numbers (e.g., proportional variation), or as functions, etc. The algebraic MSS 
will have to be structured on new objects whose operations will not be 
completely determined until the outlines of the new world of objects become 
more precise. What is more, the objects will not be totally outlined and well 
defined until the new operations have been completely structured in terms of 
both their semantic and syntactic aspects. 

Such profound changes in arithmetic habits and notions do not take place 
spontaneously in individuals simply because they are confronted with the 
need for change. The intervention of teaching, at that point of transition from 
arithmetic to algebraic knowledge, can be crucial for most students who are 
learning algebra for the first time. 

Although it is necessary to modify some arithmetic notions in order to 
acquire the new —algebraic— knowledge, it is also necessary to preserve the 
previous knowledge —arithmetic, in this case. Even in the single example of 
equations previously presented, there is a need for arithmetic equations to 
subsequently be recognized as such in order to preserve the entire operativity 
acquired beforehand for their solution —an operativity situated on an 
intermediate level of knowledge between arithmetic and algebraic knowledge, 
that is to say the level of pre-algebraic knowledge. 
 
 
 
4.2. Mathematics lessons at the beginning of secondary education 
 
 
We present three types of situations that generally arise when students have 
just completed elementary education and are beginning secondary education: 
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 1) The reverse of multiplication syndrome. 
2) Different uses of the notion of equality. The phenomenon of contextual 

ambiguity. 
3) Difficulty translating from natural language to algebra and viceversa. 
 
 

4.2.1. The reverse of multiplication syndrome 
 
 
As mentioned in Section 3, some students get stuck using the arithmetic 
method of their preference, which is trial and error when solving the equation 
Ax = B, and even go on using this method when it has become inefficient 
because the B numbers are too large for them to perform arithmetic trial and 
error without making mistakes. 

During the first year of secondary school (in the Mexican Educational 
System), most students end up preferring the method of dividing B by A in 
order to solve the equation Ax = B, which is the objective of the mathematics 
syllabus at that stage. However, the same trial and error strategy reappears in 
the work of students who had already achieved operativity to solve all first-
degree equations, when the context in which the equation Ax = B appears 
comes from an analytical process while the student is solving a word problem. 

Even more surprisingly, at times when the expression Ax = B is written by 
the very person who is being observed, the signs are not recognized as the 
expression of an equation that a few moments before the student knew how to 
deal with operationally to find the solution. The context in which the equation 
appears, even in its written form, makes the student “forget” the operativity 
achieved previously and revert to preferring the arithmetic method of trial and 
error or, in some cases, become unable to bring any method of solution into 
play. A more detailed description of what happens in the latter case shows that 
the interpretation of the sign x is crucial in interpretation of the expression 
Ax = B: interpreting the x as an unknown makes the student not know what to 
do, because “it is something that is not known,” in the student’s own words. 
In addition, it is important to recall that we are at a point in teaching when we 
are trying to have students begin to use the knowledge they have learned 
about solving first-degree equations in order to solve application problems 
that appear in mathematics lessons as well as in physics, chemistry, and other 
subjects. 
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4.2.2. Different uses of the notion of equality. Polysemy of x 
 
 
Several ways of interpreting equality can be distinguished among the uses 
made by 12- to 13-year-old children, as follows: 
 
 
A) As an arithmetic equality (EAr) 
 
In this case, the student tries to combine the terms on the right side of the 
equation or read them as a single number before giving any type of answer or 
performing any operation. Those who make this interpretation carry out one 
of the following procedures: 
 

i) Completion: “This [the independent term on the left side] needs this 
much to be equal to this [the complete right side]”. 

ii) Direct isolation: this procedure predominates in students who perform 
well, but it also appears in the other cases. In items such as 

  
x +

141
16

= 17 +
141
16

,     x + 17 = 42+ 17 and 
  
x +

x
4

= 6 +
x
4

, 

students who make this interpretation (EAr) and who try to isolate x face 
serious difficulties. For some students, the fact that they do not know 
the value of   17 prevents them from tackling the   x + 17 = 42+ 17. 

