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Foreword

Nearly 40 years ago, IBM suggested that a computer user could be rec-
ognized at a computer terminal “By something he knows or memorizes.... By
something he carries... By a personal physical characteristic”. This analysis
was done in the context of computer data security - remotely recognizing those
authorized to access stored data - and specifically referenced voice recognition
as a “personal physical characteristic” useful for human recognition, although
automated handwriting, fingerprint, face, and hand geometry systems were,
by 1970, also under development. Since that time, automatically recognizing
persons by physical and behavioral characteristics has come to be known as
“biometric authentication” and applications have broadened far beyond the
remote recognition of computer terminal users. Today, biometric technologies
are being used in all types of applications not foreseen by the early pioneers
and not realizable with “something known” or “something carried”, such as in
visa and passport issuance, social service administration, and entertainment
ticket management systems. There are new technologies available for these
tasks: automated iris, hand vein, ear, gait, palm crease and 3-dimensional
face recognition systems

This book, edited by Anil K. Jain of Michigan State University and two
of his former students, Patrick J. Flynn and Arun Ross - now on the faculties
of Notre Dame and West Virginia Universities, respectively- gives us a broad,
yet detailed overview of the technologies, applications and implementation
challenges of biometric authentication at its current state of development.
Chapter authors are some of the best known, and in some cases, the earliest
researchers in their fields. With this book, the story is not finished. Rather,
it is only beginning. New technologies remain to be discovered. Challenges
of incorporating new and existing technologies seamlessly into person-centric
systems remain to be resolved. Understanding of the full impact of automated
human recognition on both natural rights and social contracts remains to be
acquired. In short, this book tells us the very first part of the story of biometric
authentication. Future generations will tell us the rest. I fully expect this book
to inspire current and future researchers and innovators to think in new ways
about the technologies, applications and implications of automated human
recognition.

James L. Wayman
San Jose State University



Preface

Biometrics is the science of recognizing the identity of a person based on the
physical or behavioral attributes of the individual such as face, fingerprints,
voice and iris. With the pronounced need for robust human recognition tech-
niques in critical applications such as secure access control, international bor-
der crossing and law enforcement, biometrics has positioned itself as a viable
technology that can be integrated into large-scale identity management sys-
tems. Biometric systems operate under the premise that many of the physical
or behavioral characteristics of humans are distinctive to an individual, and
that they can be reliably acquired via appropriately designed sensors and rep-
resented in a numerical format that lends itself to automatic decision-making
in the context of identity management. Thus, these systems may be viewed
as pattern recognition engines that can be incorporated in diverse markets.

While biometric traits such as fingerprints have had a long and successful
history in forensics, the use of these traits in automated personal recognition
systems is a fairly recent accomplishment. But now biometric technology is
a rapidly evolving field with applications ranging from accessing one’s com-
puter to obtaining visa for international travel. The deployment of large-scale
biometric systems in both commercial (e.g., grocery stores, Disney World, air-
ports) and government (e.g., US-VISIT) applications has served to increase
the public’s awareness of this technology. This rapid growth in biometric sys-
tem deployment has clearly highlighted the challenges associated in designing
and integrating these systems. Indeed, the problem of biometric recognition
is a “Grand Challenge” in its own right. The past five years has seen a sig-
nificant growth in biometric research resulting in the development of inno-
vative sensors, novel feature extraction and matching algorithms, enhanced
test methodologies and cutting-edge applications. However, there is no single
book that succinctly captures the advancements made in biometrics in recent
years while presenting the reader with a fundamental understanding of basic
concepts in biometrics. The purpose of this book is to address this void by
inviting some of the most prominent researchers in biometrics to author in-
dividual chapters describing the fundamentals as well as the latest advances
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in their respective areas of expertise. The result is an edited volume that em-
bodies most of the salient topics in biometric technology thereby giving its
readers an understanding of the spectrum of work constituting the field of
biometrics.

This book is divided into three logical sections. The first section discusses
individual biometric modalities including fingerprints, face, iris, hand geome-
try, gait, ear, voice, palmprint, signature, teeth and hand vein. The chapters
in this section describe some of the proven feature extraction and matching
algorithms that have been designed for processing individual biometric modal-
ities. The chapters in the second section discuss the concept of multibiometrics
where two or more sources of biometric information are fused in order to en-
hance the recognition accuracy of these systems. The third section discusses
the impact of deploying biometric systems in both civilian and government
applications. Topics related to legal and privacy issues as well as forensic sci-
ence are presented in this section. Finally, there is a discussion on biometric
standards and the use of public domain datasets available for performance
evaluation and comparison. Each chapter has an elaborate bibliography as-
sociated with it, thereby directing the reader to other pertinent literature on
specific topics.

This book would not have been possible but for the cooperation and hard-
work of the chapter authors. We would like to thank each one of them for
their contribution to this project. Several authors also participated in the re-
view process and their extensive comments were useful in refining individual
chapters. Thanks are also due to Mohamed Abdel-Mottaleb (University of
Miami), Nicolae Duta (Nuance), Max Houck (West Virginia University) and
Steve Krawczyk (Michigan State University) for their valuable input during
the review process. Special thanks to Julian Fierrez for providing detailed
comments on a preliminary draft of the manuscript. Karthik Nandakumar,
Abhishek Nagar and Keron Greene (Michigan State University) spent a con-
siderable amount of time editing and typesetting the final manuscript. Their
assistance is gratefully acknowledged.

This book has been designed for professionals composed of students, prac-
titioners and researchers in biometrics, pattern recognition and computer se-
curity. It can be used as a primary textbook for an undergraduate biometrics
class or as a secondary textbook for advanced-level students in computer sci-
ence and electrical engineering. We hope that the concepts and ideas presented
in this book will stimulate further research in this field even as biometric tech-
nology becomes an integral part of society in the 21st century.

Anil K. Jain, East Lansing, MI
Patrick J. Flynn, Notre Dame, IN
Arun Ross, Morgantown, WV
July 2007
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1

Introduction to Biometrics

Anil K. Jain1 and Arun Ross2

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI 48824 USA
jain@cse.msu.edu

2 Lane Department of Computer Science and Electrical Engineering, West
Virginia University, Morgantown, WV 26506 USA
arun.ross@mail.wvu.edu

1.1 Introduction

Biometrics is the science of establishing the identity of an individual based on
the physical, chemical or behavioral attributes of the person. The relevance of
biometrics in modern society has been reinforced by the need for large-scale
identity management systems whose functionality relies on the accurate de-
termination of an individual’s identity in the context of several different appli-
cations. Examples of these applications include sharing networked computer
resources, granting access to nuclear facilities, performing remote financial
transactions or boarding a commercial flight. The proliferation of web-based
services (e.g., online banking) and the deployment of decentralized customer
service centers (e.g., credit cards) have further underscored the need for reli-
able identity management systems that can accommodate a large number of
individuals.

The overarching task in an identity management system is the determina-
tion (or verification) of an individual’s identity (or claimed identity).3 Such an
action may be necessary for a variety of reasons but the primary intention, in
most applications, is to prevent impostors from accessing protected resources.
Traditional methods of establishing a person’s identity include knowledge-
based (e.g., passwords) and token-based (e.g., ID cards) mechanisms, but
these surrogate representations of identity can easily be lost, shared, manipu-
lated or stolen thereby compromising the intended security. Biometrics4 offers
3 The identity of an individual may be viewed as the information associated with

that person in a particular identity management system [15]. For example, a bank
issuing credit cards typically associates a customer with her name, password, so-
cial security number, address and date of birth. Thus, the identity of the customer
in this application will be defined by these personal attributes (i.e., name, address,
etc.).

4 The term biometric authentication is perhaps more appropriate than biometrics
since the latter has been historically used in the field of statistics to refer to the
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a natural and reliable solution to certain aspects of identity management by
utilizing fully automated or semi-automated schemes to recognize individuals
based on their biological characteristics [13]. By using biometrics it is possible
to establish an identity based on who you are, rather than by what you possess,
such as an ID card, or what you remember, such as a password (Figure 1.1). In
some applications, biometrics may be used to supplement ID cards and pass-
words thereby imparting an additional level of security. Such an arrangement
is often called a dual-factor authentication scheme.

MICHIGAN Expires
10-10-2010

OPERATOR LICENCE
R 789 965 543 897

ARUN ROSS
123, McDermott Street
East Lansing MI 48824

(a) (b)

Fig. 1.1. Authentication schemes. (a) Traditional schemes use ID cards, passwords
and keys to validate individuals and ensure that system resources are accessed by a
legitimately enrolled individual. (b) With the advent of biometrics, it is now possible
to establish an identity based on “who you are” rather than by “what you possess”
or “what you remember”.

The effectiveness of an authenticator (biometric or non-biometric) is based
on its relevance to a particular application as well as its robustness to various
types of malicious attacks. O’Gorman [29] lists a number of attacks that can
be launched against authentication systems based on passwords and tokens:
(a) client attack (e.g., guessing passwords, stealing tokens); (b) host attack
(e.g., accessing plain text file containing passwords); (c) eavesdropping (e.g.,
“shoulder surfing” for passwords); (d) repudiation (e.g., claiming that token
was misplaced); (e) trojan horse attack (e.g., installation of bogus log-in screen
to steal passwords); and (f) denial of service (e.g., disabling the system by de-
liberately supplying an incorrect password several times). While some of these

analysis of biological (particularly medical) data [36]. For brevity sake, we adopt
the term biometrics in this book.
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attacks can be deflected by incorporating appropriate defense mechanisms, it
is not possible to handle all the problems associated with the use of passwords
and tokens.

Biometrics offers certain advantages such as negative recognition and non-
repudiation that cannot be provided by tokens and passwords [32]. Negative
recognition is the process by which a system determines that a certain indi-
vidual is indeed enrolled in the system although the individual might deny it.
This is especially critical in applications such as welfare disbursement where
an impostor may attempt to claim multiple benefits (i.e., double dipping) un-
der different names. Non-repudiation is a way to guarantee that an individual
who accesses a certain facility cannot later deny using it (e.g., a person ac-
cesses a certain computer resource and later claims that an impostor must
have used it under falsified credentials).

Biometric systems use a variety of physical or behavioral characteristics
(Figure 1.2), including fingerprint, face, hand/finger geometry, iris, retina,
signature, gait, palmprint, voice pattern, ear, hand vein, odor or the DNA
information of an individual to establish identity [12, 36]. In the biometric
literature, these characteristics are referred to as traits, indicators, identifiers
or modalities. While biometric systems have their own limitations ([28]) they
have an edge over traditional security methods in that they cannot be easily
stolen or shared. Besides bolstering security, biometric systems also enhance
user convenience by alleviating the need to design and remember passwords.

1.2 Operation of a biometric system

A biometric system is essentially a pattern recognition system that acquires
biometric data from an individual, extracts a salient feature set from the data,
compares this feature set against the feature set(s) stored in the database, and
executes an action based on the result of the comparison. Therefore, a generic
biometric system can be viewed as having four main modules: a sensor module;
a quality assessment and feature extraction module; a matching module; and
a database module. Each of these modules is described below.

1. Sensor module: A suitable biometric reader or scanner is required to
acquire the raw biometric data of an individual. To obtain fingerprint im-
ages, for example, an optical fingerprint sensor may be used to image the
friction ridge structure of the fingertip. The sensor module defines the hu-
man machine interface and is, therefore, pivotal to the performance of the
biometric system. A poorly designed interface can result in a high failure-
to-acquire rate (see Section 1.4) and, consequently, low user acceptability.
Since most biometric modalities are acquired as images (exceptions in-
clude voice which is audio-based and odor which is chemical-based), the
quality of the raw data is also impacted by the characteristics of the cam-
era technology that is used.
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Face

Hand geometry

Vein Pattern

Voice

Fingerprint

Signature

Iris

Palmprint

Gait

Facial Thermogram
Ear

Keystroke Pattern

Fig. 1.2. Examples of biometric traits that can be used for authenticating an
individual. Physical traits include fingerprint, iris, face and hand geometry while
behavioral traits include signature, keystroke dynamics and gait.
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2. Quality assessment and feature extraction module: The quality of
the biometric data acquired by the sensor is first assessed in order to deter-
mine its suitability for further processing. Typically, the acquired data is
subjected to a signal enhancement algorithm in order to improve its qual-
ity. However, in some cases, the quality of the data may be so poor that
the user is asked to present the biometric data again. The biometric data
is then processed and a set of salient discriminatory features extracted to
represent the underlying trait. For example, the position and orientation
of minutia points (local ridge and valley anomalies) in a fingerprint image
are extracted by the feature extraction module in a fingerprint-based bio-
metric system. During enrollment, this feature set is stored in the database
and is commonly referred to as a template.

3. Matching and decision-making module: The extracted features are
compared against the stored templates to generate match scores. In a
fingerprint-based biometric system, the number of matching minutiae be-
tween the input and the template feature sets is determined and a match
score reported. The match score may be moderated by the quality of the
presented biometric data. The matcher module also encapsulates a deci-
sion making module, in which the match scores are used to either validate
a claimed identity or provide a ranking of the enrolled identities in order
to identify an individual.

4. System database module: The database acts as the repository of bio-
metric information. During the enrollment process, the feature set ex-
tracted from the raw biometric sample (i.e., the template) is stored in
the database (possibly) along with some biographic information (such as
name, Personal Identification Number (PIN), address, etc.) characterizing
the user. The data capture during the enrollment process may or may not
be supervised by a human depending on the application. For example,
a user attempting to create a new computer account in her biometric-
enabled workstation may proceed to enroll her biometrics without any
supervision; a person desiring to use a biometric-enabled ATM, on the
other hand, will have to enroll her biometrics in the presence of a bank
officer after presenting her non-biometric credentials.

The template of a user can be extracted from a single biometric sample,
or generated by processing multiple samples. Thus, the minutiae template
of a finger may be extracted after mosaicing multiple samples of the same
finger. Some systems store multiple templates in order to account for the
intra-class variations associated with a user. Face recognition systems, for
instance, may store multiple templates of an individual, with each template
corresponding to a different facial pose with respect to the camera. Depending
on the application, the template can be stored in the central database of the
biometric system or be recorded on a token (e.g., smart card) issued to the
individual.
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In the face recognition literature, the raw biometric images stored in the
database are often referred to as gallery images while those acquired during
authentication are known as probe images. These are synonymous with the
terms stored images and query or input images, respectively.

1.3 Verification versus identification

Depending on the application context, a biometric system may operate either
in the verification or identification mode (see Figure 1.3). In the verification
mode, the system validates a person’s identity by comparing the captured bio-
metric data with her own biometric template(s) stored in the system database.
In such a system, an individual who desires to be recognized claims an iden-
tity, usually via a PIN, a user name or a smart card, and the system conducts
a one-to-one comparison to determine whether the claim is true or not (e.g.,
“Does this biometric data belong to Bob?”). Verification is typically used for
positive recognition, where the aim is to prevent multiple people from using
the same identity.

In the identification mode, the system recognizes an individual by search-
ing the templates of all the users in the database for a match. Therefore,
the system conducts a one-to-many comparison to establish an individual’s
identity (or fails if the subject is not enrolled in the system database) with-
out the subject having to claim an identity (e.g., “Whose biometric data is
this?”). Identification is a critical component in negative recognition applica-
tions where the system establishes whether the person is who she (implicitly
or explicitly) denies to be. The purpose of negative recognition is to prevent a
single person from using multiple identities. Identification may also be used in
positive recognition for convenience (the user is not required to claim an iden-
tity). While traditional methods of personal recognition such as passwords,
PINs, keys, and tokens may work for positive recognition, negative recognition
can only be established through biometrics.

1.4 Performance of a biometric system

Unlike password-based systems, where a perfect match between two alphanu-
meric strings is necessary in order to validate a user’s identity, a biometric
system seldom encounters two samples of a user’s biometric trait that result
in exactly the same feature set. This is due to imperfect sensing conditions
(e.g., noisy fingerprint due to sensor malfunction), alterations in the user’s
biometric characteristic (e.g., respiratory ailments impacting speaker recog-
nition), changes in ambient conditions (e.g., inconsistent illumination levels
in face recognition) and variations in the user’s interaction with the sensor
(e.g., occluded iris or partial fingerprints). Thus, seldom do two feature sets
originating from the same biometric trait of a user look exactly the same. In
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Claimed Identity
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Fig. 1.3. Enrollment and recognition (verification and identification) stages of a
biometric system. The quality assessment module determines if the sensed data
can be effectively used by the feature extractor. Note that the process of quality
assessment in itself may entail the extraction of some features from the sensed data.

fact, a perfect match between two feature sets might indicate the possibility
that a replay attack is being launched against the system. The variability ob-
served in the biometric feature set of an individual is referred to as intra-class
variation, and the variability between feature sets originating from two differ-
ent individuals is known as inter-class variation. A useful feature set exhibits
small intra-class variation and large inter-class variation.



8 Anil K. Jain and Arun Ross

The degree of similarity between two biometric feature sets is indicated by
a similarity score. A similarity match score is known as a genuine or authentic
score if it is a result of matching two samples of the same biometric trait of a
user. It is known as an impostor score if it involves comparing two biometric
samples originating from different users. An impostor score that exceeds the
threshold η results in a false accept (or, a false match), while a genuine score
that falls below the threshold η results in a false reject (or, a false non-match).
The False Accept Rate (FAR) (or, the False Match Rate (FMR)) of a biometric
system can therefore be defined as the fraction of impostor scores exceeding
the threshold η. Similarly, the False Reject Rate (FRR) (or, the False Non-
match Rate (FNMR))5 of a system may be defined as the fraction of genuine
scores falling below the threshold η. The Genuine Accept Rate (GAR) is the
fraction of genuine scores exceeding the threshold η. Therefore,

GAR = 1− FRR. (1.1)

Regulating the value of η changes the FRR and the FAR values, but for
a given biometric system, it is not possible to decrease both these errors
simultaneously.

The FAR and FRR at various values of η can be summarized using a
Detection Error Tradeoff (DET) curve [21] that plots the FRR against the
FAR at various thresholds on a normal deviate scale and interpolates between
these points (Figure 1.4(a)). When a linear, logarithmic or semi-logarithmic
scale is used to plot these error rates, then the resulting graph is known as
a Receiver Operating Characteristic (ROC) curve [7]. In many instances, the
ROC curve plots the GAR (rather than the FRR) against the FAR (see Figure
1.4(b) and (c)). The primary difference between the DET and ROC curves is
the use of the normal deviate scale in the former.

It is important to note that the occurrence of false accepts and false rejects
is not evenly distributed across the users of a biometric system. There are in-
herent differences in the “recognizability” of different users. Doddington et al.
[6] identify four categories of biometric users based on these inherent differ-
ences. Although this categorization (more popularly known as “Doddington’s
zoo”) was originally made in the context of speaker recognition, it is applicable
to other biometric modalities as well.

1. Sheep represent users whose biometric feature sets are very distinctive
and exhibit low intra-class variations. Therefore, these users are expected
to have low false accept and false reject errors.

2. Goats refer to users who are prone to false rejects. The biometric feature
sets of such users typically exhibit large intra-class variations.

5 It behooves us to point out that, strictly speaking, FMR and FNMR are not
always synonymous with FAR and FRR, respectively (see [20] and [19]). However,
in this book we treat them as being equivalent.
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Fig. 1.4. The performance of a biometric system can be summarized using DET
and ROC curves. In this example, the performance curves are computed using the
match scores of the Face-G matcher from the NIST BSSR1 database [25]. The graph
in (a) shows a DET curve that plots FRR against FAR in the normal deviate scale.
In (b) a ROC curve plots FRR against FAR in the linear scale, while in (c) a ROC
curve plots GAR against FAR in a semi-logarithmic scale.
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3. Lambs are users whose biometric feature set overlaps extensively with
those of other individuals. The biometric feature sets of these users have
low inter-class variations. Thus, a randomly chosen user (from the target
population) has a high probability of being accepted as a lamb than as a
sheep. The false accept rate associated with these users is typically high.

4. Wolves indicate individuals who are successful in manipulating their bio-
metric trait (especially behavioral traits) in order to impersonate legiti-
mately enrolled users of a system. Therefore, these users can increase the
false accept rate of the system.

Doddington et al. [6] discuss the use of statistical testing procedures to
detect the presence of goats, lambs and wolves in a voice biometric system.
A combination of the F-test, Kruskal Wallis test and Durbin test is used to
establish the occurrence of these categories of users in the 1998 NIST database
of speech segments that was used in the evaluation of speaker recognition al-
gorithms (http://www.nist.gov/speech/tests/spk/1998/current_plan.
htm).

Besides the two types of errors (viz., false accept and false reject) indicated
above, a biometric system can encounter other types of failures as well. The
Failure to Acquire (FTA) (also known as Failure to Capture (FTC)) rate
denotes the proportion of times the biometric device fails to capture a sample
when the biometric characteristic is presented to it. This type of error typically
occurs when the device is not able to locate a biometric signal of sufficiently
good quality (e.g., an extremely faint fingerprint or an occluded face image).
The FTA rate is also impacted by sensor wear and tear. Thus, periodic sensor
maintenance is instrumental for the efficient functioning of a biometric system.
The Failure to Enroll (FTE) rate denotes the proportion of users that cannot
be successfully enrolled in a biometric system. User training may be necessary
to ensure that an individual interacts with a biometric system appropriately
in order to facilitate the acquisition of good quality biometric data. This
necessitates the design of robust and efficient user interfaces that can assist
an individual both during enrollment and recognition.

There is a tradeoff between the FTE rate and the perceived system accu-
racy as measured by FAR/FRR. FTE errors typically occur when the system
rejects poor quality inputs during enrollment; consequently, if the threshold
on quality is high, the system database contains only good quality templates
and the perceived system accuracy improves. Because of the interdependence
among the failure rates and error rates, all these rates (i.e., FTE, FTC, FAR,
FRR) constitute important performance specifications of a biometric system,
and should be reported during system evaluation along with the target pop-
ulation using the system.

The performance of a biometric system may also be summarized using
other single-valued measures such as the Equal Error Rate (EER) and the
d-prime value. The EER refers to that point in a DET curve where the FAR
equals the FRR; a lower EER value, therefore, indicates better performance.
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The d-prime value (d′) measures the separation between the means of the
genuine and impostor probability distributions in standard deviation units
and is defined as,

d′ =
√

2 | µgenuine − µimpostor |√
σ2

genuine + σ2
impostor

,

where the µ’s and σ’s are the means and standard deviations, respectively,
of the genuine and impostor distributions. A higher d-prime value indicates
better performance. If the genuine and impostor distributions indeed follow a
normal (Gaussian) distribution with equal variance (a very unlikely situation
in the practical biometric domain), then d′ reduces to the normal deviate value
[35]. Poh and Bengio [31] introduce another single-valued measure known as
F-Ratio which is defined as,

F-ratio =
µgenuine − µimpostor

σgenuine + σimpostor
.

If the genuine and impostor distributions are Gaussian, then the EER and
F-ratio are related according to the following expression:

EER =
1
2
− 1

2
erf

(
F-ratio√

2

)
,

where

erf(x) =
2√
π

∫ x

0

e−t2dt.

In the case of identification, the input feature set is compared against
all templates residing in the database in order to determine the top match
(i.e, the best match). The top match can be determined by examining the
match scores pertaining to all the comparisons and reporting the identity of
the template corresponding to the largest similarity score. The identification
rate indicates the proportion of times a previously enrolled individual is suc-
cessfully mapped to the correct identity in the system. Here, we assume that
the question being asked is, “Does the top match correspond to the correct
identity?” An alternate question could be, “Does any one of the top k matches
correspond to the correct identity?” (see [23]). The rank-k identification rate,
Rk, indicates the proportion of times the correct identity occurs in the top
k matches as determined by the match score. Rank-k performance can be
summarized using the Cumulative Match Characteristic (CMC) curve ([23])
that plots Rk against k, for k = 1, 2, . . .M with M being the number of en-
rolled users. The relationship between CMC and DET/ROC curves has been
discussed by Grother and Phillips [9], and Bolle at al. [1].

The biometric of choice for a particular application is primarily dictated
by the error rates and failure rates discussed above. Other factors such as the



12 Anil K. Jain and Arun Ross

cost of the system, throughput rate, user acceptance, ease of use, robustness
of the sensor, etc. also determine the suitability of a biometric system for an
application.

1.5 Applications of biometrics

Establishing the identity of a person with high confidence is becoming critical
in a number of applications in our vastly interconnected society. Questions like
“Is she really who she claims to be?”, “Is this person authorized to use this
facility?” or “Is he in the watchlist posted by the government?” are routinely
being posed in a variety of scenarios ranging from issuing a driver’s licence
to gaining entry into a country. The need for reliable user authentication
techniques has increased in the wake of heightened concerns about security,
and rapid advancements in networking, communication and mobility. Thus,
biometrics is being increasingly incorporated in several different applications.
These applications can be categorized into three main groups (see Table 1.1):

1. Commercial applications such as computer network login, electronic data
security, e-commerce, Internet access, ATM or credit card use, physical
access control, mobile phone, PDA, medical records management, distance
learning, etc.

2. Government applications such as national ID card, managing inmates in a
correctional facility, driver’s license, social security, welfare-disbursement,
border control, passport control, etc.

3. Forensic applications such as corpse identification, criminal investigation,
parenthood determination, etc.

Table 1.1. Authentication solutions employing biometrics can be used in a variety
of applications which depend on reliable user authentication mechanisms.

FORENSICS GOVERNMENT COMMERCIAL
Corpse identification National ID card ATM
Criminal investigation Drivers license; voter regis-

tration
Access control; computer
login

Parenthood determination Welfare disbursement Mobile phone
Missing children Border crossing E-commerce; Internet;

banking; smart card

Examples of a few applications where biometrics is being used for authen-
ticating individuals are presented below (also see Figure 1.5).

1. The Schiphol Privium scheme at Amsterdam’s Schipol airport employs
iris-scan smart cards to speed up the immigration procedure. Passengers



1 Introduction to Biometrics 13

who are voluntarily enrolled in this scheme insert their smart card at the
gate and peek into a camera; the camera acquires the eye image of the
traveler and processes it to locate the iris, and computes the Iriscode [3];
the computed Iriscode is compared with the data residing in the smart
card to complete user verification. A similar scheme is also being used to
verify the identity of Schiphol airport employees working in high-security
areas. This is a good example of a biometric system that is being used to
enhance user convenience while improving security.

2. The Ben Gurion International Airport at Tel Aviv employs automated
hand geometry-based identification kiosks to enable Israeli citizens and
frequent international travelers to rapidly go through the passport inspec-
tion process. Currently more than 160,000 Israeli citizens are enrolled in
this program. The kiosk-based system uses the credit card of the traveler
to begin the verification process. The hand geometry information is then
used for validating the traveler’s identity and ensuring that the individual
is not a security hazard. The automated inspection process takes less than
20 seconds and has considerably reduced the waiting time for passengers.

3. Some financial institutions in Japan have installed palm-vein authentica-
tion systems in their ATMs to help validate the identity of a customer
intending to conduct a transaction. A contactless sensor is used to image
the vein pattern pertaining to the customer’s palm using a near infrared
lighting source. Thus, a person does not have to directly place the palm
on the device.

4. Kroger, a US supermarket chain, has deployed fingerprint scanners in
some of its stores in order to help customers cash payroll checks or render
payment after a purchase. Interested customers can enroll their index
finger along with details of their credit/debit card (or electronic check);
the customer’s driver’s licence is used to validate the identity during the
time of enrollment.

5. The United States Visitor and Immigration Status Indicator Technology
(US-VISIT) is a border security system that has been deployed at 115 air-
ports, 15 seaports and in the secondary inspection areas of the 50 busiest
land ports of entry. Foreign visitors entering the United States have their
left and right index fingers scanned by a fingerprint sensor. The biometric
data acquired is used to validate an individual’s travel documents at the
port of entry. A biometric exit procedure has also been adopted in some
airports and seaports to facilitate a visitor’s future trips to the country.
Although two-print information is currently being used, the system might
employ all ten fingers of a person in the future; this would ensure that the
US-VISIT fingerprint database is compatible with the ten-print database
maintained by the FBI in its Integrated Automated Fingerprint Identifi-
cation System (IAFIS - see http://www.fbi.gov/hq/cjisd/iafis.htm).
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.5. Biometric systems are being deployed in various applications. (a) The
Schiphol Privium program at the Amsterdam airport uses iris scans to validate the
identity of a traveler (www.cl.cam.ac.uk). (b) The Ben Gurion airport in Tel Aviv
uses Express Card entry kiosks fitted with hand geometry systems for security and
immigration (www.airportnet.org). (c) A few Kroger stores in Texas use finger-
print verification systems that enable customers to render payment at the check-out
counter. (www.detnews.com). (d) Contactless palm-vein systems have been installed
in some ATMs in Japan (www.fujitsu.com). (e) A cell-phone that validates au-
thorized users using fingerprints and allows them access to functionalities such as
mobile-banking (www.mobileburn.com). (f) The US-VISIT program currently em-
ploys two-print information to validate the travel documents of visitors to the United
States (www.dhs.gov).
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1.6 Biometric characteristics

A number of biometric characteristics are being used in various applications.
Each biometric has its pros and cons and, therefore, the choice of a biometric
trait for a particular application depends on a variety of issues besides its
matching performance (Table 1.2). Jain et al. [12] have identified seven factors
that determine the suitability of a physical or a behavioral trait to be used in
a biometric application.

1. Universality: Every individual accessing the application should possess
the trait.

2. Uniqueness: The given trait should be sufficiently different across indi-
viduals comprising the population.

3. Permanence: The biometric trait of an individual should be sufficiently
invariant over a period of time with respect to the matching algorithm. A
trait that changes significantly over time is not a useful biometric.

4. Measurability: It should be possible to acquire and digitize the biometric
trait using suitable devices that do not cause undue inconvenience to the
individual. Furthermore, the acquired raw data should be amenable to
processing in order to extract representative feature sets.

5. Performance: The recognition accuracy and the resources required to
achieve that accuracy should meet the constraints imposed by the appli-
cation.

6. Acceptability: Individuals in the target population that will utilize the
application should be willing to present their biometric trait to the system.

7. Circumvention: This refers to the ease with which the trait of an indi-
vidual can be imitated using artifacts (e.g., fake fingers), in the case of
physical traits, and mimicry, in the case of behavioral traits.

No single biometric is expected to effectively meet all the requirements
(e.g., accuracy, practicality, cost) imposed by all applications (e.g., Digital
Rights Management (DRM), access control, welfare distribution). In other
words, no biometric is ideal but a number of them are admissible. The rele-
vance of a specific biometric to an application is established depending upon
the nature and requirements of the application, and the properties of the
biometric characteristic. A brief introduction to some of the commonly used
biometric characteristics is given below:

1. Face: Face recognition is a non-intrusive method, and facial attributes are
probably the most common biometric features used by humans to recog-
nize one another. The applications of facial recognition range from a static,
controlled “mug-shot” authentication to a dynamic, uncontrolled face
identification in a cluttered background. The most popular approaches
to face recognition [17] are based on either (i) the location and shape of
facial attributes, such as the eyes, eyebrows, nose, lips, and chin and their
spatial relationships, or (ii) the overall (global) analysis of the face image
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that represents a face as a weighted combination of a number of canon-
ical faces. While the authentication performance of the face recognition
systems that are commercially available is reasonable [30], they impose
a number of restrictions on how the facial images are obtained, often re-
quiring a fixed and simple background with controlled illumination. These
systems also have difficulty in matching face images captured from two
different views, under different illumination conditions, and at different
times. It is questionable whether the face itself, without any contextual
information, is a sufficient basis for recognizing a person from a large num-
ber of identities with an extremely high level of confidence. In order for a
facial recognition system to work well in practice, it should automatically
(i) detect whether a face is present in the acquired image; (ii) locate the
face if there is one; and (iii) recognize the face from a general viewpoint
(i.e., from any pose) under different ambient conditions.

2. Fingerprint: Humans have used fingerprints for personal identification
for many decades. The matching (i.e., identification) accuracy using fin-
gerprints has been shown to be very high [37]. A fingerprint is the pat-
tern of ridges and valleys on the surface of a fingertip whose formation
is determined during the first seven months of fetal development. It has
been empirically determined that the fingerprints of identical twins are
different and so are the prints on each finger of the same person [19].
Today, most fingerprint scanners cost less than US $50 when ordered in
large quantities and the marginal cost of embedding a fingerprint-based
biometric in a system (e.g., laptop computer) has become affordable in
a large number of applications. The accuracy of the currently available
fingerprint recognition systems is adequate for authentication systems in
several applications, particularly forensics. Multiple fingerprints of a per-
son (e.g., ten-prints used in IAFIS) provide additional information to allow
for large-scale identification involving millions of identities. One problem
with large-scale fingerprint recognition systems is that they require a huge
amount of computational resources, especially when operating in the iden-
tification mode. Finally, fingerprints of a small fraction of the population
may be unsuitable for automatic identification because of genetic factors,
aging, environmental or occupational reasons (e.g., manual workers may
have a large number of cuts and bruises on their fingerprints that keep
changing).

3. Hand geometry: Hand geometry recognition systems are based on a
number of measurements taken from the human hand, including its shape,
size of palm, and the lengths and widths of the fingers [39]. Commer-
cial hand geometry-based authentication systems have been installed in
hundreds of locations around the world. The technique is very simple,
relatively easy to use, and inexpensive. Environmental factors such as
dry weather or individual anomalies such as dry skin do not appear to
adversely affect the authentication accuracy of hand geometry-based sys-
tems. However, the geometry of the hand is not known to be very distinc-
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tive and hand geometry-based recognition systems cannot be scaled up for
systems requiring identification of an individual from a large population.
Furthermore, hand geometry information may not be invariant during the
growth period of children. In addition, an individual’s jewelry (e.g., rings)
or limitations in dexterity (e.g., from arthritis), may pose challenges in
extracting the correct hand geometry information. The physical size of
a hand geometry-based system is large, and it cannot be embedded in
certain devices like laptops. There are authentication systems available
that are based on measurements of only a few fingers (typically, index
and middle) instead of the entire hand. These devices are smaller than
those used for hand geometry, but still much larger than those used for
procuring certain other traits (e.g., fingerprint, face, voice).

4. Palmprint: The palms of the human hands contain pattern of ridges and
valleys much like the fingerprints. The area of the palm is much larger
than the area of a finger and, as a result, palmprints are expected to be
even more distinctive than the fingerprints [38]. Since palmprint scanners
need to capture a large area, they are bulkier and more expensive than
the fingerprint sensors. Human palms also contain additional distinctive
features such as principal lines and wrinkles that can be captured even
with a lower resolution scanner, which would be cheaper. Finally, when
using a high-resolution palmprint scanner, all the features of the hand
such as geometry, ridge and valley features (e.g., minutiae and singular
points such as deltas), principal lines, and wrinkles may be combined to
build a highly accurate biometric system.

5. Iris: The iris is the annular region of the eye bounded by the pupil and
the sclera (white of the eye) on either side. The visual texture of the iris is
formed during fetal development and stabilizes during the first two years of
life (the pigmentation, however, continues changing over an extended pe-
riod of time. The complex iris texture carries very distinctive information
useful for personal recognition [4]. The accuracy and speed of currently
deployed iris-based recognition systems is promising and support the fea-
sibility of large-scale identification systems based on iris information. Each
iris is distinctive and even the irises of identical twins are different. It is
possible to detect contact lenses printed with a fake iris (see [3]). The
hippus movement of the eye may also be used as a measure of liveness for
this biometric. Although early iris-based recognition systems required con-
siderable user participation and were expensive, the newer systems have
become more user-friendly and cost-effective [26, 8]. While iris systems
have a very low False Accept Rate (FAR) compared to other biometric
traits, the False Reject Rate (FRR) of these systems can be rather high
[11].

6. Keystroke: It is hypothesized that each person types on a keyboard in
a characteristic way. This biometric is not expected to be unique to each
individual but it may be expected to offer sufficient discriminatory infor-
mation to permit identity verification [22]. Keystroke dynamics is a be-
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havioral biometric; one may expect to observe large intra-class variations
in a person’s typing patterns due to changes in emotional state, position
of the user with respect to the keyboard, type of keyboard used, etc. The
keystrokes of a person could be monitored unobtrusively as that person
is keying in information. This biometric permits “continuous verification”
of an individual’s identity over a session after the person logs in using a
stronger biometric such as fingerprint or iris.

7. Signature: The way a person signs her name is known to be a charac-
teristic of that individual [24, 16]. Although signatures require contact
with the writing instrument and an effort on the part of the user, they
have been accepted in government, legal, and commercial transactions as
a method of authentication. With the proliferation of PDAs and Tablet
PCs, on-line signature may emerge as the biometric of choice in these
devices. Signature is a behavioral biometric that changes over a period
of time and is influenced by the physical and emotional conditions of the
signatories. Signatures of some people vary substantially: even successive
impressions of their signature are significantly different. Further, profes-
sional forgers may be able to reproduce signatures that fool the signature
verification system [10].

8. Voice: Voice is a combination of physical and behavioral biometric charac-
teristics [2]. The physical features of an individual’s voice are based on the
shape and size of the appendages (e.g., vocal tracts, mouth, nasal cavities,
and lips) that are used in the synthesis of the sound. These physical char-
acteristics of human speech are invariant for an individual, but the behav-
ioral aspect of the speech changes over time due to age, medical conditions
(such as common cold), emotional state, etc. Voice is also not very dis-
tinctive and may not be appropriate for large-scale identification. A text-
dependent voice recognition system is based on the utterance of a fixed
predetermined phrase. A text-independent voice recognition system rec-
ognizes the speaker independent of what she speaks. A text-independent
system is more difficult to design than a text-dependent system but offers
more protection against fraud. A disadvantage of voice-based recognition
is that speech features are sensitive to a number of factors such as back-
ground noise. Speaker recognition is most appropriate in telephone-based
applications but the voice signal is typically degraded in quality by the
communication channel.

9. Gait: Gait refers to the manner in which a person walks, and is one of the
few biometric traits that can be used to recognize people at a distance.
Therefore, this trait is very appropriate in surveillance scenarios where
the identity of an individual can be surreptitiously established. Most gait
recognition algorithms attempt to extract the human silhouette in order
to derive the spatio-temporal attributes of a moving individual. Hence, the
selection of a good model to represent the human body is pivotal to the
efficient functioning of a gait recognition system. Some algorithms use the
optic flow associated with a set of dynamically extracted moving points



1 Introduction to Biometrics 19

on the human body to describe the gait of an individual [27]. Gait-based
systems also offer the possibility of tracking an individual over an extended
period of time. However, the gait of an individual is affected by several
factors including the choice of footwear, nature of clothing, affliction of
the legs, walking surface, etc.

Table 1.2. The false accept and false reject error rates (FAR and FRR) associ-
ated with the fingerprint, face, voice and iris modalities. The accuracy estimates
of biometric systems depend on a number of test conditions including the sensor
employed, acquisition protocol used, subject disposition, number of subjects, num-
ber of biometric samples per subject, demographic profile of test subjects, subject
habituation, time lapse between data acquisition, etc.

Biometric
Trait

Test Test Conditions False
Reject
Rate

False
Accept
Rate

Fingerprint FVC 2004 [18] Exaggerated skin dis-
tortion, rotation

2% 2%

Fingerprint FpVTE 2003 [37] US Government oper-
ational data

0.1% 1%

Face FRVT 2002 [30] Varied lighting, out-
door/indoor, time

10% 1%

Voice NIST 2004 [33] Text independent,
multi-lingual

5-10% 2-5%

Iris ITIRT 2005 [11] Indoor environment,
multiple visits

0.99% 0.94%

1.7 Summary

Rapid advancements in the field of communications, computer networking
and transportation, coupled with heightened concerns about identity fraud
and national security, has resulted in a pronounced need for reliable and effi-
cient identity management schemes in a myriad of applications. The process
of identity management in the context of a specific application involves the
creation, maintenance and obliteration of identities while ensuring that an
impostor does not fraudulently gain privileges associated with a legitimately
enrolled individual. Traditional authentication techniques based on passwords
and tokens are limited in their ability to address issues such as negative recog-
nition and non-repudiation. The advent of biometrics has served to address
some of the shortcomings of traditional authentication methods. Biometric
systems use the physical and behavioral characteristics of an individual such
as fingerprint, face, hand geometry, iris, gait and voice to establish identity.
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A broad spectrum of establishments can engage the services of a biometric
system including travel and transportation, financial institutions, health care,
law enforcement agencies and various government sectors.

The deployment of biometrics in civilian and government applications has
raised questions related to the privacy accorded to an enrolled individual [5].
Specifically, questions such as (i) “Will biometric data be used to track people
covertly thereby violating their right to privacy?”, (ii) “Can the medical con-
dition of a person be surreptitiously elicited from the raw biometric data?”,
(iii) “Will the acquired biometric data be used only for the intended purpose,
or will it be used for previously unexpressed functions, hence resulting in
functionality creep?”, (iv) “Will various biometric databases be linked in or-
der to deduce an individual’s social and financial profile?”, and (v) “What are
the consequences of compromising a user’s biometric data?”, have advocated
societal concerns about the use of biometric solutions in large-scale applica-
tions. The promotion of Privacy-Enhancing Technologies (PETs) can assuage
some of the legitimate concerns associated with biometric-enabled technology
[34, 14]. For example, the use of personal smart cards to store and process
the biometric template of an individual can mitigate public concerns related
to placing biometric information in a centralized database. Apart from tech-
nological solutions to address privacy concerns, government regulations are
also required in order to prevent the inappropriate transmission, exchange
and processing of biometric data.
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2.1 Introduction

A fingerprint is the representation of the epidermis of a finger: it consists of
a pattern of interleaved ridges and valleys [16]. Fingertip ridges evolved over
the years to allow humans to grasp and grip objects. Like everything in the
human body, fingerprint ridges form through a combination of genetic and
environmental factors. In fact, fingerprint formation is similar to the growth
of capillaries and blood vessels in angiogenesis. The genetic code in DNA gives
general instructions on the way skin should form in a developing fetus, but
the specific way it forms is a result of random events (the exact position of
the fetus in the womb at a particular moment, and the exact composition
and density of surrounding amniotic fluid). This is the reason why even the
fingerprints of identical twins are different [26]. Fingerprints are fully formed
(i.e. became stable) at about seven months of fetus development and finger
ridge configurations do not change throughout the life of an individual, except
in case of accidents such as cuts on the fingertips [3]. This property makes
fingerprints a very attractive biometric identifier.

Human fingerprints have been discovered on a large number of archaeologi-
cal artifacts and historical items [16]. Although these findings provide evidence
to show that ancient people were aware of the individuality of fingerprints, it
was not until the late sixteenth century that the modern scientific fingerprint
technique was first initiated [20, 15, 29]. In 1686, Marcello Malpighi, a profes-
sor of anatomy at the university of Bologna, noted in his writings the presence
of ridges, spirals and loops in fingerprints. Since then, a large number of re-
searchers have invested huge amounts of effort on fingerprint studies. Henry
Fauld, in 1880, was the first to scientifically suggest the individuality of finger-
prints based on an empirical observation. At the same time, Herschel asserted
that he had practiced fingerprint recognition for about 20 years [29, 34]. These
findings established the foundation of modern fingerprint recognition. In the
late nineteenth century, Sir Francis Galton conducted an extensive study on
fingerprints [20]; he introduced the minutiae features for fingerprint matching
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in 1888. An important advance in fingerprint recognition was made in 1899 by
Edward Henry, who established the well-known “Henry system” of fingerprint
classification [29].

In the early twentieth century, fingerprint recognition was formally ac-
cepted as a valid personal identification method and became a standard rou-
tine in forensics [29]. Fingerprint identification agencies were set up world-
wide and criminal fingerprint databases were established [29]. Various finger-
print recognition techniques, including latent fingerprint acquisition, finger-
print classification, and fingerprint matching were developed. For example, the
FBI fingerprint identification division was set up, in 1924, with a database of
810,000 fingerprint cards [18, 19].

With the rapid expansion of fingerprint recognition in forensics, opera-
tional fingerprint databases grew so large that manual fingerprint identifica-
tion became infeasible; for instance, the total number of fingerprint cards in
the FBI fingerprint database stands well over 200 million and is growing con-
tinuously. With thousands of requests being received daily, even a team of
more than 1300 fingerprint experts were not able to provide timely responses
to these requests [29]. Starting in the early 1960s, the FBI, Home Office in
the UK, and Paris Police Department began to invest a large amount of ef-
fort in developing Automatic Fingerprint Identification Systems (AFISs) [29].
Based on the observations of how human fingerprint experts perform finger-
print recognition, three major problems in designing AFISs were identified
and investigated: digital fingerprint acquisition, local ridge feature extraction,
and ridge characteristic pattern matching. Their efforts were so successful that
today almost every law enforcement agency worldwide uses an AFIS. These
systems have greatly improved the operational productivity of law enforce-
ment agencies and reduced the cost of hiring and training human fingerprint
experts.

Automatic fingerprint recognition technology has now rapidly grown be-
yond forensic applications and into civilian applications. Thanks to good
recognition performance and to the growing market of low-cost Personal Com-
puters and acquisition devices, fingerprint-based biometric systems are becom-
ing very popular and are being deployed in a wide range of applications: e.g.
PC logon, electronic commerce, ATMs, physical access control [16].

In the following sections, the main components of fingerprint-based bio-
metric systems are introduced: sensing (section 2.2), feature extraction (sec-
tion 2.3), and matching (section 2.4). Section 2.5 briefly describes recent per-
formance evaluation efforts and introduces synthetic fingerprint generation
as a useful tool for easily creating benchmark databases. Finally, section 2.6
draws some conclusions and depicts the main open issues. Due to the extent of
this topic, it is not possible to provide here all the details and to cover interest-
ing issues such as classification, indexing and multimodal systems. Interested
readers can find in [16] a complete guide to fingerprint recognition.
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2.2 Fingerprint Sensing

Historically, in law enforcement applications, the acquisition of fingerprint
images was performed by using the so-called “ink-technique”: the subject’s
finger was spread with black ink and pressed against a paper card; the card was
then scanned by using a common paper-scanner, producing the final digital
image. This kind of process is referred to as off-line fingerprint acquisition
or off-line sensing (see Figure 2.1). A particular case of off-line sensing is the
acquisition of a latent fingerprint from a crime scene.

 

Fig. 2.1. Fingerprint images acquired off-line with the ink technique.

Nowadays, most civil and criminal AFISs accept live-scan digital images
acquired by directly sensing the finger surface with an electronic fingerprint
scanner. No ink is required in this method, and all that a subject has to do
is to press his/her finger against the flat surface of a live-scan scanner (see
Figure 2.2). The most important part of a fingerprint scanner is the sensor
(or sensing element), which is the component where the fingerprint image is
formed. Almost all the existing sensors belong to one of the three families:
optical, solid-state, and ultrasound [16] [44].

• Optical sensors. Frustrated Total Internal Reflection (FTIR) is the oldest
and most used live-scan acquisition technique. The finger touches the top
side of a glass prism, but while the ridges enter in contact with the prism
surface, the valleys remain at a certain distance; the left side of the prism
is illuminated through a diffused light. The light entering the prism is
reflected at the valleys, and absorbed at the ridges. The lack of reflection
allows the ridges to be discriminated from the valleys. The light rays exit
from the right side of the prism and are focused through a lens onto a
CCD or CMOS image sensor.
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Fig. 2.2. The three fingerprint scanners used in FVC2006 [1] and an image collected
through each of them.

• Solid-state sensors. Solid-state sensors (also known as silicon sensors) be-
came commercially available in the middle 1990s. All silicon-based sensors
consist of an array of pixels, each pixel being a tiny sensor itself. The user
directly touches the surface of the silicon: neither optical components nor
external CCD/CMOS image sensors are needed. Four main effects have
been proposed to convert the physical information into electrical signals:
capacitive, thermal, electric field, and piezoelectric.

• Ultrasound sensors. Ultrasound sensing may be viewed as a kind of echog-
raphy. A characteristic of sound waves is the ability to penetrate materials,
giving a partial echo at each impedance change. This technology is not yet
mature enough for large-scale production.
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New sensing techniques such as multispectral imaging [35] and 3D touch-
less acquisition [13] are being developed to overcome some of the drawbacks
of the current fingerprint scanners including: i) the difficulty in working with
wet or dry fingers, ii) the skin distortion caused by the pressure of the finger
against the scanner surface, and iii) the inability to detect fake fingers.

The quality of a fingerprint scanner, the size of its sensing area and the
resolution can heavily influence the performance of a fingerprint recognition
algorithm [8]. To maximize compatibility between digital fingerprint images
and ensure good quality of the acquired fingerprint impressions, the US Crim-
inal Justice Information Services released a set of specifications that regulate
the quality and format of both fingerprint images and FBI-compliant off-
line/live-scan scanners (Appendix F and G of CJIS [14]). Unfortunately, the
above specifications are targeted to the forensic applications (AFIS sector) and
as of today no definitive specifications exist for the evaluation/certification of
commercial fingerprint scanners [8].

2.3 Feature extraction

In a fingerprint image, ridges (also called ridge lines) are dark whereas valleys
are bright (see Figure 2.3a). Ridges and valleys often run in parallel; sometimes
they bifurcate and sometimes they terminate. When analyzed at the global
level, the fingerprint pattern exhibits one or more regions where the ridge
lines assume distinctive shapes. These regions (called singularities or singular
regions) may be classified into three typologies: loop, delta, and whorl (see
Figure 2.3b). Singular regions belonging to loop, delta, and whorl types are
typically characterized by ∩, ∆, and O shapes, respectively. The core point
(used by some algorithms to pre-align fingerprints) corresponds to the center
of the north most (uppermost) loop type singularity.

Fig. 2.3. a) Ridges and valleys in a fingerprint image; b) singular regions (white
boxes) and core points (circles) in fingerprint images.
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At the local level, other important features, called minutiae can be found
in the fingerprint patterns. Minutia refers to the various ways in which the
ridges can be discontinuous. For example, a ridge can abruptly come to an
end (termination), or can divide into two ridges (bifurcation) (Figure 2.4).
Although several types of minutiae can be considered, usually only a coarse
classification (into these two types) is adopted to deal with the practical dif-
ficulty in automatically discerning the different types with high accuracy.

 

Fig. 2.4. Termination (white) and bifurcation (gray) minutiae in a sample finger-
print.

Figure 2.5 provides a graphical representation of the main feature extrac-
tion steps and their interrelations.

2.3.1 Local ridge orientation and frequency

The local ridge orientation at point (x, y) is the angle θxy that the fingerprint
ridges, crossing through an arbitrary small neighborhood centered at (x, y),
forms with the horizontal axis. Robust computation methods, based on local
averaging of gradient estimates, have been proposed by Donahue and Rokhlin
[17], Ratha, Chen and Jain [36], and Bazen and Gerez [5]. The local ridge
frequency (or density) fxy at point (x, y) is the the number of ridges per
unit length along a hypothetical segment centered at (x, y) and orthogonal to
the local ridge orientation θxy. Hong, Wan, and Jain [24] estimate local ridge
frequency by counting the average number of pixels between two consecutive
peaks of gray-levels along the direction normal to the local ridge orientation.
In the method proposed by Maio and Maltoni [31], the ridge pattern is locally
modeled as a sinusoidal-shaped surface, and the variation theorem is exploited
to estimate the unknown frequency.
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Fig. 2.5. Graphical representation of fingerprint feature extraction steps and their
interrelations.
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2.3.2 Segmentation

The segmentation task consists in separating the fingerprint area from the
background. Because fingerprint images are striated patterns, using a global
or local thresholding technique does not allow the fingerprint area to be effec-
tively isolated. Robust segmentation techniques are discussed in [36][30][4].

2.3.3 Singularity detection

Most of the approaches proposed in the literature for singularity detection op-
erate on the fingerprint orientation image. The best-known method is based
on Poincaré index (Kawagoe and Tojo [28]). A number of alternative ap-
proaches have been proposed for singularity detection; they can be coarsely
classified in: 1) methods based on local characteristics of the orientation image,
2) partitioning-based methods, 3) core detection and fingerprint registration
approaches [16].

2.3.4 Enhancement and binarization

The performance of minutiae extraction algorithms and fingerprint recogni-
tion techniques relies heavily on the quality of the input fingerprint images.
In practice, due to skin conditions (e.g., wet or dry, cuts, and bruises), sensor
noise, incorrect finger pressure, and inherently low-quality fingers (e.g., el-
derly people, manual workers), a significant percentage of fingerprint images
(approximately 10%) is of poor quality.

The goal of a fingerprint enhancement algorithm is to improve the clarity
of the ridge structures in the recoverable regions and mark the unrecoverable
regions as too noisy for further processing. The most widely used technique
for fingerprint image enhancement is based on contextual filters. In contextual
filtering, the filter characteristics change according to the local context that is
defined by the local ridge orientation and local ridge frequency. An appropriate
filter that is tuned to the local ridge frequency and orientation can efficiently
remove the undesired noise and preserve the true ridge and valley structure
[24].

2.3.5 Minutiae extraction

Most of the proposed methods require the fingerprint gray-scale image to be
converted into a binary image. The binary images obtained by the binarization
process are submitted to a thinning stage which allows for the ridge line
thickness to be reduced to one pixel. Finally, a simple image scan allows
the detection of pixels that correspond to minutiae through the pixel-wise
computation of crossing number1 (see Figure 2.6).
1 The crossing number of a pixel in a binary image is defined as half the sum of

the differences between pairs of adjacent pixels in the 8-neighborhood; its value
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Fig. 2.6. a) A fingerprint gray-scale image; b) the image obtained after enhance-
ment and binarization; c) the image obtained after thinning; d) termination and
bifurcation minutiae detected through the pixel-wise computation of the crossing
number.

Some authors have proposed minutiae extraction approaches that work di-
rectly on the gray-scale images without binarization and thinning. This choice
is motivated by the following considerations: i) a significant amount of infor-
mation may be lost during the binarization process; ii) thinning may introduce
a large number of spurious minutiae; iii) most of the binarization techniques
do not provide satisfactory results when applied to low-quality images. Maio
and Maltoni [30] proposed a direct gray-scale minutiae extraction technique,
whose basic idea is to track the ridge lines in the gray-scale image, by ‘sailing’
according to the local orientation of the ridge pattern.

A post-processing stage (called minutiae filtering) is often useful in remov-
ing the spurious minutiae detected in highly corrupted regions or introduced
by previous processing steps (e.g., thinning) [16].

2.4 Matching

Matching high quality fingerprints with small intra-subject variations is not
difficult and every reasonable algorithm can do it with high accuracy. The
real challenge is matching samples of poor quality affected by: i) large dis-
placement and/or rotation; ii) non-linear distortion; iii) different pressure and
skin condition; iv) feature extraction errors. The two pairs of images in Fig-
ure 2.7a visually show high variability (large intra-subject variations) that can
characterize two different impressions of the same finger. On the other hand,
as it is evident from Figure 2.7b, fingerprint images from different fingers may
sometimes appear quite similar (small inter-subject variations).

is 1 for a termination minutia, 2 for an intermediate ridge pixel, and ≥ 3 for a
bifurcation or a more complex minutia.
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Fig. 2.7. a) Each row shows a pair of impressions of the same finger, taken from the
FVC2002 DB1, which were falsely non-matched by most of the algorithms submitted
to FVC2002 [32]; b) each row shows a pair of impressions of different fingers, taken
from the FVC2002 databases which were falsely matched by some of the algorithms
submitted to FVC2002.

The large number of existing approaches to fingerprint matching can
be coarsely classified into three families: i) correlation-based matching, ii)
minutiae-based matching, and iii) ridge feature-based matching. In the rest of
this section, the representation of the fingerprint acquired during enrollment
is denoted as the template (T) and the representation of the fingerprint to
be matched is denoted as the input (I). In case no feature extraction is per-
formed, the fingerprint representation coincides with the grayscale fingerprint
image itself.

2.4.1 Correlation-based techniques

Let I(∆x,∆y,θ) represent a rotation of the input image I by an angle θ around
the origin (usually the image center) and shifted by ∆x and ∆y pixels in di-
rections x and y, respectively. Then the similarity between the two fingerprint
images T and I can be measured as

S(T, I) = max
∆x,∆y,θ

CC(T, I(∆x,∆y,θ)), (2.1)

where CC(T, I) = TT I is the cross-correlation between T and I. The cross-
correlation is a well known measure of image similarity and the maximization
in (2.1) allows us to find the optimal registration. The direct application of
Equation (2.1) rarely leads to acceptable results, mainly due to the following
problems.
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• Non-linear distortion makes impressions of the same finger significantly
different in terms of global structure; the use of local or block-wise corre-
lation techniques can help to deal with this problem [6].

• Skin condition and finger pressure cause image brightness, contrast, and
ridge thickness to vary significantly across different impressions. The use of
more sophisticated correlation measures may compensate for these prob-
lems.

• A direct application of Equation (1) is computationally very expensive.
Local correlation and correlation in the Fourier domain can improve effi-
ciency.

2.4.2 Minutiae-based methods

This is the most popular and widely used technique, being the basis of the
fingerprint comparison made by fingerprint examiners. Minutiae are extracted
from the two fingerprints and stored as sets of points in the two-dimensional
plane. Most common minutiae matching algorithms consider each minutia as a
triplet m = {x, y, θ} that indicates the (x, y) minutia location coordinates and
the minutia angle θ. For a mathematical formulation of the minutiae matching
problem, see [16]. In the pattern recognition literature the minutiae matching
problem has been generally addressed as a point pattern matching problem.
Hough transform-based approaches are the most commonly used techniques
for global minutiae matching [37] [11]; an example is shown in Figure 2.8.
The Hough transform technique converts point pattern matching to the prob-
lem of detecting peaks in the Hough space of transformation parameters. It
discretizes the parameter space (∆x,∆y, θ) and accumulates evidence in the
discretized space by deriving transformation parameters that relate two sets
of points using a substructure of the feature matching technique.

Some authors have proposed “local minutiae matching” techniques that
consist of comparing two fingerprints according to local minutiae structures
[27] [38] [12]; local structures are characterized by attributes that are invari-
ant with respect to global transformation (e.g., translation, rotation, etc.)
and therefore are suitable for matching without any a priori global align-
ment. Matching fingerprints based only on local minutiae arrangements re-
laxes global spatial relationships which are highly distinctive and therefore
reduce the amount of information available for discriminating fingerprints.
Global versus local matching is a tradeoff between simplicity, low computa-
tional complexity, and high distortion-tolerance (local matching), and high
distinctiveness (global matching). Recent matching techniques tend to com-
bine the advantages of both local and global minutiae-matching.

2.4.3 Ridge Feature-based techniques

Three main reasons induce designers of fingerprint recognition techniques to
search for other fingerprint distinguishing features, beyond minutiae: 1) re-
liably extracting minutiae from poor quality fingerprints is very difficult; 2)
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Fig. 2.8. Minutiae matching by the Chang et al. approach [11]. Figures a) and b)
show the minutiae extracted from the template and the input fingerprint, respec-
tively; c) the minutiae are coarsely superimposed and the principal pair is marked
with an ellipse; d) each circle denotes a pair of minutiae as mated by the algorithm.

minutiae extraction is time consuming; 3) additional features may be used
in conjunction with minutiae (and not as an alternative) to increase system
accuracy and robustness.

Jain et al. [25] proposed a local texture analysis technique where the fin-
gerprint area of interest is tessellated with respect to the core point (see Figure
2.9). A feature vector (called the FingerCode) is composed of an ordered enu-
meration of the features extracted from the local information contained in
each sector specified by the tessellation. Thus the feature elements capture
the local texture information and the ordered enumeration of the tessellation
captures the global relationship among the local contributions. Matching two
fingerprints is then translated into matching their respective FingerCodes,
which is simply performed by computing the Euclidean distance between two
FingerCodes.

Several approaches have been recently proposed in the literature where
non-minutiae features such as spatial relationship of the ridge lines [23], local
orientation [39] [22] and local density [41] are used in conjunction with the
minutiae to improve the overall system performance.
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Fig. 2.9. System diagram of Jain et al.’s FingerCode approach [25].

2.5 Performance evaluation

Although the accuracy of fingerprint-based biometric systems can be very
high [32], no fingerprint recognition algorithm is perfect. Performance evalua-
tion is important for all biometric systems and particularly so for fingerprint
recognition, which is receiving widespread international attention for citizen
identity verification and identification. The most-widely known performance
evaluation efforts in this field are the Fingerprint Verification Competitions
(FVC) and the Fingerprint Vendor Technology Evaluation (FpVTE); other re-
cent initiatives include the NIST SDK Testing [42] and the MINEX campaign
aimed at evaluating interoperability [21].

The first Fingerprint Verification Competition (FVC2000 [32]) was or-
ganized by the Biometric System Laboratory of the University of Bologna,
together with the Biometric Test Center of the San Jose State University and
the Pattern Recognition and Image Processing Laboratory of the Michigan
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State University. The aim of the initiative was to establish a common bench-
mark for comparing fingerprint matching algorithms, allowing industrial and
academic organizations to compare performance and track improvements of
their algorithms. FVC2000 received significant attention from both academic
and commercial organizations; several research groups started using FVC2000
datasets for their experimentations and some companies, which initially did
not participate in the competition, requested the organizers to certify their
performance on the FVC2000 benchmark. The great encouragement received,
induced the authors to organize similar initiatives in the year 2002 (FVC2002
[32]), 2004 (FVC2004 [10]), and 2006 (FVC2006, which, at the time this chap-
ter is being written, is still in progress). The growing interest in performance
evaluation of fingerprint recognition algorithms is confirmed by the increas-
ing number of participants to FVC (Table 2.1): the number of organizations
that registered for the competition grew from 25 (in FVC2000) to 150 (in
FVC2006), and the number of algorithms evaluated grew from 11 to 70.

The Fingerprint Vendor Technology Evaluation (FpVTE) 2003 was orga-
nized to evaluate the accuracy of fingerprint identification and verification
systems [43]. FpVTE2003 was conducted by the U.S. National Institute of
Standards & Technology (NIST) as part of its statutory mandate under sec-
tion 403(c) of the USA PATRIOT Act to certify biometric technologies that
may be used in the U.S. Visitor and Immigrant Status Indicator Technology
(US-VISIT) Program. Eighteen different companies participated, with 34 sys-
tems tested, including the NIST Verification Test Bed fingerprint benchmark
system. It is generally believed that FpVTE2003 was the most comprehen-
sive evaluation of fingerprint matching systems ever executed, particularly in
terms of the number of fingerprints in the benchmark databases. Table 2.2
summarizes the main differences between FVC2004 and FpVTE2003.

Table 2.1. The four Fingerprint Verification Competitions (FVC): a summary.
Beginning with FVC2004, two different sub-competitions (Open Category and Light
Category) were organized using the same databases. Each participant was allowed
to submit up to one algorithm to each category. The Light category was intended
for algorithms characterized by low computational resources, limited memory usage
and small template size [10].

Evaluation Evaluation period Registered Participants Algorithms Evaluated

FVC2000 Jul - Aug, 2000 25 (15 withdrew) 11

FVC2002 Apr - Jul, 2002 48 (19 withdrew) 31

FVC2004 Jan - Feb, 2004 110 (64 withdrew) Open categ.: 41
Light categ.: 26

FVC2006 Nov - Dec, 2006 150 (97 withdrew) Open categ.: 44
Light categ.: 26
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Table 2.2. A comparison between FVC2004 and FpVTE2003, see [10] for more
details.

FVC2004 FpVTE2003
Algorithms Open Category: 41 Large Scale Test (LST): 13
Evaluated Light Category: 26 Medium Scale Test (MST): 18

Small Scale Test (SST): 3 (SST
only)

Subject
population

Students (24 years old on
the average)

Operational fingerprint data from a
variety of U.S. Government sources
including low-quality fingers and

low-quality sources
Fingerprint

format
Single finger flat

impressions acquired
through low-cost

commercial fingerprint
scanners (including small

area and sweeping sensors)

Mixed formats (flat, slap, and
rolled from different sources;

scanned paper cards, and from
FBI-compliant fingerprint scanners)

Perturbations Deliberately exaggerated
perturbations (rotation,

distortion, dry/wet
fingers, ...)

Difficulties mainly due to intrinsic
low-quality fingers of some subjects

and sometimes due to
non-cooperative users

Database
availability

Databases are available to
the scientific community

Databases are not available due to
data protection and privacy issues

Data collection All the data were acquired
for this event

Data coming from existing U.S.
Government sources

Database size 4 databases, each
containing 800 fingerprints

from 100 fingers

48,105 fingerprint sets from 25,309
subjects

Evaluation type Independent Strongly
supervised

Independent Supervised

Anonymous
participation

Allowed Not allowed

Best EER Best average EER: 2.07%
(in the Open Category)

Best EER on MST: 0.2% (MST is
the FpVTE2003 test closest to

FVC2004 Open Category)

2.5.1 Synthetic Fingerprint Generation

Performance evaluation of fingerprint recognition systems is very data depen-
dent. Therefore, the acquisition conditions and database size must be specified
when reporting the results. Typically, to obtain tight confidence intervals at
very low error rates, large databases of representative fingerprint images are
required. Moreover, once a fingerprint database has been used for testing
and optimizing a system, successive testing cycles require new databases pre-
viously unseen by the system. Unfortunately, collection of large fingerprint
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databases is not only expensive in terms of time and money, it is also prob-
lematic because of the repetitive monotony of the work (which often leads
to collection errors) and of privacy legislation protecting the use of personal
data. In several contexts, a synthetic generation of realistic fingerprint images
can help to solve the above problems. The most desirable property of such a
synthetic fingerprint generator is that it correctly models the various inter-
class and intra-class variations in fingerprint images observed in nature. In
particular, it should be able to generate realistic “impressions” of the same
“virtual finger,” by simulating:

• different finger areas touching the sensors;
• non-linear distortions produced by non-orthogonal pressure of the finger

against the sensor;
• variations in the ridge line thickness given by pressure intensity or by skin

dampness;
• small cuts on the fingertip and other kinds of noise.

The SFinGe approach introduced in [7] is a synthetic fingerprint generator
that meets the above requirements and can be used to automatically cre-
ate large databases of very-realistic fingerprints images (Figure 2.10), thus
allowing fingerprint recognition algorithms to be effectively trained, tested,
optimized, and compared. The synthetic fingerprints generated emulate im-
ages acquired with electronic fingerprint scanners, since almost all applica-
tions now require an on-line acquisition. In any case, impressions similar to
those acquired by the traditional “ink-technique” may be generated with a
few changes to the algorithm.

Fig. 2.10. Examples of synthetic fingerprint images generated by the SFinGe ap-
proach [7].
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2.6 Conclusions

Automatic fingerprint recognition was one of the first applications of machine
pattern recognition (it dates back to more than fifty years ago). Because of
this, there is a popular misconception that fingerprint recognition is a fully
solved problem. On the contrary, fingerprint recognition is still a complex and
very challenging pattern recognition task. The most important open issues
can be summarized as follows.

Improved feature extraction and matching algorithms. Designing algo-
rithms capable of extracting effective features and matching them in a robust
way is very hard, especially in poor quality fingerprint images and when low-
cost acquisition devices with a small area are used. Although state-of-the-art
fingerprint recognition systems are nowadays effective in matching fingerprints
at a very high speed (millions of matches per second) their level of sophis-
tication still cannot rival that of a well-trained fingerprint expert. Further
research is necessary to develop feature extraction approaches that can reli-
ably and consistently extract a set of features that provide rich information,
comparable to those commonly used by human experts.

Securing fingerprint-based biometric systems. As any other authentication
technique, fingerprint recognition is not totally spoof-proof. The main po-
tential threats for fingerprint-based systems are [16]: 1) attacking the com-
munication channels; 2) attacking specific software modules (e.g. replacing
the feature extractor or the matcher with a Trojan horse); 3) attacking the
database of enrolled templates; 4) presenting fake fingers to the sensor. Re-
cently, the feasibility of the last two types of attacks was reported by some
researchers: as far as point 4) is concerned, in [33] it was shown that it is
actually possible to spoof fingerprint recognition systems with well-made fake
fingertips; as to point 3), in [9], a technique to reverse-engineer minutiae-
based fingerprint templates was described. A considerable amount of research
on fake-detection approaches (e.g., [2]) and template-protection techniques
[40] is definitely needed to address the most critical security threats.
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3.1 Introduction

Robust face recognition systems are in great demand to help fight crime and
terrorism. Other applications include providing user authentication for access
control to physical and virtual spaces to ensure higher security. However the
problem of identifying a person by taking an input face image and matching
with the known face images in a database is still a very challenging prob-
lem. This is due to the variability of human faces under different operational
scenario conditions such as illumination, rotations, expressions, camera view
points, aging, makeup, and eyeglasses. Often, these various conditions greatly
affect the performance of face recognition systems especially when the sys-
tems need to match against large scale databases. This low performance on
face recognition prevents systems from being widely deployed in real appli-
cations (although many systems have been deployed, their use and accuracy
is limited to particular operational scenarios) where errors like the false ac-
ceptance rate (FAR) and the false rejection rate (FRR) are considered in
advance. FAR is the probability that the systems incorrectly accept an unau-
thorized person, while FRR is the probability that the systems wrongly reject
an authorized person. In order to enhance the overall face recognition al-
gorithm performance, numerous new algorithmic approaches such as Kernel
Class-Dependent Feature Analysis (KCFA) [76] [32], Tensorfaces [71], mani-
fold learning methods [58], kernel methods [66], and different Linear Discrim-
inant Analysis (LDA) variants have been proposed [47] showing a great deal
of improvement over conventional techniques. Among these, some of the new
approaches such as KCFA, emphasize on the generalization to unseen people
and Tensorfaces can deal with multiple factor analysis (different pose, illumi-
nation). Manifold learning methods can capture the underlying structures in
the feature space of facial images. Traditional LDA variants try to find the
best separation projection vectors by maximizing the Fisher’s criteria [23].

Recently, 3D face recognition has gained attention in the face recognition
community due to its inherent capability to overcome some of the traditional
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problems of 2D imagery such as pose and lighting variation [16] [20] [24].
Commercial 3D acquisition devices can obtain a depth map (3D-shape) of the
face. These usually require the user to be in very close proximity to the camera;
additionally some devices will require the user to be still for several seconds for
a good 3D model acquisition. In contrast 2D face acquisition can work from
a distance and not require significant user co-operation. This is the trade-off
with desiring to work with 3D shape data. One approach to address this issue
is the 3D Morphable Model approach (3DMM) [14] which tries to recover a 3D
face model from a 2D face image. 3DMM is an attractive method for handling
different poses and illuminations effectively [12] [13] compared to other 3D
face recognition approaches. However, this approach still requires significant
ground-truth 3D face models for training the system and overall speed of
rendering a 3D face takes several seconds. Other approaches to reconstruct
the 3D-shape from 2D images of the face include Structure From Motion(SfM)
[36]. A more comprehensive survey of recent 3D face recognition algorithms
can be found at [63] [19] and the fusion of visual and thermal face recognition
can be found at [38] reporting multi-model based face recognition systems
lead to improved performance than single modality systems.

In this chapter we mainly focus on 2D-based face recognition approaches
with some background on traditional methods in Section 2 and then emphasis
on some of the newer approaches that tackle problems with 2D face recognition
in the later sections. We briefly touch upon some of the most popularly used
face databases by the face recognition community in Section 3. In the follow-
ing sections, we describe the state-of-the-art techniques for face applications
more deeply and show their experimental results. In Section 4, we show that
KCFA can be successfully applied to face recognition with large scale chal-
lenging databases such as the Face Recognition Grand Challenge (FRGC)
database [55] [1]. In section 5, we describe Tensorfaces for face recognition
and novel face synthesis under different pose and illumination. Pre-processing
approaches that aid 2D face recognition are dealt with in Section 6 detailing
how to perform real-time pose correction using Active Appearance Models
(AAMs). In Section 7, we show how to deal with very low-resolution, poor
quality acquired face images with a novel super-resolution method that uti-
lizes manifold learning techniques to achieve good reconstruction results. We
then conclude with a short closing discussion in Section 8.

3.2 Face Recognition Techniques

Face recognition algorithms can be classified into two broad categories accord-
ing to feature extraction schemes for face representation: feature-based meth-
ods and appearance-based methods [81]. Properties and geometric relations
such as the areas, distances, and angles between the facial feature points are
used as descriptors for face recognition. On the other hand, appearance-based
methods consider the global properties of the face image intensity pattern.
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Fig. 3.1. The first six basis vectors of Eigenfaces.

Typically appearance-based face recognition algorithms proceed by comput-
ing basis vectors to represent the face data efficiently. In the next step, the
faces are projected onto these vectors and the projection coefficients can be
used for representing the face images. Popular algorithms such as PCA, LDA,
ICA, LFA, Correlation Filters, Manifolds and Tensorfaces are based on the
appearance of the face. Holistic approaches to face recognition have trouble
dealing with pose variations. Building image face mosaics like those in [65] [45]
have been introduced to deal with the pose variation problem. We will also
discuss in detail an Active Appearance Model approach to pose correction in
later section. We review several of the popular face recognition algorithms as
well as Elastic Bunch Graph Matching(EBGM) approach [75].

3.2.1 Eigenfaces (PCA)

Eigenfaces [69] also known as Principal Components Analysis (PCA) find the
minimum mean squared error linear subspace that maps from the original N -
dimensional data space into an M -dimensional feature space. By doing this,
Eigenfaces (where typically M << N) achieve dimensionality reduction by
using the M eigenvectors of the covariance matrix corresponding to the largest
eigenvalues. The resulting basis vectors are obtained by finding the optimal
basis vectors that maximize the total variance of the projected data(i.e. the set
of basis vectors that best describe the data). The optimal basis PCA vectors
W are the ones that maximize the following objective function

WPCA = arg max
W

|WT ST W| = [w1 w2 · · · wm] (3.1)

where ST denotes the total scatter matrix which contains pixel-wise covari-
ances of the face data. Figure 3.1 shows examples of Eigenfaces generated
from the generic training images of FRGC dataset [1] after pre-processing
the face images such as normalizing faces for rotation, scale and illumination
compensation. PCA is good for data representation but not necessarily for
class discrimination as we will discuss next.

3.2.2 Linear Discriminant Analysis (LDA) and Fisherfaces

Linear Discriminant Analysis (LDA) [23] is more suited for finding projections
that best discriminate different classes. It does this by seeking the optimal pro-
jection vectors which maximize the ratio of the between-class scatter and the
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Fig. 3.2. The first six basis vectors of Fisherfaces.

within-class scatter (i.e. maximizing class separation in the projected space).
The optimal basis vectors of LDA can be denoted as

WLDA = arg max
W

|WT SBW|
|WT SW W| (3.2)

where SB and SW indicate between-class scatter matrix and within-class scat-
ter matrix respectively.

Typically when dealing with face images (and most other image based
pattern recognition problems) the number of training images is smaller than
the number of pixels (or equivalently dimensionality of the data), thus the
within-class scatter matrix SW is singular causing problems for LDA [23]. To
address this issue [10] first performs PCA to reduce the dimensionality of the
data in order to overcome this singular-matrix problem and then applies LDA
in this lower-dimensional PCA subspace. Improvement in recognition results
was shown using this approach over traditional PCA. The projection vectors
from Fisherfaces are those that maximize the following objective function:

WFisher = arg max
W

|WT WT
PCASBWPCAW|

|WT WT
PCASW WPCAW| (3.3)

Figure 3.2 shows examples of Fisherfaces generated from the generic training
images of the FRGC dataset.

3.2.3 LDA variants

Direct LDA (DLDA) [78] derives eigenvectors using simultaneous diagonaliza-
tion techniques. Unlike other LDA approaches [47], the DLDA simultaneously
diagonalizes the between-class scatter matrix first and then diagonalizes the
within-class scatter matrix. The eigenvectors with very small (close to zero)
eigenvalues in the SB can be discarded since they contain no discriminative
power, while the eigenvectors with small eigenvalues of the SW matrix si-
multaneously being kept, especially the null-space. Another LDA variant is
called the Gram-Schmidt LDA (GSLDA) [82] approach avoids computing the
inverse of the within-class scatter matrix or performing the diagonalization
step needed in DLDA. These methods assert that the most discriminating
power for LDA may lie in the null-space of the within scatter matrix which
maximizes the Fisher’s ratio.
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3.2.4 Independent Component Analysis (ICA)

Independent Components Analysis (ICA) for face recognition has been applied
in [8]. ICA seeks a non-orthogonal basis so that the transformed features are
statistically independent, while PCA finds an orthogonal basis for face images
so that the transformed features are uncorrelated. The basis images developed
by PCA depend only on second-order statistics. ICA generalizes the concept
of PCA to model higher-order statistical relationships. Original motivation
for this decomposition comes from the need to separate audio streams into
independent sources without prior knowledge of the mixing process.

3.2.5 Local Feature Analysis (LFA)

LFA [54] constructs a family of locally correlated feature detectors based on
eigen-subspace decomposition. A selection or sparsification step produces a
minimally correlated and topographically indexed subset of features that de-
fine the subspace of interest. Local representations offer robustness against
variability due to changes in localized regions of the objects. The features
used in the LFA method are less sensitive to illumination changes and are
easier for estimating rotations. The LFA algorithm was used as a key compo-
nent algorithm in FaceIt [56], which is one of the commercial face recognition
systems.

3.2.6 Elastic Bunch Graph Matching (EBGM)

EBGM [75] constructs dynamic link architecture using image graphs to repre-
sent individual faces. An image graph representing a face image is a geomet-
rical structure consisting of various nodes connected by edges. The nodes are
located at facial landmarks such as the pupils and the corners of the mouth
as shown in Figure 3.3. A set of training images is represented by the cor-
responding bunch of image graphs of those images. A set of complex Gabor
wavelet coefficients (or Gabor jets) are used as local features at each node.
These Gabor jets contain information of multiple orientations and frequencies
for each node. When performing face recognition on a new facial image, each
graph in the training set is matched to the image and the best match indicates
the identity of person.

3.2.7 Neural Networks (NN) and Support Vector Machines (SVM)

Neural Networks and Support Vector Machines (SVMs) are usually used in
low dimensional feature spaces due to the computational complexity of the
processing involved using high-dimensional face data. Neural network ap-
proaches [43] have been widely explored for feature representation and face
recognition. However, as the number of people for training increases, NN re-
quires computational burden exponentially. Fusion of multiple neural networks
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Fig. 3.3. The face model constructed by EBGM: (a) an image graph, (b) the facial
landmarks of a test image detected by EBGM, (c) the image graph of a test image
constructed by EBGM.

classifiers improved the overall performance of face recognition [27]. A face
recognition system using hybrid neural and dual eigenspace methods has been
proposed in [79]. However, in general it is not known what exactly the neural
network has learned or how it will behave, and usually a significant amount
of training data is required for good generalization which usually requires sig-
nificant amount of offline training. Support Vector Machines (SVM) [70] [30]
have been successfully applied for object recognition, by utilizing the kernel
trick which maps data onto higher-dimensional feature spaces. The SVM finds
the hyperplane that maximizes the margin of separation in order to minimize
the risk of misclassification not only for the training samples, but to enable it
to achieve better generalization to the unseen data.

3.2.8 Tensorfaces

Facial images have different appearance due to multiple factors such as vari-
ations across people, pose changes, lighting conditions and facial expressions.
The Tensorfaces method [71] is proposed to model the variations of these fac-
tors by a multilinear framework. Tensors, which are higher-order extensions
of matrices, allow us to construct multilinear models so as to analyze multiple
factors of these facial variations. Lathauwer et al. [42] proposed Higher-Order
Singular Value Decomposition (HOSVD) for tensor decomposition, which is
an extension of Singular Value Decomposition (SVD) for matrix decomposi-
tion. Vasilescu et al. [71] introduced the idea of tensor decomposition into the
area of computer vision and proposed Tensorfaces, a higher-order extension of
the Eigenfaces method. By analyzing the tensor consisting of training images,
the basis of each facial factor (expression, pose, etc.) in the training images
can be obtained.

3.2.9 Manifolds

Learning the similarity among data points is one of the key concepts for the
analysis of face images. In the previous work of face image analysis using
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manifold learning methods, it has been shown that face images lie on a man-
ifold [58] [28] [68] [11]. Also, it has been demonstrated that the variation of a
certain facial factor such as various poses or expressions makes a sub-manifold
in the manifold structure [29]. So, it is helpful to detect and analyze the un-
derlying manifold structure in the distribution of facial image samples. Tradi-
tional methods such as PCA and LDA often see only the Euclidean structure,
so they fail to discover the underlying structure if the data lies on a nonlinear
manifold. The analysis of manifolds reveals the characteristics of the data dis-
tribution and can be applied for dimensionality reduction. Thus, to discover
the nonlinear structure of manifolds, manifold learning techniques have been
proposed [58] [68] [29]. In many real-world classification problems, the local
manifold structure is more important than the global Euclidean structure.
Thus, manifold learning techniques often use adjacency information among
data samples to preserve the local manifold structure. By manifold learning
techniques, neighboring points should still be in close proximity after map-
ping, and the points far from each other should still be far from each other in
the new mapping.

3.2.10 Kernel Methods

Due to the large appearance changes in human face images, the linear subspace
methods may not capture the non-linearity in facial image representation. As
a result, the PCA and LDA algorithms have been extended to represent non-
linear mappings in a higher-dimensional space [9]. Computing and storing the
new features in this higher-dimensional space becomes very expensive. Thus,
the kernel trick is used for computational efficiency as it enables us to obtain
the necessary inner products in the higher-dimensional feature space with-
out computing the higher-dimensional feature mapping. Examples of kernel
methods are Kernel Eigenfaces and Kernel Fisherfaces [77] . Kernel functions
can be used without having to form an explicit high-dimensional mapping
as long as kernels form an inner product space in this higher dimensional
mapping and satisfy Mercer’s theorem [51]. A number of papers combining
linear subspace methods with the kernel trick including Kernel Direct LDA
(KDLDA) [46], Kernel LDA (KDA) [50] or Kernel Fisher’s Analysis (KFA),
Kernel PCA (KPCA) [37], and Kernel ICA (KICA) [6] have been applied in
face recognition showing improved performance over linear approaches.

3.2.11 Correlation Filters

Advanced correlation filter approaches such as those found in [40] [39] process
images in the spatial frequency domain using closed form correlation filter so-
lutions designed for specific optimization criteria. One of the most often used
correlation filters is the Minimum Average Correlation Energy (MACE) [48]
filter. This is designed to minimize the average correlation plane energy re-
sulting from the training images, while constraining the correlation peak value
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at the origin to pre-specified values. Correlation outputs from MACE fil-
ters typically exhibit sharp peaks, making the peak detection and location
relatively easy and robust. Developed and applied originally in the field of
Automatic Target Recognition (ATR), several different types of correlation
filters have been proposed for face recognition in the presence of illumina-
tion variations [60], and occlusion [61], including a new hybrid shift-invariant
PCA-correlation filter approach called Corefaces [62] that has all the sub-
space representation power of PCA and the shift-invariant and discrimination
properties of advanced correlation filters.

3.3 Databases

There are several publicly available face databases for the research commu-
nity to use for algorithm development, which provide a standard benchmark
when reporting results. Different databases are collected to address a differ-
ent type of challenge or variations such as illumination, pose, occlusion, etc.
A more comprehensive review of available standard databases for develop-
ing face recognition algorithms can be found in the face database chapter
of this book. In this section, several standard databases including PIE [64],
FERET [2], FRGC [55], Yale [3] and AR [4] are briefly introduced to explain
the experimental setup of the training and testing that lead to the different
results reported in this chapter.

3.3.1 Face Recognition Grand Challenge (FRGC) database

The Face Recognition Grand Challenge (FRGC) conducted by the NIST is
aimed at an objective and systematic evaluation of face recognition algorithms
under different challenging conditions. Simultaneously, the aim for the FRGC
is to push researchers to develop the next generation face recognition algo-
rithms that can reduce the error rate in face recognition systems by an order of
magnitude over the Face Recognition Vendor Test (FRVT) 2002 results [15]
[56]. Details of the different FRGC experiments can be found at [55]. The
FRGC data is partitioned into three datasets: a generic training set which
one can use to train the face recognition system (if using PCA, this set is
used to generate the PCA subspace), the target set (these are the images
acquired under controlled conditions) and the probe set (the test set) cap-
tured under un-controlled conditions. The FRGC generic training set contains
12,776 images (from 222 subjects) taken under controlled and uncontrolled il-
luminations. The gallery set contains 16,028 images (from 466 subjects, with
some overlap with subjects in the generic training set) under controlled illu-
mination while the probe set contains 8,014 images (from 466 subjects) under
uncontrolled illumination. The similarity matrix of matching scores between
the target and probe sets are computed and reported to the NIST in the form
of a 16, 028× 8, 014 similarity matrix. Sample images of the FRGC database
are shown in Figure 3.4.
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(a) Controlled images (b) Uncontrolled images

Fig. 3.4. Sample images of the FRGC database.

(a) Sample poses among 13 poses

(b) Sample lighting conditions among 43 different lighting conditions

Fig. 3.5. Sample images of the PIE database.

3.3.2 FERET database

Prior to the FRGC, the NIST organized the FERET database and evaluation
protocol [57] to facilitate the development of commercial face recognition sys-
tems. The FERET database is designed to measure the performance of face
recognition algorithms on a large database in practical settings. The FERET
program provides a large database of facial images taken from 1,199 individ-
uals and collected between August 1993 and July 1996 to support algorithm
development and evaluation. The FERET database consists of 14,126 images
of 1,564 sets (1,199 original sets and 365 duplicate sets). For development pur-
poses, 503 sets of images were released to the researchers, and the remaining
sets were sequestered for independent evaluation.

3.3.3 Pose Illumination Expression (PIE) database

The CMU Pose, Illumination, and Expression (PIE) database [64] contains
41,368 facial images of 68 people. The images are acquired across differ-
ent poses, under different illuminations, and with different facial expressions.
First, in the CMU 3D Room, each person’s images were captured under 13
different poses, 43 different illumination conditions, and 4 kinds of facial ex-
pressions. In particular, 43 different illumination conditions were obtained
with only 21 flashes, since images were captured both with and without ambi-
ent background lighting switched on. Additionally each person has four types
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of expressions: neutral expression, smiling, blinking, and talking. The CMU
PIE database has been extensively used to analyze face images under dif-
ferent illumination and pose and for benchmarking the development of face
recognition algorithms to handle such distortions.

3.3.4 AR database

The AR face database [4] was created by the Computer Vision Center (CVC),
at Universitat of Autònoma de Barcelona. It contains over 4,000 color images
corresponding to 126 people’s faces (70 men and 56 women). The images
acquired are frontal view pose with different facial expressions, illumination
conditions, and occlusions (such as people wearing sun glasses and a scarf)
making this database one of the more popular ones for testing face recogni-
tion algorithms in the presence of occlusion. No restrictions on wear (clothes,
glasses, etc.), make-up, hair style, etc. were imposed to the participants. Each
person participated in two sessions, two weeks apart.

3.3.5 Yale Face database

The Yale database [3] contains 165 gray-scale images in GIF format of 15
individuals. There are 11 images per subject, one for each variation such as
different facial expression, center-light, with glasses, happy, left-light, with and
without glasses, normal, right-light, sad, sleepy, surprised, and wink. The Yale
Face Database was extended to the Yale Face Database B, which contains 5760
single light source images of 10 subjects each seen under 576 viewing condi-
tions (9 poses x 64 illumination conditions). For every subject in a particular
pose, an image with ambient (background) illumination was also captured.

3.4 Advanced Correlation Filters

Due to their built-in shift invariance and designed distortion tolerance, ad-
vanced correlation filters are well suited for biometric verification/identification
applications and have been shown to exhibit robustness to illumination varia-
tions and other distortions [60]. One of the popular filters called the Minimum
Average Correlation Energy filter is designed to minimize the average corre-
lation plane energy E resulting from the N training images defined as

E =
N∑

i=1

∑M−1

x=0

∑M−1

y=0
ci(x, y)2 =

N∑

i=1

∑M−1

u=0

∑M−1

v=0
|Ci(u, v)|2

=
N∑

i=1

∑M−1

u=0

∑M−1

v=0
|H(u, v)|2 |Xi(u, v)|2 = h+

N∑

i=1

Dih = h+Dh. (3.4)
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In Eq.(3.4), ci(x, y) is defined as the ith spatial correlation plane of size
M ×M which according to Parseval’s theorem preserves the same energy in
the Fourier frequency domain Ci(u, v). H(u, v) is the frequency domain filter
and Xi(u, v) is the 2D Fourier transform of the ith training image. D as de-
fined in Eq.(3.4) is a M2×M2 diagonal matrix containing the average power
spectrum of the training images along its diagonal. +indicates the complex
conjugate transpose. The MACE filter also specifies that correlation peak at
the origin to pre-specified values represented below in the following equation:

X+h = c (3.5)

where X is a M2 × N complex valued matrix and its ith column contains
the lexicographically re-ordered version of the 2D Fourier transform of the
ith training image and c is a N×1 row vector containing the correlation
peaks desired for each of the N training images. Minimizing Eq.(3.4) the
while satisfying the linear constraints in Eq.(3.5) yields a closed form solution
to the optimization, giving the vectorized MACE filter h as

h = D−1X(X+D−1X)−1u. (3.6)

One of the recent advances in correlation filters is the class-dependent fea-
ture analysis (CFA) method which proposes a novel feature extraction method
using correlation filters [33] [34] [5] [59]. Since the basis vectors acquired from
either PCA or LDA are database dependent, it may be difficult to obtain
basis vectors which represent or discriminate faces well on large databases.
These approaches also exhibit poor generalization power; they may not dis-
criminate faces well which have not been seen during training. Although ker-
nel approaches such as KPCA, KLDA are attractive because of their ability
to effectively use nonlinear mappings of face features, performance of these
methods indicates room for improvement. Figure 3.6 shows a brief overview
of our proposed work. Normalized face images are effectively mapped onto a
high dimensional space using the kernel trick and features are extracted using
correlation filters in the CFA framework, and then a kernel support vector
machine (SVM) is designed among classes on this reduced feature set. We
demonstrate our proposed work on the FRGC database to show the power of
the CFA approach and how using this approach as a dimensionality reduc-
tion method further improves performance using SVM for classification in this
feature space.

