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CHAPTER 1

INTRODUCTION

OVERVIEW

This book is based on an experience of ours in which the need to interpret
unanticipated phenomena observed in empirical studies on the transition
toward algebraic thought conducted in the 1980s, triggered a long-term
research program that in turn led to a theoretical formulation that emphasizes
local analyses.

To illustrate that experience, we briefly examine a few of the phenomena
observed in the transition from arithmetic to algebra, which represent an
essential part of pre-algebra. The observations dealing with cognition are
presented in Section 4.2.1, the reverse of multiplication syndrome in 4.2.2,
different uses of the notion of equality. Polysemy of x; and in 4.2.3,
difficulties in translations. We begin by indicating the role of historical
analysis in Section 4.1, and complete the section with an example of a
dialogue that took place during a clinical interview, in which additional
phenomena appeared in translating algebraic language to natural language
(Section 4.3).

The book presents the theoretical elements developed and shows how the
theory of local models, through their different components, has enabled a
deeper study of phenomena in the field of acquiring algebraic language,
considering aspects that are relevant to learning, teaching, and research.

Use of the term “educational algebra” in the title of the book, instead of the
more usual term “school algebra” is appropiate given the broad-based nature
of the educational aspects we deal with. As will become patent in the rest of
the book, besides working with children and teachers in schools we have
used other sources as well to design and develop empirical studies: semiotics,
epistemological analysis (primarily history of mathematical ideas), phenomeno-
logical analysis (mainly Freudenthal’s approach to curriculum development),
formal mathematics, cognitive theories, etc. The term “educational algebra” is
sufficiently broad to encompass the aspects that are educational, albeit not
necessarily school-related.

We also introduce two central terms, “mathematical sign systems” and
“local theoretical models”, which are used throughout the book. They are
discussed more extensively in Chapter 2 and in other chapters, where they
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are used in the description of concrete examples arising from the empirical
studies.

We conclude with a review of other literature on the subject of
mathematical language and language and mathematics to place our work
within a context and to demonstrate its contribution therein.

The desire to achieve a profound understanding of both the origin and
nature of the difficulties confronting those who seek to gain access to
algebraic thinking has set in motion great ideas and inquiries about them over
the past three decades. The vast amount of literature produced from all this
research activity makes the task of surveying and updating the state of the art
in this field increasingly difficult. It is not so difficult, however, to identify a
series of studies that concentrate on studying symbolic algebra as a language,
together with the details of its acquisition. Because of the abstract nature of
algebraic language and the highly syntactic competences required for its use,
many of these studies use approaches that include semiotic concepts and
linguistic analyses. This book is devoted to setting out a path of theoretical
development for educational algebra, in which this very perspective is adop-
ted and in which an historical element becomes a contributing factor.

Despite the deliberately theoretical character of this work, its direction
differs from that of general models. This work incorporates elements that
make it possible to develop local frameworks of analysis and methodological
design for the study of specific phenomena. In these frameworks, it is possible
to include evidence connected with such phenomena, the interpretation of
which escapes general treatments. Such is the case when individuals who are
beginning the study of algebra, produce personal sign systems that are located
on a level prior to the mathematical sign system that is to be learned (that of
symbolic algebra in this case).

After the worldwide acknowledgment in the late 1970s that the educa-
tional system had largely failed to teach algebra in secondary schools, one of
the great ideas put forward was Hans Freudenthal’s proposal. Freudenthal
stressed the need to analyze the language of algebra by comparing it with
other languages, such as natural language and the language of arithmetic, both
of which were considered means of support (Freudenthal, 1983, ch. 16). His
dissertation was followed by many other studies dealing with mathematics
education seen through a linguistic hue.

Most of the research carried out recently on the didactics of mathematics
lacks paradigmatic theoretical models, even if one uses the term paradigm
(somewhat in the sense of Kuhn, 1962) not as a synonym of theory, but in a
more general sense, i.e, as the set of basic assumptions that one can make
about the nature and limits of the actual subject to be studied, the method for
studying it, and the decision as to what will be accepted as evidence. Nor has
a consensus been reached about which of the basic assumptions should
determine the form to be taken by the theoretical frameworks for interpreting
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specific phenomena and for proposing new experimental designs that will
carry theory further forward to embrace other evidence or new unrelated
evidence. In short, it is still necessary to speak of the boundaries of many
research projects.

As a start, other disciplines have already begun research on the very
subjects that pervade most of the work on which mathematics educators have
reported. Some of these subjects include linguistics, logic, psycholinguistics,
semiotics, general cognitive psychology, the psychology of mathematics, the
epistemology of mathematics, the history of mathematics, the psychology of
education, the theory of the development of mathematics curricula, and the
didactics of mathematics.

Many research studies have recently incorporated the results of these
disciplines and have redefined results within their own theoretical frame-
works. Here we interpret various recent theoretical assumptions to reorganize
the research undertaken on the processes of teaching/learning algebra during
the past few years. To accomplish this, it is necessary to work with a good
deal of new terminology to be able to describe recent research.

To this end, in Chapter 2 we introduce the methodological concept of local
theoretical models (LTMs). Although LTMs are dealt with in greater detail in
Chapter 2, we can state here that the subject is considered in terms of four
interrelated components: (1) teaching models, (2) models for the cognitive
processes, (3) models of formal competence and (4) models of communi-
cation. Here we shall refer only to their local character.

1. ON THE LOCAL CHARACTER OF THE THEORETICAL FORMULATION
AND ITS COMPONENTS

One of the chief reasons for resorting to local theoretical elaborations was the
need to interpret phenomena that arose during the study. These phenomena
could not have been anticipated from the design of the observation and did not
fit into schemes of analysis based on general theories derived from mathe-
matics education itself or from neighboring disciplines such as psychology,
pedagogy, sociology, history, epistemology, or linguistics. Studies on the
transition from arithmetical thought to algebraic thought carried out in the
1980s came up against this situation, giving rise to a long-term research
program that envisaged the development of theoretical elements that would
make it possible to refine the analysis of such phenomena. An initial
hypothesis is that although we set out from a general notion —that of the
mathematical sign system— it is the local character of the theoretical
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elaboration that makes it possible to delve deeper and thus generate new
knowledge about the subject. Hence LTMs (Filloy, 1990) represent the central
idea in this work. Rather than partializing the problems of mathematics
education research, LTMs open up paths of communication between the various
components that usually contribute to them. In fact, each local model con-
templates the study of cognitive aspects, formal mathematical competence,
teaching, and communication. This comprehensive approach offers possibilities
of making a substantive contribution to a highly focused study, based on a
multiplicity of disciplines and drawing on the work of specialists and com-
munities connected with those disciplinary fields. The contents of this book are
the result of progress in the research agenda that we set ourselves when, in our
studies on algebraic thought among adolescents in the 1980s, we were first
faced with the limitations of general analytical schemes in trying to interpret the
phenomenon of the polysemy of x or that of the reverse of multiplication
syndrome, for instance. Later in this chapter we provide a detailed description
of those phenomena, as well as others that arose during our research. For our
descriptions, we shall be using the notion of mathematical sign system (MSS), a
brief introduction to which is provided in the following section.

2. MATHEMATICAL SIGN SYSTEMS

2.1. Sign

This section discusses the phenomena that take place in mathematics
education, using the jargon of semiotics. We do so not to embellish our
observations with cryptic language, but because we consider these phenomena
as processes of signification and communication, and semiotics deals with
processes of precisely this type.

The fact that semiotics studies these processes rather than signs is
especially clear in the semiotics developed by Charles Sanders Peirce. In
Peirce’s semiotics, this emphasis on processes is present even in the very idea
of sign. Peirce gave countless definitions of “sign” throughout his extensive
writings, in which he repeatedly outlined the concept. In all of his definitions,
three characteristics are worthy of special emphasis. The first is the fact that
the sign is not characterized by a dyadic relation such as that of Saussure’s
signifier/signified pair; the relationship to which any sign belongs is triadic.
And one of the elements, which Peirce calls the “interpretant,” is the cognition
produced in a mind. The second is the fact that the sign is not a static entity
but is instead open within a series. Since all cognition is in turn a sign, that
sign therefore stands within a triadic relationship to another interpretant
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(which is another cognition), and so on and so forth. The third is the fact that
the sign is not arbitrary or rather that the triadic relation to which it belongs is
not arbitrary.

In a manuscript written in 1873, Peirce gives his briefest and most compact
definition of a sign:

A sign is an object which stands for another to some mind (Peirce, W 3, p. 66).!

The relation is established between the sign (S), its object (O), and a mind
for which the sign is related to its object in such a way that, for certain
purposes, it can be treated as if it were that other.” Let us see how Peirce
defines the interpretant (I):

A sign [...] addresses somebody, that is, creates in the mind of that person an equivalent sign,
or perhaps a more developed sign. That sign which it creates I call the interpretant of the first
sign. The sign stands for something, its object. (Peirce, CP, 2.228, p. 135.)

The triadic relation (S, O, I) is, therefore, a relation in which both S and 1
are signs, so that I is a new sign, S’, which enters into another triadic relation,
i.e., it creates in a mind another sign as interpretant, I’, of object O, a new
cognition I’, such that object O links the two triadic relations (S, O, I) and (S’,
O, I). This leads to the open nature of the sign in a process of semiosis that
has no end. Peirce expressed it thus in another definition, subsequent to that
quoted above:

Sign [Lat. signum, a mark, a token]: Ger. Zeichen; Fr. signe; It. segno. (I) Anything which
determines something else (its interpretant) to refer to an object to which itself refers (its
object) in the same way, the interpretant becoming in turn a sign, and so on ad infinitum.
(Peirce, CP, 2.303, p. 169.)

Also present in this definition is the third aforementioned characteristic:
the fact that the relation is not arbitrary. The sign forces the interpretant to
refer to the same object as the one to which it refers. In a more extensive
definition, quoted later, Peirce is even more exigent and adds that the sign
forces the interpretant to refer to the same object and, furthermore, in the
same way as it refers. Moreover, there must also be an interpretant, I;, of
interpretant I, which has as object O,, the relation between the sign and its
object.

A Sign, or Representamen, is a First which stands in such a genuine triadic relation to a Second,
called its Object, as to be capable of determining a Third, called its /nterpretant, to assume the
same triadic relation to its Object in which it stands itself to the same Object. The triadic
relation is genuine, that is its three members are bound together by it in a way that does not
consist in any complexus of dyadic relations. [...] The Third must indeed stand in such a
relation, and thus must be capable of determining a Third of its own; but besides that, it must
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have a second triadic relation in which the Representamen, or rather the relation thereof to its
Object, shall be its own (the Third’s) Object, and must be capable of determining a Third to this
relation. All this must equally be true of the Third’s Third and so on endlessly [...] (Peirce, CP,
2.274, p. 156).

2.2. Mathematical sign systems

The examples presented throughout the book have enabled us to make use of
Peirce’s concept of the sign and its typology, and to explore the sense through
which it casts light on what we wish to examine. The examples also show
something else: the signs that are used in mathematics are not all of a
linguistic nature, which makes it advisable not to use the terminology or
concept of the sign that belong to linguistics (derived, to a greater or lesser
extent, from the work of Saussure), and therefore not to speak of the
signifier/signified pair. In the preceding text we have not done so, using
instead the term “expression,” from the expression/content pair —terminology
that has been introduced in semiotics (the science of signs in general, and not
just of linguistic signs). This is also very convenient because in mathematics
one is accustomed to speaking of “algebraic expressions” or ‘“arithmetic
expressions” to refer to the corresponding written forms.

However, in putting the emphasis on individual signs, what we have seen
so far may conceal the crucial fact that there are no isolated signs in any text
(whether mathematical or not).

It is very common for a description of the language in which mathematical
texts are written to distinguish between two subsets of signs: one consisting of
signs conceived as strictly mathematical and another consisting of signs in
some vernacular language. From the viewpoint of signification processes,
however, this distinction ceases to be crucial although it can still be made.
What seems to be crucial is the sign system taken as a whole, and what must
be described as mathematical is the system and not the signs, because the
system is responsible for the meaning of the texts. One must therefore
understand the term “mathematical sign systems” as mathematical systems of
signs and not systems of mathematical signs,’ for what is of a mathematical
nature is the system and not just the individual signs. Consequently, what is of
interest for the development of mathematics education is to study the
characteristics of these (mathematical) sign systems which are due not just to
the fact that they are sign systems but also precisely to the fact that they are
mathematical systems.

Filloy (1990) and Kieran and Filloy (1989) introduced the need to use
a sufficiently broad notion of mathematical sign systems. It had to serve as
a tool to analyze the texts produced by students when they are taught
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mathematics in school systems —and those texts are conceived as the result of
processes of production of sense— as well as to analyze historical mathe-
matical texts, taken as monuments, petrifactions of human action, or processes
of cognition belonging to an episteme. In taking these mathematical texts as
the object of study, rather than supposedly ideal texts conceived as
manifestations of “mathematical language” or texts that are measured by
them, the notions of mathematical sign systems and of text must both open up
in various directions.

Thus one must speak of mathematical sign systems, with their corres-
ponding code, when there is a socially conventionalized possibility of
generating sign functions (by the use of a sign functor, see Chapter 7), even
when the functional correlations have been established in the use of didactic
artefacts in a teaching situation with the intention that they should be imper-
manent. But one must also consider the sign systems or strata of sign systems
that learners produce in order to give sense to what is presented to them in the
teaching model,’ although they may be governed by a system of corres-
pondences that has not been socially established but is idiosyncratic.

3. DIFFERENT ANSWERS TO SAME QUESTIONS?

We point out, however, that not only semiotics but also information processing
theory and the didactics of mathematics (Brousseau, 1997) have done
important work on the notion of code. This notion is emerging as a key concept
to interpret what comes from using the idea of representation in the models that
explain the cognitive problems presented by alternative teaching approaches or
technology learning environments. Or, to provide another example, consider
the emphasis that psycholinguistics and artificial intelligence place on a
process-based model of human capabilities and relate it to the way in which the
model explains how and why users of mathematical language naturally and
commonly make mistakes in its syntactic procedures. To these developments,
one must add the attention that a pragmatic viewpoint has given to meaning in
use rather than formal meaning.

By accumulation, these approaches —and others of a similar nature— have
led to a change of direction in recent work, which is shifting away from the
competence of mathematical language users and moving toward performance.
This change of viewpoint has basic and essential implications for the manner in
which mathematical language is seen. Essentially, the claim is that grammar —
the formal abstract system— and pragmatics —the principles of language
usage— are complementary domains in our studies. In addition, that both
are domains related to the various teaching models, be they innovative or
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traditional, that are used to achieve the objective of guiding students in order for
them to become competent users of the language of mathematics. Since one of
our aims is to observe what happens in mathematics classrooms, however, we
must also confront the complexities of teaching and learning phenomena within
that particular setting.

Indeed, one of the simplest phenomena demonstrated by classroom
observation, for instance, reading level permanence among children who have
just finished primary education (approximately 12 years old), is what arises
when they are confronted with questions like those in Figure 1.1, which shows
the evolution of the equation Ax = B in school teaching.

Evolution of the equation Ax = B

H3xOd=12

2)3x0O=672

x3
3)  _—
)

4)3 xx=672

5)3x=672
Between the ages of 10 and 12 it is easy to direct some students so that all
the questions are read like [2]: What is the number that, when multiplied by
3, gives 6727

Figure 1.1

When one analyzes the responses of children within this age group, many
issues arise. Apart from the fact that these questions are deemed as different
because some can be answered and others cannot, we also find that it is fairly
easy to get a certain student profile bogged down in their use of the preferred
arithmetic method, trial and error. It is even quite easy to induce them to
continue using that method for a considerable time despite the fact that the
numbers become progressively larger, which eventually means that they no
longer have sufficient arithmetic skills to be able to answer the question
without making mistakes. We call this phenomenon “the reverse of multi-
plication syndrome.”

To be able to observe phenomena of this kind experimentally, we therefore
need an experimental framework that will enable us to interpret the facts and
propose new observations that will unravel the relations existing between the
different components in play.
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4. THE TRANSITION FROM ARITHMETIC TO ALGEBRA. PRE-ALGEBRA. SOME
OBSERVATIONS ABOUT COGNITION

Several studies have indicated conceptual and/or symbolic changes that mark
the difference between arithmetic and algebraic thought. Examples of the
foregoing are those related to the various interpretations of letters (Booth,
1984), those dealing with the notion of equality (Kieran, 1980, 1981), and
those produced with respect to the symbolic or graphic conventions for coding
operations and transformations in solving of equations (Matz, 1982). From
such indications, one can imagine paths of evolution from arithmetic to
algebraic thought that correspond to the representative notions and forms for
the objects and operations involved in the mechanisms of change. Thus, the
changes deemed essential for a person to attain algebraic knowledge can be
visualized along each of these paths as points where there is a cut between one
kind of thought and another.

One of the foregoing points that is of particular interest to the topic of
equation solving is suggested by analyzing the strategies and methods used to
solve equation systems in texts of pre-symbolic algebra from the 13th to 15th
centuries. An important factor in this analysis for developing solution
strategies and methods is that of operating unknowns. This arises as a result of
the limitations imposed by the frameworks that belong to the pre-symbolic
representation of equations and their characteristic elements. Thus, for ex-
ample, the solution that led to equations that we now write as x* + ¢ = 2bx and
x> =2bx + ¢ are completely different in each case. Yet this would not happen
if the rules for transposing terms from one side of an equation to the other
were known because, for instance, then it would be possible to reduce the case
of one of the equations on a syntactic level to that of the other, which would
correspond to a more developed level of operation on unknowns.

4.1. The role of historical analysis

The propositions contained in Leonardo of Pisa’s Liber Quadratorum (Book
of Squares)’ can quickly be proved using the mathematical sign system of
secondary school algebra. Indeed, they are propositions that can be proved in
less space than that taken up by one of the pages of this text, and their
mathematical content does not go beyond what is presently learned in
secondary school. Nevertheless, it is easy to perceive the intensity of thought
required to follow the reasoning depicted in Leonardo’s book. And it is not as
if he were rhetorically playing with trivial matters. On the contrary, his work
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is very possibly the pinnacle of mathematical thought in Middle Age Europe.
Frozen in time on those pages one finds reasoning that drew —and still
draws— great admiration because of its freshness and intensity. It is a thought
that comes to us from the 13th century and that shows us how a mathematical
sign system predetermines the ways in which we analyze problems, advocates
our solution strategies, and draws the lines of strength that guide the sense of
all our inferences. This strikes us as odd within the context of developing the
thought processes of children, but it is even more amazing in the thought
process of a first-class mathematician, perhaps the greatest mathematician of
that era. At the same time it provides us with the opportunity to discover
unknown terrain on which we can observe and describe the same cognitive
tendencies as we find in today’s children as they attempt to become competent
users of the mathematical sign systems that they are taught in secondary
school. It further enables us to draw plausible hypotheses, and then observe
those hypotheses in the behavior of present-day students as one tries to have
them make competent use of the sign systems currently used to articulate the
messages through which today’s mathematics education is communicated.

As one confronts mathematical texts such as those of Leonardo, one’s
attention is first drawn to the fact that no one speaks that language now. Were
they translated into the mathematical sign system of current symbolic algebra
they might appear to be advanced problems typical of a modern textbook. They,
however, differ in that their solution strategies do not conform to customs. In
addition, today one would not perform many of the operations and intermediate
steps that seem to be necessarily present in those texts. The language of the
abbacus books® is today a dead language. Their translation to modern algebraic
language fill us with amazement for the novel actions that led to the same
results as ours, but that follow unheard of paths. Their very presence in problem
after problem and in book after book are indicative of skills unrelated to those
we have developed in building and using our algebraic language —skills, one
might add, that we have never felt the need to build, develop, or use when
confronting problems with our arithmetic abilities and knowledge.

Clearly, as we build new conceptual apparatuses that have imposed
themselves upon us without the possibility of erecting them within a proper
structure, connecting them to others that have previously been firmly rooted,
those new skills tend to overshadow older skills. Moreover, given the fragile
means at one’s disposal to use at that point any new resources and solution
techniques, even problems that had been mastered for quite some time are
now difficult to model in the new language within which the infant conceptual
apparatus that is in the process of being constructed is expressed.

Nonetheless, well anchored intellectual structures tend to perpetuate
themselves and compel us to reconsider situations that, when modeled in the
new language, could be solved with simple, routine operations.
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Indeed we do realize that we began speaking of reading and interpreting
ancient texts, and have now taken a leap onto the plane of psychological
processes. We now feel confident in saying that it is precisely this leap,
forward and backward, that enables us to produce hypotheses founded on the
development of general knowledge and to convert them into hypotheses about
the didactics of mathematics, which then seeks to reconsider that process on
the level of individuals —children, in this case. The MSS of arithmetic has
to make way for that of algebra, and this has become an increasingly per-
tinent matter even for situations that have always before been modelled in
arithmetic.

Building the new MSS, whose point of departure must necessarily be
elementary arithmetic operations, will involve the need to operate on new
objects. These objects will signify not only numbers but also numerical
representations, whether as individual items (e.g., unknowns), sets of numbers
(e.g., coefficients of equations), an expression of relations between sets of
numbers (e.g., proportional variation), or as functions, etc. The algebraic MSS
will have to be structured on new objects whose operations will not be
completely determined until the outlines of the new world of objects become
more precise. What is more, the objects will not be totally outlined and well
defined until the new operations have been completely structured in terms of
both their semantic and syntactic aspects.

Such profound changes in arithmetic habits and notions do not take place
spontaneously in individuals simply because they are confronted with the
need for change. The intervention of teaching, at that point of transition from
arithmetic to algebraic knowledge, can be crucial for most students who are
learning algebra for the first time.

Although it is necessary to modify some arithmetic notions in order to
acquire the new —algebraic— knowledge, it is also necessary to preserve the
previous knowledge —arithmetic, in this case. Even in the single example of
equations previously presented, there is a need for arithmetic equations to
subsequently be recognized as such in order to preserve the entire operativity
acquired beforehand for their solution —an operativity situated on an
intermediate level of knowledge between arithmetic and algebraic knowledge,
that is to say the level of pre-algebraic knowledge.

4.2. Mathematics lessons at the beginning of secondary education

We present three types of situations that generally arise when students have
just completed elementary education and are beginning secondary education:
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1) The reverse of multiplication syndrome.

2) Different uses of the notion of equality. The phenomenon of contextual
ambiguity.

3) Difficulty translating from natural language to algebra and viceversa.

4.2.1. The reverse of multiplication syndrome

As mentioned in Section 3, some students get stuck using the arithmetic
method of their preference, which is trial and error when solving the equation
Ax =B, and even go on using this method when it has become inefficient
because the B numbers are too large for them to perform arithmetic trial and
error without making mistakes.

During the first year of secondary school (in the Mexican Educational
System), most students end up preferring the method of dividing B by 4 in
order to solve the equation Ax = B, which is the objective of the mathematics
syllabus at that stage. However, the same trial and error strategy reappears in
the work of students who had already achieved operativity to solve all first-
degree equations, when the context in which the equation Ax =B appears
comes from an analytical process while the student is solving a word problem.