 
Arithmetic 

equality 
 

resultoperations

x A B A+ = +  

 P r o c e d u r e s    
 ↓   ↓   
 
Completion 

  
Trial and error

Difficulty in    x + 17 = 42+ 17
 

 
Figure 1.2 

 
B) Equality of the left side (as a whole) with the right side (also as a whole)(C0) 
 
This interpretation also allows for two procedures: 
 
i) Completion, which in many cases is more visual than arithmetic. 
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ii) Isolation. In some children of mid-level performance, the C0 interpretation 
precedes the appearance of the EAr interpretation. In other cases, it appears 
on its own. 

 
Equality of the two sides, 
taking each side as a whole 

 
a wholea whole

x A B A+ = +  

 P r o c e d u r e s    
 ↓   ↓    
Completion  Trial and error  

More visual than arithmetic   
 

Figure 1.3 
 
C) Equality term by term (C1) 
 
With this interpretation it is possible to solve these equations very quickly, 

except the items 
    
x +

x
4

= 6 +
x
4

 and   x + 5 = x + x , on which we will comment 

later. This interpretation predominates in students with a high achievement 
level, although in some cases it is preceded by the C0 interpretation or (in 
children of mid-level performance) by rearrangement of the terms with 
respect to the = sign. 
 

 
Equality term by term 

⇓ ⇓

x + A = B + A
↑ ↑

 

 
 Predominates in high performance level students  
 ↓     
Quick solution ← By comparison Or By canceling 
    
 Preceded by:   
 Interpretation (A)  Rearrangement of terms with respect to the = 

sign 
 

Figure 1.4 

In the items 
    
x +

x
4

= 6 +
x
4

 and x + 5 = x + x there is a tendency to give a C1 

interpretation, but also to assign different values to different occurrences of x. 
The typical response is: 
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This x  (
  
x
↓

+
x

4
= 6 +

x

4
) equals 6 and these ( x +

x
↓

4
= 6 +

x
↓

4
) can be any 

number. 
 
In the item x + 5 = x + x, the same kind of response appears: 
 

This   x
↓

 ( x + 5 = x + x
↓

) equals 5 and these (   x
↓

+ 5 = x
↓

+ x ) can have 
any value. 
 
In some cases, the students were asked to invent a problem that could be 

solved with this equation. Others were presented with a problem of the same 
kind to make them see that, within the context of one and the same problem, 
all occurrences of an unknown represent that same unknown. However, this 
clarification was not always successful. 

We have denominated this phenomenon of unknown multivalence as 
“polysemy of x,” because it involves a reading of the same sign in various 
contexts in which x is an unknown and in which x is a generalized number. 
Moreover, what “unites” these two interpretations or readings is the numerical 
equality of both sides of the equation. 
 
 
4.2.3. Difficulties in translations 
 
 
After secondary school students have received pre-algebra MSS instruction 
and been introduced to elementary algebra so as to solve linear equations and 
decode arithmetic-algebraic texts, yet before receiving systematic teaching on 
usage of open expressions, equivalence of expressions, and how to solve 
equation systems, the task of reading or writing algebraic language is very 
difficult for them. This is so much the case that one can almost see the tension 
mount in them as they struggle between using the arithmetic MSS to read and 
express themselves and their need to give mathematical signs new meanings 
within the context of the algebraic MSS. This is yet another indicator of the 
fact that the boundary between arithmetic and algebra cannot be avoided 
given that it would lead to false conceptions about the processes for acquiring 
the algebraic MSS, and, consequently, about the role of teaching within those 
processes. Furthermore, this highlights just how important it is for reading and 
writing algebraic MSS to be considered a decisive educational goal for middle 
school students. 