3.4.1 Kernel Class Dependent Analysis

In the CFA approach, one filter (e.g., MACE filter) is designed for each class
in the generic training set. Then a test image y is characterized by the corre-
lations of that test image with the n MACE filters, i.e.,

c = HT y = [hMACE−1 hMACE−2 · · · hMACE−n]T y (3.7)
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Fig. 3.6. An overview of the KCFA algorithm.
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N2

u2 = [1 1 1 · · · 1]
T

y1 y2

y

hMACE−2

yThMACE−2

Fig. 3.7. The CFA algorithm; the filter response of y1 and hMACE−2 can be dis-
tinctive to that of y2 and hMACE−2.

where hMACE−i is a filter designed for class i which is trained to give a small
correlation output (close to 0) for all classes except for class i. For example,
the number of filters generated by the FRGC generic training set is 222, since
this generic training set contains 222 classes (or subjects). Then each input
image y is projected onto those basis vectors to yield a 222 dimensional feature
vector as shown in Figure 3.7 and N indicates the number of images per each
class. The similarity of the probe image to the gallery image is computed in
this 222 dimensional feature space.

Kernel functions defined by K(x,y) = 〈Φ(x),Φ(y)〉 can be used without
having to form the mapping explicitly, as long as the chosen kernel functions
form an inner product space in this higher dimensional mapping and satisfy
Mercer’s theorem [70]. Examples of kernel functions are: Polynomial kernel
(K(x, y) = (〈x,y〉+1)p), Radial Basis Function kernel (K(x,y) = exp(−‖x−
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Authentic class

Imposter class

2D-FFT

Correlation filter

(template)

2D-IFFT

Fig. 3.8. The correlation peaks. The height of the peak indicates confidence of
match, so we get a high peak for an authentic class at the origin with low correlation
values in the remaining correlation plane. For imposter classes there is no discernible
peak detected in the correlation plane.

y‖2/2σ2)), and Neural-network kernel (K(x,y) = tanh(k〈x,y〉 − δ)). The
Kernel Correlation Filters can be extended from the linear correlation filters
using the kernel trick. The kernel correlation output of a filter h and an input
y can be expressed as

Φ(y) ·Φ(h) = (Φ(y) ·Φ(X′))(Φ(X′) ·Φ(X′))−1u

= K(y,x′i)K(x′i,x
′
i)
−1u (3.8)

where X′ and x′i indicates the corresponding pre-processed versions of X and
xi. In the latest KCFA framework using different image representations and
image resolutions combined using feature fusion, the pure 1-1 matching per-
formance of KCFA has been improved to 82.4% verification at 0.1% FAR.

3.4.2 Support Vector Machines for Classification

A direct use of the SVM as a classifier on raw pixel data may not be practically
feasible (for training) due to the large amount of available training data and
large dimensionality of faces. Instead of using the SVM as a direct classifier on
image pixels, we use SVMs in KCFA feature space. Since the dimensionality
reduction based on KCFA is more efficient and discriminative than other
approaches discussed, we use KCFA features (222 dimensional feature space)
as an input for training the SVM. We design 466 SVMs (in a one-against all
framework) using the gallery set of the FRGC data by changing the labeling
information as shown in Figure 3.9. The probe images are then projected on
the class-specific SVMs to provide a classification score between all the gallery
images and all test images.

As shown in Figure 3.10, the distance measure using the SVM improves
the results over the normalized cosine distance in the KCFA feature space
and in many practical scenarios we can perform this as we will have access
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Fig. 3.9. Building decision boundary from class 2 vs. rest of all; u indicates the
class labeling information vector and N depends on the number of images in each
class.
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Fig. 3.10. Verification rate (VR) for the FRGC experiment 4 for different methods
using the normalized cosine distance and the SVM space (0.1% FAR).

to the Target set. We also compared the different kernel approaches such as
KPCA and KDA with different distance measures showing that the KCFA
methods based on SVM have superior performance compared to other kernel
approaches.

3.5 Tensorfaces

The Tensorfaces method is a novel method to analyze the facial appearance
factors such as pose variations, lighting conditions and facial expressions. The
traditional Tensorfaces method using multilinear algebra enables us to ana-
lyze these facial factors from a particular training set, but it has difficulties
analyzing the factors of a new test image when all the factors of the test image
are unknown or untrained. Thus, factorization methods for test images have
been proposed [73] [52] [53].

3.5.1 Multilinear Analysis of Training Images

A tensor is a multilinear extension of a matrix; while a matrix deals with only
two dimensions, a tensor can represent more than two dimensions. Higher-
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Order Singular Value Decomposition (HOSVD) [42] is a higher-order exten-
sion of Singular Value Decomposition. HOSVD transforms an n-dimensional
tensor into the weighted sum of the outer products of n independent vec-
tors. When a training set has three facial factors such as people’s identities,
lighting conditions, and pose types, one of the general ways to analyze the
training set is to construct a Npixel× (Npeople×Nlight×Npose) matrix Dtrain

which has the vectorized training images as columns. Here, Npixel is defined
as the number of pixels in one image, Npeople is the number of people, Nlight

is the number of lighting conditions, and Npose is the number of pose types
in the training set. By using SVD, the matrix representing the training set is
decomposed into two orthogonal bases and singular values:

Dtrain = UpixelSVT (3.9)

where Upixel is the basis of the column space and V is the basis of the row
space of Dtrain. By HOSVD, the same training set can be analyzed in more
detail:

Dtrain = UpixelZ(Upeople ⊗Ulight ⊗Upose)T (3.10)

where ⊗ represents the Kronecker product. This analysis of face images using
HOSVD is called Tensorfaces [71]. The Npeople×Npeople matrix Upeople spans
the space of people parameters, the Nlight × Nlight matrix Ulight spans the
space of light parameters, and the Npose × Npose matrix Upose spans the
space of pose parameters. HOSVD can be represented by two forms; one is
using tensors and tensor multiplications while the other is using matrices and
the Kroneker products. Eq.(3.10) is the matrix notation of HOSVD. By the
analogue of decomposing the training images, one image can be decomposed
into the same kinds of factors, no matter whether it is in the training set or
not:

d = UpixelZ(xpeople ⊗ xlight ⊗ xpose)T . (3.11)

In the case of the training image of the ith person, the jth lighting condi-
tion and the kth pose, the person’s identity parameter xpeople is the ith row
of the matrix Upeople since the Npeople×1 vector xpeople is the ith column of
Upeople

T . For the same reason, the lighting parameter xlight of the training
image is the jth row of the matrix Ulight, and xpose is the kth row of the
matrix Upose. The parameters of all the factors for the training image can be
easily calculated by the multilinear analysis of the training set [72]. It is also
easy to calculate the parameter xpeople of a test image when it is the only
unknown parameter and all the others are known [72] [74] or estimated by
other techniques [67] [73]. However, it has difficulties obtaining the param-
eters xpeople, xlight, and xpose when all the parameters are unknown for a
test image. In particular, if the test image has untrained pose or lighting con-
ditions, it is more challenging to get the three parameters of the three factors.
Consequently, the goal of factorization in the testing process is to solve for all
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the unknown parameters xpeople, xlight, and xpose of any test image based
on the multilinear analysis of the training set.

3.5.2 Multilinear Analysis of Testing Images

To factorize test images which have untrained poses or lighting conditions, a
novel factorization method is proposed based on the previous work [52] [53].
By the method, all the factors can be estimated simultaneously without any
a priori assumption or knowledge of the acquired face image. Moreover, the
proposed method is applicable even when a test image has untrained lighting
condition or pose. In the proposed method, to obtain factor parameters, first,
it is shown that the tensor factorization problem can be formulated as a least
squares problem with a quadratic equality constraint.

x̂ = arg min
x

‖UpixelZx− dtest‖2 subject to ‖x‖2 = 1 (3.12)

where dtest is a given test image, and x = xpeople ⊗ xlight ⊗ xpose. The goal
is to find x̂, the optimal value of x which minimizes the distance between the
test image dtest and the reconstructed image by the estimated parameters.

Next, x̂ is obtained by well-defined numerical optimization techniques
which allow us to obtain the facial appearance factors simultaneously. In [52],
x̂ is estimated by the projection method [80], which is a better optimization
scheme than Newton’s method to solve the problem. After getting x̂, which is
the Kronecker product of the mixing factors, it is decomposed into individual
factors xpeople, xlight, and xpose by Higher-Order Power Method [41].

Table 3.1. The recognition rates using Tensor Factorization [52].

Methods People and lightings conditions People, lighting conditions and
poses

EigenFaces 79.3% 69.4%
FisherFaces 89.2% 73.6%

Tensor
factorization

95.6% 81.6%

Face recognition and synthesis are the main applications of tensor factor-
ization, and results using the Yale Face Database B [3] can be found in [52].
The database contains 10 people, and each person has 65 different lighting
conditions and 9 poses. Two kinds of multilinear models were constructed
and tested; one is a bilinear model with two factors consisting of different
people and lighting conditions, and the other is a trilinear model with three
factors consisting of different people, lighting conditions, and poses. To select
lighting variation for training, first, 10 lighting conditions among 65 were dis-
carded since the images under the lighting conditions are so dark that it is



3 Face Recognition 59

Person & lighting Pose types

Synthesized images

xpose

xpeople & xlight

xpose xpose xpose xpose

Fig. 3.11. The results of face synthesis on pose variation using tensor factorization
with three factors: people, lighting conditions and poses. The synthesized images
still have the person’s identity parameter and the lighting parameter of the top left
image, but they have different pose types.

hard to extract information from them. Next, every fifth sample was added
to the training set. For the bilinear model, 11 lighting conditions of 10 sub-
jects were used for training, while the other 44 lighting conditions were used
for testing with no overlap between the two subsets. For the trilinear model,
the lighting conditions were the same with the above bilinear model for both
training and testing. Additionally, three poses are used for training while the
other six poses are used for testing. Here, the three poses for training are the
pose 0, 6, and 8 of the Yale Face Database; the pose 0 is the frontal pose, and
the pose 6 and 8 are taken from the two largest degrees of the camera optical
axis. Table 3.1 shows the results of face recognition, and Figure 3.11 shows
the results of face synthesis on pose variation.

3.6 Active Appearance Models for Face Recognition

An Active Appearance Model (AAM) [21] [22] is a statistical model to inter-
pret (in this case) facial images with known parameters. It is comprised of
a shape model and an appearance (pixel intensity) model using PCA. The
general procedure of an AAM algorithm can be explained as follows. The
manually labeled (during training only) shape information (2D vertices) is
normalized to deal with global geometric transformations such as scale and
rotation using Procrustes Analysis which is a well-known technique for analyz-
ing the statistical distribution of shapes. Then, the normalized shape (s) for
an AAM model can be expressed by the mean shape (̄s) and a linear combina-
tion of the basis vectors with the amount of projection coefficient vector(ps)
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(a) (b) (c)

(d) (e) (f)

Fig. 3.12. Overview of the integrated face recognition system from video: (a) face
detection, (b) AAM fitting, (c) automatic AAM tracking of fiducial facial landmarks,
(d) a non-frontal face pose image, (e) face pose correction normalization, and (f)
an illumination removal processed image (notice the removal of left cheek specular
reflections).

which can be denoted by:
s = s̄ + Vsps (3.13)

where Vs indicates the eigenvector matrix of the shapes. After warping an
original image based on the mean shape, the appearance (shape free) model
also can be represented by the mean appearance (Ā(s̄)) and a linear combi-
nation of appearance basis vectors. This can be expressed by:

A(s̄) = Ā(s̄) + VApA (3.14)

where A(s̄) indicates a vectorized appearance image after warping based on
the mean shape, VA indicates the eigenvector matrix of the appearances and
pA is the projection coefficient vector. For fitting an AAM into new images,
we need to minimize the distance between new images with known model
parameters. Then, the objective function can be denoted as

E(s) = ‖A(s̄)− I(s, s̄)‖2 (3.15)

where I(s, s̄) indicates an input image with shape s which is being warped
based on the mean shape (̄s). The minimization can be done by assuming
a linear relationship between residual errors (δI) and displacement vectors
(δc) [21].

By using the current residual errors, the iterative model refinement proce-
dure is applied to find the direction which gives the minimum residual error.
To speed this fitting process, the inverse composition algorithm is proposed
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Fig. 3.13. Face matching distance performance across poses.

Table 3.2. Database for performance evaluation

Database (Gallery(G)) Test (Query(Q))

1 frontal image, 10 people, (10 images) 30,40 images, 10 people (376 images)

in [49] [35] [26]. They use the inverse compositional warp update rather than
updating c ← c + δc, which leads to fast fitting convergence and low compu-
tation cost. Typically, for the video-based AAM, the first frame is selected for
the shape approximation. Then the estimated shape on the first frame can
be the initialization of the shape on the next frame assuming the shape does
not change dramatically from frame to frame (high frame rate video capture
(>7 fps)). If the first video frame fails to estimate the correct face shape on
the image, then the next consecutive frame will also highly likely fail to con-
verge to estimate the correct face shape on the image. In the initialization
step in searching for these points, we automatically run a face detector [63] as
shown in Figure 3.12 (a) and (b) for providing a good initial region-of-interest
search space. Once the AAM fits on the detected face fiducial points and
starts tracking, the faces are then warped into neutral frontal pose faces. Fi-
nally they are then passed through an illumination-pre-processing step before
entering a face recognition matcher system as shown in Figure 12 (e) and (f).
By converting non-frontal images into frontal pose and applying illumination
compensation, the intra-variations of the same individuals are greatly reduced.
Therefore more suitable for inputting these to a face recognition system for
robust matching under different pose and illumination conditions [31].

Table 3.2 shows the database for evaluating the face matching perfor-
mance. From a real video sequence, we captured about 30 images of variyng
pose angles per person and measured the matching distance under different
preprocessing techniques shown in the paper. Figure 3.13 shows the aver-
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(a) Original images with pose changes

(b) Pose correction into frontal images using symmetry

Fig. 3.14. The results of pose, expression, and illumination normalization using
AAM. Each column image in (b) results from the image of the same column in (a).

age matching similarity considering only the pose changes from left to right
with different scenario types. Four different types of experiments are evalu-
ated using original raw pose images denoted here (Type-1), AAM pose cor-
rected warped images denoted as (Type-2), and illumination processed images
(Type-3), and symmetry imposed images (Type-4) for large pose angles. By
converting non-frontal faces into frontal face without expressions, the aver-
age distance between same individuals is greatly reduced. These results show
that any face recognition algorithm can benefit by applying these approaches
as a face-image pre-processing step. More examples of converting non-frontal
images into frontal images are shown in Figure 3.14.

3.7 Face Super-resolution using Locality Preserving
Projections

Recent work has shown that face images lie on a manifold [58] [28] [68] [11],
thus we expected that manifold learning methods in general can improve the
analysis of facial images and applications such as face recognition, super-
resolution and face synthesis. Based on this idea, Chang et al. [18] developed
the Neighbor Embedding algorithm for face super-resolution. They assume
that the local distribution structure in sample space is preserved in the down-
sampling process, and apply one of the manifold learning methods, Locally
Linear Embedding (LLE) [58]. However, most of the manifold learning meth-
ods such as LLE have difficulty generating mapping functions for new test
images. Thus, manifold analysis so far faced some limitations when applied
to face super-resolution problem. Moreover, the objective of super-resolution
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is to recover a high-dimensional image from a low-dimensional one, where as
manifold learning methods are more suited for the opposite,namely dimension-
ality reduction. LPP tries to find a linear projective mapping for dimensional-
ity reduction. Compared to LPP, other manifold learning techniques such as
Isomap Tenenbaum et al.(2003), LLE [58], or Laplacian Eigenmap [11] define
the mapping only on the training data. They successfully show the training
data are distributed along manifolds, but it is unclear how to evaluate these
mappings for new test samples. On the other hand, by using LPP, we can
obtain a well-defined transformation matrix which can be applied to a new
set of test images which are absent from the training set. In this framework,
we apply LPP for every image face patch to model a high-resolution patch
xH from a down-sampled face patch xL. Given a high-resolution patch, the
corresponding low-resolution patch is computed by down-sampling:

xL = BxH (3.16)

where B is the transformation matrix for the mapping from high-resolution
to low-resolution. LPP aims to find a low dimensional embedding from a
high dimensional patch, so it can be used for dimensionality reduction. LPP
performs dimensionality reduction by projecting a high dimensional vector
onto a low dimensional subspace. However, LPP can be also applied to the
super-resolution problem; which is to map a low-resolution patch onto a high-
resolution patch subspace. In this case, we must be able to obtain the coeffi-
cients in the high-resolution space from a given low-resolution patch. To do
this estimation, various probabilistic approaches such as Belief Propagation
have been employed to infer the coefficients of a high-resolution patch from a
low-resolution patch [44] [17] [25]. In our case, we employ a Maximum a poste-
rior (MAP) estimator to find the LPP coefficients of a high-resolution patch.
A MAP approach has also been used to estimate the PCA coefficients of a
high-resolution patch from a low-resolution one [44] [25]. Given the patches
taken from training images, the LPP coefficients yH are calculated by

yH = AT xH ,xH = AyH (3.17)

where A is the projective matrix of LPP in Eq.(3.17). Maximizing p(xL|xH)
p(xH) in Eq.(3.17) is equivalent to maximizing p(xL|yH)p(yH). The prior
p(yH) is modeled by Gaussian distribution function:

p(yH) =
1
Z

exp (−yT
HΛ−1yH) (3.18)

where Λ = diag(σ2
1 , σ2

2 , · · · , σ2
N ) and Z is a normalization constant. The like-

lihood p(xL|xH) is denoted by

p(xL|xH) =
1
Z

exp (−‖BAyH − xL‖2/λ). (3.19)

To maximize p(xL|xH)p(xH), the optimal yH is given by
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(c) Cubic-B spline

(d) Baker et al. (e) Our method

(a) Input 24   32 (b) Original 96   128

Fig. 3.15. The results of face super-resolution using LPP and other methods.

y∗H = (AT BT BA + λΛ−1)−1AT BT xL (3.20)

where λ is decided empirically. If λ is too small, xH cannot be obtained because
AT BT BA is close to singular.

Figure 3.15 shows comparative results using our method and the other
competing approaches [7]. Note that our approach results in a more detailed
reconstruction, producing a better psychovisual approximation to the original
image compared to the other approaches.

3.8 Conclusion

Robust face recognition systems should be able to handle the variations that
occur under practical operational scenarios. This means having the ability to
handle any and all of face variations under different lighting, pose, expres-
sions, and other variation factors such as low resolution face acquisition from
a distance. To improve the performance and address each variation, numerous
new algorithms have been proposed aiming at generalization to unseen people,
multiple factor analysis and hidden structures of the faces. In case of low res-
olution faces, pre-processing methods that can enhance the resolution of face
images have been detailed. Small pose variations can be handled and trained
by different classifiers; however large pose variations can only be modelled
by methods such as Tensorfaces and our proposed extensions. Furthermore
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we show that using computer vision approaches such as Active Appearance
Models (AAMs) can be used to model, track facial features to warp back a
frontal facial pose as input to traditional classifiers. We have shown that using
this and a multi-view AAM approach, we can handle even nearly completely
profile views if we assume facial symmetry.

At the core classifier level, many algorithms exist for researchers to choose
from. The FRGC database is currently the largest database with the most
challenging practical variations which challenge simple algorithms such as
PCA by yielding only 12% verification at 0.1% FAR. The new KCFA algo-
rithm approach is promising, performing very efficient dimensionality reduc-
tion. Performance has been demonstrated using 222 features only and achieved
a maximum verification rate of 82.4% at 0.1% FAR. Having such a low di-
mensionality allows for faster database searching, with ability to search among
millions in a matter of seconds or less. Furthermore, this data is very compact
that can easily fit on a smart-card or e-passport for verification.
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4.1 Introduction

Over the past 15 years, iris recognition has developed rapidly from its first
live demonstration and first actual method patent [1], to a mainstream field
of biometric development with a large number of active researchers in both
academia and industry. To date, some 50 million persons worldwide have been
enrolled in iris recognition systems that use the author’s algorithms. But other
systems are also being developed, demonstrated, and tested in Government-
sponsored competitions with good results; and there is no doubt that in the
future there will exist a lively equilibrium of diverse methods and viable prod-
ucts available for deployment, maybe even interoperably.

Because iris recognition is designed for use in identification mode (“one-
to-many” exhaustive search, at least with the author’s algorithms) so that a
user is not even asked to claim or assert an identity, as opposed to simple
verification (a “one-to-one” test of some claimed identity), the number of iris
comparisons done so far is staggering. In one particular deployment linking
all 27 air, land, and sea-ports of entry into the United Arab Emirates, that
compares the irises of arriving travellers to all stored in a central database,
some 5 trillion (5 × 1012) iris comparisons have been performed since 2001.
About 10 million arriving travellers have used that system, with 12 billion
iris comparisons now being performed daily [2] at a speed of about 1 million
comparisons per second per search engine. Data from 200 billion such iris
comparisons will be plotted in this chapter, a number that is larger than the
estimated number of neurons in the human brain, or the estimated number
of stars in our galaxy. Closer to home, the UK has recently launched Project
IRIS (Iris Recognition Immigration System) which allows travellers to enter
the UK from abroad without passport presentation or any other assertion of
identity, but just by looking at an iris camera at an automatic gate. If they
have been enrolled in the system and are recognized, then their border-control
formalities are finished and the gate opens. About 200,000 travellers to the
UK in recent months have benefitted from this convenience [3].
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Notwithstanding such existing public deployments at many airports in sev-
eral countries, basic research into alternative methods continues. The antici-
pated large-scale applications of biometric technologies such as iris recognition
are driving innovations at all levels, ranging from sensors, to user interfaces, to
algorithms and decision theory. At the same time as these good innovations,
possibly even outpacing them, the demands on the technology are becoming
greater. In addition to the requirement to function on a national scale to de-
tect any multiple identities upon issuance of biometric ID cards, expectations
are also being raised for development of more tolerant and fluid user interfaces
that aim to replace the “stop and stare” camera interface with iris recognition
“on the move, off-axis, and at a distance” [4].

Scientific and engineering literature about iris recognition grows monthly,
with contributions from several dozen university and industrial laboratories
around the world. Many databases of iris images are available for download,
further stimulating research; some are summarized in Chapter 25 of this book.
An excellent and comprehensive review of the expanding literature about iris
recognition, with 141 references, has recently appeared [5]. I will not attempt
to duplicate such a literature survey here. Instead, I will briefly review the
historical development of iris recognition, from its inception as a speculative
idea to early efforts at commercialization, and its current drivers; and then
I will present a number of new methods that I have developed and found
beneficial, which I will illustrate here with publicly available iris images.

4.2 A Short History of Iris Recognition

4.2.1 Early Speculation about its Possibility

Divination of all sorts of things based on iris patterns goes back to ancient
Egypt, to Chaldea in Babylonia, and to ancient Greece, as documented in
stone inscriptions, painted ceramic artefacts, and the writings of Hippocrates.
Clinical divination persists today as “iridology.” The idea of using the iris
as a distinguishing human identifier was suggested in 1885 by French physi-
cian Alphonse Bertillon [6], describing both color and pattern type. In 1949
British ophthalmologist James Doggart [7] commented specifically (p. 27) on
the complexity of iris patterns and suggested that they might be sufficiently
unique to serve in the same way as fingerprints. In 1987 American ophthal-
mologists Flom and Safir [8] managed to patent Doggart’s concept, but they
had no algorithm or specific method to make it possible. They acknowledged
that they had encountered the idea in Doggart’s book, yet their patent as-
serted claim over any method for iris recognition, if any could actually be
developed. (Ironically, the only specific method disclosed in this patent was
a conceptual flow chart for controlling an illuminator to drive the pupil to
a pre-determined size; in fact this proves unnecessary and is not a feature
of any actual iris recognition system.) Although the Flom-Safir patent has
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now expired worldwide, its broad if unimplemented claim over any use of the
iris for human identification inhibited developers from trying to create actual
methods. In 1989 when I was teaching at Harvard University, Flom and Safir
(who by coincidence was my neighbor in Cambridge MA) asked me to try to
create actual methods for iris recognition, which I did and patented [1]. After
live demonstrations, we formed a company to exploit these algorithms.

4.2.2 Commercialization Efforts, 1993–2006

The company that we founded licensed my algorithms to a number of camera
developers and security-related systems integrators. Those algorithms used
methods that persist widely today in this technology, such as multi-scale Ga-
bor wavelet encoding, binarization based on zero-crossings, Exclusive-OR bit
vector comparison logic, and Hamming Distance similarity metrics. Unfortu-
nately, a new management installed by new investors focused on re-branding
and media positioning tactics more than on technology considerations. Dur-
ing the period 2001–2006 a crucial mistake was advocacy of clearly inferior
cameras when superior ones were available and well proven, only because of
their comparative royalty streams. For example, one camera widely recognized
(even internally) as the “gold standard,” featuring autofocus, autozoom, and
superb resolution, was de-licensed and banned from use by partners, while
inferior cameras lacking such features were promoted and even mandated by
an ostensible “certification” program. Consequently, a number of high-profile
test deployments generated unnecessarily poor results, and the inherent pow-
ers and potential of iris recognition were generally clouded if not contradicted
by apparently high rates of Failures-to-Enroll or False Rejections.

Disputes over licensing terms with several of the company’s own partners,
especially the more successful partners, escalated into a series of lawsuits.
Finally, having expended its funding resources both on aggressive litigation
and on re-branding exercises that tried to portray the algorithms as having
been developed in-house, the company had made enemies of those it most
needed as friends, and collapsed. Never having become profitable, it was ac-
quired in 2006 solely for its IP assets (patents and my core algorithms) by
a multi-biometric holding company. Meanwhile a number of other start-ups
offering iris recognition have appeared; but they too, with the exception of
one systems integrator, are all struggling to survive. None have any public
deployments using their own proprietary algorithms. For nearly all investors
in this sector up until the present time, iris recognition has proved an enticing
but perilous seduction, like the song of the Sirens (irresistible sea nymphs in
Greek mythology) who drowned many passing sailors.

4.2.3 Current Stimulants

Iris recognition technology research and development today is expanding
rapidly, at several dozen universities and industrial research venues. Enthusi-
asm for the technology and its potential is strong, as is the level of innovation
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in response to its undeniable challenges, particularly regarding image capture.
Among the stimulants that seem to be driving this creative energy are:

• Evidence emerging in tests that iris recognition seems the biometric with
best performance, in terms of large database accuracy and search speed.

• Legislation in several countries for national programs involving biometric
ID cards, or biometrics replacing passports in automated border-crossing.

• NIST Iris Challenge Evaluation [9] (“large-scale”) based on images from
240 Subjects; its training database was downloaded by 42 research groups.

• Biometric Data Interchange Format Standards [10], and databases of iris
images for algorithm development and testing.

• Numerous international conferences and books that include the topic.
• Popular futurism and movies, from James Bond to Minority Report.
• Cultural iconography associated with the eye (the “Window to the Soul;”

affective significance of eye contact, and communication through gaze).
• The intellectual pleasure of solving multi-disciplinary problems combin-

ing mathematics, information theory, computer vision, statistics, biology,
ergonomics, decision theory, and naturally occurring human randomness.

4.3 Active Contours, Flexible Generalized Embedded
Coordinates

Iris recognition begins with finding an iris in an image, demarcating its inner
and outer boundaries at pupil and sclera, detecting the upper and lower eyelid
boundaries if they occlude, and detecting and excluding any superimposed
eyelashes, or reflections from the cornea or eyeglasses. These processes may
collectively be called segmentation. Precision in assigning the true inner and
outer iris boundaries, even if they are partly invisible, is important because
the mapping of the iris in a dimensionless (size-invariant and pupil dilation-
invariant) coordinate system is critically dependent on this. Inaccuracy in
the detection, modelling, and representation of these boundaries can cause
different mappings of the iris pattern in its extracted description, and such
differences could cause failures to match.

It is natural to start by thinking of the iris as an annulus. Soon one discov-
ers that the inner and outer boundaries are usually not concentric. A simple
solution is then to create a non-concentric pseudo-polar coordinate system
for mapping the iris, relaxing the assumption that the iris and pupil share a
common center, and requiring only that the pupil is fully contained within
the iris. This “doubly-dimensionless pseudo-polar coordinate system” was the
basis of my original paper on iris recognition [11] and Patent [1], and this
iris coordinate system was incorporated into ISO Standard 19794-6 for iris
data [10]. But soon one discovers also that often the pupil boundary is non-
circular, and usually the iris outer boundary is non-circular. Performance in
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iris recognition is significantly improved by relaxing both of those assump-
tions, replacing them with more disciplined methods for faithfully detecting
and modelling those boundaries whatever their shapes, and defining a more
flexible and generalized coordinate system on their basis.

Because the iris outer boundary is often partly occluded by eyelids, and
the iris inner boundary may be partly occluded by reflections from illumina-
tion, and sometimes both boundaries also by reflections from eyeglasses, it is
necessary to fit flexible contours that can tolerate interruptions and continue
their trajectory under them on a principled basis, driven somehow by the data
that exists elsewhere. A further constraint is that both the inner and outer
boundary models must form closed curves. A final goal is that we would like
to impose a constraint on smoothness, based on the credibility of any evidence
for non-smooth curvature.

An excellent way to achieve all of these goals is to describe the iris in-
ner and outer boundaries in terms of “Active Contours” based on discrete
Fourier series expansions of the contour data. By employing Fourier compo-
nents whose frequencies are integer multiples of 1/(2π), closure, orthogonality,
and completeness are ensured. Selecting the number of frequency components
allows control over the degree of smoothness that is imposed, and over the
fidelity of the approximation. In essence, truncating the discrete Fourier series
after a certain number of terms amounts to low-pass filtering the boundary
curvature data in the active contour model.

These methods are illustrated in Figures 4.1 and 4.2. In the lower left-
hand corner of each Figure are shown two “snakes,” each consisting of a fuzzy
ribbon-like data distribution and a dotted curve which is a discrete Fourier
series approximation to the data, including continuation across gap interrup-
tions. The lower snake in each snake box is the curvature map for the pupil
boundary, and the upper snake is the curvature map for the iris outer bound-
ary, with the endpoints joining up at the 6-o’clock position. The interruptions
correspond to detected occlusions by eyelids (indicated by separate splines in
both images), or by specular reflections. The data plotted as the grey level
for each snake is the image gradient in the radial direction. Thus the relative
thickness of each snake represents roughly the sharpness of the corresponding
radial edge. If an iris boundary were well-described as a circular edge, then
the corresponding snake in its box should be flat and straight. In general this
is not the case.

The dotted curve that is plotted within each snake, and also superimposed
on the corresponding loci of points in the iris image, is a discrete Fourier series
approximation to the data. (In both Figures detected eyelid occlusions are
also demarcated by white splines, and they interrupt the corresponding outer
boundary data snake, although the estimated contour continues through such
interruptions.) The estimation procedure is to compute a Fourier expansion
of the N regularly-spaced angular samples of radial gradient edge data {rθ}
for θ = 0 to θ = N − 1. A set of M discrete Fourier coefficients {Ck}, for
k = 0 to k = M − 1, are computed from the data sequence {rθ} as follows:
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Fig. 4.1. Active contours enhance iris segmentation, because they allow for non-
circular boundaries and enable flexible coordinate systems. The box in the lower-
left shows curvature maps for the inner and outer iris boundaries, which would
be flat and straight if they were circles. Here the outer boundary (upper plot) is
particularly non-circular. Dotted curves in the box and on the iris are Fourier series
approximations. This iris is NIST ICE-1 file 239261.

Ck =
N−1∑

θ=0

rθe
−2πikθ/N (4.1)

Note that the zeroth-order coefficient or “DC term” C0 extracts informa-
tion about the average curvature of the (pupil or outer iris) boundary, in other
words, about its radius when it is approximated just as a simple circle.

From these M discrete Fourier coefficients, an approximation to the cor-
responding iris boundary (now without interruptions, and at a resolution de-
termined by M) is obtained as the new sequence {Rθ} for θ = 0 to θ = N −1:

Rθ =
1
N

M−1∑

k=0

Cke2πikθ/N (4.2)

As is generally true of active contour methods [12, 13], there is a trade-
off between how precisely one wants the model to fit all the data (improved
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Fig. 4.2. Active contours enhance iris segmentation, because they allow for non-
circular boundaries and enable flexible coordinate systems. The box in the lower-
left shows curvature maps for the inner and outer iris boundaries, which would
be flat and straight if they were circles. Here the pupil boundary (lower plot) is
particularly non-circular. Dotted curves in the box and on the iris are Fourier series
approximations. This iris is NIST ICE-1 file 240461.

by increasing M), versus how much one wishes to impose constraints such
as keeping the model simple and of low-dimensional curvature (achieved by
reducing M , for example M = 1 enforces a circular model). Thus the num-
ber M of activated Fourier coefficients is a specification for the number of
degrees-of-freedom in the shape model. I have found that a good choice of M
for capturing the true pupil boundary with appropriate fidelity is M = 17,
whereas a good choice for the iris outer boundary where the data is often much
weaker is M = 5. It is also useful to impose monotonically decreasing weights
on the computed Fourier coefficients {Ck} as a further control on the resolu-
tion of the approximation {Rθ} ≈ {rθ}, which amounts to low-pass filtering
the curvature map in its Fourier representation. Altogether these manipula-
tions, particularly the two different choices for M , implement the computer
vision principle that strong data (the pupil boundary) may be modelled with
only weak constraints, whereas weak data (the outer boundary) should be
modelled with strong constraints, i.e. allowing fewer degrees-of-freedom.
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The active contour models for the inner and outer iris boundaries support
an isometric mapping of the iris tissue between them, regardless of the actual
shapes of the contours. Suppose the contour model for the pupillary boundary
consists of cartesian coordinates (xp(θ), yp(θ)) with arc parameter θ ∈ [0, 2π],
while the outer boundary of the iris at the sclera is described by contour
model (xs(θ), ys(θ)). Then a shape-flexible, size-invariant, and pupil dilation-
invariant, dimensionless coordinate system for the iris portion of the image
I(x, y) can be represented by the normalized mapping

I(x(r, θ), y(r, θ)) → I(r, θ) (4.3)

where the dimensionless parameter r ∈ [0, 1] spans the unit interval, and



x(r, θ)

y(r, θ)


 =




xp(θ) xs(θ)

yp(θ) ys(θ)







1− r

r


 (4.4)

The execution time for the entire subroutine that fits active contours to
both the inner and outer iris boundaries is just 3.5 msec on a 3 GHz PC with
optimized code. The benefit of the new adaptive coordinate system based on
active contours may be gauged by the improvement it offers in recognition
performance on difficult image databases. The NIST ICE-1 iris database con-
tains many difficult images, producing a high False Reject Rate (FRR) which
degrades the Equal Error Rate (EER). Algorithms that yielded an EER of
1% (EER = 0.01) when using enforced circular models improved 10-fold to an
EER of 0.1% (EER = 0.0011) on the same database by adopting this active
contours approach instead.

4.4 Fourier-based Trigonometry and Correction for
Off-Axis Gaze

A limitation of current iris recognition cameras is that they require an on-axis
image of an eye, usually achieved through what may be called a “stop and
stare” interface in which a user must align her optical axis with the camera’s
optical axis. This is not as flexible or fluid as it might be. Moreover, sometimes
the standard cameras acquire images for which the on-axis assumption is not
true. For example, the NIST iris images that were made available and used for
training in ICE-1 contained several with very deviated gaze, probably because
the user’s gaze was distracted by an adjacent monitor.

The on-axis requirement can be relaxed by correcting the projective de-
formation of the iris when it is imaged off-axis, provided that one can reliably
estimate the actual parameters of gaze. Dorairaj et al. [14] approached this by
seeking the gaze parameters that optimize the value of an integro-differential
operator [11, 15] which detects circular boundaries. The gaze parameters that
we seek include two spherical angles for eye pose, but the projective geometry
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depends also on the distance between eye and camera which may be unknown,
and it depends on the surface curvature of the iris which is generally not zero.
If simplifying assumptions and approximations are made about the latter fac-
tors, then a simple affine projective transformation may suffice to make the
iris recognizable against itself as imaged in other poses, orthographic or not.

The essence of the problem is then estimating the two angles of gaze rel-
ative to the camera. Eye morphology is so variable in terms of visible sclera
and eyelid occlusion that it is unlikely that such factors could support ro-
bust estimation, at least when only one eye is imaged; although it must be
noted that humans are very impressively skilled somehow at monitoring each
other’s gaze direction. In the absence of solving that mystery, an obvious al-
ternative approach would be to assume that an orthographic image of the
iris should reveal a circular pupil; therefore detecting ellipticity of the pupil
indicates off-axis image acquisition, and so estimating the elongation and ori-
entation of that ellipse would yield the two parameters of gaze deviation,
modulo π in direction. We present here a somewhat more robust variant of
this idea, which does not assume that the true pupil shape is circular when
viewed orthographically. This method of estimating gaze (and thus correcting
for off-axis imaging) uses a new approach that may be called “Fourier-based
trigonometry.”

The method arises from the observation that Fourier series expansions
of the X- and Y-coordinates of the detected pupil boundary contain shape
distortion information related to deviated gaze, in the relationships among
the real and imaginary coefficients of the lowest frequency term of each of
those series expansions. In the special case that the true pupil boundary when
viewed orthographically is really a circle, then this method reduces to the
simpler “ellipticity” method outlined above.

We begin by considering that simple special case of a circular pupil. Let
X(t) and Y (t) be the parameterized coordinate vectors of the pupil boundary,
so the range of t is from 0 to 2π in one cycle around this closed curve. Clearly
in the case of a circular pupil with radius A, origin-centered for simplicity,
these functions are just X(t) = A cos(t) and Y (t) = A sin(t). In the case of
deviated gaze along a cardinal axis, and assuming the camera distance is large
compared with the iris diameter so there is simple foreshortening along the
cardinal axis, these functions become: X(t) = A cos(t) and Y (t) = B sin(t),
with A 6= B. Finally, if the gaze deviation is not along a cardinal axis but
rather in direction θ, then these functions take the more general conic form
for an oriented ellipse:

X(t) = [A cos2 θ + B sin2 θ] cos(t) + [(B −A) cos θ sin θ] sin(t) (4.5)

Y (t) = [(B −A) cos θ sin θ] cos(t) + [B cos2 θ + A sin2 θ] sin(t) (4.6)

It is noteworthy that the information we seek about gaze deviation, namely
the direction and magnitude of deviation, are contained in the form of Fourier
coefficients on the harmonic functions cos(t) and sin(t) that represent in their
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Fig. 4.3. Gaze estimation enables transformation of an eye image with deviated
gaze, into one apparently looking directly at the camera. Without this transforma-
tion, such images would fail to be matched. This iris is NIST ICE-1 file 244858.
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linear combination the contour data X(t) and Y (t). Specifically, the lowest
complex-valued coefficient in a Fourier series expansion of the empirical func-
tion X(t) contains as its real and imaginary parts, a and b, respectively:

a = A cos2 θ + B sin2 θ (4.7)

b = (B −A) cos θ sin θ (4.8)

Likewise the first complex-valued coefficient in a Fourier series expansion of
the empirical function Y (t) contains as its real and imaginary parts, c and d,
respectively:

c = (B −A) cos θ sin θ (4.9)

d = B cos2 θ + A sin2 θ (4.10)

Thus, we can infer the gaze deviation parameters we seek just by comput-
ing the relevant Fourier coefficients of empirical contour functions X(t) and
Y (t). This estimation process is independent of the higher-order Fourier coef-
ficients which will exist when the pupil has some more complex and irregular
shape than a circle. The method is not restricted to such an assumption about
circular shape.

Algebraic manipulation extracts from the four empirical Fourier coeffi-
cients a, b, c, d the gaze deviation parameters we need. It should be noted that
although the right-hand sides of (4.8) and (4.9) above appear to be identi-
cal functions of the desired parameters, these equations express constraints
based on different empirical data. Quantities a and b are obtained from X(t),
whereas c and d are obtained from Y (t). The computed direction of gaze de-
viation (modulo π) has essentially the form of Fourier phase information, and
is:

θ = 0.5 arctan
(−b− c

a− d

)
(4.11)

while the magnitude of gaze deviation in direction θ is expressed not as an
angle but as the projective aspect ratio γ = B/A which will be the affine
transformation parameter:

γ =
(a + d) cos(2θ) + a− d

(a + d) cos(2θ)− a + d
(4.12)

By estimating these parameters, the “Fourier-based trigonometry” allows
the projective geometric deformation caused by gaze deviation to be reversed
by an affine transformation of the off-axis image. This is illustrated in Figure
4.3, showing in its upper panel image 244858 from the NIST ICE-1 database,
and in the lower panel the same eye image after “correcting” the gaze deviation
by an affine transformation with extracted parameters (θ, γ). The result of the
transformation is to convert such images into apparent orthographic form,
seeming to rotate the eyes in their sockets, making them recognizable against
other images of the same eye. A limitation of this method is that the affine
transformation assumes the iris is planar, whereas in fact it is a surface with
some curvature.
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4.5 Detecting and Excluding Eyelashes by Statistical
Inference

One of the ways in which iris image data may be corrupted, besides reflections,
camera noise, and eyelid occlusion, is occlusion by eyelashes (usually from the
upper eyelid). These often have random and complex shapes, combining with
each other to form masses of intersecting elements rather than just simple
hair-like strands that might be amenable to detection by elementary shape
models. They can be the strongest signals in the iris image, in terms of contrast
or energy, and they could dominate the IrisCode with spurious information if
not detected and excluded from the encoded data.

The inference of eyelashes and their exclusion from the IrisCode can be
handled by statistical estimation methods that depend essentially on deter-
mining whether the distribution of iris pixels is multi-modal. If the lower tail
of the iris pixel histogram supports an hypothesis of multi-modal mixing,
then an appropriate threshold can be computed and pixels outside it can be
excluded from influencing the IrisCode.

Fig. 4.4. Statistical inference of eyelashes from the iris pixel histogram, and deter-
mination of a threshold for excluding the lashes (labelled in white) from influencing
the IrisCode. This iris is NIST ICE-1 file 239766.
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Figure 4.4 illustrates this method. The panel in lower-right corner super-
imposes four histograms, all computed from just the pixels in the segmented
iris portion of the image, between the detected eyelids. The solid grey dis-
tribution is a histogram of all the iris pixels (ranging from 0 to 255). The
two dotted outline histograms break this up into two components, one for
just the lower part of the iris (white dotted curve), and the other for just
the upper part of the iris (black dotted curve). The solid black histogram is
the difference between these two histograms. We are interested in whether
the cumulatives from the left of this difference histogram pass a test of being
statistically separable from the mother (solid grey) distribution. If so, based
on significant Z-score deviations between their respective quartiles, then an
hypothesis may be accepted that the iris contains superimposed eyelashes.

The vertical dashed line in the histogram panel indicates the computed
threshold where such an hypothesis in this case (for this image) is supported.
If that hypothesis also passes a further test on the deviation between the
threshold quartile and the median of the mother distribution, thus confirming
that not only are there two populations but also that they are sufficiently
different from each, then the threshold is accepted and pixels below it are
deemed to arise from superimposed eyelashes.

In the iris image itself in Figure 4.4, these detected eyelashes within the
iris have been marked now as white pixels. Their positions are recorded in a
mask array that prevents them from influencing any data that encodes the
iris texture. This eyelash detection subroutine executes in less than 1 msec.

4.6 Alternative Score Normalization Rules

Iris recognition works by performing a test of statistical independence between
two IrisCodes, in order to decide whether they arise from the same or from
different irises [1, 2, 11]. This test of statistical independence is equivalent
to tossing a coin many times (each toss representing a comparison between
two bits in the two IrisCodes), in order to decide whether or not the coin is
fair by delivering roughly 50-50 outcomes. If such a result is obtained then
the irises can be judged independent; but if there is a great preponderance
of (say) “heads,” meaning that a large majority of corresponding bit pairs
agreed, then that is strong evidence that the IrisCodes came from the same
iris. But what is the effect of greatly varying numbers of such “coin tosses”
in these correlated Bernoulli trials, due to varying amounts of iris data being
visible between eyelids or reflections and available for comparison?

Areas of the iris that are obscured by eyelids, or by eyelashes, or by reflec-
tions from eyeglasses, or that have low contrast or poor signal-to-noise ratio,
are detected by the image processing algorithms and prevented from influ-
encing the iris comparisons, through bit-wise mask functions. Whereas the
IrisCode bits themselves contain phase data [1, 2, 11] that is ExclusiveOR’ed
(
⊗

) to detect disagreement and thereby determine similarity between two
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irises, the bits to be considered are first selected by ANDing (
⋂

) each pair
with the associated mask functions of both irises to ensure their validity and
their significance. The norms (‖ ‖) of the resultant bit vector and of the
AND’ed mask vectors are then measured in order to compute a raw Hamming
Distance HD raw, as the fraction of meaningful bits that disagree between two
irises whose two phase code bit vectors are denoted {codeA, codeB } and
whose mask bit vectors are denoted {maskA, maskB }:

HD raw =
‖(codeA

⊗
codeB)

⋂
maskA

⋂
maskB‖

‖maskA
⋂

maskB‖ (4.13)

The number of bits pairings available for comparison, ‖maskA
⋂

maskB‖,
is usually nearly a thousand. But if one of the irises has (say) almost complete
occlusion of its upper half by a drooping upper eyelid, and if the other iris
being compared with it has almost complete occlusion of its lower half, then
the common area available for comparison may be almost nil. In such cases,
returning to the coin-tossing analogy, our test for the “fairness” of the coin
(i.e. statistical independence of the two IrisCodes by finding a nearly 50-50
result) will be based upon a very small number of Bernoulli trials indeed. So,
the interpretation of any given deviation from the 50-50 outcome expected
for independence must take into account the total amount of comparison data
that was available. This is the role of score normalization.

A natural choice for the score normalization rule is to re-scale all devia-
tions from 0.5 raw Hamming Distance in proportion to the square-root of the
number of bits that were compared when obtaining that score. The reason
for such a rule is that the expected standard deviation in the distribution
of Bernoulli trial outcomes (expressed as a fraction of the n Bernoulli trials
having a given outcome), is σ =

√
pq/n where p and q are the respective

outcome probabilities (both nominally 0.5 in this case). Thus, decision confi-
dence levels can be maintained irrespective of how many bits n were actually
compared, by mapping each raw Hamming Distance HD raw into a normalized
score HDnorm using a re-scaling rule such as:

HDnorm = 0.5− (0.5−HD raw)
√

n

911
(4.14)

This normalization should transform all samples of scores obtained when com-
paring different eyes into samples drawn from the same binomial distribution,
whereas the raw scores HD raw might be samples from many different bino-
mial distributions having standard deviations σ dependent on the number of
bits n that were actually available for comparison. This normalization main-
tains constant confidence levels for decisions using a given Hamming Distance
threshold, regardless of the value of n. The scaling parameter 911 is the typical
number of bits compared (unmasked) between two different irises, as estimated
from one particular (early) database.

The benefit of score normalization is to prevent False Matches arising by
chance due to few bits being compared (just as few coin tosses may well yield
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Fig. 4.5. Comparison of two algorithms on the NIST ICE-1 database, with (1) and
without (2) score normalization. Solid squares mark their EER points. In this region
of the ROC curve near Equal Error Rates, where the required False Match Rates
are not very demanding, best performance is achieved without score normalization.

all “heads”). But the cost of this normalization for n is to penalize same-eye
matches when few bits are available for comparison; even if they all agreed, so
that HD raw = 0, the resulting HDnorm may be above the acceptance threshold
and the match would be rejected. This penalty is apparent by comparing False
Reject performance with and without score normalization on the NIST ICE-
1 iris database, consisting of a few thousand iris images that NIST released
together with “ground truth” information. This image database contained
many very difficult and corrupted images, often in poor focus and with much
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eyelid occlusion, and sometimes with the iris partly outside of the image frame.
In the region of the ROC curve (trade-off between False Reject and False
Accept Rates, FRR vs FAR) where one tolerates rather high FAR such as 1
in 1,000 or 1 in 10,000, as shown in Figure 4.5, the cost of score normalization
(Algorithm 1) on FRR is clear. The Equal Error Rate (where FRR = FAR)
is about 0.001 without score normalization, but 0.002 with normalization.
Similarly at other nominal points of interest in this region of the ROC curve,
as tabulated within Figure 4.5, the cost of score normalization is roughly a
doubling in FRR. But in much more aggressive regions of the ROC, where one
demands an FAR of perhaps 1 in a billion for applications such as national
database search or “all-against-all” cross-comparisons to discover any multiple
identities, we will see that score normalization is paramount.
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Fig. 4.6. Comparison of three methods of score normalization, based on 200 billion
iris cross-comparisons using the UAE database of 632,500 IrisCodes. False Match
Rates are plotted in semi-logarithmic coordinates, versus decision criterion. The
range of the ordinate in this plot spans a factor of 300,000 to 1.

For the UAE database, Figure 4.6 compares False Match Rates for three
approaches to normalizing scores based on the number of bits compared. The
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upper plot takes no account of the number of bits, so it has the highest
False Match Rates. The bottom curve in Figure 4.6 shows the benefit of score
normalization using the rule given in (4.14), causing the observed False Match
Rate to plummet to 1 in 200 billion at a criterion around HDnorm = 0.262.
This performance is about 2,000 times better than without the normalization
(note the semi-logarithmic coordinates). The middle curve represents a hybrid
normalization rule that is a linear combination of the other two, taking into
account the number of bits compared only when in a certain range.

We learn from these comparisons of alternative normalization rules that
performance in different regions of the ROC curve is optimized by different
rules. In the relatively undemanding domain highlighted in Figure 4.5, near the
Equal Error Rate point of either ROC curve and involving a relatively small
database, best performance was achieved without score normalization because
that amounts to a penalty on good matches when few bits were compared. But
in the vastly more demanding domain of national-scale databases involving
possibly astronomic numbers of cross-comparisons, as shown in Figure 4.6
with 200 billion iris comparisons, normalizing scores by the number of bits on
which they were based is a critical necessity.

4.7 Adapting for Large-Scale Applications

Figure 4.7 presents a histogram of all 200 billion cross-comparison similar-
ity scores among the 632,500 different irises in the UAE database, using the
score normalization rule. The vast majority of IrisCodes from different eyes
disagreed in roughly 50% of their bits, as expected since the bits are equiprob-
able and uncorrelated between different eyes [11, 15]. Very few pairings of
IrisCodes could disagree in fewer than 35% or more than 65% of their bits, as
is evident from the distribution.

The solid curve fitting the data very closely in Figure 4.7 is a binomial
probability density function. This theoretical form was chosen because com-
parisons between bits from different IrisCodes are Bernoulli trials, or concep-
tually “coin tosses,” and Bernoulli trials generate binomial distributions. If
one tossed a coin whose probability of “heads” is p in a series of N indepen-
dent tosses and counted the number m of “heads” outcomes, and if one tallied
this fraction x = m/N in a large number of such repeated runs of N tosses,
then the expected distribution of x would be as per the curve in Figure 4.7:

f(x) =
N !

m!(N −m)!
pm(1− p)(N−m) (4.15)

The analogy between tossing coins and comparing bits between different
IrisCodes is deep but imperfect, because any given IrisCode has internal corre-
lations arising from iris features, especially in the radial direction [11]. Further
correlations are introduced because the patterns are encoded using 2D Gabor
wavelet filters [15], whose lowpass aspect introduces correlations in amplitude,
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Fig. 4.7. Distribution of HDnorm normalized similarity scores (4.14) for 200 billion
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and whose bandpass aspect introduces correlations in phase, both of which
linger to an extent that is inversely proportional to the filter bandwidth. The
effect of these correlations is to reduce the value of the distribution parameter
N to a number significantly smaller than the number of bits that are actu-
ally compared between two IrisCodes; N becomes the number of effectively
independent bit comparisons. The value of p is very close to 0.5 (empirically
0.499 for the UAE database), because the states of each bit are equiprobable
a priori, and so IrisCode bit pairings are equally likely to agree or disagree.

The binomial functional form that describes so well the distribution of nor-
malized similarity scores for comparisons between different iris patterns is key
to the robustness of these algorithms in large-scale search applications. The
tails of the binomial attenuate extremely rapidly, because of the dominating
central tendency caused by the factorial terms in (4.15). Rapidly attenuating
tails are critical for a biometric to survive the vast numbers of opportuni-
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ties to make False Matches without actually making any, when applied in an
“all-against-all” mode of searching for matching or multiple identities, as is
contemplated in some national ID card projects in the UK and in Europe.

Table 4.1. False Match Rates with HDnorm Score Normalization: Dependence on
Decision Threshold Criterion (based on 200 Billion Comparisons, UAE Database)

HD Criterion Observed False Match Rate

0.220 0 (theor: 1 in 5 ×10 15 )

0.225 0 (theor: 1 in 1 ×10 15 )

0.230 0 (theor: 1 in 3 ×10 14 )

0.235 0 (theor: 1 in 9 ×10 13 )

0.240 0 (theor: 1 in 3 ×10 13 )

0.245 0 (theor: 1 in 8 ×10 12 )

0.250 0 (theor: 1 in 2 ×10 12 )

0.255 0 (theor: 1 in 7 ×10 11 )

0.262 1 in 200 billion

0.267 1 in 50 billion

0.272 1 in 13 billion

0.277 1 in 2.7 billion

0.282 1 in 284 million

0.287 1 in 96 million

0.292 1 in 40 million

0.297 1 in 18 million

0.302 1 in 8 million

0.307 1 in 4 million

0.312 1 in 2 million

0.317 1 in 1 million

The cumulatives (up to various thresholds) under the left tail of the distri-
bution of normalized similarity scores for different irises compared at multiple
relative tilts, reveal the False Match Rates among the 200 billion iris compar-
isons if the identification decision policy used those thresholds. These rates are
provided in Table 4.1. Although the smallest observed match was near 0.26,
the Table has been extended down to 0.22 using the theoretical cumulative of
the extreme value distribution of multiple samples from the binomial (4.15)
plotted as the solid curve in Figure 4.7, in order to extrapolate theoretically
expected False Match Rates for such decision policies. These False Match
Rates, whether observed or theoretical, also serve as confidence levels that
can be associated with a given quality of match using the score normalization
rule (4.14). In this analysis, only a single eye is presumed to be presented.
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Under the assumption of independence between left and right eye IrisCodes,
which is strongly supported by available data (see Figure 6 of [15]), the con-
fidence levels in Table 4.1 could be multiplied together for matches obtained
with both eyes. A method allowing IrisCodes to be indexed by their collisions
with substrings, thereby replacing exhaustive search by almost instantaneous
direct addressing with IrisCodes, is the subject of a separate paper [16].

Acknowledgment: Figures and material in Sections 4.3–4.7 are c©IEEE and
reproduced with permission.
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5.1 Hand Geometry: A historical perspective

Hand Geometry is an authentication technology with a long history of use.
Ancient paintings in Chauvet Cavern have been carbon dated to be 31,000
years old. Some say that the handprints left with these paintings are the
artist’s unique signature. This is, perhaps, the first use of Hand Geometry for
identification, but surely not the last [15].

More recently, in July of 1858, Sir William Herschel had Rajyadhar Konai,
a local businessman, impress his hand print on the back of a contract in order
to uniquely tie Konai to the contract. Thus began the first recorded systematic
capture of hand and finger images for identification purposes [1].

The first commercial Hand Geometry scanner was the Identimat intro-
duced by Identimation in the early 1970’s. This device used a 1,000 watt
light bulb to activate mechanically scanned photocells for measuring the hand
shape. Identimation was bought by a new company, Identimat, in 1976, and
in 1979 was sold to the Wackenhut Corporation and placed in their Stellar
Systems subsidiary. The Identimat was in continuous production until 1987.

Members of Stellar Systems went on to form Recognition Systems in 1986
to develop advanced methods of Hand Geometry utilizing the low cost digital
imaging and image processing technology then becoming available. Recogni-
tion Systems, now a division of Ingersoll Rand, is the leading hand geometry
manufacturer, producing hundreds of thousands of Hand Geometry terminals
for the Security and Time and Attendance markets.

Biomet Partners, Inc., founded in 1992, has developed a two finger identi-
fication device that applies the principles of hand geometry to the index and
middle finger. The two-finger geometry readers from Biomet Partners have
been in commercial use since 1995, starting with the Digi-2 cameras. Many
thousands of units are installed throughout the world, in a wide variety of
applications. While not strictly a hand geometry product, it is sometimes
included in that class.
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5.2 History of Development

In the mid 1960’s Robert Miller of New Jersey was studying an army clothing
procurement report where he came upon the observation that hand sizes were
so varied that they could be used to identify people. This led this avid inventor
to develop the first automatic Hand Geometry identification device (Figure
5.1). The pattern recognition function of this device was accomplished using
purely mechanical means. Four spring loaded rods were arranged so that when
the users hand was properly placed, the tips of the fingers moved the rods
such that their opposite end took on a pattern reflecting the relative lengths
of the user’s finger. If this pattern matched the pattern of holes punched into
the user’s identity card, a simple switch, which could be used to operate an
electrified lock, was activated.

Fig. 5.1. Patent drawing of Mechanical Hand Reader.

In the commercial version of this device, the Identimat (Figure 5.2), the
simple rods were replaced by a mechanism that scanned photocells underneath
the grooves into which the fingers were placed. A 1,000 watt overhead lamp
provided the illumination source. Attached to the same scanning mechanism
was a magnetic stripe read head, so that as the hand was scanned so was the
user’s magnetic stripe card. If pulses read from the card matched in time the
signals from the scanning photocells, within a threshold, the user’s identity
was verified. This product was used successfully in a variety of application in-
cluding Nuclear Weapons Security, employee Time and Attendance recording,
and general access control. Production was discontinued in 1987.

In 1986 Recognition Systems was incorporated to develop and market mod-
ern Hand Geometry readers that exploited the low cost digital imaging and
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Fig. 5.2. The Identimat: the first commercial hand reader.

image processing technology then becoming available (Figure 5.3). Their ID3D
line of hand readers used a solid state digital image sensor to capture a 3 di-
mensional image of the hand. The optical system of the hand reader was
optimized to capture a simple binary image of the hand, much like a shadow
silhouette. This binary image yields detailed information about the shape of
the hand, but is unaffected by surface features such as skin color, dirt, and
ambient light. A low cost microprocessor was used to process this information
using proprietary pattern recognition algorithms to produce the very small 9
byte hand identification template that Hand Geometry became noted for.

The ID3D was revolutionary in a number of ways beyond the technological
advancements that it brought to Hand Geometry. Its developers recognized
that not only did they have to keep the bad guys out, but they also had
to let the good guys in... every time. While rest of the biometrics industry
at that time focused on the highest possible level of security, the ID3D was
designed to ensure a low False Reject rate in real world applications. This
technology consistently provided access to authorized users and provided a
significant deterrent for unauthorized access. This reliability made it the first
biometric product appropriate for large markets such as employee time and
attendance recording where its biometric capabilities made it cost effective
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Fig. 5.3. A modern hand reader: the GT-400 from Recognition Systems LLC.

and its user friendly performance made it practical. At the same time, security
was not compromised as is evidenced by the widespread use of this device in
high security applications such as the national nuclear weapons laboratories
and nuclear power plants. Every operating nuclear power plant in the United
States has installed Hand Geometry for access control.

Most biometric terminals of that time were simple devices that might
provide a set of relay contacts that closed on identity verification, or an RS-
232 port for signaling the event. The ID3D was radically different in that it
was designed not simply as a hand scanner, but as a complete solution for
Access Control or Time and Attendance applications. It could be used alone
to control access to a door, providing timed door unlock, door alarm contact
monitoring, printer data logging, control of access by time and location, and
all of the other functions of a modern access control system. A significant
innovation was the use of Wiegand and magnetic stripe card reader emulation
which enabled the ID3D to be connected into existing access control systems
as easily as a standard card reader, thus providing a simple biometric upgrade
path for existing systems.

Finally, and perhaps most importantly, the ID3D was designed to be com-
mercially successful as a cost effective solution for the customer and a profit
generating product for its manufacturer. The ID3D drove Recognition Sys-
tems to profitability early, and continues to generate handsome profits to this
day. It can be fairly said that from the beginning of the commercialization of
biometrics with the introduction of the Identimat in 1972 until the present
time, the great bulk of the biometric terminal industry’s profits for biometric
terminals has been earned by the ID3D and its offspring.

In 1992 Biomet Partners was formed to develop a two finger version of a
hand reader. The Digi-2 was introduced to the marketplace in 1995 and is
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in use throughout the world. This device uses a CCD camera to acquire a
digital image of the fingers. Images are acquired from 2 viewpoints so that
the 3-dimensional properties of the fingers are captured. A microprocessor is
used to extract identity discriminating features from the image and compare
them with features obtained during enrollment. The enrollment template is
20 bytes long. The VeryFast Access Control Terminal shown in Figure 5.4 is
based upon the Digi-2 camera.

Fig. 5.4. Biomet Partner’s VeryFast Access Control Terminal.

5.3 Interesting Applications

Commercial advancements for biometric devices began in earnest in the 1970s
when the Identimat was installed as part of an employee attendance time clock
at system Shearson Hamill, a Wall Street investment firm. This was most likely
the first installation of a commercial biometric device. Subsequently, hundreds
of Identimat devices were used for physical access at secure facilities run by
Western Electric, the Department of Energy, U.S. Naval Intelligence, and like
organizations [13].

The oldest ongoing general application of biometrics belongs to the Uni-
versity of Georgia which, in 1973, installed the Identimat from Identimation to
restrict entry into its all-you-can-eat dining halls. This system is still in daily
operation having been upgraded several times as Hand Geometry technology
advanced.

A significant number of Identimat scanners were also installed at the Sa-
vannah River Nuclear Weapons Laboratory, attesting to its high level of per-
formance even at that early phase of the technologies development. These
were later replaced by early models of the ID3D, signaling the commercial
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transition from the early electro-mechanical hand scanners to the modern all
digital devices.

Other applications of hand geometry systems include:

• The 1996 Olympic Games where access to and from the Olympic Village
was controlled

• Colombian legislature where hand readers were used to secure voting
• San Francisco International Airport
• Child day care centers use hand geometry systems to verify the identity

of parents. Lotus Development and New Mexico Elementary schools are
examples of this

• The INSPASS pilot program employs hand geometry systems to track
border crossings for frequent travelers

• The University of Georgia has used hand geometry systems since 1973 for
their student meal programs

• All operating United States nuclear power plants

5.3.1 Application Guidelines

Characteristics of suitable applications:

• There are a large number of users.
• Harsh environments, especially outdoors.
• A habituated user group who use the device frequently.
• Ease of use is important.
• Very low failure to enroll and failure to acquire are important.
• Speed of operation is important.
• Simple integration with existing systems is required.

Characteristics of unsuitable applications:

• Where identification of one out of many is required.
• Where small size is required.
• Uncooperative users.

Factors that influence performance:

• Poorly trained users.
• Improperly located reader, too high or to low.
• Direct sunlight or other very bright lights.
• Rings if stones are not turned up.
• Large bandages or casts on fingers.
• Significant deformity of the hand, missing fingers.

In general, hand geometry has found successful application in physical
Access Control and employee time and attendance data collection. It is less
suitable for applications such as border control, national ID, PC security and
others in which the characteristics of unsuitable application listed above are
all present.
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5.4 Technology

When a user presents a biometric sample, hand geometry systems follow the
same basic steps as other biometric devices: capturing the sample, processing
the raw sample into a biometric template, and comparing the observed tem-
plate to a reference template in the enrollment database. Most hand geometry
systems also incorporate the optional step of updating the reference template
in the enrollment database after a successful verification. These processes are
illustrated in Figure 5.5.

Fig. 5.5. Processing steps in a biometric system using hand geometry.

5.4.1 Hand Capture

Capturing the biometric sample is often achieved by a standard optical camera
or a flat-bed scanner. Some units rely only on ambient light, but most provide
their own illumination, generally in the near infrared. Because hand geom-
etry is based on analyzing the contours of the hand, these systems binarize
the captured grayscale image into a black-and-white silhouette (Figure 5.6).
Because of this, hand geometry systems are insensitive to changes in surface
features such as tattoos, hair, cuts, scrapes, burns, dirt, or other contaminants
that may affect other biometric modalities.

Many hand geometry systems image the hand from directly above the back
of the hand or directly below the palm, resulting in a standard 2D image. Some
gain 3D information from the same camera by introducing a mirror into the
system [10, 19]. Depending on mirror positioning, this can yield an orthogonal
view or an off-axis view of the hand. The resolution of existing commercial
hand geometry readers is generally much lower than that used for fingerprint
recognition; on the order of 100-200 dpi for research systems [10, 7]. Such low
resolution images result in insensitivity to variations in hand placement or
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Fig. 5.6. Depiction of hand casting a shadow/silhouette.

physiology. They also minimize the influence of band aids, gauze, etc. Recently,
some systems have begun to capture a full 3D model of the hand [5]. Such
systems use multiple cameras, structured light, or rangefinder cameras. While
these systems hold the promise of increased performance, none of them has
yet been commercialized.

The overall size of an optical-camera hand geometry unit can be minimized
by “folding” the optical path. This is accomplished by adding a second mirror
to the system, directly above the hand, as shown in Figure 5.7. The same
system increases the contrast in the image by placing a highly reflective surface
under the hand, reducing the binarization process to a simple thresholding
operation. To ensure that the orthogonal view across the hand is equally
high-contrast, a similar reflective material is also placed on the side-wall of
the capture area.

5.4.2 Processing

Some hand geometry units rely on finger-positioning guides to aid in repeat-
able placement of the hand. For these systems, a pre-processing step is re-
quired to remove the positioning pins from the image. While this increases
processing at the image level, it may decrease the overall computational power
required for the algorithm, as the algorithm is no longer required to account
for hand rotation or hand deformation due to varying hand placement [2]. As
will be discussed in a following section, a significant number of researchers
are investigating pin-free hand geometry systems, as they are seen as more
user friendly than systems with pins. Others feel that the tactile feedback
provided by the pins is a positive feature that enhances ease of use as well as
performance.

Processing the captured image varies greatly for different types of hand
geometry systems. Commercial systems and most academic systems begin
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Fig. 5.7. Folding the optical path.

by measuring geometric features in the binarized hand-image [22]. Measure-
ments typically include finger lengths, widths, surface areas, angles between
landmarks, and ratios of those quantities [10, 7, 22, 17]. See Figure 5.8. Re-
search has also included systems that operate directly on the hand contour,
using the points on the silhouette as landmarks or feeding the entire contour
into a comparison engine [19, 2, 20]. Thus there are two distinct classes of
hand geometry feature sets based on binary hand images.

The geometric features so derived most often show a great deal of correla-
tion with each other, making classification difficult. Methods such as Principal
Component Analysis are often use to transform the raw features into a non-
correlated feature set, thus simplifying classification.
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Fig. 5.8. Example top-view image with side-mirror, showing measurements for
length, width, and thickness [10].

5.4.3 Classification

The classification step quantifies the level of similarity between two hand
templates. The classification method is matched to the feature extraction and
feature transform methods utilized in the processing step. The most common
approach is to utilize Euclidean distance metrics as in [10], but many other
approaches have been documented. These include correlation methods [5, 11],
principal component analysis [2], and calculating the mean alignment error of
corresponding points along the hand contour. Reference [17] implements sev-
eral classification/comparison methods, including Gaussian mixture models.

5.4.4 Template Adaptation

The optional step of Template Adaptation improves the biometric perfor-
mance of hand geometry systems by adapting to changes in the users’ phys-
iology over time. Such changes can originate, for example, from weight gain,
weight loss, swelling of the hand, or the onset of degenerative diseases such as
arthritis. The timescale of these processes is generally slow, on the order of
weeks or months. Template adaptation cannot accommodate extreme changes
in hand geometry that occur quickly, such as the loss of a digit in an accident.



5 Hand Geometry Recognition 101

5.5 Performance

Reported performance of hand geometry systems varies widely, making the
classification of Hand Geometry as a modality quite difficult. Even ranking
the efficacy of each algorithm within the modality is difficult, because each
reported result is based on a different dataset. Some of the factors that in-
fluence an algorithm’s error rates when calculated using a particular dataset
include:

• Capture device : each researcher uses a different type of camera or flat-
bed scanner, resulting in varying image resolution, contrast, and parallax
(caused by the camera-to-hand distance)

• Dataset size : some datasets utilize such a small number of users or hand
placements that the uncertainty in the measurements is on the same order
of magnitude as the reported results

• Demographics : most datasets are based on college students (since most
research is performed at colleges and universities) but some are based on
other demographic segments such as office workers, construction workers,
children, the elderly, or particular ethnic groups. Each demographic group
may have different physiological or behavioral traits that aid or hinder
hand placement

• Low-quality images : no public reports address low-quality hand place-
ments. For example, people with arthritis (or similar conditions) may be
unable to lay their hand flat against a platen or may have non-repeatable
hand placements. Hands with missing or mangled fingers may confuse
algorithms looking for “normal” fingers. Rings with the stone turned side-
ways can bridge adjacent fingers, changing their apparent length. Ban-
dages sometimes change the apparent size/shape of fingers, creating local
distortions that must be accommodated

• Habituation: users who interact with a biometric system may adjust their
behavior over time, lowering the measured error rates

• Laboratory vs. operational testing : most datasets are captured in a lab-
oratory environment, but some are collected in operational environments
that can be indoors or outdoors, and can include a mixture of trained and
untrained users

• Hand constraints : constraining the hand (i.e., via finger-alignment pins)
reduces the variation presented to the algorithm, thus presenting an easier
problem to solve

• Metrics : For example, some published results do not indicate whether
they were calculated as 1-try or 3-try attempt

• Timescale : since the hand can change over time, it is a much harder
problem to compare enrollment and verification images that were collected
months apart than it is to compare images captured in the same session
(seconds apart)



102 David P. Sidlauskas and Samir Tamer

Until free datasets are publicly available to researchers, it will be difficult to
compare the efficacy of hand geometry algorithms head-to-head. Performance
data from a selection of publications are shown in Table 5.1.

Table 5.1. Select performance values recorded in the literature.

Reference Year Users Pins Feature basis FAR FRR EER

[10] 1999 50 Yes Geometric 2% 14%

[9] 1999 53 Yes Contours 2% 3.5%

[16] 2000 20 Yes Geometric 4.9%

[14] 2001 28 No Contours 1% 1% 1%

[11] 2003 100 No Geometric 2% 22%

[19] 2004 51 Yes Contours 0%

[4] 2004 70 No Geometric 1% 3%

[3] 2005 80 No Contours 0.8% 3.8%

[2] 2006 40 No Contours 1% 2.42% 2%

[20] 2006 458 No Contours 0.1% 3.9%

The performance numbers recorded in the literature are generally self-
reported results from the algorithm developer. Only a few independent third-
party tests of hand geometry systems are freely available. One is the 1991
report on biometric devices from Sandia National Labs in the United States
[8]. In that test, 80-100 users participated in a laboratory test of the ID-3D
from Recognition Systems. Participants in the study used the system over a
period of 3 months. In an attempt to measure performance on a habituated
user population, the test administrators chose to remove the first few weeks
of data from their calculations.

The Sandia test was more statistically significant than other tests of hand
geometry at that time, registering more than 5000 genuine placements and
more than 5000 imposter attempts. The 1-try EER was calculated as 0.2%
and the 3-try EER was calculated as 0.1% based on data taken during the
3-month test. Average verification time was reported as 5 seconds, including
the time it took users to type in a PIN on the ID-3D keypad. Figure 5.9
depicts the 1-try and 2-try false reject rate vs. security threshold, as well as
the 3-try false accept rate.

An independent test of the HandKey II is freely available from the National
Physical Lab (NPL) in the United Kingdom [18]. That test, published in
2001, took place in a normal office environment. Users in the test were non-
habituated, implying that they had not adjusted their behavior or acclimated
to the operation of the handreaders. Enrollments were typically separated
from verifications by 1-2 months. These two facts set the NPL test apart from
the Sandia test.

Performance metrics in the NPL test included the failure to acquire rate
(FTA) and the failure to enroll rate (FTE), further setting it apart from the
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Fig. 5.9. Hand geometry performance measured at Sandia.

Sandia test. All 200 users were able to enroll in the HandKey II, resulting in
a 0.0% FTE. During the 3-month test, the FTA was also 0.0%. Transaction
times were slower than in the Sandia test, with a mean transaction time of 10
seconds, including the time it took users to type in a PIN on the keypad. A
3-try EER of 0.5% may be read from the published graph, recreated here as
Figure 5.10.

Fig. 5.10. Three-Try FAR/FRR measured at the NPL.
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5.6 Standardization

As the biometrics industry continues to mature, it will move away from a con-
stellation of disconnected, proprietary products, and towards a continuum of
biometric modules connected by national and international standards. Such
standards not only allow a biometric product to work with access control
panels and card readers, but also enable enrollment templates from one prod-
uct to be matched against observation templates from another product or
even another vendor. To ensure that the data blocks are correctly identified
and parsed, they are often combined with other standards such as BioAPI or
CBEFF.

Biometric data interchange standards have existed for several years. The
widest-reaching standard today is ANSI/NIST-ITL 1-2000, which describes
the data interchange format for transmitting fingerprints, face images, and
other information between many law enforcement agencies around the world
(e.g., police agencies, the FBI, CIA and Interpol) [12]. Similar biometric data
interchange standards have been published to facilitate the exchange of other
biometric modalities such as the iris, face, and hand.

The US national standard for hand geometry is ANSI INCITS 396-2005,
which details a biometric data block containing one or more hand silhouettes.
Each silhouette is accompanied by metadata including (if known) which hand
was imaged, whether it was imaged from above or below, details about the
camera used to capture the image. To minimize the size of the data block, the
silhouette is encoded using a Freeman Chain Code. This method can be used
to trace the contours of any closed curve, using as little as two binary bits
of data for each point along the curve. For example, a curve with 960 points
could be described with 960*2=1920 binary bits, or 240 bytes.

International biometric standards are managed under the auspices of a
Joint Technical Committee formed between the International Standards Or-
ganization (ISO) and the International Electrotechnical Commission (IEC).
One of the biometric standards, ISO/IEC 19794, describes biometric data
blocks. Part 10 of that standard details a data format for encoding hand
silhouettes using a Freeman Chain Code. ISO/IEC 19794-10 is very similar
to ANSI INCITS 396-2005, though the two are not binary compatible. The
ISO/IEC document is considered by some to be a refinement of the US stan-
dard. In addition to the normative requirements of the biometric data block,
both standards include “best practices” sections for hand placement and for
design of the optical system.

5.7 Future developments

Current research in hand geometry seems to focus on two areas:

• Lowering the false match rate, and
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• Eliminating the need for hand-placement guides on the platen.

In late 2006, Recognition Systems announced a new hand geometry prod-
uct based on a larger 20-byte template, which provides increased performance
over the 9-byte template used in that company’s earlier models. The company
also claims that using higher-resolution optics results in lower false match rates
in the new product.

Academic researchers have offered many hand geometry algorithms allow-
ing unconstrained hand placement on a scanning surface (see Table 5.1). At
least one researcher has gone the extra step of removing the scanning surface
completely, requiring the user to simply wave his or her hand at the camera
from a distance [21] as shown in Figure 5.11. That system locates the creases
of the finger joints in a grayscale image, then combines that information with
face recognition data captured in the same image. All of these approaches
show promise, and may be incorporated into commercial products.

Fig. 5.11. Sample presentation of a dual biometric system with face recognition
and unconstrained hand recognition [21].

It is not clear where the performance limits lie for hand geometry. The
timeline of research shown in Table 5.1 indicates that algorithms are extract-
ing more and more performance from hand silhouettes; this implies that per-
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formance is not limited by the biometric content of the hand, but rather by
the algorithms that extract that content.

Combining the two major classes of hand geometry algorithm, based on
contours or on geometric features, may result in even higher-performance al-
gorithms than those published in the literature. Also, algorithms developed
for unconstrained hand placement may provide higher performance when cou-
pled with the more repeatable hand presentations of a constrained system (one
utilizing a platen with finger-positioning pins).

In addition to evolutionary hand geometry algorithms, the future holds
the promise of better hand recognition by combining hand geometry into
multi-biometric systems. Several researchers have improved the performance
of geometry-only approaches by adding texture data from a palmprint taken
from the same image (before binarization) that generated the hand silhou-
ette [11]. Hand geometry has also been combined with face recognition on a
border-crossing project along the Israeli - Palestinian border [6]. Other multi-
biometric implementations including hand geometry can be imagined, includ-
ing hand/finger and hand/vein.
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6.1 Introduction

Consider the task of recognizing someone from 300m away. Such scenarios
arise in wide-area monitoring and asset protection. What sources of biometrics
could one use? Of course, the collection of fingerprint or iris scans at such
distances is implausible. It is probable that face data can be captured, but
resolution and outdoor sources of variations, such as sunlight and shadows,
would be hard issues to overcome. So instead of physical biometrics that
are direct signatures of the physiology of the person, we turn to behavioral
biometrics. One such behavioral biometrics is gait, or more precisely, in our
context, the pattern of shape and motion in video of a walking person. The gait
of a person is determined by their underlying musculo-skeletal structure, so it
is plausible that it has some ability to discriminate between persons. Indeed
there were human perception experiments done in the 1970’s by Cutting and
Kozlowski [5] based on light point displays that showed it is possible to identify
a person from the manner of walking, i.e. gait. More recently, Stevenage et
al. [30] showed that humans can identify individuals on the basis of their gait
signature, without reliance on shape, in the presence of lighting variations and
under brief exposures.

The first effort toward recognition from gait in computer vision was prob-
ably by Niyogi and Adelson in the early 1990s [26]. Over the past five years or
so, significant progress has been made in terms of the diversity of gait recog-
nition algorithms. This chapter is not meant to be an extensive review of
gait recognition research. For that, one should consider the excellent reviews
in [2, 25]. Instead, this chapter will focus on three aspects. First is a gait
recognition research resource framework, namely the HumanID Gait Chal-
lenge problem, which has been recently constructed to study and to evaluate
progress. It has been used quite extensively. Second is a discussion of the basic
approaches to gait recognition. Third is a discussion of the lessons learnt and
some of our ideas about how to move gait recognition research forward.
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(a) (b) (c) (d) (e)

Fig. 6.1. A gait cycle can be partitioned into four periods: (i) right stance period
when the right foot is in contact with the floor, beginning from “right heel-strike”
(photo a) and ending at “right toe-off” (photo d) (ii) left swing period when the
left foot is not in contact with the floor, beginning from “left toe-off” (photo b)
and ending at “left heel-strike” (photo c) (iii) left stance period when the left foot
is in contact with the floor, beginning from “left heel-strike” (photo c) and ending
at “left toe-off” (photo e) and (iv) right swing period when the right foot is not
in contact with the floor, beginning from “right toe-off” (photo d) and ending at
“right heel-strike” (photo e). Moreover, the time between these periods, i.e., when
both feet are in contact with the floor, is called “double limb support”.

The gait of a person is a periodic activity with each gait cycle covering
two strides – the left foot forward and right foot forward strides. Each stride
spans the double-support stance to the legs-together stance as the legs swings
past each other and back to the double-support stance (see Fig. 6.1). Potential
sources for gait biometrics can be seen to derive from two aspects: shape and
dynamics. Shape refers to the configuration or shape of the persons as they
perform different gait phases. Dynamics refers to the rate of transition between
these phases and is usually the aspect one refers to when one talks about
gait in traditional problem contexts, such as bio-mechanics or human motion
recognition. In this respect, research for the development for gait biometrics
has to synthesize both shape and human motion research. Designing well
performing gait recognition algorithms does not appear to be a straightforward
application of existing methods developed in shape research or those in human
motion research, independently of each other. The challenge is to overcome
gait motion variations due to various conditions such as footwear, clothing,
walking surface, carrying objects, over elapsed time, walking speed, indoor vs.
outdoors, and so on. Given the lack of theoretical understanding or modeling
of how these factors effect gait shape and dynamics, gait recognition research,
like most biometrics research, is reliant on datasets. It is the dataset that will
expose issues, and move the area forward.

A meta analysis of the identification rates reported in the recent litera-
ture on different kinds of datasets reveal consistent patterns of influence. We
considered the publicly available experimental protocols and datasets (> 25
persons) such as the CMU-Mobo dataset [7] (indoor, 25 subjects), the UMD
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dataset [13] (outdoor, 55 subjects), the Southampton Large dataset [36] (in-
door and outdoor, 115 subjects), the CASIA Gait Dataset [39] (indoor, 124
subjects), and the HumanID Gait Challenge dataset [28] (outdoor, 122 sub-
jects). Of course, the caveat is that the conclusions are conditioned on the
kinds of variations of each covariate in the respective dataset. A definitive
conclusion is hard to make. However, this kind of meta-analysis has some con-
clusive weight since it encompasses the findings of multiple research groups.
It should provide some directions for focusing future research. In Table 6.1 we
list the average identification rates for matching across different conditions,
i.e. the probe and the gallery differed with respect to the indicated covariate.
From the table we can see that outdoor gait recognition, recognition across
walking surface-type change, and recognition across months are all hard prob-
lems. Clothing, footwear, carrying condition, and walking speed does not seem
to be hard covariates to overcome. We also see that performance drops with
dataset size, which suggests that it is imperative to demonstrate the efficacy
of an idea on as large a dataset as possible.

Table 6.1. Meta analysis of gait identification rates as reported in the literature
for different conditions. The average of the rates reported in [28, 38, 24, 36, 16, 13,
3, 34, 10, 33, 8, 2, 22, 31, 39] are listed for different conditions.

(a) (b)

Data Set Condition Average
Rate

Indoor data 69
Outdoor data 59

No. of Subjects < 50 72
No. of Subjects > 50 60

Comparing Across Average
Rate

Elapsed Time (days) 73
Elapsed Time (6 months) 16

Views (30o) 78
Shoe types 77

Surface types 37
Carrying condition 71
Different speeds 69
Clothing types 73

6.2 The HumanID Gait Challenge Problem

The HumanID gait challenge problem was formulated in the DARPA Hu-
manID At a Distance program to facilitate objective, quantitative measure-
ment of gait research progress on a large dataset [28]. The problem definition
has three components: a dataset, challenge experiments of different difficulty
levels, and a simple gait recognition approach that is intended to set a baseline
performance level to improve upon.
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(a) (b)

Fig. 6.2. Samples from the HumanID gait challenge dataset: subject walking on
grass (a) along the frontal half of the elliptical path, (b) along the back half of the
elliptical path.

Fig. 6.3. Examples of manual silhouettes that are available for a subset of the
HumanID gait challenge dataset.

6.2.1 The Dataset

Fig. 6.2 shows some sample frames from this dataset. It was collected outdoors
and each person in the data set was studied under combination of as many as
five conditions or covariates. The conditions are: (i) two camera angles (L and
R), (ii) two shoe types (A and B), (iii) two surfaces (Grass and Concrete),
(iv) with and without carrying a brief case (B or NB), and (v) two different
dates six months apart, May and November. Attempt was made to acquire a
person’s gait in all possible combinations, and there are up to 32 sequences for
some persons. Hence, the full dataset can be partitioned into 32 subsets, one
for each combination of the 5 covariates. Comparisons between these subsets
are used to set up challenge experiments; more on this later. The full data set
consists of 1870 sequences from 122 individuals. This dataset is unique in the
number of covariates exercised. It is the only data set to include walking on
a grass surface.

In addition to the raw data sequence, there is ancillary information asso-
ciated with the data. First, for each sequence, there is meta-data information
about the subject’s age, sex, reported height, self reported weight, foot dom-
inance, and shoe information. Second, for a subset of this dataset, we have
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Table 6.2. The gallery and probe set specifications for each of gait challenge ex-
periments. The covariates are coded as follows: C–concrete surface, G–grass surface,
A–first shoe type, B–second shoe type, BF–carrying a briefcase, NB-no briefcase,
M–data collected in May, N1–new subjects in November data, and N2–repeat sub-
jects in November. The gallery for all of the experiments is (G, A, R, NB, M + N1)
and consists of 122 individuals.

Exp. Probe Number of Difference
(Surface, Shoe, View, Carry, Elapsed Time) Subjects

(C/G, A/B, L/R, NB/BF, time)

A∗ (G, A, L, NB, M + N1) 122 V1

B∗ (G, B, R, NB, M + N1) 54 S2

C (G, B, L, NB, M + N1) 54 S+V
D∗ (C, A, R, NB, M + N1) 121 F3

E (C, B, R, NB, M + N1) 60 F+S
F (C, A, L, NB, M + N1) 121 F+V
G (C, B, L, NB, M + N1) 60 F+S+V
H∗ (G, A, R, BF, M + N1) 120 B4

I (G, B, R, BF, M + N1) 60 S+B
J (G, A, L, BF, M + N1) 120 V+B

K∗ (G, A/B, R, NB, N2) 33 T5+S+C6

L (C, A/B, R, NB, N2) 33 F+T+S+C

[1] view, [2] shoe, [3] surface, [4] carry, [5] elapsed time, [6] clothing, [*] key experi-
ments

created manual silhouettes (see Fig. 6.3). One should not use the silhouettes
to be the final test set of any recognition algorithm, but they should be used to
build models or to study segmentation errors. More details about the process
of creating these manual silhouettes and the quality checks performed can be
found in [19]; here we highlight some salient aspects. Up to 71 subjects from
one of the two collection periods (May collection) were chosen for manual
silhouette specification. The sequences corresponding to these subjects were
chosen from the (i) gallery set (sequences taken on grass, with shoe type A,
right camera view), (ii) probe B (on grass, with shoe type B, right camera
view), (iii) probe D (on concrete, with shoe type A, right camera view), (iv)
probe H (on grass, with shoe A, right camera view, carrying briefcase), and
probe K (on grass, elapsed time). We manually specified the silhouette in each
frame over one walking cycle, of approximately 30 to 40 image frames. This
cycle was chosen to begin at the right heel strike phase of the walking cycle
through to the next right heel strike. Whenever possible, we attempted to
pick this gait cycle from the same 3D location in each sequence. In addition
to marking a pixel as being from the background or subject, we also provided
more detailed specifications in terms of body parts. We explicitly labeled the
head, torso, left arm, right arm, left upper leg, left lower leg, right upper leg,
and right lower leg using different colors.
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6.2.2 The Challenge Experiments

Along with the dataset, the gait challenge problem includes a definition of a
set of twelve challenge experiments (A through L), spanning different levels of
difficulty. This provides a common benchmark to compare performance with
other algorithms. The experiments are designed to investigate the effect on
performance of the five factors, i.e. change in viewing angle, change in shoe
type, change in walking surfaces (concrete and grass), carrying or not carrying
a briefcase, and temporal differences. The results from the twelve experiments
provide an ordering of the difficulty of the experiments. The signatures are the
video sequences of gait. To allow for a comparison among a set of experiments
and limit the total number of experiments, the gallery set was fixed as the
control. Then, twelve probe sets were created to examine the effects of different
covariates on performance. The gallery consists of sequences with the following
covariates: Grass, Shoe Type A, Right Camera, No Briefcase, and collected
in May along with those from the new subjects from November. This set
was selected as the gallery because it was one of the largest for a given set of
covariates. The structure of the twelve probe sets is listed in Table 6.2. The last
two experiments study the impact of elapsed time. The elapsed time covariate
implicitly includes a change of shoe and clothing because we did not require
subjects to wear the same clothes or shoes in both data collections. Because
of the implicit change of shoe, we assume that a different set of shoes were
used in the May and November data collections. This is noted in Table 6.2 by
A/B for shoe type in experiments K and L. The key experiments are those
that involve controlled change in just one covariate and are marked with an
asterisk in the table.

6.2.3 Baseline Gait Algorithm

The third aspect of the gait challenge problem is a simple but effective base-
line algorithm to provide performance benchmarks for the experiments. Ide-
ally, this should be a combination of “standard” vision modules that accom-
plishes the task. Drawing from the recent success of template based recogni-
tion strategies in computer vision, we developed a four-part algorithm that
relies on silhouette template matching. The first part semi-automatically de-
fines bounding boxes around the moving person in each frame of a sequence.
The second part extracts silhouettes from the bounding boxes using expec-
tation maximization based on Mahalanobis distance between foreground and
background color model at each pixel. Each silhouette is scaled to a height
of 128 pixels and centered (automatically) in each frame along the horizontal
direction so that the centerline of the torso is at the middle of the frame. The
third part computes the gait period from the silhouettes. The gait period is
used to partition the sequences for spatial-temporal correlation. The fourth
part performs spatial-temporal correlation to compute the similarity between
two gait sequences.



6 Gait Recognition 115

Let the probe and the gallery silhouette sequences be denoted by SP =
{SP(1), · · · , SP(M)} and SG = {SG(1), · · · ,SG(N)}, respectively. First, the
probe (input) sequence is partitioned into subsequences, each roughly over one
gait period, NGait. Gait periodicity is estimated based on periodic variation of
the count the number of foreground pixels in the lower part of the silhouette
in each frame over time. This number will reach a maximum when the two
legs are farthest apart (full stride stance) and drop to a minimum when the
legs overlap (heels together stance).

Second, each of these probe subsequences, SPk = {SP(k), · · · ,SP(k +
NGait)}, is cross correlated with the given gallery sequence, SG.

Corr(SPk,SG)(l) =
NGait∑

j=1

S (SP(k + j),SG(l + j)) (6.1)

where, the similarity between two image frames, S(SP(i),SG(j)), is defined to
be the Tanimoto similarity between the silhouettes, i.e. the ratio of the number
of common pixels to the number of pixels in their union. The overall similarity
measure is chosen to be the median value of the maximum correlation of
the gallery sequence with each of these probe subsequences. The strategy for
breaking up the probe sequence into subsequences allows us to address the
case when we have segmentation errors in some contiguous sets of frames due
to some background subtraction artifact or due to localized motion in the
background.

Sim(SP,SG) = Mediank

(
max

l
Corr(SPk,SG)(l)

)
(6.2)

The baseline algorithm is parameter free. We find that the algorithm, although
straightforward, performs quite well on some of the experiments and is quite
competitive with the first generation of gait recognition algorithms.

6.2.4 Reported Performance

The results reported for the Gait Challenge problem are of two types, ones
that report results on the first version of the dataset that was released with 71
subjects and the second set of results are those reported for the full dataset
with 122 subjects. The smaller dataset allow us to conducts the first 8 exper-
iments listed in Table 6.2, but with reduced gallery set sizes. In Fig. 6.4(a)
we have tracked the baseline performance and the best performance reported
in the literature. To date, we can identify 18 papers that reported results on
the smaller version of the problem. In 2002, when the Gait Challenge Prob-
lem was released, the performance of the baseline algorithm was better than
the best reported performance. By 2004, while the baseline algorithm perfor-
mance improved as the algorithm was fine-tuned, the performance of the best
performance improved significantly and continued to improve through 2006.
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We see this trend also for the results reported in 6 papers on the full dataset
in Fig. 6.4(b).