Even more surprisingly, at times when the expression Ax = B is written by
the very person who is being observed, the signs are not recognized as the
expression of an equation that a few moments before the student knew how to
deal with operationally to find the solution. The context in which the equation
appears, even in its written form, makes the student “forget” the operativity
achieved previously and revert to preferring the arithmetic method of trial and
error or, in some cases, become unable to bring any method of solution into
play. A more detailed description of what happens in the latter case shows that
the interpretation of the sign x is crucial in interpretation of the expression
Ax = B: interpreting the x as an unknown makes the student not know what to
do, because “it is something that is not known,” in the student’s own words.
In addition, it is important to recall that we are at a point in teaching when we
are trying to have students begin to use the knowledge they have learned
about solving first-degree equations in order to solve application problems
that appear in mathematics lessons as well as in physics, chemistry, and other
subjects.
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4.2.2. Different uses of the notion of equality. Polysemy of x

Several ways of interpreting equality can be distinguished among the uses
made by 12- to 13-year-old children, as follows:

A) As an arithmetic equality (Ea;)

In this case, the student tries to combine the terms on the right side of the
equation or read them as a single number before giving any type of answer or
performing any operation. Those who make this interpretation carry out one
of the following procedures:

1) Completion: “This [the independent term on the left side] needs this
much to be equal to this [the complete right side]”.

ii) Direct isolation: this procedure predominates in students who perform
well, but it also appears in the other cases. In items such as

141 141
Xt — =17+ —, x+17=424~17 and x+==6+=,
16 16 4 '3

students who make this interpretation (E4,) and who try to isolate x face
serious difficulties. For some students, the fact that they do not know
the value of <17 prevents them from tackling the x +J17=42+417.

Arithmetic x+A=B+A4
. - — —_—
equahty operations result

Procedures

{ {

Difficulty in =~ x+~17=42+~17

Completion Trial and error

Figure 1.2
B) Equality of the left side (as a whole) with the right side (also as a whole)(Cy)
This interpretation also allows for two procedures:

i) Completion, which in many cases is more visual than arithmetic.
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i) Isolation. In some children of mid-level performance, the C, interpretation
precedes the appearance of the E,, interpretation. In other cases, it appears
on its own.

Equality of the two sides, x+t4=B+4
taking each side as a whole awhole a whole
Procedures

{ {

| Completion | | Trial and error |
More visual than arithmetic

Figure 1.3
C) Equality term by term (C;)

With this interpretation it is possible to solve these equations very quickly,
. X X . .
except the items x+Z:6+Z and x+5=x+x, on which we will comment

later. This interpretation predominates in students with a high achievement
level, although in some cases it is preceded by the C, interpretation or (in
children of mid-level performance) by rearrangement of the terms with
respect to the = sign.

U U
Equality term by term x + A = B + 4
T 0
Predominates in high performance level students
5
| Quick solution |« By comparison |Or |By canceling |
Preceded by:
Interpretation (A) Rearrangement of terms with respect to the =
sign
Figure 1.4

. X X . .
In the items x +Z = 6+Z and x + 5 =x + x there is a tendency to give a C;

interpretation, but also to assign different values to different occurrences of x.
The typical response is:
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. \ 2
X

x x X
This x (x + :1 = 6 + Z)equals6andthese(x + :1 = 6 + :‘)canbeany

number.

In the item x + 5 = x + x, the same kind of response appears:

\ 1 \ \
This x (x + 5 = x + x)equals5andthese (x + 5 = x + x) can have
any value.

In some cases, the students were asked to invent a problem that could be
solved with this equation. Others were presented with a problem of the same
kind to make them see that, within the context of one and the same problem,
all occurrences of an unknown represent that same unknown. However, this
clarification was not always successful.

We have denominated this phenomenon of unknown multivalence as
“polysemy of x,” because it involves a reading of the same sign in various
contexts in which x is an unknown and in which x is a generalized number.
Moreover, what “unites” these two interpretations or readings is the numerical
equality of both sides of the equation.

4.2.3. Difficulties in translations

After secondary school students have received pre-algebra MSS instruction
and been introduced to elementary algebra so as to solve linear equations and
decode arithmetic-algebraic texts, yet before receiving systematic teaching on
usage of open expressions, equivalence of expressions, and how to solve
equation systems, the task of reading or writing algebraic language is very
difficult for them. This is so much the case that one can almost see the tension
mount in them as they struggle between using the arithmetic MSS to read and
express themselves and their need to give mathematical signs new meanings
within the context of the algebraic MSS. This is yet another indicator of the
fact that the boundary between arithmetic and algebra cannot be avoided
given that it would lead to false conceptions about the processes for acquiring
the algebraic MSS, and, consequently, about the role of teaching within those
processes. Furthermore, this highlights just how important it is for reading and
writing algebraic MSS to be considered a decisive educational goal for middle
school students.

The forms of notation used in algebra just happen to be basically the same
as those in arithmetic, i.e., numbers, operation symbols, the equal sign, and
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letters. However, their meanings and the way they are operated essentially
differ in the two fields. Consider the following example:

The two expressions A = b x h and y = ax are syntactically equivalent, yet
the way of reading them —their interpretation— determines the actions that
subsequently have to be performed.

One (conventional) way of reading 4 = b x h is “the area (of a rectangle) is
equal to the base times the height,” which refers readers to the field of
arithmetic-geometric MSS. Whereas y = ax, read in context, could mean “y is
a linear function of x, with parameter a.” Or else in the realm of analytical
geometry, it could be read as “the geometric place that corresponds to the
straight line that passes through the origin with slope a.”

In the latter example, clearly texts expressed by means of the same MSS
have no lack of ambiguity because those very texts can be read as texts of
different related MSSs.

As another example: in the expression (3+5-2)—(7—-3-2)=4, the
equal sign functions as an indicator of the result of actions performed with
signs that belong to the arithmetic MSS.

(3+5-2)-(7-3-2) = 4
%K_J
OPERATIONS {
(actions to be performed) RESULT
Figure 1.5

However, the equal sign that appears in 4x + 2 = 5x — 3 denotes a relation
between expressions (between texts). This relation is algebraic, but it is
numeric for a specific value of x, which leads to a numeric identity when
substituted in the equation: x = 5 gives 4(5) + 2 =5(5) — 3; 22 =22.

4x+2=5x-3
4(5)+2=5(5)-3
22=22
J

SYMMETRY

Figure 1.6

In this case, = denotes symmetry and the numeric value found for x does
not appear on the right hand side of the equalization as a result of the actions
carried out; rather it is in a relation of identity with itself.

In an expression syntactically equivalent to the latter, such as
3x+5=2x+x+3+2, the equal sign also denotes algebraic equivalence, but
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in this case it is tautological. In other words, the equality is valid for any value
of x.

The examples given show that mathematical signs do not have one single
interpretation, and therefore their correct reading requires a reconceptualization
of the mathematical objects that these signs represent, as one steps from one
context to another —from arithmetic to algebra or to geometry.

4.3. Algebraic and natural language translations

In order to research translation from algebraic to natural language and
viceversa, researchers can ask questions in which students are taught to use
algebraic language to write sentences previously written in natural language
—originally Spanish, although here we are presenting an English translation
of the transcriptions. For example, one can ask a student to write phrases such
as “a increased by 2” using signs, which we illustrate with part of a dialogue
between the interviewer (I) and a student (S):

S: I don’t understand that.

I: They give you a sentence and they ask you to write it using letters and signs representing
operations.

: In other words, symbolizing something ...

Yes, but what do you mean by symbolizing?

Give me a sentence in Spanish in which you use “increasing.”
: You’ve increased speed.

And what does that mean?

: That the person is now, well, going faster?

And another sentence in Spanish which also includes “two”?

: Well ... I went on increasing my speed for two days.

.

. In the last two days he’s increased in weight.

.

: His weight increased by two kilos.

NN R Ty

In this case, the student makes use of meanings taken from colloquial
language in order to answer the teacher’s questions. It is obvious that he needs
to give meaning to the phrase presented before proceeding to symbolise
it, and in all replies the student is inconsistent in terms of the varying
interpretations of the phrase, which will lead to its incorrect symbolisation.
This inconsistency derives from the fact that in the original phrase “a” and
“two” are measurements or quantities of the same thing, and here the student
assigns them to different things (speed and days, weight and time), except in
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the sentence “His weight increased by two kilos,” in which he seems to speak
of an initial weight (@) and the fwo kilos by which it has increased.

In another case, a student responds to the same question with the drawing
that appears in Figure 1.7.

2

Figure 1.7

Here the word “increase” is clearly not identified with the mathematical
action of adding, but corresponds to a real action of enlarging or expanding,
an action that affects the letter (sign) “a”.

By putting questions such as these to students, one can observe the inter-
action of mathematical language with natural language. In this regard very
interesting analyses have been undertaken that illustrate once again that, at the
ages in reference, the meanings of the words in natural language predominate
and that these meanings inhibit translation of phrases that consist of those
words to the MSS of algebra.

Here is another example. When students were asked to read open expres-
sions such as

ax b, ab, 3ab, d*,

in addition to producing textual readings like
“a plus b over two”

some students tended to associate geometric meanings with these expressions,
and therefore they produced non-algebraic readings. We will now illustrate
this with part of a dialogue between the interviewer and a student:

I: Read the next expression aloud. [Pointing to the first one in the list shown above].

S: Broader side over two.

I: And now, if you stop thinking of it as a formula, what would you read there, in what
situations have you come across it?

S: Well, it’s for finding a result.

I: Such as?

S: Well ...

Here, after a long pause, the interviewer intervenes and asks the question
again, this time referring to the expression a + b.
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: As numbers ... for example, 50 + 20.
So that if this [indicating a + b] is there on the blackboard, it means 50 + 20.
: No, I mean, it could also mean something else.
Such as what?
: Another unknown.
What unknown?
: For example, a equals, no ... well, if @ equals 20, what does b equal?
And there ...
: The unknown is b.

What we see in this dialogue is that the student tends to interpret open
expressions as geometric formulae (for example, “broader side over two™’) or
else tends to close them, either seeking a result by assigning specific numeric
values to the letters, or converting one of the letters into a given and the other
into an unknown, which is a characteristic of the closed expressions of
algebra, i.e., equations.

In both cases, we see that the letters and operation symbols still suggest to
the student meanings associated with those signs in primary school. In other
words, expressions that include letters or that are formulae or that are simple
equations, even when the equals sign —necessary in these two cases— is
absent. It is the student who completes the expression in order to be able to
read it within contexts that are familiar to him or her.

This example points to the kind of semantic antecedents of the MSSs used
by 12- to 14-year old students, which are the foundations upon which their
algebraic language skills must be developed. It is there that open expressions,
for instance, will denote new mathematical objects at a higher level of
generality, involving more general concepts such as that of generalized
number (a¢ and b in a + b) and that of suspended operation (the addition in
a+b).

5. ALGEBRA AS A LANGUAGE:
APPROACHES FROM LINGUISTIC, SEMIOTIC, AND HISTORICAL PERSPECTIVES

In this section, we review several works on mathematical language and
language and mathematics that are especially relevant to the issues raised and
analyzed in this book.

From a broader perspective than one that solely encompasses algebra,
David Pimm has carried out an analysis of the language spoken and written in
the maths classroom, expressed in his book Speaking Mathematically, which
was published in the late 1980s (Pimm, 1987). In this work, Pimm tackled
the task of examining school mathematical discourse by applying analytical
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techniques from theoretical linguistics. The language of the students, the
language of the teacher, and the discussions in the mathematics classroom
expressed through the authentic output of those actors constitute the main
corpus of analysis in Pimm’s research.

As far as theoretical analytical instruments are concerned, Pimm turns to
the linguistic concept of register in order to approach the concept of metaphor
in mathematics, to which he gives special importance, since he sets out from
the recognition that the part played by this concept in the learning of
mathematics is as fundamental as the part it plays in the learning of natural
language (Pimm, 1987). When treating the theme of the formalism of written
language, Pimm necessarily touches on the subject of symbolic algebra,
inasmuch as it is an essential reference when speaking of a system of symbols
in mathematics, and of their syntax and grammar. His analysis also tackles the
theme of the role of natural language in teaching and learning in mathematics,
with special emphasis on how the meanings assigned to words in colloquial
language are spontaneously transferred by children to mathematics.

The fact that Pimm concentrates his analysis of language on the maths
classroom, in its various expressions (speaking, writing, reading) and through
the output of various actors (pupils, teacher), is a manifestation of his clear
interest in matters of communication, which places him among researchers
with a conception of mathematics as a social activity.

Raymond Duval, on the other hand, in his book Sémiosis et Pensée
Humaine. Registres sémiotiques et apprentissages intellectuels (Duval, 1995),
tackles the subject of learning in mathematics from a semiotic perspective,
based on the relationship between semiosis (apprehension or production of a
semiotic representation) and noesis (cognitive acts such as conceptual
apprehension, understanding of inferences or discrimination of differences).
Duval emphasizes the role of this relationship in the cognitive functioning of
thinking and in its implications for the learning of mathematics and the native
language. The variety of semiotic systems of representation in mathematics
(graphs, formulae, tables, geometric figures, etc.) and the conversions
between them are the material analyzed in Duval’s works, which indicates
that one of the greatest problems in semiosis has to do with the phenomena of
non-congruence, which arise precisely in processes of conversion between
representations. One of the central theses in this work is that coordination of
registers of representation by learners is a necessary condition for conceptual
apprehension in mathematics.

Among the studies on learning in mathematics with a semiotic perspective,
Duval’s is characterized by its theoretical analysis of the relationship between
semiotic representations and mental representations, in cognitive development
and in the exercise of cognitive activities. It is also characteristic of this author
to give prominence to the cognitive activities of reasoning and the
comprehension of texts, which prompts him to expound specific aspects of
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argumentation and proof in mathematics and to tackle the subject of sense.
This last aspect is considered basically in relation to the orientation and
conscious control of the fundamental cognitive activities by learners.

Such a wide-ranging treatise as Duval’s could not fail to apply its theoretical
analysis to the learning of the mother tongue and its connection with
learning in mathematics. Within this framework, the author also deals with
the differences and relationships between natural language and formal
languages, taking geometry and logic as cases illustrating translations between
the native language and formal language. The case of algebra is not used in this
sense, but there is no doubt that it could be very relevant for the analysis of
specific situations of “putting into equations,” that is, the translation of the text
of a problem (written in natural language) into algebraic language. There is a
clear allusion by the author to symbolic algebra in the chapter devoted to
conversion between registers, in connection with conversions between algebraic
expressions and Cartesian graphs, but without devoting an ex professo treatment
to algebraic language, with respect to the major themes that he develops, such
as congruence and conversions between semiotic representations; the compre-
hension of texts and sense; and the relationships between noesis and semiosis,
natural language and formal language, and mental representations and semiotic
representations.

More recently, in his book Mathematics Education and Language (Brown,
2001), Tony Brown has presented a theoretical study in which elements of
hermeneutics, linguistics, poststructuralism, and social phenomenology are
combined to analyze the instrumental character of language in the develop-
ment of mathematical understanding. Brown uses examples taken from
research on mathematics education to examine how language influences the
activity developed in the normative framework of a given situation. One of
the implications of this analysis is that learning can be seen as a reconciliation
between the conventional ways and potential ways (for learners and teachers)
of describing such a situation.

Accordingly, Brown pays special attention to the role of pupil and teacher
narratives. Specifically, in Chapter 8, “Narratives of learning mathematics,” he
analyzes a theoretical perspective concerning the ways in which pupils
progress in learning mathematics, for the particular case of progressing from
arithmetic thinking to algebraic thinking. He goes back to data collected by
other authors in various studies on this transition and proposes that they be
revised, including their discourses and suppositions. For this purpose he makes
use of Ricceur’s analysis of time and narrative in order to form an analytical
approach to the treatment of notions such as transition, development and
progression in the learning of mathematics. From this new perspective, the
results of previous studies on the transition toward algebraic thinking attain
another dimension, that of the view of the individuals who experience the
transition and who use their own resources of expression to narrate their
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appreciation of the boundary between arithmetic and algebra. Moreover,
according to Brown, in light of what Ricceur calls semantic innovation, adding
a new narrative is interpreted as an extension of the familiar comprehensions of
an individual with respect to the actions that he performs to incorporate figures
of speech that will enable him to grasp a mental experience that has not yet
fitted into previous versions of his linguistic usage. In fact, the cases of
transition from arithmetic to algebra that Brown reanalyzes contribute elements
that recreate this part of Ricceur’s theory concerning semantic innovation.

The studies by Pimm, Duval, and Brown to which we have referred respond
to the need to develop theory in order to analyze phenomena of the learning and
teaching of mathematics closely connected with language in a broad sense. In
these approaches, the analysis of mathematics as a language —in its various
expressions, oral and written; with its different semiotic representations, through
formulae, graphs, tables, etc.; used by different actors, pupils and teachers;
through conventional expressions or potential expressions (narratives) — is as
important as the analysis of its intricate relationship with natural language. The
theoretical advances reported in these three works draw on theories from other
disciplines, such as linguistics, semiotics, critical sociology, and hermeneutics.
Similarly, this book forms part of attempts to theorize about mathematics,
language and education, with a specialised focus on the language of symbolic
algebra, assuming, as we indicated earlier, a theoretical view in which two main
elements participate, semiotic and historical, and adopting a perspective based
on pragmatics, favoring the study of meaning in use rather than formal
meaning. In this way the focus of attention is shifted toward the activity of
individuals with the language of algebra. Essentially, grammar, as the formal
system, and pragmatics, as the set of principles of using language, are conceived
as complementary domains, especially when they are related with models of
teaching algebra.

Other works that emphasize algebra’s character of written language have
been devoted to the task of analyzing algebraic syntax and semantics, taking
elements from support theories, such as linguistics and semiotics. The work
done by David Kirshner makes use of generative and transformational
grammar (Kirshner, 1987) to generate simple algebraic expressions and
perform transformations with them, all based on descriptions of the superficial
forms and deep forms of those expressions. In transformational grammar, the
transformations of the expressions take place in the corresponding deep
forms, which reveal the structure of the forms produced with respect to the
operations that constitute them and their hierarchy.

Jean-Philippe Drouhard, on the other hand, develops a notion of
signification, with which he associates four aspects: reference, which
corresponds to the function of algebraic evaluation; sense, which is given by
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the set of transformations applicable to the expression; interpretation, which
corresponds to the various readings given to the expression in the different
contexts in which it may appear (such as number theory, analytical geometry,
etc.); and connotation, which corresponds to psychological signification
(depending on each individual) (Drouhard, 1992). The analysis of the
meaning, or significations, of algebraic writing is then approached theoretic-
ally by the application of this subdivision into these four aspects.

Finally, in this brief survey of the studies most directly related to ours,
we must mention the work of Luis Radford, who shares with us a semiotic
perspective and an interest in historical analysis, which he proposes from an
anthropological viewpoint (Radford, 2000a, 2003, 2004). Radford takes from
Vygotsky the idea that human cognitions are tied to usage of signs, so that it is
no longer central to consider what signs represent but rather what they enable
one to do; furthermore, these signs belong to sign systems that are part of a
culture and therefore transcend individual cognitions (Radford, 2000b). From
this viewpoint he analyzes both the emergence of algebraic thought in pupils
who are starting to study algebra and the emergence of algebraic symbolism
in history.

Developments such as those just described have proved to be valuable
materials in the applications of the theoretical formulation that is discussed
here, the connection of which with teaching forms part of its essential
characteristics as it envisages the need to develop local models (to interpret
specific phenomena), which comprise components of formal competence,
teaching, cognitive processes and communication.

SUMMARY

Throughout the book we emphasize our adoption of the pragmatic perspective
of meaning in use rather than formal meaning, which has led many studies,
and this one in particular, to concentrate attention on the user’s performance
with the mathematical sign system (MSS). In the case that concerns us, the
theme of the algebraic sign system and its relationship with the sign systems
of arithmetic and the native language and with personal output is approached
on the basis of the notion of MSSs and strata of MSSs. Before introducing
these notions in greater depth, here we have presented some basic aspects of
Charles S. Peirce’s semiotics that are pertinent for an understanding of the
sense in which we use the notion of sign, in particular, the triadic conception
of the sign, with the introduction of the interpretant as the third fundamental
element, the idea of unlimited semiosis.
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In the next chapter, we shall develop the notion of the local theoretical
model in the context of curricular design and development for students,
teachers, and researchers. We shall also stress the crucial role of Freudenthal’s
didactical phenomenology, both in this context of curricular design and
development and in the context of experimental design, which we present in
Chapter 3. In Chapter 4 we describe a study conducted following such a
design.

All chapters of this book shall have the same structure as this Introduction.
They all begin with an Overview and end with a Summary (which includes
mention of the topic to be discussed in the chapter that follows).
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ENDNOTES

! We have given the references to Peirce’s works not by indicating the year of publication but
by using the abbreviation W followed by the volume number in the case of the ongoing
publication by the University of Indiana entitled Writings of Charles S. Peirce: A
Chronological Edition, or by the abbreviation CP followed by the paragraph number in the case
of the now classic collection of his works entitled Collected Papers of Charles Sanders Peirce.
2 This is how Peirce explains the meaning of “represent” or “stand in relation to” in Peirce, CP,
2.273, p. 155.

3 The ambiguity of the English expression “mathematical sign systems” would not exist if
English used brackets as one of its structuring mechanisms, as is the case in the sign system of
algebra. Then one would only need to write “mathematical (sign systems)” rather than
“(mathematical sign) systems.” Freudenthal (1983) analyzed this difference between the sign
system of written English (and most vernacular languages) and mathematical sign systems in
the chapter entitled “The Algebraic Language,” and he illustrates this ambiguity of English with
the example of the expression “pretty little girls schools,” “which according to the places of the
—lacking— brackets can have 17 different meanings” (Freudenthal, 1983, p. 471). Fortunately,
our expression “mathematical sign systems” cannot be interpreted in so many ways, and we are
using it in only one sense, which is the one specified by the brackets in “mathematical (sign
systems).”

* We will come back to the idea of sense as opposed to meaning and the idea of giving sense
throughout the book, particularly in Chapters 7 and 8.

> We have consulted the French translation (Ver Eecke, 1952) and the English translation
(Sigler, 1987), both done from the original Latin, and the Spanish version done from the French
version cited (Ver Eecke, 1973). A detailed analysis of this book from the viewpoint that
interests us here can be found in Filloy (1993a).

% We remark that Fibonacci’s Liber Abaci (L. E. Sigler, 2002) is one of the most famous of this
collection of books. We come back to them in Chapter 3, Section 3.3.



CHAPTER 2

CURRICULUM DESIGN AND DEVELOPMENT FOR STUDENTS,
TEACHERS, AND RESEARCHERS

OVERVIEW

We first suggest that it is necessary to make the conception of the nature of
mathematics explicit, as it underlies curriculum organization and curriculum
development, and show some of the risks that appear when this is not done.