The forms of notation used in algebra just happen to be basically the same 
as those in arithmetic, i.e., numbers, operation symbols, the equal sign, and 
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letters. However, their meanings and the way they are operated essentially 
differ in the two fields. Consider the following example: 

The two expressions A = b × h and y = ax are syntactically equivalent, yet 
the way of reading them —their interpretation— determines the actions that 
subsequently have to be performed. 

One (conventional) way of reading A = b × h is “the area (of a rectangle) is 
equal to the base times the height,” which refers readers to the field of 
arithmetic-geometric MSS. Whereas y = ax, read in context, could mean “y is 
a linear function of x, with parameter a.” Or else in the realm of analytical 
geometry, it could be read as “the geometric place that corresponds to the 
straight line that passes through the origin with slope a.” 

In the latter example, clearly texts expressed by means of the same MSS 
have no lack of ambiguity because those very texts can be read as texts of 
different related MSSs. 

As another example: in the expression (3 + 5 – 2) – (7 – 3 – 2) = 4, the 
equal sign functions as an indicator of the result of actions performed with 
signs that belong to the arithmetic MSS. 

 
( ) ( )

( )
OPERATIONS

actions to be performed RESULT

3 5 2 7 3 2 4
↓

+ − − − − =  

 
Figure 1.5 

 
However, the equal sign that appears in 4x + 2 = 5x – 3 denotes a relation 

between expressions (between texts). This relation is algebraic, but it is 
numeric for a specific value of x, which leads to a numeric identity when 
substituted in the equation: x = 5 gives 4(5) + 2 = 5(5) – 3; 22 = 22. 

 
4x + 2 = 5x – 3 

4(5) + 2 = 5(5) – 3 
22 = 22 

↓ 
SYMMETRY 

 
Figure 1.6 

 
In this case, = denotes symmetry and the numeric value found for x does 

not appear on the right hand side of the equalization as a result of the actions 
carried out; rather it is in a relation of identity with itself. 

In an expression syntactically equivalent to the latter, such as 
3x + 5 = 2x + x + 3 + 2, the equal sign also denotes algebraic equivalence, but 
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in this case it is tautological. In other words, the equality is valid for any value 
of x. 

The examples given show that mathematical signs do not have one single 
interpretation, and therefore their correct reading requires a reconceptualization 
of the mathematical objects that these signs represent, as one steps from one 
context to another —from arithmetic to algebra or to geometry. 
 
 
4.3. Algebraic and natural language translations 
 
 
In order to research translation from algebraic to natural language and 
viceversa, researchers can ask questions in which students are taught to use 
algebraic language to write sentences previously written in natural language 
—originally Spanish, although here we are presenting an English translation 
of the transcriptions. For example, one can ask a student to write phrases such 
as “a increased by 2” using signs, which we illustrate with part of a dialogue 
between the interviewer (I) and a student (S): 
 

S: I don’t understand that. 
I: They give you a sentence and they ask you to write it using letters and signs representing 

operations. 
S: In other words, symbolizing something … 
I: Yes, but what do you mean by symbolizing? 
S: … 
I: Give me a sentence in Spanish in which you use “increasing.” 
S: You’ve increased speed. 
I: And what does that mean? 
S: That the person is now, well, going faster? 
I: And another sentence in Spanish which also includes “two”? 
S: Well … I went on increasing my speed for two days. 
[…] 
S: In the last two days he’s increased in weight. 
[…] 
S: His weight increased by two kilos. 
 
In this case, the student makes use of meanings taken from colloquial 

language in order to answer the teacher’s questions. It is obvious that he needs 
to give meaning to the phrase presented before proceeding to symbolise  
it, and in all replies the student is inconsistent in terms of the varying 
interpretations of the phrase, which will lead to its incorrect symbolisation. 
This inconsistency derives from the fact that in the original phrase “a” and 
“two” are measurements or quantities of the same thing, and here the student 
assigns them to different things (speed and days, weight and time), except in  
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the sentence “His weight increased by two kilos,” in which he seems to speak 
of an initial weight (a) and the two kilos by which it has increased. 