As is evident, the Gait Challenge Problem has already spurred the devel-
opment of gait recognition algorithms with improving performance. What is
particularly interesting to notice is that the performance on hard experiments
such those across surface (Experiment D) and elapsed time (Experiment K)
has improved. Of course, there is still room for further improvement. Another
interesting aspect is that the improvement of performance from 2004 to 2006
was not due to “continued engineering” of existing approaches, but involved
the redesign of the recognition approaches. For instance, the greatest gains
came from approaches that analyzed the silhouette shapes rather than the
dynamics. Dynamics is important, but by itself is not sufficient.

6.3 Recognition Approaches

Almost all approaches to gait recognition are based, either directly or indi-
rectly, on the silhouettes of the person, which seems to be the low-level feature
representation of choice. This is partly due to its ease of extraction by simple
background subtraction; all approaches assume static cameras. Other reasons
include the robustness of the silhouettes with respect to clothing color and
texture (it is, however, sensitive to the shape of clothing). The silhouette rep-
resentation can also be extracted from low-resolution images of persons taken
at a distance, when edge based representation becomes unreliable.

Gait recognition approaches, especially those that have been shown to work
for more than 20 persons, are basically of three types: (i) temporal alignment
based, (ii) silhouette shape based, and (iii) static parameter based approaches.
Here we outline some of the approaches. The interested reader is advised to
track new publications as new and exciting approaches appear almost every
month.

6.3.1 Temporal Alignment Based Approaches

The temporal alignment based approach emphasizes both shape and dynam-
ics and is the most common one. It treats the sequence as a time series and
involves a classic three stage processing framework. The first stage is the ex-
traction of features such as whole silhouettes [28, 2], or principal components
of silhouette boundary vector variations [38], or silhouette width vectors [13],
or pre-shape representation [35], or silhouette parts [17, 36], or Fourier descrip-
tors [24]. The gait research group at the University of Southampton (Nixon
et al.) has probably experimented with the largest number of possible fea-
ture types for recognition. This step also involves some normalization of size
to impart some invariance with respect to distance from camera. The sec-
ond step involves the alignment of sequences of these features, corresponding
to the given two sequences to be matched. The alignment process can be
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Fig. 6.4. Improvement in gait recognition algorithms over time with respect to the
baseline performance. (a) We have tracked results presented on the first release of
the gait dataset with 71 subjects in the gallery. We show the snap of the baseline
performance and the best results reported on the dataset in 2002 for the first 8
experiments listed in Table 6.2. (b) Tracking results on the full dataset with 122
subjects for the key experiments listed in Table 6.2. From 2004 to 2006, the best
reported performances are better on all the experiments.
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based on simple temporal correlation [28, 38], or dynamic time warping [35],
or hidden Markov models [13, 35, 16] or phase locked-loops [2], or Fourier
analysis [17, 24]. The third aspect is the distance measure used, which can
be Euclidean [38], or simple dot product based [28, 13], or based on prob-
abilistic models, or Procrustes distance [35], or derived based on manifold
analysis [15, 14]. Some examples of this class of approaches to gait recogni-
tion are the following.

Robledo and Sarkar [27] proposed an approach of relational distributions
and space of probability functions (SoPF). This method includes four stages:
(i) segment person from a motion sequence, using the binary silhouette rep-
resentation, (ii) extract low level features and build relational distributions –
accumulated occurrences of each relationship between paired image features,
(iii) build a space of probability functions (SoPF) from the relational distribu-
tions of a training dataset, and use PCA to reduce dimensions, and (iv) project
relational distributions of test data into SoPF, and compute similarities based
on their coordinates.

Nixon and Carter [25] have performed extensive analyses on indoor gait
data that allow for study of gait under low segmentation error conditions. One
of their approaches is based on body shape area [6]. They first mask selected
body parts in a sequence of silhouettes, then consider its area as the time
varying signal for recognition. On an indoor gait database consisting of 114
subjects filmed under laboratory condition, a 75% recognition rate has been
reported. Another feature is Fourier descriptors [24], where subject’s boundary
and spatio-temporal deformations is modeled with Fourier descriptors. This
resulted in a somewhat increased recognition rate of over 85% for the 115
person dataset.

Tan et al. [38] considered the body length vector as the feature, which
they compute from the vector of distances to the silhouette boundary from
the silhouette center. The distance vector is then normalized with respect to
the magnitude and size. These one-dimensional vectors are then represented
in a smaller dimensional space using PCA. Two sequences of body length
vector are aligned by simple correlation and normalized Euclidean distances
are computed.

The UMD group used the silhouette width vector as the feature [11, 13].
The width vector was defined to be the vector of silhouette widths at each row.
The silhouettes were height normalized to arrive at vector of fixed lengths.
They exhaustively experimented with different variations of this feature. Se-
quence alignment was achieved based on person specific Hidden Markov mod-
els. The gait of each person was represented as sequence of state transitions.
The states correspond to the different gait stances and the observation model
for each state was represented as distances from the average stance shape
for that person. Each HMM was built using the Baum-Welch algorithm and
recognition was performed by matching any given sequence to the HMMs
using the Viterbi algorithm. The identity of the HMM that results in the
maximum probability match was selected. In a more recent version of this ba-
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sic approach [35], they used better shape representation, with much improved
performance. First, they extracted pre-shape vector by subtracting the cen-
troid and normalizing for scale. Then, correlation with these shape vectors
was performed using dynamic time-warping in shape space, or using HMM
with shape cues based on Procrustes distance.

Lee and Grimson [17] opted for more high level features. They partitioned
a silhouette into 7 elongated regions, corresponding to the different body
parts. Each region was represented using four features: centroid coordinate
pair, aspect ratio, and orientation. Gait similarity was computed from either
the average of the features in all the frames of a sequence, or the magnitudes
and phases of each region feature related to the dominant walking frequency.
In a more recent work [16], they experimented with HMM based alignment of
two sequences, with improved results.

A nice head to head study of this class of approaches was recently done
by Boulgouris et al. [1]. They compared silhouette features such as width
vectors, vertical and horizontal projections, angular representations, and plain
silhouettes. Plain silhouettes seem to perform the best. In terms of matching,
they experimented with frequency domain, dynamic time warping, linear time
normalization, and HMM. Time warping methods seemed to result in better
performance when matching across surface changes. A variation of the HMM
approach, where the overall distance was the accumulation of the observation
probability, ignoring the transition probabilities, resulted in almost similar
performance as the full HMM. This point to the importance of silhouette
shape information for recognition and leads us to a second class of approaches
to gait recognition, which is discussed next.

6.3.2 Shape Based Approaches

This class of approaches emphasizes the silhouette shape similarity and under-
plays the temporal information. So far, they have demonstrated high perfor-
mance. One direction involves the transformation of the silhouette sequence
into a single image representation. The simplest such transformation is the av-
eraged silhouette, computed by simply summing the silhouettes over one gait
cycle [20]. Similarity is based on just the Euclidean distance between the aver-
age silhouettes from two silhouette sequences. The performance is as good as
the baseline algorithm, discussed earlier. A sophisticated version of this idea,
with enhanced performance, was also proposed by Han and Bhanu [8]. Instead
of just over one gait cycle, they summed all the silhouettes in the sequence, fol-
lowed by a reduced dimensional representation built using the PCA or Linear
Discriminant Analysis (LDA). The training process was enhanced by synthe-
sizing training data based on expected errors of the silhouettes. Similarity was
computed in this linear subspace.

Other single image representations include the use an image representation
derived from the width vectors in each frame (Frieze patterns) [18] and the
use of the amplitude of the Discrete Fourier transform of the raw silhouette
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sequence [40]. However, these representations do tend to implicitly encode
dynamics.

Another way of using shape information preserves individual silhouettes
but disregards the sequence ordering, and treats the sequences as just a col-
lection of silhouette shapes [3, 34] (CMU). In this approach, the silhouettes
were first vertically normalized and horizontally centered, based on the first
and second order moments. Then, silhouettes with similar shapes were clus-
tered using the spectral partitioning framework, based on graph weights built
out of the correlation of high variance areas in the shape, representing parts
such as arms and legs. The power of this representation partly derives from
the ability to identify and disregard low-quality silhouettes in a sequence; bad
silhouettes form a separate cluster. A probe was identified by comparing the
collection of its silhouette shapes to the gallery shape clusters.

To date the best reported performance on the HumanID Gait Challenge
problem (and on other datasets such as Maryland and CMU) is by Liu and
Sarkar’s gait recognition approach that normalizes the gait of each person
to a standard gait model [22]. This standard gait model was a population-
HMM model built using silhouette sequences from all persons in the gallery.
Note that this is unlike the UMD approach where per-person HMMs are
used. One p-HMM represented the average gait over the population and was
used to normalize any given gait sequence. The dynamics for any given gait
sequence, F = {f1, · · · , fN}, was normalized by first estimating the stance
state for each frame and then averaging the frames mapped to each state
to produce one, dynamics-normalized, gait cycle over Ns frames, denoted by
FDN = {g1, · · · ,gNs}. The dynamics normalized gait cycle was computed
by averaging frames mapped to the same state. This was referred to as the
stance-frame, gi. Fig. 6.5 shows some stance-frames for one subject under dif-
ferent conditions. Notice that the stance-frames for the same stance are similar
across different sequences, which indicates that silhouette-to-stance matching
is correctly estimated. Also note the differences in the “width” of the silhou-
ettes for the same stance, but across different conditions. This has to do with
the silhouette detection algorithm that used the same set of parameters across
conditions, some with different backgrounds, resulting in over-segmentation
in some cases. Thus, a dynamics normalized gait cycle consists of a fixed num-
ber of stance frames, which simplifies the similarity computation between two
given sequences. A separate alignment process was not needed. They simply
considered the distances between the corresponding stance-frames. Instead
of simple Euclidean distances between stance-frames, distances in the Linear
Discriminant Analysis (LDA) Space were computed. The LDA was designed
to maximize the differences between frames from different subjects and to
minimize the distances between frames from the same subject under different
conditions.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6.5. Example of dynamics-normalized stance-frames from a single subject
based on the sequence in (a) gallery, and the corresponding probe sequences with
changes in (b) view, (c) shoe-type, (d) surface, (e) carrying condition, and (f) elasped
time.

6.3.3 Static Parameters

The third class of approaches opts for parameters that can be used to char-
acterize gait dynamics, such as stride length, cadence, and stride speed
along with static body parameters such as the ratio of sizes of various body
parts [10, 32]. However, these approaches have not reported high performances
on common databases, partly due to their need for 3D calibration information.
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6.4 Discussion and Future Areas

Study of gait recognition has made notable progress since 2001. Results have
been reported on common datasets by multiple groups. It is natural to ask
that apart from recognition scores, what fundamental understanding has been
gained by this effort? Do we have an understanding of what aspects of gait
are important for recognition? What vision aspects of the problem should
one concentrate upon to improve performance? Is quality of the segmentation
of the person the bottleneck to improved performance? Can performance be
improved by a better matching method? How does gait compare to face for
outdoor scenarios? Can gait be combined with face to improve performance?
We consider these questions and discuss some preliminary findings. Since most
of these findings are empirically based they are necessarily constrained by the
dataset. However, the observations should provide some guidance for produc-
tive future work.

6.4.1 Gait Shape and Dynamics

At least three different approaches [22, 35, 34] that analyzed stance shape
differences resulted in better recognition, especially across the difficult covari-
ates. Recently, Boulgouris et al. [1] found that a variation of the per-subject
HMM approach, where the overall distance is based on just the observation
probability, ignoring the transition probabilities, resulted in similar perfor-
mance as the full HMM. This points to the importance of silhouette shape
information for recognition. It does appear that gait dynamics, which has been
the core focus of most study of human gait in computer vision, is susceptible
to change. However, the evidence of this is not conclusive. Perhaps a better
understanding of the change in dynamics for the same person under various
conditions is needed.

6.4.2 Silhouette Quality and Gait Recognition

The quality of the silhouettes is dependent on the discrimination between the
background and foreground (subject). Segmentation of silhouettes in outdoor
sequences is difficult primarily because of existence of shadow artifacts, chang-
ing illumination due to shifting cloud cover, and inevitable movements in the
background. When comparing sequences taken months apart, differences in
clothing and even background would lead to different silhouette qualities. This
drop in quality of extracted silhouettes can also be offered as an explanation
for the drop in gait-recognition when comparing templates across surfaces
(Experiment D in the Gait Challenge Problem) because the corresponding
gallery and probe sequences also differ with respect to the background. Is the
poor performance across these conditions due to fundamental changes in gait
under these conditions? Or are they due to vagaries of low-level processing?



6 Gait Recognition 123

It is reasonable to suggest that the quality of the low-level representation is
probably at fault.

In [21, 19] we have demonstrated, based on both manual (clean) silhouettes
and automatically “cleaned” silhouettes, that the poor performance cannot be
explained by the silhouette quality. We have established that the low perfor-
mance under the impact of surface and time variation can not be explained by
poor silhouette quality. We based our conclusions on two gait recognition algo-
rithms, one exploits both shape and dynamics, while the other exploits shape
alone. The drop in performance due to surface and time condition that we
observe in the gait challenge problem is not due to differences in background
or silhouette errors. This observation is also corroborated by the performances
reported by Lee et al. [16]. This observation has implication for future work
direction in gait recognition. Instead of searching for better methods for sil-
houette detection to improve recognition, it would be more productive to
study and isolate components of gait that do not change under shoe, surface,
or time.

6.4.3 Covariates to Conquer

Focused analysis of the study of the impact of a covariate on match-score
distribution, suggest that shoe type has the least effect on performance, but
the effect is nevertheless statistically significant [28]. This is followed by either
a change in camera view or carrying a brief case. Carrying a brief case does
not affect performance as much as one might expect. This effect is marginally
larger than changing shoe type but is substantially smaller than a change in
surface type. In future experiments, it may be interesting to investigate the
effect of carrying a backpack rather than a briefcase, or to vary the object
that is carried.

One of the factors that has large impact is elapsed time between probe and
gallery sequence acquisition, resulting in lower recognition rates for changes
when matching sequences over time. This dependence on time has been re-
ported by others too, but for indoor sequences and for less than six months’
elapsed time. When the difference in time between gallery (the pre-stored tem-
plate) and probe (the input data) is in the order of minutes, the identification
performance ranges from 91% to 95% [37, 9, 3], whereas the performances
drop to 30% to 54% when the differences are in the order of months and
days [17, 4, 3] for similar sized datasets. Our speculation is that other changes
that naturally occur between video acquisition sessions are very important.
These include change in clothing worn by the subject, change in the outdoor
lighting conditions, and inherent variation in gait over elapsed time. Of these,
it is not likely that clothing is the key factor given the high recognition perfor-
mance for matching across clothing changes that has been in reported in [39].
For applications that require matching across days or months, this elapsed
time variation issue needs to be studied in more detail. However, there are
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many applications, such as short term tracking across many surveillance cam-
eras, for which these long term related variations would not be important.

The other factor with large impact on gait recognition is walking surface.
With the subject walking on grass in the gallery sequence and on concrete
in the probe sequence, highest reported rank-one recognition is only 57%[22].
Performance degradation might be even larger if we considered other surface
types, such as sand or gravel that might reasonably be encountered in some
applications. The large effect of surface type on performance suggests that an
important future research topic might be to investigate whether the change in
gait with surface type is predictable. For example, given a description of gait
from walking on concrete, is it possible to predict the gait description that
would be obtained from walking on grass or sand? Alternatively, is there some
other description of gait that is not as sensitive to change in surface type?

6.4.4 Future Datasets

It is to be expected that each gait research group would collect their own
data set to develop ideas. This is an important process. For instance one new
dataset is the CASIA infrared night gait dataset [31]. It consists of gait data
from 153 subjects collected outdoors, at night, with and without carrying con-
dition, and at two different speeds. This dataset nicely complements existing
datasets that are collected during the day. Given the data-driven nature of
biometrics research, the key to future progress are such data sets collected to
explore issues not considered or raised by existing ones. One idea for a future
data is the following. As of today there is a need for the better understanding
of the variation of gait due to surface conditions and across elapsed time. Ide-
ally, the dataset to support this would consist of gait data from around 1000
subjects, which is an order of magnitude larger than current large datasets. It
should include gait data repeated at regular time intervals of weeks spanning
about a year. The dataset should be collected in outdoor conditions, preferably
collected at a distance of 300m to reflect real world conditions. The dataset
should come with a set of well defined experiments in terms of gallery and
probe sets. These experiments influence the types of algorithms that will be
developed. For the experiments to be effective at influencing the direction of
gait research the design of the experiments needs to solve the three bears prob-
lem; the experiments must be neither too hard nor too easy, but just right.
If performance on the experiments is easily saturated, then the gait recogni-
tion community will not be challenged. If experiments are too hard, then it
will not be possible to make progress on gait recognition. Ideally, the set of
experiments should vary in difficulty, characterize where the gait recognition
problem is solvable, and explore the factors that affect performance. A set
of experiments cannot meet this ideal unless the appropriate set of data is
collected.
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(a) (b) (c) (d)

Fig. 6.6. The face samples under different conditions. The candidates for the gallery
sets are (a) Regular expression with mugshot lighting, and (b) Regular expression,
overhead lighting images. The probes are taken outdoors with (c) regular expression,
far view and (d) regular expression, near view.

6.4.5 Face and Gait

One way to improve recognition performance for outdoors, at-a-distance sce-
nario, is to fuse gait with face information. Several studies have started to
consider this [29, 12, 23]. In [29] it was shown, based on 26 subjects, that
the best performance of gait+face as around 89%, whereas the individually
gait was 68% and face was 73%. In [12] it was shown that identification rate
maxed out upon fusion of gait and face using outdoors data from 30 subjects.
On a somewhat larger dataset of 46 subjects, it is shown in [41] that perfor-
mance of gait+face improves to 91% from 87% and 85% for gait and profile
face, respectively. In [23] we considered a larger subject pool. We studied
recognition improvement in the HumanID Gait Challenge experiments based
on gait data along with the corresponding face data that was collected for
each subject, both indoors and outdoors. Fig. 6.6 shows some examples of
the face data. We considered if the performance on the key experiments in
the gait challenge problem could be improved upon by fusing gait with face.
Fig. 6.7 shows the performances of all 5 covariates in gait challenge dataset:
view, shoe-type, surface, briefcase, and time, in terms of verification rate at
5% false alarm rate. The results demonstrate that combination substantially
improves upon recognition from single modality alone. We also found that the
inter-modal combination, i.e. face+gait, is better than the combinations of the
same modality, i.e. face+face and gait+gait. In fact, we observed that intra-
modal combination does not seem to improve performance by a significant
amount.

6.5 Conclusion

In this chapter we have provided a snapshot of the state of gait recognition
research and some directions for future research. Over the past 5 or so years,
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Fig. 6.7. Verification rate at a false alarm rate of 5% for the five key experiments
HumanID gait challenge dataset: view, shoe-type, surface, briefcase and time.

tremendous progress has been made on this problem and we are seeing a con-
tinued increase in interest in this problem. The use of common datasets has
helped focus the research community on the hard problems in gait recogni-
tion in a short time span, instead of designing yet-another-gait recognition
algorithm on proprietary data sets. We hope that this trend will continue and
new, larger, datasets will replace existing ones. In addition to biometrics, the
problem of gait recognition is a rich source for investigating computer vision
problems in both static and dynamic shape analysis. It also provides an excel-
lent context to study 3D issues, such as automatic calibration, reconstruction,
etc. in outdoor settings from multiple viewpoints.
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7.1 Introduction

The potential of the human ear for personal identification was recognized and
advocated as long ago as 1890 by the French criminologist Alphonse Bertillon.
In his seminal work on biometrics he writes [4],

“The ear, thanks to these multiple small valleys and hills which furrow
across it, is the most significant factor from the point of view of identi-
fication. Immutable in its form since birth, resistant to the influences
of environment and education, this organ remains, during the entire
life, like the intangible legacy of heredity and of the intra-uterine life”.

Ear biometrics has received scant attention compared to the more popular
techniques of face, eye, or fingerprint recognition. However, ears have played
a significant role in forensic science for many years, especially in the United
States, where an ear classification system based on manual measurements
was developed by Iannarelli, and has been in use for more than 40 years
[21], although the reliability of ear-print evidence has recently been challenged
[24, 14]. Rutty et al. have considered how Iannarelli’s manual techniques might
be automated [32] and a European initiative has looked at the value of ear
prints in forensics [25].

Ears have certain advantages over the more established biometrics; as
Bertillon pointed out, they have a rich and stable structure that changes
little with age. The ear does not suffer from changes in facial expression, and
is firmly fixed in the middle of the side of the head so that the immediate
background is more predictable than is the case for face recognition which
usually requires the face to be captured against a controlled background. Col-
lection does not have an associated hygiene issue, as may be the case with
contact biometrics, and is unlikely to cause anxiety as may happen with iris
and retina measurements. The ear is large compared with the iris, retina, and
fingerprint and therefore is more easily captured at a distance.
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Burge et al. [7, 8] were amongst the first to describe the ear’s potential as
a biometric using graph matching techniques on a Voronoi diagram of curves
extracted from the Canny edge map. Moreno et al. [27] tackled the problem
with some success using neural networks and reported a recognition rate of
93% on a dataset of 168 images using a two-stage neural network technique.
Hurley et al. used force field feature extraction [17, 16, 20] to map the ear
to an energy field which highlights “potential wells” and “potential channels”
as features. By achieving a recognition rate of 99.2% on a dataset of 252
images, [20] this method proved to yield a much better performance than
PCA when the images were poorly registered. The approach is also robust to
noise; adding 19dB of Gaussian noise actually improved the performance to
99.6% [19]. Abdel-Mottaleb et al. [1] used the force field transform to obtain
a smooth surface representation for the ear and then applied different surface
curvature extractors to gather the features.

Statistical holistic analysis, especially Principal Components Analysis
(PCA), has proved to be one of the most popular approaches to ear recog-
nition. Victor et al. [34] applied PCA to both face and ear recognition and
concluded that the face yields a better performance than the ear. However,
Chang et al. [9] conducted a similar experiment and reached a different conclu-
sion: no significant difference was observed between face and ear biometrics
when using PCA. The image dataset in [34] had less control over earrings,
hair, lighting etc. and as suggested by Chang et al., this may account for
the discrepancy between the two experiments. Chang et al. also reported a
recognition rate of 90.9% using an ear and face multimodal approach. Zhang
et al. [42] developed a system combining Independent Components Analysis
(ICA) with a Radial Basis Function (RBF) network and showed that bet-
ter performance can be achieved using ICA instead of PCA. However both
PCA and ICA offer almost no invariance and therefore require very accurate
registration in order to achieve consistently good results.

Yuizono et al. [41] treated the recognition task as an optimisation problem,
proposing a system using a specially developed genetic local search targeting
the ear images. Given that their work does not include any feature extraction
process, it has no invariant properties. Some studies have focused on geomet-
rical approaches [28, 13]; Mu et al. [28] reported an 85% recognition rate using
such an approach. Alvarez et al. [3] proposed an ovoid model for segmentation
and normalization of the ear.

Yan et al. [37, 40] captured 3D ear images using a range scanner and used
Iterative Closest Point (ICP) registration for recognition to achieve a 97.8%
recognition rate. Chen et al. proposed a 3D ear detection and recognition
system using a model ear for detection, and using ICP and a local surface
descriptor for recognition, reporting a recognition rate of 90.4% [12, 11, 10, 6].

A number of multimodal approaches to ear recognition have also been con-
sidered [9, 36, 22, 31]. Iwano et al. [22] combined ear images and speech using
a composite posterior probability, and showed that the performance improves
using ear images in addition to speech in the presence of noise. In this study,
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PCA was applied to extract the ear features. Chang et al. [9] and Rahman et
al. [31] proposed multimodal biometric systems using PCA on both face and
ear. Both studies reported an increase in performance when using multimodal
biometrics instead of individual biometrics, achieving multi-modal recognition
rates of 90.9% and 94.4% respectively. Yan et al. [36] conducted multi-modal
experiments on a dataset of 203 images to test the efficacy of various com-
binations of 2D-PCA, 3D-PCA, and 3D-Edges with the recognition results
shown in Table 7.1. For further details of multi-modal ear and face biometrics
see the chapter by Bowyer. An introductory survey of ear biometrics has been

Table 7.1. Yan et al. multi-modal results on a dataset of 203 images.

2d-pca, 3d-pca, 3d-edge, 3d-pca+3d-edge, 2d-pca+3d-edge, 2d-pca+3d-pca, all 3

71.9% 64.8% 71.9% 80.2% 89.7% 89.1% 90.6%

provided by Pun et al. [30].
In related studies Akkermans et al. [2] developed an ear biomeric system

based on the acoustic properties of the ear. They measure the acoustic transfer
function of the ear by projecting a sound wave at the ear and observing the
change in the reflected signal.

We will start this chapter with a review of the anatomy and physiology
of the ear and how this is likely to affect its biometric properties. The ear
biometrics field is still so small that we will be able to touch on most of
the main techniques. In particular, we will describe PCA in some detail as
this has proved to be one of the most popular techniques. Despite its intricate
mathematical nature, it is quite easy to implement and even easier to use, and
should allow the reader to do some simple experiments with ear biometrics in
order to confirm their biometric potential. Finally, we will consider the future
of ear biometrics and related issues.

7.2 Evidence and Support for Ears as a Biometric

The structure of the ear is not quite so random as Bertillon seems to suggest;
it has a definite structure just like the face. Most people when asked could
easily draw the outline of the ear but only the experienced artist would be able
to reproduce from memory its detailed intricate structure. As shown in Figure
7.1, the shape of the ear tends to be dominated by the outer rim or helix, and
also by the shape of the lobe. There is also an inner helix or antihelix which
runs roughly parallel to the outer helix but forks into two branches at the
upper extremity. The inner helix and the lower of these two branches forms
the top and left side of the concha, named for its shell-like appearance. The
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bottom of the concha merges into the very distinctive intertragic notch, which
due to its very sharp bend at the bottom can form a useful reference point for
biometric purposes. Note also the crus of helix where the helix intersects with
the lower branch of the antihelix. This is one of the points used by Iannarelli
as a reference point for his measurement system, the other point being the
antitragus or the little bump on the left of the intertragic notch [21]. The front
of the concha opens into the external ear canal or acoustic or auditory meatus,
more commonly referred to as the ear hole, although this is usually somewhat
concealed by the flesh around and above the tragus. It is interesting to note
[29] that the embryonic ear has a small number of about 6 individual growth
nodules which eventually develop along with the foetus to become the fully
formed auricle in the newborn infant, striking a note with Bertillon’s earlier
observation.

Fig. 7.1. Anatomy of the ear. In addition to the familiar rim or helix and ear lobe,
the ear also has other prominent features such as the anti-helix which runs parallel
to the helix, and a distinctive hairpin-bend shape just above the lobe called the
intertragic notch. The central area or concha is named for its shell-like appearance.

Figure 7.2 shows a small sample of human ears indicating the rich variety
of different shapes. Notice that some ears have well formed lobes, whereas
others have almost none. These latter are called “attached lobes” and make
measurement of the length of the ear difficult.

Because of the tendency of the inner and outer helices to run parallel, there
is quite a degree of correlation between them which detracts somewhat from
the biometric value of the ear; indeed it could also be argued that the concha
is simply the space that remains when the other parts have been accounted
for, so that it is also highly correlated to its neighbouring parts and therefore
contributes less independent information than might appear to be the case at
first.

The outer ear called the auricula or pinna forms only part of the total ear
organ which has evolved to locate, collect, and process sound waves. Many
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Fig. 7.2. Examples of the human ear shape. Notice that helices, concha, intertragic
notch, etc. are present in all the examples, but that some ears have so called attached
lobes, where the lobes are poorly formed or are almost non-existent.

other mammals like horses, dogs, and cats can articulate their ears to better
locate particular sound sources. Fortunately for the purpose of biometrics we
humans can hardly articulate our ears; our ears are held rigidly in position
by cartilaginous tissue which is firmly attached to the bone at the side of the
head. The ear owes its semi-rigid shape due to this stiff tissue which underlies
its soft flesh.

The face has roughly the same visual complexity as the ear; quite simple
changes in the parameters which define the size and shape of the eyes, nose,
mouth, and cheek-bones can lead to a wide range of facial appearances. In this,
we regard perfect symmetry as a mark of beauty, but we should note that the
ear lacks all symmetry. It is also worth noting that since the face is symmetrical
about its centre-line, therefore its structure really only represents half-a-face
from a biometrics perspective because the information on the left side reflects
that on the right. The ear has no symmetry and therefore does not suffer from
this drawback giving it an advantage over the face, and of course the face is
contorted during speech and when expressing emotions, and its appearance
is often altered by make-up, spectacles, and beards and moustaches, whereas
the ear does not move and only has to support earrings, spectacle frames,
and sometimes hearing aids, although of course it is often occluded by hair.
As such, the ear is much less susceptible to covariate interference than many
other biometrics, with particular invariance to age.

7.3 Approaches to Ear Biometrics

7.3.1 The early work of Iannarelli and Forensic Ears

Alfred Iannarelli developed a system of ear classification used by American
law enforcement agencies. In late 1949 he became interested in the ear as a
means of personal identification in the context of forensic science. He subse-
quently developed the Iannarelli System of Ear Identification [21]. As shown
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Fig. 7.3. Iannarelli’s manual ear measurement system.

in Figure 7.3 his system essentially consists of taking a number measurements
around the ear by placing a transparent compass with 8 spokes at equal 45◦

intervals over an enlarged photograph of the ear. The first part of registra-
tion is achieved by ensuring that a reference line touches the crus of helix at
the top and touches the innermost point on the tragus at the bottom. Nor-
malisation and the second step of registration are accomplished by adjusting
the enlargement mechanism until a second reference line exactly spans the
concha from top to bottom. Iannarelli has appeared personally as an expert
witness in many court cases involving ear evidence, or is often cited as an ear
identification expert by other expert witnesses [24]. In the preface to his book
Iannarelli states,

“Through 38 years of research and application in earology, the author
has found that in literally thousands of ears that were examined by
visual means, photographs, ear prints, and latent ear print impres-
sions, no two ears were found to be identical - not even the ears of
any one individual. This uniqueness held true in cases of identical and
fraternal twins, triplets, and quadruplets”

When Iannarelli suggests that “not even the ears of any one individual are
unique” he has unwittingly touched on the nub of the biometrics problem.
It is not an advantage, as he seems to suggest, that the ear samples from
the same individual over time are not unique. On the contrary the less these
samples are unique, then the less are we entitled to claim that an individual’s
biometric is unique. If we think of individuals’ samples as forming points in
a feature space, then these points will form clusters for each individual. It is
the extent to which these different clusters are separated from one and other
and the extent to which the individual clusters are closely grouped around
their own averages, that determines how well a particular biometric system
performs. In recent times attempts have been made to automate Iannarelli’s
system [32].

7.3.2 Burge and Burger Proof of Concept

Burge and Burger [7, 8] were the first to investigate the human ear as a
biometric in the context of machine vision. Inspired by the earlier work of
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Iannarelli [21], they conducted a proof of concept study where the viability of
the ear as a biometric was shown both theoretically in terms of the uniqueness
and measurability over time, and in practice through the implementation of a
computer vision based system. Each subject’s ear was modeled as an adjacency
graph built from the Voronoi diagram of its Canny extracted curve segments.
They devised a novel graph matching algorithm for authentication which takes
into account the erroneous curve segments which can occur in the ear image
due to changes such as lighting, shadowing, and occlusion. They found that
the features are robust and could be reliably extracted from a distance. Figure
7.4 shows the extracted curves, Voronoi diagram, and a neighbourhood graph
for a typical ear. They identified the problem of occlusion by hair as a major

Fig. 7.4. Graph model: Stages in building the ear biometric graph model. A gen-
eralized Voronoi diagram (centre) of the Canny extracted edge curves (left) is built
and a neighborhood graph (right) is extracted.

obstacle and proposed the use of thermal imagery to overcome this obstacle.

7.3.3 Principal Components Analysis

Principal Components Analysis, closely related to Singular Value Decom-
position, has been one of the most popular approaches to ear recognition
[34, 9, 20, 22, 35, 31]. It is an elegant, easy to implement and easy to use
technique, so we will attempt to describe it in sufficient detail for the reader
to be able to understand and implement it readily with a view to being able
to set up a simple ear recognition experiment to confirm the basic biometric
potential of the ear. The underlying mathematics can be found in [33, 23].

We will first show how images can be looked upon as vectors, and how any
picture can be constructed as a summation of elementary picture-vectors. We
will then show how PCA can process these vectors to achieve image compres-
sion, and how this in turn can be used for biometrics.

We are familiar with the real coordinate space R3 where any point can be
represented as a linear combination of 3 unit value basis vectors mutually at
right angles to each other. For example, the point (3,4,5) can be expressed as,
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3(1, 0, 0) + 4(0, 1, 0) + 5(0, 0, 1) = (3, 0, 0) + (0, 4, 0) + (0, 0, 5) = (3, 4, 5).

We could also express any point as the sum of non-standard basis vectors,
providing that none of the chosen basis vectors is a linear combination of the
other two. For example, we can also write,

(3, 4, 5) = 1.333(1, 2, 3) + 0.333(2, 3, 1) + 0.333(3, 1, 2).

Now if we admit the possibility of negative value pixels, then pictures can
also be treated as vectors so that any picture can be expressed as a linear
combination of unit value basis picture-vectors. For example, a trivial four
element picture can be expressed as,

[
1 2
3 4

]
= 1

[
1 0
0 0

]
+ 2

[
0 1
0 0

]
+ 3

[
0 0
1 0

]
+ 4

[
0 0
0 1

]

In the example which follows taken from [20] we will be dealing with 111x73
-pixel images. This would require 111x73 = 8103 sparse elementary picture-
vectors, each with only one pixel set to 1 and the remaining pixels set to 0, and
a set of 8103 weights to specify a particular picture, obviously not resulting
in any compression advantage.

In this real example we use a subset of the XM2VTS face profiles database
[26], consisting of 4 ear images for each of 63 subjects giving us a total of 252
images. Now here is how the “magic” of PCA works; by taking one of the four
samples from each of the 63 subjects we produce a special projection matrix
P which enables us to compute a set of 63 weights for each of the 252 images
which when used to scale a set of 63 special picture-vectors already encoded in
P produces a reasonable facsimile of the original image. Instead of requiring
8103 weights we can make do with only 63 which is a very high degree of
compression of well over 100:1, albeit lossy compression. These weights form
convenient 63 element feature vectors representing each picture and are perfect
for biometric comparison as they allow us to calculate the distance between
pictures by doing a simple vector subtraction.

We will now give the details of the calculations involved. In order to carry
out matrix multiplication of the 111x73 picture-vectors we first have to encode
them as 8103x1 column vectors by stacking the 73 columns on top of each
other. Any results can be recoded as rectangular matrices for display purposes.

The projection matrix is calculated as follows

Let p be any of the 63 first of four picture samples
Let m be the average over the 63 pictures i.e.(

∑
p)/63

Let d = p−m be the difference between each picture and the average
Let D be the array formed by the 63 columns of difference pictures d
Then the projection matrix is given by,

P = DS(DTD), (7.1)
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where S(M) is a function that returns a matrix whose columns are the nor-
malised eigenvectors of matrix M.

The basis-pictures or eigenvectors are simply the columns of P.
The weights for picture p are given by

w = dTP. (7.2)

The compressed image for a given picture p is given by

c = PwT + m. (7.3)

Figure 7.5 shows the first 36 of the 63 eigenvctors, whereas Figure 7.6 shows
the projections and eigenvector spectra for 3 subjects. Notice that the leftmost
projections are the best facsimiles because they have been used in forming the
projection matrix. Notice also that the eigenvector spectra, consisting of the
63 weights, do not rapidly diminish to zero, in fact all of these 63 weights are
used for comparison. Each set of 63 weights is treated as a vector and the
Manhattan distances between these vectors are used as a suitable metric,

distance =
62∑

n=0

|wi(n)−wj(n)|. (7.4)

The means and standard deviations of the inter-class and intra-class distribu-
tions can then be calculated to gauge the efficacy of the technique. The spreads
or standard deviations of the two distributions should be small compared to
the separation of their means for a good biometric. Since 63 of the samples
are used in forming P, we do not include them in the biometric comparison
so that only 252− 63 = 189 ear images are used for performance evaluation.
In this experiment a recognition rate of 186/189 or 98.4% was achieved [20].

7.3.4 Force Field Transform

Hurley et al. [17, 18, 16, 20] have developed an invertible linear transform
which transforms an ear image into a force field by pretending that pixels
have a mutual attraction proportional to their intensities and inversely to the
square of the distance between them rather like Newton’s Universal Law of
Gravitation (Figure 7.7). Underlying this force field there is an associated
energy field which in the case of an ear takes the form of a smooth surface
with a number of peaks joined by ridges as shown in Figure 7.8. The peaks
correspond to potential energy wells and to extend the analogy the ridges
correspond to potential energy channels. Since the transform also turns out
to be invertible, all of the original information is preserved and since the
otherwise smooth surface is modulated by these peaks and ridges, it is argued
that much of the information is transferred to these features and that therefore
they should make good features.
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Fig. 7.5. The first 36 of the set of 63 eigenvectors computed from the subset of 63
ear images selected from the 252 image database. The first of the four samples from
each of the 63 subjects was used in forming the projection matrix. These are the
basis picture-vectors which will be scaled by the computed weights to produce the
compressed or projected images.

Fig. 7.6. PCA projections and eigenvector spectra for 3 subjects. The top rows
show the original images whilst the middle rows are their corresponding projections
into the eigenvector subspace. The bottom row depicts the eigenvector spectrum for
each image consisting of the 63 weights used to render its projection.

Fig. 7.7. Newton’s Universal Law of Gravitation. The earth and moon are mutu-
ally attracted according to the product of their masses me and mm respectively,
and inversely proportional to the square of the distance between them. G is the
gravitational constant of proportionality.
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F(rj) =
∑

i

{
P (ri)

ri − rj

|ri − rj |3
}
∀i 6= j, 0 ∀i = j (7.5)

E(rj) =
∑

i

P (ri)
|ri − rj |∀i 6= j, 0 ∀i = j (7.6)

Two distinct methods of extracting these features are offered. The first

Fig. 7.8. Generating an ear energy surface by convolution. The energy field for
an ear (right) is obtained by locating a unit value potential function (left) at each
pixel location and scaling it by the value of the pixel and then finding the sum of
all the resulting functions. For efficiency this is actually calculated in the frequency
domain.

method depicted in Figure 7.9 (left) is algorithmic, where test pixels seeded
around the perimeter of the force field are allowed to follow the force direction
joining together here and there to form channels which terminate in poten-
tial wells. The second method depicted in Figure 7.9 (centre) is analytical,
and results from an analysis of the mechanism of the first method leading to
a scalar function based on the divergence of the force direction. The second
method was used to obtain a recognition rate of over 99% on a dataset of
252 ear images consisting of 4 time lapsed samples from each of 63 subjects,
extracted from the XM2VTS face profiles database [26].

Equations 7.5 and 7.6 show how the force and energy fields are calculated
at any point rj . These equations must be applied at every pixel position to
generate the complete fields. In practice this computation would be done in
the frequency domain using Equation 7.7 where = stands for FFT.

Energy =
√

MN
{=−1 [= (potential)×= (image)]

}
(7.7)

Convergence provides a more general description of channels and wells in the
form of a mathematical function in which wells and channels are revealed to
be peaks and ridges, respectively in the function value. This function maps the
force field F(r) to a scalar field C(r), taking the force as input, and returning
the additive inverse of the divergence of the force direction, and is defined by,

C(r) = −divf (r) = − lim
∆A→0

∮
f(r) · dl
∆A

= −∇ · f(r) = −
(

∂fx

∂x + ∂fy

∂y

)
(7.8)
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where f(r) = F(r)
|F(r)| is the force direction, ∆A is incremental area, and dl is

its boundary outward normal. This function is real valued and takes negative
values as well as positive ones where negative values correspond to force di-
rection divergence. Note that the function is non-linear because it is based on
force direction and therefore must be calculated in the given order.

Fig. 7.9. Force and convergence fields for an ear. The force field for an ear (left)
and its corresponding convergence field (centre). The force direction field (right)
corresponds to the small rectangular inserts surrounding a potential well on the
inner helix.

7.3.5 Three Dimensional Ear Biometrics

The auricle has a rich and deep three dimensional structure, so it is not
surprising that a number of research groups have focused their attention in
this direction.

Yan and Bowyer ICP Approach

Yan et al. [38, 36, 39, 37, 40] use a Minolta VIVID 910 range scanner to
capture both depth and colour information. The device uses a laser to scan
the ear, and depth is automatically calculated using triangulation. They have
developed a fully automatic ear biometric system using ICP based 3D shape
matching for recognition, and using both 2D appearance and 3D depth data
for automatic ear extraction which not only extracts the ear image but also
separates it from hair and earrings. They achieve almost 98% recognition on
a time-lapse dataset of 1,386 images over 415 subjects, with an equal error
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rate of 1.2%. The 2D and 3D image datasets used in this work are available
to other research groups. For further details, see Chapter 25.

Ear extraction uses a multistage process which uses both 2D and 3D
data and curvature estimation to detect the ear pit which is then used to
initialize an elliptical active contour to locate the ear outline and crop the 3D
ear data.

Ear pit detection includes: (i) geometric prepossessing to locate the nose
tip to act as the hub of a sector which includes the ear with a high degree
of confidence; (ii) skin detection to isolate the face and ear region from the
hair and clothes; (iii) surface curvature estimation to detect the pit regions
depicted in black in the image; (iv) surface segmentation and classification,
and curvature information to select amongst possible multiple pit regions us-
ing a voting scheme to select the most likely candidate. The detected ear pit
is then used to initialize an active contour algorithm to find the ear outlines.
Both 2D colour and 3D depth are used to drive the contour, as using either
alone is inadequate since there are cases in which there is no clear colour or
depth change around the ear contour.

Fig. 7.10. 3D ear extraction. From left to right, skin detection and most likely sector
generation, pit detection and selection, ear outline location, 3D ear extraction

Fig. 7.11. Voxelization: Left: 3D image space is partitioned into voxels. Right: Two
voxel centres P1 and P2 and their closest points on the gallery surface P ′1 and P ′2.

3D shape matching: ICP [5] has been widely used for 3D shape matching
due to its simplicity and accuracy, however it is computationally expensive.
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Given a probe point set P and a gallery point set G, ICP iteratively calculates
the rigid transform T that best aligns P and G. At the ith iteration, the
transform Ti is the transform that minimizes the mean square differences
between the corresponding points of Pi and G. The corresponding points are
the closest points between the two point-sets. Pi is then updated using Ti.

Yan et al. [38] have developed an efficient ICP registration method called
“Pre-computed Voxel Closest Neighbours” which exploits the fact that sub-
jects have to be enrolled beforehand for biometrics. Since the most time con-
suming part of the ICP algorithm is finding the closest points between the
probe and the gallery (of order NP log NG) the main idea of this method is
to approximate each point of the probe with a nearby point whose nearest
point in the gallery point set is pre-computed. They proposed a quantised 3D
volume using voxels, as shown in Figure 7.11. Placing the 3D probe image
into this volume, each point of the probe falls into a voxel. Each probe point
is then approximated by the voxel centre wherein it is placed. For each voxel
the closest point in 3D space on the gallery surface is computed ahead of time.
Figure 7.11 shows the closest points to the two voxel centres P1 and P2.

Chen and Bhanu Local Surface Patch Approach

Chen et al. [12, 11, 10, 6] have also tackled 3D ear biometrics using a Minolta
range scanner as the basis of a complete 3D recognition system on a dataset
of 52 subjects consisting of two images per subject. The ears are detected
using template matching of edge clusters against an ear model based on the
helix and antihelix, and then a number of feature points are extracted based
on local surface shape. A signature called a “Local Surface Patch” based on
local curvature is computed for each feature point and is used in combination
with ICP to achieve a recognition rate of 90.4%

Feature points extraction: Shape index Si is a quantitative measure of
surface shape [15] based on principal curvatures which classifies surface shape
as one of 9 basic types represented by values in the interval [0,1],

Si (p) =
1
2
− 1

π
tan−1 k1 (p) + k2 (p)

k1 (p)− k2 (p)
, (7.9)

where k1 and k2 are the maximum and minimum principal curvatures re-
spectively. Chen et al. then choose as feature points those where the index is
locally maximum or minimum.

Local Surface Patch: A local surface patch (LSP) [12] comprises the
neighbourhood of points N around a feature point P which are close enough
to the feature point in Euclidean distance and surface normal.

N = {Ni : Ni pixel, ‖Ni − P‖ ≤ ε1, cos−1(np • nni
) < A}. (7.10)

For each feature point, shape index values of its LSP points and the dot
product of surface normal vectors of the feature point and its LSP points are
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computed, and accumulated in a 2D histogram. The 2D histogram accumu-
lates this information in bins along two axes. These two axes are the shape
index with range [0,1] and the dot product of surface normal vectors which
is in the range [-1,1]. A surface type of “concave”, “convex”, or “saddle” is
also allocated to each LSP. Taken together the 2D histogram, the surface type
and the centroid of the local surface patch make up a distinctive signature for
each patch.

Fig. 7.12. Local Surface Patch. The LSP constitutes a characteristic signature
consisting of a 2D histogram, a surface type, and a centroid.

Recognition: This is a two stage process based on LSP for coarse align-
ment and ICP for fine alignment of probe and gallery images. Probe images
are compared against all images in the gallery; each comparison is started by
identifying the best match for each probe LSP in the gallery. Assuming that
the true set of matches which pairs the patches that depict similar features in
both probe and gallery is a subset of the total matches, a geometric constraint
is applied to divide the matches into groups where each pair of matches in a
group must satisfy the following condition,

dC1,C2 = |dP1,P2 − dG1,G2 | < ε2 (7.11)

where C1 = {P1, G1} and C2 = {P2, G2} are the matches for probe and
gallery patches P and G respectively, and dP1,P2 and dG1,G2 are the Euclidean
distances between patch centroids. The above constraint guarantees that a
group of matches preserves the mutual position of the patches. In other words
dP1,P2 should be consistent with dG1,G2 . Note that with this definition a match
can be placed in more than one group. The biggest group is then declared as
the true match subset.
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Starting with an initial rigid transform based on the true match subset,
ICP is applied to find the refined alignment between the probe and the gallery
image. Having compared all the gallery images to the probe, the gallery image
with least root mean square (RMS) error is classified as the correct match.

7.3.6 Acoustic Ear Recognition

Akkermans et al. [2] have exploited the acoustic properties of the ear for
recognition. It turns out that the ear by virtue of its special shape behaves like
a filter so that a sound signal played into the ear is returned in a modified form.
This acoustic transfer function forms the basis of the acoustic ear signature.
An obvious commercial use is that a small microphone might be incorporated
into the earpiece of a mobile phone to receive the reflected sound signal and
the existing loudspeaker could be used to generate the test signal.

Fig. 7.13. An ear signature is generated by probing the ear with a sound signal
which is reflected and picked up by a small microphone. The shape of the pinna and
the ear canal determine the acoustic transfer function which forms the basis of the
signature.

Akkermans et al. measure the impulse response of the ear by sending a
noise signal n(t) with a spectrum N(ω) into the pinna and ear canal and mea-
suring the response r(t). Next, the response is transformed into the frequency
domain by using an FFT to calculate the output frequency spectrum R(ω).
Finally, an estimate is obtained of the transfer function H(ω) = R(ω)/N(ω),
where H(ω) is the cascade of the transfer functions of the loudspeaker, pinna
and ear canal, and microphone as shown in Figure 7.14.

The test dataset consists of 8 ear signatures collected from each of 31
subjects using headphones and a separate set of 8 signatures from 17 subjects
using a modified mobile phone with a small microphone incorporated into the
earpiece. The correlation metric,

C =
x.y

‖x‖ ‖y‖ (7.12)
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Fig. 7.14. Calculating the impulse response of the ear

was used for comparison where x and y are the feature vectors taken relative
to the mean of the population. Using Fisher LDA analysis equal error rates
of 1.5% - 7% were obtained depending on whether headphones were used or
mobile phones.

7.4 Conclusions and Outlook

The ear as a biometric is no longer in its infancy and it has shown encouraging
progress so far - which is improving, especially with the interest created by the
recent research into its 3D potential. It enjoys forensics support, it’s structure
appears individual, and it appears to have less variance with age than other
biometrics.

It is also most unusual, even unique, in that it supports not only visual
recognition but also acoustic recognition at the same time. This, together
with its deep 3-dimensional structure will make it very difficult to fake thus
ensuring that the ear will occupy a special place in situations requiring a high
degree of protection against impersonation.

The all important question of “just how good is the ear as a biometric”
has only begun to be answered. The initial test results, even with quite small
datasets, were disappointing, but now we have regular reports of recognition
rates in the high 90’s on more sizeable datasets. But there is clearly a need for
much better intra-class testing, both in terms of the number of samples per
subject and of variability over time. However we will not dwell on this topic
as it is treated in depth in Chapter 25.

Most of the recent work has focused on the overall appearance or on the
shape of the ear, whether it be PCA, force field, or ICP, but it may prove
profitable to further investigate if different and particular parts of the ear are
more important than others from a recognition perspective. There is also a
need to develop techniques with better invariance, perhaps more model based,
and to seek out high speed recognition techniques to cope with the very large
datasets that are likely to be encountered in practice.

We must not forget that the inherent disadvantage of the occlusion of the
ear by hair will always be a problem, but even this might be ameliorated by
the development of thermal imaging schemes. But one thing is for certain, and
that is that there are many questions to be answered, so we can look forward
to many interesting research studies addressing these issues.
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8.1 Introduction

Recent data on mobile phone users all over the world, the number of telephone
landlines in operation, and recent VoIP (Voice over IP networks) deployments,
confirm that voice is the most accessible biometric trait as no extra acquisition
device or transmission system is needed. This fact gives voice an overwhelming
advantage over other biometric traits, especially when remote users or systems
are taken into account. However, the voice trait is not only related with per-
sonal characteristics, but also with many environmental and sociolinguistic
variables, as voice generation is the result of an extremely complex process.
Thus, the transmitted voice will embed a degraded version of speaker speci-
ficities and will be influenced by many contextual variables that are difficult
to deal with. Fortunately, state-of-the-art technologies and applications are
presently able to compensate for all those sources of variability allowing for
efficient and reliable value-added applications that enable remote authentica-
tion or voice detection based just in telephone-transmitted voice signals [39],
[16].

8.1.1 Applications

Due to the pervasiveness of voice signals, the range of possible applications
of voice biometrics is wider than for other usual biometric traits. We can
distinguish three major types of applications which take advantage of the
biometric information present in the speech signal:

• Voice authentication (access control, typically remote by phone) and back-
ground recognition (natural voice checking) [11].

• Speaker detection (e.g. blacklisting detection in call centers or wiretapping
and surveillance), also known as speaker spotting.

• Forensic speaker recognition (use of the voice as evidence in courts of law
or as intelligence in police investigations) [42].
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These applications will be addressed in section 8.6.

8.1.2 Technology

The main source of information encoded in the voice signal is undoubtedly
the linguistic content. For that reason it is not surprising that depending
on how the linguistic content is used or controlled, we can distinguish two
very different types of speaker recognition technologies with different potential
applications.

Firstly, text-dependent technologies, where the user is required to utter
a specific key-phrase (e.g., “Open, Sesame”) or sequence (e.g., “12-34-56”),
have been the major subject of biometric access control and voice authentica-
tion applications [38], [16]. The security level of password based systems can
then be enhanced by requiring knowledge of the password, and also requiring
the true owner of the password to utter it. In order to avoid possible theft
recordings of true passwords, text-dependent systems can be enhanced to ask
for random prompts, unexpected to the caller, which cannot be easily fabri-
cated by an impostor. All the technological details related with text-dependent
speaker recognition and applications are addressed in section 8.4.

The second type of speaker recognition technologies are those known as
text-independent . They are the driving factor of the remaining two types of
applications, namely speaker detection and forensic speaker recognition. Since
the linguistic content is the main source of information encoded in the speech,
text-independency has been a major challenge and the main subject of re-
search of the speaker recognition community in the last two decades. The NIST
SRE (Speaker Recognition Evaluations) conducted yearly since 1996 [35], [39]
have fostered excellence in research in this area, with extraordinary progress
obtained year by year based in blind evaluation with common databases and
protocols, and very specially the sharing of information among participants
in the follow-up workshop after each evaluation. Text-independent systems,
including technological details and applications, will be addressed in detail in
section 8.5.

8.2 Identity information in the speech signal

In this section, we will deal with how the speaker specificities are embed-
ded into the speech signal. Speech production is a extremely complex process
whose result depends on many variables at different levels, including from
sociolinguistic factors (e.g. level of education, linguistic context and dialectal
differences) to physiological issues (e.g. vocal tract length, shape and tissues
and the dynamic configuration of the articulatory organs). These multiple in-
fluences will be simultaneously present in each speech act, and some or all
of them will contain specificities of the speaker. For that reason, we need
to clarify and clearly distinguish the different levels and sources of speaker
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information that we should be able to extract in order to model speaker indi-
vidualities.

8.2.1 Language generation and speech production

The process by which humans are able to construct a language-coded mes-
sage has been the subject of study for years in the area of psycholinguistics.
But once the message has been coded in the human brain, a complex phys-
iological and articulatory process is still needed to finally produce a speech
waveform (the voice) that contains the linguistic message (as well as many
other sources of information, one of which is the speaker identity) encoded as
a combination of temporal-spectral characteristics. This process is the sub-
ject of study of phoneticians and some other speech analysis related areas
(engineers, physicians, etc.). Details on language generation and speech pro-
duction can be found in [50], [27], [41]. The speech production process is very
complex and would deserve several book chapters by itself, but we are here in-
terested in those aspects related with the encoding of some kind of individual
information in the final speech signal that is transmitted out of the speaker
mouth. In both stages of voice production (language generation and speech
production), speaker specificities are introduced. In the field of voice biomet-
rics –also known as speaker recognition– these two components correspond
with which is usually known as high-level (linguistic) and low-level (acoustic)
characteristics.

8.2.2 Multiple information levels

Experiments with human listeners have shown, as our own experience tells
us, that humans recognize speakers by a combination of different information
levels, and what is specially important, with different weights for different
speakers (e.g. one speaker can show very characteristic pitch contours, and
another one can have a strong nasalization which make them “sound” differ-
ent). Automatic systems will intend to take advantage of the different sources
of information available, combining them in the best possible way for every
speaker [15].

Idiolectal characteristics of a speaker [12] are at the highest level that is
usually taken into account by the technology to date, and describe how a
speaker use a specific linguistic system. This “use” is determined by a multi-
tude of factors, some of them quite stable in adults such as level of education,
sociological and family conditions and town of origin. But there are also some
high-level factors which are highly dependent on the environment, as e.g., a
male doctor does not use language in the same way when talking with his
colleagues at the hospital (sociolects), with his family at home, or with his
friends playing cards. We will describe idiolectal recognition of speakers in
more detail in section 8.5.2, taking advantage of frequency of use of different
linguistic patterns, which will be extracted as shown in section 8.3.3.
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As second major group of characteristics going down towards lower infor-
mation levels in the speech signal we find phonotactics [10], which describe
the use by each speaker of the phone units and possible realizations avail-
able. Phonotactics are essential for the correct use of a language, and a key in
foreign language learning, but when we look into phonotactic speaker speci-
ficities we can find certain usage patterns distinctive from other users. The use
of phonotactics for automatic speaker recognition is fully described in section
8.5.3, from the same set of tokens as idiolects described in section 8.3.3.

In a third group we find prosody , which is the combination of instanta-
neous energy, intonation, speech rate and unit durations that provides speech
with naturalness, full sense, and emotional tone. Prosody determines prosodic
objectives at the phrase and discourse level, and define instantaneous actions
to comply with those objectives. It helps to clarify the message (“nine hun-
dred twenty seven” can be distinguished as “927” or “900 27” by means of
prosody), the type of message (declarative, interrogative, imperative), or the
state of mind of the speaker. But in the way each speaker uses the differ-
ent prosodic elements, many speaker specificities are included, such as, for
example, characteristic pitch contours in start and end of phrase or accent
group. The automatic extraction of pitch and energy information is described
in section 8.3.4, while the use of prosodic features to automatically recognize
speakers is described in section 8.5.4.

Finally, at the lower level, we find the short-term spectral characteristics
of the speech signals, directly related to the individual articulatory actions re-
lated with each phone being produced and also to the individual physiological
configuration of the speech production apparatus. This spectral information
has been the main source of individuality in speech used in actual applica-
tions, and the main focus of the research for almost twenty years [43], [54],
[8]. Spectral information intends to extract the peculiarities of speaker’s vo-
cal tracts and their respective articulation dynamics. Two types of low level
information has been typically used, static information related to each anal-
ysis frame and dynamic information related to how this information evolves
in adjacent frames, taking into account the strongly speaker-dependent phe-
nomenon of co-articulation, the process by which an individual dynamically
moves from one articulation position to the next one. Details on short term
analysis and parameterization will be given in sections 8.3.1 and 8.3.2, while
short-term spectral systems will be described in section 8.5.1.

8.3 Feature Extraction and Tokenization

The first step in the construction of automatic speaker recognition systems is
the reliable extraction of features and tokens that contain identifying infor-
mation of interest. In this section, we will briefly show the procedures used to
extract both short-term feature vectors (spectral information, energy, pitch)
and mid-term and long-term tokens as phones, syllables and words.
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8.3.1 Short-term analysis

In order to perform reliable spectral analysis, signals must show stationary
properties that are not easy to observe in constantly-changing speech signals.
However, if we restrict our analysis window to short lengths between 20 and 40
ms., our articulatory system is not able to significantly change in such a short
time frame, obtaining what is usually called pseudo-stationary signals per
frame. This process is depicted in figure 8.1. Those windowed signals can be
assumed, due to pseudo-stationarity, to come from a specific LTI (linear time-
invariant) system for that frame, and then we can perform, usually after using
some kind of cosine-like windowing as hamming or hanning, spectral analysis
over this short-term window, obtaining spectral envelopes that change frame
by frame [41], [27].

Fig. 8.1. Short-term analysis and parameterization of a speech signal.

8.3.2 Parameterization

This short-time hamming/hanning windowed signals have all of the desired
temporal/spectral information, albeit at a high bit rate (e.g. telephone speech
digitized with sampling frequency 8 kHz in a 32 ms. window means 256 sam-
ples x 16 bits/sample = 4096 bits = 512 bytes per frame). Linear Predictive
Coding (LPC) of speech has proved to be a valid way to compress the spec-
tral envelope in an all-pole model (valid for all non-nasal sounds, and still a
good approximation for nasal sounds) with just 10 to 16 coefficients, which
means that the spectral information in a frame can be represented in about
50 bytes, which is 10% of the original bit rate. Instead of LPC coefficients,
highly correlated among them (covariance matrix far from diagonal), pseudo-
orthogonal cepstral coefficients are usually used, either directly derived as
in LPCC (LPC-derived Cepstral vectors) from LPC coefficients, or directly
obtained from a perceptually-based mel-filter spectral analysis as in MFCC
(Mel-Frequency based Cepstral Coefficients). Some other related forms are
described in the literature, as PLP (Perceptually based Linear Prediction)
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[25], LSF (Line Spectral Frequencies) [28] and many others, not detailed here
for simplicity. By far, one of the main factors of speech variability comes from
the use of different transmission channels (e.g. testing telephone speech with
microphone-recorded speaker models). Cepstral representation has also the
advantage that invariant channels add a constant cepstral offset that can be
easily subtracted (CMS.- Cepstral Mean Subtraction), and non-speech cep-
stral components can also be eliminated as done in RASTA filtering of cepstral
instantaneous vectors [26]. In order to take coarticulation into account, delta
(velocity) and delta-delta (acceleration) coefficients are obtained from the
static window-based information, computing an estimate of how each frame
coefficient varies across adjacent windows (typically between ±3, no more than
±5).

8.3.3 Phonetic and word tokenization

Hidden Markov Models (HMM) [40] are the most succesful and widely used
tool (with the exception of some ANN architectures [37]) for phonetic, syl-
lable and word tokenization, that is, the translation from sampled speech
into a time-aligned sequence of linguistic units. Left-to-RightHMMs are state-
machines which statistically model pseudostationary pieces of speech (states)
and the transitions (left-to-right forced, keeping a temporal sense) between
states, trying to imitate somehow the movements of our articulatory organs,
which tend to rest (in all non-plosive sounds) in articulatory positions (as-
sumed as pseudostationary states) and continuously move (transition) from
one state to the following. Presently, most HMMs model the information in
each state with continuous probability density functions, typically mixtures
of gaussians. This particular kind of models are usually known as CDHMM
(Continuous Density HMM, as opposite to the former VQ-based Discrete Den-
sity HMMs). HMM training is usually done through Baum-Welch estimation,
while decoding and time alignment is usually performed through Viterbi de-
coding. The performance of those spectral-only HMMs is improved by the use
of language models, which impose some linguistic or grammatical constraints
on the almost infinite combination of all possible units. To allow for increased
efficiency, pruning of the beam search is also a generalized mechanism to sig-
nificantly accelerate the recognition process with no or little degradation on
the performance.

8.3.4 Prosodic tokenization

Basic prosodic features as pitch and energy are also obtained at a frame
level. The window energy is very easily obtained through Parseval’s theorem,
either in temporal or spectral form, and the instantaneous pitch can be de-
termined by, e.g., autocorrelation or cepstral-decomposition based methods,
usually smoothed with some time filtering [41]. Other important prosodic fea-
tures are those related with linguistic units duration, speech rate, and all
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those related with accent. In all those cases, precise segmentation is required,
marking the syllable positions and the energy and pitch contours to detect
accent positions and phrase or speech turn markers. Phonetic and syllabic
segmentation of speech is a complex issue that is far from solved [53] and
although it can be useful for speaker recognition [1], prosodic systems do not
always require such a detailed segmentation [13].

8.4 Text-dependent speaker recognition

Speaker recognition systems can be classified into two broad subtypes: text-
dependent and text-independent. The former use the lexical content of the
speech for speaker recognition, while the latter try to minimize the influence
of the lexical content, which is considered unknown for the recognition of the
speaker. This distinction makes these two subtypes of speaker recognition sys-
tems very different in terms both of techniques used and of potential applica-
tions. This section is devoted to text-dependent speaker recognition systems,
which find their main application in interactive systems where collaboration
from the users is required in order to authenticate their identities. The typ-
ical example of these applications is voice authentication over the telephone
for interactive voice response systems that require some level of security like
banking applications or password reset. The use of a text-dependent speaker
recognition system requires, similarly to other biometric modalities, an enroll-
ment phase in which the user provides several templates to build a user model
and a recognition phase in which a new voice sample is matched against the
user model.

8.4.1 Classification of systems and techniques

We can classify text-dependent speaker recognition systems from an appli-
cation point of view into two types: fixed-text and variable-text systems. In
fixed-text systems, the lexical content in the enrollment and the recognition
samples is always the same. In variable-text systems, the lexical content in
the recognition sample is different in every access trial from the lexical con-
tent of the enrollment samples. Variable-text systems are more flexible and
more robust against attacks that use recordings from an user or imitations
after hearing of the true speaker uttering the correct password. An interest-
ing possibility is the generation of a randomly generated password prompt
that is different each time the user is verified (text-prompted system), thus
making it almost impossible to use a recording. With respect to the tech-
niques used for text-dependent speaker recognition, it has been demonstrated
[14] that information present at different levels of the speech signal (glottal
excitation, spectral and suprasegmental features) can be used effectively to
detect the user’s identity. However, the most widely used information is the
spectral content of the speech signal, determined by the physical configuration
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and dynamics of the vocal tract. This information is typically summarized as
a temporal sequence of MFCC vectors, each of which represents a window
of 20-40 ms of speech. In this way, the problem of text-dependent speaker
recognition is reduced to a problem of comparing a sequence of MFCC vec-
tors to a model of the user. For this comparison there are two methods that
have been widely used: template-based methods and statistical methods. In
template-based methods [20], [17] the model of the speaker consists of sev-
eral sequences of vectors corresponding to the enrollment utterances, and
recognition is performed by comparing the verification utterance against the
enrollment utterances. This comparison is performed using Dynamic Time
Warping (DTW) as an effective way to compensate for time misalignments
between the different utterances. While these methods are still used, particu-
larly for embedded systems with very limited resources, statistical methods,
and in particular Hidden Markov Models (HMMs) [40], tend to be used more
often than template based models. HMMs provide more flexibility, allow to
choose speech units from sub-phoneme units to words and enable the design
of text-prompted systems [38], [6].

8.4.2 Databases and benchmarks

The first databases used for text-dependent speaker verification were databases
not specifically designed for this task like the TI-DIGITS [33] and TIMIT [21]
databases. One of the first databases specifically designed for text-dependent
speaker recognition research is YOHO [5]. It consists of 96 utterances for en-
rollment collected in 4 different sessions and 40 utterances for test collected
on 10 sessions for each of a total of 138 speakers. Each utterance consists
in different sets of three digit pairs (e.g., “12-34-56”). This is probably the
most extended and well known benchmark for comparison and is frequently
used to assess text-dependent systems. However, the YOHO database has
several limitations. For instance, it only contains speech recorded on a sin-
gle microphone in a quiet environment and was not designed to simulate
informed forgeries (i.e. impostors uttering the password of an user). More
recently the MIT Mobile Device Speaker Verification Corpus [55] has been
designed to allow research on text-dependent speaker verification on realistic
noisy conditions, while the BIOSEC Baseline Corpus [19] has been designed
to simulate informed forgeries (including also bilingual material and several
biometric modalities besides voice). One of the main difficulties of the com-
parison of different text-dependent speaker verification systems is that these
systems tend to be language dependent, and therefore many researchers tend
to present their results in their custom database, making it impossible to make
direct comparisons. The comparison of different commercial systems is even
more difficult. Fortunately, a recent publication [16] compares the technical
performance of a few commercial systems. However, as with other biometric
modalities, technical performance is not the only dimension to evaluate and
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other measures related to the usability of the systems should be evaluated as
well [51].

8.4.3 Case study: Text-dependent speaker recognition with HMM
speaker adaptation and HMM reestimation

As an example of text-dependent system tested on the YOHO benchmark
database, we present the results obtained with two text-dependent speaker
recognition systems developed by the authors. The systems simulate a text-
prompted system based on a set of speaker-independent and context-indepen-
dent phonetic HMMs trained on TIMIT. Enrollment consists in using several
sentences of a speaker to adapt the HMMs to the speaker. We compare two
ways of performing this adaptation: with a single pass of Baum-Welch re-
estimation and with Maximum Likelihood Linear Regression (MLLR) [32].
The former is the most conventional approach but requires using very simple
HMMs (just one or a few Gaussians per state). The later is more novel and
allows using more complex HMMs. Speaker verification consists in computing
the acoustic score produced during the forced alignment of an utterance with
its phonetic transcription using both the speaker adapted HMMs and the
speaker-independent HMMs. The final score in this experiment is simply the
ratio between those scores (no score normalization is included in the results
presented).
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Fig. 8.2. Example results on YOHO of two text-dependent speaker recognition sys-
tems based on speaker-independent phonetic HMMs and MLLR speaker-adaptation
and Baum-Welch re-estimation for different amounts of enrollment speech.
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An important issue in developing text-dependent speaker recognition sys-
tems is the amount of training material required for enrollment. YOHO con-
tains 4 sessions with 24 utterances each. This is a very large amount of en-
rollment material that could rarely be obtained in a realistic application. For
this reason figure 8.2 shows results for the two systems training with the
four sessions (96 utterances), one session (24 utterances) or only 6 utterances
from one session. As could be expected, performance is greatly improved with
more training material, but practical systems need to find a compromise be-
tween performance and ease and convenience of use. Figure 8.2 also compares
the system based on Baum-Welch re-estimation and the one based MLLR
adaptation, showing better performance for the MLLR-based systems for all
enrollment conditions.

8.5 Text-independent speaker recognition

Text-independent speaker recognition have been largely dominated, since
1970s to the end of 20th century, by short term spectral-based systems. Since
2000, higher level systems started to be developed with good enough results in
the same highly challenging tasks (NIST SR evaluations). However, spectral
systems have continued to outperform high-level systems (NIST 2006 SRE
was the latest benchmark by the time of writing), with the best detection
results due to recent advanced channel compensation mechanisms.

8.5.1 Short-term spectral systems

When short-time spectral analysis is used to model the speaker specificities,
we are modeling the different “sounds” a person can produce, specially due
to his/her own vocal tract and articulatory organs. As humans need multiple
sounds (or acoustically different symbols) to speak in any common language,
we are clearly facing a multiclass space of characteristics. Vector Quantization
techniques are efficient in such multiclass problems, and have been used for
speaker identification [4], typically obtaining a specific VQ model per speaker,
and computing the distance from any utterance to any model as the weighted
sum of the minimum per frame distances to the closest codevector of the
codebook. The use of boundaries and centroids instead of probability densi-
ties yields poorer performance for VQ than for fully-connected Continuous
Density HMMs, known as ergodic HMMs (E-HMM) [34]. However, the crit-
ical performance factor in E-HMM is the product number of states times
number of Gaussians per state, which strongly cancels the influence of tran-
sitions in those fully-connected models. Then, a 5-state 4-Gaussian per state
E-HMM system will perform similarly than a 4-state 5-Gaussian/state, a 2-
state 10-Gaussian/state, or even, what is specially interesting, a 1-state 20
Gaussian/state system, which is generally known as GMM or Gaussian Mix-
ture Model. Those one-state E-HMMs, or GMMs, have the large advantage
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that avoids both Baum-Welch estimation for training, as no alignment be-
tween speech and states is necessary (all speech is aligned with the same single
state), and Viterbi decoding for testing (again no need for time alignment),
which accelerates computation times with no degradation of performance.

GMM is a generative technique where a mixture of multidimensional gaus-
sians tries to model the underlying unknown statistical distribution of the
speaker data. GMM became the state-of-the-art technique in the 1990’s, both
when maximum likelihood (through Expectation-Maximization, EM) or dis-
criminative training (Maximum Mutual Information, MMI) was used. How-
ever, it was the use of MAP adaptation of the means from a Universal Back-
ground Model (UBM) which gave GMMs a major advantage over other tech-
niques [43], specially when used with compensation techniques as Z-norm
(impostor score normalization), T-norm (utterance compensation), H-norm
(handset dependent Z-norm), HT-norm (H+T-norm) or Feature Mapping
(channel identification and compensation) [44].

Discriminative techniques such as Artificial Neural Networks have been
used for years [18], but their performance never approached that of GMMs.
However, the availability in the late 90’s of Support Vector Machines (SVM)
[47] as an efficient discriminatively trained classifier, has given GMM its ma-
jor competitor as equivalent performance is obtained using SVM in a much
higher dimensional space when appropriate kernels such as GLDS (General-
ized Linear Discriminant Sequence Kernel) [8] are used.

Recently, the use of SuperVectors [30], a mixed GMM-SVM [9] technique
that considers the means of the GMM for every utterance (both in training
and testing) as points in a very high dimensional space (dimension equals the
number of mixtures of the GMM times the dimension of the parameterized
vectors) using an SVM per speaker to classify unknown utterances from the
trained speaker hyperplane.

A main advantage of SuperVectors is that they fit perfectly into new chan-
nel compensation methods [31] based on detecting those directions with maxi-
mum variability between different recordings from the same speaker, trying to
cancel or minimize their effect. Several related techniques of this family have
emerged, as Factor Analysis (channel and speaker factors), Nuisance Attribute
Projection (NAP) or Within Class Covariance Normalization (WCCN), all of
them showing significant enhancements over their respective baseline systems.

8.5.2 Idiolectal systems

Most text-independent speaker recognition systems were based on short-term
spectral features until the work of Doddington [12] opened a new world of
possibilities for improving text-independent speaker recognition systems. Dod-
dington realized and proved that speech from different speakers differ not only
on the acoustics, but also on other characteristics like the word usage. In par-
ticular, in his work he modeled the word usage of each particular speaker using
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an n-gram that modeled word sequences and their probabilities and demon-
strated that using those models could improve the performance of a baseline
acoustic/spectral GMM system. More important than this particular result is
the fact that this work boosted research in the use of higher levels of infor-
mation (idiolectal, phonotactic, prosodic, etc.) for text-independent speaker
recognition. After the publication of this work a number of researchers met at
the summer workshop SuperSID [15] where these ideas were further developed
and tested on a common testbed. Next sections describe two of the most suc-
cessful systems exploiting higher levels of information: phonotactic systems,
which try to model pronunciation idiosyncrasies, and prosodic systems, which
model speaker-specific prosodic patterns.

8.5.3 Phonotactic systems

Fig. 8.3. Verification of an utterance against a speaker model in phonotactic speaker
recognition

A typical phonotactic speaker recognition system consists of two main
building blocks: the phonetic decoders, which transform speech into a sequence
of phonetic labels and the n-gram statistical language modeling stage, which
models the frequencies of phones and phone sequences for each particular
speaker. The phonetic decoders –typically based on Hidden Markov Models
(HMMs)– can either be taken from a preexisting speech recognizer or trained
ad hoc. For the purpose of speaker recognition, it is not very important to
have very accurate phonetic decoders and it is not even important to have
a phonetic decoder in the language of the speakers to be recognized. This
somewhat surprising fact has been analyzed in [52] showing that speaker-
dependent phonetic errors made by the decoder seem to be speaker specific,
and therefore useful information for speaker recognition as long as these errors
are consistent for each particular speaker.
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Once a phonetic decoder is available, the phonetic decodings of many sen-
tences from many different speakers can be used to train a Universal Back-
ground Phone Model (UBPM) representing all the possible speakers. Speaker
Phone Models (SPMi) are trained using several phonetic decoders of each par-
ticular speaker. Since the speech available to train a speaker model is often
limited, speaker models are interpolated with the UBPM to increase robust-
ness in parameter estimation. Once the statistical language models are trained,
the procedure to verify a test utterance against a speaker model SPMi is rep-
resented in Figure 8.3. The first step is to produce its phonetic decoding, X,
in the same way as the decodings used to train SPMi and UBPM. Then, the
phonetic decoding of the test utterance, X, and the statistical models (SPMi,
UBPM) are used to compute the likelihoods of the phonetic decoding, X, given
the speaker model SPMi and the background model UBPM. The recognition
score is the log of the ratio of both likelihoods. This process, which is usu-
ally described as Phone Recognition followed by Language Modeling (PRLM)
may be repeated for different phonetic decoders (e.g., different languages or
complexities) and the different recognition scores simply added or fused for
better performance, yielding a method known as Parallel PRLM or PPRLM.
Recently, several improvements have been proposed on the baseline PPRLM
systems. One of the most important in terms of performance improvement
is the use of the whole phone recognition lattice [24] instead of the one-best
decoding hypothesis. The recognition lattice is a directed acyclic graph con-
taining the most likely hypotheses along with their probabilities. This much
richer information allows for a better estimation of the n-grams on limited
speech materials, and therefore for much better results. Other important im-
provement is the use of SVMs for classifying the whole n-grams trained with
either the one-best hypotheses or with lattices [7], [24] instead of using them
in a statistical classification framework.

8.5.4 Prosodic systems

One of the pioneering and most successful prosodic systems in text-independent
speaker recognition is the work of Adami [13]. The system consists of two main
building blocks: the prosodic tokenizer, which analyzes the prosody, and rep-
resents it as a sequence of prosodic labels or tokens and the n-gram statistical
language modeling stage, which models the frequencies of prosodic tokens and
their sequences for each particular speaker. Some other possibilities for mod-
eling the prosodic information that have also proved to be quite successful
are the use of Non-uniform Extraction Region Features (NERFs) delimited
by long-enough pauses [29] or NERFs defined by the syllabic structure of the
sentence (SNERFs) [48].

The authors have implemented a prosodic system based on Adami’s work
in which the second block is exactly the same for phonotactic and prosodic
speaker recognition with only minor adjustments to improve performance. The
tokenization process consists of two stages. Firstly, for each speech utterance,
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temporal trajectories of the prosodic features, (fundamental frequency -or
pitch- and energy) are extracted. Secondly, both contours are segmented and
labelled by means of a slope quantification process. Figure 8.4 shows a table
containing 17 prosodic tokens. One token represents unvoiced segments, while
16 are used for representing voiced segments depending on the slope (fast-
rising, slow-rising, fast-falling, slow-falling) of the energy and pitch. Figure 8.4
shows also an example utterance segmented and labelled using these prosodic
tokens.

Fig. 8.4. Prosodic token alphabet (top table) and sample tokenization of pitch and
energy contours (bottom figure).

8.5.5 Databases and Benchmarks

In the early 1990s, text-independent speaker recognition was a major chal-
lenge, with a future difficult to foresee. By that time, modest research initia-
tives were developed with very limited databases, resulting in non-homogenous
publications with no way to compare and improve systems in similar tasks.
Fortunately, in 1996 NIST started the yearly Speaker Recognition Evaluations,
which have been undoubtedly the driving force of significant advances. Present
state-of-the-art performance was totally unexpected just 10 years ago. This
success has been driven by two factors. Firstly, the use of common databases
and protocols in blind evaluation of systems has permitted fair comparison be-
tween systems on exactly the same task. Secondly, the post-evaluation work-
shops have allowed participants to share their experiences, improvements,
failures, etc. in a highly cooperative environment. The role of the LDC (Lin-
guistic Data Consortium) providing new challenging speech material is also
noticeable, as the needs have been continuously increasing (both in amount of
speech and requirements in recording). From the different phases of Switch-
board to the latest Fisher-style databases, much progress has been made. Past
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evaluation sets (development, train and test audio and keys -solutions-) are
available through LDC for new researchers to evaluate their systems without
competitive pressures. Even though “official” results have been restricted to
participants, it is extremely easy to follow the progress of the technology as
participants often present their new developments in Speaker ID sessions in
international conferences as ICASSP or InterSpeech (formerly EuroSpeech),
or the series of ISCA/IEEE Odyssey workshops.

8.5.6 Case study: the ATVS multilevel text-independent system

Fig. 8.5. Performance of ATVS subsystems in NIST’06 Speaker Recognition Eval-
uation comparing spectral (GMM and SVM), phonotactic and prosodic systems.

The authors have participated in NIST SRE yearly tests since 2001, and
have developed different spectral (generative and discriminative) and higher
level systems. A detailed description of our multilevel approach is found in [23],
and here we present our results in NIST SRE06 in the 8c1c task (8 training
conversations and 1 conversation for testing), in order to see the performance
of different subsystems on the same task. The main differences of 2006 ATVS
systems compared to the 2005 systems described in [23] are the use of Feature
Mapping in both GMM and SVM, the use of 3rd order polynomial expansion
(instead of 2nd order) in the GLDS kernel, and the use of one PRLM trained
with SpeechDat (the best from the three PRLM systems shown).

As shown in figure 8.5, the spectral systems (GMM and SVM) perform
similarly, while our higher level systems obtain enough individualization infor-
mation (∼ 20% EER) but still far from the performance of spectral systems.

After the evaluation, SuperVector-GMM and NAP channel compensation
have been included in our system, providing significant enhancements over the
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best spectral systems, as shown in figure 8.6 for the NIST SRE06 1c1c-male
subtask.
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SuperVectors: Raw + Nap (64)      : EER−DET = 5.5737; DCF−opt = 0.027181

SuperVectors: Tnorm + Nap (64)   : EER−DET = 5.0581; DCF−opt = 0.023281

SVM−GLDS: Tnorm                        : EER−DET = 10.3740 ; DCF−opt = 0.0403

 SuperVectors : Raw                      : EER−DET = 7.5483; DCF−opt = 0.034904

GMM                                             : EER−DET = 7.9325; DCF−opt = 0.035011

Fig. 8.6. Post-eval performance improvements over NIST’06 SRE ATVS system
based on NAP channel compensation and SuperVector-GMMs (1c-1c male sub-task).

8.6 Applications

Voice authentication is a classical biometric application where a speaker tries
to be verified either as a cooperative speaker (e.g., to be given access to a
specific system as his/her bank account) or as a non-cooperative user (e.g.,
confirming his/her presence at home in an automatic home parole control ap-
plication). Some specific forms of voice authentication are growing presently
as those related with Digital Rights Management (DRM) [36], as described
in the MPEG-21 standard or other proprietary rights management architec-
tures, where the voice can be used to give access to secured media contents
from media authors and producers to distributors and final users. Another
interesting application is voice bio-encryption, where the voice is used to gen-
erate user encryption keys which can be securely used as are neither stored
nor accesible as are dynamically generated from voice [49].

However, other forms of exploiting the biometric information present in the
voice signal are emerging. One of those systems is known as voice surveillance,
blacklisting detection or speaker spotting, where multiple simultaneous input
lines (hundreds or thousands in massive call centers or wiretapping systems)
can be supervised in real-time to detect speakers from a list.
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Finally, the use of automatic speaker recognition systems in forensics al-
lows for transparency and testability [46] on the use of voice as evidence in
courts of law [45], [42], as anticipated in modern forensic science [2]. Auto-
matic systems can be adapted to provide Likelihood Ratios at their output
[22], following the well-established methodology of DNA, in what is known as
the golden standard in forensic science. Moreover, calibration of LR [3] val-
ues provide the unifying approach to use LR in different conditions and with
different types of evidence, enabling the combination of different sources of
knowledge in forensic science.

8.7 Conclusions

From an analysis of the different sources of individualization information
present in the speech signal, we have summarized the procedures for signal
processing and parameterization with the objective of obtaining highly reliable
low-dimension parametric vectors. Text-dependent systems have presently ob-
tained a prevalent position for remote authentication, as realistic objective
evaluations have recently shown. With respect to text-independent, recent de-
velopments (supervectors, channel factors/NAP compensation) have provided
major advances assessed in NIST SRE evals that enable different applications
that, far from classical biometric authentication techniques, use the biometric
information present in the speech signal with objectives different than remote
authentication but sometimes even more interesting and useful. In this sense
we have shown that state-of-the-art speaker recognition systems are ready to
face real and critical (specially remote) applications where the easily accessible
speech signal is used as a highly reliable biometric trait.
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9.1 Introduction

Biometrics lies in the heart of today’s society. There has been an ever-growing
need to automatically authenticate individuals for various applications, such
as information confidentiality, homeland security, and computer security. Tra-
ditional knowledge-based or token-based personal identification or verifica-
tion is unreliable, inconvenient, and inefficient. Knowledge-based approaches
use“something that you know” to make a personal identification, such as
password and personal identity number. Token-based approaches use “some-
thing that you have” to make a personal identification, such as passport or
ID card. Since those approaches are not based on any inherent attributes of
an individual to make the identification, they cannot differentiate between an
authorized person and an impostor who fraudulently acquires the “token” or
“knowledge” of the authorized person. This is why biometric systems have
become prevalent in recent years.

Biometrics involves identifying an individual based on his/her physiologi-
cal or behavioral characteristics. Many parts of our body and various behav-
iors are embedded with information for personal identification. In fact, using
biometrics for person authentication is not new, it has been implemented
for thousands of years. Numerous research efforts have been aimed at this
subject resulting in the development of various techniques related to signal
acquisition, feature extraction, matching and classification. Most importantly,
various biometric systems including fingerprint, iris, hand geometry, voice and
face recognition systems have been deployed for various applications [7]. Ac-
cording to the International Biometric Group (IBG, New York), the market
for biometric technologies will nearly double in size this year alone. Among all
biometrics, hand-based biometrics, including hand geometry and fingerprint,
are the most popular biometrics gaining 60% market share in 2003 [5].
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The palmprint system is a hand-based biometric technology. Palmprint is
concerned with the inner surface of a hand. A palm is covered with the same
kind of skin as the fingertips and it is larger than a fingertip in size. Many
features of a palmprint can be used to uniquely identify a person, including
(a) Geometry Features: According to the palm’s shape, we can easily get the
corresponding geometry features, such as width, length and area. (b) Principal
Line Features: Both location and form of principal lines in a palmprint are
very important physiological characteristics for identifying individuals because
they vary little over time. (c) Wrinkle Features: In a palmprint, there are many
wrinkles which are different from the principal lines in that they are thinner
and more irregular. (d) Delta Point Features: The delta point is defined as
the center of a delta-like region in the palmprint. Usually, there are delta
points located in the finger-root region. (e) Minutiae Features: A palmprint is
basically composed of the ridges, allowing the minutiae features to be used as
another significant measurement. Figure 9.1 illustrates some major features
that can be observed on a palm. Therefore, it is quite natural to think of
using palmprint to recognize a person, similar to fingerprint, hand geometry
and hand vein [6, 4, 9, 14].

Fig. 9.1. Different features on a palm.
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Research on this topic focuses on features and methods to represent the
palmprints. Generally, methods can be classified into five categories: line-
based, subspace-based, local statistical-based, global statistical-based, and
coding-based approaches. The line-based approaches either develop edge de-
tectors or employ the exiting edge detection methods to extract palm lines
[17, 18]. The palm lines are either matched directly or represented in other
formats for matching. Subspace-based methods, also called appearance-based
approaches in the face recognition literature, generally involve principal com-
ponent analysis (PCA), linear discriminant analysis (LDA) and independent
component analysis (ICA) [12, 19, 10, 15]. The subspace coefficients are con-
sidered as features. In addition to applying PCA, LDA and ICA directly to
palmprint images, researchers also employ wavelets, discrete cosine transform
(DCT) and kernels in their methods [13, 3]. Local statistical approaches trans-
form images into another domain and then divide the transformed images into
several small regions [20]. Local statistics such as means and variances of each
small region are calculated and regarded as features. Gabor, wavelets and
Fourier transforms have been applied. Researchers compute global statisti-
cal features like moments, center of gravity, and density directly from the
whole transformed images [22]. Coding approaches encode the filtered coeffi-
cients as features [21] using gabor filters. Phase [21, 11] and orientation [16]
features have been encoded for palmprint representation. Most of these tech-
niques focus on the algorithm research of feature extraction, classification,
and matching.

Some companies, including NEC and PRINTRAK, have developed several
palmprint systems for criminal applications [1, 2]. On the basis of fingerprint
technology, their systems exploit high resolution palmprint images to extract
detailed features like minutiae for matching the latent prints. Such an ap-
proach is not suitable for developing a palmprint authentication system for
civil applications, which requires a fast, accurate and reliable method for per-
sonal identification. Based on our previous research [21], we developed a novel
palmprint authentication system to fulfill such requirements.

The rest of this chapter is organized as follows: The system framework is
shown in Section 9.2, the recognition engine is described in Section 9.3, ex-
perimental results of verification, identification, robustness, and computation
time are provided in Section 9.4, and finally, the conclusion is given in Section
9.5.

9.2 System Framework

The proposed palmprint authentication system has four major components:
User Interface Module, Acquisition Module, Recognition Module and External
Module. Fig. 9.2 shows the breakdown of each module of the palmprint au-
thentication system. Fig. 9.3(a) shows the palmprint authentication system
installed at Biometric Research Center (BRC), Department of Computing,
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The Hong Kong Polytechnic University. The functions of each component are
listed below:

1. User Interface Module provides an interface between the system and users
for the smooth authentication operation. We designed a flat platen surface
for the palm acquisition (Fig. 9.3(b)). It is crucial to develop a good user
interface such that users are happy to use the device.

2. Acquisition Module is the channel for the palmprints to be acquired for
the further processing.

3. Recognition Module is the key part of our system, which will determine
whether a user is authenticated. It consists of image pre-processing, fea-
ture extraction, template creation, database updating, and matching.

4. External Module receives the signal from the recognition module, to allow
some operations to be performed or deny the operations requested. This
module is actually an interfacing component, which may be connected to
other hardware or software components. Our system presents an exter-
nal interface for physical door access control or an employee attendance
system.

Since the design philosophy and implementation of the user interface and
acquisition modules have been described in [21], and the external interface
is an application dependent component, we do not intend to discuss them
further, and will concentrate on the discussion about the recognition module
in detail.

9.3 Recognition Engine

After the palmprint images are captured by the Acquisition Module, they are
fed into the recognition engine for palmprint authentication. The recognition
engine is the key part of the palmprint authentication system, consisting of:
image preprocessing, feature extraction, and matching.

9.3.1 Image Preprocessing

When capturing a palmprint, the position, direction and stretching degree
may vary from time to time. As a result, even the palmprints from the same
palm could have a little rotation and translation. Also, the sizes of palms are
different from one another, so the preprocessing algorithm is used to align
different palmprints and extract the corresponding central part for feature
extraction. In our palmprint system, both rotation and translation are con-
strained to some extent by the capture device panel, which positions the palms
with several pegs. The preprocessing algorithm can then locate the coordina-
tion system of the palmprints quickly by the following five steps:

1. Use a threshold to convert the original grayscale image into a binary
image, then use a low-pass filter to smooth the binary image.
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Fig. 9.2. The breakdown of each module of the palmprint authentication system.

2. Trace the boundary of the gaps between fingers (H1 and H2).
3. Compute the common tangent of the boundaries of the gaps H1 and H2.

T1 and T2 are the tangent points of H1 and H2, respectively.
4. Align T1 and T2 to determine the Y-axis of the palmprint coordination

system and make a line passing through the midpoint of the two points
(T1 and T2), which is perpendicular to this Y-axis to determine the origin
of the system.

5. Extract the central part of the image as shown in Figure 9.4 to be used
for feature extraction.
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Fig. 9.3. (a) The palmprint authentication system installed at BRC. (b) The inter-
face of palmprint acquisition device: 1-the key pad, 2-LCD display, 3-palm putting
and location flat surface.

Fig. 9.4. Localizing the salient region of the palm. H1 and H2 are the boundary of
the gaps between the two fingers, and T1 and T2 are the tangent points of H1 and
H2, respectively. The central part is extracted at a desired distance from line joining
T1 and T2 symmetrically positioned about a perpendicual line passing through the
mid point of T1 and T2.