Section 2 explains what we understand by theoretical model through four
basic characteristics, distinguishing it from other uses of the same term, and
then introducing the methodological concept of the local theoretical model
(LTM) and its four interrelated components. We discuss the contrast between
the local and the general, and of the methodological nature of local modeling,
setting out from the need to design ad hoc observation settings to study
specific phenomena. We also explain the recursive character of the appli-
cation of local models and, in Chapter 3 explain the ephemeral quality of
certain theoretical theses in this application.

The major part of the chapter describes our manner of understanding the
phenomenological analysis of mathematical concepts (or mathematical
structures) that Freudenthal proposed in his book Didactical Phenomenology
of Mathematical Structures (Freudenthal, 1983). For this purpose we outline
the essential characteristics of a conception of the nature of mathematics that
is compatible with our way of understanding Freudenthal’s phenomenology
and that also includes the idea of the generation of concepts from proofs,
which is characteristic of the work of Lakatos. We also discuss Freudenthal’s
distinction between mental objects and concepts, and the consequences for
curriculum development, which derive from the opposition that Freudenthal
proposed between the constitution of mental objects and the acquisition of
concepts. In this discussion, we use our semiotic viewpoint as a basis for
interpreting the distinction established by Freudenthal, using as an example
some considerations for a LTM for studying the uses of natural numbers. In
the context of these considerations, we present the distinction between three
types of sign —icons, indices and symbols— which Peirce himself used to
describe algebraic expressions as iconic, while the letters in them are indices,
and signs such as those of operation or equality are symbols.
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CURRICULUM DESIGN AND DEVELOPMENT

1. INTRODUCTION

Any reflection about the elements with which one tries to structure plans and
syllabuses for the teaching of mathematics entails, consciously or spontane-
ously, a conception of the fundamentals of mathematics. To try to free oneself
from this discussion, which is far removed from the requirements of the usual
practices of drawing up a curriculum, one tends to set out a list with various
ways of analyzing the practices that take place in the teaching of mathematics in
school systems —in other words, mathematics education. Thus one speaks of
mathematics as (see Filloy and Sutherland, 1996):

A corpus of knowledge to be learned.

A set of techniques for solving problems.

The study of certain structures: arithmetic-algebraic, geometric, etc.

A language with a given sign system that intertwines with natural
language.

A formal science with a highly formalized language.

A scientific activity, that of mathematicians, that has existed for
centuries and that, at present, has developed specific practices very
remote from those that can be found in educational systems.

An activity in which phenomena belonging to the natural and social
sciences are modeled.

A collection of procedures for performing practical calculations to
measure, classify, predict, count, etc.

A part of natural language in which judgments are expressed about the
progress of society, the economy, the climate, voting forecasts, etc.

A collection of ways of talking about random or repeated phenomena
with a view to predicting certain future events.

An essential element of the culture of all historical ages.

A symbolic system in which one can formulate expressions that give
an account of general patterns so that one can make generalized
calculations.

A symbolic system in which generalizations and abstractions are
expressed, and that permits representations with operational capability.
A symbolic system in which one can express phenomena of iteration
and recursion for the expression of algorithms.

A system of mental abilities, such as spatial imagination, the ability to
reason hypothetically and deductively, etc.

Certain structures of the intellect, an internalization of the properties of
actions that are performed with real objects.

A list (even longer than the foregoing) of teaching activities such as is
provided in mathematics textbooks.
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1.1. Partial and eclectic points of view

The above list is clearly not exhaustive; but it can easily be multiplied if one
simply thinks of the many different ways of interpreting some of the terms
that we have used, within the various theoretical frameworks of psychology,
for instance.

Of course, from some viewpoints the range of mathematical competences
that one tries to teach to young students in the basic levels of our present
educational systems is all these things and many others. Therefore, if some
viewpoints are favored at the expense of others, this leads to the design of
curricula that leaves much to be desired because of their partiality, limiting
the possibilities of using the curriculum to achieve rich, novel teaching that
contemplates a transformation of the vitiated practices. Such practices occur
in the current educational systems and they are the direct cause of the poor
progress of students and of the rejection of mathematics by the general
population.

As a result of proceeding partially, placing some aspects above others, a
false dilemma appears, in which the relational aspects of mathematical
thinking work to the disadvantage of its instrumental use and viceversa.
Similarly, the adoption of a particular bias makes the dilemma between
understanding and mere mechanization more acute, in relation not only to
mathematical operations but to mathematical thinking in general. As an
example one can think of the risks entailed by an unduly narrow design of the
curriculum for the teaching of mathematics, thinking of it simply as
knowledge about given (ideal) objects the properties and relations of which
must be gradually discovered, or the opposing risks introduced by other
radical tendencies, which maintain the attitude that all mathematical know-
ledge is gradually constructed from the first interactions between individuals
and reality. In both cases there is an exclusion of all the social aspects that
intervene in the processes by which students become competent in the use of
mathematical language and results, both for thinking and for producing
practical knowledge that can be communicated to any other competent
individual.

But perhaps the most common mistake is an extreme eclecticism, by trying
to give the same weight to all of the aspects indicated in the preceding list.
This generally leads to the production of curriculum designs in which the
confusion reaches the most elementary strands in the curriculum. Of course,
plunging spontaneously into the design of a curriculum can have even worse
results, in which the path followed by the curriculum design leads to a tangle
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of contradictions and lines of force that interweave, mingle, or clash without
rhyme or reason.

All this is no more than a preamble to the need to clarify the conception of
the nature of the mathematics that is brought into play in the curriculum.

2. LOCAL THEORETICAL MODELS

2.1. Four characteristics of LTMs

The term model has a wide range of meanings: it can refer to many things,
from a physical scale model to a set of abstract ideas. Here we examine the
use that we make of this term in mathematics education.

We use the term theoretical models, or simply models, without claiming
that everything given the name of model may be a model in this sense. In fact,
in this usage models differ considerably from what is given the same name in
other applications. Our aim in this book is to analyze how the various
examples have certain common characteristics, which is why we call them
models. To begin, we point out four characteristics.

The first characteristic is the fact that a theoretical model consists of a set
of assumptions about some concept or system.

First, it is necessary to distinguish theoretical models from diagrams,
illustrations, or physical models, which, although sometimes useful to represent
the model, must not be identified with the model itself. Second, it is true that at
times, albeit not always, what is called a model is also termed a theory.

This interchangeability of names is possible because, in such cases, the
terms “model” and “theory” refer to the same set of assumptions, although the
same things are not suggested about this set when we call it a model as when
we call it a theory. Some of the differences, and also the reasons why not all
models are called theories, must be analyzed. The second characteristic has
precisely to do with this.

The second characteristic is the fact that a theoretical model describes a
type of object or system by attributing to it what might be called an internal
structure, a composition or mechanism that, when taken as a reference, will
explain various properties of that object or system.

A theoretical model, therefore, analyzes a phenomenon that exhibits
certain known regularities by reducing it to more basic components, and not
simply by expressing those regularities in quantitative terms or by relating the
known properties to those of different objects or systems. Accordingly, the
term “theory” in this sense is broader than “model,” because not all theories
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are formulated with the aim of providing structural analyses, which are typical
of models.

The third characteristic is the fact that a theoretical model is considered an
approximation that is useful for certain purposes.

The value of a particular model can be judged from two different but
related viewpoints: how well it serves the purposes for which it is employed
and the completeness and accuracy of the representation that it provides.

The fact that a theoretical model may be proposed as a way of representing
the structure of an object or system for certain purposes explains why various
models are often used alternately. This represents another difference between
the use of the terms “model” and “theory.” To propose something as a model
of something is equivalent to suggesting it as a representation that provides at
least some approximation to the real situation; further, it means admitting the
possibility of alternative representations that may be useful for different pur-
poses. To propose something as a theory, however, is equivalent to suggesting
that something is governed by certain specified principles, and not just that
it is useful for certain purposes to represent it as being governed by those
principles or that those principles approximate to the principles that actually
apply. Consequently, someone who proposes something as a theory is obliged
to maintain that any alternative theories must be discarded or modified, or that
they will be valid only in special cases.

Finally, the fourth characteristic is the fact that a theoretical model is often
formulated and developed and perhaps even named on the basis of an analogy
between the object or system that it describes and some other object or
different system.

This implies a comparison in which one observes properties and principles
that are similar in certain aspects, which fits in with the previous observation
that theoretical models have the aim of providing a useful representation of a
system. To provide such a representation, it is often helpful to establish an
analogy between the system in question and some known system that is
governed by rules or principles that are understood, and one supposes that
some of those rules, or others like them, also govern the system that one is
trying to describe with the model. Reasoning of this kind, based as it is on
argument by analogy, is never considered sufficient to establish the principles
in question, but only to suggest that they may be considered as first
approximations, subject to proof and subsequent modification. In each case,
however, the model itself can be distinguished from any analogy on the basis
of which it was developed.

Theoretical models can fulfil the same functions as theories: they can be
used for purposes of explanation, prediction, calculation, systematization,
derivation of principles, and so on. The difference between the use of a model
and the use of a theory does not lie in the kind of function for which it can be
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used, but in the way in which it fulfils that function. Theoretical models
provide explanations; but these explanations are based on assumptions that
may be simplified, and this condition must be borne in mind when one com-
pares them with theories. It is often said of explanation and systematization by
means of a theory that they are more profound and penetrating, which reflects
the belief that the principles that constitute a theory are more accurate than
those of a model and take more known magnitudes into account. So why not
always use the theory, which is more complete? In what follows we briefly
discuss why we prefer a local approach and not a general one, but first we
mention some semiotic terms that we use repeatedly throughout the book.

2.2. Semantics and pragmatics

It is not our intention here to develop with any precision the kind of
theoretical model that is presented throughout the book. We content ourselves
with calling on the reader’s intuitive concepts concerning terms such as
semantics, syntax, semantic load, a more concrete or more abstract level of
language, and of the reading level of a text. Even though one consequence of
the interpretations obtained in the corresponding empirical studies —
described later in the book— is precisely the fact that many of the mistakes
that are usually made when using new expressions come from the anticipatory
mechanisms of the individual who is decoding a situation that needs to be
modeled in that mathematical sign system (MSS), where the semantic load —
the custom of certain uses— produced by the individual’s prior experience
plays a decisive part in possible conceptual errors or mistakes in the syntactic
use of the new signs. Nevertheless, we are confident that the approach that we
offer for some of the problems proposed is valid in itself, even if it is read
from the viewpoint of other theoretical frameworks, and that the “facts” that
we describe have an intrinsic interest, even if considered in terms of other
interpretations.

We pay more attention, therefore, to the pragmatic viewpoint, which
consists in pointing out the meaning given by use, instead of placing greater
emphasis on meaning in the abstract. As we have indicated, this approach
diverts observation in mathematics education away from the competence of
users of a MSS and toward performance, and it also has fundamental
implications for the way in which MSSs are studied. Essentially, it is claimed
that grammar (the abstract formal system) and pragmatics (the principles of
the use of MSSs) are complementary domains in the observation of teaching
processes with the various teaching models (innovative and traditional) that
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are used to achieve the aim of guiding students so that they become competent
users of an MSS.

Consequently, this viewpoint not only includes the central role of formal
grammar, but also recognizes that it should be incorporated in a broader
framework that combines formal and functional explanations. In other words,
that in order to interpret the complete meaning of some mathematical
messages during normal teaching/learning processes, alongside the strictly
formal meaning of the mathematical text in question we also have to admit
some other meanings of certain other (logical) messages that are not explicitly
communicated either by the sender or by the receiver. We refer to the so-
called presuppositions (of which there are various kinds) or the immediate
consequences or implications —all this requires the incorporation of some
“natural logic” that takes the relation between these meanings into account.

Also, following the same direction of this idea, we are forced to distinguish
the difference between competence to decode a message and competence
to communicate it (many studies in mathematics education concentrate on
this result). It is necessary that our theoretical approach should take these
two different kinds of activity into account: the production of mathematical
messages and their decoding.

Empirical observations of how a MSS is used during the exchange of
messages within teaching/learning processes and the corresponding situation
when those MSSs are used by an individual who is thinking out the solution of
a problem situation show that the cognitive processes involved interweave the
formal level of competence with the pragmatic level. There is a pragmatic
component, which comes from the teaching environment in which the learning
process takes place. This component is bound up with institutionalized social
contracts, so that it is necessary to take into account not only the traditional,
customary ways in which the messages of an MSS are emitted in the
educational system, but also —and this seems more important— the presence
of the entire historical evolution of such sign systems. Notation is the first
aspect that appears, but it is not the only one of all the particular ways in which
nowadays, after a historical evolution, we tend to use MSSs and their
applications to problems in present-day science, technology, and social
information processes.

Together with these pragmatic tendencies, there is a component that is
due to an individual’s cognitive mechanisms that appear in each stage of
intellectual development, which gives preference to different mechanisms for
proceeding, various ways of coding and decoding the mathematical messages
pertinent for the stage in question, various strategies for solving problems, and
so on. For example, think of all the evidence that has been accumulated about
the tendencies of students to maintain the arithmetic interpretations of many
algebraic situations despite their progression to advanced stages of algebra.
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2.3. The components of LTMs

The stability of these phenomena of mathematics education and the well
established replicability of the experimental designs that have been used to
study them are such that we cannot fail to include these observations among
the components that are important for any theoretical model for observation in
mathematics education. Thus we have a need to propose theoretical com-
ponents that deal with different types of (1) teaching models, together with (2)
models for the cognitive processes, both related to (3) models of formal
competence that simulate the competent performance of an ideal user of an
MSS, and (4) models of communication, to describe the rules of com-
municative competence, formation and decoding of texts, and contextual and
circumstantial disambiguation.

2.4. Local versus general, the reason for the local in our theoretical models

From the point of view maintained by some authors devoted to problem
solving, close to cognitive psychology, one could infer that, to decode a
problem situation, experts proceed according to a synthetic process, that is,
from the data to the unknown. In several of these studies, in general, when
competent users are presented with a problem situation, they recognize “types
of problems,” because they have formed schemes of them. Thus one could say
that, when an expert is presented with a problem situation, in time he would
make an integration of the information, in which he would recognize what the
central relations of the situation are, comparing them with others that are
already in his long-term memory, where there are also specific strategies to be
followed. With all of these he is finally able to go on to represent the problem
by means of mathematical texts and then decode them for the solution of the
problem.

However, from our empirical observations about the decoding of mathe-
matical problem situations it follows that any solution, however fast and
fleeting it may be, necessarily passes through an initial logical analysis or
logico-semiotic outline of the problem situation, conscious or unconscious,
which makes it possible to sketch out the solution. That is, one shows the path
that has to be followed to solve the problem in accordance with some
mathematical text produced with the use of a certain stratum of an MSS, in
which one can establish the direction that the solving process is going to take,
and with which one can give analytic or synthetic reasoning processes. Thus
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an expert or a novice confronted with a problem tends to do work that may
proceed from the unknown to the data or viceversa, but in that work the
competence to decode the problem situation is determined more by the
competence to produce the logico-semiotic outline of the problem situation —
which includes strategies of analysis and synthesis— than by the mere
recognition of some previously learnt scheme.

Thus, when a competent user performs a logico-semiotic outline of a
problem situation, he or she may bring into play cognitive mechanisms that
enable him (a) to anticipate the central relations in the problem and also (b) to
decide in which stratum of an MSS to outline all the steps of the solution, or
decide between one MSS and another more specific MSS, subsequently going
on to a process of analysis and synthesis with which he finally obtains the
decoding of the problem situation.

To the foregoing we could add many other examples of how, with a global
approach, using the results of some general theory of certain branches of
knowledge, the analyses of the phenomena that belong to mathematics
education, performed thus, reduce the field of investigation very substantially,
preventing a clear understanding of the specific phenomenon that one is trying
to observe. For example, consider what we would achieve if we wished to use
only a general linguistic theory to construct a useful semiotics for
mathematics education.

Therefore, instead of arguing in favor of giving preferential consideration
to certain components —‘“grammar,” “logic,” “mathematics,” “teaching
models,” “models of cognition,” “pragmatics,” “communication”— we have
to concentrate on local theoretical models, appropriate only for specific
phenomena but capable of taking into account all four of the components
indicated earlier. The idea is to propose ad hoc experimental designs that cast
light on the interrelations and oppositions that take place during the evolution
of all the relevant processes related to each of the four components.

2 [13
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2.5. The component of formal competence

Earlier, we gave reasons for the need to have models for cognitive processes;
this is reinforced later, when we analyze teaching models (Chapter 5). When
we introduce our framework of (semiotic) interpretation, MSSs, the need to
have models of communication is also underpinned.

As we observe both thinking processes (cognitive component) and the
exchange of messages (communicative component) between individuals with
various degrees of competence in the use of the MSSs employed to create
the mathematical texts (teaching model) relevant for the teaching/learning
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process, the need for these three models would seem obvious: the model of
cognitive processes, the model of communication, and the teaching model.

The need for the model of formal competence comes from the requirement
for a description of the situations observed by means of a more abstract MSS,
to make it possible to decode all the texts produced in an exchange of
messages in which the actors have various degrees of competence in the use
of the MSSs in question. Later we see that we interpret the teaching/learning
process in this way, hence the advisability that the observer should possess
competence in a more abstract MSS that encompasses all the MSSs used in
the process observed. In the most extreme case, we might suppose that the
model of formal competence is the one with which the epistemic individual
would decode the situations observed, that is, the decoding of someone who
has all the competences created during the whole historical process of the
construction of mathematical knowledge. Fortunately, it is sufficient for the
observer to have a model of formal competence described in a more abstract
MSS than the one used by all the individuals observed: the learners, the
teachers, and the observer himself when he is involved in the exchange of
messages (for example, in the clinical interview).

Let us emphasize the importance of the component of formal competence
with a paragraph concerning what is stated about Freudenthal’s didactical
phenomenology presented later in this chapter. The order in which the various
kinds of phenomenological analysis must be developed begins with pure
phenomenology (the component of formal competence), for which what is of
prime importance is knowledge of mathematics and its applications; it is
completed with a historical phenomenology; then there is a didactical
phenomenology (for which what has to be known is the process of teaching
and learning); and in all cases it concludes with a genetic phenomenology. No
phenomenological analysis can be effective when teaching is subsequently
organized on the basis of it if it is not supported by a sound analysis of pure
phenomenology (in other words, the component of formal competence).

3. A GENERAL FRAMEWORK FOR CURRICULUM DEVELOPMENT
FOR THE STUDY OF AN LTM

It is advisable to begin the design of a curriculum of a teaching model with a
general framework that is broad but based on certain clearly established
attitudes, with the intention that various approaches may be obtained from
them. Thus, the emphasis placed on them will come from one or another of
these central theses, with the aim that the tensions between one viewpoint and
another will consequently be diluted by the need to provide a response in each
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case to the demands of the theses selected, converted in this way into lines of
force that promote certain decisions and not others, in making those decisions
meaningful.

It is in this spirit that we put forward the following reflections to regulate
the criteria for the design of the teaching models that it is decided to use. In
the following two sections, we introduce ideas derived from the works of
Freudenthal that are pertinent for curriculum development, and also the
relation of those ideas to the generation of concepts through proving that is
found in the work of Lakatos.

3.1. Concepts

School mathematics is articulated in a series of interrelated conceptual
networks, with the characteristic that, with time, students succeed in becoming
competent in the use of increasingly abstract general networks —competences
that call on many previously mastered competences.

3.2. The relation with reality. Teaching mathematization

The first elementary mathematical concepts are a response to the interaction
that children have with the real world. The first notions about quantity,
magnitudes, classification, distribution, division, etc. are developed directly
from the children’s experiences in the real world, but they are also a response
to the work of getting hold of the socially established codes for the symbolic
manipulation of all these processes, including those inherent in the individual,
such as understanding, analysis, and thought. That is why the first
mathematical texts have the manipulation of objects and reflection on their
interaction as their physical forms of expression. Therefore, a curriculum
design that does not set out from the need to move from the concrete to the
abstract and that does not then complete the inverse action will tend to result
in the students producing MSSs that do not have the sense that one wished to
give them socially.

In modern versions, this to and fro between the concrete and the abstract,
between the real world and its representations in a mathematical sign system
(quantitative modeling, a particular case of mathematization), has played a
decisive part not only in science but also in education. Through quantitative
modeling it is feasible to “interpret the world with numbers” (Boohan, 1994),
using algebraic relations to calculate the numeric value of dependent variables
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and thus be able to make short- and long-term predictions about the behaviour
of phenomena.

One gateway to the learning of algebra is modeling. In this kind of
approach the emphasis is on the role of the sign system of algebra as a means
to express relations between variables that correspond to phenomena or
situations in the physical world, and the corresponding didactic paths
contemplate the complete cycle: (1) translation of “concrete” situations or
situations expressed in natural language (word problems) to algebraic code;
(2) analysis of relations between variables, based on manipulation of the
algebraic expressions produced (syntactic level); and (3) interpretation of the
“concrete” situation in the light of the results of the work with algebraic
syntax. The argument in favor of the virtues of this approach to algebra is that
in step (1) meaning is given to algebraic expressions, and in steps (2) and (3)
the syntactic manipulation of those expressions becomes meaningful.

With the characteristics just described, the teaching of algebra as a means
of modeling tends to promote in students the production of signs in a socially
accepted MSS, that of symbolic algebra. In more recent proposals, in the
framework of teaching by modeling, other MSSs are also brought into play,
such as those of making graphs, numeric tables of variation, spreadsheets, and
mathematical narrative (Nemirovsky, 1996). The last of these has succeeded
in facilitating processes that can present great difficulty in modeling, such as
the translation of relations in a “concrete” situation to algebra.

3.3. Practical knowledge

On the basis of the knowledge obtained from experiences in the real world
and the representation of that relation with a sign system that intertwines with
natural language, mathematical concepts are used to perform measurements,
calculations, and representations. Such concepts are immensely useful and no
member of modern society who wishes to pursue a normal intellectual
development can disregard them. Nowadays, to be able to analyze the events
that take place in the daily lives of individuals and society, one requires
certain competences in the use of the MSSs that are taught in mathematics
classes. One important component of the curriculum must aim at making it
possible for students to use their mathematical knowledge in their daily lives
to solve the problems that are presupposed by modern educational systems
and that refer to those with which society presents them every day (for
example, in the reading of newspapers).
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3.4. The analytic and instrumental function for other areas of knowledge

An important feature of elementary mathematics consists in the fact that many
other areas of knowledge have gradually, but increasingly intensively, been
making use of its symbolic systems to represent the various explanatory
models that are found in those areas. Thus, school mathematics is required to
describe and understand phenomena from a great diversity of sources.
Mastery of the more abstract and general parts of the basic curriculum
provides students with a symbolic system in which analytic capability is
reinforced by language strata in which not only is it possible to model the
phenomena that one is trying to understand and master, but also, precisely
there, in the symbolic, one has the operational capability of advancing in the
prediction of what will happen when the modeled phenomena take place in
time, or when some variable evolves in a particular way. That is why the final
parts of algebra, geometry, probability, and statistics, which are traditionally
taught in the last two years of the secondary school (13-15 years of age), are
of such importance for the future of individuals and for society, which
demands competence in such matters if one is to master understanding of
natural phenomena and progress in one’s societal roles.