In another case, a student responds to the same question with the drawing 
that appears in Figure 1.7. 

 

 
 

Figure 1.7 
 

Here the word “increase” is clearly not identified with the mathematical 
action of adding, but corresponds to a real action of enlarging or expanding, 
an action that affects the letter (sign) “a”. 

By putting questions such as these to students, one can observe the inter-
action of mathematical language with natural language. In this regard very 
interesting analyses have been undertaken that illustrate once again that, at the 
ages in reference, the meanings of the words in natural language predominate 
and that these meanings inhibit translation of phrases that consist of those 
words to the MSS of algebra. 

Here is another example. When students were asked to read open expres-
sions such as 

  
a + b

2
, ab, 3ab, a2, 

 
in addition to producing textual readings like 
 

“a plus b over two” 
 
some students tended to associate geometric meanings with these expressions, 
and therefore they produced non-algebraic readings. We will now illustrate 
this with part of a dialogue between the interviewer and a student: 
 

I: Read the next expression aloud. [Pointing to the first one in the list shown above]. 
S: Broader side over two. 
I: And now, if you stop thinking of it as a formula, what would you read there, in what 

situations have you come across it? 
S: Well, it’s for finding a result. 
I: Such as? 
S: Well … 
 
Here, after a long pause, the interviewer intervenes and asks the question 

again, this time referring to the expression a + b. 
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 S: As numbers … for example, 50 + 20. 
I: So that if this [indicating a + b] is there on the blackboard, it means 50 + 20. 
S: No, I mean, it could also mean something else. 
I: Such as what? 
S: Another unknown. 
I: What unknown? 
S: For example, a equals, no … well, if a equals 20, what does b equal? 
I: And there … 
S: The unknown is b. 
 
What we see in this dialogue is that the student tends to interpret open 

expressions as geometric formulae (for example, “broader side over two”) or 
else tends to close them, either seeking a result by assigning specific numeric 
values to the letters, or converting one of the letters into a given and the other 
into an unknown, which is a characteristic of the closed expressions of 
algebra, i.e., equations. 

In both cases, we see that the letters and operation symbols still suggest to 
the student meanings associated with those signs in primary school. In other 
words, expressions that include letters or that are formulae or that are simple 
equations, even when the equals sign —necessary in these two cases— is 
absent. It is the student who completes the expression in order to be able to 
read it within contexts that are familiar to him or her. 

This example points to the kind of semantic antecedents of the MSSs used 
by 12- to 14-year old students, which are the foundations upon which their 
algebraic language skills must be developed. It is there that open expressions, 
for instance, will denote new mathematical objects at a higher level of 
generality, involving more general concepts such as that of generalized 
number (a and b in a + b) and that of suspended operation (the addition in 
a + b). 

 
 
 

5. ALGEBRA AS A LANGUAGE: 
APPROACHES FROM LINGUISTIC, SEMIOTIC, AND HISTORICAL PERSPECTIVES 

 
 

In this section, we review several works on mathematical language and 
language and mathematics that are especially relevant to the issues raised and 
analyzed in this book. 

From a broader perspective than one that solely encompasses algebra, 
David Pimm has carried out an analysis of the language spoken and written in 
the maths classroom, expressed in his book Speaking Mathematically, which 
was published in the late 1980s (Pimm, 1987). In this work, Pimm tackled  
the task of examining school mathematical discourse by applying analytical 
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techniques from theoretical linguistics. The language of the students, the 
language of the teacher, and the discussions in the mathematics classroom 
expressed through the authentic output of those actors constitute the main 
corpus of analysis in Pimm’s research. 