9 A Palmprint Authentication System 177

9.3.2 Feature extraction

The feature extraction technique implemented on the proposed palmprint
system is modified from Zhang et al. [21], where a single circular zero DC
(direct current) Gabor filter is applied to the preprocessed palmprint images
and the phase information is coded as a feature vector called PalmCode. The
modified technique exploited four circular zero DC Gabor filters with the
following general formula:

GD =
1

2πσ2
exp

{
− (x′ − x0)2 + (y′ − y0)2

2σ2

} {
exp(i2πωx′)− exp(−2(πωσ)2)

}

(9.1)
where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ; (x0, y0) is the center
of the function in the spatial domain of the function; ω is the frequency of
the sinusoidal plane wave along the orientation θ; σ is the standard deviation
of the circular Gaussian function; θ is the direction of the filter. The four
Gabor filters share the same parameters, σ and ω, only differing in θ. The
corresponding values of θ are 0, π/4, π/2 and 3π/4.

In the previous approach, only the phase information is exploited but the
magnitude information is neglected. The proposed method is to use the mag-
nitude to be a fusion condition combining different PalmCodes generated by
the four Gabor filters. Mathematically, the implementation has the following
steps:

1. The four Gabor filters are applied to the preprocessed palmprint image, I,
described as Gj ∗ I, where Gj (j=1, 2, 3, 4) is the circular zero DC Gabor
filter and “*” represents an operator of convolution.

2. The square of the magnitudes of the sample point is obtained by Mj(x, y) =
Gj(x, y) ∗ I ×Gj(x, y) ∗ I, where “–” represents complex conjugate.

3. According to the fusion rule, k = arg maxj (Mj(x, y)), the phase informa-
tion at point (x, y) is coded as the following:

hr = 1 if Re[Gk ∗ I] ≥ 0, (9.2)

hr = 0 if Re[Gk ∗ I] < 0, (9.3)

hi = 1 if Im[Gk ∗ I] ≥ 0, (9.4)

hi = 1 if Im[Gk ∗ I] < 0. (9.5)

This coding method is named as Fusion Code, which is represented by a
set of bits. Our experiments show that the Fusion Code is more stable and
efficient for palmprint authentication.

9.3.3 Feature Matching

Feature matching determines the degree of similarity between the identifica-
tion template and the master template. In this work, the normalized Hamming



178 Guangming Lu, David Zhang, Wai Kin Kong, and Michael Wong

distance is implemented for comparing two Fusion Codes. The normalized
Hamming distance is represented by

D0=

∑N
i=1

∑N
j=1 PM (i, j) ∩QM (i, j) ∩ (PR(i, j)⊗QR(i, j) + PI(i, j)⊗QI(i, j))

2
∑N

i=1

∑N
j=1 PM (i, j) ∩QM (i, j)

,

(9.6)
where PR(QR), PI(QI) and PM (QM ) are the real part, imaginary part

and mask of the Fusion Code P (Q), respectively; ⊗ and ∩ are Boolean oper-
ators, XOR and AND, respectively [21]. The range of normalized Hamming
distances is between zero and one where zero represents perfect matching. Be-
cause of imperfect preprocessing, one Fusion Code is vertically and horizontal
translated to match the other. The ranges of the vertical and the horizontal
translations are defined from -2 to 2. The minimum D0 value obtained from
the translated matching is considered to be the final matching score.

9.4 Performance Evaluation

9.4.1 Testing Database

We collected palmprint images from 200 individuals using the palmprint cap-
ture device described previously [21]. The subjects are mainly students and
staff volunteers from The Hong Kong Polytechnic University. In this dataset,
134 people are male, about 86% are younger than 30 years, about 11% are
aged between 30 and 50, and about 3% are older than 50. In addition, we
collected the palmprint images on two separate occasions. On each occasion,
the subject was asked to provide about 10 images each of the left and right
palm. Therefore, each person provided around 40 images, resulting in a total
number of 8,025 images from 400 different palms. In addition, we changed the
light source and adjusted the focus of the CCD camera so that the images
collected on the first and second occasions could be regarded as being cap-
tured by two different palmprint devices. The average time interval between
the first and second occasions was 70 days. The size of all the testing images
used in the following experiments is 384× 284 with 75dpi, in 256 gray levels.

9.4.2 Experimental Results of Verification

Verification refers to the problem of confirming or denying a claim of identity,
also considered one to one matching. We performed two separate group tests
of verification. In the first experiment, we used one image of each palm for
registration, while 3 images of each palm were used for registration in the
second experiment. In the first experiment, each palmprint is matched with all
registered images. A correct matching occurs if two matched images are from
the same palm, incorrect matching otherwise. The total number of matchings
performed are 32,119,735, among these 76,565 correspond to genuine matches
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and the rest are incorrect matchings. Fig. 9.5(a) shows the probability of
genuine and imposter distributions estimated by the correct and incorrect
matchings. Some thresholds and corresponding false acceptance rates (FARs)
and false rejection rates (FRRs) are listed in Table 9.1. According to Table
9.1, using one palmprint image for registration, the proposed system can be
operated at a false acceptance rate at 0.096% and a false rejection rate at
1.05%.

Threshold Registered image = 1 Registered images = 3
FAR(%) FRR(%) FAR(%) FRR(%)

0.32 0.000027 8.15 0.000012 5.12

0.34 0.00094 4.02 0.0016 2.18

0.36 0.011 1.94 0.017 0.86

0.38 0.096 1.05 0.15 0.43

0.40 0.68 0.59 1.03 0.19

Table 9.1. False acceptance rates (FARs) and false rejection rates (FRRs) associ-
ated with different threshold values for the palmprints verification results.

In the second experiment, the testing database is divided into two sets,
1) registration and 2) testing. Three palmprint images of each palm collected
in the first occasion are selected for registration. The registration database
contains 1,200 palmprint images and the rest are used for testing. In this veri-
fication test, each palmprint image is matched with all the palmprint images in
the testing database. Therefore, each testing image produces three Hamming
distances for one registered palm. We take the minimum of them as the final
Hamming distance. For achieving statistically reliable results, this test is re-
peated for three times by selecting other palmprint images for the registration
database. Total number of Hamming distances from correct matchings and in-
correct matchings are 20,475 and 8,169,525, respectively. Fig. 9.5(b) shows the
probability of genuine and imposter distributions estimated by the correct and
incorrect matchings, respectively. Some threshold values along with its corre-
sponding false acceptance and false rejection rates are also listed in Table 9.1.
According to Table 9.1 and Fig. 9.5, we can conclude that using three tem-
plates can provide better verification accuracy. In fact, using more palmprint
images of the same palm during registration can provide more information to
the system so that it can recognize the noise or deformed features.

9.4.3 Experimental Results of Identification

Identification test is a one-against-many, N comparison process. In this ex-
periment, N is set to 400, which is the total number of different palms in our
database. As in the previous verification experiment, the palmprint database
is divided into two sets, 1) registration and 2) testing. Registration contains
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(a) (b)

Fig. 9.5. Verification test results. (a) and (b) show the Genuine and imposter
distributions for verification tests with one and three registered images per palm,
respectively.

1200 palmprint images, three images per palm, while the testing database
has 6,825 palmprint images. Each palmprint image for testing is matched to
all of the images for registration, therefore each testing image generates 3
correct and 1197 incorrect matchings. The minimum Hamming distances of
correct matchings and incorrect matchings are regarded as the identification
Hamming distances of genuine and impostor, respectively. This experiment
is also called a one-trial test since the user only provides one palmprint im-
age in the test to make one decision. A practical biometric system collects
several biometric signals to make one decision. Therefore, in this experiment,
we implement one, two, and three-trial tests. In the two-trial test, a pair of
images in testing belonging to the same palm is matched to all of the im-
ages in registration. Each pair of the palmprint images in the two-trial test
generates 6 correct and 2,394 incorrect matchings. The minimum Hamming
distances of correct matchings and incorrect matchings are considered the
identification Hamming distances of genuine and imposter, respectively. Sim-
ilarly, in the three-trial test, the identification Hamming distances of genuine
and imposter are obtained from 9 correct and 3,591 incorrect matchings, re-
spectively. Each test is repeated three times by selecting other palmprints from
the registration database. In each test, the number of identification Hamming
distances of both genuine and imposter matchings are 20,475. Fig. 9.6 shows
ROC curves of the three tests and Table 9.2 lists threshold values along with
its corresponding FAR and FRR. According to Fig. 9.6 and Table 9.2, more
input palmprints can provide more accurate results.

9.4.4 Computation time

Another key issue for a civilian personal identification system is whether the
system can run in real time. The proposed method is implemented using C
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Fig. 9.6. The ROC curves for a 1-against-400 identification testing with different
number of trials.

Trial=1 Trial=2 Trial=3
Threshold FAR (%) FRR (%) FAR (%) FRR (%) FAR (%) FRR (%)

0.320 0.0049 3.69 0.0098 1.80 0.020 1.17

0.325 0.0439 2.93 0.088 1.34 0.131 1.06

0.330 0.15 2.29 0.28 1.02 0.42 0.68

0.335 0.37 1.90 0.68 0.72 0.96 0.48

0.340 0.84 1.51 1.43 0.57 1.93 0.37

0.345 1.45 1.16 2.32 0.42 3.02 0.26

Table 9.2. FARs and FRRs with different threshold values for the 1-to-400 palm-
prints identification results.

language and Assembly language on an Intel Pentium IV processor (1.4GHz)
with 128M memory. The execution times for image collection, image prepro-
cessing, feature extraction and matching are listed in Table 9.3. The total
execution time for a 1-against-400 identification, each palm with 3 templates,
is less than 1 second. Users will not feel any delay when using our system.
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Operations Execution Time

Image collection 340ms

Preprocessing 250ms

Feature extraction 180ms

Matching 1.3µs

Table 9.3. Execution time of the palmprint authentication system.

9.4.5 Robustness

As a practical biometric system, in addition to accuracy and speed, robustness
of the system is important. Here, we present three experiments to illustrate
the robustness of our system. The first tests the effects of jewelry such as
rings, on the accuracy of some preprocessing algorithms. The second tests
noise on the palmprints, which directly affects the performance of the system.
The third experiment tests the ability of the system to identify palmprints of
identical twins.

Fig. 9.7 shows three palmprint images with and without rings on the fingers
and their corresponding preprocessed sub-images. It shows that the prepro-
cessing algorithm described in Section 9.3 is not affected by jewelry.

To verify the robustness due to image noise, Fig. 9.8(a) provides a clear
palmprint image and Figs. 9.8(b)-(f) show five palmprint images, each cov-
ered with writing. Their Hamming distances are given in Table 9.3; all of them
smaller than 0.29. Compared to the Hamming distances of imposters in Ta-
bles 9.1 and 9.2, all the Hamming distances in Table 9.4 are relatively small.
Fig. 9.8 and Table 9.4 illustrates that the proposed palmprint authentication
system is very robust to noise on the palmprint.

A test of identical twins is regarded as an important test for biometric
authentication that not all biometrics, including face and DNA, can pass.
However, the palmprints of identical twins have enough distinctive informa-
tion to distinguish them. We collected 590 palmprint images from 30 pairs of
identical twins ranging in age between 6 and 45 years. Each provided around
10 images of their left palms and 10 images of their right palms. Some samples
of identical twin palmprints are shown in Fig. 9.9. Based on this database,
we match a palmprint in the twin database with his/her identical twin sibling
to produce imposter matching scores, and match against the samples of their
own to get the genuine scores. The genuine and imposter distributions are
given in Fig. 9.10. From the figure, we find that identical twin palmprints can
easily be separated, just like twins’ fingerprints [8].

9.5 Conclusions

In this chapter, we have presented a novel biometric system based on the
palmprint. The proposed system can accurately identify a person in real time,
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(e) (f)

Fig. 9.7. Palmprint images with ring on the fingers for testing the robustness of
the system.
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(e) (f)

Fig. 9.8. Palmprint images with different texts for testing the robustness of the
system.

which is suitable for various civil applications such as access control. Experi-
mental results show that the proposed system can identify 400 palms with a
false acceptance rate at 0.02%, and a genuine acceptance rate at 98.83%. For
verification, the system can operate at a false acceptance rate of 0.017% and
a false rejection rate of 0.86%. The experimental results involving accuracy,
speed, and robustness demonstrate that the palmprint authentication system
is comparable with other hand-based biometrics systems, such as hand geom-
etry and fingerprint [6, 4, 9, 14], and is practical for real-world applications.
The system has been successfully operating in the Biometric Research Cen-
ter, Department of Computing, The Hong Kong Polytechnic University since
March 2003 for access control.
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(a) (b)

  

(c) (d)

Fig. 9.9. Identical twins palmprints. (a), (b) are their left hands, and (c), (d) are
their right hands, respectively.
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10.1 Introduction

Automatic signature verification is an important research area because of the
social and legal acceptance and widespread use of the handwritten signature
as a personal authentication method [66, 45, 67]. Another advantage of the
handwritten signature as a biometric modality is that it is easily acquired
either with an inking pen over a sheet of paper or by electronic means with
a number of existing pointer-based devices (e.g., pen tablets, PDAs, Tablet
PCs, touch screens, etc.)

In spite of the advantages of the handwritten signature modality, the prac-
tical deployment of this technology is very slow and signature biometrics still
remains a challenging research problem. This is mainly due to the large intra-
class variations and, when considering forgeries, small inter-class variations as
well. Figs. 10.5 and 10.6 show some examples of Chinese and European sig-
natures where this effect is evident. Other challenges of signature biometrics
include low universality, as not everyone may be able to sign, low permanence,
as the handwritten signature tends to vary along time, and vulnerability to
direct attacks using forgeries.

Similar to some other biometric modalities (e.g., PIN-based voice biomet-
rics), impostors may know some information about the client that degrades
signature verification performance when it is exploited, for example, signa-
ture shape. As a result, two kinds of impostors are usually considered in sig-
nature verification, namely: casual impostors (producing random forgeries),
when no information about the target signature is known, and real impostors
(producing skilled forgeries), when some information regarding the signature
being forged is used. Different kinds of information available to the impostors
produce different types of forgeries (e.g., statically skilled forgeries, over-the-
shoulder forgeries, professional forgeries, etc.)

Signature verification methods can be classified according to the input
signature information into two classes: on-line and off-line. On-line refers to
the use of the time functions of the dynamic signing process (e.g., position
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trajectories, or pressure versus time), which are obtained using acquisition
devices like touch screens or digitizing tablets. Off-line refers to the use of
the static image of the signature. This chapter deals with on-line signature
verification. Signature verification based on the static image of the signature
can be found in [67, 21, 76]. Note also that some off-line problems can be solved
using on-line methods [36], as some dynamic information can be estimated
from the static images [55], and viceversa, as static images can be easily
generated from the dynamic information.

The chapter is organized as follows: The introduction is completed with
an overview of the history of signature recognition, some practical applica-
tions and commercial systems, and standardization efforts related to on-line
signature biometrics. Sect. 10.2 outlines the system architecture of on-line sig-
nature verification systems, and presents some of the key concepts related to
each of the modules. In Sect. 10.3 we summarize the existing reference sys-
tems and publicly available on-line signature databases. Sect. 10.4 describes
a case study of signature verification combining feature- and function-based
approaches on a widely available signature corpus. Sect. 10.5 summarizes the
chapter and outlines some open problems in on-line signature verification.

10.1.1 History

Osborn [62] was one of the first published works studying the problem of sig-
nature verification. In this pioneer work the problem of signature verification
was studied from the forensic examiner point of view, including recommenda-
tions for practitioners and some real-world case studies. Fig. 10.1 shows two
sets of signatures from a celebrated case of a contested will in New York in
the year 1900, involving an estate worth more than six million dollars. The
court accepted that the five signatures on the left were genuine and the five
on the right were forgeries, which led to the establishment of Rice University
in Houston. Modern approaches for the forensic examination of signatures are
summarized in Hilton [31].

The first published work on automatic signature verification seems to be
Mauceri [50]. This work was followed by the popular development of Herbst
and Liu in 1977 [30], which also summarized the state-of-the-art up to that
date. This was followed by an increasing number of approaches, summarized
in the state-of-the-art survey in 1989 by Plamondon and Lorette [66]. This
survey of existing methods was updated in 1994 [45] and subsequently in
2000 [67]. In the meantime, the popular methods of Dynamic Time Warping
[53], and Hidden Markov Models [80] were successfully applied to on-line sig-
nature verification, and the search for good global features was significantly
advanced [47].

Some recent milestones in the history of signature verification are the
availability of benchmark databases [60], and the organization of the First
International Signature Verification Competition (SVC) in 2004 [81].
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Fig. 10.1. Genuine (left) and forged signatures (right) in a celebrated court case
[62].

10.1.2 Applications

The most important applications of on-line signature biometrics are in the
legal (document authentication), medical (record protection), and banking
sectors (cheque and credit card processing). The main applications include:

• Signature forensics. This is the oldest application of the handwritten signa-
ture [31], commonly applied to the off-line image of the written signature.
Forensic approaches for the evaluation of on-line signature evidence are
now under development [28].

• Signature authentication. This type of application includes system login
based on signature, document encryption, web access, etc. One example
for Tablet PC can be found in [2].

• Signature surveillance. The automatic comparison of on-line signatures
can be used to track and detect signers (e.g., blacklists of individuals), or
can be used to warn the human operator at points of sales or other credit
card-based services.

• Digital Rights Management based on signature [59].
• Biometric cryptosystems based on signature. New developments have

demonstrated the feasibility of generating cryptographic keys based on
the time functions of the on-line signatures [25].

10.1.3 Commercial Systems

From the IBG’s Biometrics Market and Industry Report 2006-2010 [37], it
can be observed that the signature modality is the second behavioral trait in
commercial importance just after voice biometrics, with approximately 1.7%
of the current market share. Although the market for signature systems is
growing at a faster rate than other biometric modalities, especially due to the
advent of touch-screen portable devices, signature biometrics is only a small
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Fig. 10.2. Architecture adopted by most on-line signature verification systems.

fraction of the biometrics market, which is mainly dominated by modalities
like fingerprint (43.6% of the market share) and face (19.0%).

A number of companies are currently distributing handwritten signature
verification products on different platforms. Some examples are included in
the following list, which is not exhaustive:

• Communication Intelligence Corporation has a number of signature verifi-
cation products [9], including SignatureOne R©and Sign-it R©, which enable
signature-based system login using dynamic signature information.

• SOFTPRO distributes a number of signature verification modules enabling
both static and on-line signature verification [73].

• Cyber-SIGN sells various plug-ins and applications for on-line signature
verification [10].

10.1.4 Standardization

The ISO/IEC JTC1 SC37 committee is addressing the interoperability issues
in various biometric systems [72]. One point of particular importance subject
to standardization, in order to enable the interoperability of signature systems,
is the interchange formats for storage and transfer of signature data. The
signature modality is represented by two parts of the standard ISO/IEC 19795.

Part 7 of the standard defines a time series format that allows the trans-
mission and storage of a series of time-stamped pen-based standard channels
(e.g., x position, y position, time, velocity, etc.). Along with these channels,
the storage of proprietary data is also permitted. A set of recommendations
and best practices are also given with the standard. Part 11, now in consid-
eration, defines a set of common statistical features extracted from the raw
data, which can be extended by another set of proprietary features. The whole
feature set must allow interoperability at a feature level between samples col-
lected on different types of devices.

10.2 On-Line Signature Verification Systems

The common architecture of on-line signature verification systems is depicted
in Fig. 10.2. In the following sections we will summarize the main techniques
and related issues for each of the system modules.
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One major research trend in biometric verification is the successful ex-
ploitation of the different information levels embodied in the biometric signal
at hand. This is usually done by combining the confidences provided by a
number of different machine experts [5, 44], each one working at a specific
information level. Multilevel approaches for on-line signature verification are
described in [41, 23].

10.2.1 Data Acquisition and Preprocessing

The on-line acquisition of the time functions of the handwritten signature is
usually carried out by using devices such as digitizing tablets [79, 34] or touch
screens, such as those included in Tablet PCs and PDAs. These acquisition
devices provide coordinate information (e.g., horizontal x and vertical y pen
position) and, in some cases, pen pressure and pen angle versus time [71].
Other on-line signature acquisition devices are dedicated pens with specialized
hardware attached to provide some on-line signature data such as coordinate
or velocity information [33].

On-line signature capture devices usually operate at between 100 and 200
samples per second. Taking into account the Nyquist sampling criterion and
the fact that the maximum frequencies of the related biomechanical sequences
are always under 20-30 Hz [4], this sampling frequency leads to a precise
discrete-time signature representation.

Some preprocessing steps before feature extraction are noise filtering (for
example with Gaussian windows [38]) and resampling. Resampling is carried
out in some systems in order to obtain a shape-based representation consisting
of equidistant points [38]. Other systems avoid the resampling step as some
discriminative speed characteristics are lost in the process [43].

10.2.2 Feature Extraction

Many different approaches have been considered in order to extract discrimi-
native information from on-line signature data [66]. The existing methods can
broadly be divided into two classes: feature-based , in which a holistic vector
representation consisting of a set of global features is derived from the signa-
ture trajectories [47, 42], and function-based , in which time sequences describ-
ing local properties of the signature are used for recognition [53, 15, 38, 49],
e.g., position trajectory, velocity, acceleration, force, or pressure [48]. A case
study of feature- and function-based approaches is given in Sect. 10.4. Al-
though recent works show that feature-based approaches are competitive with
respect to function-based methods in some situations [23], the latter approach
has traditionally yielded better results.

The set of features used can be a result of a feature selection process [40]
during a development phase [47, 48, 23], or can be adapted during the en-
rollment phase to the specificities of the user at hand. The latter approach is
believed to be better suited to the problem of signature verification [46, 13],
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mainly because of the large differences in information content and complex-
ity between signers [7, 14]. However, the user-specific approach encounters
challenges of training data scarcity.

10.2.3 Enrollment

Depending on the matching strategy, enrollment can be divided into two
classes: reference-based , and model-based .

In reference-based enrollment [38, 43], the features extracted from the set
of training signatures are stored as a set of template signatures, each one in the
template set corresponding to one training signature. The matching process is
then performed by comparing the input signature to each one of the reference
templates and then combining the resulting matching scores with a score-level
fusion technique [20, 70].

In model-based enrollment [41, 23], the set of training signatures of a given
subject is used to estimate a statistical model which describes the behavior of
that particular signer. As in the feature extraction process, the model com-
plexity can also be adjusted to be user-dependent [78, 64].

Reference-based enrollment is more appropriate than model-based enroll-
ment when the set of training signatures is small. This is because the statis-
tical models used for signature verification (typically HMMs [80]) require at
least 4 to 6 training signatures to perform reasonably well [19]. An experi-
mental comparison of reference- versus training-based enrollment for different
training set sizes can be found in [22]. As a rule of thumb, although reference-
based enrollment can provide satisfactory performance results with fewer than
5 training signatures in some scenarios (e.g., 3 training signatures in [38]), it
is generally accepted that a training set of around 5 signatures is the best
cost-performance operating point for automatic on-line signature verification
[29, 53, 22, 19]. The same observation was noticed as early as 80 years ago
when considering static signatures for human verification [62].

A big challenge related to the enrollment stage is the time variation of
signatures [24]. This problem can be alleviated by using training signatures
from different sessions [19]. An alternative approach is template or model
adaptation [77], which may be more appropriate for practical deployments.

10.2.4 Similarity Computation

Pre-Alignment

The matching stage is generally preceded by a pre-alignment between the in-
put signature and the enrolled template/model. In the case of reference-based
enrollment, the pre-alignment is usually conducted before feature extraction
based only on the signature shape. Techniques following this approach include
basic position and rotation alignment, or more sophisticated approaches based
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Template

Input

Prob. Prob.

S1 S2

observation observation

Fig. 10.3. Example of local elastic matching of signatures based on DTW (left,
Chinese signature from SVC 2004) and regional modeling based on HMM (right).

on boundary warping [65]. In the case of model-based enrollment, the pre-
alignment usually consists in the application of a common reference system
[35], for example: position trajectories with respect to the initial point or to
the center of mass, scaling to a fixed size frame, etc.

When no pre-alignment is used, the alignment is either embedded in the
matching procedure [43] or a fixed frame is used during acquisition in order
to have pre-aligned signatures [23].

Matching

In feature-based approaches with reference-based enrollment, the matching
scores are usually obtained by using some kind of distance measure between
the feature vectors of input and template signatures [57, 47], or a trained
classifier. Distance measures used for signature verification include Euclidean
distance, weighted Euclidean distance, and Mahalanobis distance. Trained
classifiers include approaches like Neural Networks [63]. In the case of feature-
based approaches with model-based enrollment, statistical models such as
non-parametric density estimation based on Parzen Windows have been used
[23]. This latter case is discussed in Sect. 10.4.

Function-based approaches can be classified into local and regional de-
pending on the matching strategy.

In local approaches, the time functions of the different signatures (or some
elaboration of the signatures, based on extended features of the time functions
at each sampling point) are directly matched by using elastic distance mea-
sures such as Dynamic Time Warping [51, 43, 16]. An example of this elastic
matching process is shown in the left part of Fig. 10.3, which is obtained by
using the DTW approach described by Fierrez-Aguilar et al. [22].

In regional methods, the time functions are converted into a sequence of
vectors, each one describing regional properties of a segment of the signature
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Fig. 10.4. Gaussian fit of client (solid) and impostor (dashed) score distributions of
SVC 2004 development corpus for a HMM-based system for skilled (4 left columns)
and random forgeries (4 right columns).

[11]. One of the most popular regional approaches is the method based on
Hidden Markov Models [80, 41, 11]. In most of the cases, the HMMs model
stroke-based sequences. Direct modeling of the time functions with HMMs
has also been studied [19]. This latter case is developed as a case study in
Sect. 10.4 by using the topology shown in the right part of Fig. 10.3.

10.2.5 Score Normalization

The matching scores obtained by comparing the input signature with the tem-
plate or the enrolled model are usually normalized to a common range such
as [0, 1] before comparing them to a decision threshold, using different map-
ping functions [39]. This score normalization step is crucial when combining
different matchers in a multibiometric approach [70].

As in the other modules of the system, the score normalization step can
be also user-dependent. A simple experiment helps to visualize the rationale
behind user-dependent score normalization. In Fig. 10.4 we show Gaussian
fits of the user-dependent matching scores obtained with the function-based
system described in Sect. 10.4, on different users in the development set of the
Signature Verification Competition (SVC) described in Sect. 10.3.2. We can
observe large differences both in the individual verification performance, and
in the client-impostor scoring regions. The main objective of user-dependent
score normalization techniques [24] is to prevent such misalignments, which
are also compensated with user-dependent thresholds [13, 38].

The substantial differences across subjects of the user-dependent score
distributions observed in signature verification are related to the complexity
of signatures [7, 14] and their robustness against forgery attacks, but this
relationship is not fully understood.
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10.3 Resources for On-Line Signature Verification

10.3.1 Reference Systems

The availability of open source reference systems in biometrics research is an
important milestone, as they provide a baseline to which results obtained with
the new systems can be compared. This is the case, for example, of the NIST
Fingerprint Image Software [58], which is used as a reference system in many
studies [1].

Although there is no widely available reference system for signature veri-
fication to date, new efforts are being directed to the development of an open
source framework within the Biosecure Network of Excellence [27]. The pro-
posed framework will enable the efficient implementation and evaluation of
various techniques (including feature-based and function-based approaches)
and system components (including data parsing, pre-processing, feature ex-
traction/selection, and reference template/model storage) related to on-line
signature verification [8].

10.3.2 On-Line Signature Databases

One key element for performance evaluation of biometric systems is the avail-
ability of biometric databases. The availability of on-line signature databases
corresponding to a large population of individuals, together with the desir-
able presence of biometric variability (i.e., multi-session, multiple acquisition
sensors, different signal quality, etc.), and the availability of different kinds
of forgeries, make signature database collection a time-consuming and com-
plicated process. Additionally, the legal issues regarding data protection are
controversial [68]. For these reasons, the number of available on-line signature
biometric databases is quite limited.

The available on-line signature databases are normally obtained as a result
of collaborative efforts in joint research projects (e.g., BIOMET [26], MCYT
[60], or MYIDEA [12]; all of them are multimodal databases that include the
signature modality [17]), or international benchmarks such as SVC 2004 [81].
In a few cases, on-line signature databases are available through the authors
of research publications [11, 51].

In the following list we outline some public domain signature databases.

BIOMET. Five different modalities are present in the BIOMET database
[26]: audio, face, hand, fingerprint and signature. Three different sessions
were realized, with three and five months spacing between them. The
number of persons participating in the collection of the database was
130 for the first campaign, 106 for the second, and 91 for the last, with
15 genuine and 17 impostor signatures per user. The signature acquisition
device was a WACOM Intuos2 set at 200 Hz. The first session was acquired
by using a Grip Pen (without visual feedback) and the remaining sessions
were captured with an Ink Pen over a sheet of paper.
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MCYT. The MCYT bimodal biometric database consists of fingerprint and
on-line signature modalities [60]. In order to acquire the dynamic signa-
ture sequences, a WACOM Intuos pen tablet was employed. The sampling
frequency was set to 100 Hz. The capture area was further divided into
37.5 mm (width) × 17.5 mm (height) blocks which were used as frames
for acquisition [21]. Signature corpus comprises genuine (25 per user in
groups of 5) and shape-based skilled forgeries (25 per user from 5 dif-
ferent impostors). The forgeries were generated by contributors to the
database imitating other contributors. For this task they were given the
printed signature to imitate and were asked not only to imitate the shape
but also to generate the imitation without artifacts such as time breaks
or slowdowns. Fig. 10.6 shows some example signatures. The MCYT sig-
nature corpus was released in 2003 by the Biometric Recognition Group–
ATVS [3] and it has been used in more than 30 research groups worldwide
[69, 32, 36, 54, 52]. Paper templates of 75 signers (and their associated
skilled forgeries) were also selected and digitized with a scanner at 600 dpi
[21]. The resulting subcorpus is comprised of 2250 signature images, with
15 genuine signatures and 15 forgeries per user (contributed by 3 different
user-specific forgers). This subcorpus is also available [3].

SVC. The First International Signature Verification Competition (SVC) was
organized in 2004 providing a common reference for system comparison
on the same data and evaluation protocol [81]. The development corpus of
the extended task (including coordinate and timing information, pen ori-
entation and pressure) is available through the competition website [74].
This corpus consists of 40 sets of signatures. Each set contains 20 gen-
uine signatures from one contributor (acquired in two separate sessions)
and 20 skilled forgeries from five other contributors. The SVC database is
especially challenging due to several factors, including: i) no visual feed-
back when writing (acquisition was conducted by using a WACOM tablet
with a Grip Pen), ii) subjects used invented signatures different to the
ones used in daily life in order to protect their personal data, iii) skilled
forgers imitated not only the shape but also the dynamics, and iv) time
span between training and testing signatures was at least one week. The
signatures are in either English or Chinese (see Fig. 10.5).

Other ongoing efforts in on-line signature database collection include the
Biosecure multimodal database [6], which will include the signature modality
acquired with different devices (WACOM Intuos3 digitizing tablet, Samsung
Q1 Tablet PC, and HP iPAQ hx2790 PDA) for the same subjects (around
1000) in order to enable interoperability experiments [18].



10 On-Line Signature Verification 199

u1s1

0 20 40 60 80

−1

0

1

X

0 20 40 60 80

−1

0

1

Y

0 20 40 60 80

−3

−2

−1

0

1

P
re
s
s
u
re

0 20 40 60 80

−1

0

1

A
z
im
u
th

0 20 40 60 80

−1

0

1

E
le
v
a
ti
o
n

u1s10

0 20 40 60 80

−1

0

1

0 20 40 60 80

−1

0

1

0 20 40 60 80

−3

−2

−1

0

1

0 20 40 60 80

−1

0

1

0 20 40 60 80

−1

0

1

u1s21

0 50 100

−1

0

1

0 50 100

−1

0

1

0 50 100

−3

−2

−1

0

1

0 50 100

−1

0

1

0 50 100

−1

0

1

u1s30

0 50 100

−1

0

1

0 50 100

−1

0

1

0 50 100

−3

−2

−1

0

1

0 50 100

−1

0

1

0 50 100

−1

0

1

Fig. 10.5. Signature examples from SVC 2004 corpus. For a particular subject, two
genuine signatures (left columns) and two skilled forgeries (right columns) are given.
Plots of the coordinate trajectories, pressure signal and pen orientation functions
are also given.

10.4 Case Study: Combining Feature- and
Function-Based Approaches

Feature-Based Approach

This subsystem is based on previous approaches [56, 57, 47] and is further
detailed by Fierrez-Aguilar et al. [23].

Feature extraction and selection. The complete set of global features is given
in Table 10.1. Note that an on-line signature acquisition process capturing
position trajectories and pressure signals both at pen-down and pen-up
intervals is assumed. Otherwise, the feature set should be reduced, dis-
carding features based on trajectory signals during pen-ups (e.g., features
32 and 41). Even though the given set has been demonstrated to be robust
to the common distortions encountered in the handwritten scenario, not
all the parameters are fully rotation/scale invariant, so either a controlled
signature acquisition is assumed (as in MCYT database) or some kind
of pre-alignment should be performed before computing them. Although
pen inclination signals (i.e., azimuth and altitude) have shown discrimina-
tive power in some studies [71], no features based on them are introduced
in the proposed set. The features in Table 10.1 are sorted by individual
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Table 10.1. Set of global features sorted by individual discriminative power (T
denotes time interval, t denotes time instant, N denotes number of events, θ denotes
angle, bold denotes novel feature, italic denotes adapted from [56, 57, 47], roman
denotes extracted from [56, 57, 47]).

Ranking Feature Description Ranking Feature Description

1 signature total duration Ts 2 N(pen-ups)
3 N(sign changes of dx/dt and dy/dt) 4 average jerk ̄ [56]
5 standard deviation of ay 6 standard deviation of vy
7 (standard deviation of y)/∆y 8 N(local maxima in x)
9 standard deviation of ax 10 standard deviation of vx
11 jrms 12 N(local maxima in y)
13 t(2nd pen-down)/Ts 14 (average velocity v̄)/vx,max

15
Amin=(ymax−ymin)(xmax−xmin)

(∆x=
∑pen-downs

i=1 (xmax |i−xmin |i))∆y

16 (xlast pen-up − xmax)/∆x

17 (x1st pen-down − xmin)/∆x 18 (ylast pen-up − ymin)/∆y

19 (y1st pen-down − ymin)/∆y 20 (Twv̄)/(ymax − ymin)
21 (Twv̄)/(xmax − xmin) 22 (pen-down duration Tw)/Ts
23 v̄/vy,max 24 (ylast pen-up − ymax)/∆y

25
T ((dy/dt)/(dx/dt)>0)
T ((dy/dt)/(dx/dt)<0) 26 v̄/vmax

27 (y1st pen-down − ymax)/∆y 28 (xlast pen-up − xmin)/∆x

29 (velocity rms v)/vmax 30
(xmax−xmin)∆y
(ymax−ymin)∆x

31 (velocity correlation vx,y)/v2
max [57] 32 T (vy > 0|pen-up)/Tw

33 N(vx = 0) 34 direction histogram s1 [57]
35 (y2nd local max − y1st pen-down)/∆y 36 (xmax − xmin)/xacquisition range
37 (x1st pen-down − xmax)/∆x 38 T (curvature > Thresholdcurv)/Tw

39 (integrated abs. centr. acc. aIc)/amax [57] 40 T (vx > 0)/Tw
41 T (vx < 0|pen-up)/Tw 42 T (vx > 0|pen-up)/Tw
43 (x3rd local max − x1st pen-down)/∆x 44 N(vy = 0)
45 (acceleration rms a)/amax 46 (standard deviation of x)/∆x

47
T ((dx/dt)(dy/dt)>0)
T ((dx/dt)(dy/dt)<0) 48 (tangential acceleration rms at)/amax

49 (x2nd local max − x1st pen-down)/∆x 50 T (vy < 0|pen-up)/Tw

51 direction histogram s2 52 t(3rd pen-down)/Ts
53 (max distance between points)/Amin 54 (y3rd local max − y1st pen-down)/∆y

55 (x̄ − xmin)/x̄ 56 direction histogram s5
57 direction histogram s3 58 T (vx < 0)/Tw
59 T (vy > 0)/Tw 60 T (vy < 0)/Tw
61 direction histogram s8 62 (1st t(vx,min))/Tw
63 direction histogram s6 64 T (1st pen-up)/Tw
65 spatial histogram t4 66 direction histogram s4
67 (ymax − ymin)/yacquisition range 68 (1st t(vx,max))/Tw
69 (centripetal acceleration rms ac)/amax 70 spatial histogram t1
71 θ(1st to 2nd pen-down) 72 θ(1st pen-down to 2nd pen-up)
73 direction histogram s7 74 t(jx,max)/Tw
75 spatial histogram t2 76 jx,max
77 θ(1st pen-down to last pen-up) 78 θ(1st pen-down to 1st pen-up)
79 (1st t(xmax))/Tw 80 ̄x
81 T (2nd pen-up)/Tw 82 (1st t(vmax))/Tw
83 jy,max 84 θ(2nd pen-down to 2nd pen-up)
85 jmax 86 spatial histogram t3
87 (1st t(vy,min))/Tw 88 (2nd t(xmax))/Tw
89 (3rd t(xmax))/Tw 90 (1st t(vy,max))/Tw
91 t(jmax)/Tw 92 t(jy,max)/Tw
93 direction change histogram c2 94 (3rd t(ymax))/Tw
95 direction change histogram c4 96 ̄y
97 direction change histogram c3 98 θ(initial direction)
99 θ(before last pen-up) 100 (2nd t(ymax))/Tw

inter-user discriminative power. For each feature Fk, k = 1, . . . , 100, we
compute the scalar Mahalanobis distance [75] dM

i,Fk
between the mean of

the Fk-parameterized training signatures of client i, i = 1, . . . , 330, and
the Fk-parameterized set of all training signatures from all users. Features
are then ranked according to the following inter-user class separability
measure S(Fk)
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S(Fk) =
330∑

i=1

330∑

j=1

|dM
i,Fk

− dM
j,Fk

| (10.1)

Similarity computation. Given the feature vectors of the training set of signa-
tures of a client C, a non-parametric estimation λPWC

C of their multivariate
probability density function is obtained by using Parzen Gaussian Win-
dows [75]. On the other hand, given the feature vector oT of an input
signature and a claimed identity C modeled as λPWC

C , the following simi-
larity matching score is used

sPWC = p
(
oT |λPWC

C
)

(10.2)

Function-Based Approach

This subsystem is based on earlier approaches [80, 61] and is further detailed
in Fierrez and Ortega-Gracia [19].

Feature extraction. Signature trajectories are first preprocessed by subtract-
ing the center of mass followed by a rotation alignment based on the aver-
age path tangent angle. The signature is then parameterized as the follow-
ing set of 7 discrete-time functions {x[n], y[n], p[n], θ[n], v[n], ρ[n], a[n]},
n = 1, . . . , Ns, and the first-order time derivatives of all of them, totalling
14 discrete functions. The functions p, θ, v, ρ, and a denote, respectively,
pressure, path tangent angle, path velocity magnitude, log curvature ra-
dius and total acceleration magnitude. A claim-dependent linear transfor-
mation is finally applied to each function so as to obtain zero mean and
unit standard deviation values.

Similarity computation. Given the parameterized enrollment set of signatures
of a client C, a left-to-right Hidden Markov Model λHMM

C is estimated [75].
No transition skips between states are allowed and multivariate Gaus-
sian Mixture density observations are used. On the other hand, given the
function-based representation OT of a test signature (with a duration of
Ns time samples) and a claimed identity C modeled as λHMM

C , the following
similarity matching score is used

sHMM =
1

Ns
log p

(
OT |λHMM

C
)

(10.3)

The HMM system described above was submitted by the Biometric Recog-
nition Group–ATVS to the First International Signature Verification Compe-
tition 2004 with very good results [81]. Considering not only position tra-
jectories but also pressure signals, the proposed system was ranked first for
random forgeries and second for skilled forgeries. The proposed system was
only outperformed by the winner of the competition, which was based on a
DTW approach [43]. Interestingly, it has been recently shown that the HMM
approach outperforms an implementation of the DTW approach used by the
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winner when enough training signatures are available [22], which is also the
case when comparing the HMM method to the feature-based approach de-
scribed before. More comparative experiments with the function-based system
can be found in Garcia-Salicetti et al. [27].

Database and Experimental Protocol

All the signatures of the MCYT database [60] are used for the experiments
(330 signers with 25 genuine signatures and 25 skilled forgeries per signer).
Two examples of genuine signatures (left and central columns) and one forgery
(right column) are given in Fig. 10.6.
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Two genuine signatures (left and central columns) and one skilled forgery (right
column). A function-based representation is depicted below each signature.
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Best individually performing global features, i.e., 1st versus 2nd (left), and 3rd versus
4th (right), are depicted for all the signatures of the above user. Features from the
genuine signatures and forgery shown above are highlighted.

Fig. 10.6. Signatures from MCYT corpus with extracted functions and features.
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Fig. 10.7. Verification performance with user-independent decision thresholds for
an increasing number of ranked global features.

The signature corpus is divided into training and test sets. In case of skilled
forgeries, the training set comprises either 5 or 20 genuine signatures and the
test set consist of the remaining samples (i.e., 330 × 20 or 330 × 5 client,
respectively, and 330× 25 impostor similarity test scores). In case of random
forgeries (i.e., impostors are claiming someone else’s identity using their own
signatures), client similarity scores are as above and we use one signature
of each of the remaining users as impostor data so the number of impostor
similarity scores is 330× 329.

Results

In Fig. 10.7, verification performance results in four common conditions
(few/many training signatures and skilled/random forgeries) are given for:
i) the feature-based system with an increasing number of ranked global fea-
tures, ii) the function-based system, and iii) their combination through max
and sum fusion rules [44].

The feature-based system outperforms the function-based approach when
training with 5 signatures, and the opposite occurs when training with 20
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signatures. The two systems are also shown to provide complementary infor-
mation for the verification task, which is well exploited in the cases of small
and large training set sizes using the max and sum rules respectively. Also
interestingly, we have found a good working point of the combined system
in the four conditions depicted in Fig. 10.7 when using the first 40 ranked
features for the global approach. This is highlighted with a vertical dashed
line.

10.5 Summary

This chapter started with some historical events related to signature verifi-
cation, potential applications of this technology, examples of commercial sys-
tems, and some notes on the progress of standardization in on-line signature
verification.

We then provided a brief review of the state-of-the-art in on-line signa-
ture verification, by outlining the main approaches to the following modules:
data acquisition and preprocessing, feature extraction (feature- or function-
based), enrollment (reference- or model-based), matching with or without pre-
alignment, and score normalization. Based on this review, we conclude that
the dominant approaches are based on global features with distance measures,
or time functions either with statistical modeling (HMM) or elastic matching
(DTW). We have also summarized some on-line signature databases such as
MCYT or SVC, and we have provided a case study combining feature- and
function-based approaches.

Alongside the review of the state-of-the-art, we have also pointed out some
open problems in signature verification, such as the large behavioral differ-
ences between signers (which make especially appropriate the use of signer-
specific features, models, or score mappings), or the signature variations in
time (which may be overcome with multi-session training or template adapta-
tion techniques). Other research directions include: multilevel recognition ap-
proaches, better understanding of the discriminative features against forgers
and between different signers, understanding of the variability and complexity
factors in signature, and their relation to verification performance.
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11.1 Introduction

The use of face appearance (photometry) for biometric recognition has been
popular with researchers for many years. Some systems have successfully made
the transition from the research laboratory to the commercial sector. How-
ever, it is possible to degrade the performance of such 2D face recognition
systems through environmental changes such as lighting variations (e.g., high
contrast shadows on the face), nonfrontal face pose, and other contaminating
actions. Moreover, a 2D face image is a measurement of both the face ge-
ometry (shape), the albedo and pigmentation of the skin, and its embedding
in the sensing environment with illuminator positions as well as spatial and
spectral characteristics.

It can be argued that biometric recognition should employ measurements
that are purely subject-intrinsic, avoiding incorporation of other contami-
nating inputs and the effects of imaging system transformations as much as
possible. This argument has motivated the use of 3D images of the face (as
well as other body sites such as the ear) for biometric matching. However, 3D
images of objects differ from their 2D counterparts. The units of measurement
are different, being physical positions rather than photometric measurements
(the physical measurements may be calculated from photometric measure-
ments, however). The sources of noise and other contamination are different
and also sensor-dependent. One must employ different low-level image pro-
cessing operators to improve image quality and extract meaningful features
for matching.

The amount of research on 3D face recognition has been sufficient to yield
prior survey papers [18], and the emergence of commercial systems (sensors
plus matchers) for 3D face recognition has prompted interest in government-
sponsored evaluations of these methods for assessment of technology prior to
procurement [25]. Many research groups are continuing to focus their efforts
on 3D face recognition, which should yield additional novel techniques and
opportunities for principled comparison in the future.
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This chapter describes technologies for 3D sensing that are or may be ap-
plicable for face image acquisition, discusses some typical low-level processing
necessary for images produced by current sensors, and surveys the work of
many research groups in the area as well as results from a recent US Govern-
ment evaluation of 3D face recognition technology. We conclude the chapter
by noting some key issues that should be addressed prior to wider deployment
of 3D face recognition technology in applications.

11.2 3D Sensors and Data for Face Recognition

The researcher interested in 3D face recognition has a variety of potential
data sources available. While 3D sensors have been in existence for decades,
they are often more expensive, slower to produce images, or their outputs
have greater contamination than typical 2D (photometric) sensors. A broad
understanding of the issues involved in 3D sensing should guide the choice of
a sensing technology. A comprehensive survey and comparison of 3D sensing
is beyond the scope of this chapter (such surveys and comparisons do exist,
e.g., [17, 9]). We will simply note some of the key classes of 3D sensors that
have been developed for or applied to face sensing for biometric matching.

• Active structured lighting – This class of sensor obtains 3D data by
processing one or more images, typically acquired from a single camera, of
the 3D object of interest as illuminated by a light pattern such as a stripe,
grid, or coded field. Calibration of the sensor involves determination of the
transformation relating coordinates in the light pattern with coordinates
in the camera’s field of view. A simple example, employed in several sen-
sors, is point ranging, where a laser projector emits a fixed beam, which
intersects the object to be sensed, and the intersection point is imaged
in a camera. Knowledge of the angles between the laser beam axis and
the camera’s optical axis, along with the baseline distance between cam-
era and laser, allows the range to be determined. Extension of this to the
problem of extracting range along a stripe produced by a line projector
is straightforward. Accurate determination of the angles involved can be
difficult but fixturing and calibration are typically used.
Point and stripe ranging are the simplest examples of structured light
sensors since solution of the correspondence problem is trivial (the posi-
tion of a point is unique, and position along a stripe can be controlled
by fixturing). However, assembly of an image from individual point mea-
surements or profiles requires the processing of multiple frames, which can
be time-consuming. More complex structured light (e.g., grid-structured
patterns, multi-point patterns, or multi-stripe patterns) allow range to
be determined at more positions in a single image, but the correspon-
dence problem is more difficult. The ranging technique must know which
point in a multi-point pattern or which stripe in a multi-stripe image is
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being used in triangulation. An incorrect decision distorts the estimated
measurement, often significantly. Solutions to the correspondence problem
have employed coded patterns of various sorts, including color coding and
Gray coding across multiple frames [6, 28].
Application of structured light to 3D imaging of the face introduces some
constraints on sensors. The active illumination must be eye-safe in terms
of power, and ideally would be invisible to avoid discomfort for subjects.
Acquisition should be rapid to minimize contamination due to subject mo-
tion; ideally, it should be a snapshot. Figure 11.1 shows an image taken by
the Minolta Vivid 910 scanner1 when the subject moves during scanning.

Fig. 11.1. A face image containing distortion due to subject movement during
acquisition.

Figure 11.2 contains a photograph of a Minolta 910 structured light range
scanner (which has been used in extensive data collection projects at sev-
eral universities) and an example of the 3D imagery produced by the sen-
sor.
The FRGC 2.0 database [24], discussed in detail in another chapter in
this volume, is a large database of 2D and 3D face images used in the
US Government’s Face Recognition Grand Challenge program. 4,960 of
the images in the FRGC 2.0 corpus are 3D face scans captured by a Mi-
nolta 910 scanner. This database has been distributed to over 100 research
groups worldwide and a large fraction of the published work in 3D face
recognition employs this database.

• Passive and Assisted Stereo imaging – Stereo imaging is the task
of obtaining three-dimensional measurements from a multiple camera rig.

1 http://www.minolta3d.com
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(a) (b)

Fig. 11.2. Structured light range scanner. (a): Minolta 910 scanner. (b) 3D image
of the third author from the Minolta scanner. The 3D data is rendered as a shaded
mesh.

Different assumptions about the type of reconstruction desired (e.g., metric
reconstruction, reconstruction up to a projective factor, etc.), the number
and types of cameras available, and the type of calibration performed can
yield different imaging techniques. The key task for a stereo reconstruction
algorithm is solving the correspondence problem; that is, finding pixels in
each camera’s raster that are images of the same point in 3D. Epipolar
constraints limit the search for correspondences to a line in a 2-camera rig
(see, e.g., [14]). The search should have a reject option since some points
seen by one camera cannot be seen by the other camera(s). Since sensed
reflectance is a function of view angle as well as surface material and in-
cident illumination, it is common to base the correspondence search on
a local match of intensity variation using measures akin to correlation;
this implies that matches cannot be determined for “featureless” surfaces.
However, “assisted” stereo imaging, in which a texture pattern is projected
onto the surface during stereo sensing, can accelerate the matching pro-
cess. Application of passive stereo imaging to 3D face image acquisition is
straightforward, provided the correspondence problem can be addressed.
The typical human face has a reasonable amount of visual texture, provid-
ing a basis for local matching in correspondence search. There are commer-
cial sensors that employ texture projectors to allow assisted stereo sensing
of the face [1]. Figure 11.3 contains a picture of a texture-assisted stereo
face imaging system sold by 3DMD, along with a shaded mesh rendering
of an image of the third author acquired with that sensor.

The format of data produced by a 3D face sensor may depend on the
technology used to obtain an image. Structured light sensors that employ a
linear pattern generally assemble the profiles into a raster-plus-flag structure,
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(a) (b)

Fig. 11.3. Texture-assisted stereo camera developed by 3DMD. (a): the sensor (each
of the two arms ends in a stereo rig with a texture projector; software registers the
two partial face images along the midline). (b) an image of the third author from
the 3DMD sensor.

where each pixel in the raster has a Boolean flag that denotes validity of the
measurement and, if the flag is true, the 3D coordinates of the scene point.
Thus:

R = {pij , i = 1, . . . Nr, j = 1, . . . Nc},
where Nr and Nc are the number of rows and columns, respectively,

pij = (fij ; xij , yij , zij [; rij , gij , bij ]),

fij is TRUE if the range data (xij , yij , zij) is valid, and FALSE otherwise.
It is not uncommon for raster-structured range scanners to measure color
(rij , gij , bij) at each pixel also.

There are structured-light profilers that allow the line orientation to be
modified between scans (e.g., the FastSCAN sensor from Polhemus [26]); such
scanners may not produce a raster-structured image output. Such scanners,
as well as stereo cameras, would typically produce a cloud of 3D points, per-
haps with an accompanying texture map and perhaps including a 3D mesh
connecting the points, as their output:

R = {pi, i = 1, . . . Np}, where

pi = (xi, yi, zi[; ri, gi, bi]),

M = {ej , j = 1, . . . Ne}
denotes the mesh in terms of an edge list, and

ej = (ij1 , ij2)

denotes an edge existing between points pi1 and pi2 . Meshes can be constructed
on point cloud data through a variety of procedures.
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Figure 11.4 shows close-ups of the nose area of the images in Figures 11.2
and 11.3. The sampling resolution of the assisted stereo sensor is somewhat
coarser than that of the structured light sensor. This is due to the resolution of
the optical pattern projected on the object to assist the stereo correspondence
search.

(a) (b)

Fig. 11.4. Sampling and resolution of structured light and assisted-stereo cameras.
(a): Close-up of the nose region in Figure 11.2(a). (b): Close-up of the nose region
in Figure 11.3.

11.3 3D Face Image Processing

Regardless of the approach to face matching (global, local, or ‘hybrid’), many
of the 3D face recognition systems employed in the literature employ some
ad hoc post-acquisition image processing to reduce noise, remove holes, and
improve the quality of the data produced by the range imaging sensor. While
the techniques vary widely from system to system, it is common to see some
of the following general processing operations:

• Mesh repair – Any structured-light range scanner that generates a raster
structured output will generate images with “missing” pixels from time to
time. These invalid pixels should be ignored and treated as holes if the
data is interpreted as a polygonal mesh interpolating the valid range data.
Small holes in the mesh are relatively easy to fill; local averaging can pro-
duce (x, y, z) estimates at the missing location. Larger holes can be filled
by ‘nibbling’ away the invalid pixels one at a time by averaging, or through
fitting a surface to the hole area using available data as constraints, fol-
lowed by resampling within the hole.
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• Smoothing – The smoothing operation is designed to suppress random
noise arising from the sensor. Different sensors can exhibit different types of
noise. It is usually an oversimplification to assume that the noise contam-
ination is zero-mean, normally distributed, and affecting the z coordinate
(the gaze direction) exclusively. Hence, smoothers such as mean filters de-
signed to match that sort of noise may not achieve the desired results.
For example, range scanners that employ lasers can generate data con-
taminated by laser speckle. Imaging of concavities can generate significant
range excursions due to complex light reflections (including multipath ef-
fects) within those concavities. This frequently happens at the eyes in 3D
face imaging with laser scanners, as the incident illumination is reflected
into the eyeball through the lens, emerges again, and is detected. Stereo
scanners and those projected-light sensors that employ patterns can also
suffer miscorrespondences, wherein two scene points in a stereo pair are
mistakenly corresponded, or the coordinates of a position on the projected
pattern are poorly estimated. Such correspondence errors also yield gross
errors in position estimates. Median filtering of the local neighborhood can
often suppress the worst of these errors, provided that these errors do not
affect several neighboring pixels. Linear smoothing of the result can help
to suppress the contouring produced by median operator.

• Local feature extraction – Local shape descriptors can be useful in the
detection of face features that can be used subsequently in matching or
registration. For example, Chang et al. [8] computed curvature on the face
range image to detect candidate points for the nose tip and the saddle
formed by the nose bridge and the interocular curve. Surface curvature
can be calculated in range data using a variety of techniques; one simple
method fits a small curved patch f(x, y) (bi-quadratic or bi-cubic) to the
range data in the neighborhood of each point of interest, and computes the
mean and Gaussian curvatures (denoted H(x, y) and K(x, y), respectively)
by analytic differentiation of the fitted surface f :

H(x, y) =
(1 + f2

y )fxx − 2fxfyfxy + (1 + f2
x)fyy

1(1 + f2
x + f2

y )
3
2

K(x, y) =
fxxfyy − f2

xy

(1 + f2
x + f2

y )2
.

As noted by Besl[4] and others, the signs of H(x, y) and K(x, y) allow the
surface type to be classified; a nose is typically classified as a peak, the
nose bridge/interocular curve intersection as a saddle point, and the eye
areas near the tear ducts as pits. Figure 11.5 shows the labeled face regions
obtained from curvature signs for a range image of the third author. Red
areas were classified as peaks, black areas were classified as pits, and light
blue areas were classified as saddles.
Surface normals can also be calculated at range pixels by fitting a local pla-
nar patch f(x, y) to the neighborhood of a pixel of interest and returning
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Fig. 11.5. Curvature-sign based labeling of pixels in a 3D image of a face.

its normal vector n(x, y):

f(x, y) = z = ax + by + c

n(x, y) =
(−a,−b, 1)

(1 + a2 + b2)1/2

As noted above, many 3D sensors provide a color image along with the 3D
shape data if they employ color cameras in the depth extraction process. This
has led to a number of techniques for multimodal recognition of faces using
2D (color) and 3D information gathered from the camera. While a detailed
discussion of such techniques is outside the scope of this chapter, we note
that intensity face recognition techniques may also require preprocessing of
the input color image using techniques such as normalization, smoothing, and
resampling.

11.4 Representations and Features for 3D Face
Recognition

Techniques for 3D face recognition in the literature employ a broad range of
face descriptors to use in the matching step. Some descriptors amount to a
complete representation, in that the original face shape can be recovered (per-
haps approximately) from the representation (e.g., a principal components
representation). Others are incomplete since they cannot yield such a recon-
struction, but these can offer other benefits (e.g., robustness to occlusion).
This section provides an overview of some selected techniques.

11.4.1 Subspace and other transform models

Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) are two members of a family of subspace representations for arbitrary
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multivariate data. Such techniques work by computing a set of basis vectors for
the observation space defined by ‘unraveling’ geometrically normalized train-
ing image data into multidimensional points (one point per training image).
The various techniques differ in the way the new basis vectors are extracted.
In PCA, the basis vectors are eigenvectors of the sample covariance matrix
of the training data. If ‘re-raveled’ into an image form, they can be displayed
as face-like images commonly called ‘eigenfaces’. Since they are all orthogo-
nal and unit length, they can be assembled into a linear transformation that
operationally imposes a rotation (called the varimax rotation in statistical
literature) on the original data. The sample covariance matrix of the rotated
training data is diagonal. Thus, the PCA basis, viewed as a transform, de-
scribes the image as a linear combination of eigenfaces. Each basis image has
an associated eigenvalue that measures the sample variance of the training
data along the corresponding coordinate in the face space. It is common to
discard face space coordinates associated with eigenfaces that are arbitrary
due to rank-deficiency of the covariance matrix as well as those with small
eigenvalues. This yields an effective data compression technique that maxi-
mizes variance retained.

By contrast, LDA’s basis vector set is the set of eigenvectors of S−1
w Sb,

where Sw is the within-class scatter matrix and Sb is the between-class scatter
matrix. Thus, LDA requires labeled training data and defines a linear trans-
form that attempts to minimize within-class spread and maximize between-
class spread. A practical problem in LDA computations is the inversion of Sw,
which is usually not full rank.

While popularized in the context of 2D face recognition, the depth coor-
dinate of a 3D face scan can be interpreted as a brightness value and used as
the basis for matching using PCA and/or LDA. This idea has been used and
evaluated by Hesher et al. [16], Tsalakanidou et al. [12], Chang et al. [7, 8]
and Gokberk [3].

Nonlinear face transformations have also been employed in 3D face recog-
nition. Bronstein et al. [2] developed a face representation designed to be
robust to isometric transformations of the face, assumed to include facial ex-
pression variations. An input face image is transformed to a canonical form
using an iterative approximate multidimensional scaling technique employing
a geodesic distance map computed from facial feature points.

11.4.2 Global and Local Point set models

The Iterative Closest Point (ICP) algorithm, originally published by Besl and
McKay [5], is a well-known closely examined technique for data set registration
that can be applied to any data dimensionality. It processes two data sets: the
data shape to which a transform is applied, and the model shape to which the
transformed data shape is progressively aligned. A key assumption of ICP (not
always valid in some uses) is that the data shape is a “subset” of the model
shape, in that it will, if successfully transformed, be aligned with a portion



220 3D Face Recognition

of the model shape. The ICP concept is easily applied to face recognition
using 3D data; systems that employ this technique are noted below. All such
systems employ a sampling of 3D points from the input range data and a
sampling from each model face as the basis for matching.

Some recent work [30, 8] has employed multiple local point set models as
the basis for matching. Robustness to facial expression variation motivates
this idea. If a region of the face is both distinctive in shape and invariant to
facial expression change, it can be used in matching.

11.4.3 Deformation models

Lu and Jain [20] developed a deformation-modeling technique that is used
in conjunction with ICP-based alignment to match 3D faces in the presence
of expression variation. This method expresses a face configuration (possibly
including expression-based deformation) using a subject-specific 3D face mesh
captured with a neutral expression plus the locations of control points whose
positions are sensitive to expression. Control points are matched between dif-
ferent images and used to deform the neutral mesh to match. In addition,
control point locations are used to estimate a rigid head pose transform.

Passalis et al. [23] developed a deformable model for face representation.
The model architecture is based on a 2D parametrization of the face sur-
face. A particular point on the face is indexed through a particular pair of
parametric coordinates (u, v). At specified locations on the face, 3D geometry
as well as other surface attributes are associated, forming ‘control points’.
Subdivision algorithms can then be applied to obtain the attribute values at
locations not corresponding to control points; this yields an effective multires-
olution representation of the shape. Once the 2D domain is established and
key data corresponded to the domain, a wavelet transform is used to generate
a signature for the encoded data and used in matching.

11.4.4 Feature Detectors

It is sometimes useful to automatically detect key points on the face for regis-
tration. Sometimes, these points correspond to anatomical features and can be
described using anthropometric labels (e.g., [11]); often, the term ‘landmark’
is used for such points. In the 3D context, landmarks that are distinctive in
terms of local shape (as opposed to photometry) are most useful for registra-
tion or matching. The automatic detection of landmarks in 3D face images
has received focused attention in recent years (e.g., [29, 10, 27]. Generally, fea-
ture detectors employ local analysis (e.g., curvature estimation and surface
patch classification or shape index thresholding). An alternative method not
dependent on global processing (and subject to its noise sensitivity) might
involve critical point analysis of an approximating surface fit to the face data.
To the authors’ knowledge, a comparison between such methods has not been
performed as of the time of this writing.
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It is easily shown that three non-collinear 3D landmarks determine the
pose of the face if it is assumed to be rigid; hence, a viable alignment technique
would involve detection of three landmarks and estimating a rigid transfor-
mation to correspond them to a canonical face model containing compatible
landmark points. In general, the pose transformation would need to include
an affine component to account for distortions in the corresponding triangular
configurations arising from face size, individual face feature positions, and the
accuracy of landmark localization. The degree of nonrigidity might in itself
be useful as a matching score for 3D face recognition.

Lu and Jain [19] propose a method of feature extraction based on a di-
rectional maximum in a 3D image. A nose profile is represented by different
subspaces and a nearest neighbor approach is used to select the best candi-
dates for the nose tip. Of the nose candidates, the point that best fits the
statistical feature location model (i.e. the nose should be below the eyes and
above the mouth) is selected as the final nose tip. This information is used
to bootstrap the location of additional feature points (eyes and mouth cor-
ners) and is then used to align each image to a standard model for automatic
3D face recognition in images with large pose variation. Faltemier et al. [30]
identify a candidate nose region using curvature estimation (the nose tip is
robustly classified as a ‘cap’ shape), and refine the nose tip position using a
generic nose model which is aligned to the data using ICP.

11.5 Recognition

A recent broad survey of face recognition research is given by Zhao et al. [32]
and a survey focusing specifically on face recognition using 3D data is given
in Bowyer et al. [18]. This section identifies several recent works which are
representative of current and emerging themes in this research area.

11.5.1 Indexing: Rapid Rejection of Candidates

The issue of scalability is assuming greater importance as face recognition
systems begin to be used in application domains. Indexing is a commonly
used term for a ‘pre-recognition screening’ step that rapidly discards gallery
models which (based on simple tests) cannot match the probe model. In the
area of 3D face recognition, indexing has been addressed in a small number
of papers.

Mian et al. [21] developed a 3D face recognition system intended to han-
dle expression variations. This system employs an indexing step intended to
efficiently reject face models that are poor matches to the probe image. This
‘rejection classifier’ employs a spherical face representation, which is a radi-
ally indexed histogram containing range pixel counts as a function of distance
from an automatically detected nose tip. This histogram is precomputed for
each model face and can be easily computed for a probe face to be classified.
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Design parameters include the number of bins and the corresponding radius
quantization values. The technique would seem to depend strongly on very
accurate location of the nose tip.

11.5.2 Matching via Alignment

As noted earlier, a number of works in 3D face recognition employ ICP or
one of its many variants for matching. The inputs to a typical one-to-one ICP
implementation for 3D face matching include a data shape (typically a point
set obtained from the probe image, usually by sampling and a model shape
(fixed in position), to which the data shape is registered by application of
a rigid transform. This transform typically includes three rotational degrees
of freedom and three translational degrees of freedom. It is common for the
gallery and probe sets to be translated so that their centroids are at the
origin before ICP iterations commence. At each iteration, two major steps are
executed.

1. The first step is the nearest-neighbor search, wherein the closest model
shape point to each data shape point is determined. This step’s time com-
plexity is O(mn) for an m-point model shape and an n-point data shape,
if linear search is used; special data structures (e.g., the k-D tree [13] or a
volumetric index storage [15, 34]), can reduce the complexity of the search
at the cost of additional up-front computation and/or memory storage.

2. The second step is the estimation of a rigid transform for the data shape
to best align it with the model shape, based on the correspondences found
in step 1. Assuming a large number of point correspondences is present,
a least-squares estimate is easily computed.

After step 2 is calculated, a suitable distance value (e.g., RMS distance) is
computed over the corresponding points. This is usually interpreted as the
quality of the match, where smaller is better. These two steps are repeated
until a termination criterion (generally involving an upper limit on the number
of iteration steps, a low threshold on the distance value, or a low threshold on
the change in distance between subsequent iterations) is met. ICP can become
trapped in local minima. To reduce this likelihood, multiple ICP runs can be
performed. Alternatively, a high-quality initial estimate of the rotation (i.e.,
pre-alignment of the data shape) can reduce the likelihood of convergence to
nonglobal optima of the distance function.

Lu et al. [33] used the iterative closest point (ICP) algorithm to align 3D
meshes containing face geometry, as a component of a 2D/3D face recognition
system. Their surface matching algorithm computes an initial coarse registra-
tion transform based on facial feature point locations. Iterative adjustment
employs a variant of ICP that employs both point set alignment and surface
mesh alignment at each iteration. Once this process is run, the ICP algorithm
reports an average root-mean-square distance that represents the separation
between the gallery and probe meshes. The performance of the overall system
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included performance figures for the 3D module alone, the 2D module alone,
and the combination of these modules. A database containing about 600 range
scans was used in testing, and the 3D module’s rank-1-correct recognition rate
was 86%. Fusion of the 3D system’s output with that of the 2D module yielded
a rank-1 accuracy of 90%. In a verification scenario at a fixed false accept rate
of 0.001, the correct identification rate was 0.85 for an image database con-
taining only neutral expressions and 0.6 for the entire database. The authors
report that nearly all of the errors in recognition with the full database were
caused by a change in expression between the probe and the gallery images.

Maurer et al. [31] created an algorithm that uses fusion of 2D and 3D face
data for multimodal face recognition. Their algorithm first cleans each mesh,
extracts relevant face data, and then performs ICP on the 3D set to generate
a distance map between the two aligned meshes which allows a score to be
generated from the results. The 2D component of their algorithm uses the
recognition system created by Neven Vision and fuses the results with those
of the 3D matcher based on the quality of each match. If the 3D match was
very good, then the match is considered correct and the 2D score is not used.
If this is not the case, then the results are fused together to return a combined
score. They report results on their 3D algorithm, as well as reporting the 2D
component’s contribution to the 3D performance. They achieved an 87.0%
verification rate at a false accept rate of 0.1% using 3D face information and
matching all 4007 images in the FRGC v2.0 data set [22] vs. all 4007 images
regardless of expression.

Chang et al. [8] use multiple overlapping nose regions and obtain increased
performance relative to using one whole-frontal-face region. These nose regions
include a nose circle, nose ellipse, and a region composed of just the nose
itself. This method uses the ICP algorithm to perform image matching and
reports results on a superset of the FRGC v2 data set containing 4,485 3D
face images. 2D skin detection is performed for automated removal of hair and
other non-skin based artifacts on the 3D scan. They report results of 97.1%
rank one recognition on a neutral gallery matched to neutral probes and 87.1%
rank one recognition on nonneutral probes matched to a neutral gallery. The
product fusion metric was used to process the results from multiple regions.
When the neutral gallery was matched to the neutral probe set, maximum
performance was reported when only two of the three regions were combined.
The authors mention that increased performance may be gained by using
additional regions, but did not explore anything beyond three overlapping
nose regions.

11.5.3 Matching Deformable Models

Lu et al. [20] present an algorithm for matching 2.5D scans in the presence of
expressions and pose variation using deformable face models. A small control
set is used to synthesize a unique deformation template for a desired expres-
sion class (smile, surprise, etc.). A thin-plate-spline (TPS) mapping technique
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drives the deformation process. The deformation template is then applied to
a neutral gallery image to generate a subject specific 3D deformation model.
The model is then matched to a given test scan using the ICP algorithm. The
authors report results on three different types of experiments. The first data
set contains 10 subjects with 3 different poses and seven different expressions.
Rank one results of 92.1% are reported when deformation modeling is used
compared to 87.6% when it is not. The second data set consists of 90 subjects
in the gallery and 533 2.5D test scans and similar results are reported. Data
for the first two experiments was gathered at the authors’ institution. The
data for the final experiment was taken from the FRGC v2 [22] data set and
consisted of 50 randomly chosen subjects in the gallery and 150 2.5D test
scans. When deformation modeling is employed, a rank one recognition rate
of 97% is reported (81% was achieved without deformation modeling).

Passalis et al. [23] used an annotated face model (AFM) discussed above to
represent a face. The processing yielded a wavelet-based face signature. The
signature is matched to other signatures by taking the sum of the distances
between each annotated point in the probe template and its corresponding
point in the gallery template. They reported a 89.5% rank one recognition
rate using the FRGC2.0 data set’s 3D imagery, with the earliest image of
each subject as a gallery image and all subsequent images considered probes.

11.5.4 Subspace Methods for Matching

The application of PCA to 3D image data is straightforward if one retains
the depth (z) component of the 3D face image and treats it as a pseudo-
intensity value. As with intensity images, the 3D data must be geometrically
normalized, often using automatically detected face features such as the nose
tip or eye corners. The use of geometric information in PCA offers intrigu-
ing possibilities not available to 2D imagery. Normally, illumination artifacts
are not present (although extreme lighting situations can badly corrupt the
data). In addition, the depth component likely contains more low-frequency
and less high-frequency content than an intensity image, which would typi-
cally mean that fewer principal components are needed for a representation
of fixed fidelity. However, these potential advantages may be offset by tradi-
tional criticisms of PCA, namely its global character and thus its sensitivity
to expression variation.

Hesher et al. [16] used multiple range images per subject to allow a greater
possibility of matching using a PCA technique. Once the sensor acquires the
range images and they are normalized, principal component analysis (PCA)
is used to reduce the dimensions of the image representation and facilitate
matching. Noise and background information were documented as factors
that degraded performance. Performance figures ranked from the mid-80%
to mid-90% range on a 222 image database. Tsalakanidou et al. [12] extend
the PCA approach to include the use of color images. Multiple tests using
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the XM2VTS multimodal database, with matchers that employed color im-
ages alone, 3D shape alone, and 3D + color were compared. Using color in
addition to 3D images caused the recognition rate to increase. While the rank-
1 performance of the various modules of this technique are not competitive
by today’s standards, the work demonstrates a principled way to combine
independent matchers’ outputs.

Bronstein et al. [2] described a technique to transform the facial surface
to a space where the representation is invariant to isometric transformations
(i.e. expressions or manipulations of the face). They obtain geometric invari-
ants in the images that allow multi-modal 2D+3D recognition using 2D face
texture images mapped onto a 3D face. Once this combined image is gener-
ated, they use eigendecomposition of canonical and flattened texture images.
Experiments on an image database of 200 images showed that the proposed
technique outperforms a 2D PCA (eigenfaces) approach.

11.5.5 Matching Local Surface Features

Mian et al. [21] developed a 3D face recognition system intended to handle
expression variations. This system employs a coarse model for indexing, as
discussed in Section 11.5.1. The primary representation of the face, used to
represent faces in the gallery that survived the indexing step, is a global
face subset identified, through a segmentation procedure, to be expression-
invariant. This segmentation is performed by thresholding the variance in
the z-coordinate of a registered set of training images whose members are
diverse in subjects and expressions. This expression-invariant representation
is matched against probe images using ICP. Two matchers were demonstrated.
One employed the entire face image and yielded a rank-1 correct recognition
rate of 76.5%. The other employed an automatically located mask to segment
the probe image prior to matching and yielded a rank-1 correct rate of 88%-
96% depending on the presence of variant facial expressions in the probe set.

Faltemier et al. [30] describe a region committee voting procedure for 3D
face recognition. This matching architecture was designed to be robust to face
expression variations. The technique automatically detects a nose tip using
curvature information and then extracts several regions around the nose as the
basis for matching. Each of these local regions is matched against a gallery of
compatible features using ICP, yielding an RMS error interpreted as a match
score. These matching scores are combined using voting, and the model with
the highest vote count is accepted (there is a reject option for situations that
yield too few votes). Experiments with the FRGC2.0 data set [22] yielded 95%
correct rank-1 identification.

11.5.6 Comparisons

Gökberk et al. [3] perform a comparative evaluation of five face shape rep-
resentations, (point clouds, surface normals, facial profiles, PCA, and LDA)
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using the well known 3D-RMA data set [8] of 571 images from 106 subjects.
They find that the ICP and LDA approaches offer the best average perfor-
mance. They also perform various fusion techniques for combining the results
from different shape representations to achieve a rank-one recognition rate of
99.0%.

11.6 Comments and Emerging Themes

This chapter has presented background material relating to the acquisition of
3D data, the representation of faces using such data, and techniques for face
identification based on these representations. The literature demonstrates that
the level of interest in 3D face recognition is high among biometric techniques.
The recent FRVT2006 evaluation [25] demonstrated that 3D face recognition
has potential to be a strong biometric. However, the use of 3D data for face
recognition is not without challenges and drawbacks, and some of these have
contributed to the relatively small market position of 3D face recognizers. One
key drawback is the complexity of the sensor. Although a variety of techniques
exist for acquisition of 3D data, as a rule they are more expensive and slower
to produce output data than commodity 2D sensors. These sensors can also
be delicate and can also require recalibration periodically. In order for 3D face
recognition systems to assume a greater role in deployment, better and less
expensive sensors will need to emerge.

Looking forward, a few themes in research and development for this tech-
nology area are apparent and are worth mentioning.

1. Sensing – At present, 3D sensors for face recognition tend to be expensive
and (depending on the technology) can be slow to produce data, pro-
duce data with artifacts and other noise contaminants, or produce low-
resolution data. New technologies and improvements in processing speed
may make video-rate range imaging a reality if appropriate research effort
is devoted to the task.

2. Scaling – Increasing attention is being paid to the problems of large sub-
ject databases for face recognition. Although the sizes of databases are
increasing rapidly (e.g. [22]), all such databases are too small to do more
than scratch the surface of the scaling problem. Synthesis of artificial im-
agery may offer benefits, but there is no substitute for a large database of
real imagery from a good sensor. The systems issues surrounding large-
scale matching (i.e., keeping response time reasonable when the number
of matches performed increases by an order of magnitude) also need at-
tention.

3. Variability – Robustness of matchers to facial expression variation has
been a popular research topic recently. It is encouraging to see so many
different types of approach to this problem, including both isolated lo-
cal features (data driven) and global deformation models (anatomically
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driven). The relative scarcity of data that captures expression variation is
a factor here.

4. The time dimension – We see an opportunity for 3D ‘range video’ pro-
cessing for face recognition in the near future, as sensors improve. This
issue has received relatively little attention to date. Active research groups
looking at color video in face recognition may yield valuable lessons that
can engender a critical examination of range video analysis.
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12.1 Forensic Identification

There are two main purposes for forensic identification of humans: suspect
identification and victim identification. For suspect identification, evidence
such as fingerprints, bite marks, and blood samples are collected at crime
scenes. Based on this evidence, the guilt or innocence of the suspects can
be confirmed. The goal of victim identification is to determine the identity of
victims based on characteristics of the human remains. Based on the number of
victims involved, victim identification is categorized into two types: individual
victim identification and disaster victim identification.

Victim identification can be achieved by matching antemortem (AM) and
postmortem (PM) circumstantial evidence and physical evidence [2]. The cir-
cumstantial evidence includes a victim’s clothing, jewelry, and pocket con-
tents. If the antemortem description of the same circumstantial evidence can
be provided, it may assist in the victim’s correct identification. However, cir-
cumstantial evidence can easily be attributed to the wrong person, particu-
larly when there are many disaster victims to be identified. Physical evidence
is more reliable, and includes external evidence, internal evidence, dental evi-
dence, and genetic evidence [2]. External evidence includes gender, estimated
age, height, build, color of skin, etc. Specific features, such as scars, moles,
tattoos, and abnormalities, are especially useful if they can be matched with
antemortem records, and fingerprints are valuable external evidences as well.
Internal examination (autopsy) is often necessary for determining the cause
of death. An autopsy may also find medical evidence that can assist in identi-
fication, such as previous fractures or surgery, missing organs (e.g., appendix,
kidney), or implants. Genetic identification involves comparing DNA samples
from an individual with antemortem DNA, or with DNA samples from the
suspected victim’s ancestors or descendants. Genetic identification is espe-
cially useful when the bodies of the victims are severely mutilated. Dental
evidence (such as fillings or missing teeth) is particularly important, since it
can offer sufficient evidence to positively identify a victim without the need
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for additional information. The use of dental evidence for human identifica-
tion is discussed in the remainder of this chapter. Table 12.1 compares the
various methods of identifying victims in terms of accuracy, time needed for
identification, antemortem record availability (the possibility of obtaining an-
temortem evidence), robustness to decomposition (of the body) and instrument
requirement (number of instruments needed for matching).

Table 12.1. A Comparison of Evidence Types Used in Victim Identification

Evidence type Circumstantial Physical
External Internal Genetic Dental

Accuracy Med. High Low High High
Time for Identification Short Short Long Long Short

Antemortem Record Availability High Med. Low High Med.
Robustness to Decomposition Med. Low Low Med. High

Instrument Requirement Low Med. High High Med.

This chapter begins with a brief survey of the procedure of manual forensic
dental identification, and introduces the dental radiograph-based approach for
forensic identification. We also discuss some challenges to automatic identifi-
cation based on dental records, and briefly introduce a prototype system for
identifying humans based on dental radiographs.

12.2 Manual Forensic Dental Identification

First of all, unidentified human remains are reported to the police who then
initiate a request for dental identification. A presumptive identification is often
available (e.g., wallet or driver’s license found on the body), which will en-
able antemortem records to be located. In other instances, using the database
of missing persons, the location where the body is found, or other physical
characteristics and circumstantial evidence may enable a putative identifica-
tion. Antemortem records are then obtained from the dentist of the suspected
missing person.

The forensic dentist produces a postmortem record by carefully charting
and writing descriptions of the dental structures and radiographs. An example
of dental chart is shown in Figure 12.1. If the antemortem records are available,
postmortem radiographs should be taken which replicate the type and angle
of the antemortem records [15]. Radiographs are marked with a rubber-dam
punch to indicate antemortem and postmortem to prevent confusion - one
hole for antemortem films and two holes for postmortem films [1].

Once the postmortem record is complete, a comparison between the two
records can be carried out. A methodical and systematic comparison is
required to examine each tooth and surrounding structures. While dental
restorations play a significant role in the identification process, many other
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Fig. 12.1. An example of postmortem dental chart [24].

oral features such as pathological and morphological characteristics are as-
sessed [1]. Such additional features play a particularly important role in those
individuals with minimal restorations. Because of the progressive decrease
in dental cavities, so-called non-restorative cases are likely to become more
common [22].

Similarities and discrepancies are noted during the comparison process
[26]. There are two types of discrepancies, explainable and unexplainable.
Explainable discrepancies normally relate to the time elapsed between the
antemortem and postmortem records, e.g., teeth extracted or restorations
placed or enlarged. If a discrepancy is unexplainable, for example a tooth
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is not present on the antemortem record but is present on the postmortem
record, then an exclusion must be made [1].

The American Board of Forensic Odontology recommends that dental
identification conclusions be limited to the following four conclusions [1]:

• Positive identification: the antemortem and postmortem data match in
sufficient detail, with no unexplainable discrepancies, to establish that they
are from the same individual.

• Possible identification: the antemortem and postmortem data have consis-
tent features but, because of the quality of either the postmortem remains
or the antemortem evidence, it is not possible to establish identity posi-
tively.

• Insufficient evidence: the available information is insufficient to form the
basis for a conclusion.

• Exclusion: the antemortem and postmortem data are clearly inconsistent.

It is important to note that there is no minimum number of concordant
points or features that are required for a positive identification. In many cases
a single tooth can be used for identification if it contains sufficiently unique
features. On the other hand, a full-mouth series of radiographs may not reveal
sufficient detail to render a positive conclusion [1]. The discretion of identifica-
tion lies with the odontologist who must be prepared to justify the conclusions
in court [24].

Recent disasters have brought the significance of dental identification to
the public’s attention. For example, in the terrorist attack on Sept. 11, 2001,
many victims were identifiable only from pieces of jaw bones. Dentists were
asked to help in identifying the victims using dental records and about 20%
of the 973 victims identified in the first year after the 9/11 attack were iden-
tified using dental records [23]. Victims of the 2004 Asian tsunami were also
identified based on dental information [27, 3]: 75% of the tsunami victims
in Thailand were identified using dental records, 10% by fingerprints, and
just 0.5% using DNA profiling. The remaining victims were identified using a
combination of techniques.

12.3 Identification of Humans Using Dental Radiographs

Dental radiographs are one of the most valuable pieces of evidence for dental
identification. This section begins with an overview of dental radiographs (also
known as dental X-rays) and then describes how dental radiographs can be
used to identify victims.

12.3.1 Dental Radiographs

There are three common types of dental radiographs (dental X-rays): peri-
apical, bitewing, and panoramic. Periapical X-rays (all radiographs in Figure
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12.2(a) except the two between the rows) show the entire tooth, including the
crown, root, and the bone surrounding the root. Bitewing X-rays (the two
radiographs between the rows in Figure 12.2(a) and all the radiographs in
Figure 12.2(b)) are taken during most routine dental check-ups and are use-
ful for revealing cavities in the teeth. One difference between periapical and
bitewing radiographs is the imaging setup. For bitewing radiographs, the film
is parallel to the teeth and the X-ray beam is perpendicular to both the teeth
and the film. In contrast, periapical radiographs do not require that the film
be parallel to the teeth. In some cases, the film and the teeth are deliberately
set not to be parallel so that the whole tooth can be imaged on a small ra-
diograph film. Periapical X-rays are useful for diagnosing abscessed teeth and
periodontal disease. The third type of X-ray is the panoramic X-ray. As its
name suggests, panoramic X-rays give a broad overview of the entire dentition
(the development of teeth and their arrangement in the mouth). Panoramic
X-rays provide information not only about the teeth, but also about upper
and lower jawbones, sinuses, and other hard and soft tissues in the head and
neck (Figure 12.2(c)). Panoramic films are entirely extraoral, which means
that the film remains outside of the mouth while the X-ray machine shoots
the beam through other tissues from the outside. Since it is entirely extrao-
ral, panoramic radiographs work quite well for people who cannot tolerate the
placement of films inside their mouths. Another advantage of panoramic film is
that it takes very little radiation to expose it. The amount of radiation needed
to expose a panoramic X-ray film is about the same as the radiation needed
to expose two intraoral films (periapical or bitewing). The disadvantage of
panoramic radiographs is that the resolution is lower than that of intraoral
images, which means the edges and structures in the panoramic images are
fuzzy.

For diagnosis and documentation purposes, dentists usually collect three
types of dental radiograph series: the initial full mouth series, the yearly bitew-
ing series, and the panoramic X-ray film. Figure 12.2(a) is an example of the
initial full mouth series, which combines bitewing and periapical X-rays to
show a complete survey of the teeth and bones. It consists of 2 or 4 bitewing
films taken at an angle in order to look for decay, and 14 periapical films taken
from other angles to show the tips of the roots and the supporting bone. In the
full mouth series, each tooth is seen in multiple films. This redundancy helps
dentists create a mental image of the teeth in three dimensional (3D) space. A
yearly bitewing series (Figure 12.2(b)) consists of either 2 or 4 bitewing films.
A bitewing series is the minimum set of X-rays that most dental offices take
to document the internal structure of the teeth and gums. The third type of
radiograph series consists of a single panoramic radiograph.

With the development of digital imaging technology, digital X-ray ma-
chines are becoming popular in dental clinics. Digital dental radiographs have
several advantages [7]: i) compared to traditional radiographs, only half the
dosage of radiation is needed for obtaining a dental radiograph of comparable
quality; ii) digital dental radiographs do not require time for film development,
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(a)

(b)

(c)

Fig. 12.2. Three types of dental radiograph series. (a) Full mouth series; (b) bitew-
ing series; (c) panoramic series.
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so dentists need to wait for only a few seconds before the acquired image is
displayed; iii) dentists can take another image instantly if the acquired image
is not good enough, so in general digital dental radiographs in a patient’s
record have better image quality than conventional dental radiographs; iv)
digital radiographs are easier to store and process, while conventional radio-
graphs need to be digitized for image processing; v) digital dental radiographs
are environmentally friendly since they do not generate chemical wastes used
in film processing; vi) digital radiographs also have been shown to have some
diagnostic advantages for several diseases. Mainly due to their advantages in
speed, storage, and image quality, digital dental radiographs will be routinely
used for victim identification in the future.

12.3.2 Dental Radiographs for Identification

An individual’s dental record includes information about the number of teeth
present, the orientation of those teeth, and dental restorations. Each dental
restoration is unique because it is designed specifically for that particular
tooth. An individual’s dentition is defined by a combination of all these char-
acteristics, and can be used to distinguish one individual from another. The
major challenge in the field of forensic dentistry is to determine how unique the
features of an individual’s dentition are, and whether this information is useful
for identification purposes. The information about dentition is represented in
the form of dental codes and dental radiographs. The dental codes are symbol
strings for description of the type of dental restorations, the presence/absence
of the teeth, and the number of cusps in the teeth, etc. Many studies have
been done to define this characteristic of “uniqueness” in dental codes for
identification purposes. Adams concluded from his analysis [5, 6] that when
adequate antemortem dental codes are available for comparison, the inherent
variability of the human dentition could accurately establish identity with
a high degree of confidence, especially when unique dental restorations are
encountered. One challenge to future efforts in forensic identification based
on dental codes is the decline in the number of dental restorations, which
is attributed to increased awareness of healthy dental habits. While general
descriptions of dentition can be quite useful for excluding possible identities
in cases where a limited number of identities are possible, large scale efforts
to identify victims based on dentition are hindered when only dental codes
are available. The availability of antemortem dental radiographs in addition
to dental codes allows individuals with common dental characteristics to be
distinguished from one another based on visual features in the images.

Forensic identification of humans based on dental information requires the
availability of antemortem dental records, including dental radiographs, writ-
ten records, tooth molds and photographs. Antemortem radiographs should
be obtained if possible. The antemortem dental radiographs may have been
acquired in several situations. Taking dental radiographs is very routine during
the dental clinical visits in the United States and Britain. Also in the United
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States and some other countries, newly recruited soldiers are required to have
dental examinations that include taking their dental radiographs. The discov-
ery and collection of antemortem records is ordinarily the responsibility of
investigative agencies. These agencies might locate records from sources such
as hospitals, dental schools, health care providers, dental insurance carriers,
public aid insurance administrators, and the FBI National Crime Information
Center (NCIC). Other resources include military service, judicial detention,
oral surgeons, orthodontists, etc.

12.4 Automatic Dental Identification

Identifying the 2,749 victims of 9/11 disaster took around 40 months [4], and
the number of Asian tsunami victims identified during the first 9 months was
only 2,200 (out of an estimated total of 190,000) [3]. The low efficiency rate of
current manual dental identification methods makes it imperative that we de-
velop algorithms to automatically identify disaster victims. There have been
a number of attempts to utilize machine intelligence to facilitate the identi-
fication of victims, e.g., the winID system [21] (http://www.WinID.com) and
the Odontosearch system (http://www.jpac.pacom.mil/CIL/entry.htm). How-
ever, these systems are based on dental description codes entered by human
experts. The reduced prevalence of dental restorations limits the usefulness
of matching methods based on dental descriptions and encourages continued
research on the use of dental radiographs for identification. This section dis-
cusses some of the challenges for dental radiographs based identification and
introduces a system for automating the use of dental radiographs for victim
identification [19, 14, 8, 9, 17, 18, 10, 20, 11].

12.4.1 Challenges

One major challenge in automatic identification based on dental X-rays is the
poor image quality of dental radiographs. Whether due to incorrect operation
of the X-ray equipment during image acquisition or digitization, to irregular
arrangement of teeth, or to degradation of the radiograph films, the contours
of teeth often appear to be blurred and the different tissues contrast poorly
in many radiographs. These factors make it difficult to automatically extract
edge features and tooth boundaries from the radiographs.

A second challenge is changes in the dentition over time, such as tooth
eruption and loss, the emergence, abrasion, falling and replacement of den-
tal restorations, the sliding of neighboring teeth after a tooth is extracted,
orthodontic operations, etc. These changes cause inconsistent appearances of
teeth in AM and PM radiographs from the same individual and are difficult
to model.

A third challenge is the changes in the imaging angle. Since dental ra-
diographs are 2D projections of 3D structures, changes in the imaging angle
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result in complex deformations. Figure 12.3 shows an AM-PM image pair in
which the changes in the imaging angle result in significant deformations in
the periapical radiograph images.

(a) (b)

Fig. 12.3. Changes in the imaging angle result in significant deformations in the
appearances of corresponding teeth in AM (a) and PM (b) periapical radiograph
images.

12.4.2 Automatic Dental Radiograph-based Identification System

In order to automate the identification procedure, we need to explore new
features other than dental restorations and abnormalities. Figure 12.4 shows
the architecture of an automatic system. Figure 12.5 shows the process of
matching two pairs of AM and PM images. The details of each stage are
given below.

Feature Extraction

The first step in processing dental radiographs is to extract features from
them. An image quality evaluation function assesses the quality of the image
in terms of image type (panoramic or non-panoramic), exposure imbalance,
and image blurring before it is processed. A warning message is issued to
request user interaction during the following steps if the image is assessed as
a panoramic image or the image has imbalanced exposure or blurring. Figure
12.6 shows images that are assessed to be of poor quality.

The features extracted for matching purposes are the contours of teeth and
the contours of dental work. Before extracting these features, the radiographs
are segmented into regions using Fast Marching algorithm [25], so that each
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Fig. 12.4. Block diagram of automatic dental identification system.

region contains only one tooth. Figure 12.7 shows examples of radiograph
segmentation.

Boundary extraction methods are then applied to each region of the im-
age to extract contours of each tooth and dental restoration. An active shape
model (ASM) [12] is used to extract eigen-shapes from aligned training tooth
contours, which include tooth contours, and their scaled and rotated varia-
tions [11]. Figure 12.8 shows five most principal deformations of teeth, which,
respectively, represent scaling, rotation, and variations in tooth width, tooth
root and crown shapes. The ASM combined with splines are used to extract
tooth contours. Figure 12.9 shows some extracted contours. Anisotropic dif-
fusion [9] is used to enhance radiograph images and segment regions of dental
work (including crowns, fillings, and root canal treatment). Results are shown
in Figure 12.10.