4. PHENOMENOLOGICAL ANALYSIS AS A COMPONENT OF DIDACTICAL
ANALYSIS. HANS FREUDENTHAL’S APPROACH TO CURRICULUM DEVELOPMENT

4.1. Phenomenological analysis

The didactical analysis of mathematics, i.e., the analysis of the contents of
mathematics that is performed for the sake of the organization of the teaching
of mathematics in educational systems, has various components, which
organize the various teaching models presented in this book. One of the
components takes its name from Hans Freudenthal’s book Didactical
Phenomenology of Mathematical Structures (Freudenthal, 1983) and is the
subject of this section. We here set out the characteristic features and some of
the consequences of what we understand by phenomenological analysis of
mathematics as a component of its didactical analysis. The exposition
repeatedly refers to Freudenthal’s work, taking some liberties with the
terminology that he uses and introducing other terminology that is not his.

The phenomenological analysis of a concept or a mathematical structure
consists of describing the phenomena for which it is the means of organi-
zation and the relation that the concept or structure has to those phenomena.
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The description of the phenomena for which it is a means of organization
must consider the totality of the phenomena for which this is so at the time,
that is, it must take mathematics in its present state of development and in its
present use; but it is also advisable to indicate the phenomena for the
organization of which it was created and the phenomena to which it has
extended subsequently.

The phenomenological analysis developed by Freudenthal is fashioned to
serve teaching. However, Freudenthal distinguishes various types of phenol-
menology, all important from the viewpoint of teaching, but only one of them
is described as didactical. These types are: phenomenology, didactical phenol-
menology, genetic phenomenology, and historical phenomenology.

The first thing that characterizes each of these phenomenological analyses
is the phenomena that they take into consideration with respect to the concept
that is analyzed. In the first case they are the phenomena that are organized in
mathematics taken in its state at the present moment and assuming its present
use. In the didactical case they are the phenomena present in the world of the
students and the phenomena that are proposed in the teaching sequences. In
the genetic case, the phenomena are considered with respect to the learners’
cognitive development. In the historical case, special attention is paid to the
phenomena for the organization of which the concept in question was created,
and how it has extended to other phenomena.

The description of the relations between the phenomena and the concept
takes into consideration, in the first case, the relations that are established, and
in the other three how those relations were brought about, acquired or formed,
in the educational system, with respect to cognitive development or in history,
respectively.

Moreover, in the case of pure phenomenology the concepts or mathema-
tical structures are treated as cognitive products, whereas in the case of
didactical phenomenology they are treated as cognitive processes, i.e., situated
in the educational system as teaching material and being learned by students.
Freudenthal says that when writing a didactical phenomenology one may
think that it should be based on a genetic phenomenology, but this idea is
mistaken. The order in which the various types of phenomenological analysis
must be used begins with pure phenomenology (for which it is sufficient to
know mathematics and its applications); this is completed with a historical
phenomenology, followed by a didactical phenomenology (for which it is
necessary to know the teaching and learning process), and in all cases genetic
phenomenology comes last. No phenomenological analysis can be effective
when teaching is subsequently organized on the basis of it if it is not
supported by a sound analysis of pure phenomenology.

Freudenthal’s phenomenological analysis aims to serve as a basis for the
organization of the teaching of mathematics and does not set out to elaborate
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an explanation of the nature of mathematics. It might be possible to use it
without adopting any epistemological or ontological commitment about
mathematics, that is, accepting mathematics as a means for the organization of
phenomena, without maintaining that things really are so. However, the ideas
that students form about the nature of mathematics and the ideas that teachers
have exert a very considerable influence on how both students and teachers
conceive the mathematical activity that has to be performed in class, and the
knowledge that students produce and that teachers try to teach. This is
also why we think it necessary to outline a conception of the nature of
mathematics that is compatible with the interpretation that we make of
Freudenthal’s phenomenological analysis.

We set out, therefore, from the statement that mathematical concepts are
means of organization for phenomena of the world. However, this charac-
terization does not tell us much if we do not specify to what we are referring
when we speak of the world, and if we do not establish which phenomena are
organized by mathematical concepts. Nevertheless, one of the tasks of
phenomenology is precisely to investigate which phenomena are organized by
mathematical concepts, by analyzing those concepts, so that one cannot seek
to know in advance which they are. Nor can one seek to characterize in
advance the kind of phenomena organized by mathematics, because to do so
one would need to have linked the phenomenology of mathematics to a
general phenomenology in which one establishes a typology of phenomena —
a task that, in our view, could be approached by means of Peirce’s phenol-
menology. Consequently, we can have an idea of the kind of phenomena
involved only on the basis of the concrete analyses that we perform.

On the other hand, it is possible to interpret that from the foregoing
statement it follows that mathematics lies in a separate world from the world
whose phenomena it organizes, which is the world around us, the real world.
This, however, is not the most appropriate interpretation.

In fact, if we place ourselves at the origin, or at the lowest level, we could
say that the phenomena that are going to be organized by mathematical
concepts are phenomena of this real, physical, everyday world. Our experi-
ences with this physical world have to do with the objects of the world, their
properties, the actions that we perform on them, and the properties that those
actions have. Hence the phenomena that mathematics is to organize are the
objects of the world, their properties, the actions that we perform on them or
the properties of those actions, when objects, properties, actions, or properties
of actions are seen as what is organized by those means of organisation and
are considered in their relation to them.

This first interpretation establishes the idea that mathematical concepts do
not actually reside in an ideal world whose reflection we study, nor do they
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have an existence prior to mathematical activity, nor does that activity consist,
therefore, in the discovery of the geography of the world in which those
objects are. Yet they are also not installed in a world foreign to our
experience, inasmuch as they are created as a means of organization of
phenomena of the world. The previous interpretation is not felicitous in this
respect, because it does not take into account the fact that Freudenthal does
not remain at the lowest level, describing mathematical activity simply as an
interplay between phenomena of the world and means of organization in
mathematics, in which phenomena seek to be organized and means for this are
created in mathematics. On the contrary, Freudenthal accompanies the process
of creation of mathematical objects as means of organization with a process
by which the means of organization become objects that are situated in a field
of phenomena. Consequently, mathematical objects are incorporated into the
world of our experience, which they enter as phenomena in a new relation of
phenomena/means of organization in which new mathematical concepts are
created, and this process is repeated again and again.

Mathematics is therefore in the same world as the phenomena that it
organizes: there are not two worlds but one, which grows with each product of
mathematical activity. The phenomena that mathematical concepts organize are
the phenomena of the world that contains the products of human cognition and,
particularly, the products of mathematical activity itself; the phenomena that are
organized by mathematical concepts are the objects of that world, their
properties, the actions that we perform on them, and the properties of those
actions, inasmuch as they are contained in the first term of a phenomena/means
of organisation pair.

The staggered progression of phenomena/means of organization pairs
entails two processes: the process of creation of mathematical concepts as
means of organization, which is indicated by each pair, and the process by
which a means of organization is objectified in such a way that it can become
part of a new pair, this time in the position of phenomena. The staggered
progression draws a picture of the production of more abstract mathematical
objects on an ever higher level, and it shows that mathematical activity
generates its own content.

4.2. Constitution of mental objects versus acquisition of concepts

We speak of mathematical concepts, of their creation in a relation of
phenomena/means of organization, of the objectification of the means of
organization and their entry into a phenomena/means of organization relation
on a higher level; we speak of transformations of concepts as a consequence
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of the mathematical activities of proving theorems, solving problems,
organizing in a deductive system and the process of defining. All this is
accompanied by the affirmation that mathematical concepts do not have an
existence independent from the mathematical activity that creates them. But
we also bring into the arena a new idea developed by Freudenthal that will
oblige us to rethink the relations that concepts establish in these ladders of
concepts/means of organization: this is the idea of a mental object as opposed
to a concept.

This idea is important primarily because it is on the basis of it that
Freudenthal adopts a didactic attitude: the aim of educational activity in the
school system must basically be the constitution of mental objects, and only
secondarily the acquisition of concepts —which is in second place in terms of
both time and order of importance. This attitude is also particularly important
for the period of compulsory education, because one must consider what part
of mathematics must be offered in it to the population as a whole. But it is
also important for the phenomenological analysis of mathematical concepts,
all the more so if the analysis is a didactical phenomenology and one has in
mind the idea that the analysis is prior to the organization of teaching and is
performed with that purpose. This is the aspect that we deal with here.

In a first approach, the contrast between mental object and concept that
Freudenthal proposes can be seen as the consequence of considering the
people who conceive or use mathematics in contrast to mathematics as a
discipline or set of historically, socially, and culturally established knowledge.
In the foregoing sections, when speaking of mathematical concepts we have
considered them basically within the discipline, and we have hardly intro-
duced the intervention of real people; what has appeared is, at best, a
semblance of them, the ideal subject who performs actions with powers
superior to those that we possess. We can set out, therefore, from an initial
image: the contrast of mental object and concept is a contrast between what is
in people’s heads (mental objects) and what is in mathematics as a discipline
(concepts).

As this is the sense in which Freudenthal uses these terms and in which we
are going to use them here, it is worth pointing out before we go on that the
term “mental object” does not appear in normal usage. The customary
practice is to speak of the concept that someone has —of number or triangle
or anything else, whether it belongs to mathematics or not— or to use the
term “conception” instead of “concept” and speak of the conception that
someone has of circumference, for example; but in this case one generally
wishes to emphasize that what is in the person’s mind is part of a concept or a
way of seeing that concept.
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4.3. Considerations for an LTM for studying the uses of natural numbers

Peirce also speaks of a certain progression in the types of signs we treated
in Chapter 1:

A regular progression of one, two, three may be remarked in the three orders of signs, Icon,
Index, Symbol. The Icon has no dynamical connection with the object it represents; it simply
happens that its qualities resemble those of that object, and excite analogous sensations in the
mind for which it is a likeness. But it really stands unconnected with them. The index is
physically connected with its object; they form an organic pair, but the interpreting mind has
nothing to do with this connection, except remarking it, after it is established. The symbol is
connected with its object by virtue of the idea of symbol-using mind, without which no such
connection would exist. (Peirce, CP, 2.299, pp. 168-169.)

4.3.1. The first arithmetic signs

It seems that the first written signs were arithmetic signs. Let us look at some
of the characteristics of signs that we have just expounded at work in those
primitive signs.

It has actually been determined that the first written signs were arithmetic
signs as a result of a step-by-step reconstruction of the development of two
systems of writing that had their beginning in about 3500 BC and that were
created by Sumerians in the south of Mesopotamia and by Elamites in Susa
(located in what is now Iran).'

These first signs were marked with a stylus on the outside of hollow balls
of soft clay, and they always corresponded both in form and number to
pebbles of various shapes contained inside the balls. These marks were thus
icons that represented the hidden pebbles, and one had only to break the ball if
one wished to confirm that they really did stand for the objects that they
represented. The marks on the balls are icons because they resemble in form
and number the objects they represent, so that they signify even if the balls are
empty. These signs have what we might call a primitive way of working,
because the code that the person who closes up the balls and makes marks on
them has to share with the person into whose hands they come is not very well
established socially, or, at any rate, is subject to doubt.

Interesting as these first written marks are in so patently possessing two of
the natural characteristics of signs, they become even more interesting when
we discover that they have the antecedents and consequents that will now be
explained.

The marked balls that have been found in the excavations are from the
second stage of this temporal series. Before that stage, the remains correspond
to hollow balls containing pebbles but without any external mark. After the
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second stage the pebbles disappear and only the marks remain, and the hollow
balls, which no longer have to contain anything, become flat tablets.

First of all, therefore, there are objects hidden in a hollow ball, then the
first written signs, with the objects that they represent present but hidden, and
finally only the written signs without the objects that they represent.

But these objects, in turn, are signs —although not signs belonging to a
system of writing— because, in each of the three historical stages, the balls or
tablets are records or trading transactions; they are accounts. The objects
represented by the written marks are also arithmetic signs, because, by their
shape and quantity, they represent a certain number of objects. What the
archaeologists have reconstructed tells us that these pebbles were used to
record an account in the course of a commercial transaction, and once the
matter was settled they were placed inside a hollow ball to record the
agreement between the trading parties concerning the quantity involved in the
transaction. These first arithmetic signs stood for other arithmetic signs that
had a different medium of expression and they eventually replaced them in
the records, but only in the records, because if the traders probably continued
using pebbles to do their accounts, they had no operational capability.

These mathematical signs on clay tablets led to the development of
Sumerian cuneiform writing. We know that later, in the palaco-Babylonian
era (2000 to 1600 BC), genuine mathematical texts were written on tablets
similar to these primitive specimens (and not only in Sumerian but also in
Akkadianz, a Semitic language), but that is another story, which we will not go
into here.

4.3.2. The signs used in the Roman number system

Although the arithmetic signs that are at the origin of cuneiform writing fell
into disuse thousands of years ago, the Etruscan herdsmen, far from
commercial transactions and the schools of scribes in the fertile crescent, by
making notches on a stick, one for each head counted, created a number
system that we still use, albeit only marginally: the one known as the Roman
number system.

The signs that we have inherited from them for the representation of
numbers actually seem to have developed as a result of their physical
inscription on a linear record. Thus the primitive repetition of notches, |||||]|...,
became structured by means of special marks every five notches, with a view
to making it easier to count the expression: a slanting mark in the fifth
position, a cross-shaped mark in the tenth position, etc., giving rise to marks
such as ||[|/I[IX]III/I111X]I| to record a herd of twenty-three animals. The primary
marks and structural marks eventually became the alphabetical letters I, V,
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and X, becoming integrated into the system of writing and identified with the
letters that they most resembled.

As they were positions in a series, V and X did not signify the cardinal
numbers “five” and “ten,” but the fifth and tenth positions in the series. In
fact, the first written forms for “five” and “ten” were not V and X but IIIIV
and IIIVIIIX, which do indeed represent cardinal numbers, and in which
both I and V represent a unit. It was only later that considerations of economy
led to the use of V to represent IIIIV and thus five units. The signs V and X
initially functioned as reference points in the series in yet another sense: IV
came to signify “four,” not as the result of a rule of subtraction between the
cardinal numbers designated by [ and V, but because from the presence of the
sign V one could understand that the mark immediately before V in the series
was being designated. Similarly, VI did not come to signify “six” as the result
of a rule of addition, but because it designated the mark immediately after V.
It was only when the signs V and X acquired a cardinal meaning —standing
for IIIIV and IIIIVIIIIX— that the earlier rules, which had to do with
positions in a series, i.e., with ...IV... or ...VI..., were reinterpreted as rules
of addition and subtraction between cardinals. In this historical account, the
transformations that took place in the expression as a result of the processes of
abbreviation gave new senses both to the elementary signs and to the rules for
the formation of compound signs, senses that correspond to the meanings now
taught in schools.

These marks are indices of the action of counting. Puig (1997) points
out that the phenomena that organize mathematical concepts are objects,
properties, actions, and properties of actions. This is one of the clearest
examples of a mathematical concept that organizes a phenomenon that does
not belong to the domain of objects or properties of objects, but to the domain
of actions and properties of actions (which does not do away with the fact that
in the corresponding triadic relation the action of counting is the object of the
sign for a mind, that is, for an interpretant). As a result of transformations of
the expression, the indices become symbols.

4.3.3. Algebraic expressions

It is common to refer to algebraic expressions as “symbolic language” —for
example, when one speaks of putting a problem into equations, one usually
describes this as a “transition from natural language to symbolic language.”
However, if we use Peirce’s terminology, algebraic expressions are not
symbols but icons, strange as this may seem at first sight. Let us see how
Peirce himself explains it:

[...] thus, an algebraic formula is an icon, rendered such by the rules of commutation,
association, and distribution of the symbols. It may seem at first glance that it is an arbitrary



CHAPTER 2 47

classification to call an algebraic expression an icon; that it might as well, or better, be regarded
as a compound conventional sign [symbol]. But it is not so. Because a great distinguishing
property of the icon is that by direct observation of it other truths concerning its object can be
discovered than those which suffice to determine its construction. [...] This capacity of
revealing unexpected truth is precisely that wherein the utility of algebraic formulae consists,
so that the iconic character is the prevailing one. (Peirce, CP, 2.279, p. 158.)

Algebraic expressions are icons, and this is precisely what makes them
powerful, because as signs they have the properties that their objects have.
However, the letters in algebraic expressions, taken in isolation, are not icons
but indices, each letter being an index of a quantity. They are also not
symbols. If the algebraic expression is the result of the translation of the
verbal statement of an arithmetic-algebraic problem, each specific letter
represents a specific quantity as a result of the convention established by the
person who produced the translation, but each letter refers to a quantity even
if there is no interpretant, because any interpretant who is not aware of the
convention established will assign the letters to the right quantities, since the
algebraic expression as a whole will require that the corresponding quantity
be assigned to each letter. So are there no symbols in algebraic expressions?
Yes, there are. The signs +, =, etc. are symbols in Peirce’s sense.

Algebraic expressions are thus an example of the imbrication of three
kinds of signs in mathematical writing: the letters are indices; the signs +, =,
etc. are symbols; and the expression taken as a whole is an icon.

4.3.4. Uses of numbers in different contexts

The students in whom teachers attempted to instil the concept of number in
the years of what was known as “modern mathematics” —in a school version
of Cantor’s construction of cardinals— would have left school without being
able to count if they had not created a mental object of number apart from
what the official syllabuses wished them to be taught. We will use this
complex, multiple concept as an example to show the difference between
mental object and concept, describing it in semiotic terms instead of as
Freudenthal does.

If we consider the ordinary activity of people and not just the mathematical
activities of mathematicians or the scholastic activities of students in
mathematics classes, the use of number, or rather numbers, appears in very
diverse contexts. A list of them might include the contexts of sequence,
counting, cardinal, ordinal, measurement, label, written numeral, magic, and
calculation. A description of the characteristics of each context is not our
purpose here: the list is worth mentioning solely in order to show that it
is possible to distinguish a considerable quantity of contexts. Following
Wittgenstein for a moment, we understand meaning as being constituted by
the use that one makes of a term, that use not being an arbitrary use, the
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product of what someone takes it into his or her head to do with the term in
question, but a practice subject to rules.

The uses of numbers in each of these contexts follow rules. For example,
when one says “My telephone number is three, eight, six, four, five, eight,
six,” the number refers to an object and does not describe any property of it or
its relation to other objects but serves to identify it. This is the context of
label, and in it, when the expression is oral, the digits that make up the
number are generally expressed separately, as in the example given. In an
ordinal context, the number refers to an object that is in an ordered set
of objects, and it describes what place it occupies—he came third” or “he’s
the one that makes three.” In a cardinal context, the number refers to a set of
objects (without order, or whose order is not taken into consideration), and it
describes the numerousness of the set— “there are three.” And so on.

The totality of the uses of numbers in all contexts constitutes the semantic
field of “number,” the encyclopedic meaning of “number.” The identification
of the context in which number is being used enables someone who is reading
a text or receiving a message to abide by the semantic restriction that the
context establishes and thus interpret it appropriately. However, the person
who reads a text or has to interpret a message does not operate in the whole
encyclopedia —i.e., the totality of the uses produced in a culture or an
episteme— but in his personal semantic field, which he has gradually built up
by producing sense —senses that becomes meanings if the interpretation is
felicitous— in situations or contexts that demanded of him new uses for
“number” or numbers.

In this semiotic description, what Freudenthal calls “mental object
‘number’” corresponds to this “personal semantic field.” Freudenthal’s didactic
attitude in favor of the constitution of mental objects means that the aim of
educational systems, expressed in the terms that we are using, should be that the
student’s personal semantic field should be sufficiently rich —should embrace
the encyclopedia sufficiently— to enable him to interpret appropriately all the
situations in which it proves necessary to use “number” or numbers.

The contexts of the ordinary use of numbers are the various places in
which we can experience the phenomena that have been organized by means
of the concept of number, both the phenomena for which it was originally
created and those to which it has now been extended. The idea of mental
object that we have just introduced must also be seen, therefore, as a means of
organisation of phenomena: with the mental object “number” people are able
to count, among other things. Mental objects are constituted in chains of
phenomena/means of organization, in the same way as with concepts, with the
consequent increase in level —in fact, the contexts of the ordinary use of
numbers that we have mentioned are situated on the lowest levels, and to
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realise the phenomenological richness of number in secondary school one
must take other contexts into consideration, including contexts that have
already been mathematized.

4.4. Relation between mental object and concept

This is an initial explanation of what a mental object is and how it is
constituted, but what Freudenthal calls mental object could simply have been
called the concept that a person has of number. To justify the introduction of a
term that distinguishes it, it is necessary to explain for what other thing the
term “concept” has been reserved, and how it differs from what we have just
called “mental object.” We have already said that the first distinction is that
mental objects are in people’s minds and concepts are in mathematics. But
this would hardly be sufficient reason to oppose mental object to concept if
we thought that the mental object is the reflection of the concept in people’s
minds. The relation between mental object and concept, however, is not a
mirror-like relation. Once again we will explain it in semiotic terms.

We have identified the mental object “number” with the personal semantic
field, which comes from all the uses of numbers in all the contexts in which
they are used, from a semantic field consisting of all the culturally established
meanings. The mathematical concepts of natural number —and we use the
plural in order to emphasize the fact that we consider the concepts developed
by Peano, Cantor and Benacerraf, for example, as different— in the form in
which they exist in current mathematics are the product of a long history, with
processes of creation and modification of concepts. In terms of the semiotic
description that we are using now, any mathematical concept of number that
one wishes to examine once it has been created appears as the result of the
process of defining that has incorporated it into a system organized
deductively as a narrowing of the semantic field. Thus, for example, the
concept of natural number developed by Peano —especially in its more
modern versions— can be seen as the breaking down of the meaning that
pertains to the context of sequence and its presentation in the form of a series
of axioms that give an exhaustive account of its components. The concept of
natural number that is derived from Cantor’s construction, on the other hand,
is ascribed, in the very name that Cantor gave in his original intention, to the
cardinal context.

In this explanation, concepts appear to be directly related to a part of the
mental object, given that, in the process of defining, part of the meaning that
the mental object embraces is selected. We will immediately point out that
this is not the only difference, and that we do not wish to give the impression
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that the relation between mental object and concept is a relation between a
part of the content of the mental object and the totality of its content. But we
wish, rather, to indicate that what this explanation establishes provides a
foundation for the attitude taken by Freudenthal that we have mentioned: the
acquisition of the concept is a secondary school objective and can be left until
after mental objects have been soundly constituted, and in any case it does
come afterwards.

The relation between mental object and concept is more complex than is
shown by the explanation that we have just given using the example of
number, because the explanation was limited to comparing the deployment of
the semantic field of number and Peano’s definition, as if there were not
centuries of history that have produced both contexts of use —which we are
now going to find with traces of their organization by concepts of number—
and Peano’s definition. Taking into account the processes of creation and
modification of concepts that are present in that history, the relation between
the mental object that can be constituted from the contexts mentioned and the
content of the concept of number created by Peano’s definition cannot be
reduced to a relation between part and whole.