As far as theoretical analytical instruments are concerned, Pimm turns to 
the linguistic concept of register in order to approach the concept of metaphor 
in mathematics, to which he gives special importance, since he sets out from 
the recognition that the part played by this concept in the learning of 
mathematics is as fundamental as the part it plays in the learning of natural 
language (Pimm, 1987). When treating the theme of the formalism of written 
language, Pimm necessarily touches on the subject of symbolic algebra, 
inasmuch as it is an essential reference when speaking of a system of symbols 
in mathematics, and of their syntax and grammar. His analysis also tackles the 
theme of the role of natural language in teaching and learning in mathematics, 
with special emphasis on how the meanings assigned to words in colloquial 
language are spontaneously transferred by children to mathematics. 

The fact that Pimm concentrates his analysis of language on the maths 
classroom, in its various expressions (speaking, writing, reading) and through 
the output of various actors (pupils, teacher), is a manifestation of his clear 
interest in matters of communication, which places him among researchers 
with a conception of mathematics as a social activity. 

Raymond Duval, on the other hand, in his book Sémiosis et Pensée 
Humaine. Registres sémiotiques et apprentissages intellectuels (Duval, 1995), 
tackles the subject of learning in mathematics from a semiotic perspective, 
based on the relationship between semiosis (apprehension or production of a 
semiotic representation) and noesis (cognitive acts such as conceptual 
apprehension, understanding of inferences or discrimination of differences). 
Duval emphasizes the role of this relationship in the cognitive functioning of 
thinking and in its implications for the learning of mathematics and the native 
language. The variety of semiotic systems of representation in mathematics 
(graphs, formulae, tables, geometric figures, etc.) and the conversions 
between them are the material analyzed in Duval’s works, which indicates 
that one of the greatest problems in semiosis has to do with the phenomena of 
non-congruence, which arise precisely in processes of conversion between 
representations. One of the central theses in this work is that coordination of 
registers of representation by learners is a necessary condition for conceptual 
apprehension in mathematics. 

Among the studies on learning in mathematics with a semiotic perspective, 
Duval’s is characterized by its theoretical analysis of the relationship between 
semiotic representations and mental representations, in cognitive development 
and in the exercise of cognitive activities. It is also characteristic of this author 
to give prominence to the cognitive activities of reasoning and the 
comprehension of texts, which prompts him to expound specific aspects of 
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argumentation and proof in mathematics and to tackle the subject of sense. 
This last aspect is considered basically in relation to the orientation and 
conscious control of the fundamental cognitive activities by learners. 

Such a wide-ranging treatise as Duval’s could not fail to apply its theoretical 
analysis to the learning of the mother tongue and its connection with 
learning in mathematics. Within this framework, the author also deals with  
the differences and relationships between natural language and formal 
languages, taking geometry and logic as cases illustrating translations between 
the native language and formal language. The case of algebra is not used in this 
sense, but there is no doubt that it could be very relevant for the analysis of 
specific situations of “putting into equations,” that is, the translation of the text 
of a problem (written in natural language) into algebraic language. There is a 
clear allusion by the author to symbolic algebra in the chapter devoted to 
conversion between registers, in connection with conversions between algebraic 
expressions and Cartesian graphs, but without devoting an ex professo treatment 
to algebraic language, with respect to the major themes that he develops, such 
as congruence and conversions between semiotic representations; the compre-
hension of texts and sense; and the relationships between noesis and semiosis, 
natural language and formal language, and mental representations and semiotic 
representations. 

More recently, in his book Mathematics Education and Language (Brown, 
2001), Tony Brown has presented a theoretical study in which elements of 
hermeneutics, linguistics, poststructuralism, and social phenomenology are 
combined to analyze the instrumental character of language in the develop-
ment of mathematical understanding. Brown uses examples taken from 
research on mathematics education to examine how language influences the 
activity developed in the normative framework of a given situation. One of 
the implications of this analysis is that learning can be seen as a reconciliation 
between the conventional ways and potential ways (for learners and teachers) 
of describing such a situation. 