Atlas Registration

The second step is to register the input radiographs to the human dental at-
las, which is a descriptive model of the shape and relative positions of teeth
(Figure 12.11). This registration step is important because the matching algo-
rithm cannot properly align two sequences of teeth if they do not contain the
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Fig. 12.5. Fully automatic process of matching one pair of PM and AM images.
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(a)

(b) (c)

Fig. 12.6. Images assessed as poor quality. (a) A panoramic image; (b) an unequally
exposed image; (c) a blurred image.

(a) (b)

(c)

Fig. 12.7. Some examples of correct segmentation.
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(a) (b)

(c) (d)

(e)

Fig. 12.8. First five modes of the shape model of teeth. The middle shape in each
row is the mean shape, while the other four shapes are, from left to right, mean
shape plus four eigenvectors multiplied by -2, -1, 1, and 2 times the square root of
the corresponding eigenvalues.

(a) (b) (c)

Fig. 12.9. Tooth shapes extracted using Active Shape Models.
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Fig. 12.10. Extracted dental work contours with and without image enhancement.
(a), (b) and (c) Without enhancement. (d), (e) and (f) After enhancement.

same number of teeth. Missing teeth can be detected by labeling the existing
teeth based on known dental anatomy. The anatomy-based tooth labeling can
also accelerate the image matching stage, since a pair of PM-AM images need
not be matched if they do not share the same label. A hybrid model involv-
ing Support Vector Machines (SVMs) and a Hidden Markov Model (HMM)
(Figure 12.12) is used for representation of the dental atlas and estimation of
the tooth indices in dental radiograph images. The HMM serves as an under-
lying representation of the dental atlas by representing various teeth and the
distances between the neighboring teeth as HMM states. The SVM classifies
the teeth into 3 classes based on their contours. Missing teeth in a radiograph
can be detected by registering the observed tooth shapes and the distances
between adjacent teeth to the dental atlas. Furthermore, instead of simply
assigning a class label to each tooth, the posterior class probability associated
with each tooth is extracted from the SVM and passed to the HMM. This
approach reduces the impact of classification errors during registration. The
hybrid model yields the probability of registering the teeth sequence in a ra-
diograph to its possible positions in the atlas. The top-m (m = 3) possible
registrations are explored further in the radiograph matching stage. Figure
12.13 shows some examples of tooth index estimation.
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Fig. 12.11. Dental Atlas of a complete set of adult teeth containing indices and
classification labels of the teeth.
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Fig. 12.12. SVM/HMM model for the upper row of 16 teeth. The circles represent
teeth, and the number inside each circle is the tooth index. The squares represent
missing teeth, and the number inside each square is the number of missing teeth.

Matching

For matching corresponding teeth from PM and AM radiographs, the tooth
contours are registered, and corresponding contour points are located for cal-
culating the distance between the contours. The distance between two tooth
contours A and B is given as

Dtc(A,B) = min
∀T

1
|TAP |

∑

all a∈TAP

‖T (a)− Cor(a)‖, (12.1)

where T is a rigid transformation (combined with scaling), T (a) is the vector of
coordinates of point a after transformation T , TAP is the set of corresponding
points on A, and Cor(a) is the vector of coordinates of point a’s corresponding
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Fig. 12.13. Examples of successful registration of the dental atlas to (a) a bitewing
image, (b) a periapical image, and (c) an image with a missing tooth. In (c), teeth
numbered as 12, 14, and 15 are correctly registered. The missing tooth (number 13)
is detected.

point in contour B. The distance Dtc(A,B) is minimized by searching for the
optimal transformation T using Sequential Quadratic Programming [16].

If dental work is present in both teeth, the regions of dental work are also
matched to calculate the distance between dental work. Given two images F
and G, the ratio of Misaligned Pixels (Rmp) between them is defined as:

Rmp(F, G) =

∑
(x,y)∈A F ′(x, y)

⊕
G′(x, y)∑

(x,y)∈A F ′(x, y) + G′(x, y)
, (12.2)

where A is the overlapped region of tooth pixels and dental work pixels in
images F and G,

⊕
is the ‘Exclusive-OR’ operator, and F ′ and G′ are the

results of preprocessing on F and G, i.e.,

F ′(x, y) =

{
0, if F (x, y) is a tooth pixel;
1, if F (x, y) is a dental work pixel.

(12.3)

Image G′ is defined in a similar way. The metric Rmp is used to measure the
alignment of the dental work. The distance between the dental work in images
F and G is defined as:

Ddw(F,G) = min
for all T

Rmp(T (F ), G), (12.4)

where T is a rigid transformation (combined with scaling) and optimized using
Sequential Quadratic Programming [16].

The matching distance Dtc is combined with Ddw to generate the fused
distance Df between the two teeth, A and B, as follows

Df (A,B) = Dtc(A,B) · (1 + ·(T (Ddw))), (12.5)
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where

T (Ddw) =

{
P (ωi|Ddw)− P (ωg|Ddw), if Ddw is available
0, otherwise,

(12.6)

and p(ωi|Ddw) and p(ωg|Ddw) are probabilities estimated using a Parzen win-
dow approach with a Gaussian kernel [13].

Given two tooth sequences R and S, suppose ζ is one of the top-m es-
timated tooth indices (based on atlas registration) for teeth in sequence R,
and η is one of the top-m estimated tooth indices for teeth in sequence S. In
our experiments, we use m = 3. Despite the fact that the numbers of teeth
in R and S may be different, as long as there are corresponding teeth, denote
them as (R1, S1), (R2, S2), ..., (Rn, Sn), where n ≥ 1. We denote the distance
between sequences R and S based on indices ζ and η as Dζ,η(R,S), given by

Dζ,η(R,S) =

{
1
n

∑n
i=1 Df (Ri, Si), if n ≥ 1,

∞, otherwise,
(12.7)

where Df (Ri, Si) is the distance between teeth Ri and Si, defined in Eqn.
(12.5). The minimum value of Dζ,η among all the combinations of top-m
indices for R and S is the distance between sequences R and S,

D(R, S) = min
∀ζ,η

Dζ,η(R,S). (12.8)

To estimate the similarity between radiographs of two subjects Φ and Ψ ,
assume that tooth sequence R belongs to Φ and tooth sequence S belongs to
Ψ . Denote the distance measure between subjects Φ and Ψ as Ds(Φ, Ψ), given
by:

Ds(Φ, Ψ) =
Dss(R,Ψ)

#{R|R ∈ Φ,
∑

S∈Ψ n(R, S) > 0} , (12.9)

where Φ means all tooth sequences of subject Φ, Ψ means all tooth sequences
of subject Ψ , and

Dss(R, Ψ) =
∑

R∈Φ

min
S∈Ψ

κ(R, S), (12.10)

κ(R, S) =

{
D(R, S), if n(R, S) > 0,

∞, if n(R, S) = 0,
(12.11)

where n(R,S) is the number of corresponding teeth used for the computation
of D(R, S). The denominator in Eqn. (12.9) is the number of sequences of Φ
that have corresponding teeth in any sequence of Ψ . According to Eqns. (12.9),
(12.10), and (12.11), first, the distance between the sequence R (of subject Φ)
and the subject Ψ , Dss(R, Ψ), is calculated as the minimum distance between
sequence R and all the sequences of subject Ψ . Then we calculate the distance
between subject Φ and subject Ψ , Ds(Φ, Ψ), as the average distances between
all subject Φ’s sequences and subject Ψ .
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12.5 Experimental Results

Insufficiency of data in dental radiograph databases is a challenge to this re-
search. We obtained dental radiographs from three sources. The first source
is the FBI’s Criminal Justice Information Service (CJIS) division, which is
interested in utilizing dental radiographs for identifying Missing and Uniden-
tified Persons (MUPs). The second source is the Washington State Police
Department, and the third source is Dr. Robert Howell, a professor in the
Department of Oral and Maxillofacial Pathology at West Virginia University.
The database includes 33 AM and PM matched subjects, with a total of 360
PM and 316 AM dental sequences, containing a total of 810 PM teeth and 892
AM teeth. Images of 4 of the subjects could not be used for following reasons:
i) tooth contours cannot be extracted due to poor image quality, ii) there are
variations in dental structure due to tooth development or orthodontic treat-
ment. So, we tested the retrieval for 29 subjects but included the AM images
of these 4 subjects as the imposter identities in the database. Figure 12.14
shows the Cumulative Match Characteristics (CMC) curve for retrieving the
29 subjects from the database consisting of 33 subjects. Using top-2 retrievals,
the retrieval accuracy is 27/29 (=93%). The accuracy reaches 100% when the
top-7 retrievals are used. Figure 12.15 shows PM and AM radiographs of a
successfully retrieved subject. Figure 12.16 shows radiographs of a subject
that was not successfully retrieved from the database in top-1 retrieval.
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Fig. 12.14. Cumulative matching characteristics (CMC) curve for subject retrieval.
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(a) (b)

Fig. 12.15. A successfully retrieved subject. (a) PM radiographs; (b) AM radio-
graphs

(a) (b)

Fig. 12.16. A subject not correctly retrieved from the database due to insufficient
number of teeth in the AM image. (a) PM radiographs; (b) AM radiograph.

12.6 Summary and Future Work

Dental radiographs contain valuable information to identify victims when
other biometric traits are not available. This chapter introduced the foren-
sic identification of humans based on dental radiographs. Challenges to auto-
matic processing and matching of dental information are discussed, and each
stage in the proposed automatic identification system was described. Experi-
mental results on a small database are presented. Future work should include
detection of dental abnormality, such as tumors and periodontal disease, and
incorporate this information in matching. Non-tooth features, such as the tra-
becular pattern of mandible bones and the shapes of the sinus and the canals
in the mandibular and maxilla bones, can also be used for improving match-
ing accuracy. A large database needs to be collected and made available to
researchers to evaluate the performance of automatic systems.

Acknowledgements

This work was supported by the National Science Foundation grant EIA-
0131079.



250 Hong Chen and Anil K. Jain

References

1. ABFO body identification guidelines. http://www.abfo.org/ID.htm.
2. Disaster victim identification. http://www.interpol.int/Public/

DisasterVictim/Guide.
3. Dental records beat DNA in tsunami IDs. New Scientists, 2516:12, Sept. 2005.

http://www.newscientist.com/article.ns?id=mg18725163.900.
4. Forensic identification of 9/11 victims ends, February 2005. http://abcnews.

go.com/WNT/story?id=525937\&page=1.
5. B. Adams. The diversity of adult dental patterns in the United States and the

implications for personal identification. Journal of Forensic Science, 48(3):497–
503, 2003.

6. B. Adams. Establishing personal identification based on specific patterns of
missing, filled and unrestored teeth. Journal of Forensic Science, 48(3):487–
496, 2003.

7. E. Arana and L. Marti-Bonmati. Digital dental radiology. http://www.priory.
com/den/dentrvg1.htm.

8. Hong Chen and Anil Jain. Tooth contour extraction for matching dental ra-
diographs. In Proc. ICPR (International Conference on Pattern Recognition),
volume III, pages 522–525, Cambridge, U.K., 2004.

9. Hong Chen and Anil Jain. Dental biometrics: Alignment and matching of den-
tal radiographs. IEEE Trans. on Pattern Analysis and Machine Intelligence,
27(8):1319–1326, 2005.

10. Hong Chen and Anil Jain. Dental biometrics: alignment and matching of dental
radiographs. In Proc. WACV (Workshop on Applications of Computer Vision),
pages 316–321, Breckenridge, Colorado, January 2005.

11. Hong Chen and Anil K. Jain. Active shape model-based tooth contour extrac-
tion. Technical Report MSU-CSE-07-17, Department of Computer Science and
Engineering, Michigan State University, 2007.

12. T. F. Cootes and C. J. Taylor. Active shape models - ‘smart snakes’. In Proc.
British Machine Vision Conf., pages 266–275, 1992.

13. Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification,
chapter 10, pages 164–174. Wiley Interscience, 2nd edition, 2001.

14. G. Fahmy, D. Nassar, E. Haj-Said, H. Chen, O. Nomir, J. Zhou, R. Howell,
H. H. Ammar, M. Abdel-Mottaleb, and A. K. Jain. Towards an automated
dental identification system (ADIS). In Proc. ICBA (International Conference
on Biometric Authentication), volume LNCS 3072, pages 789–796, Hong Kong,
July 2004.

15. M. Goldstein, Sweet D. J., and Wood R. E. A specimen positioning device
for dental radiographic identification. Journal of Forensic Science, 43:185–189,
1998.

16. S. P. Han. A globally convergent method for nonlinear programming. Journal
of Optimization Theory and Applications, 22:297, 1977.

17. Anil Jain and Hong Chen. Matching of dental X-ray images for human identi-
fication. Pattern Recognition, 37(7):1519–1532, 2004.

18. Anil Jain and Hong Chen. Registration of dental atlas to radiographs for human
identification. In Proc. of SPIE Conference on Biometric Technology for Human
Identification II, volume 5779, pages 292–298, Orlando, Florida, 2005.



12 Automatic Forensic Dental Identification 251

19. Anil Jain, Hong Chen, and Silviu Minut. Dental biometrics: human identi-
fication using dental radiographs. In Proc. 4th International Conference on
AVBPA (Audio- and Video-based Biometric Person Authentication), pages 429–
437, Guildford, U.K., 2003.

20. Mohammad H. Mahoor and Mohamed Abdel-Mottaleb. Classification and num-
bering of teeth in dental bitewing images. Pattern Recognition, 38(4):577–586,
2005.

21. J. McGarvey. WinID: Dental identification system, 2005. http://www.winid.

com.
22. J. Murray. Prevention of Oral Disease. Oxford: Oxford University Press, 1986.
23. Patrice O’Shaughnessy. More than half of victims IDd. New York Daily News,

11 Sep. 2002.
24. I. A. Pretty and D. Sweet. A look at forensic dentistry - part 1: The role of teeth

in the determination of human identity. British Dental Journal, 190(7):359–366,
April 2001.

25. James Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, Cambridge, UK, 2nd edition, 1999.

26. H. Silverstein. Comparison of antemortem and postmortem findings. In: Manual
of forensic odontology. Ontario: Manticore, 3rd edition edition, 1995.

27. Panarat Thepgumpanat. Thai tsunami forensic centre produces first IDs.
Reuters, http://www.alertnet.org/, 18 Jan. 2005.



13

Hand Vascular Pattern Technology

Alex Hwansoo Choi1 and Chung Nguyen Tran2

1 Department of Information Engineering, Myongji University, San 38-2 Namdong,
Yongin, Kyunggido, Korea
alexchoi@tech-sphere.com

2 Techsphere, Co. Ltd., 980-54, Bangbae, Seocho, Seoul, Korea
tnchung@tech-sphere.com

13.1 Introduction

The field of hand vascular pattern technology or vein pattern technology uses
the subcutaneous vascular network on the back of the hand to verify the iden-
tity of individuals in biometric applications. The principle of this technology is
based on the fact that the pattern of blood vessels is unique to each individual,
even between identical twins. Therefore, the pattern of the hand blood vessels
is a highly distinctive feature that can be used for verifying the identity of the
individual. Hand vascular pattern biometric technology is relatively new and
is in the process of being continuously refined and developed.

The hand vascular pattern was first considered as a potential technology
in the biometric security field in the early 1990s. In 1992, Shimizu brought
into focus the potential for use of the hand vascular technology in his pub-
lished paper on trans-body imaging [1]. In 1995, Cross and Smith introduced
thermographic imaging technology for acquiring the subcutaneous vascular
network on the back of the hand for biometric applications [2]. Since then, a
large number of research efforts have continuously contributed to hand vas-
cular pattern technology. It was not until 1997 that the first practical appli-
cation was developed. The introduction of BK-100 in 1997 by Alex Hwansoo
Choi, the co-founder of BK systems, was one of the first commercial products
based on hand vascular pattern technology. Using near-infrared light, images
of blood vessels on the back of the hand were acquired by a camera sensitive
to the near-infrared light range. The deoxidized hemoglobin in blood vessels
absorbs infrared rays and causes the blood vessels to appear as black patterns
in captured images. The vascular patterns were pre-processed and used for
verification. Several improved versions of this device were developed until the
end of 1998.

In 2000, Techsphere Co. Ltd., founded by members of BK Systems, contin-
ued to research and develop the technology. During this period, they published
their first research paper on the use of hand vascular pattern technology for
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personal identification [3], and other investigations were conducted to further
improve the technology [4-7]. Based on the results of these efforts, a new
commercial product under the name VP-II was released. In this new prod-
uct, Techsphere completely redesigned the BK Systems products and applied
many advanced digital processing technologies to make highly reliable and
cost-effective devices. These important design changes have made hand vas-
cular pattern technology popular in a variety of civilian applications such as
airport security, hospital, or finance and banking.

Since the introduction of hand vascular pattern technology, a number of
efforts have been made to develop other vascular pattern technologies utilizing
different parts of the hand such as finger veins and palm veins. In 2003, Fujitsu
announced its first commercial product using the vascular pattern technology
into the general market. Fujitsu Palm Vein products employ vascular patterns
on the palm as a means of extracting biometric features [8]. At the same time,
Hitachi developed another identification system that utilizes vascular pattern
in the fingers [9]. Its first commercial product, finger-vein identification, was
also first released into the market in 2003.

Although hand vascular pattern technology is still an ongoing area of bio-
metric research, a large number of units have been deployed in many appli-
cations such as access control, time and attendance, security, and hospitals.
The market for hand vascular pattern technology has been rapidly growing.
Compared to other biometric modalities this technology provides advantages
such as higher authentication accuracy and better usability. Moreover, since
vascular patterns lie under the skin, it is not affected by adverse sensing en-
vironments encountered in applications such as factories or construction sites
where other biometric technologies show limitations. Because of these desir-
able features, vascular pattern technology is being incorporated into various
authentication solutions for use in public places.

The remainder of this chapter is organized as follows: In Section 13.2,
the history of development of hand vascular pattern technology is presented.
Section 13.3 introduces some typical applications of hand vascular pattern
recognition systems. The detailed technology and technical problems are pre-
sented in Section 13.4. Section 13.5 presents the performance evaluation of
most of the available vascular pattern recognition systems. Our conclusions
and remarks are given in Section 13.6.

13.2 Development of Hand Vascular Pattern Technology

The history of development of hand vascular pattern technology goes back to
early 1997 when BK Systems announced its first commercial product, BK-100.
This product has been mainly sold in Korean and Japanese markets. In the
early stages, the product was limited to physical access control applications.
Fig. 13.1 shows a prototype of the BK-100 hand vascular pattern recognition
system. In 1998, the first patent on hand vascular pattern technology was
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assigned to BK systems. This invention described and claimed an apparatus
and method for identifying individuals through their subcutaneous vascular
patterns [10]. Based on this invention, new commercial versions, BK-200 and
BK-300, were released to the market. Unfortunately, the development of these
products was discontinued at the end of 1998.

Fig. 13.1. Prototype of the first hand vascular commercial product BK-100.

In 2000, Techsphere was founded by several former employees of BK Sys-
tems and made significant improvements to the BK-100 system [3-7] including
utilizing advanced digital imaging technologies and low cost digital circuits to
manufacture more reliable and cost-effective products. This resulted in the
commercial product VP-II in 2001, which was more compact and therefore
more suitable for certain applications. The VP-II included a new guidance
handle so that users could easily align their hand in a proper location under
the scanner and it also provided better user interface to make the system
highly configurable. Fig. 13.2 shows a prototype of the VP-II product. In or-
der to gain wider acceptance in various applications, VP-II was continuously
improved to adapt for large-scale identification applications. As the number of
users enrolled in the system grew to thousands, faster processing ability and
larger storage were required. New commercial versions, VP-II S and VP-II M,
were released to satisfy these requirements.
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Fig. 13.2. VP-II Stand alone system for personal identification.

In spite of many successful deployments, the system cost was still too
high to expand into a broader segment of the market. A new design based
on an application-specific processor was developed for efficient realization of
hardware [4]. This reduced the hardware and firmware complexity. Although
many of the VP-II units were installed throughout the world, these were still
stand-alone units that were only used for a single location. In the ubiquitous
network society, the requirement that users can be easily identified anytime
and anywhere needs to be met. The introduction of the integrated solution
using a new Network Control Unit (NCU) made the product capable of being
used in a TCP/IP network over the Internet. The VP-II NCU allows all users
to access all the systems in the network by registering once since it transmits
the vascular data template of enrolled users to all connected devices in real
time. Fig. 13.3 shows an example of VP-II used in TCP/IP network.

As biometric technology matures, there will be an increasing interaction
among different technologies and applications. Hand vascular pattern technol-
ogy should become an open solution through which other systems or applica-
tions can easily access resources or information. In addition, it should allow
other security vendors with their own proprietary solutions to integrate with
it in a standard protocol. In order to satisfy this requirement, new protocols
have been developed to allow other systems access to all the functionalities



13 Hand Vascular Pattern Technology 257

Fig. 13.3. Configuration of VP-II used in TCP/IP network.

of VP-II. It means that hand vascular pattern technology can be used in
large-scale security solutions such as database server solutions or smart card
solutions. To make the product more adaptive to other products from different
vendors, hand vascular pattern technology is being adapted to national and
international standards. In January, 2007, hand vascular pattern technology
was finally adopted by the International Standard Organization (ISO) [11].

13.3 General Applications

Typical application of vascular pattern technology can be classified as follows:

• Physical access control and Time attendance – Physical access con-
trol and time attendance may be the most widely used application of hand
vascular pattern technology. Utilizing hand vascular pattern technology,
solutions have been developed to help manage employee attendance and
overtime work at large organizations in an effective and efficient manner.
The time and attendance solution employing hand vascular technology has
enabled many local governments to enhance work productivity through
automation, establish a sound attendance pattern through personal iden-
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tification, and boost morale through transparent and precise budget allo-
cation.

 

Fig. 13.4. General applications of hand vascular pattern technology; (a) Door access
control, (b) Banking solutions, (c) Transportation (airport security), (d) Hospitals,
(e) Construction sites, and (f) Schools

• Finance and Banking – With the rapid growth of ATM services and
credit cards, fraudulent withdrawal of money by using fake or stolen
bankcards has become a serious problem. Hand vascular pattern technol-
ogy can be integrated into banking solutions by two different methods. In
the first method, vascular patterns of customers are stored in the bank’s
database server. The authentication is carried out by comparing a cus-
tomer’s hand vascular pattern with their enrolled pattern in the database
server. In the second method, hand vascular patterns of customers are
stored in biometric ID cards which are kept by customers. During au-
thentication, the customer’s hand vascular pattern is compared with the
pattern stored in the card for verification. Based on various requirements
such as timely response or level of security, banks will decide the appro-
priate method for their solutions.

• Travel and Transportation – Since the 9/11 terrorist attack, national
security problems are of great concern in almost every country. Many se-
curity fences have been established in order to avoid the infiltration of
terrorists. Access to many sensitive areas such as airports, train stations,
and other public places are being closely monitored. Hand vascular pattern
technology has been chosen to provide a secure physical access control in
many of these areas. Due to its superior authentication performance, ease
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of use, and user satisfaction, the hand vascular system was adopted by
Incheon International Airport, the largest airport in Korea, and by several
major international airports in Japan for physical access control.

• Hospitals – Many areas of a hospital require tight security, including
medicine cabinets and storage rooms, operating rooms, and data centers
where patient records are managed and stored. Some sensitive data such
as those related to research studies on dangerous virus may be used with
dire consequences if it falls into terrorist hands. Consequently, biometric
security methods should be used to protect such sensitive data. Many
hospitals have installed hand vascular systems as means for physical access
control.

• Construction Sites – Unlike other biometric traits which can be ad-
versely affected by external factors such as dirt or oil, the hand vascular
pattern is robust to these sources of noise because it lies under the skin
of human body. Therefore, the hand vascular pattern technology is appro-
priate for use in environments such as factories or construction sites.

• Schools – The commonly used RF ID cards do not offer high levels of
security because people tend to lose them or fail to return their cards. As
a result, many universities have adopted hand vascular pattern recognition
systems to enhance security for valuable equipment in research laboratories
and private belongings in dormitories. It is not only more cost-effective in
the long term but also provides an enhanced level of security through
individual identification and managerial convenience.

In recent years, many hand vascular pattern recognition systems have been
deployed in civilian applications in hospitals, schools, banks, or airports. How-
ever, the widest use of hand vascular pattern recognition is for security man-
agement in highly secure places like airports. The typical deployment of hand
vascular pattern recognition systems can be found at Incheon International
Airport, Korea.

Incheon International Airport opened for business in early 2001 and be-
came the largest international airport for international civilian air transporta-
tion and cargo traffic in Korea. After September 11 of 2001 when the terrorist
hijackings occurred, the airport’s security system was upgraded to advanced
and state-of-the-art security facilities in response to terrorist threats and var-
ious epidemics in southern Asia.

The primary goal in selecting hand vascular pattern recognition systems
was to establish a high security access management system and ensure a robust
and stringent employee identification process throughout their IT system.

The configuration of hand vascular pattern recognition systems at Incheon
Airport is divided into 3 major areas: enrollment center, server room and entry
gates between air and land sides. The control tower is also access controlled
by vascular biometrics. Fig. 13.5 shows the general configuration for security
management system at Incheon Airport using hand vascular pattern technol-
ogy.
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Fig. 13.5. General configuration of security management system at Incheon Inter-
national Airport using hand vascular technology. M/C is Optical Media Converter.

Each VP-II unit is integrated with HID proximity card readers to enhance
the security measure and all VP-II units are connected via TCP/IP network
to be available for use for all gates and offices in the airport.

The enrollment process is executed in the enrollment center which is con-
nected with a VP-II database server and managed by the IT department staff.
The main IT server room is used for storing the VP-II database. The VP-II
scanners at this airport now are being used by more than 30,000 users in-
cluding all staff members of Incheon International Airport and contractors.
“Using the VP-II system for accessing office rooms and presenting attendance
is very simple and easy. You never need to worry about remembering your PIN
number or bringing the ID card with you”, said staff members at Incheon Air-
port. According to the security manager of Incheon Airport, the adoption of
hand vascular pattern recognition systems provides a highly reliable method
for controlling the access of their staff and an efficient method for managing
their employee attendance.

13.4 Technology

Hand vascular patterns are the representation of blood vessel networks inside
the back of hand. The hand vascular pattern recognition system operates by
comparing the hand vascular pattern of a user being authenticated against a
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pre-registered pattern already stored in the database. Fig. 13.6 shows a typical
operation of the hand vascular pattern recognition system.

Fig. 13.6. Operation of a typical vascular biometric identification system.

The system uses an infrared (IR) camera that can acquire the pattern of
hand blood vessels from the back of the hand. The near-infrared rays of the
camera illuminate the back of the hand. The deoxidized hemoglobin in blood
vessels absorbs the infrared rays and causes the vascular patterns to appear as
black patterns in resulting images. The vascular patterns are then extracted
by various digital signal processing algorithms. The extracted vascular pattern
is then compared against pre-registered patterns in smart storage devices or
database servers to authenticate the individual. Major steps in a typical hand
vascular pattern recognition system are image acquisition, feature extraction,
and pattern matching.

13.4.1 Image Acquisition

Since the hand vascular pattern lies under the skin, it can not be seen by
the human eye. Therefore, we can not use visible light, which occupies a very
narrow band (approx. 400 - 700nm wavelength), for photographing. Hand
vascular patterns can only be captured under the near-infrared light (approx.
800 - 1000nm wavelength), which can penetrate into the tissues. Blood vessels
absorb more infrared radiation than the surrounding tissue [12], which causes
the blood vessels to appear as black patterns in the resulting image captured
by a charge-couple device (CCD) camera. Fig. 13.7 shows an example of hand
images obtained by visible light and near-infrared light.
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Fig. 13.7. The hand image obtained by visible light (left) and infrared light (right).
Images are from [13].

To capture the image of blood vessels under near-infrared light, the scan-
ner uses an LED array to emit the light and illuminate the hand. A CCD
camera sensitive to near-infrared light is used to photograph the image. A
near-infrared filter attached in front of the CCD camera is used to block all
undesired visible light emitted by external sources. The image of blood vessels
can be acquired by either reflection or transmission.

• Transmission method: The hand is illuminated by an LED array and the
CCD camera captures the light that passes through the hand. To use this
method, the LED array is above the hand and the CCD camera is placed
on the opposite side of the LED array with respect to the hand. Fig. 13.8
shows the configuration for the LED array and the CCD camera.

• Reflection method: Here the hand is illuminated by an LED array and the
CCD camera captures the light that is reflected back from the hand. So,
the illumination LED array and the CCD camera are positioned in the
same location. Fig. 13.9 shows the configuration for the illumination LED
array and the CCD camera.

The reflection method is preferred since the transmission method is often
sensitive to changes in the hand’s light transmittance, which is easily affected
by temperature or weather. If the hand’s light transmittance is relatively high,
the blood vessels are not very clear in captured images. In contrast, the light
transmittance does not significantly affect the level or contrast of the reflected
light. Another reason why the reflection method is preferred is due to its easy
configuration. Since the illumination LED array and the CCD camera can be
located in the same place, the system is easy to embed into small devices.

13.4.2 Feature Extraction

The hand vascular images captured from the acquisition devices contain not
only the vascular patterns but also undesired noise and irregular effects such
as shadow of the hand and hairs on the skin surface. The captured images
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Fig. 13.8. Configuration of transmission-based acquisition method.

Fig. 13.9. Configuration of reflection-based acquisition method.

should be pre-processed before being used for verification. The aim of a fea-
ture extraction algorithm is to accurately extract the vascular patterns from
raw images. A typical feature extraction algorithm commonly consists of var-
ious image processing steps to remove the noise and irregular effects, enhance
the clarity of vascular patterns, and separate the vascular patterns from the
background. The final vascular patterns obtained by the feature extraction
algorithm are represented as binary images. Fig. 13.10 shows the procedure of
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a typical feature extraction algorithm for extracting hand vascular patterns
from raw images.

Fig. 13.10. The flow chart of a typical feature extraction algorithm.

The noise removal algorithm is based on a low-pass filter. To improve
the clarity of vascular patterns in captured images, an enhancement algo-
rithm is commonly used. A number of algorithms based on filtering techniques
have been proposed for enhancing the clarity of vascular patterns in captured
images [3,5]. However, these algorithms often enhance the vascular patterns
without considering the directional information that is often present. As a
result, there could be some loss of connectivity of vascular patterns which
lead to the degradation of verification performance. Consequently, one should
use an appropriate filter that is adaptive to vascular pattern orientations to
efficiently remove undesired noise and preserve the true vascular patterns.
To meet this requirement, Im et al. [6] proposed a direction-based vascular
pattern extraction algorithm.

The algorithm proposed in [6] utilized two different preprocessing filters:
Row Vascular Pattern Extraction Filter (RVPEF) for effective extraction of
the horizontal vascular patterns and Column Vascular Pattern Extraction
Filter (CVPEF) for effective extraction of the vertical vascular patterns. The
final vascular patterns are obtained by combining the outputs from both the
filters. Fig. 13.11 shows the flow chart of the direction-based vascular pat-
tern extraction algorithm. Fig. 13.12 shows an example of the final patterns
obtained by the direction based extraction algorithm [6]. Fig 13.12(a) is the
input image, while Figs. 13.12(b) and 13.12(c) show the loss of connectivity
of vascular patterns due to the lack of directional information of vascular pat-
terns. Figs. 13.12(d) and 13.12(e) show the results of the enhancement filters
along horizontal and vertical directions. Fig. 13.12(f) shows the final vascular
patterns obtained by the direction-based extraction algorithm. This algorithm
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can efficiently preserve the true vascular patterns and significantly reduce the
loss of connectivity.

 

Fig. 13.11. Flow chart of the direction-based vascular pattern extraction algorithm.
Image is from [6].

13.4.3 Pattern Matching

In the matching step, the extracted vascular pattern from the feature extrac-
tion step is compared against the pre-registered pattern in the database to
obtain a matching score. The matching score is then used to compare with the
pre-defined system threshold value to decide whether the user can be authen-
ticated or not. Typical methods that are commonly used for pattern matching
are structural matching [14] and template matching [15].

Structural matching is based on comparing locations of feature points such
as line endings and bifurcations extracted from two patterns being compared
to obtain the matching score. This method has been used widely in finger-
print matching. However, unlike the fingerprint patterns, the hand vascular
patterns have fewer minutiae-like feature points. Therefore, it is not appro-
priate to apply only this method for good vascular pattern matching results.
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Fig. 13.12. Example of hand vascular pattern obtained by direction-based vascular
pattern extraction algorithm. Image is from [6].

Template matching is the most popular and widely used method for matching
the vascular patterns. It is based on the comparison of pixel values of two vas-
cular pattern images and has been commonly used for matching line-shaped
patterns. Moreover, use of template matching does not require any additional
steps to calculate the feature points such as line endings and bifurcations and
is robust for vascular pattern matching.
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13.5 Performance Evaluation

Hand vascular pattern technology and other vein pattern technologies are rela-
tively new and unlike other biometric modalities, they have not been formally
and thoroughly tested by independent third party organizations. The test-
ing results have been typically reported individually by vendors using their
own testing databases. Therefore, the reported performance of hand vascular
pattern technology and other vein pattern technologies is often quite varied
among different vendors. Moreover, there is no standard evaluation method
or public benchmark database for testing, which makes it difficult to compare
hand vascular pattern technologies across systems from different vendors.

Although various vascular pattern technology developers use different
methods and databases for evaluating their systems, the performance of any
hand vascular recognition system is usually reported as follows:

• At specific operating points: show the genuine error rate at a fixed impostor
error rates.

• Equal Error Rate (EER): is the error rate at which the False Acceptance
Rate (FAR) equals to the False Rejection Rate (FRR).

• Detection Error Trade-off (DET) curve: shows performance across a range
of decision thresholds.

The DET curves are seen as the most useful method for reporting accuracy
results in which the operating point of the system can be easily determined
to satisfy the application requirements. A number of studies have reported
their results based on their proprietary databases [4,5,9,12,16-21]. Some re-
sults in these publications report EER as low as 0% [12,16,21]. However, the
databases utilized in many of these tests were often collected in laboratory
environment which does not reflect the real world conditions where the sys-
tems are deployed. Moreover, the number of participants in these reports was
not large enough to obtain accurate results with sufficient confidence.

To obtain more comprehensive results, many studies [4,5,9,13,17,19] have
tried to increase the number of participants in their tests. However, this is a
time-consuming and expensive process. Therefore, increasing the number of
testing participants is often associated with increasing the number of trials
for each participant to reduce the cost and obtain more realistic results. Most
of the databases in these reports were collected from external environments.
The range of testing participants also varied from young people to old people,
from men to women. The testing environment was also established outdoors
to reflect the near-real world operation. The testing results reported in terms
of the EER from these publications are shown on Table 13.1.

To assess the verification speed of the hand vascular pattern recognition
system and to evaluate whether the system can be used in reality, the response
time of the system is usually measured. In some places such as airports or
schools, the system has to be fast enough to be utilized by large number of
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Publication Number of users Images per user EER

[9] 687 10 0.145%

[17] - 20 2.300%

[4,5] 490 10 0.010%

[19] 400 8 0.128%

[13] 500 10 0.695%

Table 13.1. Performance of selected vascular/vein identification systems.

users. In some serious place such as a hospital, if the system operates slowly,
it could lead to many dangerous problems in some emergency cases.

The response time is the time for the system to acquire the vascular pat-
tern, pre-process and compare it with the pre-registered pattern stored in
the database for verification. Table 13.2 shows the verification speed of some
selected commercial biometric systems.

Biometric System Company Verification Time [sec]

Hand Vascular Pattern Techsphere 0.133

Finger Vein Pattern Hitachi 0.5

Fingerprint Identix 0.5

Fingerprint Biometric Identification 1

Hand Shape RSI 1

Finger Shape Biomet Partners 1

Table 13.2. Verification speed of typical biometric identification systems.

13.6 Conclusions

Hand vascular pattern technology is relatively new, but it has already gained
considerable attention in the biometric community. This is supported by the
fact that a large number of research attempts have been conducted to improve
the technology in recent years.

Since the release of the first commercial product in 1997, thousands of
units have been installed in various applications including access control and
time and attendance, banking solutions, transportation, hospital, construction
sites, and schools. In addition, because the technology uses features inside the
human body, it is less susceptible to surface defects (as in fingerprints) and
ambient illumination (as in face). The rapidly increasing number of installed
units in various applications within a short time implies that hand vascu-
lar pattern technology will be a promising technology in the security field.
Although the hand vascular pattern has provided high accuracy and good
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usability, its performance may degrade under some adverse conditions such as
cold weather, undesired noise or external sources.

Future research should attempt to deal with the following issues:

• Acquisition devices: the acquisition device should be improved to make it
possible to work in various environments with high tolerance from irreg-
ular effects such as illumination, extreme temperature, and sunlight. The
acquisition devices should also be more compact to make it suitable to
install in many different places.

• Feature extraction algorithm: a more efficient and robust feature extraction
algorithm should be developed to deal with undesired noise, shadow, hair,
and irregular effects caused by external sources.

• Matching algorithm: the matching algorithm should be improved to reduce
the matching score for unauthorized users and increase the matching score
for authorized users. Moreover, it should also be capable of reducing the
effects from the translations, orientation or non-rigid deformations of the
hand.
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14.1 Introduction

Most biometric systems that are presently in use, typically use a single bio-
metric trait to establish identity (i.e., they are unibiometric systems). With
the proliferation of biometric-based solutions in civilian and law enforcement
applications, it is important that the vulnerabilities and limitations of these
systems are clearly understood. Some of the challenges commonly encountered
by biometric systems are listed below.

1. Noise in sensed data: The biometric data being presented to the sys-
tem may be contaminated by noise due to imperfect acquisition conditions or
subtle variations in the biometric itself. For example, a scar can change a sub-
ject’s fingerprint while the common cold can alter the voice characteristics of a
speaker. Similarly, unfavorable illumination conditions may significantly affect
the face and iris images acquired from an individual. Noisy data can result in
an individual being incorrectly labeled as an impostor thereby increasing the
False Reject Rate (FRR) of the system.

2. Non-universality: The biometric system may not be able to acquire
meaningful biometric data from a subset of individuals resulting in a failure-
to-enroll (FTE) error. For example, a fingerprint system may fail to image the
friction ridge structure of some individuals due to the poor quality of their
fingerprints. Similarly, an iris recognition system may be unable to obtain the
iris information of a subject with long eyelashes, drooping eyelids or certain
pathological conditions of the eye. Exception processing will be necessary in
order to accommodate such users into the authentication system.

3. Upper bound on identification accuracy: The matching performance of
a unibiometric system cannot be continuously improved by tuning the fea-
ture extraction and matching modules. There is an implicit upper bound on
the number of distinguishable patterns (i.e., the number of distinct biomet-
ric feature sets) that can be represented using a template. The capacity of
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a template is constrained by the variations observed in the feature set of
each subject (i.e., intra-class variations) and the variations between feature
sets of different subjects (i.e., inter-class variations). Table 1.2 lists the error
rates associated with four biometric modalities - fingerprints, face, voice, iris
- as suggested by recent public tests. These statistics suggest that there is a
tremendous scope for performance improvement especially in the context of
large-scale authentication systems.

4. Spoof attacks: Behavioral traits such as voice [15] and signature [16] are
vulnerable to spoof attacks by an impostor attempting to mimic the traits
corresponding to legitimately enrolled subjects. Physical traits such as fin-
gerprints can also be spoofed by inscribing ridge-like structures on synthetic
material such as gelatine and play-doh [38, 47]. Targeted spoof attacks can
undermine the security afforded by the biometric system and, consequently,
mitigate its benefits [48].

Some of the limitations of a unibiometric system can be addressed by de-
signing a system that consolidates multiple sources of biometric information.
This can be accomplished by fusing, for example, multiple traits of an individ-
ual, or multiple feature extraction and matching algorithms operating on the
same biometric. Such systems, known as multibiometric systems [53, 25, 19],
can improve the matching accuracy of a biometric system while increasing
population coverage and deterring spoof attacks. In this chapter, the various
sources of biometric information that can be fused as well as the different
levels of fusion that are possible are discussed.

14.2 Taxonomy of Multibiometric Systems

In the realm of biometrics, the consolidation of evidence presented by multiple
biometric sources is an effective way of enhancing the recognition accuracy of
an authentication system. For example, the Integrated Automated Fingerprint
Identification System (IAFIS) maintained by the FBI integrates the informa-
tion presented by multiple fingers to determine a match in the master file.
Some of the earliest multimodal biometric systems reported in the literature
combined the face (image/video) and voice (audio) traits of individuals [9, 4].

A multibiometric system relies on the evidence presented by multiple
sources of biometric information. Based on the nature of these sources, a
multibiometric system can be classified into one of the following six categories
[53]: multi-sensor, multi-algorithm, multi-instance, multi-sample, multimodal
and hybrid.

1. Multi-sensor systems: Multi-sensor systems employ multiple sensors to
capture a single biometric trait of an individual. For example, a face recogni-
tion system may deploy multiple 2D cameras to acquire the face image of a
subject [35]; an infrared sensor may be used in conjunction with a visible-light
sensor to acquire the subsurface information of a person’s face [29, 7, 57]; a
multispectral camera may be used to acquire images of the iris, face or finger
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[54, 43]; or an optical as well as a capacitive sensor may be used to image the
fingerprint of a subject [37]. The use of multiple sensors, in some instances,
can result in the acquisition of complementary information that can enhance
the recognition ability of the system. For example, based on the nature of
illumination due to ambient lighting, the infrared and visible-light images of a
person’s face can present different levels of information resulting in enhanced
matching accuracy. Similarly, the performance of a 2D face matching system
can be improved by utilizing the shape information presented by 3D range
images.

2. Multi-algorithm systems: In some cases, invoking multiple feature ex-
traction and/or matching algorithms on the same biometric data can result
in improved matching performance. Multi-algorithm systems consolidate the
output of multiple feature extraction algorithms, or that of multiple match-
ers operating on the same feature set. These systems do not necessitate the
deployment of new sensors and, hence, are cost-effective compared to other
types of multibiometric systems. But on the other hand, the introduction of
new feature extraction and matching modules can increase the computational
complexity of these systems. Ross et al. [52] describe a fingerprint recogni-
tion system that utilizes minutiae as well as texture information to represent
and match fingerprint images. The inclusion of the texture-based algorithm
introduces additional processing time associated with the application of Ga-
bor filters on the input fingerprint image. However, the performance of the
hybrid matcher is shown to exceed that of the individual matchers. Lu et
al. [36] discuss a face recognition system that combines three different fea-
ture extraction schemes (Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Linear Discriminant Analysis (LDA)). The
authors postulate that the use of different feature sets makes the system ro-
bust to a variety of intra-class variations normally associated with the face
biometric. Experimental results indicate that combining multiple face classi-
fiers can enhance the identification rate of the biometric system.

3. Multi-instance systems: These systems use multiple instances of the
same body trait and have also been referred to as multi-unit systems in the
literature. For example, the left and right index fingers, or the left and right
irises of an individual, may be used to verify an individual’s identity [45, 27].
The US-VISIT border security program presently uses the left- and right-
index fingers of visitors to validate their travel documents at the port of entry.
FBI’s IAFIS combines the evidence of all ten fingers to determine a matching
identity in the database. These systems can be cost-effective if a single sensor
is used to acquire the multi-unit data in a sequential fashion (e.g., US-VISIT).
However, in some instances, it may be desirable to obtain the multi-unit data
simultaneously (e.g., IAFIS) thereby demanding the design of an effective (and
possibly more expensive) acquisition device.

4. Multi-sample systems: A single sensor may be used to acquire multi-
ple samples of the same biometric trait in order to account for the variations
that can occur in the trait, or to obtain a more complete representation of
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the underlying trait. A face system, for example, may capture (and store) the
frontal profile of a person’s face along with the left and right profiles in order
to account for variations in the facial pose. Similarly, a fingerprint system
equipped with a small size sensor may acquire multiple dab prints of an indi-
vidual’s finger in order to obtain images of various regions of the fingerprint.
A mosaicing scheme may then be used to stitch the multiple impressions and
create a composite image. One of the key issues in a multi-sample system is
determining the number of samples that have to be acquired from an individ-
ual. It is important that the procured samples represent the variability as well
as the typicality of the individual’s biometric data. To this end, the desired
relationship between the samples has to be established before-hand in order to
optimize the benefits of the integration strategy. For example, a face recogni-
tion system utilizing both the frontal- and side-profile images of an individual
may stipulate that the side-profile image should be a three-quarter view of the
face [17, 42]. Alternately, given a set of biometric samples, the system should
be able to automatically select the “optimal” subset that would best repre-
sent the individual’s variability. Uludag et al. [58] discuss two such schemes in
the context of fingerprint recognition. The first method, called DEND, employs
a clustering strategy to choose a template set that best represents the intra-
class variations, while the second method, called MDIST, selects templates that
exhibit maximum similarity with the rest of the impressions.

5. Multimodal systems: Multimodal systems establish identity based on
the evidence of multiple biometric traits. For example, some of the earliest
multimodal biometric systems utilized face and voice features to establish the
identity of an individual [4, 10, 3]. Physically uncorrelated traits (e.g., finger-
print and iris) are expected to result in better improvement in performance
than correlated traits (e.g., voice and lip movement). The cost of deploying
these systems is substantially more due to the requirement of new sensors
and, consequently, the development of appropriate user interfaces. The iden-
tification accuracy can be significantly improved by utilizing an increasing
number of traits although the curse-of-dimensionality phenomenon would im-
pose a bound on this number. The curse-of-dimensionality limits the number
of attributes (or features) used in a pattern classification system when only a
small number of training samples is available [14]. The number of traits used
in a specific application will also be restricted by practical considerations such
as the cost of deployment, enrollment time, throughput time, expected error
rate, user habituation issues, etc.

6. Hybrid systems: Chang et al. [5] use the term hybrid to describe sys-
tems that integrate a subset of the five scenarios discussed above. For example,
Brunelli et al. [4] discuss an arrangement in which two speaker recognition al-
gorithms are combined with three face recognition algorithms at the match
score and rank levels via a HyperBF network. Thus, the system is multi-
algorithmic as well as multimodal in its design. Similarly, the NIST BSSR1
dataset [40] has match scores pertaining to two different face matchers op-
erating on the frontal face image of an individual (multi-algorithm), and a
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fingerprint matcher operating on the left- and right-index fingers of the same
individual (multi-instance).

Another category of multibiometric systems combine primary biometric
identifiers (such as face and fingerprint) with soft biometric attributes (such as
gender, height, weight, eye color, etc.). Soft biometric traits cannot be used to
distinguish individuals reliably since the same attribute is likely to be shared
by several different people in the target population. However, when used in
conjunction with primary biometric traits, the performance of the authen-
tication system can be significantly enhanced [23]. Soft biometric attributes
also help in filtering (or indexing) large biometric databases by limiting the
number of entries to be searched in the database. For example, if it is deter-
mined (automatically or manually) that the subject is an “Asian Male”, then
the system can constrain its search to only those identities in the database
labeled with these attributes. Alternately, soft biometric traits can be used in
surveillance applications to decide if at all primary biometric information has
to be acquired from a certain individual. Automated techniques to estimate
soft biometric characteristics is an ongoing area of research and is likely to
benefit law enforcement and border control biometric applications.

14.3 Levels of fusion

Based on the type of information available in a certain module, different levels
of fusion can be defined. Sanderson and Paliwal [55] categorize the various lev-
els of fusion into two broad categories: pre-classification or fusion before match-
ing and post-classification or fusion after matching (see Figure 14.1). Such a
categorization is necessary since the amount of information available for fu-
sion reduces drastically once the matcher has been invoked. Pre-classification
fusion schemes typically require the development of new matching techniques
(since the matchers used by the individual sources may no longer be rel-
evant) thereby introducing additional challenges. Pre-classification schemes
include fusion at the sensor (or raw data) and the feature levels while post-
classification schemes include fusion at the match score, rank and decision
levels. A brief description of each of these fusion levels is presented in this
section.

14.3.1 Sensor-level fusion

The raw biometric data (e.g., a face image) acquired from an individual rep-
resents the richest source of information although it is expected to be con-
taminated by noise (e.g., non-uniform illumination, background clutter, etc.).
Sensor-level fusion refers to the consolidation of (a) raw data obtained using
multiple sensors or (b) multiple snapshots of a biometric using a single sensor.
Mosaicing multiple impressions of the same finger is a good example of fusion
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Biometric Fusion
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Fig. 14.1. Fusion can be accomplished at various levels in a biometric system. Most
multibiometric systems fuse information at the match score level or the decision level.
More recently researchers have begun to fuse information at the sensor and feature
levels. In biometric systems operating in the identification mode, fusion can be done
at the rank level.

at this level. Jain and Ross [24] discuss a mosaicing scheme that creates a com-
posite fingerprint image from the evidence presented by multiple dab prints.
The algorithm uses the minutiae points to first approximately register the
two images using a simple affine transformation. The Iterative Closest Point
(ICP) algorithm is then used to register the ridge information corresponding
to the two images after applying a low-pass filter to the individual images and
normalizing their histograms. The normalization ensures that the pixel inten-
sities of the individual dab prints are comparable. Blending is accomplished
by merely concatenating the two registered images. The performance using
the mosaiced image templates was shown to exceed that of the individual dab
print templates.

14.3.2 Feature-level fusion

In feature-level fusion, the feature sets originating from multiple biometric
algorithms are consolidated into a single feature set by the application of ap-
propriate feature normalization, transformation and reduction schemes. The
primary benefit of feature-level fusion is the detection of correlated feature
values generated by different biometric algorithms and, in the process, identi-
fying a salient set of features that can improve recognition accuracy. Eliciting
this feature set typically requires the use of dimensionality reduction meth-
ods [22, 46] and, therefore, feature-level fusion assumes the availability of a
large number of training data. Also, the feature sets being fused are typi-
cally expected to reside in commensurate vector space in order to permit the
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application of a suitable matching technique upon consolidating the feature
sets.

Feature-level fusion is challenging for the following reasons:

1. The relationship between the feature spaces of different biometric systems
may not be known.

2. The feature sets of multiple modalities may be incompatible. For example,
the minutiae set of fingerprints and the eigen-coefficients of face are irrec-
oncilable. One is a variable length feature set (i.e., it varies across images)
whose individual values parameterize a minutia point; the other is a fixed
length feature set (i.e., all images are represented by a fixed number of
eigen-coefficients) whose individual values are scalar entities.

3. If the two feature sets are fixed length feature vectors, then one could
consider concatenating them to generate a new feature set. However, con-
catenating two feature vectors might lead to the curse-of-dimensionality
problem ([21]) where increasing the number of features might actually de-
grade the system performance especially in the presence of small number
of training samples. Although the curse-of-dimensionality is a well known
problem in pattern recognition, it is particularly pronounced in biometric
applications because of the time, effort and cost required to collect large
amounts of biometric (training) data.

4. Most commercial biometric systems do not provide access to the feature
sets used in their products. Hence, very few biometric researchers have
focused on integration at the feature level and most of them generally
prefer fusion schemes that use match scores or decision labels.

If the length of each of the two feature vectors to be consolidated is fixed
across all users, then a feature concatenation scheme followed by a dimen-
sionality reduction procedure may be adopted. Let X = {x1, x2, . . . , xm} and
Y = {y1, y2, . . . , yn} denote two feature vectors (X ∈ Rm and Y ∈ Rn) rep-
resenting the information extracted from two different biometric sources. The
objective is to fuse these two feature sets in order to yield a new feature vector,
Z, that would better represent an individual. The vector Z of dimensionality
k, k < (m+n), can be generated by first concatenating vectors X and Y, and
then performing feature selection or feature transformation on the resultant
feature vector in order to reduce its dimensionality. The key stages of such an
approach are described below.

Feature Normalization

The individual feature values of vectors X = {x1, x2, . . . , xm} and Y =
{y1, y2, . . . ,
yn} may exhibit significant differences in their range as well as form (i.e.,
distribution). Concatenating such diverse feature values will not be appro-
priate in many cases. For example, if the xi’s are in the range [0, 100] while
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the yi’s are in the range [0, 1], then the distance between two concatenated
feature vectors will be more sensitive to the xi’s than the yi’s. The goal of
feature normalization is to modify the location (mean) and scale (variance)
of the features values via a transformation function in order to map them
into a common domain. Adopting an appropriate normalization scheme also
helps address the problem of outliers in feature values. While a variety of nor-
malization schemes can be used, two simple schemes are discussed here: the
min-max and median normalization schemes.

Let x and x′ denote a feature value before and after normalization, respec-
tively. The min-max technique computes x′ as

x′ =
x−min(Fx)

max(Fx)−min(Fx)
, (14.1)

where Fx is the function which generates x, and min(Fx) and max(Fx) repre-
sent the minimum and maximum of all possible x values that will be observed,
respectively. The min-max technique is effective when the minimum and the
maximum values of the component feature values are known beforehand. In
cases where such information is not available, an estimate of these parameters
has to be obtained from the available set of training data. The estimate may
be affected by the presence of outliers in the training data and this makes min-
max normalization sensitive to outliers. The median normalization scheme, on
the other hand, is relatively robust to the presence of noise in the training
data. In this case, x′ is computed as

x′ =
x−median(Fx)

median(| (x−median(Fx)) |) . (14.2)

The denominator is known as the Median Absolute Deviation (MAD) and
is an estimate of the scale parameter of the feature value. Although, this
normalization scheme is relatively insensitive to outliers, it has a low efficiency
compared to the mean and standard deviation estimators. Normalizing the
feature values via any of these techniques results in modified feature vectors
X′ = {x′1, x′2, . . . x′m} and Y′ = {y′1, y′2, . . . y′n}. Feature normalization may not
be necessary in cases where the feature values pertaining to multiple sources
are already comparable.

Feature Selection or Transformation

Concatenating the two feature vectors, X′ and Y′, results in a new fea-
ture vector, Z′ = {x′1, x′2, . . . x′m , y′1, y

′
2, . . . y

′
n}, Z′ ∈ Rm+n. The curse-of-

dimensionality dictates that the new vector of dimensionality (m + n) need
not necessarily result in an improved matching performance compared to that
obtained by X′ and Y′ alone. The feature selection process is a dimension-
ality reduction scheme that entails choosing a minimal feature set of size k,
k < (m + n), such that a criterion (objective) function applied to the train-
ing set of feature vectors is optimized. There are several feature selection
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algorithms in the literature, and any one of these could be used to reduce
the dimensionality of the feature set Z′. Examples include sequential forward
selection (SFS), sequential backward selection (SBS), sequential forward float-
ing search (SFFS), sequential backward floating search (SBFS), “plus l take
away r” and branch-and-bound search (see [46] and [26] for details). Feature
selection techniques rely on an appropriately formulated criterion function
to elicit the optimal subset of features from a larger feature set. In the case
of a biometric system, this criterion function could be the Equal Error Rate
(EER); the d-prime measure; the area of overlap between genuine and impos-
tor training scores; the average GAR at pre-determined FAR values in the
ROC/DET curves corresponding to the training set; or the area under the
ROC curve (AUC).

Dimensionality reduction may also be accomplished using feature trans-
formation methods where the vector Z′ is subjected to a linear or a non-linear
mapping that projects it to a lower dimensional subspace. Examples of such
transformations include the use of principal component analysis (PCA), in-
dependent component analysis (ICA), multidimensional scaling (MDS), Ko-
honen Maps and neural networks ([22]). The application of a feature se-
lection or feature transformation procedure results in a new feature vector
Z = {z1, z2, . . . zk} which can now be used to represent the identity of an
individual.

Ross and Govindarajan [50] apply feature-level fusion to three different
scenarios: (a) multi-algorithm, where two different face recognition algorithms
based on Principal Component Analysis (PCA) and Linear Discriminant Anal-
ysis (LDA) are combined; (b) multi-sensor, where three different color chan-
nels of a face image are independently subjected to LDA and then combined;
and (c) multimodal, where the face and hand geometry feature vectors are
combined.

14.3.3 Score-level fusion

A match score represents the result of comparing two feature sets extracted
using the same feature extractor. A similarity score denotes how “similar” the
two feature sets are, while a distance score denotes how “different” they are3.

In score-level fusion the match scores output by multiple biometric match-
ers are combined to generate a new match score (a scalar) that can be sub-
sequently used by the verification or identification modules for rendering an
identity decision. Fusion at this level is the most commonly discussed ap-
proach in the biometric literature primarily due to the ease of accessing and
processing match scores (compared to the raw biometric data or the feature
set extracted from the data). Fusion methods at this level can be broadly clas-
sified into three categories [53]: density-based schemes, transformation-based
schemes and classifier-based schemes.
3 Consequently, a high similarity score between a pair of feature sets indicates a

good match whereas a high distance score indicates a poor match.
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Density-based fusion schemes

Let s = [s1, s2, . . . , sR] denote the scores emitted by multiple matchers, with
sj representing the match score of the jth matcher, j = 1, . . . , R. Further, let
the labels ω0 and ω1 denote the genuine and impostor classes, respectively.
Then, by Bayes decision theory [14], the probability of error can be minimized
by adopting the following decision rule4.

Assign s → ωi if

P (ωi|s) > P (ωj |s), i 6= j, and i, j = 0, 1. (14.3)

Here, the a posteriori probability P (ωi|s), i = 0, 1, can be derived from
the class-conditional density function p(s|ωi) using the Bayes formula, i.e.,

P (ωi|s) =
p(s|ωi)P (ωi)

p(s)
, (14.4)

where P (ωi) is the a priori probability of observing class ωi and p(s) denotes
the probability of encountering s. Thus, equation (14.3) can be re-written as

Assign s → ωi if

p(s|ωi)
p(s|ωj)

> τ, i 6= j, and i, j = 0, 1 (14.5)

where p(s|ωi)
p(s|ωj)

is known as the likelihood ratio and τ = P (ωj)
P (ωi)

is a pre-determined
threshold. The density p(s|ωi) is typically estimated from a training set of
match score vectors, using parametric or non-parametric techniques [56]. How-
ever, a large number of training samples is necessary to reliably estimate the
joint-density function p(s|ωi) especially if the dimensionality of the feature
vector s is large. In the absence of sufficient number of training samples (which
is typically the case when the multibiometric system is first deployed or if
its parameters are subsequently adjusted), it is commonly assumed that the
scalar scores si, s2, . . . sR are generated by R independent random processes.
This assumption permits the density function to be expressed as

p(s|ωi) =
R∏

j=1

p(sj |ωi), (14.6)

where the joint-density function is now replaced by the product of its marginals.
The marginal densities, p(sj |ωi), j = 1, 2, . . . R, i = 0, 1, are estimated from a

4 This is known as the Bayes decision rule or the minimum-error-rate classification
rule under the 0-1 loss function [14]
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training set of genuine and impostor scores corresponding to each of the R bio-
metric matchers. Equation (14.6) results in the product rule which combines
the scores generated by the R matchers as,

sprod =
R∏

j=1

p(sj |ω0)
p(sj |ω1)

. (14.7)

Kittler et al. [28] modify the product rule by further assuming that the
a posteriori probability P (ωi|s) of class ωi does not deviate much from its a
priori probability P (ωi) resulting in the sum rule:

ssum =

∑R
j=1 p(sj |ω0)∑R
j=1 p(sj |ω1)

. (14.8)

Similar expressions can be derived for combining the match scores using
the max, min and median rules [53, 28]. All the aforementioned rules implic-
itly assume that the match scores are continuous random variables. Dass et al.
[11] relax this assumption and represent the univariate density functions (i.e.,
the marginals in Equation (14.6)) as a mixture of discrete as well as continu-
ous components. The resulting density functions are referred to as generalized
densities. The authors demonstrate that the use of generalized density esti-
mates (as opposed to continuous density estimates) significantly enhances the
matching performance of the fusion algorithm. Furthermore, they use copula
functions [41, 8] to model the correlation structure between the match scores
s1, s2, . . . , sR and, subsequently, define a novel fusion rule known as the copula
fusion rule.

Transformation-based fusion schemes

Density-based schemes, as stated earlier, require a large number of training
samples (i.e., genuine and impostor match scores) in order to accurately esti-
mate the density functions. This may not be possible in most multibiometric
systems due to the time, effort and cost involved in acquiring labeled multi-
biometric data in an operational environment. In such situations, it may be
necessary to directly combine the match scores generated by multiple matchers
using simple fusion operators (such as the simple sum of scores or order statis-
tics) without first interpreting them in a probabilistic framework. However,
such an approach is meaningful only when the scores output by the matchers
are comparable. To facilitate this, a score normalization process is essential
to transform the multiple match scores into a common domain. The process
of score normalization entails changing the location and the scale parameters
of the underlying match score distributions in order to ensure compatibility
between multiple score variables.

Once the match scores output by multiple matchers are transformed
into a common domain they can be combined using simple fusion operators
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Table 14.1. Summary of score normalization techniques.

Normalization Technique Robustness Efficiency

Min-max No High

Decimal scaling No High

Z-score No High

Median and MAD Yes Moderate

Double sigmoid Yes High

Tanh-estimators Yes High

such as the sum of scores, product of scores or order statistics (e.g., maxi-
mum/minimum of scores or median score).

Classifier-based fusion schemes

In the verification mode of operation, the match scores generated by the mul-
tiple matchers may be input to a trained pattern classifier, such as a neural
network, in order to determine the class label (genuine or impostor). In this
approach, the goal is to directly estimate the class rather than to compute an
intermediate scalar value. Classifier-based fusion schemes assume the availabil-
ity of a large representative number of genuine and impostor scores during the
training phase of the classifier when its parameters are computed. The com-
ponent scores do not have to be transformed into a common domain prior to
invoking the classifier.

In the biometric literature several classifiers have been used to consoli-
date the match scores of multiple matchers. Brunelli and Falavigna [4] use
a HyperBF network to combine matchers based on voice and face features.
Verlinde and Cholet [59] compare the relative performance of three different
classifiers, namely, the k-Nearest Neighbor classifier using vector quantization,
the decision tree classifier, and a classifier based on the logistic regression
model when fusing the match scores originating from three biometric match-
ers. Experiments on the M2VTS database ([44]) show that the total error
rate (sum of the false accept and false reject rates) of the multimodal system
is an order of magnitude less than that of the individual matchers. Chatzis
et al. [6] use classical k-means clustering, fuzzy clustering and median radial
basis function (MRBF) algorithms for fusion at the match score level. The
proposed system combines the output of five different face and voice match-
ers. Each matcher provides a match score and a quality metric indicating
the reliability of the match score. These values are concatenated to form a
ten-dimensional vector that is input to the classifiers. Ben-Yacoub et al. [2]
evaluate a number of classification schemes for fusion including support vector
machine (SVM) with polynomial kernels, SVM with Gaussian kernels, C4.5
decision trees, multilayer perceptron, Fisher linear discriminant, and Bayesian
classifier. Experimental evaluations on the XM2VTS database ([39]) consist-
ing of 295 subjects suggest the benefit of score level fusion. Bigun et al. [3]
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propose a novel algorithm based on the Bayesian classifier that takes into
account the estimated accuracy of the individual classifiers (i.e., matchers)
during the fusion process. Sanderson and Paliwal [55] use a support vector
machine (SVM) to combine the scores of face and speech experts. In order to
address noisy input, they design structurally noise-resistant classifiers based
on a piece-wise linear classifier and a modified Bayesian classifier. Wang et al.
[60] view the match scores obtained from face and iris recognition modules as
a two-dimensional feature vector and use Fisher’s discriminant analysis and a
neural network classifier to classify this match score vector. Ross and Jain [51]
use decision tree and linear discriminant classifiers for classifying the match
scores pertaining to the face, fingerprint and hand geometry modalities.

14.3.4 Rank-level fusion

When a biometric system operates in the identification mode, the output
of the system can be viewed as a ranking of the enrolled identities. In this
case, the output indicates the set of possible matching identities sorted in
decreasing order of confidence. The goal of rank level fusion schemes is to
consolidate the ranks output by the individual biometric subsystems in order
to derive a consensus rank for each identity. Ranks provide more insight into
the decision-making process of the matcher compared to just the identity of
the best match, but they reveal less information than match scores. However,
unlike match scores, the rankings output by multiple biometric systems are
comparable. As a result, no normalization is needed and this makes rank
level fusion schemes simpler to implement compared to the score level fusion
techniques.

Let us assume that there are M users enrolled in the database and let
the number of matchers be R. Let rj,k be the rank assigned to user k by the
jth matcher, j = 1, . . . , R and k = 1, . . . , M . Let sk be a statistic computed
for user k such that the user with the lowest value of s is assigned the high-
est consensus (or reordered) rank. Ho et al. [18] describe the following three
methods to compute the statistic s.

1. Highest Rank Method: In the highest rank method, each user is assigned
the highest rank (minimum r value) as computed by different matchers,
i.e., the statistic for user k is

sk =
R

min
j=1

rj,k. (14.9)

Ties are broken randomly to arrive at a strict ranking order. This method
is useful only when the number of users is large compared to the number of
matchers, which is typically the case in large-scale authentication systems.
If this condition is not satisfied, the system will encounter several ties
thereby rendering the final ranking uninformative. An advantage of the
highest rank method is that it can utilize the strength of each matcher
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effectively. Even if only one matcher assigns a high rank to the correct
identity, it is still very likely that this user will receive a high rank after
reordering.

2. Borda Count Method: The Borda count method uses the sum of the ranks
assigned by the individual matchers to calculate the value of s, i.e., the
statistic for user k is

sk =
R∑

j=1

rj,k. (14.10)

The magnitude of the Borda count for each user is a measure of the degree
of agreement among the different matchers on whether the input belongs
to that user. The Borda count method assumes that the ranks assigned
to the users by the matchers are statistically independent and that all the
matchers perform equally well.

3. Logistic Regression Method: The logistic regression method is a general-
ization of the Borda count method where a weighted sum of the individual
ranks is calculated, i.e., the statistic for user k is

sk =
R∑

j=1

wjrj,k. (14.11)

The weight, wj , to be assigned to the jth matcher, j = 1, . . . , R, is deter-
mined by logistic regression [1]. The logistic regression method is useful
when the different biometric matchers have significant differences in their
accuracies. However, this method requires a training phase to determine
the weights.

14.3.5 Decision-level fusion

Many commercial off-the-shelf (COTS) biometric matchers provide access
only to the final recognition decision. When such COTS matchers are used to
build a multibiometric system, only decision level fusion is feasible. Methods
proposed in the literature for decision level fusion include “AND” and “OR”
rules [12], majority voting [34], weighted majority voting [30], Bayesian de-
cision fusion [61], the Dempster-Shafer theory of evidence [61] and behavior
knowledge space [20].

Let M denote the number of possible decisions (also known as class labels
or simply classes in the pattern recognition literature; these three terms are
used interchangeably in the following discussion) in a biometric system. Also,
let ω1, ω2, . . . ωM indicate the classes associated with each of these decisions.

1. “AND” and “OR” Rules: In a multibiometric verification system, the
simplest method of combining decisions output by the different matchers is to
use the “AND” and “OR” rules. The output of the “AND” rule is a “match”
only when all the biometric matchers agree that the input sample matches
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with the template. On the contrary, the “OR” rule outputs a “match” decision
as long as at least one matcher decides that the input sample matches with
the template. The limitation of these two rules is their tendency to result in
extreme operating points. When the “AND” rule is applied, the False Accept
Rate (FAR) of the multibiometric system is extremely low (lower than the
FAR of the individual matchers) while the False Reject Rate (FRR) is high
(greater than the FRR of the individual matchers). Similarly, the “OR” rule
leads to higher FAR and lower FRR than the individual matchers. When
one biometric matcher has a substantially higher equal error rate compared
to the other matcher, the combination of the two matchers using “AND”
and “OR” rules may actually degrade the overall performance [12]. Due to
this phenomenon, the “AND” and “OR” rules are rarely used in practical
multibiometric systems.

2. Majority Voting: The most common approach for decision level fusion is
majority voting where the input biometric sample is assigned to that identity
on which a majority of the matchers agree. If there are R biometric matchers,
the input sample is assigned an identity when at least k of the matchers agree
on that identity, where

k =





R
2 + 1 if R is even,

R+1
2 otherwise.

(14.12)

When none of the identities is supported by k matchers, a reject decision is
output by the system. Majority voting assumes that all the matchers perform
equally well. The advantages of majority voting are: (i) no apriori knowledge
about the matchers is needed, and (ii) no training is required to come up with
the final decision. A theoretical analysis of the majority voting fusion scheme
was done by [33] who established limits on the accuracy of the majority vote
rule based on the number of matchers, the individual accuracy of each matcher
and the pairwise dependence between the matchers.

3. Weighted Majority Voting: When the matchers used in a multibiomet-
ric system are not of similar recognition accuracy (i.e, imbalanced match-
ers/classifiers), it is reasonable to assign higher weights to the decisions made
by the more accurate matchers. In order to facilitate this weighting, the labels
output by the individual matchers are converted into degrees of support for
the M classes as follows.

sj,k =
{

1, if output of the jth matcher is class ωk,
0, otherwise, (14.13)

where j = 1, . . . , R and k = 1, . . . , M . The discriminant function5 for class ωk

computed using weighted voting is

5 The discriminant function is used to classify an input pattern. Typically, a dis-
criminant function is defined for each pattern class and the input pattern is as-
signed to the class whose discriminant function gives the maximum response.
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gk =
R∑

j=1

wjsj,k, (14.14)

where wj is the weight assigned to the jth matcher. A test sample is assigned
to the class with the highest score (value of discriminant function).

4. Bayesian Decision Fusion: The Bayesian decision fusion scheme relies on
transforming the discrete decision labels output by the individual matchers
into continuous probability values. The first step in the transformation is the
generation of the confusion matrix for each matcher by applying the matcher
to a training set D. Let CM j be the M × M confusion matrix for the jth

matcher. The (k, r)th element of the matrix CM j (denoted as cmj
k,r) is the

number of instances in the training data set where a pattern whose true class
label is ωk is assigned to the class ωr by the jth matcher. Let the total number
of data instances in D be N and the number of elements that belong to
class ωk be Nk. Let cj be the class label assigned to the test sample by the
jth matcher. The value cmj

k,cj
/Nk can be considered as an estimate of the

conditional probability P (cj |ωk) and Nk/N can be treated as an estimate
of the prior probability of class ωk. Given the vector of decisions made by
R matchers c = [c1, . . . , cR], we are interested in calculating the posterior
probability of class ωk, i.e., P (ωk|c). According to the Bayes rule,

P (ωk|c) =
P (c|ωk)P (ωk)

P (x)
, (14.15)

where k = 1, . . . , M . The denominator in Equation 14.15 is independent of
the class ωk and can be ignored for the decision making purpose. Therefore,
the discriminant function for class ωk is

gk = P (c|ωk)P (ωk). (14.16)

The Bayes decision fusion technique chooses that class which has the
largest value of discriminant function calculated using equation 14.16. To sim-
plify the computation of P (c|ωk), one can assume conditional independence
between the different matchers. Under this assumption, the decision rule is
known as naive Bayes rule and P (c|ωk) is computed as

P (c|ωk) = P (c1, . . . , cR|ωk) =
R∏

j=1

P (cj |ωk) . (14.17)

The accuracy of the naive Bayes decision fusion rule has been found to be
fairly robust even when the matchers are not independent [13].

5. Dempster-Shafer Theory of Evidence: The Dempster-Shafer theory of
evidence is based on the concept of assigning degrees of belief for uncertain
events. Note that the degree of belief for an event is different from the proba-
bility of the event. This subtle difference is explained in the following example.
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Suppose we know that a biometric matcher has a reliability of 0.95, i.e., the
output of the matcher is reliable 95% of the time and unreliable 5% of the
time. Suppose that the matcher outputs a “match” decision. We can assign
a 0.95 degree of belief to the “match” decision and a zero degree of belief to
the “non-match” decision. The zero belief does not rule out the “non-match”
decision completely, unlike a zero probability. Instead, the zero belief indicates
that there is no reason to believe that the input does not match successfully
against the template. Hence, we can view belief theory as a generalization of
probability theory. Indeed, belief functions are more flexible than probabilities
when our knowledge about the problem is incomplete.

Rogova [49] and Kuncheva et al. [31] propose the following methodology to
compute the belief functions and to accumulate the belief functions according
to the Dempster’s rule. For a given input pattern, the decisions made by R
classifiers for a M -class problem is represented using a R×M matrix known
as a decision profile (DP ) [31] which is given by,

DP =




s1,1 . . . s1,k . . . s1,M

. . .
sj,1 . . . sj,k . . . sj,M

. . .
sR,1 . . . sR,k . . . sR,M




,

where sj,k is the degree of support provided by the jth matcher to the kth

class. At the decision level, the degree of support is expressed as

sj,k =
{

1, if output of the jth matcher is class ωk,
0, otherwise, (14.18)

where j = 1, . . . , R and k = 1, . . . , M . The decision template (DT k) of each
class ωk is the average decision profile for all the training instances that belong
to the class ωk. When the degrees of support defined in Equation 14.18 are
used, one can easily see that the elements of the decision template DT k are
related to the elements of the confusion matrices of the R matchers in the
following manner.

DT k
j,r =

CM j
k,r

Nk
, (14.19)

where Nk is the number of instances in the training set D that belong to class
ωk, j = 1, . . . , R and k, r = 1, . . . , M . For a given test pattern Xt, the decision
profile DP t is computed after the decisions of the R matchers are obtained.
The similarity between DP t and the decision templates for the various classes
is calculated as follows.

Φj,k =

(
1 +

(||DT k
j −DP t

j ||
)2

)−1

∑M
r=1

((
1 +

(||DT r
j −DP t

j ||
)2

)−1
) , (14.20)
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where DT k
j represents the jth row of DT k belonging to class ωk, DP t

j repre-
sents the jth row of DP t belonging to the test pattern Xt, and ||.|| denotes the
matrix norm. For every class k = 1, . . . , M and for every matcher j = 1, . . . , R,
we can compute the degree of belief as

bj,k =
Φj,k

[∏M
r=1,r 6=k (1− Φj,r)

]

1− Φj,k

[∏M
r=1,r 6=k (1− Φj,r)

] . (14.21)

The accumulated degree of belief for each class k = 1, . . . , M based on the
outputs of R matchers is then obtained using the Dempster’s rule as

gk =
R∏

j=1

bj,k. (14.22)

The test pattern Xt is assigned to the class having the highest degree of belief
gk.

14.4 Summary

Multibiometric systems are expected to enhance the recognition accuracy of
a personal authentication system by reconciling the evidence presented by
multiple sources of information. In this chapter, the different sources of bio-
metric information as well as the type of information that can be consolidated
was presented. Different fusion strategies were also discussed. Typically, early
integration strategies (e.g., feature-level) are expected to result in better per-
formance than late integration (e.g., score-level) strategies. However, it is dif-
ficult to predict the performance gain due to each of these strategies prior to
invoking the fusion methodology. While the availability of multiple sources of
biometric information (pertaining either to a single trait or to multiple traits)
may present a compelling case for fusion, the correlation between the sources
has to be examined before determining their suitability for fusion. Combining
uncorrelated or negatively correlated sources is expected to result in a better
improvement in matching performance than combining positively correlated
sources. This has been demonstrated by Kuncheva et al. [32] for fusion at
the decision level using the majority vote scheme. Combining sources that
make complementary errors is assumed to be beneficial. However, defining an
appropriate diversity measure to predict fusion performance has been elusive
thus far.
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15.1 Introduction

Face recognition technology has steadily progressed from adequately handling
only well-controlled imagery to tackling increasingly more realistic conditions.
This progression has seen the introduction of nuisance factors such as pose,
illumination, occlusion and facial expression as integral components of the
standard face recognition problem. A large body of research has accrued,
aimed at coping with increased levels of image variability while maintaining
high recognition performance. Variation in level and nature of illumination
is among the most insidious problems for recognition algorithms, and thus a
considerable portion of that research centers around it. Among other tech-
niques, the use of thermal infrared imagery, by itself or in combination with
other modalities, has been proposed as an alternative means of handling the
problem of variable illumination conditions.

Variation in illumination conditions between enrollment and testing is one
of the major problems for visible-spectrum-based face recognition [2, 26]. Since
the radiance sensed by a visible camera at a given image location is propor-
tional to the product of object albedo and incident light, changes in illumi-
nation can have dramatic effects on object appearance. In terms of faces,
this makes modeling the distribution of appearances of a single person un-
der multiple lighting conditions very difficult. Cast shadows, specularities and
other non-Lambertian phenomena make the problem even harder. Multiple
techniques have been developed to handle this issue [3, 31, 16, 26, 11], all
of which improve recognition performance by explicitly taking into account
the effect of illumination on facial appearance. An alternative route taken
by some researchers is to explore the potential of thermal infrared imagery
for face recognition. The primary advantage of this imaging modality is that
changes in ambient illumination have little or no influence on facial appear-
ance. Thus, instead of incorporating the large variability in appearance caused
by lighting variation into a model, a new imaging modality is chosen so that
such variability is simply not present.
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Another critical shortcoming of visible cameras is that as the level of il-
lumination decreases, the signal to noise ratio rises quickly, and recognition
becomes impossible. Compared to the human eye, standard visible cameras
are not very sensitive, which means that even at illumination levels for which
a human can easily discern and recognize faces, automatic recognition is not
feasible. Of course, as the light level decreases further into darkness, auto-
matic processing remains impossible. This issue has been addressed recently
by using both thermal infrared and intensified near-infrared (NIR) imagery,
alone or in combination.

While thermal imagery provides us with the advantages of illumination
invariance and no-light operation, it is not without shortcomings. Of particular
importance is the fact that thermal emissions from the face are dependent on
ambient temperature and wind conditions, as well as on metabolic activity of
the subject. Additionally, the fact that the lenses of most glasses are opaque in
the thermal infrared means that a large portion of the population have partial
occlusions in the infrared images of their face. This is an important issue
that must be addressed by any deployable thermal face recognition system.
Fortunately, most of the situations that hamper recognition performance with
thermal imagery are not a problem for visible imagery, and vice-versa. For this
reason, systems using a combination of both modalities have proved time and
again to be superior to those using either modality separately.

In Section 15.2, we review the nature of thermal infrared imagery of the
human face. This provides motivation for the use of such imagery in biomet-
ric applications, and also indicates some of the strengths and weaknesses of
the modality. The rest of the chapter is structured to reflect the nature of
the recognition task, and the historical development of the field. We progress
through same-session recognition experiments (training and testing face im-
ages acquired in the same session), where we mention the earliest and simplest
experimental setups used to validate the use of thermal imagery for biometrics,
to more complex and realistic scenarios where we explore the effect of time
passage, unconstrained outdoor illumination and low light levels. Most of the
research highlighted in this chapter is due to work at Equinox Corporation,
although we mention the efforts of other groups.

15.2 Imaging Modalities

Before discussing specifics of multispectral face recognition, we should briefly
review the nature of the imagery in each band of the spectrum. Figure 15.1
shows wavelengths from just below 0.4 microns up to 14 microns. The human
eye is sensitive to radiation roughly in the range between 0.4 and 0.7 microns,
depending on individual variation. Blue colors are perceived toward the low
end of that range, while reds are near the top. Imagery captured in this
range is purely reflective, meaning that the photons sensed by the focal plane
array originate at a light source, bounce off the target object and into the
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Fig. 15.1. Nomenclature for various portions of the electromagnetic spectrum.

camera. This is also true of imaging in the next two slices of the spectrum:
near-infrared (NIR), which ranges from 0.7 to about 1 micron, and shortwave
infrared (SWIR), which comprises the range from 1 to 2.5 microns. Moisture
suspended in the atmosphere is mostly responsible for the absorption bands
2.5–3 microns, and 5–8 microns, which is why we normally do not image
in those wavelengths. Between 5 and 8 microns lies the midwave infrared
(MWIR) spectrum. This is an interesting modality, as it has both reflective
and emissive properties. That is, photons impinging on the focal plane array
fall into two categories: reflected ones, much as in the lower wavelengths,
and emitted ones, which are radiated by the target object by virtue of its
temperature, and are independent of external illuminants. Finally, the range
between 8 and 14 microns is known as longwave infrared (LWIR), and consists
primarily of emitted radiation. Note that regardless of wavelength, smooth
objects such as a mirror will reflect radiation, and thus no imaging modality
is completely invariant to illumination effects.

Figure 15.2 shows a face simultaneously imaged in the visible, SWIR,
MWIR and LWIR spectra. Even though both visible and SWIR imagery are
strictly reflective, it is interesting to note the fairly pronounced difference in
the appearance of the subject between the two modalities. For most people,
hair has a much higher albedo in the SWIR, resulting in light hair colored im-
ages. Likewise, most clothing dyes have higher albedo in the NIR and SWIR
than in the visible spectrum, thus clothing often appears much brighter in
those modalities. The change in appearance when we move to longer wave-
lengths is quite dramatic, as we start to see the emissive component taking
over. The images in Figure 15.2 were acquired indoors, and thus the reflective
aspects of MWIR are not emphasized, resulting in rather similar MWIR and
LWIR images. An interesting fact, well known to anyone familiar with ther-
mal imagery, is that glass is completely opaque in the MWIR and LWIR, as
can be seen by looking at the eyeglasses in Figures 15.2(c) and 15.2(d). Glass
also has very low emissivity in the MWIR and LWIR (compared to skin),
which combined with the fact that room temperature is normally lower than
skin temperature, explains why it appears darker than skin. This has obvious
consequences for any biometric application that exploits the appearance of
the human face.
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The emissivity of a material, as the name indicates, measures the aptitude
of that material for radiating energy at a given wavelength, and is standard-
ized on a scale from 0 to 1. It has a meaning analogous to the albedo for
reflective imagery. It follows from conservation of energy (Kirchoff’s Law)
that the higher the emissivity, the higher the absorption and therefore the
lower the reflectivity. This is relevant for thermal imaging biometrics because
the emissivity of human skin is relatively high in the MWIR and almost unity
in the LWIR [30]. Consequently, incident LWIR illumination has almost no
effect on radiance measured by a LWIR camera. This is the fundamental basis
for the illumination invariance of thermal infrared face recognition.

(a) (b) (c) (d)

Fig. 15.2. A face simultaneously imaged in the (a) visible spectrum 0.4-0.7 microns,
(b) shortwave infared 0.9-1.7 microns, (c) midwave infrared 3.0-5.0 microns, and (d)
longwave infrared 8.0-14.0 microns.

Both MWIR and LWIR imagery can be acquired without the need for
any external illumination, since all objects above absolute zero temperature
radiate considerable energy in those wavelengths. For regions in the SWIR
and below, an external light source is necessary, and therefore darkness be-
comes a limiting factor for imaging. Image intensification in the NIR is one
approach to acquiring reflective imagery near the visible spectrum with low
light levels. The most common technology for image intensification is through
the use of a microchannel plate (MCP). MCPs are made of several million
tightly packed channels about 10 microns in diameter. Each channel func-
tions as an independent photomultiplier, and since the channels are arranged
in a spatially coherent fashion, any light pattern impinging on the input end
of the MCP results in the same (intensified) pattern being emitted out the
output end. When a photon enters the input end of an individual channel, it
releases an electron within the tube. A strong potential difference of several
thousand volts is applied between input and output ends of the microchannel,
thus accelerating the electrons. As the accelerated electrons travel down the
channel, they release more electrons from the tube material as they collide
with the inside walls. This effect is called an electron cascade, and is the crux
of the intensification process, as one original electron, through the application
of a strong potential difference, generates a much larger number of electrons.
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Gain factors of 106 or more are achievable through this process. Accelerated
electrons exit the microchannel, and collide against a phosphor screen. Upon
collision, electrons release photons from the phosphor, and these photons con-
stitute the final intensified image. Optics in front and behind the MCP allow
light to be focused on the front end and the intensified output to be viewed
on the back. Modern image intensifiers are lightweight and operate on very
low power.

Typical military grade devices will operate for dozens of hours on standard
AA batteries and provide enough photomultiplication to allow for navigation
and basic tasks under moonless overcast night conditions. Even though it
greatly increases the signal strength, photomultiplication also creates a char-
acteristic noise pattern. While a detailed analysis of intensifier noise is beyond
the scope of this chapter, Figure 15.3 shows decreasing intensified image qual-
ity as a function of decreasing light level. Strong noise at low light levels is a
problem for face recognition systems, severely compromising performance.

Fig. 15.3. Intensified NIR images of the same subject under decreasing light levels.

15.3 Feasibility of LWIR Imagery as a Biometric

The first studies in thermal infrared face recognition were aimed at determin-
ing whether the imaging modality held any promise for human identification.
In this context, simple experiments were designed, where enrollment and test-
ing images of multiple subjects were acquired during a short period of time.
This type of scenario is often referred to as same-session recognition, since it
tests the ability to recognize as such images of the same subject acquired dur-
ing the same data collection session. While same-session studies are easier to
organize, their results do not directly reflect the viability of the biometric for
real-world use, since under operational conditions biometric enrollment and
verification would occur at different times. Nonetheless, these studies provide
a reasonable idea of viability, and can be used as a stepping stone toward
more accurate performance estimates.

Wilder et al. [29] use a low-quality LWIR pyrolectric sensor to collect in-
door and outdoor imagery during a single session. They show that recognition
performance is roughly comparable between visible and thermal modalities,
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and that using a simple fusion strategy to combine both modalities greatly
increases performance. Cutler’s work [7] uses a low-sensitivity MWIR sen-
sor and the PCA-based eigenfaces algorithm, and concludes that recognition
performance is equivalent to that attainable in the visible spectrum. Socolin-
sky et al. [18] used a database of approximately 90 subjects, collected during
a single session and containing controlled variations in illumination to show
that recognition in the LWIR spectrum outperforms visible-based recogni-
tion with two different algorithms. More recently, Freidrich and Yeshurun [10]
show that recognition rates achieved with thermal imagery on a pose and ex-
pression variant same-session database are higher than those achieved with
comparable visible imagery. As part of a time-lapse study, Chen et al. [6]
find that same-session recognition in the LWIR spectrum outperforms visible
recognition, when both of them use a PCA-based algorithm.

The most comprehensive study to date on same-session thermal infrared
recognition is Socolinsky and Selinger [25]. The database used comprises
ninety ethnically and gender diverse subjects imaged during a single day. All
images were collected with a custom sensor capable of simultaneously imag-
ing visible and LWIR images through a common aperture. This provides a
unique opportunity to compare performance on imagery which differs only in
modality, but is alike in all other respects, such as pose, illumination and ex-
pression. In order to gauge the effect of illumination variation on recognition
performance, the authors collected imagery under three controlled lighting
conditions, and for a variety of facial expressions. We should note (see [25]
for more details) that all eye coordinates were manually located on the visible
images and transferred to the LWIR ones via their coregistered nature.

Socolinsky and Selinger [25] compares recognition performance for visible
and thermal imagery across multiple data representation algorithms, includ-
ing PCA, LDA, ICA and LFA. Each of these representations was coupled with
a number of distance measures including L1, L2 and angle. Figure 15.4 shows
cumulative match curves for LDA-based recognition for visible and thermal
imagery under a variety of distance measures. The general conclusion to be
drawn from these performance graphs is that in a same-session recognition
scenario, thermal imagery is superior to visible imagery, at least if the illu-
mination is not carefully controlled. In fact, even if the illumination is kept
under strict control, thermal recognition performance is higher than its visible
counterpart (this is not shown in the graphs), although the difference is not so
pronounced. This clearly indicates that the pattern of thermal emission from a
person’s face is distinct, and bears strict correlation with his or her identity. A
second definitive conclusion of the study is that using a combination of visible
and thermal imagery greatly outperforms the use of visible (or LWIR) imagery
alone. This is supported by further studies by other researchers [6, 5]. Fusion
results were obtained by simply adding individual modality scores (distances),
and using the composite number as a new distance.
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Fig. 15.4. Cumulative recognition rates for LDA-based identification algorithms on
(a) visible and (b) LWIR imagery.

15.4 Stability of Thermal Biometrics

Results from same-session experiments serve only to provide initial evidence
that thermal imaging of the face may be a valid biometric signature. They are
not sufficient to assert that conclusion, since any biometric face identification
system must operate on imagery acquired later than the original enrollment
session. In order for the system to be useful, it must be able to match imagery
of a subject to the enrollment imagery for a long period of time after enroll-
ment. It is well-known that performance of visible face recognition algorithms
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degrades as time elapsed between training and testing images increases [15].
Facial appearance changes with weight fluctuations, facial hair, makeup, ag-
ing, exposure to sunlight and many other factors. The task of a face recognition
system is to ignore as many of these exogenous factors as possible, and still
home in on the underlying identity variable, which is unchanged. To the extent
that an imaging modality is able to provide a more stable and discriminating
signature over time, it can be considered better for facial recognition. The
only way to evaluate this stability is through the time-consuming process of
collecting data over an extended period at regular intervals.

Studies by two research groups on the same dataset shed complementary
light on the issue of stability of thermal face biometrics. Chen et al. [5, 6]
collected a database of visible and LWIR images of 240 distinct subjects, ac-
quired under controlled conditions over a period of ten weeks. During each
weekly session, each subject was imaged under two different illumination con-
ditions, and with two different expressions. Visible images were acquired in
color and with a 1200× 1600 pixel resolution. Thermal images were acquired
at 320×240 resolution and 12 bit per pixel depth. Eye coordinates used for ge-
ometric normalization of all images, both visible and thermal, were manually
located independently in each modality.

In their studies [6, 5], the authors find that a PCA-based recognition al-
gorithm using LWIR imagery outperformed the same algorithm using visible
images, in a same-session scenario, yet underperformed it when the test im-
agery was acquired a week or more after the enrollment imagery. Furthermore,
the loss in performance suffered when using LWIR imagery was more severe
than the corresponding loss when using visible imagery. They attribute these
results to the noticeable variability in thermal appearance of subjects’ faces
imaged at different times. The conclusion is that thermal infrared imagery is
less suitable than visible imagery for face recognition applications, due to its
instability over time. However, the study also notes that when used in concert
with visible imagery as part of a fused system, overall performance is superior
to even state-of-the-art commercial (visible only) systems.