Constituting a mental object implies being able to give an account with it of
all the uses in all the contexts or being able to organize all the corresponding
phenomena, in which case the mental object is well constituted. The aim of
educational systems that Freudenthal indicates is this constitution of good
mental objects. Acquiring the concept implies examining how it was established
in mathematics organized locally or globally in a deductive system. The
particular relation that each mathematical concept has to the corresponding
mental object determines how the constitution of the mental object relates to the
acquisition of the concept. The constituents of the good mental object are
determined by means of the phenomenological analysis of the corresponding
concept.

4.5. From phenomena to mental objects and concepts through teaching

The relation between mental objects and concepts is varied. Both are con-
stituted as means of organization of phenomena, mental objects precede
concepts, and concepts do not replace mental objects but contribute to the
formation of new mental objects that contain them or with which they are
compatible.

The distance between the mental object, or rather the first mental object,
and the concept can be an abyss: this is the case with the mental object
“curve” and Jordan’s concept of curve, for example. In general, in topology
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mental objects do not lead very far, and it is necessary to form concepts, by
means of a formation of concepts that involves more than a local organization.
These concepts enter a field of phenomena that are organized on a higher
level by mental objects such as spaces and varieties of arbitrary dimension,
which in turn are converted into concepts by means of new processes of
organization and the creation of more abstract sign systems to describe them.
As this example shows, by introducing the idea of mental object the process
of a progressive rise through the chain of phenomena/means of organization
pairs links up with a process of transformation of mental objects into
concepts.

The analyses of didactical phenomenology must be based on analyses of
pure phenomenology, bearing in mind that, in many more cases than one
might imagine, the distance between the mental object and the concept is so
great that it is not possible to build bridges between them by didactic means in
secondary school.

For the constitution of mental objects through teaching while bearing
concepts in mind, the distance between them and the various forms that this
distance adopts are therefore of importance. It is worth mentioning a few
cases, such as those that are set out in the following paragraphs.

Sometimes there are components that are essential for the formation of the
concept but are not pertinent for the constitution of the mental object. This is
the case with the cardinal number: the comparison of sets without structure is
essential for the concept, but it plays almost no part in the constitution of the
mental object because, in the real situations in which a person experiences the
phenomenon that is organized with the mental object “number” in its cardinal
sense, the sets of objects are rarely without structure, and, moreover, the
structure is a means for making the comparison, rather than something that
must be removed in order to make it.

Sometimes, what a didactical phenomenology shows is that the phenol-
mena organized by the concept are so varied that in fact different mental
objects are constituted, depending on the field of phenomena that is selected
for exploration in teaching, or several mental objects if several kinds of
phenomena are explored. For the acquisition of the concept it is necessary,
therefore, to integrate these different mental objects into a single mental
object. This is the case with the concept of area, for example.

Indeed, lengths, areas, and volumes are the magnitudes that are measured
in elementary geometry. It is therefore necessary that these concepts should
be acquired as part of the learning of measurement and measuring. The
comparison between qualities of objects is the beginning of the activity of
measuring. This becomes measurement through the intermediary of the
establishment of a unit and consideration of objects that are treated as objects



52 CURRICULUM DESIGN AND DEVELOPMENT

of which one can predicate that quality —for example, one can predicate that
they have length if it makes sense to say of them that they are “long.”

However, as concepts, length, area, and volume are problematic because of
the variety of approaches for the constitution of the mental object “area” (or
“volume”). Indeed, plane figures can be compared with respect to area
directly, if one is part of the other, or indirectly, after transformation by
cutting and pasting, congruences, and other applications that preserve area; or
else by measuring both of them. The measuring can be done by covering the
figure with units of area, or by means of interior and exterior approximations;
for this one uses the additivity of the area beneath the composition of plane
figures that are mutually disjoint except for their boundaries (of dimension
one), or convergence of the areas by approximation. It is not clear that these
approaches lead to the same result, and in fact the proof that the result of
measuring by following all these procedures is the same is not simple. The
constitution of the mental object “volume” also has the additional complica-
tion of considering phenomena corresponding to capacity, which are usually
measured with different units.

Sometimes it is difficult even to distinguish the mental object from the
concept, at least if one wishes to have a unitary mental object: only by means
of access to the concept is it possible to unify a heterogeneous set of mental
objects. This is the case with the concept of function.

Finally, there are mental objects whose field of phenomena appears only in
a mathematical or mathematized context. An example of this in secondary
school is provided by the concepts of analytical geometry.

Indeed, in history, global location by using coordinates leads to the
algebrization of geometry. Whereas the system of polar coordinates used to
describe the sky and the Earth’s surface has served to systematize location,
the system of Cartesian coordinates is particularly efficacious for describing
geometric figures and mechanical movements and, later, functions in general.
A figure can be translated algebraically into a relation between coordinates, a
movement in a function that depends on time, and a geometric application in a
system of functions of a certain number of variables.

The phenomena that are proper to analytical geometry are thus phenomena
produced by the expression of geometric properties in the complex sign
system in which algebraic expressions and Cartesian representation refer to
one another. They are, therefore, phenomena that can be explored only in
contexts previously mathematized by the use of those sign systems.
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4.6. Concepts generated by proving

We have seen that mathematical concepts are created in the phenomena/-
means of organization process, but this does not mean that once created they
remain immutable. On the contrary, mathematical concepts alter in history as
a result of their use and the new MSSs in which they are described. This does
not imply, however, that alterations in a concept indicate that the original
concept was mistaken and that we have to see the history of mathematical
concepts as an advance toward truth, for we have rejected the view that
mathematical objects have an existence prior to the process that creates them.

A different idea of the evolution of concepts in history was developed by
Lakatos in his book Proofs and Refutations (Lakatos, 1976). What is of
interest for us here is the fact that in this book Lakatos examines how
concepts evolve under the pressure of the proof of theorems in which they are
involved.

Lakatos tells that, after the establishment of the conjecture that for any
polyhedron the relation C+ V=4 +2 is true, and after its proof by Euler,
examples of solids emerged that did not fit in with the proof that had been
performed or, what was more important, with the theorem that had been
proved. In terms of a conception of the nature of mathematical objects
according to which there is a pre-existing ideal object that we call polyhedron
and what mathematical activity does is to discover its properties, the matter is
quite clear: these solids are not true polyhedrons, or else the proof is wrong.
The reconstruction of history that Lakatos makes is not this.

Lakatos separates the two types of counter-examples that I have just
mentioned and calls them local and global counter-examples, respectively. A
local counter-example is one that has characteristics that cause the proof not
to be applicable to it, but that verifies the relation. These counter-examples do
not refute the conjecture: what they do is to indicate that in the proof a
property was used that was assumed to be valid for all polyhedrons, but it is
not so. What is refuted, therefore, is a lemma that has been used implicitly,
and therefore the proof. The presence of these counter-examples introduces a
difference in the concepts that was not present before.

The effects of the appearance of global counter-examples have more
importance for what we are examining. A counter-example is global when it
refutes the conjecture. As first global counter-examples of the theorem
proposed by Euler, Lakatos presents the solid that consists of a cube with a
cube-shaped hollow inside it, and a solid formed by two tetrahedrons joined
by one edge or one corner; later he presents the even more interesting case of
a star-shaped solid, which does or does not verify the relation depending
whether or not one considers that its faces are star-shaped polygons. The
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presence of these solids as counter-examples produces a tension between the
concept, the theorem, and its proof. This tension can be resolved in various
ways, which all affect the concept of polyhedron. The most elementary are:

1) Monster-barring.

The counter-examples presented are considered to be not genuine
examples of the concept of polyhedron but monsters, i.e., beings whose
existence is possible but not desired. The possibility of their existence is
determined by the definition of polyhedron that is being used, whether
explicitly or implicitly, so that, in order to preserve the theorem, a new
definition of the concept of polyhedron that explicitly excludes them is
produced.

2) Exception-barring.

The counter-examples presented are considered to be examples of the
concept whose existence had not been foreseen when the conjecture was
stated. The conjecture is modified with the intention of withdrawing to safe
ground. To do so, a difference that separates these examples is introduced in
the concept.

3) Monster-adjustment.

The objects are looked at in a different way so that they cease to be
counter-examples; this is the case with the two ways of looking at star-shaped
polyhedrons: as being composed of star-shaped polygons or not.

Although these are only the most elementary ways of confronting the
tension created, even with them we can see that the concept of polyhedron is
affected in all cases. Whether the counter-examples are accepted or excluded
as examples of the concept, the semantic field is expanded. In one case,
because the content of the expression increases, or, to put it differently,
because the field of phenomena for which the concept had been created —
which is what constitutes its semantic field— did not contain the phenomena
corresponding to the objects and properties that are now present, and it is
extended to include them. In the other case, because the concept enters into an
interplay of relations to these new objects from which it explicitly
disassociates itself in the new definition, which also form a constitutive part
of its content.

The full story is more complex, and it also features progressively richer
and more abstract mathematical sign systems to which the concepts initially
expressed in other, less rich or less abstract mathematical sign systems are
translated, and it leads Lakatos to state that the concepts generated by the
proof do not improve the original concepts, they are not specifications or
generalisations of them, but they convert them into something totally
different, they create new concepts. This is precisely what we wish to
emphasize: the result of the process that Lakatos presents, a process of tension
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between concepts, theorems, and proofs, is not the delimitation of the true
concept of polyhedron that supposedly corresponds to the pre-existing ideal
object, but the creation of new concepts.

4.7. Problem solving, defining, and other processes
that also generate concepts

From Lakatos we have just extracted the idea that mathematical concepts do
not remain immutable once created. We have also outlined how concepts
change, impelled by the tension produced in them by their application in
proofs and refutations. However, mathematical activity does not consist only
in proving theorems. One of the fundamental driving forces in the develop-
ment of mathematics is problem solving, and this includes the proving of
theorems, but also other activities.

Problem solving includes the proving of theorems in two senses. In the
first sense, problem solving includes the proving of theorems considered
globally, because, if we follow the terminology of Polya (1957) and, instead
of distinguishing between problems and theorems as was first done by
Greek mathematicians, we call them all problems and distinguish between
“problems to find” and “problems to prove,” then the proving of theorems is
simply one kind of problem solving: the solving of problems to prove.

In the second and more important sense, problem solving includes the
proving of theorems in the solving of each problem in particular; indeed, what
characterizes problem solving in mathematics, even with problems to find, is
the fact that the obtaining of the result must be accompanied by an argument
that substantiates the fact that the result obtained verifies the conditions of the
problem, i.e., any problem is a problem to prove or, if it is a problem to find,
it contains a problem to prove —the problem to prove that the result found
verifies the conditions of the statement.

This obliges us to extend the terrain in which concepts are submitted to a
tension that modifies them beyond the proving of theorems to the solving of
problems. But it becomes even more necessary to do so if we take into
consideration other parts of problem solving that do not involve the proving
of theorems —specifically, the proposal of new problems or the study of
families of problems.

Problem solving also does not exhaust the field of mathematical activities
or the field of mathematical activities that generate concepts. Other activities
that are responsible for the creation of many great mathematical concepts in
the form in which we know them now have to do with the organization of sets
of results of varying extent —obtained in the activity of solving problems and
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proving theorems— in a deductive system. This systematic organization has
adopted different forms in the course of history, and it may be more local or
more global, more or less axiomatic or formalized, but in any case it has
constituted an essential component of mathematics since mathematicians
moved from accumulating results and techniques for obtaining them to
writing “elements.” Indeed, although we do not detail that set of activities
here, one essential characteristic of it is that it has transformed the sense in
which definitions are used in mathematics. “In mathematics a definition does
not serve just to explain to people what is meant by a certain word,” as
Freudenthal says, but rather, when we consider the mathematical activities by
means of which deductive systems are organized, “definitions are links in
deductive chains.”

The process of defining is, therefore, a means of deductive organization of
the properties of a mathematical object, which brings into the foreground the
properties that are deemed to make it possible to constitute a mathematical
system, local or global, in which that mathematical object is incorporated.
However, emphasizing certain properties such as those that define a concept
is not an innocent operation, a neutral operation with respect to the concept,
because, on the one hand, it makes the concept appear as originally created to
organize the corresponding phenomena, and, on the other, it makes the
content of the concept be, from then on, what is derived from that definition
in the deductive system in which it has been incorporated. Therefore, this
process of defining also creates new concepts, just as proving theorems do.

SUMMARY

In this chapter we have presented the phenomenological analysis (based on
the work of Hans Freudenthal) as an approach to curricular development for
teachers, students, and researchers. The content is basic for the remainder of
the chapters since it deals essentially with establishing the difference between
acquiring concepts and building mental objects in mathematics, as well as
how one goes from phenomena to mental objects and to concepts through
teaching. The ideas are illustrated through the case of uses of natural numbers.
We also refer to the work of Lakatos “Proofs and Refutations” in order
to make evident that fests, definitions, and problem solving are concept
generators.

We have also dealt with the concepts of mathematical sign systems and
local theoretical model, thus adding further to their introduction in Chapter 1.
Dealing with these concepts has enabled us to refer to the phenomenological
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analysis as a framework for developing teaching models, as components of a
local theoretical model.

In the next chapter, we deal with the methodological aspect of LTMs, and
we present both an historical and phenomenological analysis of school
algebra.
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ENDNOTES

' This reconstruction is recounted in full detail in Ifrah (1994), vol. I, pp. 233-263. See also
Schmandt-Besserat (1992) and Glassner (2000).

% Although it would be worth doing so. In the texts of problems that appear on tablets written in
Akkadian, the words “long” and “wide” are in Sumerian and are used to designate unknown
quantities, even though the problem is not geometric. One can imagine that the strangeness of
the signs of another language in a text written in Akkadian favored the use of those signs as
what Heyrup (2002a) calls “a functionally abstract representation.” Indeed, although “long”
and “wide” continue to retain the original geometric meaning, the sense that they have is no
more than that of two quantities that can form part of a calculation — that is, these words are
precursors of the objects of algebra.



CHAPTER 3

EXPERIMENTAL DESIGN

OVERVIEW

We begin analyzing the diagram of an experimental setting design for the
observation of algebra learning and teaching phenomena. In this chapter we
discuss a manner of studying the evolution and development of algebraic
ideas through historical and epistemological analysis (based on the analysis of
ancient pre-symbolic algebra texts), which in turn serves as a point of
departure for experimental design in mathematical education for the particular
case of the transition toward algebraic thought. The phenomenological
analysis, as presented in general terms in Chapter 2, is applied to the case of
algebraic language and to that of school algebra (didactic phenomenology).
Here once again the notions of mathematical sign system and of language
strata become relevant, especially when the historical analysis touches upon
the genesis of modern algebra thus re-broaching the elements that correspond
to said notions presented in Chapter 2. The chapter consists of the following
sections: 1, Introduction; 2, Experimental observation; 3, On the role of
historical analysis; and 4, The phenomenological analysis of school algebra.

1. INTRODUCTION

In this chapter we present two diagrams that give a general description of the
design of a study in accordance with the guidelines of our research program
(diagram A), and the general form of the development of the study (diagram
B). In the rest of the chapter, we specify some of the terms used in those
diagrams and set out in more detail how the historical analysis of algebraic
ideas and phenomenological analysis intervene in it.



60 EXPERIMENTAL DESIGN

2. EXPERIMENTAL OBSERVATION

2.1. The design and development of the experiment

Both the design and the development of the experiment are presented in the
form of a flow diagram (see Figures 3.1. and 3.2). We merely wish to
emphasize that we have introduced our theoretical elements —local theoretical
models (LTMs) and mathematical sign systems (MSSs)— as the theoretical
counterpart with which the experimental observations are designed and
interpreted. For this is a theory produced to provide support for observation, and
that is how it should be interpreted. These ways of designing and developing
experimentation are exemplified throughout the book, and they are in use in
several research works (see Chapters 4, 6, 7, 8, and 9).

2.2. Recursiveness in the use of LTMs and the ephemeral quality of certain
theses

Note that in diagram A there is a recurrence: the diagram begins with a box
that represents the area under investigation, and at the end of the entire
process there is a return to the beginning. In the case of diagram B the starting
point is a local theoretical model, designed in the stages of diagram A, and
after the performance of an experimental study, in which the theses of this
first LTM are confronted with what occurs in the empirical development of
the experiment, one finally comes to a phase of analysis and interpretation.
On the basis of the results of this phase, the initial problem area is framed
within the perspective of a new LTM, the design of which returns to the first
stages of diagram A, so as to be able once again to start the process described
in diagram B.

In this recursiveness, it may well happen that the theoretical theses framed
in the first LTM prove to be insufficient to study and interpret the empirical
observations made in the stage of empirical development (see, for example,
Chapter 9), or else some of the theses as elaborated might have to be
discarded or differentiated into others that provide a better fit for the
interpretation of what has been observed. In this respect one could speak of
the ephemeral quality of certain theses that do not stand up to verification
with the empirical facts observed.
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2.3. On the didactic cut

We mention first that it is advisable to choose the moment of the experimental
observation at some point in the mathematics curriculum at which what has
been learned (of the material taught up to that point) does not make it possible
for the next topic that is to be taught to be discovered spontaneously without
the intervention of the teaching that is to come. The ideal situation is to find a
conceptual area in which, when the competences of the population with
regard to the uses of those concepts are diagnosed, one sees that those
competences lead to performances very far from what is expected (the aims of
the education). For example, in the case of Thales’ Theorem in Chapter 7,
through what had been learned previously the entire population had developed
tendencies that caused all the learners to have mistaken responses concerning
ratio and proportion when faced with the most elementary questions that can
be asked in this field, questions that are the basis of the whole future
development of trigonometry.

Another example is the solving of equations and the transition from
arithmetic to algebra, which is discussed in Chapter 4. On the other hand, in
the ongoing studies that are mentioned at the end of Chapter 8, there are
already indications that suggest that what is being studied in them would also
constitute a didactic cut.'

2.4. On controlled teaching

Second, it is advisable that the population being studied should comprise
several cohorts of the same age, belonging to the same grade level, at the
same school, and that they should receive instruction in mathematics within a
system of controlled teaching. This means that the population being studied
receives instruction in mathematics with materials that allow them to do
individual work in class, at their own pace, that there is monitoring of
advances made by individuals and groups of students, that there is the
possibility of intervening with supplementary teaching material where it is
required.



64 EXPERIMENTAL DESIGN

2.5. On diagnosis

The groups that receive the controlled teaching constitute the totality of the
population being studied. During the period in which the controlled teaching
is developed, mechanisms of measurement and classification are prepared and
refined so as to make it possible eventually to construct a diagnostic test by
which classes or profiles of individuals can be obtained. The diagnosis
provides a detailed description of the performances of the students and has the
further aim of delimiting the profiles so that one can see which students it
would be interesting to observe in greater depth. For this purpose a case study
is designed in which the clinical interview plays the main part with a view to
setting up the observation environment.

In general, it is advisable to classify the population in relation to three
axes. The first has to do with the syntactic competences of the individuals
in the use of the more concrete MSSs. The second has to do with the
competences concerning the use of the semantics of those MSSs, when
applying it to the solution of problem situations. The third axis of competence
seeks to group together the competences that have to do with the intuitive and
spontaneous uses of the strata of the more concrete MSSs that will be used in
the decoding of the new teaching situations which the teaching model that is
being used will require.

We will see an illustration of this principle in Chapter 4, which contains a
description of a study in which the population is classified by means of a
written test on pre-algebra consisting of three subsections: arithmetic
equations with literal notation (e.g., Sx + 3 = 90), arithmetic equations without
literal notation (e.g., J — 95 = 23), and problems corresponding to arithmetic
equations.

The classification of the population in relation to these three axes makes it
possible subsequently to select pupils for the clinical interview who have
different profiles with regard to one or more of the axes, and who therefore
correspond to aspects of the MSSs brought into play in the teaching.

2.6. On the clinical interview

To be able to observe the phenomena studied with greater precision one needs
an experimental situation that makes it possible to monitor certain disturbing
factors that are always present in the classroom, and one needs observation
mechanisms that allow a more exhaustive and precise analysis. However, this
must be done in such a way that what is observed has to do with the problems
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presented by the individual being observed and also that the components that
the teaching brings into play are present. That is the nature of clinical
interviews with teachers.

The clinical interviews have a structured format, but the interviewer moves
freely between the various steps that have been designed previously, allowing
the line of thought of the interviewee to define each of the subparts of the
interview. The first part of the interview is usually devoted to confirming that
the interviewee has the profile given by the diagnosis.

Except in cases where the interviewee has no difficulty in solving the
problem that is set, the interviewer intervenes to put further questions that,
through a process of discovery, help the interviewee to learn the problem that
he was initially unable to solve. It is a question of discovering the difficulties
presented by the learning of beginnings of algebra, given the ways in which
one seeks to teach it nowadays. In these clinical interviews the focuses of
observation are the ways of teaching and the particular ways of learning (with
their typical obstructions and difficulties) that are seen in the students.

2.7. On the preliminary analysis of the problems

If we look at diagram A of the design of the experiment, in step 2,
“Preliminary analysis of the problems,” many general disciplines combine to
make it possible to perform the analysis: psychology, historical analysis,
epistemology, mathematics, sociology, education in mathematics, etc. Many
research studies nowadays favor one or more of these focuses, or else, in the
case of the design of the experiment, there tends to be a tension between the
studies that favor a quantitative approach (via the use of statistics) and those
that favor a more qualitative approach (via the use of clinical observation).

However, in favoring some general focus, such as the analysis of the
history of mathematical ideas, it is possible that all the other items that are
described in diagrams A and B may be left out. One might think, therefore,
that such a study is a valid contribution only in the field of the general
discipline with which it is concerned; nevertheless, experience shows that
studies of this kind are ultimately of little interest in the general discipline,
where there is a preference for certain working habits and focuses and for
using all the antecedents so far established in that discipline. Moreover, they
also generally prove to be of little importance in mathematics sducation, the
main results of which are intended to be useful for students and teachers in
the present educational systems. In the next section we show a way of using
the analysis of mathematical ideas, which, in our view, makes it fruitful for
research in mathematics education.
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3. ON THE ROLE OF HISTORICAL ANALYSIS

It is clear that any analysis that seeks to clarify educational problems —
analysis being the prime driving force in our research— must be performed in
the specific framework of our educational systems; but also, as a unitary
counterpart, such analysis cannot help seeking to transform the conditions in
which the teaching of mathematics is taking place in our countries. This
clearly conditions the problems and therefore the methodology of the study;
but also, in an aspect usually overlooked, it imprints on the results the need to
be used, to be put to the test in the very place where they supposedly seek to
cast light, where their modifications will have to be taken into account in
order to advance, to go deeper into the facts being investigated, to be able to
construct new hypotheses that take the work done into account.

This makes it necessary for the problems, in at least some of their aspects,
to be closely linked with the actual process of teaching. However, this does
not mean abandoning somewhat theoretical problems and their appropriate
logical methods; rather, the studies take place within larger programs in which
direct contact with students and teachers is present.