Accordingly, Brown pays special attention to the role of pupil and teacher 
narratives. Specifically, in Chapter 8, “Narratives of learning mathematics,” he 
analyzes a theoretical perspective concerning the ways in which pupils 
progress in learning mathematics, for the particular case of progressing from 
arithmetic thinking to algebraic thinking. He goes back to data collected by 
other authors in various studies on this transition and proposes that they be 
revised, including their discourses and suppositions. For this purpose he makes 
use of Ricœur’s analysis of time and narrative in order to form an analytical 
approach to the treatment of notions such as transition, development and 
progression in the learning of mathematics. From this new perspective, the 
results of previous studies on the transition toward algebraic thinking attain 
another dimension, that of the view of the individuals who experience the 
transition and who use their own resources of expression to narrate their 
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appreciation of the boundary between arithmetic and algebra. Moreover, 
according to Brown, in light of what Ricœur calls semantic innovation, adding 
a new narrative is interpreted as an extension of the familiar comprehensions of 
an individual with respect to the actions that he performs to incorporate figures 
of speech that will enable him to grasp a mental experience that has not yet 
fitted into previous versions of his linguistic usage. In fact, the cases of 
transition from arithmetic to algebra that Brown reanalyzes contribute elements 
that recreate this part of Ricœur’s theory concerning semantic innovation. 

The studies by Pimm, Duval, and Brown to which we have referred respond 
to the need to develop theory in order to analyze phenomena of the learning and 
teaching of mathematics closely connected with language in a broad sense. In 
these approaches, the analysis of mathematics as a language —in its various 
expressions, oral and written; with its different semiotic representations, through 
formulae, graphs, tables, etc.; used by different actors, pupils and teachers; 
through conventional expressions or potential expressions (narratives) — is as 
important as the analysis of its intricate relationship with natural language. The 
theoretical advances reported in these three works draw on theories from other 
disciplines, such as linguistics, semiotics, critical sociology, and hermeneutics. 
Similarly, this book forms part of attempts to theorize about mathematics, 
language and education, with a specialised focus on the language of symbolic 
algebra, assuming, as we indicated earlier, a theoretical view in which two main 
elements participate, semiotic and historical, and adopting a perspective based 
on pragmatics, favoring the study of meaning in use rather than formal 
meaning. In this way the focus of attention is shifted toward the activity of 
individuals with the language of algebra. Essentially, grammar, as the formal 
system, and pragmatics, as the set of principles of using language, are conceived 
as complementary domains, especially when they are related with models of 
teaching algebra. 

Other works that emphasize algebra’s character of written language have 
been devoted to the task of analyzing algebraic syntax and semantics, taking 
elements from support theories, such as linguistics and semiotics. The work 
done by David Kirshner makes use of generative and transformational 
grammar (Kirshner, 1987) to generate simple algebraic expressions and 
perform transformations with them, all based on descriptions of the superficial 
forms and deep forms of those expressions. In transformational grammar, the 
transformations of the expressions take place in the corresponding deep 
forms, which reveal the structure of the forms produced with respect to the 
operations that constitute them and their hierarchy. 

Jean-Philippe Drouhard, on the other hand, develops a notion of 
signification, with which he associates four aspects: reference, which 
corresponds to the function of algebraic evaluation; sense, which is given by  
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the set of transformations applicable to the expression; interpretation, which 
corresponds to the various readings given to the expression in the different 
contexts in which it may appear (such as number theory, analytical geometry, 
etc.); and connotation, which corresponds to psychological signification 
(depending on each individual) (Drouhard, 1992). The analysis of the 
meaning, or significations, of algebraic writing is then approached theoretic-

Finally, in this brief survey of the studies most directly related to ours,  
we must mention the work of Luis Radford, who shares with us a semiotic 
perspective and an interest in historical analysis, which he proposes from an 
anthropological viewpoint (Radford, 2000a, 2003, 2004). Radford takes from 
Vygotsky the idea that human cognitions are tied to usage of signs, so that it is 
no longer central to consider what signs represent but rather what they enable 
one to do; furthermore, these signs belong to sign systems that are part of a 
culture and therefore transcend individual cognitions (Radford, 2000b). From 
this viewpoint he analyzes both the emergence of algebraic thought in pupils 
who are starting to study algebra and the emergence of algebraic symbolism 
in history. 