Using the same data, we conducted a new study [22]. In order to evalu-
ate recognition performance with time-lapse data, we performed the following
experiments. The first-week frontal illumination images of each subject with
neutral expression were used as the gallery. Thus the gallery contains a single
image of each subject. For all weeks, the probe set contains neutral expres-
sion images of each subject, with mugshot lighting. The number of subjects
in each week ranges from 44 to 68, while the number of overlapping subjects
with respect to the first week ranges from 31 to 56. In addition to the PCA
algorithm used previously [6, 5], we also tested the proprietary Equinox algo-
rithm. This algorithm works natively on visible-thermal image pairs, and is
capable of using either or both modalities as its input. Experimental results
are shown in Figure 15.5.

Focusing for a moment on the performance curves, we do not see a clearly
decreasing performance trend for either modality. This appears to indicate
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that whatever time-lapse effects are responsible for performance degradation
versus same-session results remain roughly constant over the ten week trial
period. Other studies have shown that over a period of years, face recognition
performance degrades linearly with time [15]. Following that observation, we
assume that weekly recognition performances for both algorithms and modali-
ties are drawn independently and distributed according to a (locally) constant
distribution, which we may assume to be Gaussian. Using this assumption, we
estimate the standard deviation of that distribution, and plot error bars at two
standard deviations. We see that, consistently with prior results [6, 5], ther-
mal performance is lower than visible performance when using PCA as a the
recognition algorithm. When using the Equinox algorithm, we note that over-
all recognition performance is markedly improved in both modalities. More
importantly, we see that weekly performance curves for both modalities cross
each other multiple times, while remaining within each other’s error bars.
This indicates that the performance difference between modalities using this
algorithm is not statistically significant. In fact, the difference between mean
performances for the modalities is only 0.21 standard deviations, hardly a sig-
nificant difference. We should also note that the mean visible time-lapse per-
formance with this algorithm is 88.65%, compared to approximately 86.5% for
the FaceIt algorithm [6]. This shows that the Equinox algorithm is competitive
with the commercial state-of-the-art face recognition systems on this data set,
and therefore provides a fair means of evaluating thermal recognition perfor-
mance, as using a poor visible algorithm for comparison would make thermal
recognition appear better. As many previous studies have shown [19, 25, 6],
fusion greatly increases performance, which is also illustrated in Figure 15.5.
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Fig. 15.5. Left: top-rank recognition results for visible, LWIR and fusion as a
function of weeks elapsed between enrollment and testing, using PCA. Right: top-
rank recognition results for visible, LWIR and fusion as a function of weeks elapsed
between enrollment and testing, using the Equinox algorithm. Note that the x-
coordinate of each curve is slightly offset in order to better present the error bars.

When this study is taken in context with Chen et al. [6], it shows that
care must be exercised when evaluating imaging modalities based solely on the
outcome of classification experiments. Specifically referring to face recognition
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with visible and thermal imagery, the study shows that there is no significant
difference in recognition performance when a state-of-the-art algorithm is used
for both modalities. Thus thermal face imagery provides a stable biometric
signature suitable for recognition, with relative advantages and disadvantages
with respect to visible imagery, which are dependent on the situation.

15.5 Face Recognition in Very Low Light

One primary disadvantage of face recognition with visible cameras is that it
requires relatively high levels of illumination. Recognition in dim or dark con-
ditions is simply not possible with standard imaging technology. This limits
deployment opportunities to those scenarios where daylight or artificial illu-
mination is available, and eliminates many covert uses. The main imaging
modalities capable of functioning in dark environments without additional
illumination are thermal infrared and intensified near infrared (I2). While
thermal imaging can operate in complete darkness, such as subterranean en-
vironments, intensified NIR sensors require some ambient illumination. Latest
generation intensifiers can yield useful imagery at light levels which the naked
eye perceives as pitch black, so for all but the darkest situations, intensified
imagery can be used instead of or in conjunction with thermal imagery. This
section provides a brief overview of both approaches to face recognition in low
light.

15.5.1 Thermal-Only Recognition

The first step in any automated face recognition task is the detection and
localization of the subject’s face. There is a large literature on the subject
of face detection in the visible spectrum (see for example [28] and the refer-
ences therein). Face detection and tracking using a combination of visible and
thermal imagery is addressed by Eveland [9], who develops a system capable
of detecting and tracking faces using either one or both modalities together.
The second major step after face localization, is geometric normalization. This
normally entails the detection of two or more points on the face, and the sub-
sequent affine mapping of the acquired image onto a canonical geometry. In
the visible spectrum, geometric normalization is often achieved by locating
the centers of both eyes, and affinely mapping them to standard locations.
Automated location of eyes (and pupils) in visible imagery is a well-studied
problem [8, 32], both passively and with active methods.

It is easy to see that thermal images of human faces have fewer readily
localizable landmarks, even by a human operator. The eyes themselves are
completely uniform, with no distinction whatsoever between pupil, iris and
sclera. Chen et al. [6] performed experiments with manual localization of eye
centers in LWIR imagery, and they report that due to the lack of detail in
such imagery around the eyes, it was difficult to obtain precise measurements.
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Furthermore, they note that recognition performance with thermal imagery
decays more rapidly as a function of incorrect eye localization than does recog-
nition with visible images. Freidrich and Yeshurun [10] use a combination of
filtering and thresholding to detect the center point of the eyebrows as land-
marks. They do not provide experimental results as to the accuracy of the
procedure, but they claim that a recognition system using those landmarks
performed well. We undertook a study [20] to determine the feasibility of a
fully automated face recognition system operating exclusively in the thermal
domain. That is, without the aid of a coregistered visible sensor. As we pointed
out above, face detection has already been tackled in this context, we focused
our efforts on detection of eyes and comparative performance analysis versus
the equivalent process with visible imagery.

In order to detect eyes in thermal images, we rely on the face location de-
tected using the face detection and tracking algorithm described by Eveland
[9] and Socolinsky et al. [24]. We then look for the eye locations in the upper
half of the face area using a slightly modified version of the object detector
provided in the Intel Open Computer Vision Library [1]. The detection algo-
rithm is based on the rapid object detection scheme using a boosted cascade
of simple feature classifiers introduced by Viola and Jones [27] and extended
by Lienhart and Maudt [13]. The OpenCV version of the algorithm extends
the Haar-like features by an efficient set of 45 degree rotated features and
uses small decision trees instead of stumps as weak classifiers. Since we know
that there is only one eye on the left and right halves of the face, we force the
algorithm to return the best guess regarding its location. Figure 15.6 shows an
example of face and eyes automatically detected in a thermal infrared image.

Fig. 15.6. Automatic detection of the face and eyes in a thermal infrared image

The drawback of the algorithm, and of eye detection in thermal infrared in
general, is that it fails to detect the eye center locations for subjects wearing
glasses. Glasses are opaque in the thermal infrared spectrum and therefore
show up black in thermal images, blocking the view of the eyes. In these
images the glasses can be easily segmented and the eye center location can be
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inferred from the shape of the lens. Unfortunately, the errors incurred by such
inference are rather large. For the experiments outlined below, only images of
subjects without glasses were used. Proper normalization of thermal images
of subjects wearing glasses is an area of active research. A recent paper [12]
introduces a method for detecting and segmenting glasses on infrared facial
imagery. Additionally, they report recognition results after applying a method
for filling in the area obscured by eyeglasses with an average eye-region image.
Using the FaceIt commercial face recognition system, they observe marked
improvement after removal of eyeglasses. Our own experiments on the subject
(which predate [12]) show that when using an algorithm capable of handling
occlusion, removal of eyeglasses does not provide a statistically significant
performance boost.

In order to evaluate the viability of thermal-only face recognition, we com-
pare its performance against a similar visible-only system, even though that
system would not function in the dark. In the visible spectrum, we search for
the center of the pupil of the open eye. The initial search area relies on the po-
sition of the face as returned by a face detector [9]. Within this region, we look
for a dark circle surrounded by lighter background using an operator similar to
the Hough transform widely used for detection in the iris recognition commu-
nity [8]. We performed localization and recognition experiments using a large
database of over 3700 images of 207 subjects not wearing glasses. Images were
collected during several sessions, both indoors and outdoors. All thermal im-
agery was collected with an uncooled LWIR sensor at 320×240 resolution, and
coregistered visible imagery was acquired for all frames. Recognition perfor-
mance was evaluated both using a PCA-based algorithm, and the proprietary
Equinox algorithm. For more details, see Socolinsky and Selinger [20].

Visible LWIR

Mean Std deviation Mean Std deviation

Left x 0.57 1.10 1.95 2.03
Left y 0.55 0.84 1.57 1.68
Right x 0.60 1.14 2.81 2.07
Right y 0.57 0.84 1.53 1.68

Table 15.1. Means and standard deviations of eye detection errors

Table 15.1 shows the mean absolute error and the standard deviation of
the error in the x and y coordinates for the left and right eye, for detection in
both modalities. The means and standard deviations of the visible errors stay
below 1 pixel, while the LWIR errors go up to 2.8 pixels, and the standard
deviations reach 1.75. At the resolution of our images the average size of an
eye is 20 pixels wide by 15 pixels high, so although the error increase from
visible to LWIR is large, LWIR values still stay within 15% of the eye size.
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Visible detection LWIR detection

Gallery/Probe Visible LWIR Visible LWIR

Indoor/Indoor 99.47 95.79 95.80 (96) 87.90 (92)
Outdoor/Outdoor 88.74 96.03 82.78 (93) 92.72 (97)
Indoor/Outdoor 87.90 90.45 73.25 (83) 78.34 (87)
Average 92.03 94.09 83.94 (91) 86.32 (92)

Table 15.2. Match recognition performance of the Equinox algorithm with eyes
detected in the visible and LWIR domains. Figures in parentheses show percentage
of corresponding performance with eyes detected in the visible domain

Top match recognition performances for the Equinox algorithm are shown
in Table 15.2. Recognition performance with LWIR eye detection is followed in
parentheses by the percentage of the corresponding performance with visible
eye locations that this represents. The decrease in performance incurred by
locating eyes in the LWIR is about the same in both modalities (performance
with LWIR eye locations is about 90% of the performance with visible eye
locations). This is in contrast with the observation by Chen et al. [6], but
is probably due to the difficulty of the data set as well as a lower error in
the eye center location. In practical terms, this indicates that while LWIR
face recognition can be performed exclusive of any additional sensors, and in
complete darkness, more work is needed to improve face normalization. More
robust localization of eyes or other facial landmarks is needed to close the
performance gap with visible-based normalization.

15.5.2 Fusion of Intensified NIR and Thermal Imagery

Image intensification provides an alternative technology to thermal imaging
for face recognition in low light levels. Intensified near infrared imagery (I2)
is the most prevalent technology in night vision systems, both civilian and
military 1. It is a relatively low cost technology compared to thermal imaging,
and can function with very little ambient light. Since I2 imagery is reflective in
nature, it shares many properties with standard visible imagery, and indeed
a comparison of visible and I2 images of the same scene under high light
conditions shows them to be very similar. This suggests the possibility that
an automated system could recognize faces acquired with an I2 system based
on visible enrollment imagery. We summarize some results on I2 to visible
matching under decreasing light levels. More details can be found in Socolinsky
et al. [23].

We performed a data collection and a series of experiments aimed at eluci-
dating the role of I2 imagery in low-light face recognition. Data was collected
1 Technically, this imagery spans the range from 600 to 900 nanometers, which

overlaps the visible spectrum. However, night-time luminance favors the near-
infrared portion of this range, and thus we will refer to it as intensified near
infrared.
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from a set of 96 volunteers over two sessions separated by one week, in order to
avoid over-estimating performance due to same-session artifacts. Imagery was
collected with a scientific-grade Dalsa 1M15 visible sensor with 1024 × 1024
pixel resolution binned into 512 × 512, an Indigo Merlin LWIR sensor with
320×240 pixels, and another Dalsa 1M15 visible sensor outfitted with an ITT
PVS-14 image intensifier. Peak sensitivity for the Dalsa sensor occurs at 820
nanometers, which is comparable to the peak sensitivity of the PVS-14. Figure
15.7 shows the arrangement of cameras and lights used. The intensified and
LWIR sensors were coregistered through the use of a dichroic beamsplitter,
and the visible sensor was placed above the previous two, in a boresighted
configuration.

Fig. 15.7. Camera and lighting setup for image collection

Imagery was collected in an interior basement room, with no windows
and two sets of consecutive doors, ensuring no light penetration from the
adjacent hallway. During data collection, all room lighting, both in the inner
and outer rooms was kept off, and the only source of illumination was provided
by sources controlled as part of the experiment. Lighting was controlled with
the use of two custom made fixtures. These fixtures consist of rectangular
boxes closed on five sides and sealed against light leaks at all joints. Each box
contains a 20 watt low-power compact fluorescent bulb, selected for its low
heat output, with a color temperature of 2700K. The front side of each fixture
features a slotted channel, also sealed against light leaks, which fits a series
of perforated panels with different levels of light transmission. Each panel is
made of an opaque material, and has a hole centered over the bulb, allowing
an amount of light proportional to the area of the hole to exit the light fixture.
Five different light levels were selected by varying the size of the exit aperture
in each panel. This lighting system has two key advantages over the obvious
alternative of a rheostat-based system. First, it allows for repeatable light
levels, which is hard to achieve with a variable resistor. Second, it ensures
that the color temperature of the light is constant throughout the different
light levels, whereas a dimmer induces a red shift as the light level decreases.
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By using two light sources symmetrically located in front of the subject, we
insure even illumination across the face.

At the brightest light level, the illuminance at the subject’s face was 9 lux,
as measured by a Spectra P-2000EL-A light meter. For reference, full moon-
light is about 1 lux, and a standard office environment is illuminated to an
average of about 300 lux. Second, third and fourth light levels each decreased
by a factor of sixteen, while the fifth light level was about half of the fourth.
At the lowest light level, illuminance at the subject’s face was about 0.001
lux, which is consistent with starlight conditions. The estimates at the lowest
light levels may be optimistic, with the actual light level being lower than
the estimate. Note that the Dalsa 1M15 camera is very sensitive, so whereas
other cameras may have trouble imaging noiselessly at 9 lux illuminance, this
is plenty of light for this sensor.
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Fig. 15.8. Performance of Equinox algorithm for (a) I2, (b) LWIR and (c) fused
images as a function of decreasing light level. Each curve corresponds to a different
light level, with Light 1 being the brightest and Light 5 the dimmest.

Figure 15.8 shows some of the results of this study in the form of cu-
mulative match curves. Using the Equinox recognition algorithm, we tested
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matching I2 probes under varying levels of illumination to well-illuminated
visible gallery images. This simulates the scenario where a subject is to be
identified in low-light conditions against a good enrollment image, such as
a passport or driver’s license photo. As we can see, performance decreases
rather gracefully with illumination level. By contrast, the same experiment
performed with visible probes shows chance performance for all but the two
brightest light levels. Note that at the darkest light levels, top match I2 per-
formance is about 60%, but the unaided human eye can barely discern the
presence of a head six feet away. For the two brightest light levels, performance
with visible probes is slightly higher than with I2 probes, but the difference
is small and perhaps not statistically significant with a set of under 100 test
subjects. For comparison, we include in Figure 15.8 recognition results for
LWIR probes (with eye locations from the I2 images) and for fusion of I2
and LWIR. Performance with LWIR images is independent of light level, and
fusion between modalities clearly improves performance across all light levels,
to the low to mid ninety percent range, depending on illumination.

While Socolinsky et al. [23] includes further analysis and conclusion, we see
from the results above that I2 imagery can be used successfully for face recog-
nition under certain circumstances. Much lower levels of ambient illumination
become acceptable if we use I2 instead of visible imagery. Unfortunately, at
truly low light levels, the amount of noise in I2 imagery becomes untenable,
and performance is reduced below a useful level for most applications. On the
other hand, when using I2 and LWIR imagery in combination, we obtain very
good performance for a broad range of light levels. Further research in face
recognition with I2 imagery should concentrate on improved noise reduction
strategies in order to increase performance at the lowest light levels. In all
fairness, however, we should point out that at the lowest light levels used in
this study, recognition of unfamiliar faces is hard even for humans using a
direct-view I2 device.

15.6 Face Recognition Outdoors

Face recognition in outdoor conditions is known to be a very difficult task [15].
This is primarily due to the dramatic illumination effects caused by uncon-
strained outdoor lighting. Thermal imaging has a unique advantage in this
context, given the very high emissivity of human skin, and the resulting near
complete illumination invariance of face imagery in the LWIR spectrum. This
section outlines the results of a study of outdoor face recognition performance
using visible and LWIR imagery [21].

The majority of the imagery used in this study was collected during eight
separate day-long sessions spanning a two week period. A total of 385 sub-
jects participated in the collection. Four of the sessions were held indoors in
a room with no windows and carefully controlled illumination. Subjects were
imaged against a plain background some seven feet from the cameras, and
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illuminated by a combination of overhead fluorescent lighting and two photo-
graphic lights with umbrella-type diffusers positioned symmetrically on both
sides of the cameras and about six feet up from the floor. The remaining four
sessions were held outdoors at two different locations. During the four outdoor
sessions, the weather included sun, partial clouds and moderate rain. All illu-
mination was natural; no lights or reflectors were added. Subjects were always
shaded by the side of a building, but were imaged against an unconstrained
natural background which included moving vehicles, trees and pedestrians.
Even during periods of rain, subjects were imaged outside and uncovered, in
an earnest attempt to simulate true operational conditions. For each individ-
ual, the earliest available video sequence in each modality is used for gallery
images and all subsequent sequences in future sessions are used for probe im-
ages. For all sessions, subjects were cooperative, standing about seven feet
from the cameras, and looking directly at them when so requested. We used a
sensor capable of acquiring coregistered visible and LWIR video. The visible
component has a spatial resolution of 640× 480 pixels, and 8 bits of spectral
resolution. The thermal sensor is uncooled, and has 12 bits of depth, sensing
between 8µ and 12µ at a resolution of 320× 240 pixels.

Faces were automatically detected in all acquired indoor and outdoor
frames, using a system based on the algorithm described in Socolinsky et
al. [17]. No operator intervention was required for this step. Recall that since
visible and thermal images are coregistered, eye locations in one modality
give us those in the other. Thermal images were appropriately calibrated, and
visible images were pre-processed through a simple yet effective illumination
compensation method to boost performance (for details see [21]). We should
emphasize the fact that all data used for the experiments below was processed
in a completely automatic fashion in an attempt to simulate true operational
conditions.

Vis LWIR Fusion

Indoor 97.05 93.93 98.40
Outdoor 67.06 83.02 89.02

Table 15.3. Top-match recognition results for indoor and outdoor probes with
indoor gallery

Table 15.3 shows a summary of the top-match results obtained with the
Equinox algorithm. In this case, gallery images for each subject came from in-
door collections, while probes came from either indoor or outdoor collections,
depending on the experiment. For indoor probes, performance is probably sat-
urated for the visible recognizer, and not far behind in the LWIR. As usual,
fusion of both modalities yields the best results. Comparing indoor versus
outdoor performance shows that the latter is considerably lower with visi-
ble imagery, and significantly so even with thermal imagery. Fusion of both
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modalities improves the situation, but performance outdoors is statistically
significantly lower than indoors, even for fusion. As a reference, note that a
PCA-based recognizer yields only 22% top-match recognition for the outdoor
probes.

It is clear from this experiment, as from those in Phillips et al. [15] that
face recognition outdoors with visible imagery is far less accurate than when
performed under fairly controlled indoor conditions. For outdoor use, thermal
imaging provides a considerable performance boost. Fusion of both imaging
modalities improves performance under all tests and algorithms. The value of
thermal imagery for outdoor face recognition is undoubtable. When used in
combination with visible imagery, even though the latter is a poor performer,
combined accuracy is high enough to make a system useful for a number
of realistic applications that could not be accomplished with visible imagery
alone. The ability to handle large unconstrained variations in lighting is a key
requisite of any realistically deployable system, and the addition of thermal
imaging puts us several steps closer to that goal.

15.7 Other Multispectral Approaches

Researchers have proposed other multispectral face recognition approaches
besides the ones reviewed above. Most notable is the use of many narrow
band sensors within the visible or NIR spectrum. This work was pioneered by
Pan et al. [14]. The authors used a hyperspectral camera capable of sampling
in 31 spectral bands between 0.7 and 1 microns. Images are acquired under
controlled illumination and require ten seconds for a complete set of 31 bands.
The uniqueness of the authors’ approach lies in the fact that they do not
exploit the geometric structure of the face at all. Rather, they use the sampled
spectral signature of the skin at a few points on the face as their biometric,
thus essentially attempting to recognize people by their ‘color’. A valuable
feature of this approach is that is has a high degree of pose invariance built
in.2

The Pan et al. [14] study is based on a database of 200 subjects, collected
over five weeks, with various illumination, pose and expression conditions. Us-
ing a combination of facial tissue types (forehead, cheeks, lip, etc) the authors
achieve top-match recognition rates slightly above 90% for frontal probes ac-
quired in the same session as the gallery images. If frontal probes are taken
from a different date than the gallery images, top-match performance drops
to about 65%. When out-of-plane face rotation is taken into account, top-
match recognition rates drop to about 75% for 45 degree rotation and 50%
for full profile, all for same-session comparisons. While these performances

2 Pose invariance in this method is not complete, however. There is a fair amount
of dependence on face orientation due to the fact that bidirectional reflectance
effects are not taken into account in the author’s model.



15 Multispectral Face Recognition 311

may lag behind those of more traditional ‘full-face’ recognition methods, it is
important to note that they rely on completely different underlying features,
and thus should be largely uncorrelated with traditional methods. A related
approach to multispectral recognition in the visible domain can be found in
Chang et al. [4].

15.8 Conclusion

Multispectral face recognition is still a nascent field. There is enough evi-
dence to show that the use of different imaging modalities, either alone or in
combination can enhance recognition performance under a broad range of cir-
cumstances. However, the added expense and complication of using specialized
sensors has kept these approaches on the outskirts of mainstream face recogni-
tion research. As the current requirements for biometrics systems increasingly
demand low cost devices, it is hard to see multispectral approaches becoming
widespread. Rather, they will likely evolve to fill niches where traditional ap-
proaches cannot operate successfully due to environmental restrictions; face
recognition at nighttime is possibly one such area. Barring a drastic reduc-
tion in the cost of non-visible camera sensors, the future of multispectral face
recognition is likely split between the laboratory and the highly specialized
real-world application.
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16.1 Introduction

In this chapter, we consider and evaluate several techniques for multibiometric
processing of ear and face images. Common terminology for multibiometric
systems appears in an earlier chapter, and is mentioned here in abbreviated
form.

• Site: the body part being sensed (e.g., the ear).
• Sensor: the mechanism for acquiring raw biometric information (e.g., a

color camera).
• Algorithm: a computer procedure for computing the quality of match be-

tween processed biometric signatures.
• Mode: a combination of site, sensor, and algorithm.
• Multi-instance: The use of several sets of raw data acquired from the same

site and sensor and the same algorithm.
• Multi-sensor: The use of multiple sensors (and perhaps algorithms) to

capture data from the same site.
• Multi-algorithm: The use of multiple matching algorithms on the same

data.

Figure 16.1 depicts four examples of multibiometric systems. Figure16.2 shows
examples of images captured by two sensors (2D and 3D) and the two sites
relevant to this chapter (face and ear).

Incorporating a concept of time allows for another subcategory: multi-
presentation. In this method, a single feature is captured multiple times by
a single sensor with some delay between acquisitions, and these images are
submitted to a single algorithm.

16.1.1 Images

In order to combine biometrics, they must be fused at some level, and the
method of combination will affect the recognition rate of the system. The
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(a) Multi-instance using 3D ear and face

(b) Multi-sensor using 2D and 3D ear

(c) Multi-algorithm using 3D ear

(d) Multi-modal

Fig. 16.1. Examples of multi-biometrics systems.

levels of fusion have been discussed in an earlier chapter, and include the
following:

• Sensor level fusion combines the multiple raw data sets (typically images)
produced by the sensor. Chang et al. [6] concatenated ear and face im-
ages before applying a Principal Components Analysis-based system for
recognition.
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(a) 2D ear (b) 3D ear (c) 2D face (d) 3D face

Fig. 16.2. Examples of multiple features using different capture methods.

• Feature level fusion combines multiple extracted feature sets arising from
the low-level processing of the outputs of multiple sensors into a single
composite set used in subsequent processing.

• Score level fusion combines the recognition (matching) scores from each
recognition algorithm. Examples of score level fusion include using the
sum of matching scores, or their minimum, as the overall matching score
for recognition decisions. Care must be taken to make matching scores
commensurate if arithmetic fusion is performed. This is typically done by
normalization to a standardized interval or distribution, or by weighting;
however, the result of ad hoc normalization or weighting schemes must be
carefully validated before they can be used with confidence.

• Decision level (or rank level) fusion makes a final decision based on the
hypothesis rankings produced by the individual matching algorithms. A
simple example of this is the Borda count: adding the rank-match of the
face and ear, and taking the lowest sum as the rank-one match.

In this chapter, we review popular methods of individual face and ear bio-
metrics and results of combining them. Updated results are presented with
a detailed explanation of how they were acquired. The following sections de-
scribe benefits and challenges to multi-biometrics, followed by a discussion of
multi-biometrics.

16.2 Review of Mono-modal Face and Ear Biometrics

Before performing multi-biometrics on face and ear, it is important to un-
derstand the background for mono-modal biometrics involving these sites.
Various studies have shown how the face [28] and ear [6, 27] are viable bio-
metric features. Due to the different features, different methods of evaluation,
and different methods of combining the evaluations, we will review common
methods of biometrics and their evaluation, and describe how they can be
combined.
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16.2.1 2D Face Recognition

Intuitively, the face is a reasonable feature to use as a biometric. Recognizing
each other by facial appearance is something humans do regularly. Automating
the process in computer vision, however, is an active field of study. Locating
any face in an image automatically is challenging, let alone determining the
identity of the person it belongs to. Various classifications of face recognition
systems are covered by Zhao et al. [28].

The Face Recognition Vendor Test [2] (FRVT) is a government-sponsored
recognition technology evaluation used to determine the quality and scalabil-
ity of face recognition systems. It also provides the face recognition community
with potential research directions. The FRVT 2002 [20] consisted of main two
tests: high computational intensity and medium computational intensity. Sys-
tems in either category had to be fully automatic. The high computational
intensity test requires a system to perform recognition across 121,000 frontal
images in 1 day and 2 hours. The medium computational intensity task had
two subclasses: still and video. The still portion was used to measure per-
formance changes under effects such as time between images, lighting change
and pose. The video portion was designed to test whether video clips help
recognition performance.

The Face Recognition Grand Challenge [1] (FRGC) provides 50,000 record-
ings divided into training and validation sets. The FRGC consists of six ex-
periments: one controlled probe and one controlled gallery, four controlled
probe and four controlled gallery, controlled 3D probe and gallery, uncon-
trolled probe and uncontrolled gallery, 3D gallery and controlled 2D probe,
3D gallery and uncontrolled 3D probe.

Eigenfaces – Principal Components Analysis

The eigenface technique introduced by Sirovich and Kirby [23] for represen-
tation and developed for recognition by Turk and Pentland [24] has remained
a popular method of face recognition, and has been extended to the ear and
other biometric sources as well. This method uses Principal Components Anal-
ysis (PCA) to create a space where faces can be compared against each other
for matching.

Landmark points are determined on the feature. These points are struc-
tural components of the feature, such as the centers of the eyes, so they can be
determined on all subjects. The landmark points are then used to normalize
the feature in position and size, enforcing a concept of a standard pose.

Once the feature is normalized, a mask is then applied around the feature,
labeling which pixels are part of the feature and which are not, determining
the data to use for PCA. Ideally, the mask will leave only the sought biometric
feature and remove everything else from the image. The shape and size can
directly affect the quality of the recognition. A mask that is too small can
crop out important structures of the biometric feature (as in Figure 16.3(b));
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one that is too large can allow meaningless background features (e.g. hair)
to be included in the analysis. In the experiments presented in this chapter,
an elliptical mask was used, tuned experimentally over the course of several
single biometric experiments.

(a) Unmasked
Face

(b) Small Mask (c) Medium Mask (d) Large Mask

Fig. 16.3. A normalized feature, and three potential masks used to crop out the
face.

After the images in the training set have been normalized and masked,
Principal Components Analysis determines eigenvectors F1, F2, ...Fm. The
number of eigenvectors m has a maximum value of min(R,C), where R is
the number of training images and C the number of pixels in a training im-
age.

The space is tuned to reduce the number of vectors used. Ideally, all pos-
sible combinations of the eigenvectors would be explored, using the set which
yielded the maximum recognition rate for some validation case. However, this
would require the test to be run 2m times. Dimension reduction is traditionally
performed by dropping vectors from the front (the eigenvector representing
the highest variance in the data, usually associated with intensity changes in
the images) and from the back (in the direction of the least variance, consid-
ered to be negligible).

After PCA is performed, the vectors define a “face space” into which a
face I can be projected as a point I ′ in this space. The image I ′ is defined as
I ′ = α1F1 + α2F2 + ... + αmFm. The vector α = {α1, ...αm} is the location of
the face in the eigenface space, and is the result of the projection.

Recognition is performed by projecting the gallery into this space, and
comparing a projected probe point against these gallery points. The distance
between a probe point and a gallery point is used as a matching metric for
those two points. Different distance metrics are considered by Yambor et al.
[13], which advocates the use of the Mahalanobis Cosine in face space for
intensity images.

To use PCA for identification, the feature to be used for identification
must be segmented, or isolated from the rest of the image. This is usually
accomplished by manually finding landmark points on the image, and trans-
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Fig. 16.4. An example of the creation of the face space. The input images are taken,
normalized in position and size, and masked. This mask gives us a constant number
of feature pixels from each image, as well as removing non-essential components
from the image. Principal Components Analysis is then performed to generate the
face space. Dimensions are then dropped to reduce the size of this space, resulting
in the final face space.

Fig. 16.5. An example of how this face space is used for recognition. The probe
image and the gallery images are normalized and masked, then projected into the
space that was previously generated. The distances from the probe to each gallery
point are calculated, and the gallery image closest to the probe is the rank-one
match.

forming these landmark points to standard landmark destination points, thus
normalizing the feature in rotation, scale and translation. On a portrait face
these are typically the centers of the eyes.

An important component of the transformation is the scaling; because the
features are normalized in size, the same size mask can be applied to each
feature, resulting in a constant-sized feature. This is desirable because the
use of PCA demands that each extracted feature be the same size. From a
biometric standpoint, normalization in position and size enforces a concept of
a standard image frame for each sample.

Using a mask in conjunction with landmark points for segmentation pro-
vides many benefits: the mask provides a uniform number of image pixels, and
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the transformation to align the landmark points with the landmark destina-
tion points provides uniformity in rotation, translation and scale. However,
in these experiments operator intervention was required to design the mask
and label the landmark points. For practical implementation, automatic seg-
mentation and automatic landmark point detection would be ideal. While
automatic segmentation of features is an active field of research, the resulting
algorithms are not yet as good as we would like. Commercial face recognition
systems may sometimes fail to correctly detect the face in what appears to be
a subjectively simple image.

In addition to segmentation quality, performance using the eigenface
method will also vary due to the quality of the images used to generate the
space. When comparing a probe image to the gallery, the images are projected
into the space and the distance from the probe to each of the gallery images is
calculated. If the set used to generate the space does not have much variance,
then probe-gallery distances will be affected by the inability to accurately
approximate them.

Similarly, the number of eigenvectors retained for the space will affect
the ability to accurately approximate a projected feature. Consider a trivial
example where the eigenvectors of a plane lay along the x- and y-axes of a
Cartesian plane, and for this data set, (x, y) = (x′, y′). Any point in that
plane can be approximated perfectly. If we reduce this to one dimension by
removing the y-axis, the mapping looks something like (x, y) = (x′, 0), and
the error increases the further a point actually is from the line y = 0. For
these reasons, the error I − I ′ must be kept within some acceptable range.

16.2.2 2D Ear Recognition

One of the first to use ear biometrics was Iannarelli [17], who developed a man-
ual system of recognition using the ear. The image was adjusted to a standard
pose, and the measurements of the ear feature were taken by hand. This sys-
tem used twelve features of the ear, as well as race and gender information,
to uniquely identify 10,000 subjects.

Pun and Moon [21] gave an overview of ear biometrics. They cite the ear’s
smaller size and more uniform color as desirable traits for pattern recognition.
Other characteristics are that it is less invasive than iris or fingerprint recog-
nition, and more reliable than voice. They state that the principal methods of
ear biometrics are PCA, force field transformation, local surface patch com-
parisons using range data, Voronoi diagram matching, neural networks and
genetic algorithms.

Performance with PCA is dependent on the location of the landmark
points. While the eye centers provide objective landmark points for the profile
face, the variable ear shape makes selecting landmark points more subjective
and challenging, as some features may be more obscure on some subjects.
Chang [6] used the triangular fossa and incisure intertragica (Figure 16.6(a)),
and Yan [26] used triangular fossa and antitragus (Figure 16.6(b)).
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(a) Using the Incisure In-
tertragica

(b) Using the Antitragus

Fig. 16.6. Two different landmark points. In 16.6(a), the Triangular Fossa (top
point) and Incisure Intertragica (bottom point) are used as landmarks. In 16.6(b),
the Triangular Fossa and Antitragus are used.

The following experiment demonstrates the importance of mask quality.
Original landmark points were annotated by hand in a dataset of 415 subjects
(one gallery, one probe for each subject). The dataset was studied in four
subsets: “small” and “small2” had 88 images each, “med” had 202 images
(the 176 images from “small” and “small2”, with 28 more) and “all” used the
full 415-subject dataset. The landmarks are shifted to the left and right by 2,
4, 6, 8 and 10 pixels, modifying the part of the ear visible through the mask.

Datasets “small” and “small2” are person-disjoint sets, chosen to illustrate
the effect of the gallery on performance; two sets of the same size can have
differing recognition rates. The sets “small,” “medium” and “large”, where
“small” is a subset of “medium”, which is a subset of “large”, demonstrate
the negative effect that gallery size has on recognition.

The performance of each data set varied with the position of the land-
mark points. As the landmark points shift, the sections of the ear which are
occluded by the mask and those that are revealed by it will change. By shift-
ing away parts of the ear and shifting in undistinguishing features (i.e. hair
or cheeks), performance suffered. As Figure 16.7 demonstrates, the maximum
performance of each data set peaks at a particular point (not necessarily the
points we chose, meaning that our results could be higher). Each point rep-
resents the best possible performance of any number of vectors used, for each
horizontal shift of our landmarks. This maximum point over all vectors was
determined by exhaustively calculating the performance when dropping vec-
tors from the front and back. Determining the parameters which provide the
best performance would normally be done when first designing a biometric
system, to select the best landmark points and mask.
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Fig. 16.7. The effects of shift on four data sets of varying sizes. The negative shift
shifts landmark points to the left; the positive shift moves them to the right.

Geometric methods such as Choras̀ [11, 12] use automatically-extracted
properties of the ear (width and length, for example) as the elements of the
feature vector. Comparison is done by determining the difference between
the measurements of the probe feature and the measurements of each gallery
feature.

Hurley et al. [16] approach ear biometrics by modeling the image as a
Gaussian force field, where the pixels exert “forces” on each other modeled
after a magnetic field. The field lines created by the force field generate chan-
nels, which can be used for identification. They compare this method to PCA
using manual registration of the ear images. The force field method gave a
99.2% recognition rate, using 4 samples of each of 63 subjects, taken over a
period of 5 months. The PCA method gave a recognition rate of 98.4%.

16.2.3 3D Face Methods

A survey by Bowyer et al. [5] categorized 3D face methods into two cate-
gories: one which performed recognition based solely on 3D shape, and multi-
biometrics which used both the 2D and 3D information. Lao et al. [19] perform
fusion at the feature-extraction level, using isoluminance contours to perform
stereo matching. Recognition rates of 87-96% are reported using a dataset of
10 subjects, with four images at each of nine poses for each subject. Chang
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et al. [7] use PCA for both the intensity and range images, with 99% rank-
one recognition using 200 subjects for the fused methods. Individually, PCA
achieved 94% rank-one recognition for the range images and 89% for the in-
tensity images.

16.2.4 3D Ear Methods

Iterative Closest Point (ICP) is a method of calculating a rigid transformation,
aligning two sets of points as closely as possible and minimizing the distance
between them. In a biometric application, these “point clouds” are 3D gallery
images being aligned to a probe image. The difference (a distance measured
in millimeters) between gallery and probe points can be used for comparison.
The gallery image of the probe-gallery pair with the least difference is the
rank-one match of the probe.

Chen and Bhanu [10] utilized ICP in a three-step process to recognize an
ear by its 3D shape. The first step was to use the 3D data to determine the
location of the outer edge of the ear (the “helix”), using the strong depth
difference between the ear helix and the head to determine the edge voxels.
These helix voxels were located for the probe ear and the gallery ears. ICP
was then used to align the helix of the probe to each of the gallery images.
Once this “coarse alignment” was performed, the transformation was applied
to each gallery image. ICP was then used again on the entire image, and the
error was used as the matching criterion. For testing, a set of 60 manually-
extracted ear images (a probe and a gallery for each of 30 subjects) was used.
Rank-one recognition on this data set was 93.3%.

Yan and Bowyer [27] used ICP on the entire ear image, with the ear au-
tomatically segmented. First, the nose tip is located using the depth image.
Then, skin detection [15] is used to locate the skin region. Curvature infor-
mation [3, 14] for this area is calculated and used to locate the ear pit. This
point is used as the starting point of an active contour model [18] used on
both the 2D and 3D images to determine the final ear candidate. ICP was used
with various subsamplings of probe and gallery, as well as different variants
of ICP: point-to-point (minimizing the distance between two sets of points),
point-to-surface (minimizing the distance between a point and a calculated
surface), and a combination. The non-subsampled probe and gallery gave the
best performance (97.6% rank-one recognition). Each recognition took 15-18
seconds to perform. Subsampling reduced recognition performance by about
1% but also reduced the time required to 2-3 seconds per match. Experiments
were performed on a 415-subject data set with 1386 probes and 415 gallery.

Using 3D images clearly demonstrates an advantage over 2D images for ear
biometrics. The rank-one recognition for the ICP method of ear recognition
was 97.6%, while the best performance for the 2D method was 61.7% rank-one
recognition on the same subjects.

Bowyer et al. [5] report that one of the challenges of 3D is sensor difficulties.
One of these is “the myth of illumination invariance,” because while the 3D
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shape is illumination-independent as a physical property, it cannot be sensed
independently of illumination. If part of the object is saturated in light, then
any light projected by the sensor will not be detected because the sensor is
already saturated by the existing light conditions. Another challenge is that
algorithms need to be improved, so features that are elastic (such as the face)
are not treated as though they are rigid (as they are with eigenfaces or ICP).

16.2.5 Multi-biometric Recognition Using Face and Ear

Chang et al. [6] demonstrated the utility of a multi-instance biometric, using
PCA to evaluate 2D portrait face and ear. This method used manually land-
marked faces and ears. The probes differed from the gallery in one of three
categories: day (88 subjects), lighting (111 subjects) and pose (101 subjects).
Fusion was performed at the extraction level, concatenating the ear image
onto the face image before performing recognition. Face and ear had compa-
rable rank-one recognition rates in the day-variation experiment, 70.5% and
71.6%, respectively. In the lighting variation experiment, rank-one recognition
was 64.9% for the face and 68.5% for the ear. In the pose variation experi-
ment, rank-one recognition for the face and ear were just over 20% and 10%,
respectively, when trained on the gallery set. When combined, performance
improved significantly for the day variation experiment, increasing to 90%
when the two metrics were combined. A statistically significant difference is
also achieved in the lighting-variant experiment, with a combined rank-one
score of 87.4%.

Rahman and Ishikawa [22] used a multi-instance approach and com-
bined 2D PCA methods of ear and face, using profile images with manually-
extracted features. Instead of the usual portrait face, the profile was used.
Combining profile face with ear using 18 subjects had up to a 94.44% recogni-
tion rate. One advantage to this method is that the profile face and ear inputs
are captured in the same image, reducing the amount of subject participation
necessary (capturing a portrait face and asking them to turn to the side) or
the amount of hardware (multiple cameras to capture images of the face and
ear simultaneously).

Yan [25] explored 3D face and ear for a combined biometric on a dataset
of 174 probe and gallery subjects. In this experiment, features were extracted
automatically. Using ICP, rank-one recognition for face was 93.1%, and rank-
one recognition for ear was 97.7%. The fused biometrics achieved 100% rank-
one recognition.

16.2.6 Face + Ear vs. Ear + Ear vs. Face + Face

Multi-biometrics combining face and ear are inherently multi-instance sys-
tems. From a technical standpoint, this means that while the same type of
sensor is used for each biometric feature, a different method will have to be
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applied to segment each feature. Additionally, multiple sensors may be neces-
sary to capture the features (for example, a system of cameras set up around
a subject to simultaneously capture face and ear). Using the same sensor to
capture the same feature (multi-presentation) is simpler since more sensors
aren’t necessary, and the same segmentation algorithm can be applied to each
input.

Chang et al. [8] compares multimodal and multi-presentation methods, us-
ing the face as the biometric feature. The authors state that although it widely
demonstrated that multi-biometrics can outperform individual biometric fea-
tures, the exact conclusions are muddled: how much improvement comes from
simply having a variety of images, and how much is from having different
data? This paper contrasts the use of 2D + 3D to using multi-presentation
2D. Using a 198-subject gallery, the multi-sensor (2D + 3D) method had rank-
one recognition of 97.5%, outperforming the multi-presentation (multiple 2D)
method which had rank-one recognition of 94.4%. However, using more probe
images for the multi-presentation experiment further improved peformance,
reportedly reaching a plateau of 96% rank-one recognition in the range of
using four images to represent a person in the gallery and probe set, making
the performance comparable to the multi-sensor biometric.

16.3 Examples

We will illustrate the concepts from this chapter by walking through exper-
iments similar to those discussed in the previous section. When designing a
multi-biometric, four things must be considered: the biometric feature or fea-
tures to use, the method or methods of evaluation, the level of fusion and how
it will be performed, and the final evaluation. In each experiment here, bio-
metrics are fused at the score level, using one of four different fusions: simple
sum, weighted-sum (70% face, 30% ear), the reverse weighted-sum (30% face,
70% ear), and min fusion.

16.3.1 An example using multi-instance biometrics

The experiment is similar to one performed by Chang et al. in [6], which
performed recognition using PCA on the intensity images of the profile ear
and portrait face. In that study, fusion was performed at the extraction level.
Here, the multi-biometric is multi-instance and fusion is performed at the
score level.

Step 1: Feature Extraction

The features in this experiment were extracted using a two-step process: image
normalization and masking. Feature landmarks were first annotated by an
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operator. For the face, the eye centers were used. The triangular fossa and
antitragus (shown in Figure 16.6(b)) were used for the ear.

The image is transformed to align the landmarks with the landmark des-
tination points, normalizing the images in size and location. A custom mask
is then applied around the feature in the transformed image to crop out the
non-feature pixels. The result is a set of extracted features of a normalized
size.

Step 2: Individual Evaluation

Principal Components Analysis is performed individually for the ear and face,
using the implementation by Beveridge [4]. For each feature, the 411-subject
gallery is used to generate the PCA space. Each probe generates a distance
file, giving the distance to each gallery image (samples from a file shown in
Table 16.1). The Mahalanobis Cosine angle was used, so the distance range is
from [−1, 1], where −1 is the best possible score and 1 is the worst.

gallery subject distance

02463 -0.426

04201 -0.197

04202 -0.024

04203 0.106

04213 0.008

04217 0.020

04221 0.034

Table 16.1. An example of distances from the probe subject (02463) to the gallery
points in eigenface space, using the Mahalanobis Cosine as the distance metric. In
this experiment there were 411 total subjects.

Using these scores, individual recognition rates can be calculated (though
they are useful for comparative purposes, these rankings are not used in score-
level fusion). Ear had a rank-one recognition rate of 62.2% and the face had
a rank-one recognition rate of 88.1%. In Chang’s original experiment, the
face and ear had comparable performance of approximately 71% recognition
and when fused yielded 90.4% rank-one recognition. In Chang’s experiments,
unlike this one, images were selected for quality. Ears which had structural
changes (e.g. earrings), were obscured (e.g. hair) or had lighting variation,
were removed from Chang’s data set. A lower-quality dataset can account for
this difference in performance.

Step 3: Score Fusion

Each probe now has a distance to every gallery image, for both the face and
ear. To perform sum fusion, the distance from the probe ear to the ear of a
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Fig. 16.8. An example of a fusion metric performing where both individual metrics
failed. The left column is the probe set, the right column is the gallery set.

gallery subject is added to the score from the probe face to the face of the
same gallery subject. The rank-one match is the gallery whose sum is the
least.

We also perform two weighted-sum fusions and a min fusion. The weighted-
sum fusions use weights of 70% ear and 30% face, and 30% ear and 70% face.
The min fusion rule ranks matches in the order of the minimum of the ear
and face matching scores.

Step 4: Fused Recognition Rate

After collecting the rank-one matches for all probes, the recognition rate is
the number of correct matches divided by the number of probes. In this ex-
periment, the rank-one recognition rates using all combination methods was
100%.

Figure 16.8 shows a subject where the individual PCA methods both failed
to identify the individual, but together succeeded.

16.3.2 An example using multi-modal biometrics

The fusion of 2D face with 3D ear as in Yan and Bowyer [26] was also per-
formed with the 411-subject gallery. This method is multi-modal, as it is
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multi-instance (face and ear), multi-sensor (2D and 3D), and multi-algorithm
(PCA and ICP). This section will focus specifically on what was done for ICP
to avoid redundancy with the previous section.

Step 1: Feature Extraction

Yan and Bowyer [26] used the method outlined in Section 16.2.4 for ear feature
extraction. The 3D information was used to localize the head, color informa-
tion was used to determine the skin region. Curvature analysis was performed
within this region to locate the ear pit, which was used as a starting point for
the active contours used to extract the ear.

Step 2: Individual Evaluation

The probe and gallery images are aligned using the Iterative Closest Point
algorithm, yielding a rigid transformation for each (probe, gallery) pair. The
RMS distance between closest points in the aligned images is the matching
score (lower scores reflect better alignment). Table 16.2 shows examples of
these distances for a fixed probe ear image from subject 02463.

gallery subject distance

02463 0.38

04201 1.05

04202 1.05

04203 1.28

04213 1.28

04217 1.14

04221 0.94

Table 16.2. An example of RMS distances between a single probe ear image from
subject 02463 and gallery ear images from several subjects.

Rank-one recognition with the PCA face component is 88.1%, and rank-
one recognition with the ICP ear component (using RMS distance as the
matching score) is 91.6%.

Step 3: Score Fusion

The score range for ICP is from [0, inf), where lower scores mean closer
matches. The range using the Mahalanobis cosine with PCA is [−1, 1], where
lower is better. Because the ranges don’t match, the scores need to be nor-
malized to the same range before they can be compared. We accomplish this
using min-max normalization for each data set. For each score s in dataset
i, s′i = (si −mini)/(mini −maxi), where mini and maxi are the minimum
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and maximum value for each data set. This scales the scores in each dataset
to the range [0, 1], allowing them to be fused. In this case, the sets i = 1 and
i = 2 are the PCA and ICP distances.

The four fusion approaches from the previous section are tested again here.
The effect of weighting here will be especially interesting, since the individual
biometrics perform equally well.

Step 4: Fused Recognition Rate

Using a simple sum-of-normalized-scores fusion rule, the combined recognition
rate is 97.6%. Weighted sums of normalized scores using 70% face and 30%
ear gave a recognition rate of 95.6%. When using 70% of the ear score and
30% of the face score, a recognition rate of 97.8% was achieved. Using the min
score gave a recognition rate of 81.5%. Figure 16.9 shows rank vs. recognition.

Fig. 16.9. The recognition rates of the individual metrics, and the combined rates.

Using the minimum distance caused the system to perform worse than
either metric alone, where combining provided improvement in each case.
Weighting the ear heavier provided the best fusion of the methods demon-
strated, though all sum fusions improved the recognition rate.
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16.4 Discussion

As stated in the literature, combining ear and face biometrics can improve
performance over using either metric alone. The face is larger, but changes
easily with expression (e.g. Chang et al. [9]) and over time. The ear is smaller,
changes less over time, and is rigid to expression changes. However, it is also
more easily occluded.

The advantage of using 2D methods is that capturing the sample is simple:
“regular” images can be captured in a fraction of a second, from a wide range.
These types of images, however, lose the notion of depth.

An advantage to using both ear and face is that of increased coverage.
Even if one of the features is occluded (e.g. hair covering the ear), some
recognition is possible if one of the biometric features can be captured (if, for
example, the face is still available). However, more equipment is required to
acquire the additional data. In the case of combining 2D and 3D images, for
example, a system needs both types of sensor. Another limitation is that of
subject cooperation. For combined biometrics requiring features that cannot
be acquired simultaneously (such as a multi-instance system requiring the
face and ear), the subject will have to assist the system. In instances where
cooperation cannot be guaranteed, a multi-biometric may not be feasible.

The preprocessing stage of a biometric system is a step which is often
left to manual methods. Feature location, segmentation, and normalization
are all important for biometric evaluation, and performing this step manually
over thousands of images can create a bottleneck in the deployment of the
system. Automation is made difficult by occlusion, lighting, and structural
changes which make it difficult to write definitive rules for defining a feature.
Automatic detection and segmentation of the ear is still an active research
topic.

Evaluation methods are constantly being refined, with new results being
published on larger datasets. Lab testing allows more processing time, which
can in turn give higher results. In the field, however, system speed is impor-
tant. In a security scenario, for example, identifying a person is not useful if
they walked away from the sensor an hour ago.

In this chapter we focused on multi-biometrics in the context of the ear
and face as features to be used for identification. These techniques are already
multi-instance (same sensor for the ear and face) but can also be multi-modal
(different sensors or algorithms for the ear and face). The multiple features
will provide two comparison points instead of a single one for identification.
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17.1 Introduction

Information fusion in a multibiometric system can be accomplished at the
sensor, feature, match score, rank, or decision levels. Depending on the level
of fusion, inputs to the fusion module may consist of raw images, features,
match scores, ranks or identity decisions generated by the individual biomet-
ric sources. Apart from these inputs, a multibiometric system may have access
to ancillary information that may be beneficial in the decision generation pro-
cess. Intrinsic ancillary information is derived from the same biometric sample
that is used for verifying or establishing the identity of the user. An exam-
ple of intrinsic information is the quality of the acquired biometric sample
(e.g., fingerprint image quality). Extrinsic information is derived from sources
other than the acquired biometric sample. For instance, characteristics such
as gender, ethnicity, height or weight of the user (collectively known as soft
biometric traits) can be obtained as the user approaches a fingerprint recog-
nition system. Though the ancillary information may not be directly related
to the identity of the user, it is still useful for recognition in many ways,
especially in a multibiometric system. The main difficulty in incorporating
ancillary information in a multibiometric system lies in (i) designing tech-
niques that can automatically extract the required ancillary information from
the individual, and (ii) designing fusion mechanisms that can effectively uti-
lize this additional information to improve recognition accuracy. This chapter
presents some techniques that have been proposed in the literature to address
these challenges in the context of quality-based fusion and soft biometrics.

17.2 Quality-based fusion

The quality of the acquired biometric data directly affects the ability of the
biometric matcher to perform the matching process accurately and effectively.
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Noise can be present in the biometric data due to defective or improperly
maintained sensors, incorrect user interaction or adverse ambient conditions.
For example, accumulation of dirt on a fingerprint sensor can result in the
acquisition of a noisy fingerprint image. When noisy fingerprint images are
processed by a minutiae-based fingerprint recognition algorithm, a number of
false (spurious) minutia points may be detected. Figures 17.1(c) and 17.1(d)
show the minutiae extracted from good quality (Figure 17.1(a)) and noisy
fingerprint (Figure 17.1(b)) images, respectively, using the minutiae extraction
algorithm proposed in [16]. We observe that no false minutia is detected in the
good quality fingerprint image shown in Figure 17.1(c). On the other hand,
Figure 17.1(d) indicates that several spurious minutiae are detected in the
noisy image. In practice, some true minutiae may not be detected in poor
quality images. These spurious and missing minutiae will eventually lead to
errors in fingerprint matching [6].

Estimating the quality of a biometric sample and predicting the perfor-
mance of a biometric matcher based on the estimated quality can be very
useful in building robust multibiometric systems. This will allow us to dy-
namically assign weights to the individual biometric matchers based on the
quality of the input biometric sample. For example, consider a bimodal bio-
metric system utilizing iris and fingerprint for personal recognition. Assume
that during a particular access attempt by the user, the iris image is of poor
quality while the fingerprint image quality is sufficiently good. In this case, it
would be instructive for the biometric system to automatically assign a higher
weight to the fingerprint matcher and a lower weight to the iris matcher. With
this motivation in mind, we now describe methods for automatically deter-
mining the quality of iris and fingerprint images, and incorporating them into
a fusion framework.

17.2.1 Fingerprint image quality

A good quality assessment algorithm must be able to accurately determine
the quality of local regions in the biometric sample and also provide a metric
to describe the overall (global) quality of the sample. Several methods have
been proposed for estimating the quality of a fingerprint image. Within a
small region of a fingerprint image, the orientation of ridges is almost con-
stant. Hence, spatially adjacent regions in a fingerprint image usually exhibit
a primary dominant direction (exceptions include regions associated with sin-
gular points). Bolle et al. [5] use the directional histogram to classify local
regions of a fingerprint image as being either directional or non-directional.
They tessellate a fingerprint image into blocks and compute the histogram of
intensities in each block based on the ridge direction. If the maximum value of
the histogram is greater than a threshold, the block is labeled as directional.
Further, a relative weight is assigned to each block based on its distance from
the centroid of the fingerprint area. Since the regions near the centroid of the
fingerprint area are likely to provide more discriminatory information than
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(a) (b)

(c) (d)

Fig. 17.1. Minutiae extraction results for fingerprint images of varying quality. (a)
A good quality fingerprint image. (b) A noisy fingerprint image. (c) Minutia points
detected in the good quality fingerprint image by an automatic minutiae extraction
algorithm. (d) Minutia points detected in the noisy fingerprint image. The circles
represent true minutia points while the squares represent false (spurious) minutiae.
While no spurious minutia is detected in the good quality fingerprint image, several
false minutia points are detected when the fingerprint image quality is poor.

the peripheral regions, higher weights are assigned to the blocks near the cen-
troid. The weight, wi, of the ith block centered at li = [xi, yi] is computed
as

wi = exp
(−||li − lc||2

2r2

)
, (17.1)

where lc = [xc, yc] is the location of the centroid of the fingerprint area and
r is a normalization constant. The ratio of the total weight of the directional
blocks to the total weight of all the blocks in the fingerprint image is used as a
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measure of the global fingerprint image quality. In the same way, Gabor filters
can be used instead of the directional histogram to determine if the regions
of a fingerprint image have a clear ridge-valley structure [15].

The directional nature of the ridges in a local fingerprint region can also
be measured in terms of its coherence value, which is a good measure of the
local quality in that region [6]. The fingerprint image is divided into small
blocks and the gradient vector at each pixel in a block B is computed. Let Σ
be the covariance of the gradient vectors in B. Let the two eigenvalues of Σ
be λ1 and λ2 such that λ1 ≥ λ2. The coherence, γ, of the block is defined as

γ =
(λ1 − λ2)2

(λ1 + λ2)2
, (17.2)

with 0 ≤ γ ≤ 1. When the value of γ of a block B is close to 1 (λ1 À λ2),
it indicates that the ridges in the fingerprint region are strongly oriented in
a specific direction, indicating a good quality region. On the other hand, a
value of γ that is close to 0 (λ1 ≈ λ2) indicates the ridges do not have a clear
direction which is mostly due to poor quality. We can also compute a global
quality index for the fingerprint image as a weighted average of the block-wise
coherence measures. The global quality index can be estimated as

Qfinger =
N∑

j=1

wjγj , (17.3)

where γj is the coherence of the jth block, N is the total number of blocks
and wj is the weight assigned to a block (see equation (17.1)). Figure 17.2
shows the local quality maps of two fingerprint images and their global quality
indices.

The coherence-based fingerprint image quality measure described above
quantifies the quality of an individual fingerprint image. When both the tem-
plate and query fingerprint images are available during matching, it is also
possible to compute a single quality index to represent the quality of the match
between the two images. Such a measure is known as pairwise fingerprint qual-
ity [25] and it can be obtained as follows. Let Tf and If represent the template
and query fingerprint images, respectively. We can partition Tf and If into
blocks and estimate the coherence γ and γ′ for each block in Tf and If , respec-
tively. Let M1, . . . , Mm be the m minutiae in Tf , where M i = {xi, yi, θi},
i = 1, . . . ,m, (xi, yi) represents the location of the ith minutia point in Tf

and θi is the direction of the ith minutia. Let M ′
1, . . . , M

′
n be the n minutiae

in If , where M ′
j = {x′j , y′j , θ′j}, j = 1, . . . , n. Let γ(x, y) and γ′(x, y) be the

quality (coherence) of the block which contains the location (x, y) in Tf and
If , respectively. Let ∆ = [∆x,∆y,∆θ] represent the translation and rotation
parameters that transform a point (x, y) in Tf to a point (x′, y′) in If and
let t be the transformation function. Let A and A′ denote the areas of the
fingerprint regions in the template and the query. The area of overlap, Ao,
between the fingerprint regions of Tf and If can be computed using ∆. The
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(a) (b)

(c) (d)

Fig. 17.2. Computing the quality index Qfinger using the coherence measure. (a)
A good quality fingerprint image and (b) corresponding local quality map. (c) A
poor quality fingerprint image and (d) corresponding local quality map. In (b) and
(d), brighter blocks indicate higher quality regions. The values of Qfinger for the
two images are 0.95 and 0.20, respectively.

quality of matching between the template and query images, Qfinger(Tf , If ),
is then defined as follows.

Qfinger(Tf , If ) =
(

r1 + r2

m + n

) (
2Ao

A + A′

)
, (17.4)

where

r1 =
m∑

i=1

γ(xi, yi)γ′(t(xi, yi, ∆)) and

r2 =
n∑

j=1

γ(t(x′j , y
′
j ,−∆))γ′(x′j , y

′
j).
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Here, 0 ≤ Qfinger(Tf , If ) ≤ 1. Note that if a minutia point in the template
(query) falls outside the fingerprint region of the query (template) image, then
the quality of that minutia is set to zero. Given good quality template and
query fingerprint images with large overlap, Qfinger(Tf , If ) ≈ 1. In practical
biometric systems, only the template minutiae set is stored in the database
and the raw template image is not available during matching. Since user en-
rollment is usually done under human supervision, the enrollment images are
generally of good quality. Therefore, the global quality of a query fingerprint
image (given by equation (17.3)) may be sufficient to predict the matcher
performance.

There have been several other researchers who have addressed the problem
of fingerprint quality. Tabassi et al. [29] present a technique for assigning a
quality label to a fingerprint image based on the discriminative ability of the
extracted minutia features. This approach assumes that the feature extraction
module is reliable, and that there is a strong correlation between the quality
label assigned and the performance of the fingerprint matcher. Chen et al. [6]
discuss a frequency domain approach for estimating the global quality of a
fingerprint image. In March 2006, a NIST Workshop was convened to explore
the topic of biometric image quality3 thereby suggesting the significance of
the problem and its implications in biometric system design.

17.2.2 Iris image quality

The quality of an iris image may be affected by factors such as occlusion due to
eyelashes and eyelids, improper focus, motion blur, non-uniform illumination,
large pupil area, off-angle acquisition, specular reflection, etc. Researchers
have attempted to quantify these factors. Techniques for assessing the focus
of iris images were proposed in [9] and [30]. Ma et al. [21] utilize the energy
in the low, moderate and high frequency bands of the 2-dimensional Fourier
power spectrum to classify the iris images based on their quality. However,
Chen et al. [7] argue that since the Fourier transform does not localize well
in the spatial domain, it (i.e., the Fourier transform) is not appropriate for
deriving local quality measures. Hence, they propose a wavelet transform-
based iris quality measurement algorithm.

The algorithm proposed by Chen et al. [7] consists of the following steps.
The given iris image is segmented into iris and non-iris regions using Canny
edge detection and Hough transform (for detecting circles). The detected iris
and eye-lid boundaries for a good quality iris image and a poor quality iris
image are shown in Figures 17.3(a) and 17.3(b), respectively. An intensity
thresholding is applied to remove the eyelashes. Figures 17.3(c) and 17.3(d)
show the extracted iris patterns after the removal of eyelashes. Once the iris
region has been localized, a 2-dimensional isotropic Mexican hat wavelet filter
[22] is applied to the extracted pattern. The Mexican hat filter is applied at

3 http://www.itl.nist.gov/iad/894.03/quality/workshop/
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three different scales and the product of the responses at the three scales is
treated as the overall response of the filter. The quality of the local regions
in the iris image is obtained by partitioning the iris region into concentric
windows. Let the number of windows be N . The energy, Et, of the tth window
is defined as

Et =
1
Nt

Nt∑

i=1

|wt,i|2, (17.5)

where wt,i is the ith wavelet response in the tth window, Nt is the total number
of wavelet coefficients in the tth window and t = 1, 2, . . . , N . Chen et al. [7]
claim that the energy Et is a good indicator of the quality of the iris features
and hence, it is a reliable measure of local iris quality (high values of Et

indicate good quality regions and vice versa). Figures 17.3(e) and 17.3(f)
show the local quality based on the energy concentration in the individual
windows.

The global quality Q of the iris image is then estimated as a weighted
average of the local quality measures. The global quality index Q is given by

Qiris =
1
N

N∑
t=1

(mt × log Et), (17.6)

where mt is the weight assigned to each window. Since the inner regions of the
iris pattern which are close to the pupil contain richer texture information and
are less occluded by eyelashes compared to the outer iris regions [28], higher
weights can be assigned to windows near the pupil center. To account for the
variations in the pupil dilation, iris size and rotation, the rubber sheet model
proposed by Daugman [9] is used to normalize the iris texture and the local
quality measures.

The wavelet-based iris image quality measure described above quantifies
the quality of an individual iris image. When both the template (Ti) and
query (Ii) iris images are available during matching, a pairwise quality index
[25] can be computed to represent the quality of the match between the two
images as follows. The responses obtained after applying the wavelet filter are
sampled at R different radii and at S angles for each radius. Let wr,s be the
wavelet response at the rth radius (r = 1, . . . , R) and sth angle (s = 1, . . . , S)
in Ti and let w′r,s be the corresponding wavelet response in Ii. The average
wavelet response at each radius r is computed as wr (= 1

S

∑S
s=1 wr,s) and

w′r (= 1
S

∑S
s=1 w′r,s) in Ti and Ii, respectively. The quality of match between

the template and query iris images, Qiris(Ti, Ii), is defined as the correlation
coefficient between the vectors w = [w1, . . . , wR] and w′ = [w′1, . . . , w

′
R]. Here,

−1 ≤ Qiris(Ti, Ii) ≤ 1 and the quality is good (Qiris(Ti, Ii) ≈ 1) when the
template and query iris images are of similar quality.
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(a) (b)

(c) (d)

(e) (f)

Fig. 17.3. Quality estimation for two iris images. (a) and (b) Detected iris bound-
aries and eyelids. (c) and (d) Extracted iris patterns after eyelash removal. (e) and
(f) Local quality measures based on the energy concentration in the individual win-
dows. The quality score for the good quality iris image on the left is 0.89, while the
quality score for the poor quality iris image on the right is 0.58. Note that brighter
pixel intensities indicate higher quality.
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17.2.3 Quality-based fusion techniques

The quality information of a biometric signal can be utilized by any of the
three match score fusion approaches, namely, density-based fusion, transformation-
based fusion and classifier-based fusion. This section describes schemes for
incorporating the estimated quality measures in each of the three score fusion
techniques. Besides these techniques, other methods to incorporate quality
measures in match score fusion have also been proposed in the literature. For
example, Baker and Maurer [2] adopt a hybrid (density-based and classifier-
based) score fusion approach in a multi-instance biometric system that uses
fingerprints from all 10 fingers of a person. The fingerprint images are divided
into five quality levels and the genuine and impostor score densities are esti-
mated at each quality level. Based on the quality-dependent density estimates,
a Bayesian Belief Network (BBN) classifier is used to decide whether the set
of input fingerprints come from a “genuine user” or an “impostor”.

Classifier-based fusion

The following methodology to incorporate the quality of the input biometric
samples into a support vector machine (SVM) classifier, which determines the
decision boundary between the genuine and impostor classes, was proposed
in [11]. Let s = [s1, s2, . . . , sR]T be the vector of match scores output by R

biometric matchers and q = [q1, q2, . . . , qR]T be the vector containing the cor-
responding quality measures of the biometric samples presented at the input
of the R biometric matchers. Let us assume that we have N training samples
of the form (si, qi, yi), where si and qi represent the R-dimensional match
score vector and the quality vector of the ith training sample, respectively,
and yi ∈ {−1, 1} represents the corresponding class label (−1 if the sample
belongs to the impostor class and +1 if the sample comes from the genuine
class). The goal is to learn the fusion function fsq (st, qt) that takes the match
score and quality vectors (st and qt, respectively) of the test sample as input
and generates a fused score which helps in predicting the output label yt as
accurately as possible. A SVM is used to determine an initial fusion function
fs(s) = ws + w0 by solving the following optimization problem.

min
s,w0

(
1
2 ||w||2 +

∑N
i=1 Ciεi

)
, such that (17.7)

yi (wsi + w0) ≥ 1− εi,

εi ≥ 0, ∀i, i = 1, 2, . . . , N.

In Equation 17.7, εi represents the training error (distance between an
incorrectly classified training sample and the decision boundary) and Ci

represents the cost assigned to the training error. The weight vector w =
[w1, w2, . . . , wR] represents the weight assigned to each component of the
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match score vector s, which indicates the relative importance of the different
biometric matchers. In a general SVM classifier, the cost Ci, i = 1, . . . , N ,
is assigned a positive constant C and the value of C is a tradeoff between
the training error rate and the generalization error rate. In [11], the authors
argue that if a biometric sample is of good quality, then the cost of misclas-
sifying this sample during training must be relatively high and vice versa.
Hence, the cost Ci for each training sample is made to be proportional to the
biometric signal quality. Further, R different SVMs were trained by leaving
out one component from the vectors si at a time, i.e., f j

s is trained using
sj

i =
[
si1, . . . , si,(j−1), si,(j+1), . . . , siR

]
.

During the authentication phase, the fused score provided by the SVM
classifier is adaptively weighted based on the quality of each input biometric
component. Experiments conducted on the MCYT database [26] containing
fingerprint and online signature modalities show that the quality based fusion
scheme results in a relative reduction of 20% in the Equal Error Rate (EER)
over the case where no quality measures are used [11]. In these experiments
the quality scores are manually assigned to the fingerprint images while the
quality of all the signature samples is assumed to be the same.

Transformation-based fusion

A quality-weighted sum rule for score level fusion was proposed in [10]. The
scores from minutiae-based and ridge-based fingerprint matchers were com-
bined using a weighted sum rule, where the weights were determined based
on the sensitivity of the two matchers to the quality of the fingerprint im-
age. When the fingerprint image is of low quality, the ridge-based matcher is
assigned a higher weight because it was found to be less sensitive to image
quality. On the other hand, when the fingerprint image is of good quality, the
minutiae-based matcher was found to be more accurate and hence, assigned
a higher weight. The match scores from the minutiae-based and ridge-based
fingerprint matchers were normalized using tanh and double-sigmoid methods
of normalization, respectively, transforming them into similarity scores in the
range [0, 1]. The fused score was obtained as

sq =
Q

2
sm +

(
1− Q

2

)
sr, (17.8)

where sm and sr are the normalized match scores from the minutiae- and
ridge-based matchers, respectively, and Q is the global quality of the input
fingerprint image computed using the algorithm proposed in [6]. Experiments
conducted on a subset of the MCYT database [26] containing 750 fingers
with 10 impressions per finger, indicate that the combination of minutiae
and texture-based matchers using the quality-weighted sum rule performs
better than the two individual matchers and also the simple sum rule (without
weights) as shown in Figure 17.4.
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Fig. 17.4. DET plot demonstrating the improvement in the verification performance
due to the quality-weighted sum rule.

Density-based fusion

Based on the likelihood ratio-based match score fusion approach described in
[8], Nandakumar et al. [25] proposed the following quality-based likelihood
ratio fusion scheme. This scheme is based on the following observation. When
a poor quality sample is presented to a matcher, the matcher cannot reliably
distinguish between genuine and impostor users and the likelihood ratio will
be closer to 1. On the other hand, for good quality samples, the likelihood ratio
will be greater than 1 for genuine users and less than 1 for impostors. Hence, if
we estimate the joint density of the match score and the quality of the match
for each matcher, the resulting likelihood ratios of the individual matchers
will be implicity weighted. Let qr be the quality of the match provided by the
rth matcher, for r = 1, . . . , R, where R is the number of matchers to be fused.
Let fgen,r(sr, qr) ((fimp,r(sr, qr)) be the joint density of the match score and
the quality estimated from the genuine (impostor) template-query pairs of the
rth matcher. The quality-based fusion score, FS(s, q), is given by

FS(s, q) =
R∏

r=1

fgen,r(sr, qr)
fimp,r(sr, qr)

. (17.9)

The above quality-based fusion rule assumes independence between the R
biometric matchers. However, within each matcher the match score and the
quality measure can be correlated. Experiments on the West Virginia Uni-
versity multimodal database, which consists of 320 subjects with five samples
each of fingerprint and iris modalities, demonstrate that quality-based fusion
leads to significant improvement in the performance (see Figure 17.5).
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Fig. 17.5. ROC plots demonstrating the improvement in the verification perfor-
mance due to the quality-based likelihood ratio fusion rule.

17.3 Soft biometrics

A multimodal biometric system that utilizes a combination of biometric iden-
tifiers like face, fingerprint, hand geometry and iris is more robust to noise
and can alleviate problems such as non-universality and lack of distinctive-
ness, thereby reducing the error rates significantly. However, using multiple
traits may increase the enrollment and verification times, cause more incon-
venience to the users and increase the overall cost of the system. Hence, Jain
et al. [17] propose another solution to reduce the error rates of the biomet-
ric system without causing any additional inconvenience to the user. Their
solution is based on incorporating soft identifiers of human identity like gen-
der, ethnicity, height, eye color, etc. into a (primary) biometric identification
system. Figure 17.6 depicts a scenario where both primary (face) and soft
(gender, ethnicity, height and eye color) biometric information can be auto-
matically extracted and utilized to verify a user’s identity. In this scenario,
the height of the user can be estimated as he approaches the camera and his
gender, ethnicity and eye color can be estimated from his face image. These
additional attributes can be used along with the face biometric to accurately
identify the person. Though soft biometric information is commonly collected
in Automated Fingerprint Identification Systems (AFIS) used in the foren-
sic community, it is not utilized during the automatic fingerprint matching
phase. For example, the fingerprint card used by the Federal Bureau of Inves-
tigation (FBI) includes information on the gender, ethnicity, height, weight,
eye color and hair color of the person along with the prints of all ten fingers.
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Soft biometric traits have also been referred to as “meta-data” or “biographic
information” in the literature.

Fig. 17.6. A scenario where the primary biometric identifier (face) and the soft
biometric attributes (gender, ethnicity, eye color and height) are automatically ex-
tracted and utilized to verify a person’s identity.

17.3.1 Motivation

The usefulness of soft biometric traits can be illustrated by the following
example. Consider three users A (1.8m tall, male), B (1.7m tall, female),
and C (1.6m tall, male) who are enrolled in a fingerprint biometric system
that works in the identification mode. Suppose user A presents his fingerprint
sample X to the system. It is compared to the templates of all the three users
stored in the database and the posteriori matching probabilities of all the three
users given the sample X are calculated. Let us assume that the outputs of the
fingerprint matcher are P (A|X) = 0.42, P (B|X) = 0.43, and P (C|X) = 0.15.
In this case, user A will be falsely identified as user B based on the Bayesian
decision rule. On the other hand, let us assume that as the user approaches
the fingerprint sensor, there exists a secondary system that automatically
identifies the gender of the user as male and measures the user’s height as
1.78m. If we have this information in addition to the posteriori probabilities
given by the fingerprint matcher, then a proper combination of these sources
of information is likely to lead to a correct identification of the user as A.

The first biometric system developed by Alphonse Bertillon in 1883 used
anthropometric features such as the length and breadth of the head and the
ear, length of the middle finger and foot, height, etc. along with attributes
like eye color, scars, and tatoo marks for ascertaining a person’s identity [4].
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Although each individual measurement in the Bertillonage system may exhibit
some (intra-class) variability, a combination of several quantized (or binned)
measurements was sufficient to manually identify a person with reasonable
accuracy. Like the Bertillon system, Heckathorn et al. [14] use attributes such
as gender, race, eye color, height, and other visible marks like scars and tattoos
to recognize individuals for the purpose of welfare distribution. More recently,
Ailisto et al. [1] showed that unobtrusive user identification can be performed
in low security applications such as access to health clubs using a combination
of “light” biometric identifiers like height, weight, and body fat percentage.
While the biometric features used in the above mentioned systems provide
some information about the identity of the user, they are not sufficient for
accurately identifying the user. Hence, these attributes can be referred to
as “soft biometric traits”. The soft biometric information complements the
identity information provided by traditional (primary) biometric identifiers
such as fingerprint, iris, and voice. Thus, utilizing soft biometric traits can
improve the recognition accuracy of primary biometric systems.

17.3.2 Automatic soft biometric feature extraction

Any trait that provides some information about the identity of a person, but
does not provide sufficient evidence to precisely determine the identity can
be referred to as soft biometric trait. Figure 17.7 shows some examples of
soft biometric traits. Soft biometric traits are available and can be extracted
in a number of practical biometric applications. For example, attributes like
gender, ethnicity, age and eye color can be extracted with sufficient reliability
from the face images [12, 24, 3, 20, 19]. Gender [27], speech accent [13], and
perceptual age [23] of the speaker can be inferred from the speech signal.

The weight of a user can be measured by asking him to stand on a weight
sensor while he is providing his primary biometric. The height of a person
can be estimated from a real-time sequence of images as the user approaches
the biometric system. For example, in [18], geometric features like vanishing
points and vanishing lines were used to compute the height of an object. Jain
et al. [17] implemented a real-time vision system for automatic extraction of
gender, ethnicity, height, and eye color. The system was designed to extract
the soft biometric attributes as the person approaches the primary biometric
system to present his primary biometric identifier (face and fingerprint). Their
soft biometric system is equipped with two pan/tilt/zoom cameras. Camera 1
monitors the scene for any human presence based on the motion segmentation
image. Once camera 1 detects an approaching person, it measures the height
of the person and then guides camera 2 to focus on the person’s face.

17.3.3 Fusion of primary and soft biometric information

A Bayesian framework for fusion of soft and primary biometric information
was proposed in [17]. The main advantage of this framework is that it does not
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Gender, Ethnicity

Height Weight

Fig. 17.7. Examples of soft biometric traits.

require the soft biometric feature extractors to be perfect (100% accurate).
Let us assume that the primary biometric system is based on Rp, Rp ≥ 1
biometric identifiers like fingerprint, face, iris and hand geometry. Further,
the soft biometric system is based on Rs, Rs ≥ 1 attributes like age, gen-
der, ethnicity, eye color and height. Let ω1, ω2, . . . , ωM represent the M users
enrolled in the database. Let x = [x1,x2, . . . , xRp ] be the collection of pri-
mary biometric feature vectors. Let p(xj |ωk) be the likelihood of observing
the primary biometric feature vector xj given the user is ωk. If the output of
each individual modality in the primary biometric system is a set of match
scores, sk = [s1,k, s2,k, . . . , sRp,k], one can approximate p(xj |ωk) by p(sj |ωk),
provided the genuine match score distribution of each modality is known.

Let y = [y1, y2, . . . , yRs
] be the soft biometric feature vector, where, for

example, y1 could be the gender, y2 could be the eye color, etc. We require
an estimate of the posteriori probability of user ωk given both x and y. This
posteriori probability can be calculated by applying the Bayes rule as follows:

P (ωk|x,y) =
p(x, y|ωk)P (ωk)

p(x, y)
. (17.10)

If all the users are equally likely to access the system, then P (ωk) =
1
M , ∀ k. Further, if we assume that all the primary biometric feature vectors
x1, . . . , xRp and all the soft biometric variables y1, y2, . . . , yRs are indepen-
dent of each other given the user’s identity ωk, the posteriori probability in
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Equation (17.10) can be expressed in terms of the product of the likelihoods
as

P (ωk|x,y) ∝
Rp∏

j=1

p(xj |ωk)
Rs∏
r=1

p(yr|ωk). (17.11)

where ∝ is the proportionality symbol. The logarithm of the posteriori prob-
ability can be considered as the discriminant function, gk(x, y), for user ωk.

gk(x, y) =
Rp∑

j=1

log p(xj |ωk) +
Rs∑
r=1

log p(yr|ωk). (17.12)

During the identification phase, the input biometric sample is compared
with the templates of all the M users enrolled in the database and the dis-
criminant functions g1, . . . , gM are computed. The test user is identified as
that user with the largest value of discriminant function among all the en-
rolled users. The above Bayesian framework can also be easily adapted for a
biometric system operating in the verification mode [17].

Computation of soft biometric likelihoods

A simple method for computing the soft biometric likelihoods p(yr|ωk), r =
1, . . . , Rs, k = 1, 2, . . . , M is to estimate them based on the accuracy of the
soft biometric feature extractors. For example, if the accuracy of the gender
classifier is α, we can estimate the likelihood for the gender attribute as

1. P (observed gender is male | true gender of the user is male) = α,
2. P (observed gender is female | true gender of the user is female) = α,
3. P (observed gender is male | true gender of the user is female) = 1− α,
4. P (observed gender is female | true gender of the user is male) = 1− α.

Similarly, if the average error made by the system in measuring the height of
a person is µe and the standard deviation of the error is σe, then it is rea-
sonable to assume that p(measured height|ωk) follows a Gaussian distribution
with mean (h(ωk) + µe) and standard deviation σe, where h(ωk) is the true
height of user ωk. When the error in height measurement (characterized by
the parameters µe and σe) is small, the distribution of the measured height
of a person is highly peaked around the true height of the person. As a result,
the measured height can provide better discrimination between the users.

There is a potential problem when the likelihoods are estimated only based
on the accuracy of the soft biometric feature extractors. The discriminant
function in Equation (17.12) is dominated by the soft biometric terms due
to the large dynamic range of the soft biometric log-likelihood values. For
example, if the gender classifier is 98% accurate (α = 0.98), the log-likelihood
for the gender term in Equation (17.12) is −0.02 if the classification is correct
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and −3.91 in the case of a misclassification. This large difference in the log-
likelihood values is due to the large variance of the soft biometric feature values
compared to the primary biometric feature values. To offset this phenomenon,
Jain et al. [17] introduced a scaling factor β, 0 ≤ β ≤ 1, to flatten the
likelihood distribution of each soft biometric trait. If qr,k is an estimate of the
likelihood p(yr|ωk) based on the accuracy of the feature extractor for the rth

soft biometric trait, the weighted likelihood p̂(yr|ωk) is computed as,

p̂(yr|ωk) =
(qr,k)βr

∑
Yr

(qr,k)βr
, (17.13)

where Yr is the set of all possible values of the discrete soft biometric variable
yr and βr is the weight assigned to the rth trait. If the feature yr is continuous
with deviation σr, the likelihood can be scaled by replacing σr with σr/βr.

The above method of likelihood computation also has other implicit advan-
tages. An impostor can easily circumvent the soft biometric feature extraction
because it is relatively easy to modify/hide one’s soft biometric attributes by
applying cosmetics and wearing other accessories (like mask, shoes with high
heels, etc.). In this scenario, the scaling factor βr can act as a measure of the
reliability of the rth soft biometric feature and its value can be set depending
on the environment in which the system operates. If the environment is hostile
(where many users are trying to circumvent the system), the value of βr can
be set close to 0. Finally, the discriminant function given in equation (17.12)
is optimal only if the assumption of independence between all the biometric
traits is true. If there is any dependence between the features, the discrimi-
nant function is sub-optimal. In this case, appropriate selection of the weights
βr, r = 1, . . . , Rs, during training can result in better recognition rates.

17.3.4 Performance gain using soft biometrics

Experiments by Jain et al. [17] demonstrated the benefits of utilizing the
gender, ethnicity, and height information of the user in addition to the face
and fingerprint biometric identifiers. A subset of the Joint Multibiometric
Database (JMD), collected at West Virginia University, containing 4 face im-
ages and 4 impressions of the left index finger obtained from 263 users was
used in their experiments. The LDA-based classifier proposed in [20] was used
for gender and ethnicity classification of each user. The accuracy of the eth-
nicity classifier for the problem of classifying the users in the JMD as “Asian”
and “Non-Asian” was 96.3%. The accuracy of the gender classifier on the JMD
was 89.6%. When the reject rate was fixed at 25%, the accuracy of the eth-
nicity and gender classifiers were 99% and 98%, respectively. In cases where
the ethnicity or the gender classifier made a reject decision on a user, the cor-
responding information is not utilized for updating the discriminant function,
i.e., if the label assigned to the rth soft biometric trait is “reject”, then the
log-likelihood term corresponding to the rth feature in Equation (17.12) is set
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to zero. Since no real-time height measurement was performed during recog-
nition, Jain et al. [17] simulated values for the measured height of user ωk,
k = 1, . . . , 263 from a normal distribution with mean h(ωk)+µe and standard
deviation σe, where h(ωk) is the true height of user ωk recorded manually
during the database collection, µe = 2 cm and σe = 5 cm. Here, µe and σe

are the average and standard deviation of the height measurement error.
Figure 17.8 depicts the performance gain obtained when the soft biometric

identifiers were used along with both face and fingerprint modalities. We can
observe that the rank-one recognition rate of the multimodal biometric system
based on face and fingerprint modalities is approximately 97% (rank-one error
rate is 3%) and the addition of soft biometric information improves the rank-
one accuracy by about 1% (rank-one error rate is now 2%). Although the
absolute improvement in the rank-one accuracy due to the additional soft
biometric information is small, it must be noted that the relative reduction
in the rank-one error rate is about 33%, which is significant.
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Fig. 17.8. Improvement in the performance of a multimodal (face and fingerprint)
system after addition of soft biometric traits.

17.4 Summary

In addition to the match scores provided by the biometric matchers, ancillary
information may also be available to a multibiometric system. Biometric sig-
nal quality and soft biometric information are two examples of such additional
information that can be utilized to improve the accuracy of a multibiometric
system. While biometric signal quality does not explicitly contain any in-
formation about the identity of the user, different matchers exhibit different
levels of sensitivity to the quality of the acquired biometric sample. Therefore,
the match scores can be appropriately weighted during fusion based on the
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quality of the input sample. Soft biometric characteristics like gender, ethnic-
ity, height and weight directly provide information about the identity of the
user. Although the soft biometric information alone is not sufficient for accu-
rate recognition, they can be used to complement the information provided by
the primary biometric identifiers like fingerprint, iris and face. Techniques for
automatically extracting soft biometric information and estimating biometric
signal quality have been developed only recently. Hence, fusion schemes that
incorporate such ancillary information have not been thoroughly explored and
there is tremendous scope for conducting more in-depth research in this area.
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18.1 Introduction

This chapter, based in part on my earlier work, Biometrics: Identity Assurance
in the Information Age, (2003), provides an overview of legal considerations
related to the use of biometrics. Although a densely-written, heavily footnoted
tome would be required for a detailed treatment of this topic, the modest goal
here is to offer enough information for the reader to gain an understanding of
the many legal issues involved with, and implicated by, the use of biometrics.

We begin by first determining who is deploying the biometric program.
Whether the actor is a government-sector entity or private-sector one informs
the legal analysis because U.S. law makes a sharp distinction depending on
who is deploying the biometric system. Accordingly, this chapter analyzes
each of these government- and private-sector options in turn. It concludes
with a “Biometric Hypothetical” to capture some of the issues implicated by
biometric use.

18.2 The Law and Government-Sector Use of Biometrics

The public, or government, sector, particularly U.S. government agencies, is
increasingly interested in using biometric technologies for a variety of appli-
cations. Since the terrorist attacks of September 11, 2001, both the Admin-
istration and the Congress have identified biometrics as a tool for improving
homeland security. As the National Biometric Security Project reported in
2006, one of the most important programs relating to the use of biometrics
is the United States Visitor and Immigrant Status Indicator Technology Pro-
gram, administered by the Department of Homeland Security, in 2004. Known
as US-VISIT, this program seeks to ensure the accurate tracking of foreign
nationals entering and exiting the United States through the use of biometric
technology. US-VISIT currently requires covered foreign nationals to submit
digital photographs and two index fingerprints as a condition of their entry
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into the U.S. US-VISIT will soon expand to include more foreign national-
ities and more biometric data - all ten fingerprints will be taken. However,
the program has experienced difficulties in deploying a system to track the
departure of foreign visitors at land borders, primarily due to the high costs
and technical obstacles.

In light of this high-level interest, this section discusses the privacy protec-
tions afforded by law in the context of government-sector use of biometrics.
What happens, for example, when an individual must provide a biometric
identifier to receive an entitlement or benefit from the U.S. government? What
legal rights, if any, does an individual providing a biometric have, and what
legal responsibilities, if any, does the government agency collecting the bio-
metric owe with respect to the data taken? Can a citizen refuse to provide a
biometric identifier? To begin to answer these questions, we first must look to
the United States Constitution.

18.3 Constitutional Law Considerations

Because the U.S. Constitution is the highest law of the land, there is some-
thing to be said for starting at the “top” with our legal discussion. The fol-
lowing text describes how biometrics and the U.S. Constitution interact. We
start with analyzing what the right to privacy means based on the judiciary’s
interpretation of the Constitution.

18.3.1 The Right to Privacy

The American concept of privacy has changed over the centuries as America
has changed – reflecting the idiom that law mirrors the society that creates it.
Prior to the birth of the nation, the American colonists essentially recognized
a strong right of physical privacy centered in the home, where a person could
be free from contact with others. As early as 1761, James Otis, a leading
Boston attorney and revolutionary, expressed this right when he said, “Now
one of the most essential branches of English liberty is the freedom of one’s
house. A man’s house is his castle; and while he is quiet, he is well guarded
as a prince in his castle.”

Since colonial times, jurists and legal scholars have grappled with defining
privacy and explaining what the right to privacy should encompass. By the
second half of the nineteenth century, the judiciary and academia focused
more attention on privacy rights, moving beyond privacy of place to privacy
of person. In 1879, Judge Thomas M. Cooley, in his classic treatise on torts,
included “the right to be let alone” as a class of tort rights, contending that
“the right to one’s person may be said to be a right of complete immunity.”

Echoing and popularizing Cooley’s phrase, Samuel D. Warren and Louis
D. Brandeis, in their landmark Harvard Law Review article, “The Right to
Privacy,” written in 1890, articulated their view of privacy as a “right to be
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let alone.” Brandeis, as a Supreme Court Justice, later used this phrase in his
dissent in Olmstead v. United States, 277 U.S. 438 (1928), where by a 5-4 vote
the Court ruled that a law enforcement wiretap of a telephone line did not
trigger the Fourth Amendment reasoning that “[s]ince the wiretap itself had
not been made on Olmstead’s premises, there was no physical trespass,” and
thus no Fourth Amendment violation occurred. He declared that the Founding
Fathers “conferred, as against the Government, the right to be let alone – the
most comprehensive of rights and the right most valued by civilized men.”

Privacy as the “right to be let alone” has a positive appeal and com-
mendable simplicity; however, privacy scholars such as Ellen Alderman and
Caroline Kennedy criticize the phrase in that “legally, it offers no guidance at
all. Coveting an indefinable right is one thing; enforcing it in a court of law is
another.” Even the Supreme Court may have a change of heart. For example,
in Katz v. United States, 389 U.S. 347 (1967) the Court overturned Olmstead
by finding that the Fourth Amendment protected individuals using a public
telephone from wiretaps by authorities without a warrant.

Readers interested in learning more about privacy and biometrics should
consult Biometrics & Privacy: Building a Conceptual Foundation (2006), pre-
pared by the National Science and Technology Council’s Subcommittee on
Biometrics, available at www.biometrics.gov. For a provocative examina-
tion of technology and privacy, read David Brin, The Transparent Society:
Will Technology Force Us to Choose Between Privacy and Freedom? (1998).

18.3.2 Constitutional Background

The Constitution regulates government-sector action; however, it generally
provides no protection from actions taken by private individuals. As constitu-
tional law scholar Laurence H. Tribe has explained, “The Constitution, with
the sole exception of the Thirteenth Amendment prohibiting slavery, regu-
lates action by the government rather than the conduct of private individuals
and groups.” Thus, the Constitution, in its essence, provides individuals with
protections from actions taken by government.

The word privacy, like the word biometrics, is nowhere to be found in the
text of the U.S. Constitution. An obvious point needs stating: Just because
something is not in the text of the Constitution does not mean that it is outside
the Constitution’s authority or protection. After all, no one supposes that
Congress is without power to fund and regulate the Air Force simply because
the Constitution refers only to land and naval forces. Therefore, it makes
sense that without making explicit reference to privacy, the Constitution can
nonetheless protect certain privacy interests, or “zones of privacy,” to use
Justice William Douglas’s term. Justice Douglas used “zones of privacy” in his
opinion in Griswold v. Connecticut, 381 U.S. 479 (1965), a landmark Supreme
Court case holding unconstitutional a state statute that criminalized the sale
of contraceptives to married couples.
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With the founding of the republic, the Constitution, without making ex-
plicit reference to privacy, protected privacy interests. The Bill of Rights, or
the first ten amendments to the Constitution, reflects these “zones of pri-
vacy” protections in the First Amendment rights of freedom of speech, press,
religion and association; the Third Amendment prohibition against the quar-
tering of soldiers in one’s home; the Fourth Amendment right to be free from
unreasonable searches and seizures; the Fifth Amendment right against self-
incrimination; the Ninth Amendment’s provision that “the enumeration in the
Constitution, of certain rights, shall not be construed to deny or disparage
others retained by the people,” and the Tenth Amendment’s provision that
“the powers not delegated to the United States by the Constitution, nor pro-
hibited by it to the States, are reserved to the States respectively, or to the
people.”