In this section we show that the historic-critical analysis of the development
of mathematical ideas makes it possible, for example, to construct learning
sequences that reflect the achievements of theoretical research, and that it
becomes fully meaningful when, in turn, in theoretical research the history of
ideas is enriched by the new hypotheses formulated by putting teaching
sequences to the test in educational systems. Then we will rightly be able to
maintain that we are speaking of studies in the field of mathematics education
and not in that of the history or epistemology of mathematics.

3.1. Epistemological analysis

At one time history was relegated to being a pastime of mathematicians,
although with the production of dazzling works, such as Van der Waerden
(1954), or general views seen through new eyes, such as Boyer (1968). Now,
however, it has regained its proper stature and has even made its way into the
textbooks (see Edwards, 1979).

Even earlier, however, Boyer (1959) had offered us more profound
attempts to capture other more intense moments: those of the evolution of
ideas. Many titles could be added here to illustrate this great return of history
as an instrument with which to view the present. We will only indicate, by
way of example, that our ideas about the nature of the rudimentary processes
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of constructing mathematical models have changed completely as a result of
historical studies concerning the Babylonians (Neugebauer, 1969); that our
conceptions about the origin of the theory of proportions, deduction, and
axiomatization have begun to acquire subtle tonalities that we did not perceive
before, thanks to Szabd (1977); and that Jens Hayrup, pursuing this evolution
of algebraic ideas from Babylon to medieval Italian algebra in numerous
studies, has made us see it in a different way (see, for example, Hoyrup, 1985,
1986, 1987, 1991, 1999a, 2002a, 2002b).

This re-encounter between history and epistemology through the history of
ideas has also begun to benefit the didactics of mathematics.

3.2. The reading of texts

The new approach consists of analyzing problems of teaching and learning
mathematics with the historic-critical method, and then of putting the
theoretical findings to the test in the educational systems so that, after this
experimentation, one will once again have a new view of the problematics of
the history of ideas that corresponds to the teaching results.

A first example, taken from Filloy (1980), will make this idea clearer.
Analyses of Diophantus’s Arithmetic, Bombelli’s Algebra and the contrast
between it and Viéte’s The Analytic Art’ lead to interesting hypotheses about
the development of the first notions of algebra in secondary school (with
pupils aged 12 to 15), as one can gather from the works of Jacob Klein
(1968), for example. From these results one can infer that the most significant
change in symbolization, in that stage of the beginning of algebra, is the step
from the mathematical concept of unknown to the mathematical concept of
variable. A transition that involves not only the feat of solving complicated
arithmetic problems, already achieved in Diophantus’s Arithmetic in one
sense more efficiently than by Viéte, but also reflection on the operations that
are always performed to solve such problems. This reflection on operations
suggested to Viéte the need to speak not only of unknowns but also of the fact
that the coefficients of the equations that result from making the zetetic
analysis of the problems are also variables; that is, such coefficients have to
operate on each other, not just representing a number, unknown or not but
ultimately only one number, but rather representing all the numbers that could
come from equations resulting from the analysis of arithmetic problems.

These facts would seem to complete the picture, especially when the
analysis is continued along these lines, as is done by Klein (1968) or Jones
(1978). This change of perspective (in Victe) immediately generated others,
owing to the problems posed by operating on measurements, as can be seen
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clearly in the work of Stevin. A change is generated, as we were saying, in the
very concept of number, that is, new (ideal) objects become numbers:
numbers that can be operated on in the same way; for example, decimals
become numbers provided that they obtain the category of mathematical
objects, the main argument in Stevin’s works, Arithmetic and Disme (Stevin,
1634).

But when one constructs teaching sequences that try to follow this
connecting theme, as in Alarcon and others (1981-1982), and one observes
the behaviour of the population (in the statistical sense) in the distributions
that indicate the evolution of mathematical abilities, one finds that there are
other elements which have not been taken into account. It then becomes
apparent that first of all one would have to seek out the history of operational
aspects, of the syntax of arithmetic-algebraic language, in its development in
the East, and also, secondly, study the evolution of another history, apparently
unconnected but one that in practice is revealed to be totally related to that of
operational aspects: the history of the analysis of variation and change; either,
in the first instance, purely arithmetic methods (such as those of proportional
variation), or, on a deeper level, those entailed by pictographic representation
of the first and second variations of movement, of the change in the intensity
of light, or of the propagation of heat.

At this point it would seem to be very important to go back to history and
analyze the works of the Middle Ages in regard to this. Our debt to historians
(see Grant 1969, 1971; Clagett 1959, 1968; Van Egmond, 1980; Hughes,
1981; and Hayrup, 1999b, for example) is inestimable in this context, for their
compilations, translations, and commentaries provide us with living material
which is waiting for us to go to them with new eyes: those of the problematics
of the teaching of algebra, at the very point where algebra was to make
it possible to introduce analytical ideas in geometry, and, immediately
afterwards, the methods of infinite calculus. Similarly, in order to understand
the jump between arithmetic and algebra (and the appearance of arithmetic-
algebraic language) it is necessary to cast light on the period immediately
before the publication of Bombelli’s and Viéte’s books.

In Viéte’s The Analytic Art we find the construction of an algebraic
language in which, in addition to being able to model the problem situations
solved by the languages used by Bombelli and Diophantus, we can also find a
language in which one can describe the syntheses and algebraic properties of
the operations introduced in the older texts. What is new in Viéte’s language
lies in the fact that, whereas in those earlier texts operations were used only
by performing them or employing them problem by problem, in Viéte there is
the possibility of describing the syntheses (algebraic theorems) and the
syntactic properties of operations, because they can all be described with that
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language stratum and they can also be added to the store of knowledge on
which someone who has mastered that new language stratum can draw.

In the following sections we describe language strata prior to the intro-
duction of the language of Viete’s The Analytic Art. As examples we use
certain differences between the abbacus books and Jordanus de Nemore’s
De Numeris Datis.

3.3. The abbacus books

As can be seen in the work of compilation by Van Egmond (1980), the
abbacus books represent the most feasible path for the assimilation of the
mathematics of the East by Western European civilization; and in this
adaptation of Indo-Arabic mathematics to the problems characteristic of a
society with a vigorously rising economy (the society of Italy in the 15th and
16th centuries) a new kind of mathematics was born.

This mathematics was present and ready to be applied in the so-called
abbacus books, the content of which essentially comprised the presentation of
the Indo-Arabic positional system of numeration, the four elementary arithmetic
operations, and the solution of commercial problems. These problems involved
the four elementary operations, and also the use of the simple and compound
rule of three, simple and compound interest, and the solution of some simple
algebraic equations. Some books also included multiplication tables, tables of
monetary equivalents, and tables of weights and measures.

The first abbacus book of which we know was written in Latin in the Near
East (Greece) and was introduced in Western Europe, in its first vernacular
version, between the 12th and 13th centuries.

The meaning of the word abbacus in the name of these books was that of
“the art of calculating, counting and arithmetic.” The term was first used in
this sense by Leonardo of Pisa, better known as Fibonacci, who in the 13th
century wrote a compendium on the mathematical practice known up to that
point. This happened naturally, because his father was a merchant from Pisa
who visited and stayed in Arab countries in the East and in the Maghreb,
particularly in the town now known as Bejaia (in what is now Algeria), and so
Fibonacci was taught by Arabic teachers and learned the Arabic systems, both
of commerce and of mathematics, with the result that his book contained
knowledge of practical commercial mathematics, in accordance with the Indo-
Arabic system, and with a particular influence exercised by his own experi-
ence in merchant life and by his instruction in a great variety of Arabic texts
on algebra, geometry, and commercial mathematics.
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The production of abbacus books increased greatly in Italy in the 15th
century; it is estimated that there were then 400, with about 400 different
problems solved in each one; so, with regard to problems, even if we
eliminate the repetitions between books, the production was of the order of
tens of thousands.

The first abbacus schools appeared in the West almost at the same time as
the arrival of the first abbacus books. It is known that the first school was
founded in 1284 in the commune of Verona, and that these schools were
attended mainly by the sons of merchants and, in general, by men of affairs, in
order to practice commercial mathematics and continue their basic education
in grammar. The abbacus schools tended to proliferate in the 14th centurys; it
is known that in Florence alone, in about 1343, there were six schools in
which over a thousand students were taught. And, although this growth did
not remain stable in subsequent centuries, there are references for about three
or four schools in each important city (Florence, Milan, Pisa, Venice, Lucca),
which functioned continuously from the 14th century and throughout the
Renaissance.

The most plausible historical explanation (see Van Egmond, 1980) for the
appearance and multiplication of abbacus books, schools, and teachers in the
West is of a social and economic nature. With the so-called Commercial
Revolution in Italy in the 13th century there was a substantial social change:
monetary power began to count more than feudal power, with the result that
there was a greater desire for control of trading and financial activities,
together with the skills required for their performance, than for possession
even of land. Consequently, the rise of this new social class that came to
power imposed the need to create the means to make this new kind of
inheritance effective: the skills required in order to be able to participate in
commercial power. These skills naturally included the contents of the abbacus
books, originally produced to serve as reference books for the accountants and
merchants of the time, and the need to make them accessible to the
merchants’ sons led to the creation of abbacus schools and teachers, financed,
initially at least, by the parents themselves.

The children who attended the abbacus schools were 10 or 11 years old,
and they were trained in the basic principles of arithmetic and practical
mathematics (writing Indo-Arabic digits, the four operations with integers and
fractions, solving commercial problems, and handling monetary equivalents
and weights and measures), and also in grammar. It might be considered that
the abbacus schools functioned as a kind of basic secondary education, acting
as a bridge between basic education (the classical Roman school) and
university (the first universities having been founded in Europe in the 12th
and 13th centuries).
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Although the abbacus schools might be viewed as an integral part of
school education at that time, in reality they constituted a genuine innovation
in educational circles because, unlike the universities, which provided instruc-
tion for the elites and functioned primarily as places for discussion and
reflection about knowledge, the abbacus schools acted as transmitters of
knowledge applicable to daily life. In the 15th century commercial activity
was not just transacted between merchants and men of affairs, but rather those
activities began to form part of the everyday life of what had become an urban
population.

Thus the abbacus schools and contents served to satisfy a social demand in
the new Europe civilization, with such success that they became a tradition
that endured for centuries as a companion to the new pattern of culture, the
mentality created by the commercial revolution.

To appreciate the full extent of the social and educational role of the
abbacus books one would only need to review some of the mathematical
contents of current textbooks for basic education in any country in the world
to realise that, essentially, they are the same as what could be extracted from a
typical abbacus book (see Van Egmond, 1980). This gave them the character
of assimilators of Eastern mathematics to the needs of the new Western
culture (which now stretches back over more than five centuries) through
school education.

3.4. An abbacus problem

In the section of recreational problems in the Trattato di Fioretti (Mazzinghi,
1967), we can find problems such as the following:

Fa’ di 19, 3 parti nella proportionalita chontinua che, multiplichato la prima
chontro all’altre 2 e lla sechonda parte multiplichato all’altre 2 e lla terza parte
multiplichate all’altre 2, e quelle 3 somme agunte insieme faccino 228.
Adimandasi qualj sono le dette parti. [From 19 make 3 continually pro-
portional parts such that, if the first is multiplied by the other 2 and the second
part is multiplied by the other 2 and the third part is multiplied by the other 2
and those 3 are added, together they make 228. The question is what the
aforementioned parts are. |

We can state this problem by translating it into the MSS of current algebra
as follows:

Find three numbers x, y, z such that
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24

y z
x(y+z)+y(x+z)+ z(x+y)= 228

In Puig and Rojano (2004) there is a transcription of the original version in
old Italian of the solution of this problem, accompanied by a translation into
the MSS of algebra. For our present purposes, the solution presented in the
treatise consists in applying a series of rules, in particular a rule of doubles’
and the Babylonian method of completing squares. In both cases, but more
obviously in the rule of doubles, each time that the rule is used it is reworded
for the specific numbers with which it is necessary to operate. We will see
that this is one of the characteristics that make the MSSs of the abbacus books
more concrete than Viéte’s MSSs, but also more concrete than that of
Jordanus de Nemore’s book, De Numeris Datis.

3.5. De Nemore and his work

The bibliographic information about Jordanus de Nemore is very diffuse, but
the authenticity of his work has been established. He lived during the period
that ranges from the middle of the 12th century to the middle of the 13th
century, and on the basis of annotations in the margins of his writings it is
believed that he taught at the University of Toulouse. Research on his life and
work has led him to be considered, since the last century, one of the most
prestigious natural philosophers of the 13th century. It is also known that he
devoted himself to physics-mathematics, laying the foundations for the whole
area of medieval statics. Among his mathematical works, those devoted to
arithmetic (and algebra) continued to be reproduced until the 16th century.

If we consider only the treatises of a strictly mathematical character, we
can identify six works attributed to Jordanus: Demonstratio de algorismo,
which is a practical explanation of the Arabic number system with regard to
integers and their use; Demonstratio de minutiis, which deals with fractions;
De elementis arithmetice artis, which became the classic source of theoretical
arithmetic in the Middle Ages; Liber philotegni de triangulis, which stands
out in medieval Latin geometry particularly because it gives geometric proofs
of theorems; Demonstratio de plana sphera, which consists of five multi-
partite propositions that clarify various aspects of stereographic projection;
and, lastly, De numeris datis, considered the first book of advanced algebra
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written in Western Europe, after Diophantus’s Arithmetic (which was written
in about 250 BC but did not reappear in the Christian West until the 15th
century, whereas in the Islamic East there is an Arabic translation of the 9th
century; see Sesiano, 1982, and Rashed, 1984).

3.6. De Numeris Datis

Our description of this work is based on the version edited, translated, and
interpreted by Barnabas Hughes and published by the University of Berkeley
(Hughes, 1981). The book includes a critical edition in Latin of the complete
De Numeris Datis, together with an English translation of the entire text and a
translation into modern symbology of the statement and canonical form of
each proposition (it does not include the symbolic translation of the solving
procedure). In Puig (1994) there is a detailed description of the MSSs of this
work, together with a translation of parts of book one, more literal than the
translation by Hughes, precisely with the aim of bringing out the charac-
teristics of the MSSs. Here we will limit ourselves to outlining what is of
interest for our present purpose.

Unlike the abbacus books, employed as elementary algebra texts in
secondary education for use in commercial life, De Numeris Datis was a text
aimed at university students of the time, with the intention of setting them
non-routine “algebraic” problems and teaching how to solve them. Indeed, De
Numeris Datis presents a treatment of quadratic, simultaneous and propor-
tional equations which presupposes handling contents equivalent to those of
al-Khwarizmi’s Concise book of the calculation of al-jabr and al-muqdbala
(Rosen, 1831) and Fibonacci’s Liber abbaci (Boncompagni, ed., 1857; Sigler,
ed., 2002). Both texts begin with some definitions and the development of the
equations x* = bx, x’=c and bx=c, very rapidly arriving at the equations

X+bx=c,x*+c=bx and bx+c=x".

The part played by De Numeris Datis in the history of mathematics is
comparable to that of Euclid’s Data (Taisbak, 2003), in Hughes’s opinion, in
the sense that the former constitutes the first book of advanced algebra, in the
same way that the latter is the first book of advanced geometry and implies a
good knowledge of fundamental geometry (contained in the FElements),
confronting the ambitious student with the proof and solution of non-standard
problems by the method of analysis.

The propositions of De Numeris Datis are useful for analysis, therefore,
just as a box of tools is, but the very structure of the book is also an exercise
in analysis. In fact, unlike what happens in the problem of the Trattato di
Fioretti, which we have just mentioned and that can be taken as representative
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of the abbacus type of problem, in the propositions of De Numeris Datis it is
a question of finding numbers for which some numerical relationships are
known, but these relationships are given by constants, that is, the book says,
for example, that the sum of three numbers has been given instead of saying
that the sum of three numbers is equal to a certain specific number, 228 in the
case mentioned, as it appears in an abbacus book. In fact, the statements of
the propositions in De Numeris Datis are not problems but theorems, as they
always have the form “if such numbers or ratios and relationships between
them have been given, then such numbers or ratios have been given,” and they
are proved like theorems, and are accompanied by a particular problem with
specific numbers that is solved with the rule derived from the steps of the
proof of the theorem or from the steps of the theorems to which this theorem
is reduced.

This second point is fundamental for the character of De Numeris Datis
that interests us here: the sequence in which the propositions in De Numeris
Datis are solved explicitly shows the reduction of each proposition to one that
has been proved previously, and, therefore, the solution of the corresponding
problems to the solutions of others solved previously. This kind of sequence is
not entirely absent in abbacus texts, that is, in abbacus problems we also see
repeated application of rules or algorithms when the solving procedure has led
to a well-identified situation in which the application is feasible: this is the
case with the rule of doubles or the Babylonian method in the problem
mentioned. However, this aim of reducing to situations or forms already
encountered and solved previously does not appear explicitly in the abbacus
texts, whereas in De Numeris Datis it forms part of the method of solution.
This might be due to the fact that expressions that we would write as
xX+y+z=aand x+y+z=>b with a#b are not fully identified as equi-

valents for the purposes of the solving procedures and strategies, which in the
abbacus books depend strongly on the specific properties of the specific
number a (or b) and its relationships with the other numbers that appear in the
other equations of the system in question.

It is in this sense that De Numeris Datis might be located in a more
evolved stage, as it makes it possible to group problems that can be solved in
the same way into large families by identifying more general forms. By this
we do not wish to suggest that the actual strategies and skills required for the
solution of problems in De Numeris Datis are on a higher level of abstraction
or a more evolved level in terms of symbolization than those developed by the
abbacus texts. These ideas about establishing a clear difference between
levels of symbolization and solving strategies and skills are developed in
Filloy and Rojano (1983). The point of view developed there considers the
construction of symbolic algebra as the final identification within a single
language of earlier strata of that language in which the absence of abstract
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symbolism causes the posing of the problems and the procedures for solving
them to be carried out in the vernacular (Latin, Italian). This imprints
peculiarities on the operations performed, peculiarities that vary from one
stratum to another and that cause those operations to be irreducible from one
stratum to another unless one has developed what we call a more abstract
MSS.

4. THE PHENOMENOLOGICAL ANALYSIS OF SCHOOL ALGEBRA

Modern algebra organizes phenomena that have to do with the structural
properties of arbitrary sets of objects in which there are defined operations.
Those properties and those objects come from the objectification of means of
organisation of other phenomena of a lower level and they are the product of a
long history with successive rises in level.

4.1. Characteristics of algebra in al-Khwarizmi

One way of viewing this history consists in placing oneself in the 9th century
at the time when al-Khwarizmi wrote the Concise Book of the Calculation of
Al-jabr and Al-muqgadbala and taking that event as the birth of algebra as a
clearly defined discipline within mathematics. What al-Khwarizmi did, and
what separates his work from all the others that have been seen as algebra
after him, was that he began by establishing “all the types or species of
numbers that are required for calculations.”

The context in which he seems to have examined those species is that of
the exchange of money in trading or inheritances, and from it he takes the
names that he uses for the species of numbers. The world of commercial
problems and inheritances is linear or quadratic: in the course of the
calculations there are numbers that are multiplied by themselves, in which
case they are “roots” of other numbers, and the numbers that result from
multiplying a number by itself are mdal, literally “possession” or “treasure”;
other numbers are not multiplied by themselves and are not the result of
multiplying a number by itself, and therefore they are neither roots nor
treasures, they are “simple numbers” or dirhams (the monetary unit).
Treasures, roots, and simple numbers are thus the species of numbers that
al-Khwérizm1 considers.

In his Arithmetic, Diophantus had already distinguished different species
(eidei) of numbers, with a different conceptualization (ways in which a
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number may have been given), using the names monas, arithmos, dynamis,
cubos, dynamodynamis, dynamocubos, etc., and thus a longer series than al-
Khwarizm1’s.

Calculating with al-Khwarizmi’s or Diophantus’s species of numbers
follows similar rules: what is obtained is always an expression equivalent to
our polynomials or rational expressions, as the numbers of the same species
are added together, or are taken that many times, or that many parts are taken,
and the result is a number of that species a certain number of times or a
certain number of parts of a number of that species; and if numbers of
different species are added, the sum cannot be performed and is simply
indicated. Thus, “four ninths of treasure and nine dirhams minus four roots,
equal to one root” (Rosen, 1831, p. 41 of the text in Arabic) is an algebraic
equation in al-Khwarizmi’s book, since al-Khwarizmi’s MSS uses vernacular
language (Arabic in his case) exclusively; and

A"BMo Aca M on (Tannery, 1893, vol. I, p. 64, 1. 8)
is an equation in Diophantus’s MSS, which is read as “dynamis 2 monas 200
equals monas 208,” since Diophantus uses abbreviations for the names of the
species of numbers, which in this case consist of the first two letters of the
word, and the Greek system of numeration uses the letters of the alphabet
marked with a horizontal stroke, in a system that is not positional but additive,
with codes for the nine units, the nine tens and the nine hundreds. There is
almost no conceptual difference between the algebraic expressions and the
equations of the two authors, as what is represented in them is the names of
the species, the specific numbers that indicate how many of each species there
are, the operations indicated between the quantities of each species, and the
relationship of equality between quantities.

Al-Khwarizmi’s book might thus be seen as more elementary or situated
one step behind Diophantus, as the set of species of numbers is smaller and
the expression uses only the signs of the vernacular. However, what is new in
al-Khwarizmi’s book is that it suggests having a complete set of possibilities
of combinations of the different kinds of numbers. It is clear that initially the
possibilities are infinite, and that therefore it is necessary to reduce them to
canonical forms in order to be able to consider obtaining a complete set. But
al-Khwarizmi’s aim then is also to find an algorithmic rule that makes it
possible to solve each of the canonical forms, and to establish a set of
operations of calculation with the expressions that makes it possible to reduce
any equation consisting of those species of numbers to one of the canonical
forms. All the possible equations would then be soluble in his calculation.
Moreover, al-Khwérizmi also establishes a method for translating any
(quadratic) problem into an equation expressed in terms of those species, so
that all quadratic problems would then be soluble in his calculation.
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Al-Khwarizmi obtains the set of canonical forms by combining all the
possible forms of the three species, taken two at a time and taken three at a
time. He thus obtains the three forms which he calls “simple,” making the
species equal two at a time:

treasure equal to roots
treasure equal to numbers
roots equal to numbers

and the three forms that he calls “compound,” adding two of them without
taking order into account and making them equal to the third:

treasure and roots equal to numbers
treasure and numbers equal to roots
roots and numbers equal to treasure.

As al-Khwarizmi is able to present an algorithm to solve each of these
canonical forms simply by collecting and justifying methods that are
established and that have been in use since the time of the Babylonians, all
that remains is to establish a procedure for translating the statements of the
problems into their algebraic expressions and a calculation that makes it
possible to transform any equation into one of the canonical forms.