Developments such as those just described have proved to be valuable 
materials in the applications of the theoretical formulation that is discussed 
here, the connection of which with teaching forms part of its essential 
characteristics as it envisages the need to develop local models (to interpret 
specific phenomena), which comprise components of formal competence, 
teaching, cognitive processes and communication. 

 
 
 

SUMMARY 
 
 
Throughout the book we emphasize our adoption of the pragmatic perspective 
of meaning in use rather than formal meaning, which has led many studies, 
and this one in particular, to concentrate attention on the user’s performance 
with the mathematical sign system (MSS). In the case that concerns us, the 
theme of the algebraic sign system and its relationship with the sign systems 
of arithmetic and the native language and with personal output is approached 
on the basis of the notion of MSSs and strata of MSSs. Before introducing 
these notions in greater depth, here we have presented some basic aspects of 
Charles S. Peirce’s semiotics that are pertinent for an understanding of the 
sense in which we use the notion of sign, in particular, the triadic conception 
of the sign, with the introduction of the interpretant as the third fundamental 
element, the idea of unlimited semiosis. 

ally by the application of this subdivision into these four aspects. 
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In the next chapter, we shall develop the notion of the local theoretical 
model in the context of curricular design and development for students, 
teachers, and researchers. We shall also stress the crucial role of Freudenthal’s 
didactical phenomenology, both in this context of curricular design and 
development and in the context of experimental design, which we present in 
Chapter 3. In Chapter 4 we describe a study conducted following such a 
design. 

All chapters of this book shall have the same structure as this Introduction. 
They all begin with an Overview and end with a Summary (which includes 
mention of the topic to be discussed in the chapter that follows). 
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ENDNOTES 
 
 
1 We have given the references to Peirce’s works not by indicating the year of publication but 
by using the abbreviation W followed by the volume number in the case of the ongoing 
publication by the University of Indiana entitled Writings of Charles S. Peirce: A 
Chronological Edition, or by the abbreviation CP followed by the paragraph number in the case 
of the now classic collection of his works entitled Collected Papers of Charles Sanders Peirce. 
2 This is how Peirce explains the meaning of “represent” or “stand in relation to” in Peirce, CP, 
2.273, p. 155. 
3 The ambiguity of the English expression “mathematical sign systems” would not exist if 
English used brackets as one of its structuring mechanisms, as is the case in the sign system of 
algebra. Then one would only need to write “mathematical (sign systems)” rather than 
“(mathematical sign) systems.” Freudenthal (1983) analyzed this difference between the sign 
system of written English (and most vernacular languages) and mathematical sign systems in 
the chapter entitled “The Algebraic Language,” and he illustrates this ambiguity of English with 
the example of the expression “pretty little girls schools,” “which according to the places of the 
—lacking— brackets can have 17 different meanings” (Freudenthal, 1983, p. 471). Fortunately, 
our expression “mathematical sign systems” cannot be interpreted in so many ways, and we are 
using it in only one sense, which is the one specified by the brackets in “mathematical (sign 
systems).” 
4 We will come back to the idea of sense as opposed to meaning and the idea of giving sense 
throughout the book, particularly in Chapters 7 and 8. 
5 We have consulted the French translation (Ver Eecke, 1952) and the English translation 
(Sigler, 1987), both done from the original Latin, and the Spanish version done from the French 
version cited (Ver Eecke, 1973). A detailed analysis of this book from the viewpoint that 
interests us here can be found in Filloy (1993a). 
6 We remark that Fibonacci’s Liber Abaci (L. E. Sigler, 2002) is one of the most famous of this 
collection of books. We come back to them in Chapter 3, Section 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