What, then, is the constitutional right to privacy and how does it affect
biometrics used in government mandated applications? The answer to the first
part of the question is legally fuzzy. Although the federal courts have made it
clear that there is a zone of privacy, they have not done such a thorough job
of mapping it and drawing its legal boundaries.

The roots of many modern constitutional privacy interests are found in
the Due Process Clause of the Fourteenth Amendment. This clause provides
that no State shall “deprive any person of life, liberty, or property, without
due process of law.” For more than 100 years, the Supreme Court has inter-
preted these words as containing a substantive protection that “bar[s] certain
government actions regardless of the fairness of the procedures used to im-
plement them.” In other words, the Due Process Clause bars the government
from doing certain things to us.

18.3.3 Three Forms of Privacy under Law

The Supreme Court has emphasized “there is a realm of personal liberty
which the government may not enter.” This realm, or zone of privacy, consists
of rights that are “fundamental” or “implicit in the concept of ordered liberty”
as the Court phrased it in Griswold, or as the Court would later rephrase it,
“deeply rooted in this Nation’s history and tradition” in Moore v. City of East
Cleveland, 431 U.S. 494 (1977).

These terms may read well, but they lack clarity. For example, Robert H.
Bork, a former federal judge, believes “the judge-created phrases specify no
particular freedom, but merely assure us, in sonorous phrases, that they, the
judges, will know what freedoms are required when the time comes.”

Accordingly, it is difficult to determine precisely what is protected. In what
specific areas of the zone of privacy is the government forbidden entry? In its
consideration of privacy interests, the Supreme Court has implicitly catego-
rized privacy as taking three distinct forms. These three forms of privacy, or
what can be viewed as three slices of the privacy pie, are physical, decisional,
and information (or informational).
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Physical Privacy

This form of privacy is also known as freedom from contact with other people
or monitoring agents. Physical privacy enjoys its greatest constitutional pro-
tection under the Fourth Amendment, which governs searches and seizures
conducted by government agents. The amendment provides that “the right of
the people to be secure in their persons, houses, papers, and effects, against
unreasonable searches and seizures, shall not be violated.”

Decisional Privacy

This form of privacy is also known as the freedom of the individual to make
private choices, without undue government interference, about the personal
and intimate matters that affect him or her such as “personal decisions relating
to marriage, procreation, contraception, family relationships, child rearing and
education” as expressed in Planned Parenthood of Southeastern Pennsylvania
v. Casey, 505 U.S. 833 (1992). One of the most controversial Supreme Court
cases of the twentieth century, Roe v. Wade, concerning a woman’s right to
have an abortion, may be thought of as a decisional privacy case.

Information Privacy

This form of privacy is described as the freedom of the individual to limit
access to certain personal information about him or herself. The Court of
Appeals for the Ninth Circuit in Doe v. Attorney General has defined it as
“the individual interest in avoiding disclosure of personal matters ...” In his
classic 1967 study, Privacy and Freedom, scholar Alan Westin defines it as
“the claim of individuals ... to determine for themselves when, how, and to
what extent information about them is communicated to others.” Similarly,
Professor Lawrence Lessig, drawing heavily on the scholarship of Ethan Katsh,
has defined privacy in this context as “the power to control what others can
come to know about you.” Readers interested in an in-depth treatment of this
topic should consult Daniel Solove and Marc Rottenberg, Information Privacy
Law (2003).

As Lessig goes on to explain in Code and Other Laws of Cyberspace, (1999)
others can acquire information about you by monitoring and searching. Mon-
itoring refers to that part of one’s daily existence that others see, observe,
and can respond to. Searching refers to that part of one’s life that leaves a
record that can later be scrutinized. Noting both quantity and quality as-
pects to information privacy, a federal appellate court has phrased it in terms
of, “control over knowledge about oneself. But it is not simply control over
the quantity of information abroad; there are modulations in the quality of
knowledge as well.”

U.S. government biometric programs could potentially require government
personnel, along with many others, such as citizens, and taxpayers, to be com-
pelled to provide biometric identification information to a government agency
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for collection, maintenance, use, and dissemination in government-controlled
databases. Such government-sector use of biometrics implicates physical and
information privacy concerns; on the other hand, decisional privacy concerns
are not so much affected.

18.3.4 Physical Privacy and Biometrics

Public sector biometric applications could implicate Fourth Amendment con-
siderations when biometrics, like fingerprints, are used in noncriminal contexts
or when they are used in a criminal justice context. The courts have decided
many Fourth Amendment cases involving individuals having to provide phys-
ical characteristics or personal traits, such as fingerprints or voice samples, to
the government. Accordingly, analysis of the state of the law in the noncrim-
inal and criminal justice areas is instructive.

Constitutional Challenges to Fingerprinting in Noncriminal
Context

The overwhelming majority of government biometric applications will fall into
the noncriminal context, for such matters as logical or physical access control,
fraud prevention, and other business processes. Many decisions have estab-
lished that an individual has minimal constitutional privileges concerning his
fingerprints or similar physical characteristics and personal traits.

Moreover, the courts have upheld numerous federal, state, and munici-
pal requirements mandating fingerprinting for employment and licensing pur-
poses, provided that the government has a rational basis for requiring finger-
printing. In the federal context, the so-called rational basis test means that
Congress must show that the fingerprinting requirement bears a rational re-
lationship to a legitimate government objective or interest. The rational basis
test is a lesser standard of judicial scrutiny than the compelling state inter-
est test. Courts apply the compelling state interest test when state action
affects the exercise of a fundamental right, such as political speech. Accord-
ingly, using the rational basis test, courts have upheld government-mandated
fingerprinting for employment and licensing purposes in connection with the
taking of fingerprints for spouses of liquor licensees, male employees of alco-
holic beverage wholesalers, taxi drivers, cabaret employees, bartenders, deal-
ers in secondhand articles, all employees of member firms of national security
exchanges registered with the Securities and Exchange Commission, and all
individuals permitted unescorted access to nuclear power facilities.

For example, in Utility Workers Union of America v. Nuclear Regulatory
Commission, decided in 1987, a union representing some 5,170 utility workers
in nuclear power plants challenged as unconstitutional that part of a newly-
enacted federal statute requiring that these workers be fingerprinted. The
Utility Workers Union claimed the fingerprinting requirement violated the
workers’ Fourth Amendment and privacy rights. The federal district court
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in the Southern District of New York disagreed and upheld the fingerprinting
requirement. Citing a long string of cases, the court noted that in noncriminal
contexts, the judiciary has “regularly upheld fingerprinting of employees.”

As for the workers’ constitutional right to privacy claim, the court, quoting
from a leading federal appellate court case, Iacobucci v. City of Newport, did
not find decisional privacy interests implicated:

“Whatever the outer limits of the right to privacy, clearly it cannot be ex-
tended to apply to a procedure the Supreme Court regards as only minimally
intrusive. Enhanced protection has been held to apply only to such fundamen-
tal decisions as contraception ... and family living arrangements. Fingerprints
have not been held to merit the same level of constitutional concern.”

Constitutional Challenges to Fingerprinting in Criminal Justice
Context

What will happen when government authorities want a biometric identifier
from someone whom they suspect has committed a crime? Capturing the bio-
metric identifier in this context should not run afoul of the Constitution. The
Fourth Amendment governs searchers and seizures conducted by government
agents. The amendment makes clear that the Constitution does not forbid all
searches and seizures, only “unreasonable” ones. The Supreme Court defines
a search as an invasion of a person’s reasonable expectations of privacy. To
evaluate whether providing a biometric identifier in a criminal justice context
constitutes a search, the judiciary focuses on two factors. First, the court ex-
amines the nature of the intrusion. Actual physical intrusions into the body,
such as blood-drawing, breathalyzer testing, and urine analysis, can consti-
tute Fourth Amendment searches. Second, the court examines the scope of
the intrusiveness paying close attention to the “host of private medical facts”
as explained in the Supreme Court case, Skinner v. Railway Labor Executives’
Ass’n, 489 U.S. 602 (1989).

In the criminal justice context, the Supreme Court has examined the issue
of whether acquiring information about an individual’s personal characteris-
tics constitutes a search. It has found that requiring a person to give voice ex-
emplars is not a search because the physical characteristics of a person’s voice,
its tone and manner, as opposed to the content of a specific conversation, are
constantly exposed to the public, such that no person can have a reasonable
expectation that others will not know the sound of his voice, as discussed in
United States v. Dionisio, 410 U.S. 1 (1973). For this reason, government-
deployed facial recognition systems with surveillance cameras aimed at public
spaces do not implicate U.S. constitutional privacy protections.

Using the same reasoning, the Supreme Court in United States v. Mara,
410 U.S. 19 (1973), has ruled that requiring a person to give handwriting ex-
emplars is not a search. In Cupp v. Murphy, 412 U.S. 291 (1973), the Court
has described fingerprinting as nothing more than obtaining physical char-
acteristics constantly exposed to the public, and that fingerprinting involved
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none of the probing into an individual’s private life and thoughts that marks
an interrogation or search, per Davis v. Mississippi, 394 U.S. 721 (1969).

In cases where provision of a biometric identifier might be found to consti-
tute a search (such as in the hypothetical case of a physically intrusive, DNA-
based biometric that would reveal extensive private medical facts about the
individual), the Supreme Court in Vernonia Sch. Dist. 47J v. Acton, 515 U.S.
646, (1995) has explained that “the ultimate measure of the constitutionality
of a governmental search is ‘reasonableness.’ ” To make this determination,
a court must balance the “intrusion on the individual’s Fourth Amendment
interests against its promotion of legitimate governmental interests.” In the
criminal context, a search is “reasonable” only if the law enforcement agency
has probable cause or reasonable suspicion of criminal activity.

18.3.5 Decisional Privacy

Decisional privacy involves a person’s decisions relating to intimate matters
such as marriage, procreation, contraception, and so on. Biometric applica-
tions will not likely involve decisional privacy.

18.3.6 Information Privacy - Whalen v. Roe

Why is a Supreme Court case decided 30 years ago required reading? Be-
cause while the Information Age and technological advances have drastically
changed our lives since 1977, the Supreme Court’s articulation of information
privacy is still anchored to its 1977 decision in Whalen v. Roe, 429 U.S. 589
(1977).

Whalen involved the constitutional question of whether the state of New
York could record and store, in a centralized computer database, “the names
and addresses of all persons who have obtained, pursuant to a doctor’s pre-
scription, certain drugs.” Whalen is instructive because it demonstrates the
federal judiciary’s approach to deciding some of the major constitutional law
issues likely to be raised by government-mandated biometric applications. Ac-
cordingly, the facts of the case, the holding and the judicial reasoning deserve
examination.

Facts: In 1970, the New York state legislature, disturbed about the growing
drug problem, established a state commission to evaluate the state’s drug
control laws. After study, the commission made recommendations. Based on
these recommendations, the state legislature amended the New York Public
Health Law to require that all prescriptions for Schedule II drugs (defined
as the most dangerous of legitimate drugs, to include opium, methadone,
and amphetamines) had to be prepared by the physician on an official state-
provided form. The completed form identified:

• The prescribing physician
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• The dispensing pharmacy
• The prescribed drug and prescribed dosage
• The name, address, and age of the patient

The statute required that a copy of the completed form be forwarded
to the New York State Department of Health in Albany. There the govern-
ment agency recorded the information for computer processing. The legisla-
ture thought that these measures would help identify unscrupulous medical
professionals and show the pattern of the state’s drug flow.

Patients, doctors, and physician associations challenged the New York
state statute in the federal courts. The evidence offered before the federal
district court, where Whalen v. Roe was first heard, included testimony from:

• Two parents who “were concerned that their children would be stigmatized
[as drug addicts] by the State’s central filing system”

• Three adult patients who “feared disclosure of their names” to unautho-
rized third parties

• Four physicians who believed that the New York statute “entrenches on
patients’ privacy, and that each had observed a reaction of shock, fear and
concern on the part of their patients”

The parties thus advanced two related privacy concerns that eventually
reached the Supreme Court’s consideration: “the nondisclosure of private in-
formation” or information privacy, and an individual’s “interest in making
important decisions independently” or decisional privacy.

Holding: In his opinion for the Court, Justice John Paul Stevens, joined by
the Chief Justice and five other justices, found that “neither the immediate nor
the threatened impact of the [statue’s] patient-identification requirements...on
either the reputation or the independence of patients...is sufficient to consti-
tute an invasion of any right or liberty protected by the [Due Process Clause of
the] Fourteenth Amendment.” With these words, the Supreme Court rejected
the privacy claim.

In sum, the nation’s highest court ruled that a government’s centralized,
computerized database containing massive amounts of extremely sensitive
medical information about citizens passed constitutional muster.

Judicial Reasoning: What factors influenced the Supreme Court’s reason-
ing? First, the Court seemed impressed by the fact that the New York state
legislature had created a specially appointed commission, which held numer-
ous hearings and interviews. Put simply, a commission empowered by the
legislature had done its homework in an attempt to help solve the menacing
problem of drugs. The Court concluded that the statute was “manifestly the
product of an orderly and rational legislative decision.” In other words, there
was a rational basis for the legislative action.
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In its analysis of the information privacy concerns raised, the Court paid
close attention to what specific steps the state agency had taken to prevent
any unauthorized disclosures of information from the centralized database. In
particular, the Court noted that:

• The forms and the records were kept in a physically secure facility.
• The computer system was secured by restricting the number of computer

terminals that could access the database.
• Employee access to the database was strictly limited.
• There were criminal sanctions for unauthorized disclosure.

Thus, the Whalen court scrutinized the technical and procedural protec-
tions in place to safeguard the information. A lot has changed in 30 years.
Perhaps a contemporary court will examine technical protections and look for
such things as firewalls, encryption, and biometric access control. But it’s safe
to predict that even a contemporary court will be impressed with procedural
safeguards in the form of criminal sanctions for unauthorized disclosure.

The Court took a somewhat practical approach to the way personal infor-
mation is used in the contemporary age. It accepted the view that disclosure
of such medical information to various government agencies and private sec-
tor organizations, such as insurance companies, is “often an essential part of
modern medical practice even when the disclosure may reflect unfavorably
on the character of the patient. Requiring such disclosures to representations
of the State having responsibility for the health of the community does not
automatically amount to an impermissible invasion of privacy.”

In addressing decisional privacy issues, the Court acknowledged genuine
concern that the very existence of the database will disturb some people so
greatly that they will refuse to go to the doctor to get necessary medica-
tion. However, given the large number of prescriptions processed at Albany,
approximately 100,000 prescription forms for Schedule II drugs monthly, the
Court concluded that the “statute did not deprive the public of access to the
[legal] drugs.”

The Court’s opinion concluded with a cautionary note that still echoes
loudly today:

“We are not unaware of the threat to privacy implicit in the accumu-
lation of vast amounts of personal information in computerized data
banks or other massive government files...The right to collect and use
such data for public purposes is typically accompanied by a concomi-
tant statutory or regulatory duty to avoid unwarranted disclosures.”

The New York statute and its related implementation showed “a proper
concern with, and protection of, the individual’s interest in privacy.” The
Court, however, limited the effect of its decision by reserving for another day
consideration of legal questions which could arise from unauthorized disclo-
sures of information from a government database “by a system that did not
contain comparable security provisions.”
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Cautionary Note: The Whalen Court expressed its concern about “unwar-
ranted disclosures” from government databases. Moreover, the majority of the
justices adopted a prospective approach. That is, by intensely focusing on the
facts of Whalen, the Court left itself with ample judicial wiggle room to find
that government-mandated use of new technologies combined with powerful
computer systems might lack necessary constitutional safeguards. As Professor
Steve Goldberg has explained, since the Whalen decision is tied so intimately
to the specific facts of Whalen, a future Court could easily distinguish the
facts of a future case from the facts of Whalen to reach a different result.

In sum, a lesson to take away from Whalen is that a future Court might
find an information privacy right violated unless the government agency col-
lecting the information had made clear its need and purpose in collecting
the information and had taken strong and effective measures to prevent un-
warranted disclosures from its databases. In other words, if the government
agency ignores these steps, the Court’s cautionary note of Whalen could turn
into a clear-sounding constitutional alarm bell in the future.

Under the American system of federalism, the fifty states are free to pro-
vide greater privacy protections in their own state constitutions than those
afforded in the U.S. Constitution. Therefore, when evaluating the use of a spe-
cific biometric system, its legality must be analyzed under state constitutional
provisions as well.

18.3.7 Other Constitutionally Based Considerations of Biometrics

Some limited segments of American society have expressed religious objections
to the use of biometrics. Although these religious-based concerns may not on
the surface appear to implicate privacy issues, the constitutionally protected
right to the free exercise of religion can be understood to vindicate privacy-
related values. Some individuals oppose being compelled to participate in a
government program that mandates the provision of a biometric identifier.

These religious-based refusals raise a sensitive issue, in which the intrusion
on the free exercise of religion must be carefully weighed. Some “real-world”
cases provide guidance as to how the law reacts to such refusals. For example,
the New York Department of Social Services and the Connecticut Department
of Social Services (DSS) have encountered legal challenges based on religious
concerns from entitlement program recipients who refused to provide a bio-
metric identifier. Based on these objections, other government agencies might
encounter a similar legal challenge to its mandated use of biometrics. Accord-
ingly, the New York DSS and Connecticut DSS experiences might offer useful
insight to how the legal system reacts.

New York Experience

Liberty Buchanan, a New York resident, received Aid to Families with Depen-
dent Children (ADC) and Food Stamps for herself and her four minor children.
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In 1996, New York DSS informed her that she would be required to partici-
pate in an automated finger imaging system (AFIS). New York law required
participation in AFIS as a condition of eligibility for ADC and other entitle-
ments. Buchanan refused to participate in AFIS. She based her refusal on her
religious convictions, grounded in part on her interpretation of the “mark of
the beast” language in the Book of Revelation. Because she refused to provide
a fingerprint, DSS discontinued the Buchanans’ entitlement benefits. After a
DSS agency hearing, the State Commissioner of Social Services affirmed the
DSS decision, finding that Buchanan did not demonstrate a good cause basis
for exemption from the finger imaging requirement. Buchanan then appealed
to the New York Supreme Court. After a hearing, in 1997, the New York
Supreme Court Appellate Division, Third Judicial Department, in Buchanan
v. Wing, found that Ms. Buchanan had failed to “set forth any competent
proof that the AFIS actually involved any invasive procedures marking them
in violation of [her] beliefs.” Accordingly, the court upheld the DSS decision.

Connecticut Experience

Similarly, in Connecticut, John Doe, his wife and minor children, recipients
of Temporary Family Assistance (TFA), refused to submit to the Connecticut
DSS digital imaging requirement. (“John Doe” is an alias used to protect the
true identity of the individual out of respect for his and his family’s privacy.)
Beginning in January 1996, DSS, pursuant to state law, began requiring all
TFA recipients to be biometrically enrolled for identification purposes by pro-
viding copies of the fingerprints of their two index fingers. In April 1996, Mr.
and Mrs. Doe objected based on their religious beliefs. DSS exempted them
from the requirement in April 1996 and October 1997. In July 1998, however,
DSS reviewed its policy and determined that the Does would have to comply
with the biometric enrollment. Doe requested a DSS hearing.

At the August 1998 hearing, he testified as to his objections to providing
a biometric identifier. He based these objections on his religious beliefs. He
therefore requested a “good cause” exception to the digital imaging require-
ment as provided in the DSS regulations.

In November 1998, the hearing officer ruled that Doe, “although having
strong religious beliefs, some of which he interprets as a barrier for him to be
digitally imaged, does not have as a result of this religious belief a circum-
stance beyond his control which prevents him from being digitally imaged.”
Doe appealed from this final DSS decision to the Connecticut state court.
While his case was pending, the DSS Commissioner decided to vacate the
hearing decision and grant the Does an exception from the digital-imaging
requirement. Rather than fight the Does in state court, in a legal battle that
attracted the interest of civil liberties groups, the Commissioner took an eas-
ier way out - the Does got their exception from the biometric requirement;
the state of Connecticut avoided potentially controversial litigation, and we
are left wondering what the higher courts would have done.
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18.3.8 Statutory and Administrative Law Concerns

In examining the privacy rights recognized by the Constitution, we see that in-
formation privacy is the one most likely implicated by government-mandated
use of biometrics. The Court’s decision in Whalen v. Roe provides a frame-
work for how a future court might address such issues related to information
privacy. We have also examined physical and decisional privacy as well as
how the court would deal with religious-based objections to biometrics. With
this constitutional basis thus established, we next have to examine statutory
and administrative law protections. Congress is free to regulate government-
mandated use of biometrics. Congress has already passed comprehensive leg-
islation, known as the Privacy Act, affecting how U.S. government agencies
must protect personal information. This act also applies to biometric records.
For this reason, we next examine the Privacy Act.

18.3.9 The Privacy Act of 1974

The Privacy Act of 1974 (codified at 5 U.S.C. § 552a, as amended) regulates
the collection, maintenance, use and dissemination of personal information by
federal government agencies.

In broad terms, the Privacy Act gives certain rights to the “data subject,”
or the individual who provides personal information, and places certain re-
sponsibilities on the “data collector,” or the agency collecting the personal
information. The Privacy Act balances a federal agency’s need to collect,
use, and disseminate information about individuals with the privacy rights of
those individuals. In particular, the act tries to protect the individual from
unwarranted invasions of privacy stemming from a federal agency’s collection,
maintenance, use and dissemination of personal information.

There are several things the Privacy Act does not do. For example, the
Privacy Act does not regulate the collection, maintenance, use, and dissem-
ination of personal information by state and local government agencies. The
Privacy Act does not regulate personal information held by private sector en-
tities. The Privacy Act does not apply when the individual, or data subject,
is a non-U.S. person, i.e., not a U.S. citizen or an alien lawfully admitted for
permanent residence. Thus, the U.S. military, for example, can take biometric
data such as fingerprints from foreigners it encounters in Iraq without running
afoul of the Privacy Act.

The Privacy Act’s basic provisions include the following:

• Restricting federal agencies from disclosing personally identifiable records
maintained by the agencies

• Requiring federal agencies to maintain records with accuracy and diligence
• Granting individuals increased rights to access records about themselves

maintained by federal agencies and to amend their records provided they
show that the records are not accurate, relevant, timely, or complete
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• Requiring federal agencies to establish administrative, technical, and pol-
icy safeguards to protect record security

As these basic provisions suggest, the Privacy Act sets forth a so-called
“Code of Fair Information Practices” (CFIP) requiring federal agencies to
adopt minimum standards for collection, maintenance, use and dissemination
of records. It also required that agencies publish detailed descriptions of these
standards and the procedures used to implement them.

Although the Privacy Act does not specifically mention “biometrics,” there
is little doubt that the Act can apply to biometrics. As the Act applies to a
“record” that is “contained in a system of records,” the threshold issue to
resolve is whether biometric identification information, whether in the form
of an image file or a template file, falls within the Act’s broad definition of
record.

18.3.10 Agency Responsibilities

The Privacy Act (U.S.C. § 552a(b)) places certain responsibilities on the gov-
ernment data collector. Some of these responsibilities include publishing in-
formation about the systems of records in the data collector’s charge, giving
notice to data subjects, and safeguarding data. The Privacy Act further pro-
hibits a federal agency from disclos[ing] any record which is contained in
a system of records by any means of communication to any person, or to
another agency, except pursuant to a written request by, or with the prior
written consent of, the individual to whom the record pertains...” This pro-
vision is known as the “No Disclosure Without Consent Rule.” Although
the “No Disclosure Without Consent Rule” applies, the Privacy Act contains
twelve enumerated exceptions to this rule, to accommodate civil or criminal
law enforcement activities, “routine use,” and others. Detailed discussion of
the Privacy Act is beyond the scope of this chapter; for more information,
see, e.g., U.S. Department of Justice, Overview of the Privacy Act of 1974,
available at http://www.usdoj.gov/oip/04_7_1.html.

18.3.11 Additional Legal Safeguards

The Computer Matching and Privacy Act of 1988 amended the Privacy Act by
adding new provisions regulating federal agencies’ computer matching prac-
tices and placing requirements on the agencies.

Administrative regulation is another safeguard. From the administrative
regulatory perspective, Congress can follow two well-worn policy paths when
dealing with a public policy issue involving a new technology such as biomet-
rics. It can take the direct route and pass legislation regulating a government
agency’s use of the technology, or it can delegate its authority to the appropri-
ate administrative agencies within government agency. The delegation route
is the road most frequently traveled. However, even though the government



18 The Law and the Use of Biometrics 371

agencies, in general, are well equipped with expertise, experience, and institu-
tional memory, they still face enormous challenges in designing, formulating,
and implementing government policy for biometric applications. In addition,
numerous competing groups (many well-organized and some politically influ-
ential) will want to press their claims in this public policy process.

Congress, through the legislative process, can require a government agency
to satisfy additional conditions related to its biometric applications. For ex-
ample, Congress could go beyond the Privacy Act and place additional pro-
hibitions on disclosure of biometric identification information and further re-
strict sharing. Moreover, the state governments can also provide be various
legal protections as they see fit. Or biometric applications may be designed
such that controversial legal or policy issues are not reached. For example,
as related above, the Connecticut DSS Commissioner gave the Doe family an
exemption from the biometric requirement even though she was on fairly solid
legal ground. Similarly, some schools that use a touch fingerprint system for
students to get free or reduced-price lunches provide an alternative means,
such as a PIN, for the students to use.

18.4 The Law and Private-Sector Use of Biometrics

This section discusses the legal considerations related to private-sector, or
non-governmental, use of biometrics. It focuses on two areas: how does the
law enable private-sector use of biometrics, and how does the law regulate the
private-sector use of biometrics with respect to privacy?

To answer the first question, we have to examine how biometrics can be
used in commercial or business transactions, particularly in the digital world.
In the information age, we are moving closer and closer to the complete tran-
sition from “sign on the dotted line” to “no paper, no problem.” As the world
goes increasingly digital, biometric authentication can play a more important
role for transactions, based on contracts and other legal agreements. Ideally,
whenever a signature is required on a piece of paper, we could provide our bio-
metric data attached to an electronic document. However, before we replace
a manually executed “John Hancock” with a camera-captured iris template,
we need to determine the legal and policy concerns related to such use of
biometrics.

To answer the second question, we must discuss regulations affecting the
use of biometrics that stem from privacy concerns of the technology. If a
private entity collects biometrics from individuals, does that private entity
have any legal responsibilities or duties to the individuals from whom the
biometrics have been collected? Or as information privacy lawyers and public
policymakers might phrase it: Does the data collector have any legal duties
to the data subject from whom the data is collected? To get these answers,
explain how we got them, and add recommendations, the following section
discusses law as an enabler for private-sector use of biometrics.
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18.4.1 Law as an Enabler for Private-Sector Use of Biometrics

The broad topic discussed here is whether biometrics can play a role as an
enabling technology for e-commerce and e-government. More specifically, the
analysis focuses on one important aspect of this topic: Whether an electronic
signature, in the form of a biometric, can be legally enforceable to the same
extent as a conventional, manually executed paper-and-ink signature when
the electronic signature is used to enter into agreements. In other words, can
a biometric-based signature have legal equivalence to a conventional, hand-
written signature?

For many transactions, an individual must provide a manually executed
paper-and-ink signature to enter into an agreement. Replacing this paper-
and-ink signature with a biometric-based electronic signature promises a more
effective and convenient way of entering into agreements, particularly in the
electronic world. So, instead of signing his name in ink on a piece of paper
representing an agreement, an individual would simply be asked to place his
fingerprint on a biometric sensor; his fingerprint would be captured and con-
verted into a template unique to that individual; and that template would be
attached to an electronic document representing the agreement. Something
akin to this process occurs daily at commercial establishments like the Piggly
Wiggly, Thriftway, and Kroger supermarket chains where shoppers can volun-
tarily use a fingerprint system to pay for their purchases in many stores. Some
grocery stores use fingerprint systems to reduce check fraud. In general, the
companies find that the biometric system speeds throughput (as it decreases
the writing of paper checks), improves security (as it protects against identity
theft), works accurately, and is popular with the customers.

Definitions

The term “electronic signature” refers to any means of “signing” an electronic
document in digital form, in which the “signature” is represented in ones
and zeroes. See, e.g., Thomas J. Smedinghoff and Ruth Hill Bro, Electronic
Signature Legislation (1999). Although the terms “electronic signatures” and
“digital signature” have sometimes been used interchangeably, a digital signa-
ture is more accurately defined as one particular type of electronic signature;
it uses a specific technology - public-key cryptography - to sign a message.
An electronic signature, on the other hand, is a technology-neutral term and
encompasses many methods of “signing” an electronic record, including the
technology at issue here, the use of a biometric-based identifier. Thus, digital
signatures are a subset of electronic signatures, which, in turn are a subset of
signatures.

Attributes of a Conventional Signature

The legal enforceability of a transaction often depends on the parties’ ad-
herence to certain formalities. Many agreements must be “in writing” and
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“signed” by the parties to be enforceable. For example, the law has long for-
bidden the enforcement of certain types of agreements, such as contract for
the sale of land, unless the agreement is in writing and is signed. Similarly,
the Uniform Commercial Code (UCC), which seeks to make uniform the var-
ious state laws governing commercial transactions, requires a signed writing
to enforce a contract for the sale of goods valued at $500 or more. This signed
writing requirement is also contained in thousands of other federal, state, and
local laws and regulations, covering transactions ranging from the execution
of wills and other testamentary dispositions, to adoption and child custody
agreements.

The signed writing requirement serves four useful functions:

• Evidentiary
• Cautionary
• Approval
• Efficiency

Let’s briefly discuss each in turn: A signed writing serves an evidentiary
function by providing some proof that the alleged agreement was actually
made. Similarly, the act of signing a document serves a cautionary function
by emphasizing to the parties the significance of entering into a binding agree-
ment and thereby helping to minimize ill-considered or impulsive agreements.
The approval function refers to the idea that a person’s signature, in the con-
text of the document to which it is appended, indicates the signer’s approval
or authorization of the contents of the document. Finally, a signed document
lends efficiency to the contracting process by providing clarity and finality as
to the scope and terms of the agreement.

From these principles, legal experts have deduced what general attributes
an enforceable signature should have. The American Bar Association (ABA)
identifies these attributes as “signer authentication” and “document authen-
tication.”

Signer authentication means that the signature should identify who signed
the document and show that the signature should be difficult for another
person to produce without authorization.

Document authentication means the signature should identify what is be-
ing signed, such that it would be impracticable to falsify or alter either the
signed document or the signature without detection.

Accordingly, a signature should identify the person signing, the signature
should be unique to the signer, and the signature should be associated with
the document in such a way as to indicate the signer’s intent and to make it
difficult to falsify the document or the signature without detection.

Electronic Signatures

Does an electronic signature have the attributes of an enforceable signature?
To satisfy a statute or regulation that requires a transaction to be “in writing”
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and “signed” required three elements: (1) a writing, (2) a signature, and (3)
shows “intention to authenticate” the transaction. The first question, there-
fore, is whether an electronic signature contains these three elements.

Courts have recognized that many types of “writings” may satisfy this
statutory requirement. For example, courts have recognized that a telegram
constitutes a writing and have found that a facsimile (or “fax”) satisfies the
requirement. Courts have also found that data stored on a computer disk can
constitute a writing. Provided that an electronic record of the transaction
is retained on computer disk or hard drive, therefore, it appears likely that
courts would find the writing requirement to be satisfied.

In accordance with the UCC definition that “any symbol” can constitute
a signature, courts have recognized that letterhead, trademarks, stamped or
printed symbols, or even an “X,” can satisfy the signature requirement. Three
examples drawn from New York legal history demonstrate that the state law
adapted to recognize many signatures. In 1880, the New York courts accepted
that any figure or mark may be used in lieu of one’s proper name, a legal
recognition of the fact that New York attracted many immigrants, not all of
whom were literate. By 1911, the courts accepted that a handwritten signa-
ture was not required on an agreement, acknowledging that New York’s many
corporations and service industries could more efficiently use rubber stamps
to signify their agreement for any of their standard language contracts, such
as those commonly used in the insurance industry. After World War II, the
New York state legislature captured what the New York courts had already,
in effect, done when it modified the law by broadly defining a signature to
include “any memorandum, mark or sign, printed, stamped, photographed,
engraved, or otherwise placed on an instrument or writing.” The point to
remember is that the law adapts to changed circumstances to include demo-
graphic, technological, and business advances.

Thus, the restriction on what symbol may constitute a signature is not
particularly rigorous because the nub of the requirement is that the signa-
ture demonstrate an intention to authenticate the writing. If one party to a
transaction places an “X” at the bottom of a contract, the other part (and a
court) can reasonably infer that the signer has agreed to be bound by the con-
tract. It may be more difficult, however, to infer such intent in an electronic
environment.

Providing a biometric-based electronic signature would seem to constitute
a legally enforceable means of entering into a contract. A biometric iden-
tifier appended to an electronic record would meet the signature and writ-
ing requirements, and the requisite intent by the party to authenticate the
transaction could be inferred from the context of the transaction. But such
after-the-fact determinations may undermine the predictability that is nec-
essary to foster effective and efficient transactions in the e-commerce and
e-government arenas. Basically, it’s important to know with relative certainty
whether the transaction is enforceable before the transaction is performed.
The difference in context between the execution of a paper-and-ink signature
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and an electronic signature raises some doubt about whether simply affixing
any electronic symbol to an electronic record embodies sufficient attributes of
authentication to warrant enforceability.

Accordingly, to ensure predictability in these transactions and to avoid
after-the-fact reliance on proof of “intention to authenticate,” lawmakers at
both the federal and state levels have addressed the circumstances in which
electronic signatures will be valid and enforceable.

18.4.2 Electronic Signature Legislation in the United States

Federal Law: Electronic Signatures in Global and National
Commerce Act

A major piece of federal legislation dealing with electronic signatures is the
Electronic Signatures in Global and National Commerce Act (E-SIGN Act),
15 U.S.C.A. § 7001 et seq. (2000) The E-SIGN Act promotes the use of elec-
tronic contract formation, signatures, and record keeping in private commerce
by establishing legal equivalence between contracts written on paper and con-
tracts in electronic form, and between pen-and-ink signatures and electronic
signatures.

E-SIGN Act Summary

The heart of the E-SIGN law is summarized below:

• Legal validity of a transaction document is not denied “solely because it
is in electronic form.”

• “No paper; no problem.”
• E-SIGN applies to biometrics:

– Definition is broadly written to include biometric data.
– Law is technology neutral, giving flexibility to the parties.

• E-SIGN is a pre-emptive rule:
– Overrules old laws requiring signature in writing and on paper for

certain transactions.
– Establishes a uniform but voluntary standard.

Federal Law: Government Paperwork Elimination Act

The Government Paperwork Elimination Act (GPEA), codified at 44 U.S.C.
§ 3504 et seq., which took effect in 1998, helps make e-government a real-
ity. GPEA aims to improve the delivery of government services by charging
executive agencies with developing procedures to use and accept electronic
documents and signatures.
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State Law

The rapid growth of e-commerce, as well as the desire to increase productivity
and efficiency by moving to paperless environments, led many states to en-
act statutes and regulations governing electronic transactions. One approach,
followed by almost one-third of the states, is to define electronic signatures
in such a way that the definition itself would embody all the attributes of a
valid, enforceable signature. Although the precise wording may differ in var-
ious state statutes, those states following this approach require that, to be
legally enforceable, an electronic signature must be:

• Unique to the person using it
• Capable of verification
• Under the sole control of the person using it
• Linked to the electronic record to which it relates in such a manner that

if the record were changed the electronic signature is invalidated

Other states provide a more general definition for electronic signatures and
rely on the context of the transaction to establish the intention to authenti-
cate. The Uniform Electronic Transaction Act (UETA) takes this approach.

UETA defines an electronic signature as “an electronic sound, symbol or
process attached to or logically associated with a record and executed or
adopted by a person with the intent to sign the record.

18.4.3 Law as a Regulator of Private-Sector Use of Biometrics:
Privacy

When it comes to private-sector actions, the Constitution embodies what is
essentially a laissez-faire, or “hands-off” spirit. With respect to the conduct of
private individuals, the Supreme Court has not found a constitutional privacy
right in personal information given voluntarily by an individual to private
parties. This reluctance to find such a privacy right bears on private-sector
use of biometrics because biometrics identifiers may be categorized as personal
information that an individual, or the data subject, gives voluntarily to private
parties, or the data collectors. Generally, as a matter of law, a private party
in possession of information has the right to disclose it.

Accordingly, the private-sector enjoys great leeway as far as what it can
do with an individual’s information. As Marc Rotenberg, the executive di-
rector of the Electronic Privacy Information Center, and Emilio Cividanes, a
privacy attorney, have concluded in The Law of Information Privacy: Case
and Commentary, in 1997: “Except in isolated categories of data, an individ-
ual has nothing to say about the use of information that he has given about
himself or that has been collected about him. In particular, an organization
can acquire information for one purpose and use it for another...generally the
private sector is not legislatively constrained.”
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18.5 International Law Considerations

Organizations increasingly operate globally. As a result, their overseas activ-
ities, international business partners, and foreign customers may be subject
to different foreign laws and regulations. These organizations need to make
certain that they are in full compliance with these non-U.S. legal norms, such
as laws of a foreign nation-state or an institutional framework such as the
European Union. These international law considerations are all the more im-
portant for organizations managing, processing, and using information across
national boundaries. The European Union (E.U.) Privacy Directive deserves
special attention. Based on this law, all E.U. member states have enacted com-
prehensive privacy legislation requiring organizations to implement personal
data policies. The Directive applies to biometric data, and thus can implicate
a wide array of biometric applications. In 2003, the Asia Pacific Economic Co-
operation Forum (APEC) issued guidelines related to personal information,
to include biometrics.

Individuals and businesses using biometrics will increasingly be using these
systems in a global environment. When operating in an overseas environment,
end users obviously do not want to do things that are in conflict with foreign
law. Once an end user entity determines exactly what type of biometric appli-
cation it wants to deploy in an overseas location, therefore, it must also take
into account any applicable local laws to determine how best to proceed to
ensure compliance with these laws.

18.6 Recommendations

Organizations considering the deployment of biometric applications may want
to consider adopting a privacy enhancing biometric blueprint based on what
is known as a Code of Fair Information Practices (CFIP). Such a CFIP-
based approach merits considerations because it is arguably an effective way
to balance privacy concerns with the benefits of biometrics. As a bedrock
premise, a CFIP establishes rights for data subjects and places responsibilities
on the data collectors.

18.6.1 Biometric Blueprint

The CFIP consists of five principles: notice, access, correction mechanism, in-
formed consent, and reliability/safeguarding. The CFIP, as the name implies,
is not unique to biometrics but can apply anytime information is at stake.

The CFIP-based biometric blueprint for private-sector use should consist
of these same five basic principles, along with optional wording, to include:

• Notice: The capture of biometric identification information in the private-
sector must be accompanied by prominent notice. A more privacy-protective
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principle would prohibit the clandestine capture of biometric identification
information in the private sector; no secret databases should exist.

• Access: The individual (or data subject) has the right to access his infor-
mation in the database. Specifically, the individual must be able to find
out if his biometric identification information is in the database and how
the data collector is using it. Accordingly, the data collector would be
required to disclose its privacy practices.

• Correction mechanism: The individual must be able to correct or make
changes to any biometric identification information in the database.

• Informed consent: Before any information can be disclosed to third par-
ties, the individual must consent. The individual must voluntarily and
knowingly provide his biometric identification information to the data col-
lector in the primary market. Once in the possession of the data collector,
this information would then be governed by a use limitation principle,
which means that the individual has consented that the information she
provided would be used in the primary market for a purpose defined by
the data collector and known to the individual. The individual must know-
ingly consent to any exchange, such as buying and selling of his biometric
identification information, before it could be traded in a secondary market.
Reasonable exceptions can be accommodated as appropriate for academic
research, national security, and law enforcement.

• Reliability/safeguarding: Any data collector that collects and stores
biometric identification information must guarantee the reliability of the
data for its intended use and must take precautions to safeguard the data.
At its most basic level, appropriate managerial and technical controls must
be used to protect the confidentiality and integrity of the information. The
controls would include making the database and the computer system
physically and virtually secure. (Perhaps, policymakers should consider
providing criminal sanctions for willful disclosures, or consider providing
for the recovery of civil damages when biometric identification information
is disclosed without the consent of the individual.)

Assuming one decides to give this five-prong CFIP-based biometric blueprint
or any other approach the force of law, one has to determine who should pass
the law. Specifically, if “there oughta be a law,” then should Congress or
the various state legislatures take action? Federal legislation offers the advan-
tage of providing a uniform standard of privacy protection across the United
States. Any organization using biometrics would only need to look to the fed-
eral law and its implementing regulations to know what is needed to ensure
legal compliance.

On the other hand, some states might move more quickly and provide
more extensive privacy protection than Congress, while some states might do
nothing. Thus, the various states might take widely divergent approaches to
regulation of biometrics, which would require end-users to comply with many
different state laws.
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18.6.2 Forward-looking Approach

The biometric blueprint admittedly is a forward-looking approach to how the
law can sensibly regulate this emerging technology. It presumes that privacy
concerns related to biometrics can best be accommodated by legislative en-
actment of a limited, yet uniform biometric blueprint to provide a framework
to address legal and policy issues related to the private-sector’s use of bio-
metrics. Not all will agree with this approach. Many will advise that it is
not needed; others will claim the time is not right, as the technology is still
relatively new. As biometric applications become more common, so too will
the law and policy concerns of biometrics become more commonplace.

18.6.3 Biometric Hypothetical

I let my local sports club in Criglersville, Virginia take a photograph of my
face and capture two of my fingerprints so I can access the club and keep
better track of my workouts. I do this by presenting my face to a camera
(and facial recognition system) whenever I enter and by touching my finger to
the computer display on the treadmill and other sports equipment whenever
I use them. I get a detailed monthly fitness report from the club. The sports
club conveniently enrolled both of my index fingers so I do not even have to
remember which pointer finger to use with the equipment. I was in a hurry to
enroll and get started so I did not read the agreement very closely.

After a while, I start getting marketing information telling me to just show
up at the local grocery store, retail outlet, etc. I am told that I am already
pre-registered and biometrically enrolled in their customer service systems.
That’s because, along with my facial photograph, the sports club kept my
raw data or file images, not just my fingerprint templates, so another party
could get my raw biometric data and create a template of my fingerprint in
their system.

Later, while shopping in the mall (that great American pastime), sales
associates insist on trying to sell me athletic gear, protein supplements, diet
aids, and Viagra because their stores’ facial recognition systems identified me
as a failed jock from the sports club.

Later, the Virginia State Police are confronted with the grisly homicide
of the sports club manager in his office, where the only evidence is a single
latent print left on a barbell - the murder weapon. The latent print is searched
against the FBI’s criminal master file but, alas, no matches are made. The
Virginia State Police ask the sports club management to turn over the file
images of the fingerprints of all its club members, including mine, so the
latent print can be searched against them. Club management readily agrees.

Questions:

1. Have any of my legal rights to privacy under Virginia State or federal law
been violated in the above hypothetical?

2. Has my privacy in any way been violated in the above hypothetical?
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19.1 Introduction

Security is “freedom from risk or danger”, while computer and data security
is “the ability of a system to protect information and system resources with
respect to confidentiality and integrity”. Defining biometrics system security
is difficult, because of the ways biometric systems differ from traditional com-
puter and cryptographic security [39]. Implicit in all definitions is the concept
of an attacker; however, biometrics should always be assumed to operate in
an (at least somewhat) hostile environment – after all, why should one test
identity if all can be trusted? The ability of a biometric system to stand up to
“zero-effort” attackers is measured by the false accept rate (FAR). Attackers
may then change makeup, facial hair and glasses, or abrade and cut finger-
prints in order to avoid being recognized; attackers prepared to try harder
may use spoofing. This chapter deals with attacks which are not spoofing, but
those that target processing within the biometric system.

We define biometric system security by its absence. Since biometrics is
“automated recognition of individuals based on their behavioral and biolog-
ical characteristics”, a vulnerability in biometric security results in incorrect
recognition or failure to correctly recognize individuals. This definition in-
cludes methods to falsely accept an individual (template regeneration), impact
overall system performance (denial of service), or to attack another system
via leaked data (identity theft). Vulnerabilities are measured against explicit
or implicit design claims.

19.2 Biometrics Security Overview

The key design challenge for biometric algorithms is that people’s biometric
features vary, both with changes in features themselves (cuts to fingers, facial
wrinkles with age) and with the presentation and sensor environment (mois-
ture on fingerprints, illumination and rotation of a presented iris). A biometric
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algorithm must reject “natural” and environmental changes to samples, while
focusing on those which differ between individuals. This chapter concentrates
on system vulnerabilities which are a consequence of this core biometric chal-
lenge. Since biometric systems are implemented on server computers, they are
vulnerable to all cryptographic, virus and other attacks which plague modern
computer systems [15]; we point out these issues, but do not cover them in
detail.

Maltoni et al. [26], classify biometric system vulnerabilities as follows:

• Circumvention is an attack which gains access to the protected resources by
a technical measure to subvert the biometric system. Such an attack may
subvert the underlying computer systems (overriding matcher decisions,
or replacing database templates) or may involve replay of valid data.

• Covert acquisition (contamination) is use of biometric information cap-
tured from legitimate users to access a system. Examples are spoofing via
capture and playback of voice passwords, and lifting latent fingerprints to
construct a mold. This category can also be considered to cover regener-
ated biometric images (Sec. 19.4). For example, a fingerprint image can
be regenerated from the template stored in a database (and these data
can be captured covertly [43]). Covert acquisition is worrisome for cross-
application usage (eg. biometric records from a ticket for an amusement
park used to access bank accounts).

• Collusion and Coercion are biometric system vulnerabilities from legit-
imate system users. The distinction is that, in collusion, the legitimate
user is a willing (perhaps by bribe), while the coerced user is not (through
a physical threat or blackmail). Such vulnerabilities bypass the computer
security system, since the biometric features are legitimate. It may be
possible to mitigate such threats by automatically detecting the unusual
pattern of activity. Such attacks can be mounted from both administrator
and user accounts on such a system; attacks from user accounts would first
need to perform a privilege escalation attack [15].

• Denial of Service (DoS) is an attack which prevents legitimate use of the
biometric system. This can take the form of slowing or stopping the sys-
tem (via an overload of network requests) or by degrading performance.
An example of the latter would be enrolling many noisy samples which
can make a system automatically decrease its decision threshold and thus
increase the FAR. The goal of DoS is often to force a fall back to another
system (such as operator override) which can be more easily circumvented,
but DoS may be used for extortion or political reasons.

• Repudiation is the case where the attacker denies accessing the system.
A corrupt user may deny her actions by claiming that their biometric
data were “stolen” (by covert acquisition or circumvention) or that an
illegitimate user was able to perform the actions due to the biometric false
accept. Interestingly, biometric systems are often presented as a solution
to the repudiation problem in the computer security literature [15]. One
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approach to help prevent repudiation would be to store presented images
for later forensic analysis, however, this need must be balanced against
user privacy concerns [7].

Another class of biometric vulnerabilities are those faced by the system
user, which impact the user’s privacy and can lead to identity theft or system
compromise [34].

• Biometrics are not secret: Technology is readily available to image faces,
fingerprints, irises and make recordings of voice or signature – without
subject consent or knowledge [39][20]. From this perspective, biometrics
are not secret. On the other hand, from a cryptography [6] or privacy [7]
perspective, biometric data are often considered to be private and secret.
This distinction is important, as our understanding of computer and net-
work security is centered around the use of secret codes and tokens [15].
For this reason, cryptographic protocols which are not robust against dis-
closure of biometric samples are flawed. One proposed solution is revocable
biometrics (Sec 19.5.1), although the vulnerability of such systems is not
well understood.

• Biometrics cannot be revoked: A biometric feature is permanently associ-
ated with an individual, and a compromised biometric sample will com-
promise all applications that use that biometric. Such compromise may
prevent a user from re-enrolling [39]. Note, however, that this concern im-
plies that biometrics are secret, contradicting the previous consideration.

• Biometrics have secondary uses: If an individual uses the same biomet-
ric feature in multiple applications, then the user can be tracked if the
organizations share biometric data. Another aspect to this problem is sec-
ondary use of ID cards. For example, a driver’s license is designed with the
requirements to prove identity and driver certification to a police officer,
but it is used to prove age, name and even citizenship. Similarly, biometric
applications will be designed with a narrow range of security concerns, but
may be used in very different threat environments.

Biometric systems form part of larger security systems and their risks
and vulnerabilities must be understood in the context of the larger system
requirements. An excellent review of the security of biometric authentication
systems is [20]. Each assurance level from “passwords and PINs” to “Hard
crypto token” is analyzed to determine which biometric devices are suitable.

19.3 Vulnerabilities in Biometric Systems

In order to classify biometric security vulnerabilities, it is typical to study
each subsystem and interconnection in a system diagram (Figure 19.1). Early
work is presented in [33], with later contributions coming from [9, 44, 46]. We
consider each system module in turn:
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Fig. 19.1. Biometric System Block Diagram (from [22]). Steps A – H are analyzed
in sec. 19.3. Each presented sample (B) is acquired by a sensor (C) processed via
segmentation (D) and feature extraction (D) algorithms. If available, a sample qual-
ity (E) assessment algorithm is used to indicate a need to reacquire the sample.
Biometric features are encoded into a template, which is stored (H) in a database,
on an identity card or in secure hardware. For biometric encryption (Sec. 19.5.2)
systems, a code or token is combined with the biometric features in the template.
During enrollment, biometric samples are linked to a claimed identity (A), and
during subsequent verification or identification, samples are tested against enrolled
samples, using a matching algorithm (I) and an identity decision (J) is made, either
automatically, or by a human agent reviewing biometric system outputs.

19.3.1 Identity Claim (A):

Identity claims are not biometric properties, but form an essential part of
most biometric security systems An example of an exception is in verifying a
season ticket holder; the person’s identity doesn’t matter, and long as he is
the one who paid. Identity claims are primarily based on links to government
issued identity documents, and are thus vulnerable to all forms of fraud of
such documents. This is a problem even for highly secure documents, such as
passports, which are often issued on the basis of less secure “breeder docu-
ments” [36] such as birth certificates issued by local government, hospital or
even religious authorities.
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19.3.2 Presentation (B):

An attack on the biometric sensor introduces a false biometric sample into
the system. Such attacks are designed to either avoid detection (false neg-
ative) or masquerade as another (false positive). The latter attack is typi-
cally called spoofing. Clearly, avoiding detection is easier than masquerading,
since features simply need to be changed enough to confuse the segmenta-
tion or feature extraction module. Changing makeup, facial hair and glasses
or abrading or wetting fingers is often successful; although recent progress in
biometric algorithms has dramatically reduced the effectiveness of such tech-
niques. Knowledge of the details of algorithms can make such attacks easier;
for example, rotating the head will confuse many iris algorithms that do not
expect image rotation of more than a few degrees.

19.3.3 Sensor (C):

Attacks on the biometric sensor include any technique which subverts or re-
places the sensor hardware. In some cases subverting the sensor allows com-
plete bypassing of the biometric system. For example, in some biometric door
locks, the sensor module includes the entire biometric system including a Wie-
gand output or relay output to activate the solenoid in a door lock. Subverting
such a system may be as simple as physically bypassing the biometric system.

In many cases, an attack on the sensor would take the form of a replay.
The connection between the biometric sensor and the biometric system is
subverted to allow input of arbitrary signals, and images from legitimate users
are input into the system. In order to obtain the signals, several strategies
may be employed. Eavesdropping requires hiding the recording instruments
and wiring of the sensor. For biometrics using contactless smart cards such
eavesdropping becomes more feasible (see [43]). Another approach is to record
signals from a sensor under the control of the attacker.

19.3.4 Segmentation (D):

Biometric segmentation extracts the image or signal of interest from the back-
ground, and a failure to segment means the system does not detect the pres-
ence of the appropriate biometric feature. Segmentation attacks may be used
to escape surveillance or to generate a denial of service (DoS) attack. For
example, consider a surveillance system in which the face detection algorithm
assumes faces have two eyes. By covering an eye, a person is not detected
in the biometric system. Another example would be where parts of a finger-
print core are damaged to cause a particular algorithm to mis-locate the core.
Since the damaged area is small, it would not arouse the suspicion of an agent
reviewing the images.
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19.3.5 Feature Extraction (E):

Attacks of the feature extraction module can be used either to escape de-
tection or to create impostors. The first category is similar to those of Sec.
19.3.4. Knowledge of the feature extraction algorithms can be used to design
special features in presented biometric samples to cause incorrect features to
be calculated.

Characterizing feature extraction algorithms:

In order to implement such an attack, it is necessary to discover the character-
istics of the feature extraction algorithm. Are facial hair or glasses excluded
(face recognition)? How are the eyelid/eyelash regions detected and cropped
(iris recognition)? Most current high performing biometric recognition algo-
rithms are proprietary, but are often based on published scientific literature,
which may provide such information. Another approach is to obtain copies of
the biometric software and conduct offline experiments. Biometric algorithms
are likely susceptible to reverse engineering techniques. It would appear pos-
sible to automatically conduct such reverse engineering, but we are not aware
of any published results.

Biometric “zoo”:

There is great variability between individuals in terms of the accuracy and
reliability of their calculated biometric features. Doddington et al. developed
a taxonomy for different user classes [13]. Sheep are the dominant type, and
biometric systems perform well for them. Goats are difficult to recognize.
They adversely affect system performance, accounting for a significant fraction
of the FRR. Lambs are easy to imitate – a randomly chosen individual is
likely to be identified as a lamb. They account for a significant fraction of
the FAR. Wolves are more likely to be identified as other individuals, and
account for a large fraction of the FAR. The existence of lambs and wolves
represents a vulnerability to biometric systems. If wolves can be identified,
they may be recruited to defeat systems; similarly, if lambs can be identified
in the legitimate user population, either through correlation or via directly
observable characteristics, they may be targets of attacks.

19.3.6 Quality Control (F):

Evaluation of biometric sample quality is important to ensure low biometric
error rates. Most systems, especially during enrollment, verify the quality of
input images. Biometric quality assessment is an active area of research, and
current approaches are almost exclusively algorithm specific. If the details of
the quality assessment module can be measured (either though trial and error
or through off-line analysis) it may be possible to create specific image features
which force classification in either category. Quality assessment algorithms
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often look for high frequency noise content in images as evidence of poor
quality, while line structures in images indicate higher quality. Attacks on the
quality control algorithm are of two types: classifying a good image as poor,
and classifying a low quality image as good. In the former case, the goal of
the attack would be to evade detection, since poor images will not be used for
matching. In the latter case, low quality images will be enrolled. Such images
may force internal match thresholds to be lowered (either for that image, or
in some cases, globally). Such a scenario will create “lambs” in the database
and increase system FAR.

19.3.7 Template Creation (G):

Biometric features are encoded into a template, a (proprietary or standards-
conforming) compact digital representation of the essential features of the
sample image. One common claim is that, since template creation is a one-
way function, it is impossible or infeasible to regenerate the image from the
templates [17]. Recent research has shown regeneration of biometric samples
from images to be feasible (see Sec. 19.4).

Interoperability:

Government applications of biometrics need to be concerned with interoper-
ability. Biometric samples enrolled on one system must be usable on other
vendor systems if a government is to allow cross-jurisdictional use, and to
avoid vendor lock-in. However, recent work on interoperability has revealed
it to be difficult, even when all vendors conform to standards. Tests of the
International Labour Organization seafarer’s ID card [21] showed incompat-
ibilities with the use of the minutiae type “other” and incompatible ways to
quantize minutiae angles. Such interoperability difficulties present biometric
system vulnerabilities, which could be used to increase FRR or for a DoS
attack.

19.3.8 Data Storage (H):

Enrolled biometric templates are stored for future verification or identification.
Vulnerabilities of template storage concern modifying the storage (adding,
modifying or removing templates), copying template data for secondary uses
(identity theft), or modifying the identity to which the biometric is assigned.

Storage may take many forms, including databases (local or distributed),
on ID documents (into a smart card [43] or 2D barcode [21]) or on electronic
devices (a hardened token [20], laptop, mobile telephone, or door access mod-
ule). Template data may be in plaintext, encrypted or digitally signed. In many
government applications, it may be necessary to provide public information on
the template format and encryption used, in order to reassure citizens about
the nature of the data stored on their ID cards, but this may also increase the
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possibility of identity theft. Vulnerabilities of template storage are primarily
those of the underlying computer infrastructure, and are not dealt with in
detail here.

Template transmission:

The transmission medium between the template storage and matcher is simi-
larly vulnerable to the template storage. In many cases, attacks against tem-
plate data transmission may be easier than against the template storage. This
is especially the case for passive eavesdropping and recording of data in transit
for wireless transmission (such as contactless ID cards). Encrypted transmis-
sion is essential, but may still be vulnerable to key discovery [43].

19.3.9 Matching (I):

A biometric matcher calculates a similarity score related to the likelihood
that two biometrics samples are from the same individual. Attacks against
the matcher are somewhat obscure, but may be possible in certain cases. For
biometric fusion systems, extreme scores in one biometric modality may over-
ride the inputs from other modalities. Biometric matchers which are based
on Fisher discriminant strategies calculate global thresholds based on the be-
tween class covariance, which may be modified by enrolling specifically crafted
biometric samples.

19.3.10 Decision (J):

Biometric decisions are often reviewed by a human operator (such as for most
government applications). Such operators are well known to be susceptible to
fatigue and boredom. One of the goals of DoS attacks can be to force operators
to abandon a biometric system, or to mistrust its output (by causing it to
produce a sufficiently large number of errors) [15].

19.3.11 Attack Trees

Complex systems are exposed to multiple possible vulnerabilities, and the abil-
ity to exploit a given vulnerability is dependent on a chain of requirements.
Vulnerabilities vary in severity, and may be protected against by various coun-
termeasures, such as: supervision of enrollment or verification, liveness detec-
tion, template anonymization, cryptographic storage and transport, and tra-
ditional network security measures. Countermeasures vary in maturity, cost,
and cost-effectiveness. In order to analyze such a complex scenario, the factors
may be organized into attack trees. This analysis methodology was developed
by Schneier [38] and formalized by Moore et al. [28]. In [38], the example at-
tack “Open Safe”, is analyzed to occur due to “Pick Lock”, “Learn Combo”,
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“Cut Open Safe” or “Install Improperly”. “Learn Combo” may, in turn, oc-
cur due to “Eavesdrop”, “Bribe” or other reasons, which in turn depend on
further factors. The requirements for each factor can be assessed (Eavesdrop-
ping requires a technical skill, while Bribing requires an amount of money).
Attack trees may be analyzed by assigning each node with a feasibility, the
requirement for special equipment, or cost.

Attack tree techniques for biometric system security have been developed
by Cukic and Bartlow [9]. Figure 19.2 shows a fraction of the attack tree of
[9] for template regeneration [46].

Fig. 19.2. Attack tree fraction adapted from [9] (dotted blocks represent removed
tree portions) to implement the template regeneration attack of [46]. AND/OR nodes
indicate that all/one of the sub-blocks are/is required, Further analysis of the attack
tree may be performed by assigning each block a parameter (feasibility, required
technical skill, expense) and calculating the cost for the overall attack.

19.4 Biometric Template Security

Biometric templates carry the most important biometric information, and
thus present an important concern for privacy and security of systems. The
basic concern is that templates may be used to spoof the owner of the doc-
ument, or for identity theft to another system. Biometric algorithm vendors
have largely claimed that it is impossible or infeasible to regenerate the image
from the templates [17]; thus biometric templates are sometimes considered to
be effectively non-identifiable data, much like a password hash. These claims
are supported by: 1) the template records features (such as fingerprint minu-
tiae) and not image primitives, 2) templates are typically calculated using
only a small portion of the image, 3) templates are small – a few hundred
bytes – much smaller than the sample image, and 4) the proprietary nature
of the storage format makes templates infeasible to “hack”. In this section,
we consider two pathways to regenerate images from templates: 1) from the
template directly, based on a knowledge of the features, and 2) from match
score values from a biometric algorithm.
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19.4.1 Image Regeneration from Templates

The goal of image regeneration from a biometric template is to compute an
image which best matches the feature values in the template. In order to
regenerate images in this way, it is necessary for templates to be available
in unencrypted form. Thus, encryption of template data storage does impede
this vulnerability; however, templates must be available in unencrypted form
to perform matching, and are vulnerable at that point.

Published work on image regeneration from templates is for fingerprints,
for the reason that regeneration is trivial for most iris and face recognition
templates, in which the template features are based on subspace image trans-
forms. If feature vector, y, is computed from an image, x using a transform
that can be approximated by y = Hx for a convolution matrix, H, then a re-
constructed image, x̂, can be computed from x̂ = H†y using a pseudo-inverse
H†.

Hill [19] developed an ad-hoc approach to calculate an image from the
template of an unspecified fingerprint system vendor. Software was designed to
create line pattern images which had a sufficient resemblance to the underlying
ridge pattern to be verified by the match software. This work also devised a
simple scheme to predict the shape (class) of the fingerprint using the minutiae
template. The algorithm iterated over each orientation, core and delta position
keeping the image with the best match score. It is worth noting the line
patterns do not visually resemble a fingerprint, although these images could
be easily improved manually or automatically.

More recently, Ross et al. [35] have demonstrated a technique to recon-
struct fingerprint images from a minutiae description, without using match
score values. First, the orientation map and the class are inferred based on
analysis of local minutiae triplets and a nearest neighbor classifier, trained
with feature exemplars. Then, Gabor-like filters were used to reconstruct fin-
gerprints using the orientation information. Correct classification of finger-
print class was obtained in 82% of cases, and regenerated images resembled
the overall structure of the original, although the images were visually clearly
synthetic and had gaps in regions which lacked minutiae. Another valuable
contribution of this work is calculation of the probability density fields of
minutiae; such information could be used to attack fingerprint based biomet-
ric encryption schemes (Sec. 19.5.2).

19.4.2 Image Regeneration from Match Scores

Image regeneration from match score values does not require access to the tem-
plate, and, therefore, template encryption is not a countermeasure. Instead,
the requirements are: the ability to present arbitrary images for matching
against a target, and access to calculated match scores. The goal is to: 1) de-
termine an image which matches against the target for the specific biometric
algorithm, and 2) determine a good estimate of the original image. Clearly, if
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one can test arbitrary images, one could mount a brute force attack. Given a
biometric database of sufficient quality and variety, it should be possible to
attain the first goal in approximately 1/FAR attempts. A brute-force attack
would be guaranteed to succeed in the second goal, but the size of image space
is extremely large.

Brute force searches would only be necessary if biometric image space
were random, and nothing could be learned from the output of previous tests.
Soutar et al. [40] first proposed the possibility of “hill-climbing” in order to
practically regenerate images from match score data. A hill-climbing algorithm
functions as follows:

1. Initial image selection: Choose an initial image estimate (IM ). Typically,
a sample of initial biometric patterns are tested and the one with the
largest match score, MS , is selected.

2. Iterative estimate improvement :
a) Modify IM (to get IM test) in a random, but biometrically reasonable

way (details below).
b) Calculate MS test for IM test.
c) If MS test > MS , set IM = IM test and MS = MS test.
d) End iterations if MS is no longer increasing.

The only difficulty to a practical implementation of this algorithm is to
implement “biometrically reasonable” modifications. For face images, Adler [1]
added a small factor times a PCA (eigenface) component to the face image. For
fingerprint minutiae, Uludag and Jain [46] made modifications to perturb, add,
replace, or delete an existing minutiae point at each step. The key constraint
is that such modifications attempt to maintain “biometric feasibility” in the
search space. Other image modifications, such as changing random pixels in
the image, do not converge under hill-climbing.

In fact, “hill-climbing” algorithms are simply one type of multi-dimensional
optimization algorithm. Other methods for unconstrained minimization (or
maximization) such as the Nelder-Mead simplex perform equally or better
than hill-climbing (unpublished observations).

In order to protect against regeneration of biometric images, Soutar
et al. [40] suggested that match score output be quantized to a limited set
of levels. The idea is that small image modifications are unlikely to push the
MS up by one quantum, so that the hill-climbing algorithm will not see the
effect of its changes. This recommendation is maintained in the BioAPI spec-
ification [5]. However, by an appropriate modification of the algorithm, Adler
showed that hill-climbing could still function [3]. Each hill-climbing iteration
is applied to a quadrant of IM . Before each calculation, noise is added to the
image in the opposite quadrant, in order to force the match score to a value
just below the quantization threshold. This means that the quantized match
score is brought into a range where it provides useful information. Images
were successfully regenerated for quantization levels equal to a 10% change in
FAR.
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(a)

(b) (c) (d)

Fig. 19.3. Regenerated images using hill climbing techniques. (a) Regenerated fin-
gerprint minutiae (from [46]). The target fingerprint with labeled minutiae (left),
and regenerated minutiae positions (right). b – d: Regenerated face images (from
[1]). The target face image (b); the initial selected image for hill climbing (c), and
regenerated face image (d).

These results suggest that biometric images can generally be regenerated
if: 1) arbitrary images can be input into the biometric system, and 2) raw
or quantized match score values are output. The images calculated are of
sufficient quality to masquerade to the algorithm as the target, and give a
good visual impression of the biometric characteristics. In order to prevent
this attack, it is necessary to either limit image input, or to provide only
Match/Non-match decisions.
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19.5 Encoded Biometric Schemes

Classical biometric systems require access to enrolled templates in uncoded
form. This differs from traditional computer security systems, where a raw
password need never be stored. Instead, a cryptographic hash (one-way func-
tion) of the password is stored, and each new test password is hashed and
compared to the stored version. Since such cryptographic techniques provide
important protections, there is great incentive to develop analogous methods
for biometric systems. Encoded encryption techniques are designed to avoid
these problems by embedding the secret code into the template, in a way
that can be decrypted only with an image of the enrolled individual [11, 41].
Since the code is bound to the biometric template, an attacker should not
be able to determine either the enrolled biometric image or secret code, even
if they have access to the biometric software and hardware. Such technology
would enable enhanced privacy protection, primarily against secondary use
of biometric images [7, 45]. It would also reduce the vulnerability of network
protocols based on biometrics [20]. Biometrically enabled computers and mo-
bile phones currently must hide passwords and keys in software; biometric
encryption would protect against this vulnerability. Another interesting ap-
plication is for control of access to digital content with the aim of preventing
copyright infringement. Biometrically encoded digital documents are subject
to attacks, especially since both the documents and the software to access
them will be widely distributed [24]. Currently, to the best of our knowledge,
biometric encryption systems are not widely deployed; research systems still
suffer from high error rates and slow processing speed. However, such systems
offer some compelling benefits for many applications, and research is active
(eg. [48, 18, 25, 34, 37]).

19.5.1 Revocable Biometrics

Revocable biometrics are encoded with a distortion scheme that varies for
each application. The concept was developed by Ratha et al. [32] (and clari-
fied in [33, 34]), to address the privacy and security concerns that biometrics
are not secret and cannot be canceled. During enrollment, the input biometric
image is subjected to a known distortion (Figure 19.4) controlled by a set of
distortion parameters. The distorted biometric sample can then be processed
with standard biometrics algorithms, which are unaware that the features pre-
sented to them are distorted. During matching, the live biometric sample must
be distorted in exactly the same way, otherwise it cannot match the enrolled
sample. This distortion must also satisfy the constraint that multiple different
distortion profiles cannot match. Thus, the revocable nature of this scheme
is provided by the distortion, in that it is not the user’s “actual” biometric
which is stored, but simply one of an arbitrarily large number of possible per-
mutations. One key advantage of this scheme is that it is independent of the
biometrics matching algorithm.
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(a)

(b)

Fig. 19.4. Distortions of images to implement revocable biometrics. (a) A distorted
face image centered at the eyes (from [33]), and (b) a fingerprint minutiae set dis-
torted spatially and in minutiae angle (from [34]).

For faces, the distortion takes place in the raw image space [33], since face
recognition feature sets are not standardized. This places tight constraints on
the nature of the distortion, since severely distorted faces will not be recog-
nized and properly encoded by the algorithms (note that the face image in
Figure 19.4 was not part of an implemented system). A different approach
is taken by Savvides et al. [37] in which the revocable distortion is tied to a
face recognition algorithm based on correlation filters. Enrolled and test face
images are distorted with a random kernel calculated from a key to generate
an encrypted correlation filter. Since the same convolution kernel is present
for both images, its effect is mathematically canceled in the correlation fil-
ter. This scheme is somewhat similar to the biometric encryption approach of
Soutar et al. [41].

A theoretical approach to revocable biometrics uses shielding functions
[25], to allow a verifier to check the authenticity of a prover (user wanting
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to be verified) without learning any biometric information, using proposed
δ-contracting and ε-revealing functions. The proposed system was based on
simple Gaussian noise models and not tested with an actual biometric sys-
tem. Unfortunately, it is unclear how practical functions can be found which
account for the inherent biometric feature variability.

The cancelable fingerprint templates of [34] use the minutiae rather than
the raw image, since this allows both minutiae position and angle to be per-
muted (increasing the degrees of freedom of the transformation), and since
distortion will interfere with the feature extraction process. The distortion is
modeled on the electric field distribution for random charges. Results show
a small impact on biometric errors (5% increase in FRR) over undistorted
features.

While revocable biometrics represent a promising approach to address bio-
metric security and privacy vulnerabilities, we are unaware of security analyses
of such schemes, so the security strength of such a transformation is unclear.
More significantly, it appears trivial to “undistort” the template given knowl-
edge of the distortion key. Since such keys will presumably not be much better
protected than current passwords and PINs, in many application scenarios
there is no security advantage of such revocable schemes over an encrypted
traditional template.

19.5.2 Biometrics Encryption

Biometric encryption seeks to use the biometric sample as a key to conduct
cryptographic protocols. Normally the biometric template is bound to a secret
key which is designed to only be recoverable with a biometric image from the
enrolled individual. The primary difficulty in designing biometric encryption
systems is the variability in the biometric image between measurements [14].
This means that the presented biometric image cannot itself be treated as a
code, since it varies with each presentation. For biometric encryption systems,
this variability becomes especially difficult. An algorithm must be designed
which allows an image from the enrolled person, with significant differences
from the original, to decode the complete secret code. At the same time, an
image from another person – which may only be slightly more different from
the enrolled image – must not only not decode the secret, it must not be
allowed to decode (or “leak”) any information at all.

The earliest biometric encryption system was proposed by Soutar [41, 42].
Enrollment requires several sample images and a secret code, and creates a
template binding the code to the images. During enrollment, an average image
f0 is obtained (with 2D Fourier transform F0) from multiple samples of the
input fingerprint, after suitable alignment. In order to encode the secret, a
random code is chosen and encoded as a phase-only function R0. A Wiener
inverse filter is calculated, H0 = (F ∗0 R∗0) /

(
F ∗0 F0 + N2

)
, where N2 is the

image noise power. As N increases, an image more dissimilar from the one
enrolled can decrypt the code, at the expense of a smaller secret (in bits). In
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order for biometric encryption to allow for variability in the input image, the
secret code must be robustly encoded, using an error correcting code (ECC);
[41] uses Hamming distances and majority decision. During key release, a
new image, f1, is acquired. This image is deconvolved with the filter H0 to
calculate R1 = sign(imag(H0F1)), an estimate of R0. If F1 is from the same
individual as F0, then R1 should be a good estimate of R0; but since R1 6= R0,
some phase elements will be incorrect. However, if R1 is sufficiently close, the
ECC should allow the correct value of the secret to be obtained.

A somewhat similar scheme was proposed for voice passwords by Monrose
et al. [27], in which a vector of features is calculated. From this vector each
value is used to select a fraction of the key bits from a table. A correct feature
value during key release will select correct key bits while an incorrect value
will select a table entry with random data. For features determined to be less
reliable, correct key bits are put in all table positions. Reported error rates
were FRR = 20%; however, it would seem that such a scheme could make
better use of an ECC, since a single feature error will prevent code release.

Hao et al. recently proposed a biometric encryption scheme for Iris images
based on similar techniques [18]. During enrollment, an encoded key is XORed
with the 2048 bit iris code to produce an encrypted code. Variability in the
iris is due to background random errors, and to burst errors from undetected
eyelashes and specular reflections. The key is encoded with a Hadamard code
to protect against background errors, and with a Reed-Solomon code to pro-
tect against burst errors. During key release, the encrypted code is XORed
with a new iris code sample, and Hadamard and Reed-Solomon decoding are
used to correct for errors in the key. Rotation of the iris is handled by it-
eratively shifting the observed iris codes and attempting decoding. Results
show FRR = 0.47% for a key length of 140 bits. In terms of security, the
authors note that iris images have significant spatial correlations, which will
be preserved in such a linear cryptographic scheme.

Fig. 19.5. Schematic diagram of the biometric encryption scheme of [8]. Left: a raw
fingerprint image is enrolled. Middle: minutiae points (circles) are used to encode
the value of a polynomial representing the secret. Right: chaff points (squares),
sufficiently far from minutiae, are used to encode random values of the polynomial.
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More recent work in biometric encryption has been done in the cryptog-
raphy community, with much based on the fuzzy vault construction of Juels
and Sudan [23]. This scheme allows a cryptographic encoding with a variable
number of un-ordered data points, which makes it suitable for fingerprint
minutiae. This approach has been pursued by Dodis et al. [14], who develop
the concept of a fuzzy extractor which extracts uniformly random and error-
tolerant bits from its input, and a secure sketch which produces public output
that does not reveal the input. Boyen et al. [6] further develop this scheme for
secure remote authentication. Unfortunately, neither work clarifies how to use
these frameworks in a practical biometric application. Not all biometric en-
cryption schemes use a key; for example, in [12, 11], the biometric image forms
a unique key, although the results of Linnartz et al. [25] suggest encryption
schemes based on the biometric only are inherently vulnerable.

Based on [23], Clancy et al. [8] designed a fingerprint algorithm which
encodes the secret as the coefficients of a Galois field polynomial (Figure
19.5). After alignment, minutiae points are encoded as pairs (xi, yi) where
xi is a minutiae point, and yi is a point on the polynomial. Additionally,
numerous “chaff” points are encoded, in which the value of yi is random.
During key release, the minutiae of the new fingerprint image are calculated,
and the points xi closest to the minutiae are chosen. The yi corresponding to
these points are used to estimate the polynomial, using a Reed-Solomon ECC
framework. If enough legitimate points are identified (equal to the number
selected at vault design), the correct polynomial will be obtained and the
correct secret decrypted. An interesting generalization of this scheme is given
by the “secure sketches” of [14].

Little work has been done to attack biometric encryption schemes, and
their security is thus mostly unknown. In their analysis, Uludag et al. [48]
note that most proposed biometric encryption systems only appear to ac-
count for a “limited amount of variability in the biometric representation.”
In order to quantify this notion, experiments were conducted to estimate the
variability in fingerprint minutiae. Matched fingerprint pairs were imaged and
minutiae locations identified by a human expert, which was assumed to give
an upper bound on system performance. Using these data, the algorithm of
[8] was analyzed to estimate the ROC curve during key generation and key
release, with an equal error rate of approximately 6.3%. This suggests that
biometric encryption systems can be attacked simply via the FAR, by pre-
senting biometric samples from a representative population. A cryptographic
attack of biometric encryption was developed by Adler [4], based on using any
“leaked” information to attempt a “hill-climbing” of the biometric template,
using the quantized MS hill-climbing algorithm. This approach was used to
reconstruct a face image from a biometric encryption scheme based on [41, 42].

Based on the success of these early attacks, we feel that biometric en-
cryption schemes have significant remaining vulnerabilities. Although some
schemes offer security proofs (ie. [23, 14]) these depend on invalid models of
the biometric data. Biometric data inherently has strong internal correlations,
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many of which cover the entire image. Another important area for attack is
the requirement for segmentation and alignment of images before compari-
son can take place. In a practical system, such as that of Uludag et al. [47],
carefully selected data are made available to permit alignment with a mini-
mum of “leaked information”. Thus, we feel that, in general, current biometric
encryption schemes have unknown security value.

19.5.3 Measures of biometric information content

The information content of biometric samples (or biometric feature entropy)
is related to many issues in biometric technology. For example, one of the most
common biometric questions is that of uniqueness – “are fingerprints unique?”
[30] Such a measure is important for biometric system vulnerabilities, espe-
cially as a measure of the strength of cryptosystems and for privacy measures.
It also is relevant for applications such as biometric fusion, where one would
like to quantify the biometric information in each system individually, and
the potential gain from fusing the systems.

Several approaches have been taken to answer this question. Wayman [49]
introduced a statistical approach to measure the separability of Gaussian fea-
ture distributions using a “cotton ball model”. Daugman [10] developed the
“discrimination entropy” to measure the information content of iris images.
This value has the advantage that it is calculated directly from the match
score distributions, but it is unclear how it relates to traditional measures
of entropy. Golfarelli et al. [16] showed that the most commonly used feature
representations of hand geometry and face biometrics have a limited number
of distinguishable patterns, on the order of 105 and 103, respectively, as mea-
sured by a theoretical estimate of the equal error rate. Penev et al. [31] deter-
mined that the dimentionality of the PCA subspace necessary to characterize
the identity information in faces is in the range 400–700. Biometric encryption
studies calculate 46 bits in spoken passwords [27], and 69 bits in fingerprints
[8]. Adler et al. [2] developed a measure of biometric information in terms
of the relative entropy D(p‖q) between the population (inter-class) feature
distribution q and the individual (intra-class) distribution p, and calculated
an information content for various face recognition feature representations to
be between 37 and 45 bits. In this work, the term biometric information is
defined as the “decrease in uncertainty about the identity of a person due to
a set of biometric measurements”. Biometric information content is still an
open field, with no consensus on techniques used. All cited work measures
the information content of a given feature representation, and not that of the
biometric sample itself.

19.6 Discussion

Our understanding of biometrics system security is in its early stages – much
more so than many aspects of biometric recognition algorithms. This is per-
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haps to be expected; people needed to be convinced the technology would
work at all, before it was worth trying to understand when it failed.

It is also worth noting that many privacy issues associated with biometric
systems are closely related to the security vulnerabilities. Thus, according to
Cavoukian [7],

The threat to privacy arises not from the positive identification
that biometrics provide best, but the ability of third parties to access
this data in identifiable form and link it to other information, resulting
in secondary uses of the information, without the consent of the data
subject.

Based on this understanding, a biometric requirement list was developed to
include: original biometric image must be destroyed, biometrics must be en-
crypted, biometrics used only for verification, fingerprint image cannot be
reconstructed, and finger cannot be used as a unique ID. The other signifi-
cant privacy concern is that “we only have 10 fingers” – biometric data loss
is catastrophic in the sense that it cannot be replaced [39]. While there are
many promising developments that address these issues, such as biometric
encryption (Sec. 19.5.2), revocable biometrics (Sec. 19.5.1), or work to de-
identify images [29], unfortunately, our analysis in this chapter suggests that
currently mature biometric technology is unable to properly address these
privacy concerns in the way they are stated.

At the same time, biometric systems are being used in many scenarios with
high security value. Vulnerabilities and attack scenarios have been carefully
considered and well thought out recommendations are available (eg. [20]).
Recent work in standards bodies has given much thought to security stan-
dards for biometrics. In summary, biometrics system security is challenged by
many vulnerabilities, from the biometrics system, the computer infrastruc-
ture which supports it, and the users it identifies. However, biometrics can
also provide (with careful use) the identity assurance that is foundational to
systems security.
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20.1 Introduction

Biometrics is defined as an automated method of verifying or recognizing the
identity of a living person based on physiological or behavioral characteristics
[1]. While much research has been done both to determine which traits can
differentiate humans and to optimize that differentiation, the problem of de-
termining if the presented trait originates from a living person has received
relatively less attention. Between acquiring biometric data and delivering a
result, there are various points where the overall security of a biometric access
system can be compromised.

The information flow of a biometric access system is simple (see Figure
20.1). First the biometric is presented to the sensor by the person requesting
access. A camera may capture a face or iris, a sensor may capture a fingerprint,
a microphone may capture a voice; in each case, the raw biometric information
is acquired and sent to the biometric feature extractor. The extractor is gen-
erally software that extracts the features important for determining identity
from the raw information. For a fingerprint, this might be the minutiae points
and for a face this could be the distance between the eyes. This extracted fea-
ture information is called a template. The template is then sent to the matcher.
The matcher compares the newly-presented biometric information to previ-
ously submitted template information to make a decision. Presented along
with a pin number or access card, the template may be matched against that
of a single enrolled user for verification. Alternatively, it may be compared to
all enrolled users for identification.

One type of biometric sensor attack happens at the beginning of this pro-
cess: fake biometric data may be presented to the sensor. Known as a spoof
attack, this can take the form of an artificial finger, a mask over a face, or a
contact lens on an eye. A replay attack intercepts the output flow of a sensor
and puts previously stored genuine biometric information (either in raw or
extracted form) into the proper place in the processing chain. An enrollment
database used in the verification/identification process can also be altered
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to effectively enroll an unauthorized person or replace a person’s information
with someone else’s. A Trojan horse attack replaces the original extractor with
a fake extractor (the “Trojan horse”) which outputs pre-determined biomet-
ric information. Similarly, the original matcher could be replaced with a fake
matcher that always gives a specified result - match, no match, or a score.
Buhan and Hartel have published a detailed review of vulnerability points [2].

Fig. 20.1. An example of how biometric data travels to obtain a result.

While security vulnerabilities can be found at many points in the capture
and processing of a biometric, the most susceptible point is the one that all
people have access to: the presentation of the biometric trait at the sensor
interface itself. Producing cloned biometric data is relatively simple, making
the sensor an easy target for intruders.

An attack on a biometric system can occur for many reasons. First, a
person may wish to disguise their own identity. A terrorist trying to enter a
foreign country, for example, may try to modify their biometric information
or conceal it by placing an alternate form of the biometric, such as an artificial
fingerprint, mask, or contact lens, over their genuine biometric trait. As long
as the modified or false biometric is not in the database being searched, the
attack could be successful. Secondly, an attack on a biometric system can
occur because a person wants to gain privileges that another person has. In
this case, the individual might counterfeit an authorized user’s biometric to
try to access that person’s bank account or gain physical access to a restricted
area. Finally, an attack might occur because there is a benefit to sharing a
biometric. For example, a person may create a new identity using an artificial
biometric, enroll in a system, then share that identity with multiple people
by sharing the artificial biometric. In this final case, it does not matter who
the artificial biometric actually belongs to, only that it can be used in the
enrollment process and later shared.
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A spoof is a counterfeit biometric that is used in an attempt to circumvent
a biometric sensor. In the case of fingerprints, this can be as simple as a la-
tent print on a sensor, reactivated by breathing on it, or as sinister as using a
dismembered finger. Differentiating a genuine biometric trait presented from
a live person versus some other source is called spoof detection. The act of
sensing vitality (“liveness”) signs such as pulse is one method of spoof de-
tection. In some areas of research, the term liveness detection is synonymous
with spoof detection. In other areas of research, liveness detection is the more
limited problem of distinguishing a live human trait from a non-live human
trait and in still others liveness detection is, very narrowly, defined as the
sensing of vitality signs. For the purposes of this chapter, spoof detection will
be broadly defined as correctly identifying when the biometric presented is
from a live human versus any other material using any method.

Spoof detection can occur before biometric data is collected or during
data processing. In a decoupled system, no biometric data is collected until
the spoof detection method is satisfied that a live human is present. In an
integrated system, spoof detection occurs along the processing chain after the
biometric information is captured.

Spoof detection methods can be categorized using three different ap-
proaches: a) use only the data collected for biometric purposes; b) further
process information already collected to generate discriminating information
or collect additional biometric images over time; or c) use additional hard-
ware and associated software to detect signals that have higher discriminat-
ing power than biometric data alone. In general, using only data collected for
biometric purposes is hard to leverage for spoof detection; academic research
and commercial solutions have focused on further processing or collection of
biometric data, or on using additional hardware.

In spoof detection systems, the resistance to spoof attacks can be mea-
sured in the same manner as the biometric authentication performance. By
generalizing the concept of Receiver Operator Characteristic (ROC) curves,
and assuming that there exists a threshold for which a spoof decision is made,
the probability of labeling fake biometric data as genuine (“false accept”) or
labeling genuine data as fake (“false reject”) can be plotted with respect to
each other at discrete threshold points. ROC plots offer a means to choose
the operating threshold of the system with full knowledge of the probability
of accepting fake biometric data as genuine and vice-versa. The ROC is also a
good instrument for comparing heterogeneous approaches to spoof detection.

There are, however, irregularities to fake biometric data that are not re-
vealed by ROC plots. To concentrate attention on securing systems against
the most successful fake biometric attacks, it is important to derive knowl-
edge of both the repeatability of a single example of a spoof and the ability
to reproduce examples of a spoof. ROC curves aggregate all attacks under a
single class. For example, if a gelatin spoof is able to successfully fool a finger-
print system but no other material is, the number of other materials sampled
with respect to gelatin will skew the ROC curve. Also, if a specific sample of
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a gelatin spoof can fool the fingerprint sensor but the technique can not be
replicated, that information is very important to the overall security of the
system but is not adequately captured in a ROC curve alone.

Measuring the security of biometric systems against spoof attacks has re-
ceived a lot of attention through publications in recent years; an industry- and
technology-wide performance evaluation, however, has yet to be undertaken.
The International Biometric Group (IBG) will conduct a trial to evaluate the
anti-spoofing capabilities of biometric sensors currently available on the mar-
ket. The IBG trial will focus on the integrated software/sensor solutions with
respect to their spoof detection capabilities [3].

20.2 Historical Survey

20.2.1 Fingerprint

Sensor Attacks

The first attempt to compromise the security of fingerprint-based identifica-
tion systems dates to the 1920s when Alert Wehde, then an inmate at a Kansas
penitentiary, used his experience in photography and engraving to forge la-
tent prints. A latent fingerprint was dusted to reveal and increase contrast,
and a photograph was taken. The negative was used to etch the print onto
a copper plate. Lightly greased, the plate could be used to leave counterfeit
latent prints on objects [4, 5].

In more recent times, Putte and Keuning [6] and Mutsumoto et al. [7]
independently showed how soft material artificial fingers could be falsely ac-
cepted as real fingers on widely available biometric fingerprint sensors. Their
pioneering work prompted the development of a research area focused on
probing sensor vulnerabilities and finding countermeasures to attacks.

When the goal of the spoof is to gain access that another person has, the
first step is to retrieve the fingerprint of that person - i.e., a person that is
already enrolled. There are two approaches to acquiring an enrolled subject’s
fingerprint: cooperative retrieval and non-cooperative retrieval.

In cooperative retrieval, the subject allows the collection of one or more
fingerprints. The fingerprint is usually collected by pressing the finger in a
small amount of suitable material such as wax or dental mold material; the
impression creates a mold from which artificial fingers can be cast. A variety of
materials have been used for casting such as silicone, moldable plastic, plaster,
clay, and dental molding material [8-10].

In a real-world scenario, it is highly unlikely that a person would agree
to produce a mold from a finger. For non-cooperative retrieval, the method
devised by Albert Wehde [5, 11] is still in use: today, printed circuit board
etching is a successful molding technique for producing ‘gummy’ and other
soft material artificial fingers [4].
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Sensors for Fingerprinting

There are three families of fingerprint acquisition technologies: optical, solid-
state, and ultrasound [12]. Each technology has strengths and weaknesses with
regard to preventing spoof attacks.

Many optical fingerprint sensors are based on frustrated total internal
reflection (TIR). In TIR sensors, the fingerprint image is generated by the
differential reflectivity of friction ridges - which are in contact with a glass
platen and the valleys of the fingerprint (air). The finger surface is illuminated
through one side of a prism and reflected through the opposite side. Ridges and
valleys are imaged in contrast. Sensors based on this technology are susceptible
to attack with artificial fingers made of material that has light reflectivity
similar to that of skin. If the valleys of the artificial finger are similar in depth
to those of a real finger, the resulting image will be indistinguishable from a
real fingerprint. In some cases, an ink jet can print a fingerprint with enough
relief to spoof an optical fingerprint reader [13].

Some TIR optical sensors are also highly vulnerable to being spoofed by
latent prints. The palmar surface of fingertips is often covered with sebaceous
secretions which find their way to the fingertips by normal everyday behavior
like rubbing the face, combing, etc. These secretions, along with sweat and
skin debris, can produce latent prints that are left on objects. (This is the
basis of fingerprinting in forensic science.) When a real finger touches a glass
platen of an optical sensor, a latent print may remain on the platen. The
latent print can compromise an optical scanner when a light is directed onto
the platen. The light incident on the latent print is optically scattered, causing
a fingerprint image to be detected by the sensor [14].

Recently, an optical sensor based on multispectral imaging (MSI) has been
introduced as a commercial product [15]. Sensors in this class image features
of the tissue that lie below the surface of the skin as well as the usual surface
features. Some of the subsurface features provide a second representation of
the surface pattern, which enables the MSI sensor to collect a fingerprint
even when the surface features are worn or the measurement is made under
adverse sampling conditions. Importantly for spoof detection, the subsurface
tissue features also represent a rich source of information about the material
being imaged and provide a strong basis for discrimination between genuine
fingers and other materials. The details of this means of spoof detection will
be described in Section 20.3.

Solid-state sensors incorporate an array that measures physical character-
istics of skin. The most common is the capacitive sensor, consisting of an array
of capacitor plates. When a fingertip rests on the sensing surface, the ridges
and valleys constitute the opposite plate of a virtual capacitor. Air lodged
between the sensing surface and the valleys induces differential capacitance
of valleys and ridges, creating the image acquired through the array. Thermal
sensors, in this family, sense the difference in temperature between the sur-
face of ridges, which are in direct contact to the sensor surface, and valleys,
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whose radiated heat reaches the sensor via air. Electric field sensors reveal the
characteristic amplitude modulation of the skin derma on a sinusoid signal.
The signal is generated by a drive ring inside the sensor and is received, when
modulated, by an array of micro-antennae embedded in the sensor. Piezoelec-
tric sensors generate images by differential mechanical stress of ridges and
valleys when a finger is presented. Solid-state sensors are susceptible to soft
artificial fingers (commonly, gelatin-based spoofs [6]) whose material mimics
the single physical characteristic of the skin they are measuring.

Ultrasound sensors employ acoustic signals transmitted towards the fin-
gertip surface. Acoustic waves travel at different speeds though ridges and air
lodged under the skin. The reflected acoustic signal (echo) is captured by a
receiver, which generates the fingerprint image. Ultrasound fingerprint scan-
ners can be compromised by soft artificial materials whose material has the
same echoing characteristics of fingers, such as gelatin.