The species of numbers refer to concrete numbers with which calculations
are performed, so that in order to be able to translate the statements of the
problems into those algebraic expressions it is necessary to be able to refer
also to unknown quantities as if they were concrete numbers and calculate
with them, that is, it is necessary to name the unknown and treat it like a
known number. What al-Khwarizmi does to achieve this is to use the word
shay’, literally “thing,” to name an unknown quantity. He then uses it to
perform the calculations which the analysis of the quantities and relationships
present in the problem indicates to him as being necessary, and in the course
of the calculations he sees what species of number that thing is: a root if it is
multiplied by itself, or a treasure if it is the result of a quantity that has been
multiplied by itself; so that he can translate the statement of the problem into
two expressions that represent the same quantity and make them equal so as to
have an equation. In Chapter 11 we will see that these are in fact the steps of
the Cartesian method.

“Thing,” incidentally, is a common noun for representing any unknown
quantity, not the proper name of a specific unknown quantity, unlike what is
established by the Cartesian method; in fact, al-Khwarizmi does not say “the
thing” but “thing,” that is, “a thing,” when he refers to the unknown quantity
which he calls “thing.” In the course of the construction of the equation that
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translates the problem, however, “thing” is bound to one of the unknown
quantities, functioning as the proper name of that quantity.

The operations in the calculation are algebraic transformations of the equa-
tions that seek to obtain one of the canonical forms. However, the canonical
forms have three features that characterize them (and that cause the complete
set of canonical forms to have 6 items), and the operations are directed at
achieving each of those three features.

The first is that there are no negative terms, or, to use al-Khwarizm1’s
terminology, there is nothing “that is lacking” on either of the two sides of the
equation.

In fact, in al-Khwarizmi’s or Diophantus’s algebraic expressions there are
quantities that are being subtracted from other quantities. There are not
positive and negative quantities, but quantities that are being added to others
(additive quantities) and quantities that are being subtracted from others, and
the latter cannot be conceived on their own but only as being subtracted from
others. Thus, al-Khwarizmi may even go so far as to speak of “minus thing”
when he is explaining the sign rules, but he is always referring to a situation
in which that thing is being subtracted from something:

When you say ten minus thing by ten and thing, you say ten by ten, a hundred, and minus thing
by ten, ten “subtractive” things, and thing by ten, ten “additive” things, and minus thing by
thing, “subtractive” treasure; therefore, the product is a hundred dirhams minus one treasure.
(Rosen, 1831, p. 17 of the text in Arabic)

However, as the subtractive quantities are conceived as something that has
been subtracted from something, an expression in which there is a subtractive
quantity represents a quantity with a defect, a quantity in which something is
lacking. Diophantus’s sign system expresses this way of conceiving the
subtractive in an especially explicit way, as in his work all the additive
quantities are written together, juxtaposed in a sequence one after another, and
all the subtractive quantities are written afterwards, also juxtaposed, preceded
by the word leipsis (what is lacking). Thus, the algebraic expression

¥ =3x"+3x-1
is written as

— 0 —

Koy AA"y Mo (Tannery, 1893, vol. I, p. 424, 1. 10),

an abbreviation of “cubos 1 arithmos 3 what is lacking dynamis 3 monas 1,”
in which the expressions corresponding to x* and 3x are juxtaposed on one
side, and x* and 1 on the other, separated by the abbreviation for “what is
lacking.”

It is precisely this idea that there is something lacking in the quantity that
is directly responsible for the form adopted by the operation that eventually
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gave its name to algebra. In fact, the objective of the operation that
al-Khwarizmi calls al-jabr is that nothing should be “lacking” on either side
of the equation. That is why the operation is called al-jabr, literally
“restoration,” because it restores what is lacking. In terms of the language of
modern algebra, al-jabr eliminates the negative terms in an equation by
adding them to the other side, but a/-jabr is not equivalent to the transposition
of terms because the modern transposition of terms can also transfer a positive
term to the other side by making it negative, which goes against the intention
of the al-jabr operation (but is consistent with the fact that the canonical form
that one now seeks to attain with algebraic transformations is ax® + bx + ¢ =0,
with a, b, and ¢ being real numbers).

The second characteristic feature of al-Khwarizm1’s canonical forms is that
each species of number appears only once. The algebraic transformation that
this pursues is al-muqgdbala, literally “opposition.” As al-Khwarizmi always
performs this operation after al-jabr, at this point there is nothing lacking;
there are no negative terms in the equation. The operation consists in
compensating for the number of times that a given species of number appears
on each side of the equation, leaving the difference on the appropriate side.

Lastly, the third characteristic is that there is only one treasure, or, in
modern terms, that the coefficient of the treasure is 1. This is achieved by
means of two operations that al-Khwarizmi calls “reduction” (radd) and
“completion” (ikmal or takmil). “Reduction” is used when the coefficient of
the treasure is greater than one, and it consists in dividing the complete
equation by the coefficient; and “completion” is used when the coefficient of
the treasure is less than one (it is “part of a treasure,” in al-Khwarizm1’s
words), and it consists in multiplying the complete equation by the inverse of
the coefficient.

The first two operations, al-jabr and al-mugdbala, appear in the title of
al-Khwarizmi’s book as the characteristic operations of calculation, and they
are also mentioned, although not by name, in the introduction to Diophantus’s
Arithmetic (Tannery, 1893, vol. I, p. 14, 11. 16-20).

What makes all these calculations meaningful, therefore, is the idea of the
establishment of a complete set of canonical forms, which then organizes
algebraic expressions through transformations, and it organizes problems into
families of problems that are solved in the same way.

4.2. Steps toward modern algebra

Al-Khwarizmi’s complete set of canonical forms was complete only with the
condition of restricting the species of numbers to the three that he considered.
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The continuation, including the cube as the fourth species, was developed by
‘Umar al-Khayyam, who established that the complete set of canonical forms
had 25 items, but that he could not find an algorithm for solving the 25. What
al-Khayyam did as a result of his inability to give a strictly algebraic solution
for the matter was to show how the solution of the canonical forms could be
constructed in the cases that resisted him by means of intersecting conical
sections.® As a response to the same inability, Sharaf al-Din al-Tusi added to
this the establishment of procedures for the approximate calculation of roots.’
For the historical phenomenology that we are outlining, these non-algebraic
responses to the lack of ability to find algorithms for all the canonical forms
do not interest us. Nor are we interested in the fact that eventually algorithms
were found not only for al-Khayyam’s 25 canonical forms but also for fourth-
degree equations. What interests us is the response given to the inability to
find algorithms for the canonical forms of equations of a degree higher than
the fourth from Lagrange onwards.

In fact, in his memoir written in 1771, “Réflexions sur la résolution
algébrique des équations” (Lagrange, 1899, vol. III, pp. 205-424), Lagrange
explicitly proposed an aim which was not that of continuing to search for
algorithms, but of examining why it had been possible to find them.

I propose to examine the various methods that have been found so far for the algebraic solution
of equations, and reduce them to general principles and show a priori why these methods
succeed for the third and fourth degree and are lacking for higher degrees. (Lagrange, 1899,
vol. III, p. 206)

Here, therefore, Lagrange explicitly takes the methods themselves as the
object of study, so that the problematics of algebra is shifted to a higher level,
beyond the organization of problems into families by the establishment of
canonical forms in a more abstract MSS than that of the problems themselves.
Now it is the characteristics of the canonical forms themselves that have to be
organized in order to account for the success or failure of algebraic methods
of solution. What Lagrange does is to make a critique of the methods, a
critique in the sense of establishing limits. To do this, he studies the
relationships in the methods between a given equation that one is trying to
solve and the reduced equation, a second-degree auxiliary equation that can
therefore be solved algebraically, to which one can proceed from the given
equation by a rational relationship; and, on the basis of this study, in a crucial
movement he reverses the relationship by finding a way of expressing the
reduced equation in terms of the roots of the given equation (what Lagrange
calls the resolvent). From this point he is able to establish the reason for the
success of the methods, and also the fact that the same reason cannot exist for
degrees higher than the fourth (which does not exclude the possibility of an
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algebraic solution, but does rule out the possibility of it belonging to the same
structure).

The shift made by Lagrange, from the search for methods of solution to the
explanation of why they are successful or not, led Abel in 1824 to jump to a
new level, in his Mémoire sur les équations algébriques, ou [’'on démontre
U'impossibilité de la résolution de [’équation générale du cinquieme degré
(Abel, 1881, I, pp. 28-33), in which he shows, as the title says, that the
inability to find an algebraic method of solution for equations of a degree
higher than the fourth really is an impossibility, thereby giving the previously
insoluble problem a formulation in which it is soluble, changing the problem
of finding a method into the problem of proving whether such a method
exists.

Galois’s works provided the final and definitive jump in level, by linking
the solubility of an equation to the properties of the equation’s group and
tackling the problem by studying the properties of those groups, so that what
is studied is not what equations are soluble but what groups are soluble. He
shows this clearly in a memoir written in 1831, Sur les conditions de
résolubilité des équations par radicaux, where he says:

Problem. “In what case is an equation soluble by simple radicals?”

First of all I will observe that in order to solve an equation one must lower its group
progressively until it contains only one permutation.

[...] let us seek the condition that must be satisfied by an equation’s group so that it can thus be
lowered by the adjunction of radical quantities. (Galois, 1846, p. 426)

With this step, from Galois onward algebra becomes modern algebra. As
Vuillemin says,

[...] Galois’s theory has shifted the interest of algebra: whereas, essentially, it set out to solve
equations, in future it will tend rather to seek the nature of the magnitudes that must be added to
the base field in order to determine the factorising field in which it becomes possible to express
and ascertain roots rationally. (Vuillemin, 1962, p. 247)

4.3. The phenomenological analysis of the language of algebra

After Galois we enter a different history, that of modern algebra, which is
absent from current school algebra, yet the historical phenomenology that we
have expounded in the two previous sections does not exhaust the phenol-
menology of school algebra. It is at least necessary to consider what
phenomena are organized by the language of algebra, and in what way it
organizes them. Once again, this can be done as historical phenomenology or
as didactical phenomenology. The historical view is developed in Section 1.3,
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“Algebraic Language: A History of Symbolisation,” in Puig and Rojano
(2004); the didactical phenomenology can be found in Freudenthal’s
Didactical Phenomenology of Mathematical Structures, Chapter 16, “The
Algebraic Language.” In this section we refer to what is expounded in the two
texts.

4.3.1. The representation of unknown quantities and species of numbers

In Puig and Rojano (2004) there is an analysis of how the central core of the
evolution of the language of algebra has to do with the way in which
unknown quantities, on the one hand, and species of numbers, on the other,
are represented in algebraic expressions and therefore in equations.

In most of the sign systems of medieval algebra there is only one name to
represent the unknown, “thing,” which is in fact a common noun although
used as a proper name. Consequently, those MSSs cannot represent different
unknown quantities with different proper names. Instead, once an unknown
quantity has been named as “a thing,” the others have to be named with
compound names constructed more or less algorithmically from the relation-
ships between it and each new unknown quantity (for example, “ten minus
thing” is the name that one could give to an unknown quantity of which it is
known that when it is added to “thing” the result is ten). However, the
network of relationships between the quantities in the problem might be so
complex that it is extremely intricate, or even impossible, to name all the
quantities with compound names: for these problems, the fact that only the
term “thing” is available makes the sign system not very efficient.

Medieval algebraists resorted to various devices to get around this.
Sometimes they used the term “thing” again, but with a qualifier. This is the
case with Ab{i Kamil, who in one problem in his book of algebra (cf. Levey,
ed. 1966, pp. 142-144) uses the names “large thing” and “small thing” (“res
magna” and “res parva” in the Latin version edited by Sesiano, 1993, p. 388).
Sometimes they used names of coins for the other unknown quantities. This is
also the case with Abl Kamil, who uses dindr and fals (cf. Levey, ed. 1966, p.
133, n. 140, although on this occasion Abt Kamil is expounding a different
solution for a problem that has already been solved using “thing” on its own),
or with Leonardo of Pisa, who uses denaro, as well as res (cf. Boncompagni,
1857, pp. 435-436 and p. 455). In the part devoted to inheritances in
al-Khwarizmi’s book, at one point he does not even use the term “thing” but
calls the inheritance madl, treasure, using it in its vernacular sense, and he calls
what corresponds to each of the heirs “share” or “part share,” and he
constructs the indeterminate linear equation “five shares and two parts of
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eleven of share equal to the treasure.” According to Anbouba (1978), in the
same part of al-Khwarizmi’s book there is also a problem in which he
constructs a linear system of two equations using “thing” and “part of thing”
to name two different unknown quantities.

Moreover, what appears in the algebraic expressions is the names of the
species of numbers (simple number or dirham, root, treasure, cube, etc.; or, in
the translation into Latin, numerus, radix, census, cubus, etc.), but the
quantity by which this species is qualified is not named. From the identi-
fication of “thing” with “root” it is assumed that the treasure is the thing
multiplied by itself, but there is no way of expressing another quantity
represented with another proper name that has been multiplied by itself. The
algebraic expressions of these sign systems do not say “five treasures of
thing” but just “five treasures,” unlike the sign system of modern algebra,
which uses 5x° to say “five times the square of x,” and, therefore, is
structurally prepared for designating another unknown quantity with another
proper name, y, and saying “five times the square of y”, 5)°.

The sign system of Indian algebra does have proper names for different
unknown quantities (it uses names of colors for this purpose), and it forms
algebraic expressions by juxtaposing the name of the unknown quantity and
the name of the species (cf. Colebrooke, ed., 1817), but this system did not
have any impact on medieval Arabic algebra, or therefore, on algebra in the
Christian West. It was not until Viéte that a sign system was developed in
which there were proper names for different quantities, together with the
names of the species. But Viéte’s sign system also used letters as proper
names, and not just for unknown quantities but also for known quantities.
This freed the algebraic expressions from ambiguities and made them capable
of providing a direct representation of the quantities analyzed in the state-
ments of the problems.

However, in Puig and Rojano (2004) it is shown that Viéte’s sign system
lacks full operational capacity on the syntactic level because the species of
numbers are represented by words or abbreviations of them, although these
words are constructed algorithmically from certain basic words. It is also shown
that this syntactic operativity is attained when one combines the representation
of quantities by letters, introduced by Victe, with the representation of species
by means of numbers that indicate the position of the species in the series of
species (in continual proportion).® The algorithmic rules for the construction of
the names of the species can then be replaced by those numbers and converted
into part of the calculation.
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4.3.2. Aspects of the didactical phenomenology of the language of algebra

In the “Variables in the Vernacular” section of his phenomenological analysis
of the language of algebra, Hans Freudenthal recounts that

When my daughter was at the age when children play the game “what does this mean?” and I
asked her what is “thing” she answered: Thing is if you mean something and you do not know
what is its name. (Freudenthal, 1983, p. 474)

The didactical phenomenology of the language of algebra that Freudenthal
expounds is based precisely on the examination of the phenomena that are
organized by the language of algebra, seen with regard to how those
phenomena are organized in the vernacular and in the language of arithmetic,
which are the languages that provide the starting point or context from which
pupils have to acquire the language of algebra.

We will not repeat Freudenthal’s observations here, but simply indicate
some of the aspects that he analyzes.

1) The rules of transformation in languages

We have already seen that the need for the development of rules of
transformation in the language of algebra comes from the aim of being able to
solve all problems without needing to have a specific algorithm for each one,
and that this is done by the establishment of canonical forms and calculation
on the syntactic level. In teaching, only awareness of the overall aim can give
sense to the use of such syntactic transformations. Freudenthal examines the
fact that rules of transformation also exist in the vernacular, but that the
correctness of the transformations performed in the vernacular cannot
generally be decided without resorting to the contextual meaning, whereas in
the language of algebra the part played by the context in this sense is
generally nil.

2) The algorithmic construction of proper names

We have seen that this is an outstanding aspect of the language of algebra.
Freudenthal points out that algorithmic features are not unusual in vernacular
languages. But these algorithmic procedures of sign construction are not very
systematic and are not generalized (plurals, conjugations and declensions,
etc.). The first experience that children have of an algorithmic construction of
proper names is the learning of numbers in their mother tongue: an area of
contact between the vernacular and the language of arithmetic.
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3) Structuring devices

The rules of transformation and the algorithmic construction of proper names
are based on the structure of the language. The language of algebra has a
wide range of structuring devices, many of them shared with the language
of arithmetic, especially parentheses, priority between operations, and the
arrangement of signs in relation to the text line (exponents, subscripts and
superscripts, the fraction bar and the positions above and below the text line
that it determines, roots, etc.). Once again, Freudenthal analyzes the existence
of such structuring devices in the vernacular, and the fact that there they
are based on content, whereas this is not the case (or not so much) in the
language of algebra.

4) Variables in the vernacular versus algebra variables

We have already analyzed the use of “thing” in the language of algebra, and
the differences between it and the variables of modern school algebra.
Freudenthal points out that the use of letters must also be examined in
geometry, where Euclid’s Elements already used letters to refer to points,
lines, and figures, and he indicates the origin of the expression “point A,” in
which A is the proper name of the point, in an abbreviation of an earlier
expression, “the point at A,” which simply describes a drawn figure to which
letters have been added in order to be able to refer to it in the oral discourse
which was customary in teaching.

Freudenthal also examines the fact that in order to use a variable as a
proper name it is necessary to bind the variable. “Variables,” says Freudenthal
(1983, pp. 474-475), “can be bound independently of any context, by
linguistic logic devices, or in dependence of a context.” The logic devices are
the universal and existential quantifiers, the definite article (including “the
thing” as opposed to “thing”), the set former, the function or species former
and the interrogative, whereas the devices that depend on context are the
demonstratives.

5) Formal substitution and algebraic transformations

Formal substitution is the culminating point in the constitution of the MSS in
the teaching of school algebra. For this to take place it is necessary that the
algebraic expressions should have completely relinquished the character of
representing actions that their antecedents in the MSS of arithmetic possess,
and should have completely acquired the static character of a relationship.
One of the key elements in this transition from language as action to the
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language of algebra is the exceedingly well-known change of meaning from
the arithmetic equals sign to the algebraic equals sign.

However, in the context of algebraic transformations, which are performed
between expressions with a static character that represent relationships, the
meaning of the arithmetic equals sign reappears. The algebraic transformation
par excellence consists in “reducing” an expression to a simpler form or a
canonical form, so that (x + a)(x — a) = is an indication that an action must be
performed and that the result of the transformation is expected on the other
side of the equals sign; it is not just the construction of an equivalence. Yet
the reversibility of algebraic transformations may give that appearance: for
example, the action that is the opposite of “reducing” is “factorizing” (and one
would have to decide which is simpler, the classical canonical forms resulting
from reducing, or the expressions that explicitly show the roots that result
from factoring).

At the origin of formal substitution there is the possibility that the letter that
names a quantity may be replaced by a compound expression that names the
same quantity. This makes it necessary for the user of the MSS to accept the
fact that, as the letter and the compound expression represent the same thing,
not only can they be made equal but also the calculations or relationships
represented in an expression in which the letter appears can also be carried out
with the equivalent expression and the new expression will represent the same
thing. On the other hand, the user will have to face syntax problems’ that derive
from the structuring devices, such as the priority between operations, which
sometimes makes it necessary to introduce other structuring devices such as
parentheses where they were not present; or the problems posed by having to
replace a letter with an expression in which that letter may also appear. This is
the case with the difficulty that pupils find in replacing » with n + 1, for
example, when using the method of complete induction.

However, the substitution becomes definitively formal when the expres-
sions are no longer the result of the translation of the statement of a problem
but are algebraic expressions which are studied as such.

SUMMARY

This chapter goes over part of a diagram of the design of the experimental
setting for the observation of phenomena of learning and teaching algebra.

In the next chapter we shall apply the methodological diagram to the study
“Operating on the Unknown,” with a view to studying the processes of
transition from arithmetic thinking to algebraic thinking at the point when
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pupils first encounter the need to operate on what is represented. In order to
locate this point (called a “didactic cut” in the study), we use historical and
epistemological analysis of mathematical sign systems found in old texts on
algebra from the pre-symbolic period (before the appearance of Francgois
Viete’s The Analytic Art). This analysis and the phenomenological analysis of
algebraic language illustrate the power of the methodology proposed by local
models, in the part corresponding to the choice of the moment of observation.
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ENDNOTES

' See Filloy, Rojano and Solares (2004)

% The canonic edition of the Greek text of Diophantus’s Arithmetic is the one by Paul Tannery
(Tannery, 1893); we have also consulted the French translation by Paul Ver Eecke (Ver Eecke,
1959). The canonic edition of Bombelli’s Algebra is the one by Ettore Bortolotti (Bortolotti,
1966). The original Latin text of Viete’s book, In Artem Analyticen Isagoge, is included in the
complete works of Viéte compiled and published by Franciscus van Schooten (Van Schooten,
1646); there is an English translation included as an appendix in Klein (1968), and another one
in Witmer, ed. (1983).

3 In the text of the Trattato di Fioretti the rule is not stated generally but with reference to the
concrete case to which it is applied, as follows: “E a multiplichare la seconda parte nella
somma di tutte ¢ 3 due volte ¢ chome a multiplichare la seconda parte nel doppio della somma
di tutte a 3, overo quanto a multiplichare lo doppio della seconda parte nella somma di tutte et
3.” [And multiplying the second part by the sum of the 3 two times is like multiplying the
second by double the sum of all 3, or like multiplying double the second part by the sum of all
3] (Mazzinghi, 1967, p. 16). Stated in a general form, the rule would say: “multiplying one
quantity by another one twice is equal to multiplying the first quantity by double the second
one, or also multiplying double the first quantity by the second.”

* There is a recent edition of the Arabic text of al-Khayyam’s Treatise on Algebra, accom-
panied by a translation into French, in Rashed and Vahebzadeh (1999). One can also consult
the English translation by Kasir (1931).

> There is an edition by Roshdi Rashed of the Arabic text of Sharaf al-Din al-Tiisi’s Treatise on
Equations, accompanied by a translation into French, in al-Tusi (1986).

® Diophantus also has a single name for unknown quantities (arithmos). In problem 28 in Book
II of his Arithmetic (Tannery, 1893, vol. I, pp. 124—127), he resorts to the device of saying that
a second unknown quantity is one unit (monas 1), performing the calculations using this
supposition, and then in the result changing the units to arithmos and calculating again.

7 “Census” was the term chosen by Gerardo de Cremona for mdl, treasure, in his translation of
al-Khwarizmi’s book of algebra, and it was the one that caught on in the Christian Mediaeval
West (cf. the edition by Hughes, 1986).

¥ This is already present in Chuquet’s Triparty, written in French in 1484. However, this book
by Chuquet remained unpublished and was therefore scarcely known until the end of the 19th
century, when Aristide Marre published it (Marre, 1880). Bombelli used the same kind of
representation in his Algebra, from which it became more widely known among algebraists.

? See our ongoing work reported in Chapter 8 and in Filloy, Rojano and Solares (2004).



CHAPTER 4

CONCRETE MODELS AND ABSTRACTION PROCESSES
TEACHING TO OPERATE ON THE UNKNOWN

OVERVIEW

This chapter deals with concrete modeling in teaching the elements of
algebraic syntax and the processes (abstraction) that arise both in modeling
itself and in the use of the syntactic skills learned in order to solve word
problems. The subject is approached by means of a clinical study case
“Operacion de la incognita” (“Operating on the Unknown”), the design and
experimental performance of which are within the theory of local theoretical
models, following the recursive diagrams that appear in Chapter 3. The study
deals with the transition from arithmetic to algebraic thought, and in the study
the idea of didactic cut is introduced for this context. We also begin the
discussion of the dialectic relationship between semantics and algebraic
syntax. Throughout the chapter we utilize the phenomenological analysis
of school algebra presented in the previous chapter and the notions of
mathematical sign system and language strata, dealt with in Chapter 1.

1. INTRODUCTION

1.1. Observation in class

As we mentioned in the Introduction (Chapter 1), one of the simplest
phenomena that observation in class shows about the permanence in a reading
level with children who have just finished primary education (about 12 years
old) is one that appears when they are confronted with questions of the kind
that illustrate what we called the reverse of multiplication syndrome.

These observations can easily be made in the classroom, where it is
possible to infer that these events are linked with many others, examples of
the intrinsic difficulties that the learning of algebra presents: the usual syntax
mistakes when one is working operationally with algebraic expressions,
translation mistakes when one is using algebra to solve problems written
in ordinary language, mistaken interpretations of the meaning of algebraic
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expressions in the different contexts in which they appear, the difficulty of
finding any meaning in them, the impossibility of using algebra to solve
ordinary problems, etc.

1.2. Experimental observation

In order to observe these phenomena with greater precision, one needs an
experimental situation in which one can monitor various obstructions that are
always present in the classroom, and observation mechanisms that allow a
more exhaustive, precise analysis. But the task must also be undertaken in
such a way that what is observed has to do with the problems presented by the
person under observation, and also that the components that teaching brings
into play are present.

Over a period of four school years an experiment was carried out at the
Centro Escolar Hermanos Revueltas in Mexico City, in which the teaching
of mathematics in the six years of the secondary education program was
monitored from the viewpoint of the teaching aims that it strove to achieve, and
also a check was kept on the teaching strategies used throughout the middle
school stage. Moreover, a laboratory for clinical observation was set up in
which individual or group interviews could be conducted and videotaped. The
clinical interviews had a structured format, but the interviewer moved freely
within the previously designed steps, allowing the line of thought of the person
interviewed to define each of the subparts of the interview. Except in cases in
which the interviewee had no difficulty in solving the task set, the interviewer
intervened to set further questions that would help the interviewee to learn (by
discovery) the task that he or she was unable to solve initially. The aim was to
discover the difficulties that the beginnings of algebra present for learning,
given the usual ways in which it is taught at present. These were clinical
interviews, in which the focus of observation was the usual ways of teaching
and the individual ways of learning (with their typical obstructions and
difficulties) that the students presented.

This infrastructure formed the basis for the development of the project
“Evolution of Symbolization in the Middle School Population,” and within it
the study “Acquisition of the Language of Algebra,” concentrating on the
interrelationships between two overall strategies for the design of learning
sequences that cover long periods of time in the middle school algebra
curriculum, which are:

a) Modeling of more abstract situations in more concrete languages in
order to develop syntactic skills.
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b) Production of codes to develop problem-solving skills. Use of syntactic
skills for the development of solving strategies.

Broadly speaking, in (a) the aim is to make new expressions and opera-
tions meaningful, modeling them on concrete situations. In (b) the aim is to
produce senses for new expressions and operations (in such a way as to
generate problem-solving codes), setting out from the assumption of the
presence of certain skills in the syntactic use of the new symbols and their use
as a more abstract language.

1.3. The theoretical framework

Apart from empirical observations such as those indicated in the first section
of this introduction, the theoretical lines that guided this project were drawn
essentially from three sources: first, an epistemology based on analysis of
texts from the Middle Ages and the Renaissance (a description of which can
be found in Chapter 3); second, a line drawn from semiotics, in an attempt to
make it a guide for the analysis of algebra on the basis of its conception as a
mathematical sign system; and third, cognitive psychology in its recent
developments concerning language acquisition and its relation to the
pragmatics of language.

We shall try to approach various aspects concerning the interrelation
between the semantic and syntactic components of the problem, seen from the
viewpoint of teaching strategies of types (a) and (b), briefly described above.
This chapter concentrates, as its title indicates, on type (a) strategies and on
the point in teaching when one wishes to teach how to operate on the
unknowns that appear in first-degree equations.

Here we are not going to go into an analysis of what happens when a
totally syntactic model is used as a teaching strategy. In Chapter 5, Section
3.5, we show that the phenomena that appear in that case are of the same
nature as those described here for concrete models. The reader will not fail to
perceive that aspects of type (b) strategies also appear here in the description
of the mechanisms that are brought into play when the processes of
abstraction are set in motion. However, the approach focuses totally on type
(a) teaching strategies, their relations to the appearance of the usual syntax
mistakes, their differences model by model, and the relation that they have to
the students’ prior attitudes, especially in terms of the extreme positions
between the clearly syntactic tendencies and clearly semantic tendencies that
are seen in the students. Emphasis is placed on the processes of abstraction in
the situations presented, and in the operations involved.
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A general description of what is presented indicates that there is a dialectic
relationship between syntactic and semantic advances, and that an advance in
either of these two components implies an advance in the other. This analysis
is made from a viewpoint that corresponds to the usual strategies of teaching
algebra. The starting point is the belief that the facts described here are not
taken into account in current teaching systems, merely being left to later
corrections that students may manage to make to various misconceptions and
mistakes in the use of algebraic properties —properties that one is trying to
teach for the first time.

1.4. Reading Guide

The text of this chapter is divided into the following four parts:

1) The solution of equations and the transition from arithmetic to algebra.
This part sets out the theoretical and empirical antecedents that are
relevant for the problem presented, especially for the determination of
the point in the development of the algebra curriculum at which the
experimental observation was situated.

2) Concrete modeling at a transition point. This part describes the point
when the observation took place from the perspective of the teaching
that preceded it, and it also describes the population from which the
individuals were taken in order to carry out the case studies that make
up the clinical part of this research. The population is classified in
terms of its abilities and prior knowledge, and there is a discussion of
why the study described here was carried out only with individuals
from the so-called “upper stratum.”

3) Processes of abstraction of operations using a concrete model to learn
how to operate on the unknown. Here we begin to describe how the
individuals observed performed, after a phase of instruction in
operating on the unknown based on the modeling of equations in
concrete contexts. A brief description of the empirical results obtained
is given, in order to present referents that will enable us to describe the
processes of interaction between the semantic and syntactic aspects that
appear in the acquisition of the first elements of the language of
algebra.

4) Semantics vs. algebraic syntax. This section is devoted to making a
comparative analysis of the differences between the use of two models
(the balance scales and a geometric model) by part of the population
with a better performance. The differences can thus be taken into
account for the proposal of teaching strategies based on these
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observations. The two most important are: first, the fact that there are
differences in the translation of elements of the equation to the model
which obstruct progress in its use; and second, the fact that some
equations offer more natural translations in one model than in another.

5) Contrast between two cognitive tendencies in the learning and use of
mathematics, with respect to the application of the same model for
operating on the unknown.

2. THE SOLUTION OF EQUATIONS AND THE TRANSITION
FROM ARITHMETIC TO ALGEBRA

In Sections 3 and 4 of the Introduction (Chapter 1) we pointed out that various
clearly established research results mark distinct differences between ways of
thinking rooted in arithmetic and others that are characteristic of algebra. One
of them is the inability to operate with the unknown as if it were known,
which can be seen in most students when one starts to teach them algebra.

This kind of operational insufficiency in what is represented in the pre-
symbolic stage of algebra suggests the presence of a point of cut-off or change
between operating on the unknown and not operating on it, here on the level
of individual thinking. In the clinical study “Operating on the Unknown,”
carried out with children 12 or 13 years of age,' operating on the unknown
does indeed seem to be a necessary action for the solution by means of non-
spontaneous methods® of certain first-degree equations with at least two
occurrences of the unknown, for the solution of which it is not sufficient to
reverse the operations on the coefficients. The following equations are
examples of this kind:

38x + 72 =56x
3x+20=x+164

According to the study, the step from the operational solution of equations
such as x +27 =58 or 4 x (x + 11) =52 to the solution of equations such as
3x+8=7x and 7x+2=3x+6, for example, is not immediate, and in
between comes the construction (or acquisition) of certain elements of syntax
which is algebraic, strictly speaking. The construction of these syntactic
elements is carried out on the basis of a reasonably well consolidated
knowledge of arithmetic, and, in turn, this construction is possible only if one
succeeds in breaking away from certain notions that belong to the domain of
arithmetic; hence the presence of a cut.
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Take, for example, the notion of an equation: Ax = B = C. In arithmetic
terms, the left side of an equation corresponds to a sequence of operations that
are carried out on numbers (whether known or not), and the right side
corresponds to the result of having carried out those operations: this is what
one might call an arithmetic notion of equality (or of an equation). Starting
from such a notion, an equation of the type Ax + B = C (where 4, B, and C are
particular given numbers) can be solved by simply inverting the operations in
the sequence on the left, starting from the result C. We will call equations of
this type “arithmetic” equations.

However, the arithmetic notion of equality does not apply to an equation
such as Ax + B=Cx = D (where 4, B, C, and D are particular given numbers),
and therefore its operational solution involves operations outside the scope of
arithmetic, such as operating on the unknown. In order that such operations
may acquire sense for the individual and so be brought into use in the process
of solving an equation, equations such as those of the form described here
(which we will call “non-arithmetic” equations) must in turn be provided with
some meaning; this, however, implies a basic modification to the notion of
equation or numeric equality.

With respect to the meaning of the new equations, it must be understood
that the expressions in both parts of the equality are of the same nature (or
structure), and that there is a series of actions that give sense to the equality
between them (such as the actions corresponding to the substitution of the
numeric value of x).

Profound changes or modifications in arithmetic habits and notions do not
occur in the individual spontaneously, simply as the result of being confronted
with the need for such changes to take place.” Intervention with teaching, at
this point of transition from arithmetic to algebraic knowledge, may prove
crucial for most individuals who are learning algebra for the first time (Filloy
and Rojano, 1984).

On the other hand, although some arithmetic notions have to be modified
for the sake of the acquisition of a new knowledge, that of algebra, the earlier
knowledge (of arithmetic, in this case) must also be preserved, as even in the
single example of equations that we have presented it is necessary that
arithmetic equations should subsequently continue to be recognized as such,
in order to preserve all the previously acquired manipulative skills for their
solution. These skills are situated at a level of knowledge between arithmetic
and algebraic knowledge: that of pre-algebraic knowledge.
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3. CONCRETE MODELING AT A TRANSITION POINT

As we noted in the previous section, changes in the conception of the
operations performed on objects such as numbers are essential in order to
prepare the way for the conception of operations on objects other than
numbers (such as unknowns) and for the conception of objects themselves
(what they represent or may come to represent). Therefore, at this point the
teaching of algebra requires the use of teaching resources by means of which
one can bring into play the relations between elements that participate in the
realisation of these changes.

We will now describe some of the results obtained in the clinical study
“Operating on the Unknown,” carried out with children 12 to 14 years of age
who, at the time of observation, had not received instruction in solving linear
equations with one unknown occurring two or more times, i.e., the equations
that we have described as non-arithmetic. The teaching models used in the
study are those presented in Section 5 of this chapter.

3.1. The study “Operating on the Unknown”

This study was preceded by work carried out in two different fields: (1)
analysis of parts of mathematical texts and works of transition that came
before the first work of symbolic algebra, The Analytic Art, by Frangois Viete,
and (2) experimentation with pedagogical sequences the writing of which was
based, in turn, on works of historic-critical analysis of the development of
mathematical ideas (see Chapter 3). On the basis of these prior studies we
conjectured the existence and location of the didactic cut mentioned earlier, in
the child’s line of development from arithmetical to algebraic thinking. This
didactic cut corresponds (allowing for the differences between the two areas)
to important changes in the history of the emergence of symbolic algebra,
concerning the conception and use of objects such as unknowns. Thus, in one
of its parts the research on the acquisition of the language of algebra focuses
on the study of the processes of change that are brought about in a small
neighborhood of the cut. The study “Operating on the Unknown” was situated
at this point, and its preparation comprised two stages: the design and
application of a teaching treatment prior to the clinical observation, so that it
was possible to halt the teaching at the point indicated previously, and the part
corresponding to the design and application of a diagnostic test of pre-
algebraic efficiency, in order to select the individuals to be observed on the
basis of their performance in the test; the results were also used in the design
and setting up of the clinical observation.
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In terms of teaching, the cut is situated

The children have already learned
to solve arithmetic equations.

Examples are:

here

{

The children have not received any
instruction in solving the first non-
arithmetic equations.

Examples are:

Ax+B=C Ax+tB=Cx
Ax(Bx+ C)=D Ax+B=Cx+D
X

Z_B

A

x_B

4 C

They cannot be solved simply by
inverting the operations (applied to
the data of the problem).

They can be solved simply by
inverting the operations (applied
to the data of the problem).

It is necessary to
operate on what is
represented

There is no need to
operate  on  the
unknown

T

The study was carried out at the cut-off point.

As far as the clinical observation was concerned, the aims of the study
“Operating on the Unknown” were:

1) To analyze the children’s spontaneous responses when faced with
solving non-arithmetic equations for the first time.

2) To analyze the children’s performance in the solution of non-arithmetic
equations immediately after they had been provided (in the same
interview) with a phase of instruction in operating on the unknown.

Aims 1 and 2 were directed at more general objectives of the study:

a) To corroborate the location and perception by the child of the didactic
cut between operating and not operating on the unknown.

b) To isolate phenomena concerning behavior of anchoring in arithmetic
knowledge, which might correspond to obstructions for the acquisition
of the language of algebra.
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c) To recognize problems in learning the new concepts, deriving from the
way in which they are taught and from the teaching strategies used to
teach pre-algebraic material.

We were interested in dealing with the area of the processes that are set in
motion when new concepts and operations are introduced by means of a
concrete model, and so we will refer only to the aims indicated in 2, (b) and
(c), which are more directly related to teaching.

The population studied comprised three cohorts of children ages 12 to 13
in the second year of secondary education, all at the same school, receiving
instruction in mathematics within a system of controlled teaching.*

The written test of pre-algebra comprised three subsections: arithmetic
equations with literal notation (e.g., 5x + 3 = 90), arithmetic equations without
literal notation (e.g., 1 — 95 =23), and problems corresponding to arithmetic
equations.

Once the criteria had been established for the classification of the
population with respect to each of the axes (subsections) considered in the
pre-algebra test, distributions were obtained for the test as a whole, as shown
in Figure 4.1.

The group observed consisted basically of children located on the main
diagonal, but also included some cases that contravened the order of some of
the axes, i.e., children in categories corresponding to the other vertices of the
cube.

With respect to the first aim of the study, i.e., the one concerned with the
children’s spontancous responses to their first non-arithmetic equations, in
each cohort of children we considered the three categories that appeared on
the main diagonal, calling them the lower, middle, and upper strata respectively.
Twenty-seven children were interviewed in all, and the interviews were
videotaped.
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Equations without literals

(0,3, 0) (3,3,0) .-, Answers given
2% .. by 3 students

t @ Answers given
by 4 students
O Answers given
(3.3.3) by 6 studer.lts
/ O Answers given
by 7 students
Answers given
/Cﬁ\ ‘ by 17 students
/ (3,0,0)
""" e N e < o
Equations with literals
(0, 0, 3)_. - -7 Central class
(3,0,3)
Problem solving
Figure 4.1

3.2. The clinical interview

Five sequences of items, series E, C, I, A, and P, make up the basic content of
the clinical interview. It must be borne in mind, however, that, depending on
how each interview developed, the order of the items and the order of some of
the series were altered, and additional items were even created. This can be
seen if one compares the items in series E, C, and I presented in this section
with the ones presented in Chapter 6, which are the items actually used in the
interview with Ma. Series A and P are not shown in detail here because their
items coincide exactly with those in the interview with Ma and they are
presented in Chapter 5.

Series E: Verification of the pre-test Arithmetic equations
x+5=8 13x0=39
x—4=8 3xx =39

x+27=58 6x[1=34434
x—15=143 (x+3)x6=48

x—1568=392 4x(x+11)=52
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Series C: The equation as equivalence Cancellation
x+5=5+2 x+5=2+5
ﬂ _ 7. ﬂ xX+2=2x+x
16 16 X+2=x+x
x+«/ﬁ=41+«/1—7 X+5=x+x
x+§=6+%
Series I: Operating on the unknown Non-arithmetic equations
x+2=2x Tx+15=8x
2x+4=4x 38x+ 72 =56x
3x+8=7x 37x+852=250x
3x+8=06x 2x+3=>5x
3+ 2x=5x 13x+20=x+164
Sx=2x+3 10x—-18 =4x
S5x=3+2x 10x—8=4x+6
Tx+2=3x+6 Tx—20=5x+30

With respect to the first aim of the study, the cross-analysis of the
interview series against the three strata of students produced interesting
results that made it possible, on the one hand, to confirm the presence of the
didactic cut (especially on the basis of the performance of the children in the
upper stratum), and, on the other, to outline the characteristic approaches of
each stratum to the situation represented by the cut, i.e., the spontaneous
solution of non-arithmetic equations, series C and /.

In order to tackle the second aim of the study, concerning the children’s
performance after a phase of instruction in operating on the unknown based
on the modeling of equations in concrete contexts, both the administration and
the analysis of the second part of the clinical interview focused on the
children in the upper stratum. This was essentially because it was necessary
to be sure of a certain degree of mastery of arithmetic and pre-algebraic
language so that genuine transition phenomena could be assimilated without
running the risk that those phenomena might have a causal relationship to
shortcomings in the basic knowledge on which the new language was to be
constructed.
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This part of the study began with a phase of instruction in operating on the
unknown at the point at which the child stopped trying to solve the equations
in series I using his or her own resources.

The following section provides a brief description of the results of this
second part of the clinical study in order to obtain empirical referents for the
description of the processes of interaction between the semantic and syntactic
aspects in the acquisition of the first elements of algebraic language.

4. PROCESSES OF ABSTRACTION OF OPERATIONS, BASED ON THE USE
OF A MODEL TO LEARN HOW TO OPERATE ON THE UNKNOWN

Although there are theoretical bases for feeling sure that an initial semantic
approach to algebra is more helpful for subsequent good performance with
algebra than a merely syntactic approach, this does not mean that the con-
struction of algebraic syntax from this first approach is immediate; in between
there are processes of abstraction of the operations performed with the
elements of the concrete situation in which the new objects and operations are
modeled. These processes, in turn, imply others, such as the process of
generalization of actions in modeling and the process of discrimination of the
various cases to be modeled, among others.

As was pointed out in an earlier section, for the purposes of this study we set
out from the basis that one of the first algebraic operations, strictly speaking, is
operating on the unknown to solve non-arithmetic linear equations, and we
adopted the position of introducing this operation semantically by the use of
concrete models.

Two models were used, the balance scales and a geometric model. A
schematic description is given below.

5. TWO CONCRETE MODELS

In this section we give a schematic description of the concrete models used in
the studies reported in other chapters of this book. These two concrete models
were designed so that first-degree equations and the algebraic transformations
that make it possible to solve them could be translated into the models. They
consist of what we will call a “geometric” model and the balance scales
model.

In the geometric model, the quantities represented by letters and algebraic
expressions are represented as lengths and areas of rectangles (x and its
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coefficients are lengths, and their products and the independent terms are
areas), the addition of algebraic expressions is represented as a juxtaposition
of areas, and the equation, i.e., the equality of two algebraic expressions, by
equality of areas. In this model one can also represent some algebraic
transformations as actions of comparing, cutting, and pasting areas.

In the balance scales model, the equation is represented by the balance of
weights in the two pans, so that what is placed in each pan has to represent the
algebraic expression corresponding to each side of the equation. This is
achieved by representing the x — the unknown — by an object of unknown
weight, an expression such as Ax by 4 objects of the same unknown weight,
and an independent term B by B objects of a given known weight. The
algebraic transformations are represented by actions of adding and removing
objects that do not alter the balance of the scales.

We will now present the use of these two models to solve equations of the
type Ax + B = Cx, which are the simplest equations in which it is necessary to
operate on the unknown.

5.1. The geometric model

The equation given is Ax + B = Cx, with 4, B, and C being given positive
integers and C > 4 in this case.
The steps for solving the equation by using the model are:

1) Reproduction of the model (translation of the equation to the model).

A . c )
P r 1

Figure 4.2

2) Comparison of areas:
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Figure 4.3

3) Production of the simplified equation: (C —4) x = B.
4) Solution of the simplified equation.
5) Verification of the answer.

5.2. The balance scales model

The equation given is Ax + B = Cx, with 4, B, and C being positive integers
and C > 4 in this case.
The steps for solving the equation by using the model are:

1) Reproduction of the model (translation of the equation to the model).

D000 0 mmEoR| |O000 O

A objects of equal B objects of equal C objects of equal
(unknown) weight (known) weight (unknown) weight
Figure 4.4

2) Repeated reduction of the objects of unknown weight while maintaining
the balance, until all the objects of this type have been removed from
one of the pans.

| EEE E| | 0000
B objects of equal C—A objects of equal
(known) weight (unknown) weight
Figure 4.5

3) Production of the simplified equation: (C — 4) x = B.
4) Solution of the simplified equation.
5) Verification of the answer.
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In the case of the two models, the children of high pre-algebraic efficiency
were provided only with the first elements of the model (the first step of
translation), and were allowed to develop the following stages on their own,
with as little help as possible from the interviewer. Once they had mastered
the use of the model for an equation of the type Ax + B = Cx, they were given
equations of increasing complexity (Ax + B=Cx+ D; Ax—B=Cx+ D, Ax —
B = Cx — D, etc.), in order to observe the transfer of the use of the model to
these types, and also the processes of abstraction of the operations performed
repeatedly in the model.

5.3. Results

In the course of the interviews we saw processes of abstraction of the
operations on new objects (in this case, unknowns), based on performing
actions on them in the model and progressing to operating on them on the
level of symbolic algebra. In these processes of abstraction we detected two
kinds of phenomena, which we will now describe.

5.3.1. Momentary loss of earlier skills, accompanied by the presence
of behavior anchored in arithmetic

The most frequent case was the apparent forgetting of manipulative skills for
solving arithmetic equations when they appeared as intermediate steps in the
process of solving non-arithmetic equations with the use of a model. This was
a non-recognition of the simplified equation (C — 4)x = B as an equation that
the student already knew how to solve syntactically. It obeys a phenomenon
of getting stuck in the model that prevents the child from reading the
simplified equation as an expression detached from the concrete meanings
that the model gives it.

Example: Fragments of the interview’ with Vt, age 13, upper stratum, who
in series E proved very efficient at solving “arithmetic