Vulnerability of Fingerprint Sensors to Spoof Attacks

Sensor resilience to attacks undertaken with spoofing materials has been tested
by several groups. Table 20.1 summarizes the published, aggregate results.
Sensor devices tested were produced by BioLink Technologies, Biometric Ac-
cess Corp, Biometrika, Compaq Computer Corporation, Crossmatch, Derma-
log, Digital Persona, Ethentica Inc/Security First Corp, FingerMatrix, Fujitsu
Microelectronics America, IdentAlink, Identix, Mitsubishi Electronic Corpo-
ration, NEC Corporation, Omron Corporation, Precise Biometrics, Siemens,
Sony Corporation, Tacoma, Targus, TST, Ultra-Scan, Upek, and Veridicom.
Data for aggregation were collected from heterogeneous sources [6, 7, 14, 16-
27]. Some of the data presented was collected at the Lumidigm laboratories.

Measures to Minimize Sensor Vulnerability

Among the three different approaches for spoof detection in biometrics dis-
cussed in Section 20.1, namely, using only biometric data, collecting additional
data or extra processing of collected data, and additional hardware, only fur-
ther processing or additional collection of biometric data and additional hard-
ware are represented in current fingerprint research and development. Due to
the limited amount of information in fingerprint images and the ability to
make high-resolution fingerprint spoofs, use of existing biometric fingerprint
images has not proven useful for spoof detection.

Researchers at West Virginia University have used the collection of addi-
tional fingerprint images and processing to determine if the source is a live
finger or a spoof [8-10, 13]. Attention has been focused on the perspiration
from the skin surface. The presence of sweat on a finger surface enables both
capacitive and optical scanners to discriminate against spoofs. The combina-
tion of skin and aqueous solution changes: when dry skin contacts a sensing
surface, moisture is secreted over a short period of time. The West Virginia
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Table 20.1. Published sensor vulnerability results from several studies. Tests per-
formed at Lumidigm laboratories are marked with (*).



410 Kristin Adair Nixon, Valerio Aimale, and Robert K. Rowe

approach employs frequency domain analysis of acquired images. Images are
sliced into a number of one-dimensional quasi-sinusoidal time-bound wave-
forms. Each time-bound waveform corresponds to a row of the original image.
The periodic signal derives from the interposition of ridges and valleys; the
signal is prominent when the acquired image row is orthogonal to the local
ridge orientation. Frequency domain analysis can be performed by Fourier or
wavelet analysis [28, 37]. In either approach, the goal is to quantify waveform
changes due to temporal changes in the quantity of sweat present of the finger
surface. As the quantity of perspiration changes rapidly over time, both static
and dynamic waveform changes are sought. The approach has proven to be
viable in the testing performed at the Biomedical Signal Analysis Laboratory
at West Virginia University.

Several spoof detection approaches based on additional hardware are cur-
rently being researched. Although few approaches have become commercial
products, they all give positive results against some types of spoofs. (A com-
mercially available spoof detection method is discussed in detail in Section
20.3 below.) One approach uses skin absorbance and reflection profiles [38].
Skin cells and red blood cells flowing through capillaries contain active dipoles.
Although soft materials, like gelatin, might have reflectivity similar to skin,
it is difficult to replicate the spectral absorption profile of living human skin.
Skin temperature has also been used as a discriminating, though limited,
property that can be used to detect a spoof [6]. Although most soft material
artificial fingers can be worn on a real finger, the material interface between
finger and sensor is enough to dissipate part of the surface heat and work as
partial thermal insulator, resulting in lower-than-physiological temperature
detected at the sensor [6]. The heartbeat is transmitted through the vascular
system up to the capillary bed of vascular periphery; therefore pulse can be
detected in fingertips and can be used as a sign of vitality. As with any other
discriminating approach that uses physiological signs, pulse detection as spoof
detection is limited by inter-personal variance in rest heart beat. Moreover,
physiological and pathological conditions can significantly vary the heart rate
of an individual or from person to person [39]. Related to pulse detection is the
use of pulse oximetry. Hemoglobin has a differential absorbance, at particu-
lar wavelengths, as a function of its oxygen saturation. The absorption profile
also has a pulsating component due to heartbeat [39]. Several other physiolog-
ical characteristics have been proposed for spoof discrimination: skin electric
resistance [6], dielectric permittivity [6, 7], and ultrasonic detection of der-
mal structures [6, 12]. Further studies are required to confirm that the above
approaches have potential for introduction into the biometric market.

20.2.2 Iris

Iris recognition is based on discriminating the fine structure of the textured
area of the eye that surrounds the pupil. Most commercial iris sensors collect
a digital image of the eye using a silicon imager and near-infrared or visible
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illumination. One of the most common commercial implementations of an iris
feature extractor and matcher generates binary templates based on the phase
of a Gabor decomposition of a series of concentric annular rings within the
iris [40, 41]. The degree of correspondence of two such binary templates forms
the basis of the determination of biometric match.

A straightforward method that has been used to spoof an iris sensor is
based on a high-quality photograph of the eye [14]. In one study [34], three
different commercial iris sensors were examined for their ability to discriminate
against such photographic spoofs. Images of an iris were generated from the
data collected from one of the three sensors as well as from an image generated
by a digital microscope. Both of these images were printed on mat paper using
a standard laser jet printer. After the pupil regions of the images were cut out,
each image was presented to each of the tested sensors in both enrollment and
verification modes. Although the rate of spoof acceptance differed considerably
by device and condition (enroll or verify, image from microscope or from an iris
sensor), acceptance levels were significant and approached 100% under certain
conditions. Another method used to successfully spoof some iris sensors is
to use a contact lens on which an iris pattern is printed [42]. Even more
sophisticated, multilayered and three-dimensional artificial irises may also be
produced to spoof a sensor [43].

Iris spoof detection may be accomplished in a variety of ways. Mathemat-
ical interrogation of the fine texture of the iris image using Fourier analysis
may be employed to detect and discriminate against the dot matrix pattern of
many common printing processes [44]. Figure 20.2 shows images of a real and
fake iris and their associated Fourier spectrum. The unique optical effects of
the iris and/or other parts of the eye may be analyzed [45]. Involuntary mo-
tions of the pupil at rest (“hippus”) or in reaction to changing ambient light
conditions may be checked to determine if a live eye is in the sensor’s field of
view [46]. In addition, challenge-response transactions may be implemented
wherein the person under test is asked to blink or move their eyes in a certain
direction to ensure that the random instructions are carried out properly [47].

20.2.3 Face

Commercial facial recognition systems most often are based on digital images
collected using visible or near-infrared light. These systems can be broadly
divided into two categories: 2-dimensional (2D) and 3-dimensional (3D) fa-
cial recognition. 2D systems are those that collect and process a single two-
dimensional image of the face. 3D facial recognition systems use various tech-
niques such as patterned illumination light or paraxial viewing to develop a
3D representation of the face.

The form and degree of susceptibility to spoof attempts of facial recogni-
tion systems from different manufacturers varies widely. The 2D facial recog-
nition systems with the simplest forms of spoof detection have been shown to
be able to be spoofed using a simple photograph of the enrolled person’s face,



412 Kristin Adair Nixon, Valerio Aimale, and Robert K. Rowe

 

Fig. 20.2. Images of a real and fake iris and their associated Fourier spectra [44].

which may be displayed as a photographic hardcopy or on a laptop monitor
[14]. Some poorly-designed facial recognition systems have even been shown
to be susceptible to accepting very crude line drawings of a human face [16].
An effective means to guard against spoofs based on a static image of a face
relies on the detection of motion of the facial image such as the blinking of
eyes and the small, involuntary movements of parts of the face and head.
However, this method of spoof detection is still subject to being fooled fairly
easily by using a laptop to display a short video of the authentic user to the
facial recognition system [14].

A very specific weakness is the potential for identical twins to be authorized
interchangeably by a facial recognition system. One commercial vendor claims
to be able to eliminate this ambiguity by performing an analysis of the random
features associated with the surface texture of the skin [48]. Thermal images
of the face are also reported to be able to provide sufficient information to
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distinguish between identical twins [49]. In a similar way, Fourier analysis
has been shown to differentiate between live faces and certain types of spoofs
based on the fine structure of the face [50].

Facial recognition systems based on 3D sensing have an additional pro-
tection against spoof attempts since the requisite spoof would have to be
three dimensional and thereby somewhat more difficult to fabricate than a
2D spoof. However, such spoofs have been fabricated and successfully used to
defeat commercial systems [51]. A variety of challenge-response methods have
been described in the literature for facial spoof detection. One commercial
system had a challenge-response method implemented that directed the user
to blink, smile or frown while video images of the face were being collected
[52]. The system analyzed the resulting video sequence to ensure that the
proper response was provided at the proper time, ensuring the authenticity
of the subject. Another form of challenge response incorporated in a commer-
cial system relies on the user properly repeating a set of randomly generated
phrases [13].

Finally, a number of different methods have been proposed to measure var-
ious optical qualities of skin to ensure that the object in front of the biometric
sensor is a live human face [53]. These properties include optical absorption,
reflection, scattering, and refraction under different illumination wavelengths.

20.3 Fingerprint Case Study

An optical fingerprint sensor based on multispectral imaging (MSI) has re-
cently been introduced by Lumidigm as a commercial product called the J110.
This sensor is configured to image both the surface and subsurface character-
istics of the finger under a variety of optical conditions. The combination
of surface and subsurface imaging ensures that usable biometric data can
be taken across a wide range of environmental and physiological conditions.
Bright ambient lighting, wetness, poor contact between the finger and sensor,
dry skin, and various topical contaminants present little impediment to col-
lecting usable MSI data. Moreover, the ability of the MSI sensor to measure
the optical characteristics of the skin below the surface allows strong discrim-
ination between living human skin and spoofs. An overview of skin histology,
the MSI principles of operation, and procedures and results from a spoof study
performed with the J110 follow.

20.3.1 Finger Skin Histology

Human skin is a complex organ that forms the interface between the person
and the outside environment. The skin contains receptors for the nervous sys-
tem, blood vessels to nourish the cells, sweat glands to aid thermal regulation,
sebaceous glands for oil secretion, hair follicles, and many other elements. As
well, the skin itself is not a single, homogeneous layer, but is made of different
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Fig. 20.3. Histology of the skin on the palmar surface of the fingertip. The sketch
on the left shows the pattern of the capillary tufts and dermal papillae that lie below
the fingerprint ridges. The scanning electron microscope (SEM) photo on the right
side shows the rows of capillary tufts imaged from a portion of an excised thumb
after the surrounding skin has been removed [56].

layers with different material properties. These layers can be broadly separated
into the epidermis, which is the most superficial layer; the dermis, which is
the blood-bearing layer; and the subcutaneous skin layer, which contains fat
and other relatively inert components.

The skin on the palmar side of the finger tips contains dermatoglyphic
patterns comprising the ridges and valleys commonly measured for fingerprint-
based biometrics. Importantly, these patterns do not exist solely on the surface
of the skin - many of the anatomical structures below the surface of the skin
mimic the surface patterns. For example, the interface between the epidermal
and dermal layers of skin is an undulating layer made of multiple protrusions of
the dermis into the epidermis known as dermal papillae. These papillae follow
the shape of the surface dermatoglyphic patterns [54] and thus represent an
internal fingerprint in the same form as the external pattern. Small blood
vessels known as capillaries protrude into the dermal papillae [55] as shown in
Figure 20.3. These blood vessels form another representation of the external
fingerprint pattern.

There are various methods that can be used to image the internal structure
of the skin of the finger. One method is the use of optics. Recently published
research demonstrated the use of optical coherence tomography to investigate
features of the finger skin below the ridges and valleys [57]. This research
showed that there is a distinct area of high reflectivity (at 850 nm) in the
skin approximately 500 µm below each finger ridge and, furthermore, that
this subsurface pattern continued to exist even when the surface pattern was
deformed by application of pressure or obscured by a wrinkle in the skin.
Multispectral imaging is another optical method that can be used to capture
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surface and subsurface features of the skin. The following section describes
one optical configuration used in a commercial MSI sensor.

20.3.2 Multispectral Imaging Principles of Operation

In order to capture information-rich data about the surface and subsurface
features of the skin of the finger, the MSI sensor collects multiple images of the
finger under a variety of optical conditions. The raw images are captured using
different wavelengths of illumination light, different polarization conditions,
and different illumination orientations. In this manner, each of the raw images
contains somewhat different and complementary information about the fin-
ger. The different wavelengths penetrate the skin to different depths and are
absorbed differently by various chemical components of the skin. The different
polarization conditions change the degree of contribution of surface and sub-
surface features to the raw image. Finally, different illumination orientations
change the location and degree to which surface features are accentuated.

Figure 20.4 shows a simplified schematic of the major optical components
of an MSI fingerprint sensor. Illumination for each of the multiple raw images
is generated by one of the light emitting diodes (LEDs). The figure illustrates
the case of polarized, direct illumination being used to collect a raw image.
The light from the lower right LED passes through a linear polarizer before
illuminating the finger as it rests on the sensor platen. Light interacts with
the finger and a portion of the light is directed toward the imager through
the imaging polarizer. The imaging polarizer is oriented with its optical axis
to be orthogonal to the axis of the illumination polarizer, such that light with
the same polarization as the illumination light is substantially attenuated by
the polarizer. This severely reduces the influence of light reflected from the
surface of the skin and emphasizes light that has undergone multiple optical
scattering events after penetrating the skin.

A second direct illumination LED shown in Figure 20.4 does not have a
polarizer placed in the illumination path. When this LED is illuminated, the
light is randomly polarized. In this case the surface-reflected light and the
deeply penetrating light are both able to pass through the imaging polarizer
in equal proportions. As such, the image produced from this non-polarized
LED contains a much stronger influence from surface features of the finger.
Importantly, all of these direct illumination sources (both polarized and non-
polarized) as well as the imaging system are arranged to avoid any critical-
angle phenomena at the platen-air interfaces. In this way, each illuminator
is certain to illuminate the finger and the imager is certain to image the
finger regardless of whether the skin is dry, dirty or even in contact with
the sensor. This aspect of the MSI imager is distinctly different from most
other conventional fingerprint imaging technologies and is a key aspect of the
robustness of the MSI methodology.

In addition to the direct illumination illustrated in Figure 20.4, the MSI
sensor also integrates a form of TIR imaging, illustrated in Figure 20.5. In
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Fig. 20.4. Optical configuration of an MSI sensor. The thick lines illustrate the
direct illumination of a finger by a polarized LED.

this illumination mode, one or more LEDs illuminate the side of the platen.
A portion of the illumination light propagates through the platen by making
multiple TIR reflections at the platen-air interfaces. At points where the TIR
is broken by contact with the skin, light enters the skin and is diffusely re-
flected. A portion of this diffusely reflected light is directed toward the imaging
system and passes through the imaging polarizer (since this light is randomly
polarized), forming an image for this illumination state. Unlike all of the direct
illumination states, the quality of the TIR image is critically dependent on
having skin of sufficient moisture content and cleanliness making good optical
contact with the platen, just as is the case with conventional TIR sensors.
However, unlike conventional TIR sensors, the MSI sensor is able to form a
useable representation of the fingerprint from the direct illumination images
even when the TIR image is degraded or missing.

In practice, MSI sensors typically contain multiple direct-illumination
LEDs of different wavelengths. For example, the Lumidigm J110 MSI sen-
sor is an industrial-grade sensor that has four direct-illumination wavelength
bands (430, 530, and 630 nm as well as a white light) in both polarized and
unpolarized configurations. When a finger is placed on the sensor platen, 8
direct-illumination images are captured along with a single TIR image. The
raw images are captured on a 640 x 480 image array with a pixel resolution
of 525 ppi. All 9 images are captured in approximately 500 mSec. In addition
to the optical system, the Lumidigm J110 comprises control electronics for
the imager and illumination components, an embedded processor, memory,
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Fig. 20.5. MSI sensor schematic showing TIR illumination.

power conversion electronics, and interface circuitry. The embedded processor
performs the capture and communicates to the rest of the biometric system
through the interface circuitry. In addition to controlling the image acquisition
process and communications, the embedded processor is capable of process-
ing the 9 raw images to extract and synthesize a single 8-bit fingerprint image
from the raw data. The embedded processor also analyzes the raw MSI data
to ensure that the sample being imaged is a genuine human finger rather
than an artificial or spoof material. Fingerprint image synthesis and spoof
detection will be described in greater detail in the following sections. In some
applications, the J110 is configured to perform on-board feature extraction
and matching.

20.3.3 MSI Spoof Testing

To rigorously test the spoof detection abilities of the Lumidigm J110 multi-
spectral imaging system, a large study was conducted using a representative
population of human volunteers and a large assortment of spoof samples.
Three Lumidigm J110 sensors were deployed in the study in which 118 people
were recruited to participate. The study duration was three weeks long, dur-
ing which time the volunteers made multiple visits. Volunteers were divided
roughly evenly between males and females. The ages ranged between 18 and
over 80 years old. Volunteers were not prescreened for any particular charac-
teristic and the demographic distribution of the volunteers participating in the
study generally reflected the local (Albuquerque, New Mexico) population.
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All fingers (i.e., index, middle, ring, and little finger) of the right hand
of each volunteer were measured multiple times throughout the study. The
first three presentations of a particular finger on the first J110 sensor were
used as enrollment data against which data taken on all other sensors and
during subsequent visits were compared. Volunteers came “as they were” to
each study session and were not asked to wash their hands or pre-treat the
finger skin in any way. Spoof samples comprised all spoof types described in
the open literature as well as some additional sample types. A total of 49
types of spoofs were collected. Latex, silicone, Play-Doh, clay, rubber, glue,
resin, gelatin, and tape were used in various colors, concentrations, and thick-
nesses. Multiple prosthetic fingers were also used. Each of the transparent
and semitransparent spoof samples were tested in conjunction with each of
the volunteers’ index fingers. The spoof sample was placed on top of the volun-
teer’s finger prior to touching the sensor and collecting the MSI data. A total
of 17,454 images were taken on the volunteers’ real fingers and 27,486 spoof
images were collected. For each class of spoof, between 40 and 1940 samples
were collected. Transparent spoofs worn by the volunteers’ fingers resulted in
an order of magnitude more samples than opaque spoofs.

Each image was processed using wavelets to create features based on the
spectral and textural information available. A variant of Fisher’s linear dis-
criminant was used to create eight features for classification. For testing, the
difference between the squared Euclidian distance to the spoof and person
class means was used to calculate the error trade-off of correctly classifying
a subject and misclassifying a spoof. The results are shown in Figure 20.6,
which is an ROC curve similar to those used to describe biometric matching
performance over a range of operating points. In this case, the TAR is the
rate at which a measurement taken on a genuine person is properly classified
as a genuine sample. As such, this is a metric for the convenience of the spoof
detection method as seen by an authorized user.

The FAR describes the rate at which a spoof is falsely classified as genuine.
This rate provides a metric for the degree of security against spoofs provided
by the system at a particular operating point. The security and convenience of
this spoof detection system trade off in the same way as in the case of biometric
matching: a greater TAR can be achieved at the expense of a reduction in spoof
detection and vice versa. One possible operating point is where the decision
criteria are set to provide a TAR of 99.5% and the resulting overall spoof
FAR is approximately 0.9%. Further analysis showed that at this operating
point many spoof samples were never accepted as genuine and no single class
of spoof had an FAR greater than 15%. This demonstrates that a very strong
form of spoof detection can be implemented with an MSI sensor with minimal
adverse impact to the genuine user.
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Fig. 20.6. Error trade-off for multispectral spoof detection.

20.4 Conclusion

From the pioneering fake biometric production attempts by Albert Wehde to
the modern use of painted contact lenses and polymeric fake fingers, the art
of attacking a biometric system has become more complex. In parallel, devis-
ing countermeasures to secure biometric systems has witnessed giant leaps in
both academia and industry. Much has been learned from research work that
has hypothesized how attacks can be performed. It is arguable that there is
a significant imbalance in data derived from research work versus data from
real world scenarios. Those who are entrusted with securing biometric sys-
tems lie awake at night wondering what the next attack methodology will be.
What has been overlooked? Are systems adequately protected against yet un-
known fake biometrics? How resilient are anti-spoofing approaches to attacks
that significantly differ from the known methodologies? For the known fake
biometric attacks, we can positively conclude that success has been achieved
with various techniques. As shown in Section 20.3, multispectral imaging tech-
nology is a powerful instrument in the detection of known fingerprint spoofs
and shows promising results in securing against yet unknown fake devices. As
biometric access control permeates our everyday lives, spoofing attempts and
anti-spoofing research will co-evolve. Further research is welcome in the area
of anti-spoofing performance measurement, as is the development of vendor-
independent measurement of performance.
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21.1 Forensic science and biometrics - a general contrast

Using biometric data for classification and/or identification in forensic sci-
ence dates back to the turn of the 20th century. Biometrics as we know it
today can be viewed as extension of Bertillon’s anthropometric approach,
benefiting from automation and the use of additional features. This chapter
presents a historical and technical overview of the development and the evo-
lution of forensic biometric systems, used initially manually and then in a
semi-automatic way. Before focusing on specific forensic fields, we will define
the area, its terminology and draw distinctions between forensic science and
biometrics.

Forensic science refers to the applications of scientific principles and tech-
nical methods to an investigation in relation to criminal activities, in order to
establish the existence of a crime, to determine the identity of its perpetra-
tor(s) and their modus operandi. It is thus logical that this area was a fertile
ground for the use of physiological or behavioral data to sort and potentially
individualize protagonists involved in offences. Although manual classification
of physical measures (anthropometry), and of physical traces left and recov-
ered from crime scenes (fingermarks, earmarks,...) was largely successful, an
automatic approach was needed to facilitate and to speed up the retrieval of
promising candidates in large databases. Even if the term biometrics usually
refers “to identifying an individual based on his or her distinguishing char-
acteristics” [14], biometric systems in forensic science today aim at filtering
potential candidates and putting forward candidates for further 1-to-1 ver-
ification by a forensic specialist trained in that discipline, in the following
traditional typical cases (here exemplified using fingerprints):

Case 1 : A biometric set of features in question coming from an unknown
individual (living or dead), is searched against a reference set of known
(or declared as such) individuals. In the fingerprint domain, we can think
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of a ten-print to ten-print search based on features obtained from a ten-
print card (holding potentially both rolled and flap inked impression from
fingers and palms), compared to a database of ten-print cards.
Case 2 : An unknown biometric set of features left in circumstances of
interest to an investigation, is searched against a reference set of known (or
declared as such) individuals based on the features available. We can think
of a fingermark recovered from a crime scene that will be searched against
a database of ten-print cards. The converse is also possible, meaning the
search of the features from a new ten-print card against the database of
(unresolved) fingermarks.
Case 3 : An unknown to unknown comparison resulting in the possible
detection of series of relevant incidents. For fingerprints, it would mean
comparing latent prints to latent prints.

Both case 2 and case 3 involve biometric features (in physical or other
forms) that can be left on scenes relevant to an investigation. In forensic in-
vestigation, one of the main objectives is to find marks associating an offender
to an event under investigation. These marks can be either left by the perpe-
trator during the event or found on the perpetrator after it. This mechanism
of “exchange” of marks is known under the misnomer of “Locard’s exchange
principle” in reference to the French criminalist Edmond Locard [59]. Forensic
information can be found either as physical marks, or as digital traces. Physi-
cal mark are made for example by the apposition of fingers, ears or feet on any
kind of surfaces, while digital traces are analog or digital recordings typically
from phone-tapping and security cameras. Face and speech biometrics, and
to some extent modalities captured at distance such as ear, iris and gait can
be used as digital traces in forensic science.

As a first distinction between biometrics and forensic science, it is im-
portant to stress that forensic biometric systems are used in practice as sort-
ing devices without any embedded decision mechanism on the truthfulness of
the identification (although we do see some developments in that direction).
Indeed, the search algorithms are deployed as sorting devices. These ranking
tools allow (at an average known rate of efficiency) presenting the user a short
list (generally 15 to 20) containing potentially the right “candidate” to a de-
fined query. Here the term “candidate” refers to the result of a search against
biometric features originating from either individuals or marks (known or un-
known). It is then the duty of the forensic specialist to examine each candidate
from the list as if that candidate was submitted through the regular channels
of a police inquiry. This first contrast shows that forensic biometric systems
are considered by forensic scientists as external to the inferential process that
will follow.

The second distinction lies in the terminology, performance measures
and reported conclusions used in the processes. Although forensic biometric
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systems can be used in both verification (one to one) or identification modes
(one to many), depending on the circumstances of the case, the identification
mode can be seen as a series of verification tasks. The reported conclusion
by the forensic specialist when comparing an unknown to a known entry can
take different forms depending on the area considered.

In the fingerprint field, conclusions can take three states: individualization,
exclusion or inconclusive (for a more detailed discussion see [20]). The first two
are categorical conclusions accounting for all possible entities on the Earth. In
other words an individualization of a finger mark is a statement that associates
that mark to its designated source to the exclusion of all other fingers or
more generally all other friction ridge skin formations. Individualization is
often presented as the distinguishing factor between forensic science and other
scientific classification and identification tasks [50].

In the fields of face or ear recognition carried out manually by skilled
examniers, speaker verification based on phonetic/linguistic analysis, dental
analysis or handwriting examination, the three conclusions described above
will remain under the same definition, but probabilistic conclusions will also
be allowed on a grading scale both in favor or against identity of sources
with qualifiers such as: possible, probable or very likely. For a discussion of the
adequacy of the scale in forensic decision making refer to [21].

The principles and protocols regarding how these conclusions (outside the
DNA area) can be reached by a trained and competent examiner is outside our
scope. However, the general principles of the inference of identity of sources
are treated in detail by Kwan [55] or by Champod et al. (for fingerprints) [25].
In all these areas, based on different features, the expert subjectively weighs
the similarities and dissimilarities to reach his/her conclusion. Nowadays the
reliability of these so-called “subjective disciplines” are being increasingly
challenged, especially because of (i) the development of evidence based on
DNA profiles governed by hard data and (ii) the evolving requirements for
the admissibility of evidence following the Daubert decision by the Supreme
Court of the USA1. The absence of underpinning statistical data in the classic
identification fields is viewed as a main pitfall that requires a paradigm shift
[81].

In the field of DNA, the strength of evidence is indeed generally expressed
statistically using case specific calculations [97] linked to a likelihood ratio
(defined later). In essence the process is probabilistic although we do see some
tendencies to remove uncertainty from the debate [18].

It is our opinion that inferences of sources across all forensic identifica-
tion fields, when put forward to a factfinder in court for example, must be
approached within a probabilistic framework even in areas that had been tra-
ditionally presented through categorical opinions such as fingerprints [20]. An
approach based on the concept of likelihood ratio should be promoted. In-

1 Daubert v Merrell Dow Pharmaceuticals 43 F 3d 1311; 125 L Ed (2d) 469; 509
US 579; 113 S Ct 2786 (1993).
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deed, a likelihood ratio (LR) is a statistical measure that offers a balanced
presentation of the strength of the evidence [78]. It is especially suitable for
assessing the contribution of forensic findings in a fair and balanced way [2].
Note that we restrict our analysis to an evaluative context, meaning that the
forensic findings may be used as evidence against a defendant in court. There
is a wide scope of application of biometric systems in investigative mode (e.g.
surveillance) that we will not cover.

Formally, the LR can be defined as follows:

LR =
p(E | S, I)
p(E | S̄, I)

(21.1)

Where:

E: Result of the comparison (set of concordances and discordances or a
similarity measure such as a score) between the biometric data from the
unknown source and the biometric data from the putative source.
S: The putative source is truly the source of the unknown biometric fea-
tures observed (also known as the prosecution proposition).
S̄: Someone else, from a relevant population of potential donors, is truly
the source of the unknown biometric features observed (also known as the
defense proposition).
I: Relevant background information about the case such as information
about the selection of the putative source and the nature of the relevant
population of potential donors.

This LR measure forces the scientist to focus on the relevant question
(the forensic findings) and to consider them in the light of a set of competing
propositions. The weight of forensic findings is essentially a relative and con-
ditional measure that helps to progress a case in one direction or the other
depending on the magnitude of the likelihood ratio. When the numerator
is close to 1, the LR is simply the reverse of the random match probabil-
ity (RMP ) in a specified population. In these cases, reporting the evidence
through the RMP is adequate. However most biometric features suffer from
within individual variability facing an assessment of the numerator on a case
by case basis.

The performance measures for forensic science are obtained from the anal-
ysis of the distributions of the LRs in simulated cases with given S and S̄.
These distributions are studied using a specific plot (called Tippett plot) that
shows one minus the cumulative distribution for respectively the LRs com-
puted under S and the LRs computed under S̄. These plots also allow study
and comparison of the proportions of misleading evidence: the percentage of
LR < 1 when the prosecution proposition S is true and the percentage of LR
> 1 when the defense proposition S̄ is true. These two rates of misleading
results are defined as follows [67]:
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RMED: Rate of misleading evidence in favor of the defense: among all
LRs computed under the prosecution proposition S, proportion of LR
below 1.
RMEP : Rate of misleading evidence in favor of the prosecution: among all
LRs computed under the defense proposition S̄, proportion of LR above
1.

Whereas a LR is a case-specific measure of the contribution of the forensic
findings to the identity of sources, the Tippett plot and the associated rates
(RMED, RMEP ) provide global measures of the efficiency of a forensic bio-
metric system. LR based measures are now regularly used in the forensic areas
of speaker recognition [26, 33, 76], fingerprints [67, 66], and DNA [37]. That
constitutes a major difference compared to standard global measures of bio-
metric performances based on type I and type II error rates (e.g. Receiver
Operating Characteristic (ROC) or Detection Error Tradeoff (DET) curves).
For a discussion on the limitations associated with these traditional measures
when used in legal proceedings, see [26].

The concept of identity of sources is essential and needs to be distinguished
from the determination of civil identity (e.g. assigning the name of a donor
to a recovered mark), from guidance as to the activities of the individual or
its further unlawful nature. Forensic comparisons aim initially at providing
scientific evidence to help address issues of identity of sources of two sets
of biometric data; whether these data are coupled with personal information
(such as name, date of birth or social security number) is irrelevant for the
comparison process. From the result of this comparison and depending on the
availability and quality of personal information, then inference as to the civil
identity can be made if needed. Likewise there is a progression of inferences
between the issue of identity of sources towards their alleged activities and
offences. It is a hierarchical system of issues as described by Cook et al. [29].
The forensic biometric comparison process aims at handling source level is-
sues as its primary task: the whole process is not about names or identity,
but in relation to source attribution between two submitted sets of features
(respectively from a source 1 and a source 2).

A third distinction lies in the wide range of selectivity of the biometric
data that can be submitted due to varying quality of the material. Selectivity
here can be seen as the discrimination power of the features, meaning the
ability to allow a differentiation when they are coming from distinct sources.
Some of the main modalities will be reviewed in the next sections but there
is an all-encompassing phenomenon that goes across modalities in varying
degrees. In the commission of a crime, contrary to usual biometric systems
(for access control e.g.), it may not be possible to obtain high quality input
biometric features - either for the template or transaction data. These bio-
metric data are limited by numerous factors such as: the availability of the
person and his/her level of cooperation, the invasiveness of the acquisition,
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the various objects and positions one can take or touch while a crime is be-
ing committed. The subjects make no effort to present their biometric data
to the system in an ideal and controlled way. Hence, whether the biometric
data is acquired directly from individuals (living or dead), from images (of
individuals, part thereof or X-rays) or marks left by them following criminal
activities, the quality of the material available for the biometric comparison
process, and thus its selectivity, may vary drastically from case to case and
so will the within-person variability. This loss of selectivity is illustrated in
Figure 21.1. The overall performance of the system is largely influenced by the
quality of the input data conditioned by the acquisition and environmental
conditions as summarized in Table 21.1. These factors are common in all bio-
metric deployments, but forensic scenarios tend to maximize their variability.

Fig. 21.1. Illustration of the diminishing selectivity of the biometric features as a
function of the circumstances and conditions under which the biometric data are
collected or obtained. Here is a clear relationship between selectivity and quality of
the input information.

The last distinction we would like to stress upon is the range of com-
parisons that can be undertaken in the forensic environment depending on
the circumstances of the cases. The three cases outlined initially all deal with
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Acquisition conditions Quality of the acquisition device (e.g. resolution).
Amount of input information (e.g. a rolled inked fin-
gerprint on a card versus a limited poorly developed
fingermark on a curved surface).
The availability of multiple templates (e.g. rolled and
flap impressions of the same finger).
The types of acquisition of both templates and trans-
action data (declared supervised versus covert).
The acquisition at distance, the target size, the ob-
ject movement, and the horizontal or vertical misalign-
ments between the device and the subject.
Presence of corrupting elements (e.g. glasses, beard,
hair, clothes, or health condition - living or dead - of
the subject).
The time interval between the acquisitions of both sets
of biometric material to be compared.

Environmental conditions Background noise and uncontrolled conditions (e.g. il-
lumination, noisy environment).

Data processing The choice of the feature extraction algorithms and
their level of automation (e.g. poor quality fingermarks
may need to be manually processed by skilled opera-
tor in order to guide the system as to the relevant
features).
Efficiency of the detection and tracking algorithms
(e.g. face detection and tracking).
The matching algorithms in place and their hierarchy.

Operator The operator interaction with the system at all stages
(from acquisition to verification of candidates’ lists).

Table 21.1. List of the factors affecting the selectivity of biometric information and
thus the performances of biometric systems deployed in forensic applications.

comparisons of biometric information (with one side or the other being known)
but at differing levels of selectivity. The driving force here is more the selec-
tivity level associated with each compared biometric data sets, which can be
similar (case 1 and case 3 ) or largely different (case 2 ). The availability of
known information, such as the name, the date of birth, the social security
number (i.e. the personal data associated with each compared biometric data
set), associated with the biometric features is not directly relevant to the
comparison process. This information is although decisive to progress in the
hierarchy, but has no impact on the decision of the identity of sources, which
is driven by the selectivity of the compared biometric data. This progression
is illustrated in Figure 21.2. The distinction between mark and reference ma-
terial in a forensic case is that in general, marks are of lower quality than
reference material (although the reverse could also be true). This concept of
selectivity (Figures 21.1 and 21.2) that is driving the move from case 1 to
case 3 is a continuum on both sides (source 1 and source 2). Essentially, we
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can expect performances to degrade as we move down in selectivity levels.

Fig. 21.2. General scheme of a forensic biometric system.

In the following sections we will cover the main forensic biometric modal-
ities and then show how an automatic approach has and will change the
conduct of forensic examinations.

21.2 Anthropometry

The abolition in 1832 of physical branding for habitual offenders in France
resulted in legal authorities being incapable of recognizing them. The en-
forcement of new legislation allowing tougher sentences in cases of recidivism
remained wishful thinking until the development of a proper identification
system.

Some classifications, based on the declared name (not trustworthy) or the
type of offence, were introduced, but without more than anecdotal success for
obvious reasons. Identity documents or other official documents were not yet
issued or, at the time, were prone to forgery. Even adding photography to the
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offender card did not solve the issue, because of the lack of standardization and
the difficulty extracting commonly understood descriptors to include them in
a manual retrieval system.

Facing this state of affairs, Bertillon proposed in 1881 a solution to the
problem of the identification of recidivists based on anthropological methods
developed by Quételet and Broca [12]. The principles were the following: (i)
adult bone lengths remain constant, but (ii) vary from individuals to individ-
uals and (iii) they can be measured with reasonable precision. A classification
method was then required, in order to structure these distinctive characteris-
tics. Indeed for Bertillon “The solution of the problem of forensic identifica-
tion consisted less in the search for new distinctive elements of the individual
than in the uncovering of a classification tool”2. He proposed the use of the
description of the iris’ color combined with eleven precise measurements.

These measurable characteristics (Figure 21.3) were divided into three
classes (small, medium and large), defined arbitrarily by fixed intervals to
ensure equal number of cards for each class, while the iris color was classified
in seven classes (Figure 21.4).

Fig. 21.3. Illustration of Bertillon’s anthropometric measurements (adapted from
[12]).

2 Free translation from [12], for “La solution du problème de l’identification judici-
aire consistait moins dans la recherche de nouveaux éléments caractéristiques de
l’individu que dans la découverte d’un moyen de classification”.
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Fig. 21.4. Classification of the iris, classes are numbered I to VII (from [75]).

This classification method could allow theoretically up to 1,240,029 com-
binations (311×7). The measures taken on an arrested individual were regis-
tered onto an anthropometric card, together with the photograph, the name
and a detailed description of peculiar marks, such as tattoos and scars. Each
new card was then manually searched for one or more matches among the
cards bearing identity (case 1 ). Bertillon established match criteria according
to some tolerance values fixed by reference to variations recorded between
operators. For instance, for ear measurements ±1mm was considered as an
acceptable variation, ±2mm was a sign of divergence and ±4mm established
non-identity (full criteria given in [58], p. 150-152).
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It is important to stress that when among the known cards a match
(within tolerance) with the unknown was found, the formal identification was
only established following the examination of the photographs and the pecu-
liar marks. In the same way that forensic biometric systems are used today,
Bertillon’s anthropometric approach was not an identification method per se.
Indeed, Bertillon never claimed that the same set of measurements could not
be shared by two different individuals [89]. It allowed the exclusion of potential
candidates and acted as a powerful sorting system used to focus the attention
of the investigators on a subset of cards deserving more attention, meaning
a systematic analysis of the photographs and peculiar marks. Bertillon’s ap-
proach was first deployed in 1882 and its efficiency proven by the considerable
increase of the amount of habitual offenders identified through the assistance
of the system: from 49 identifications in 1883, to 680 in 1892. This approach,
recommended in 1885 for use in all French territory, attracted considerable
attention abroad.

In parallel, Bertillon developed a standardized forensic photograph method,
as well as a nomenclature for the description of the physiological features of
the nose, the forehead and the ear, called “portrait parlé” or “spoken portrait”
[11]. This standardized language offers description possibilities which can be
used among police officers locally and internationally. Bertillon standardized
photographic setup (focal distance, negative size, pose and illumination) and
proposed taking two facial images, a frontal and a profile one, for each indi-
vidual, noticing rightly that the profile image gave much more stable infor-
mation for recognition than the frontal image [11]. Figure 21.5 presents the
classification method for the ear, considered as the most identifying part of an
individual, as proposed by Bertillon and taken up by Reiss [75]. The combina-
tion of the anthropometric method, the forensic photography and the spoken
portrait was coined “Bertillonnage”. Further bibliographical references to the
work of Bertillon on anthropometry and its relationship with fingerprinting
can be found in [24, 42].

A rapid spread of Bertillonnage was observed at the turn of the 20th Cen-
tury across the police departments and penal institutions [28]. This deploy-
ment quickly highlighted the limitations of the technique: (i) uneven distri-
butions of the measures in the population; (ii) the correlation between fea-
tures; (iii) inter-operator variations due to lack of training, instrumentation
or non-cooperative subjects and (iv) the need of the body and the absence of
anthropometric “traces” left on crime scenes.

The deployment of forensic anthropometry was successful but carried out
after careful, fit-for-purpose, evaluations. During the same period, fingerprint-
ing started to gain recognition for the same purpose. Hence prominent indi-
viduals such as Galton in England, Vucetich in Argentina, or specific com-
mittees (Troup and Belper (England), Straton (India Colonial Gov.), Dastre
(France)) were tasked to assess the merits of Bertillon’s method and prepare
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Fig. 21.5. Classification of the shapes of the ear, here the classification of the
antitragus (from [75]).

recommendations for their government. The outcome of these assessments,
although initially in favor of Anthropometry due to the lack of fully efficient
large-scale classification systems for fingerprints, led to the progressive sub-
stitution of Bertillonnage by fingerprinting for the advantages that will be
detailed in the next section. Even though Bertillon regarded fingerprints with
skepticism as the right choice for classifying and searching individuals in large
databases, he included them on his anthropometric cards in 1894, convinced
of their value in identification as a complement to the individual distinctive
marks (tatoos, scars, etc.) and was thrilled by the possibilities to identify
offenders based on the fingermarks left at crime scenes. Bertillon is known
for the first fingerprint identification in France (1902) based on fingermarks
recovered on a murder scene [83].
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21.3 Fingerprinting

21.3.1 Ten-print identification systems

Historically [10] the first classification attempt was proposed by Purkinje in
1823, who sorted the friction ridge flows into nine categories: arch, tented
arch, two types of loops, four types of whorl and twinned loop, for description
purposes and without realizing the identification potential of the friction ridge
skin. Fifty years later, William Herschel, a colonial administrator in India,
proposed fingerprints to identify individuals, while undertaking the first study
of permanence (i.e. the fingerprint features do not change over time) [43]. At
the same time, Henry Faulds, a medical missionary in Japan, proposed in 1880
to use fingerprints for investigative identification purposes, as fingermarks
could be detected on crime scenes [35]. His important contribution remained
largely undervalued by his peers.

The main forensic operational contribution came from the work of Galton
[39]. He presented in 1892 the basic axioms of fingerprinting, which are the
notion of permanence (based on Herschel’s work and data), and uniqueness
(Galton published the first statistical model on the fingerprint variability).
He also mentioned the possibility to reliably classify fingerprints patterns into
three basic patterns (arches, (inner and outer) loops, and whorls).

Note that the research on forensic fingerprinting concentrated first on its
use as an identification system based on reasonable quality ten-print cards
obtained from living or dead individuals (hence case 1 only). The use of lower
quality information (in case 2 or 3 ) from marks recovered on crime scenes, for
example, was viewed as a beneficial side effect but without being approached
systematically at the outset.

The first classification method proposed by Galton was judged unsuitable
to handle large collections of individuals. The method was then drastically
improved by Henry (helped by his Indian colleagues), who added a fourth
group, called composites and refined ridge counting (for loops, the number
of ridges crossed on an imaginary line between the core and the delta) and
ridge tracing methods (relative positions - classified in three categories: in-
side, outside and meet - of the right delta relative to the core when ridges
and furrows are followed from the left delta). The classification is achieved
through a series of imbricated classifying features, namely primary, secondary
and sub-secondary classifications and major and final divisions. The primary
classification consists of a ratio: the numerator is related to the number of
whorls and their position on the even numbered fingers, while the denomi-
nator is related to the whorls on the odd numbered fingers. The secondary
classification is also a ratio giving the pattern type of the index fingers, as
well as an indication of all tented arches, arches and radial loops in other
fingers. The fingers of the right hand go into the numerator, while those of
the left hand go into the denominator. The sub-secondary classification, the
major and final divisions are subsidiary classifiers based on ridge counts or
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ridge tracing. This Galton-Henry classification largely gained acceptance for
handling large databases such as the FBI central repository [91].

Almost simultaneously, Vucetich elaborated on Galton’s proposal and of-
fered a simpler method. General pattern main classification consisted of four
basic patterns: arches, (internal and external) loops and whorls, organized
in a ratio with a numerator devoted to the right hand and a denominator
dealing with the left hand. As secondary classification, Vucetich divided each
primary pattern into subclasses using ridge counts on loops and ridge tracing
on whorls [96]. Vucetich’s system proved very successful for small to medium
sized databases.

Argentina adopted fingerprints (and Vucetich’s classification method) as
the sole method of identification of recidivists in 1896, while Great Britain
(first in its overseas colonies) adopted Galton-Henry’s system from 1897. In
almost all agencies, fingerprint classifications were inspired from either one or
the other original systems, but were adapted from country to country. Locard
published an overview of the state of affairs in 1909 [58].

Standardization was a big issue already and had to wait until 1914 to see
an uniform format for ten-prints cards: positioning of right hand fingers prints
(from left to right beginning with the thumb) on a first line, left hand fingers
(with the same fingers’ order) on a second line, and controlled prints on the
bottom of the ten-print card with two flat appositions of all the fingers (called
flaps).

21.3.2 From ten-prints to single print manual searches

Telegraphic transmission of results of such classifications were not easy, hence
10 simple alphanumerical codes were developed for a 10-finger card. The most
widely known is the codification of the National Crime Information Center
(NCIC) dating back to 1967 based on the Galton-Henry classification. The
NCIC code gives alphanumeric assignments from the right thumb (finger ]1)
to the left little finger (finger ]10). This detailed NCIC fingerprint classifica-
tion code was easily transferable between agencies and offered unprecedented
efficiency to check if an unknown individual arrested in Washington DC could
be known in Las Vegas (based on its NCIC classification).

These classification systems of fingerprints were above all, as the anthro-
pometrical approach, sorting systems of full records obtained from the 10
fingers. These comparisons - known as ten-print to ten-print - were efficient
only when the input data was complete (or almost). In other words, efficiency
was achieved for case 1, but when input data consisted of, for example, a poor
quality single mark recovered from a crime scene, the retrieval efficiency was
more limited (when no suspect was available). Hence ten-print classification
systems lacked efficiency for both case 2 and case 3. The solution lay in the
development of single-print classification systems (such as Battley [9]). They
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were very demanding in terms of manpower and “cold” searches against the
database based on a single mark were still very costly in terms of time.

21.3.3 Development of AFIS systems

Automatic fingerprint processes are already presented in Chapter 2. This sec-
tion will thus concentrate only on the first automation attempts as well as the
specific standardization efforts in the area. The book by Komarinski serves as
an introduction to forensic AFIS systems [52].

With the increase of ten-print card collections and the difficulties of single
latent searches, the evolution of automatic (analogue or digital) retrieval pro-
cessing systems took off in parallel with the technological advances. Manual
systems were improved by the use of punch card retrieval systems, the addition
of videofiles for images (Ampex bands) and in the late sixties the first efforts
to digitize and automatically process fingerprint images were made. Several
computer-based fingerprint comparison systems were developed concurrently
in many countries and these initiatives laid down the basis of modern Auto-
matic Fingerprint Identification Systems (AFIS). For example, in the United
States, the Project SEARCH (System for Electronic Analysis and Retrieval
of Criminal Histories) has been allowed to finance, coordinate, and supervise
research projects in this area [36]. The National Bureau of Standards (now
known as the National Institute of Standards and Technology NIST) and
the FBI proposed in 1968 a computer matching fingerprint system, based on
minutiae features. The work by Wegstein et al. still remains a cornerstone of
the development of AFIS [64]. The development work towards the Printrak
system (now owned by Motorola) also dates back to these early years [99].
In France, Thiebault presented in 1967 a first computer matching fingerprint
system, based on minutiae features and their spatial relationship [90]. This
approach led to the development of the Morpho system (now part of Sagem)
[79]. Likewise, researchers in Japan proposed a computer matching fingerprint
system based on minutiae features, that served as a basis for the NEC AFIS
[8].

All forensic AFIS are largely based on minutiae matching. The extracted
template encompasses mainly the x,y coordinates of detected minutiae, their
orientation and, for some providers, the ridge counts between minutiae. The
main advantages of an AFIS are the ability to compare a single print, as well
as a ten-print card to the whole database, hence covering all types of cases. We
recall that although an AFIS provides a list of best candidates (according to
a scoring/ranking metric), the identification process is not completed by the
system, but manually by an expert (through a dedicated user interface). Of
course, advances in computer technologies have increased speed and efficiency
of the encoding and retrieval. Computational power allows now the use of both
rolled and flap impressions and the introduction of palm marks and prints
in AFIS and above all with a very quick response time and high reliability.
Operational efficiency has been monitored by law enforcement agencies [13, 51,
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56, 74]. Benchmarking has allowed monitoring of progress and improvements
in this field. The NIST is today a reference in this area3.

Standardization of forensic AFIS technology gained large momentum when
fierce competition between providers brought to the fore the difficulties of
interoperability between systems both nationally and internationally. The
ANSI/NIST ITL-1 2000 standard manages the interoperability between all
proprietary minutiae classification methods [6]. It also includes recommenda-
tions regarding data interchange of facial, scar mark and tattoo (SMT) infor-
mation. This standard proposes the classification in fourteen pattern types,
four minutiae types, with a localization (x,y-coordinates) and a direction (an-
gle). The standard is currently under review and additional features beyond
minutiae will be added to the ANSI/NIST ITL-1 2006 standard for the next
generation AFIS. The extended features proposed4 are finer classification of
general patterns, additional ridge path elements, ridge flow quality for detect-
ing open fields (areas without minutiae) and a larger spectrum of features
(dots, incipient ridges, creases, scars, ridge shapes and width,...).

Another driving force is the willingness to provide this specific market with
devices of known and recognized qualities. For example the FBI recommenda-
tions on the image quality specifications [30] propose (for fingerprint scanners)
specific characteristics on geometric image accuracy, modulation transfer func-
tion, signal-to-noise ratio, range of gray-scale, gray-scale accuracy and output
gray level uniformity. Furthermore, to archive large fingerprint databases, an
efficient compression algorithm was required. The FBI proposed the Wavelet
Scalar Quantization (WSQ) image compression algorithm as a way to stan-
dardize the digitization and compression of gray-scale fingerprint images [17].
This algorithm, capable of compressing images in the recommended 15:1 ra-
tio, is based on discrete wavelet transform decomposition, scalar quantization
and Huffman entropy coding. It is expected that WSQ will be replaced by
JPEG2000 in a very near future.

The last big shift in technology is the widespread provision of livescan
devices for law enforcement agencies to acquire ten-print forms instead of
using the traditional procedure of inking fingerprints on paper. The use of
small livescan devices for border control or police control is increasing rapidly
(in Switzerland e.g. [71]).

21.3.4 A snapshot on the Swiss national fingerprint identification
database and processes

Table 21.2 presents the statistics of the Swiss fingerprint criminal justice
database for 20055. 694,788 ten-print (TP) cards, provided from Swiss can-
3 http://fingerprint.nist.gov/
4 http://fingerprint.nist.gov/standard/cdeffs/index.html
5 The statistical data on the Swiss fingerprint criminal justice database were kindly

provided by Dr Axel Glaeser, Managment AFIS DNA Services - Federal Office of
Police.
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tonal police departments and from asylum centers, as well as 28,107 two-
fingerprint (2-FP) sets and 34,485 latent prints, are stored in the Swiss fin-
gerprint database. The 2-FP sets are used for identification purposes for po-
lice, border controls or embassy visa requests based on livescan images of
two fingers. Due to legal regulations, only a fraction of them can be kept
in the national database. Furthermore, for each latent print, about three en-
coded searches are stored in the database, which corresponds to about 10,000
unsolved fingermarks. Most transactions have been requested through po-
lice investigation, either for TP searches (28,005 requests in 2005) or 2-FP
searches (38,131 requests in 2005). The annual numbers of requests for asy-
lum or border control transactions are smaller (8,907 TP searches and 23,747
2-FP searches respectively). 14,500 TP versus TP matches (case 1 ) have been
obtained from these transactions during a year, as well as 1,444 identifica-
tion of latent prints versus TP or TP versus latent prints (case 2 ). Around a
quarter of these hits result from TP versus latent transactions. The number
of latent identifications includes about 233 matches with palm prints. Until
now, latent prints were not compared to other registered latent prints (case
3 ), but some tests are currently being conducted to evaluate the benefits of
such comparison in a Swiss perspective [7]. 22,202 and 5,383 2-FP matches
have been obtained from the police and border control/embassy transactions
respectively.

The average response time is about 3 to 10 minutes for 2-FP transac-
tions, maximum 4 hours for TP transactions, and about 4 working days for
latent transactions (urgent cases are processed within a couple of hours). For
reasons of quality control, two fingerprint experts work on each latent case
independently.

Records

TP 2-FP Latent

694,788 28,107 34,485

Transactions

Police Asylum Border control

28,005 (TP) 8,907 (TP) 23,747 (2-FP)
38,131 (2-FP)

Hits

TP-TP Latent-TP / TP-Latent 2-FP

14,500 1,444 22,202 (Police)
5,383 (Border control / Embassy)

Table 21.2. Statistics for 2005 of the Swiss fingerprint criminal justice database.
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21.3.5 Recent research on evidential value of fingerprints

The weaknesses of the statistical models developed to date in fingerprint iden-
tification have motivated recent research projects [87]. These have as main ob-
jective the assessment of the evidential contribution of fingermarks that can
be partial, distorted, and with a poor signal/noise ratio. Although conclusions
in the fingerprint area have traditionally been categorical, there is no obstacle
to treat that type of evidence from a probabilistic perspective as discussed by
Champod and Evett [22].

The strength of evidence is evaluated by a likelihood ratio according to the
within- and between-sources variability of three or more minutiae [66, 67]. The
feature set consists of the type of minutiae, their location, orientation and rel-
ative position, avoiding strong independence assumption. Fingerprint images
acquired under different distortion conditions and feature sets generated arti-
ficially using a distortion model, have been used to model the within-source
variability of the feature set. To model the between-sources variability of the
feature set, fingerprints from randomly selected individuals from a criminal
justice database have been used. The forensic qualities of the system have been
assessed by studying simulations of the distributions of the likelihood ratios.
This can be done considering the respective propositions of identity or non-
identity of sources, combined with the estimation of the rates of misleading
evidence (RMEP and RMED). The results demonstrate that even partial
fingermarks with three minutiae can contribute significantly to the evaluation
of the strength of evidence for forensic cases. The performance increases with
the number of minutiae.

21.4 DNA

Deoxyribonucleic acid (DNA), a chain of nucleotides contained in the nucleus
of our cells, can be used as a biometric tool to classify and guide the identifi-
cation of unknown individuals or biological samples left by them. The analysis
of the DNA molecule in forensic science is called forensic DNA profiling. The
book, “Forensic DNA Typing”, by Butler [19], is an exhaustive and up to date
reference. The objective of this section is to introduce the concepts and high-
light how DNA analysis differs from biometrics. We will concentrate on DNA
contained in the nucleus and the analytical processes that have led to large
forensic databases. For the use of mitochondrial DNA, mini-STRs, Y-specific
STRs and single nucleotide polymorphisms (SNPs), the reader should refer to
[19].

DNA contains in its coding parts the genetic instructions allowing the en-
coding of different biological functions. About 32,000 genes are part of the
human DNA. The nucleotide chain (about three million pairs of nucleotides)
enables the encoding of sequences of amino acids in all proteins required for
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cellular life. The gene pool of each individual is transmitted by his/her bio-
logical parents: a half by the father and the other half by the mother.

Non-coding parts, which represent about 98% of the total DNA, contain at
different locations (loci) highly variable number of repetitive sequences, called
Short Tandem Repeat (STR) which have a large polymorphism. At a given
locus, one individual will show two specific numbers of repetitions of the given
sequence of nucleotides. These two numbers called (alleles) give the biometric
template for that locus. Note that one allele results from the genetic trans-
mission from the biological father, while the biological mother transmits the
other. When both alleles are identical, the individual is monozygote (at that
locus), and when they are different, the individual is termed heterozygote (at
that locus). Currently, most forensic DNA profiling systems used for database
purposes are based on the analysis of STRs. The advantage of using STRs is
that they are stable within individuals, but vary greatly between individuals.
STR population genetics are well documented, and when located on different
chromosomes, STRs have shown robust independence from a statistical per-
spective. They can hence be combined to achieve a very high discrimination
power. The template for a DNA profile obtained with a STR profiling system
is then a simple string, as in Table 21.3.

D3 VWA D16 D2 D8

12 13 16 17 10 11 18 19 8 9

D21 D18 D19 THO1 FGA

26 27 14 15 10 11 5 6 29 30

D3 VWA D16 D5 D8 D7 TPOX

14 15 20 21 10 13 6 7 15 16 10 10 10 12

D21 D18 D13 THO1 FGA CSF1PO

27 31 19 19 23 24 6 7 24 24 6 6

Table 21.3. Example of a DNA profile obtained with a 10-loci system (SGM Plus
10 loci system used for the UK national DNA database) at the top and, below, with
a 13-loci system (core STR markers for the US/FBI Combined DNA Index System
- CODIS). Note that both systems share the same 8 loci. Currently the number of
STRs used in commercial kits can amount to 16 loci.

Nuclear DNA can be extracted from all biological tissues. For living per-
sons, a buccal swab is the easiest non-invasive way to obtain reference ma-
terial. Profiles can be generated from biological stains or cells left behind at
crime scenes, typically stains of blood, saliva, urine or semen, from hairs (with
roots) and from skin cells (left by mere contact e.g. such as a fingermark).
Obtaining DNA samples from living or dead bodies generally does not con-
stitute a difficulty. For traces left behind, the location and retrieval is done
manually, by visual examination (helped by the use of specialized light sources
and magnification), and using presumptive tests. Traces are also more prone
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to DNA degradation and interference during the extraction or amplification
process. It means that for low-quantity or degraded samples, the DNA profile
obtained may be partial (not all loci allow allelic designation) and/or mixed
(when more than one individual contributed DNA to the sample). In all cases,
the template will maintain the same format with either limited information
or more than two alleles detected at one or more locus.

The extracted DNA is amplified using a sensitive and selective DNA repli-
cation method known as the Polymerase Chain Reaction (PCR). It is used
to amplify, through multiple thermal cycles (between 28 to 34), the selected
STRs for all loci in a multiplex way. This amplification provides extraordi-
nary sensitivity, theoretically, even down to the detection of a single DNA
molecule. In practice, sensitivity to levels below 100 pg of DNA (a few cells)
can be achieved. The benefit is evident: it allows obtaining profiles from very
limited amounts of DNA, hence widening the investigative possibilities in dif-
ficult cases. The drawback lies in the technical capacity to amplify not only
the relevant DNA but also background DNA left for reasons not linked to the
alleged activities of forensic interest.

The detection of these amplified repetitive sequences is completed by cap-
illary electrophoresis (CE) and fluorescence detection. CE is an analytical
technique that separates charged DNA amplified fragments according to their
size, by applying voltage across buffer-filled capillaries. The whole DNA pro-
filing process requires specialist laboratory staff, costly analytical equipment
and a minimum of 12 hours. Automation of most parts of this procedure is
achievable with current technology, but still requires some hours of processing
time.

DNA profiles can easily be arranged in databases for law enforcement
purposes or the management of large disasters (such as the 9/11 terrorist acts
or the 2005 tsunami). The American FBI CODIS now has more than 4 million
profiles from individuals and 150,000 crime scene sample profiles6. The UK
national DNA database reaches more than 3 million subjects and a yearly
rate of crime scene submissions of about 50,000 profiles [65]. These are the
two largest national DNA databases in use.

Seven STR loci were selected by the European Network of Forensic Sci-
ence Institutes (ENFSI) and Interpol [47] to ensure a minimal consensus on
databasing in Europe. The American FBI CODIS database is built on thir-
teen loci, including the seven selected by the ENFSI. This standardization
ensures a relative interoperability between all countries, in order to enable
collaborations between jurisdictions for forensic cases. Even if a consensus on
a restricted set of loci has been adopted, the nature of the population regis-
tered on national DNA databases (i.e. the introduction criterion for profiles
in these databases) differs greatly from state to state, especially in Europe
[98]. Some member states incorporate in their databases all individuals sus-
pected or arrested for any recordable offences, such as the United Kingdom,

6 http://www.fbi.gov/hq/lab/codis/
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while other states register only individuals convicted for crimes and offences
sanctioned by imprisonment, such as Switzerland.

Table 21.4 gives the 2005 statistics of the Swiss DNA criminal justice
database managed with the CODIS software (but based on the SGM Plus STR
system)7. 69,019 DNA profiles from known individuals, with 11,125 unresolved
stain profiles, provided by Swiss cantonal police departments are stored in
the Swiss DNA criminal justice database. About 15,000 DNA profiles and
5,000 crime scene profiles have been compared to the database in one year,
from which 2,800 crime scene to person and 2,100 crime scene to crime scene
matches have been obtained.

Records

Profiles Crime scene

69,019 11,125

Transactions

Profiles Crime Scene

15,000 5,000

Hits

Crime scene-Person Crime scene-Crime scene

2,800 2,100

Table 21.4. 2005 statistics of the Swiss DNA criminal justice database.

When there is no need to consider relatives or mixtures, the matching
process is straightforward: for a match to be declared, all alleles from the
unknown profile should correspond to the profile from the known. Currently,
most operational forensic DNA matching systems are based on the search
for equalities. Research is currently under way to improve searches with de-
graded profiles, mixed profiles and when only relatives are available. Forensic
applications of DNA are wide, as presented in Table 21.5.

It is important to stress that a match between two DNA profiles does not
conclusively establish the identity of sources. Indeed, although the selectivity
of DNA profiling is very high, there exists a probability for an adventitious
association. The methods for computing match probabilities have received
considerable attention among scholars and, after some initial controversies,
gained general acceptance. A full account of these methods, including the
use of likelihood ratios, is given in [37, 97]. In general terms, for a complete
unmixed DNA profile, the predicted random match probability with unrelated
individuals is in the order of 1 in a billion [38]. However, note that the match
probabilities are of a complete different order of magnitude for relatives. For

7 The statistical data on the Swiss DNA criminal justice database were kindly
provided by Dr Axel Glaeser, Managment AFIS DNA Services - Federal Office of
Police.
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Activity Levels of selectivity of the informa-
tion

Comparison of the DNA profile of un-
known individuals against profiles from
known individuals.

High when the collected DNA is not de-
graded, (provides a full profile on all ana-
lyzed loci).
Lower when part of the DNA available
is degraded, hence giving a partial DNA
profile.

Comparison of the DNA profile ob-
tained from human remains (missing per-
sons or disaster victims) against profiles
from known missing persons or relatives
thereof.

High as above when the comparison is
made against DNA profiles from known
missing persons.
Lower when part of the DNA available is
degraded or when the data used as refer-
ence are provided through blood relatives
(at various levels).

Filiations testings (paternity, maternity
and any types of blood relationship)

High when the direct putative genitors are
available.
Lower when the DNA profile from one or
both putative genitors is informed from
data collected among his/her blood rela-
tives (ancestors or descendants).

Comparison of DNA profile obtained
from biological stains, material or contact
traces recovered in association with crim-
inal activities against profiles from known
individuals.

High when the recovered material is in
large quantity and its analysis lead to a
full unmixed DNA profile.
Lower when the recovered material is
of low quantity or degraded and con-
sequently offers a partial DNA profile.
Equally when the sample gave a mixed
DNA profile of 2 or more contributors.

Forensic intelligence gathered through the
systematic comparison of DNA profiles
coming from various scenes.
Familial searches on the DNA database.

Depending on the quality of the DNA in-
formation obtained.

Table 21.5. Inventories of the forensic applications of DNA profiles.

the SGM Plus system (10 loci), an average match probability for a potential
brother/sister is 1 in 10’000.

For assigning statistical weights to relationships based on DNA mixtures
or filiation cases, refer to [97]. As a general principle, when the quality of
the information decreases, the weight of the DNA findings tends to decrease
as well. Hence, the more the DNA is partial or distant in terms of genetic
relationship, the higher the uncertainty. With DNA, the selectivity of the
available information can be assessed by its extent (quantity of DNA and
number of loci) and the amount of predicting information allowed by the
profiles obtained from relatives.
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21.5 Voice

Forensic speaker recognition is the process of determining if a specific in-
dividual is the source of a questioned occurrence. Typically, forensic speaker
recognition by experts relies on a variety of techniques (used alone or in combi-
nation), such as aural comparison (careful listening), semi-automatic methods
for extraction of certain parameters (e.g. formant frequencies, average funda-
mental frequencies, pitch contour, etc.), visual comparison of spectrograms,
and automatic speaker recognition (computer-based) [53, 62, 76]. Three main
processes can be used in forensic speaker recognition: the auditory (also known
as aural perceptual), semi-automatic (also known as auditory instrumental)
and the automatic analysis.

In auditory analysis, trained phoneticians carefully listen to recordings
and use the perceived differences in the speech to form an opinion about their
similarity [68]. They base their judgment on parameters such as the voice (e.g.
timbre and pitch), speech (e.g. articulation and speech rate), language (e.g.
prosody and style) and linguistic characteristics (e.g. syntax and breathing).
This is a challenging task requiring training and a careful ear. Voice com-
parison by untrained (also called naive) listeners is not often used in forensic
cases, although they have shown to perform well in certain conditions [5].

In semi-automatic analysis, the experts measure various acoustic param-
eters, such as average fundamental frequency, vowel formants, pitch contour,
spectral energy, etc. They assess those characteristics either subjectively or
objectively, using signal processing tools to quantify them. They can even
combine approaches to formulate their conclusions, according to verbal prob-
ability equivalents [40]. One of the semi-automatic methods, which uses visual
spectrographic comparison (popularly known as “voice printing”), has come
under severe criticism in recent years. It consists of visually comparing graph-
ical representations of spectrums of identical speech utterances. It was first
proposed in 1962, and some weak points, such as the large variability of these
spectrograms for a same individual and the fact that the visual representa-
tion of these spectrograms is not specifically speaker-dependent, were quickly
highlighted. In 1976, the US National Academy of Sciences recommended that
this approach should only be used in forensic cases with utmost caution [15].
A strong word of caution is certainly deserved [16].

In terms of automatic speaker recognition, two types of approaches are
available, as mentioned in Chapter 8: the text-dependent and the text-
independent (often required in forensic cases). Several feature characteriza-
tions and statistical modeling tools have been developed for automatic speaker
recognition and have been successfully applied to forensic cases [33, 54]. Auto-
matic methods perform well in similar recording conditions, but are sensitive
to distortions due to recording and/or in transmission conditions. In forensic
cases, the recording conditions of the trace and the reference materials are
rarely similar and ideal, but rather recorded in different and unconstrained
conditions [4], e.g. through mobile communications (GSM) transmission and
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with background noise. Due to these factors, the comparison is often under-
taken under adverse conditions.

As with other forensic fields, a likelihood ratio-based approach was pro-
posed for forensic speaker recognition [26] and gained acceptance among prac-
titioners [76]. The proposed statistical-probabilistic methodology uses three
different databases, in addition to the digital trace [33, 41, 63]: a suspect
reference database (R), a suspect control database (C) and a potential pop-
ulation database (P ). The P database is used to model the variability of the
potential population. The R database is used to model the variability of the
suspect’s voice, according to the recording conditions of the P database. The
C database is used to evaluate the variability of the suspect’s voice, accord-
ing to the recording conditions of the trace. The similarity scores, obtained
by comparing the recordings of databases C and R, model the within-source
variability, while those obtained by comparing the recordings of database P to
the trace, model the between-sources variability. The score obtained by com-
paring the trace to the model of the suspect’s voice, created with database
R, gives the evidence E. The LR is computed by the ratios of the heights of
the probability densities of the within- and between-sources distributions at
a score of E. The LRs obtained with this methodology can assess the com-
mon origin of two speech signals in a specific forensic case. The readers can
refer to [4, 32, 63, 76] and to Chapter 8 for further reading and additional
bibliographical references on forensic and non-forensic speaker recognition.

21.6 Face and ear

As presented in Section 21.2, the face was already used at the end of the
19th century for forensic discrimination purposes. Bertillon standardized the
lighting conditions, as well as the posture of the subject. He proposed that two
facial images were taken for each individual, namely a frontal and a profile
(with the latter considered as more reliable).

21.6.1 Non-automatic forensic face recognition

Forensic face recognition was until recently generally performed by human
operators using different approaches [48, 100]: morphological analysis of facial
structures, anthropometric measurements and superimposition of images.

The morphological analysis-based approach can be described as the scien-
tific follow-on to Bertillon’s spoken portrait (Section 21.2). It is based on a
nomenclature for the description of the physiological aspects of the nose, the
forehead and the ear. The morphological classification describes facial physio-
logical characteristic, such as the facial shape, the hairline, the forehead height
and width, the mouth and the chin shapes, the nose length, breadth and shape,
and the ear size and form. These characteristics can be described, using the
following sets of terms: “none, few, moderate, extreme; small, medium, large;
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absent, slight medium, pronounced; thin, average, thick”. In addition, infor-
mation such as facial wrinkles, can also be used. As this description is rather
subjective, variations were observed between the descriptions of a same set
of photographs made by operators for some features [95]. According to these
authors, other features were nevertheless proven to be invariant between op-
erators and to have some discriminating power, without explicitly specifying
these features. Additional limits of this approach are the variability of the
features for an individual due to changes in expression, photographic angles
and changes due to aging. It is difficult to determine if these features are
statistically independent [48].

The anthropometric-based approach can be described as the quantification
of physiological proportions between specific facial landmarks. This method
is only used for the comparison of faces having the same orientation. These
landmarks are for example the midpoint of the hairline, the most anterior
point of the forehead, the deepest point of the nasal root, the most anterior
point of the nose tip, the midpoint of the occlusal line between the lips, the
most anterior and inferior points of the chin, the corners of the mouth and the
most superior, inferior and posterior points of the ear [48]. Other landmarks
can be chosen, as long as they are clearly visible on the facial images. In order
to avoid any scale and absolute size differences between photographs, relative
ratios should be calculated from these landmarks. The use of the maximum
dimension as denominator for each of these ratios is recommended for linear
measurements. Even if the quantifications of these proportions reduce sub-
jectivity, some problems still remain. Lighting conditions, camera distortions,
camera positioning, facial orientation, facial expressions and aging may result
in different ratio values. However, the main problems are the high correla-
tion between some measurements and the lack of statistical data to determine
the relative contribution of these measurements in a specific population [60].
Anthropometric measurements could be used for forensic purposes if these
problems were resolved.

The image superimposition-based approach is the juxtaposition or the su-
perposition of facial images, taken under similar acquisition conditions (the
orientation, pose and size) in order to verify the correspondence of the fa-
cial features. This approach is either represented by an image where both 2D
facial photographs are vertically or horizontally juxtaposed, or by an anima-
tion where the first photograph appears and then disappears into the other.
This latter demonstration tool should not be used to assess a correspondence
between two facial images, because of the subjectivity generated by such vi-
sualization. Matches are not only based on a superimposition correspondence,
but significant features matches need to be included as well, such as ears
and scars [94]. However, the superimposition-based approach is considered as
the least accurate facial comparison method [48]. The comparison between
photographs can be reliably performed only if they were taken under the
same conditions and with identical poses. A solution to these issues, a 2D/3D
approach has been developed. It consists of modeling the 3D shape of the
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suspect’s face and comparing it to the 2D questioned facial image [100]. The
advantage of this method is that it is possible to adjust the pose and orien-
tation of the suspect’s face to the facial image. Furthermore, some objective
computer-assisted matching criteria can be obtained with this approach.

21.6.2 Automatic forensic face recognition

The three main comparison approaches discussed in Section 21.6.1 do not
consider automatic face recognition, except the 2D/3D superimposition ap-
proach described above. Automatic face recognition can be described as a
visual pattern recognition problem, where selected facial features of a query
image were compared to the features of a reference image or a database. As
presented in [57], face recognition attempts to represent the complex multi-
dimensional features extracted from the image of a face in simpler and more
general representations using e.g. principal component analysis (PCA), shape
and texture or Gabor wavelets, and to perform the classification between the
different patterns using e.g. Bayes, linear discriminant analysis (LDA), in-
dependent component analysis (ICA) or Graph matching. The contribution
of such systems in surveillance activities and access control (see Chapter 3),
especially with the performance improvement highlighted recently with the
Face Recognition Vendor Test (FRVT) 2006 [72], will gain more and more
importance. However, we will only mention one attempt of using automatic
face recognition in an evaluative and LR-based framework [70]. The exper-
iments of this study were based on a small set of subjects, recorded under
fixed constraints with passport type photographs. The conditions generating
the most significant variations in facial images (i.e. illumination, pose, expres-
sion, age, image quality,...) in forensic scenarios were not explored in a large
scale scenario.

As ruled by the UK Court of Appeal Criminal Division decision in R. v.
Gray ([2003] EWCA Crim 1001), an adequate evaluation methodology for
face recognition, based on reliable statistical data, is needed. Our view is
that automatic face recognition systems will have a large role to play here.
Before automatic face recognition is accepted in court, a full and systematic
assessment of the technology must be conducted under realistic conditions
using fit-for-purpose forensic efficiency measures.

21.6.3 Ear

The ear was considered by Bertillon as the most identifying part of an individ-
ual (see Section 21.2). This modality was then quickly used for identification
purposes in forensic cases. This identification can be based on photographs (or
still images from video recordings) or based on earmarks left at crime scenes
(for example when a burglar presses his ear against a door or windowpane
to listen into a room). Forensic ear comparison is traditionally performed by



21 Linkages between Biometrics and Forensic Science 451

skilled examiners. The principles and protocols for ear and earprint examina-
tion can be found in [46, 92].

The identification is mainly demonstrated by overlaying transparent known
and unknown images or by using a photomontage of various sections of the
ears. There is a big difference in terms of selectivity between a well-taken
photograph of an ear and its impression on a door (see Figure 21.1). How-
ever, to date there have not been sufficient systematic studies about forensic
identification decision making using these impressions. Thus the evidential
contribution of earmark to earprint comparisons has been criticized [23]. The
large variability of the ear morphology has been covered well in the literature,
but the variability of earmarks has been relatively poorly treated. This is
also the same with within-subject variations. A recent Court of Appeal judg-
ment8 expressed some reservations as to the absolute strength of the earmark
evidence presented. For the comparison between video recordings of ears, a
recent study has shown how the quality of the video images determine to a
large extent the ability to identify a person [44].

The first forensic earmark recognition proof of concept was presented in
[23], it uses the antihelix area of the mark to extract some features, such as
the width, the height and the inner and outer contours. Another concept sys-
tem is presented in [80]. It uses as features manually annotated intersection
points between a grid and the mark or the print. A maximum of four points
on the inner side of the helix, and four points on the outer side of the anti-
helix are selected. A polygon matrix based on these tags is calculated. The
only performance data presented in this article refers to a verification proto-
col where the earmarks tested were always identified at a 100% probability
match (highest score) to the corresponding prints. The number of tests carried
out and cases where marks were identified to non-corresponding prints at a
100% probability match were unfortunately not mentioned. The authors also
propose alternatively the use of centroids for each separate earmark’s part
as features, in order to avoid the mark’s variability due to pressure changes.
The Forensic Ear IDentification (FearID) project (funded by the 6th EU re-
search framework) proposed to use weighted width, angular development and
anatomical annotation as distinctive features for their semi-automatic system
[3]. Manual annotations on the prints and marks are performed before the
matching process to facilitate the segmentation of the images and to locate
anatomical points. With a set 7364 prints and 216 marks from 1229 donors,
this approach reached an equal error rate (EER) of 3.9% for lab quality prints,
and an EER of 9.3% for simulated marks against the prints database. At this
stage of research, to our knowledge, no operational system has been deployed
in forensic services. For further reading on automatic ear recognition, refer to
Chapters 7 and 16.

8 R. v. Dallagher No (2002) EWCA Crim 1903, July 25.
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21.7 Dental features

Dental features are heavily used by forensic odontologists for the identification
of human remains in cases of missing persons or mass disasters [88]. The
features used range from the standard dental record (indications of missing
teeth, restorations, crowns,...) to dental radiographs that provide information
about teeth, including tooth contours, relative positions of neighboring teeth,
and shapes of the dental work. These anatomical features have shown very
good stability and variability and the teeth serve as a suitable repository of the
history of man-made operations that left various marks and shape changes.
The diversity of the dental record features and their use for identification have
been recently documented [1]. Alphanumerical data can easily be organized in
databases and such systems are used operationally in cases of mass disasters.

The use of radiographs recently received attention from the biometric com-
munity with promising results [34, 27, 49, 69, 101].

The area of bitemark identification is covered in [31]. To our knowledge,
no automatic feature extraction and matching procedures have been proposed
to handle these marks.

21.8 Handwriting

The principles and procedures used by forensic experts to assign questioned
handwritten documents to known individual are described in [45]. The forensic
expert tries to assess existing similarities and dissimilarities between control
and recovered samples through a subjective estimation of the individuality
and variability of the material at hand. Again, such a subjective approach
has come under criticism and the profession has been urged to move towards
more objective measures of selectivity [82].

In this context, a few embryonic methods for databasing and systemat-
ically analyzing handwriting have been presented: the computer-based mea-
surement and retrieval of letter shapes of the WANDA-system [93], the use of
Fourier descriptors to discriminate between writers [61], the automatic iden-
tification of a writer by the use of connected-component contours [84] and the
CEDAR-FOX identification/verification system [85, 86]. The scope for devel-
opment is important both to provide tools to assist the evaluation of forensic
evidence but also to bring investigative possibilities based on handwriting.
Gannon Technologies Group recently announced a breakthrough in the area
following research at George Mason University and the FBI9.

No forensic attempts towards automation are known for signatures despite
the very large development of biometric systems based on this modality (see
Chapter 10).

9 http://gazette.gmu.edu/articles/8037/
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21.9 Discussion and perspectives

As presented in Section 21.1, forensic science and biometrics are differenti-
ated by four main distinctions. First, forensic biometric systems are mainly
used as sorting devices, presenting to the forensic specialist a short list of
candidates, while traditional biometric systems report their conclusions with
binary decisions (“accepted” or “rejected”). Secondly, adequate global mea-
sures (RMED, RMEP ) should complement the assessment of the efficiency
of forensic biometric systems (in addition to the traditional biometric mea-
sures such as ROC and DET curves). Thirdly, forensic biometric applications
are characterized by the wide range of selectivity of the biometric data that
are submitted, while traditional biometric systems use data acquired in rather
controlled conditions. Finally, the last distinction concerns the range of com-
parisons that can be undertaken in the forensic environment depending on
the circumstances of the cases.

Despite these differences, the same scientific principles and technical meth-
ods are used for handling biometric data in non-forensic and forensic applica-
tions. The research efforts undertaken in the biometric community will help to
address the issues of the selectivity decrease encounter in forensic applications.
Furthermore, multimodal approaches (see Chapters 14 to 16 and [77]) may
handle not only the limitations of each single modality (i.e. intra-class vari-
ability, distinctiveness, non-universality, etc.), but the selectivity decrease as
well, which occurs in forensic biometrics at distance for example. The applica-
tion of multimodal approaches on forensic data should increase the reliability
of such biometric systems in unconstrained conditions, for investigative and
evaluation purposes.

Recognition at distance, based on biometric data, will quickly be the ma-
jor component of forthcoming forensic inquiries. The UK Police Information
Technology Organization (PITO) recommends the development of more ef-
fective tools to handle the large amount of Closed-Circuit Television (CCTV)
images, not only for human identification, but also for crime detection and
prevention [73]. New kinds of digital traces will thus be used for law enforce-
ment purposes. While face and voice are already used as digital traces for
human identification, modalities such as ear, iris and gait may also be in-
volved in forensic science. The increasing forensic needs and the advances in
the biometric research community mean that forensic science and biometrics
will be more intertwined in the future.
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toire des sciences et des techniques, Université de Nantes, 2003.
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83. C. Sannié. Alphonse Bertillon et la dactyloscopie. L’affaire Scheffer. Revue
Internationale de Police Criminelle, 5(41):255–262, 1950.

84. L. Schomaker and M. Bulacu. Automatic writer identification using connected-
component contours and edge-based features of upper-case western script.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
26:787–798, 2004.

85. S. N. Srihari, M. J. Beal, K. Bandi, V. Shah, and P. Krishnamurthy. A statisti-
cal model for writer verification. In Proceeding of the International Conference
on Document Analysis and Recognition, pages 1105–1109, 2005.

86. S. N. Srihari, S.-H. Cha, H. Arora, and S. Lee. Individuality of handwriting.
Journal of Forensic Sciences, 47:1–17, 2002.

87. D. A. Stoney. Measurement of fingerprint individuality. In H. C. Lee and R. E.
Gaensslen, editors, Advances in Fingerprint Technology, pages 327–387. CRC
Press, Boca Raton, 2001.

88. D. Sweet and I. A. Pretty. A look at forensic dentistry - part 1: The role of teeth
in the determination of human identity. British Dental Journal, 190:359–366,
2001.

89. F. Taroni, C. Champod, and P. Margot. Forerunners of bayesianism in early
forensic science. Jurimetrics Journal, 38:183–200, 1998.

90. R. Thiebault. Automatic process for automated fingerprint identification. In
Proceedings of the International Symposium on Automation of Population Reg-
ister Systems, volume 1, pages 207–226, 1967.

91. United States Department of Justice and Federal Bureau of Investigation. The
Science of Fingerprints. U.S. Government Printing Office, Washington DC,
1984.

92. C. van der Lugt. Earprint Identification. Elsevier Bedrijfsinformatie, Graven-
hage, 2001.

93. M. van Erp, L. Vuurpijl, K. Franke, and L. Schomaker. The WANDA measure-
ment tool for forensic document examination. Journal of Forensic Document
Examination, 16:103–118, 2004.

94. P. Vanezis and C. Brierley. Facial image comparison of crime suspects using
video superimposition. Science & Justice, 36(1):27–34, 1996.

95. P. Vanezis, D. Lu, J. Cockburn, A. Gonzalez, G. McCombe, O. Trujillo, and
M. Vanezis. Morphological classification of facial features in adult Caucasian
males based on an assessment of photographs of 50 subjects. Journal of Foren-
sic Sciences, 41(5):786–791, 1996.

96. J. Vucetich. Dactyloscopia comparada: El nuevo sistema argentino. Jacobo
Peuser, La Plata, Argentina, 1904.



21 Linkages between Biometrics and Forensic Science 459

97. S. J. Walsh, C. M. Triggs, and J. S. Buckleton. Forensic DNA Evidence Inter-
pretation: Methods and Interpretation. CRC Press, Boca Raton, 2004.

98. R. Williams and P. Johnson. Forensic DNA databasing : A european perspec-
tive. Interim report, School of Applied Social Sciences, University of Durham,
June 2005.

99. F. G. Wood. Automatic fingerprint identification systems II. De La Rue Print-
rak system. Technical report, Elsevier Science Publishing Co., Inc., 1991.

100. M. Yoshino. Conventional and novels methods for facial-image identification.
Forensic Science Review, 16(2):104–114, 2004.

101. J. Zhou and M. Abdel-Mottaleb. A content-based system for human identifi-
cation based on bitewing dental X-ray images. Pattern Recognition, 38:2132–
2142, 2005.



22

Biometrics in the Government Sector

R. Lazarick1 and J. L. Cambier2

1 Computer Sciences Corporation Identity Labs, West Trenton, NJ 08628, USA
rlazarick@csc.com

2 Biometric Consultant, Medford, NJ 08055, USA
jlcambier@gmail.com

22.1 Introduction

This chapter addresses two case studies to illustrate the use of biometrics in
Government-controlled applications. The first case study explores the on-going
large scale border management application in the United Arab Emirates used
to protect against the re-entry of expellees. The second case study examines
the emerging United States application known as “Registered Traveler” used
to expedite airport security screening.

22.2 Iris Deportation Tracking System

This case study will describe the application of iris biometric recognition for
the UAE Deportation Tracking System, focusing on the capabilities of iris
recognition to function effectively in a large-scale “watchlist” application re-
quiring identification.

22.2.1 Description of the Application

The United Arab Emirates (UAE) instituted the Iris Deportation Tracking
System (IDTS) in July 2001 to prevent re-entry of deportees into the coun-
try after they had been expelled [1]. The system is designed to address one
of the most important problems that any country faces; that of enforcing a
deportation order. In normal cases, the authorities decide to deport a certain
individual, who is then processed for deportation. This processing usually in-
volves placing the person’s name, nationality, passport and other information
on a deportees list, and then he or she is deported from the country. That
same individual could request a new passport from his home country with a
slightly different name and would be able to re-enter the country from which
he was deported on new documentation. The problem with this situation is
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that the passport and visa are not a forgery; they are original documents is-
sued by his government and hence counter-forgery tactics at the border point
would not detect this case. The return of such a person to the country is
compounded by his previous experience with the authorities, and he is most
probably more confident in avoiding capture and will require the authorities
to exact more efforts to catch him the second time. With iris recognition tech-
nology (IRT), the person’s iris is imaged and the match is done based on a
stored template collected before he was deported. This is something he can-
not change or alter in any way, and is accomplished without any reference to
his other documents. The IRT system has proven to be extremely effective in
preventing re-entry of persons who have previously been deported, and has
deterred many expellees from attempting re-entry. As of late 2006, the system
has enrolled over 1,050,000 expellees, performed over 9,800,000 searches and
prevented over 115,000 attempts at re-entry.

The system has three basic functions:

1. Enrollment – Enrollment stations are deployed in 22 deportation cen-
ters around the UAE, and employ a total of 49 iris cameras. The enroll-
ment process includes the scanning of both of the enrollee’s irises. Later
recognition uses data from only one iris, but both are enrolled to prevent
attempted avoidance of recognition by enrolling one eye then presenting
the other for recognition.

2. Central Storage – The IrisCode R© templates [2] that have been col-
lected from the enrollment centers around the country are deposited into
a Central Repository, which performs database management tasks such
as linking with geographical- and time-based data, as well as performing
updates and maintenance. The database searches conducted to identify
expellees occur on the Iris Search Engine located at the Central IrisCode
Repository.

3. Border Screening – Iris Finder Workstations are deployed at 35 border
centers, including 7 international airports (multiple terminals), 3 land
ports, and 7 sea ports. A total of 81 cameras are used to scan the irises
of selected incoming travelers; iris data is then transmitted to the Central
Repository where the enrollment database is searched for matches. The
identification process uses exhaustive 1-to-N searching and does not rely
on any demographic data. The total turn-around time range is a matter of
seconds, allowing real-time processing. The workstations are designed to
operate without input devices (keyboard or mouse) and have a very easy-
to-understand universal user interface. The person approaches the camera,
and the workstation automatically generates the IrisCode template and
sends it to the Central Repository. If a match is found a STOP sign is
displayed, otherwise a GO sign will be shown. In the case of a STOP sign,
the operator directs the person to another station capable of producing a
paper printout of the details associated with this person (expulsion data,
crime, name etc.) The authorities then take action as appropriate.
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22.2.2 Role of the Government

The Iris Biometric Deportation System is operated by the General Headquar-
ters of Abu Dhabi Police, which is responsible for enforcement of the UAE’s
immigration laws. Originally championed by H.R.H. Sheikh Saif Bin Zayed,
now Minister of Interior, the system enrolls the irises of inmates and expellees
at geographically distributed deportation centers throughout the UAE into a
central database at the General Headquarters of Abu Dhabi Police. A real-
time, one-to-all iris check of arriving passengers with new visit or work visas
at any UAE border point quickly reveals if that person has been previously
expelled from the country. People are being enrolled at 22 enrollment centers,
covering the entire United Arab Emirates, while simultaneous searches are
taking place at border points, all without any interruptions or delays.

22.2.3 Biometrics in Use

Iris Recognition

At the heart of the border control system is the Iris Recognition Technology
(IRT) invented by Daugman [3] and now solely owned by Iridian Technologies,
Inc. a subsidiary of L-1 Identity Solutions [4]. The iris itself, being the only
visible internal organ, is well protected behind the cornea and does not change
through time. The individual to be recognized presents his or her eye to the iris
camera, a specially formatted image is captured, the iris area is located, and
the texture features within the iris are encoded in a binary IrisCode template.
The IrisCode template is a very compact mathematical description of the iris
pattern. In order to complete the recognition process the template generated
from the presented image is compared against previously collected and stored
templates and a match decision is made depending upon whether the person
was previously enrolled or not.

System Architecture

The framework for the IDTS is the Iris Farm Architecture (IFA R©), a scalable
architecture designed to support geographically distributed Iris Enrollment
Centers and Iris Finder Workstations. The IFA was developed by IrisGuard,
Inc. [5], the company that originally designed the IDTS. This unique archi-
tecture is specifically designed to support the needs of large scale systems
performing iris-based enrollments and searches. IrisGuard’s products also in-
clude a very high quality iris camera, particularly suited to large deployments,
that is being used in the IDTS.

The system consists of three main components as shown in Figure 22.1:
an Enrollment Center, a Central Iris Repository and an Iris Finder Work-
station. Each component is made up of one or more stand-alone applications
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designed to communicate with each other using a TCP/IP link. At the En-
rollment Centers, persons are enrolled, which consists of capturing personal
information (name, crime, date etc.) along with the person’s two irises. This
information is consolidated, at regular intervals, with the Central Iris Repos-
itory. At the main center, all irises coming in from different geographically
dispersed locations are consolidated in such a way as to support extremely
fast searching. At the border points, the Iris Finder Workstation component
captures the presented iris, generates a template, and transmits it to the Cen-
tral Iris Repository for matching against the expellee database. This enables
the officer to scan and check a person’s iris in real-time.

Fig. 22.1. System Architecture.

Location of Iris Search

Typically the iris search at the border point takes place before the traveler
reaches passport control. At this point the person is technically still outside
the country. Therefore, if a record exists on this person, he can be simply
returned on the next plane home without excessive paperwork. The recom-
mended approach is to set up a dedicated Iris Search room at a point before
passport control. This room is equipped with a number of Iris Finder Work-
stations and inbound travelers are steered to this room and then continue on
to regular passport control. The iris search has also been successfully imple-
mented at the immigration counter using a handheld Iris device (IG-H100 R©).
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22.2.4 System Platform and Components

The system is constructed from a variety of commercial off the shelf (COTS)
components integrated with special Iris Technology cameras, interfaces and
software. The databases of all irises are memory resident, offering search
speeds reaching more than 650,000 Iris comparisons per second. The search
speed can be increased by distributing the database among multiple parallel
search engines and conducting parallel searches. The operating system upon
which the system resides is Microsoft Windows 2000, which provides a most
dependable and robust environment for such a demanding system. The system
uses an existing TCP/IP telecommunication infrastructure, but could just as
easily use a COTS solution from Microsoft, based on the Virtual Private Net-
work (VPN) with DES encryption to secure all communication between the
system components residing over geographically distributed locations. Note
that all communication to and from the Central Database is encrypted.

22.2.5 Communication Requirements

All components of the system communicate using the TCP/IP protocol. Hence
they can function with fast lines, leased lines and even dialup when dialup is
the only solution. For border points, tests on a 33.6 KB dialup line resulted in
the return of the search result against a database of 100,000 irises in less than
3 seconds. However, it is always preferable to have a leased line or fast area-
wide networking capabilities. The recommended link between the Enrollment
Centers and the Central Iris Repository is a leased line of at least 64KB in
speed.

22.2.6 Ease of Use

The system is designed to be user-friendly. Screens for different applications
in different system components are designed to be simple and focus the user’s
attention on the task at hand. Simple, self-explanatory error messages are pro-
vided. The results of searching are depicted in “traffic signs,” those indicating
STOP (meaning a record is found), GO (meaning no record is found and the
person may proceed to passport control) and YIELD (meaning the camera
could not capture the Iris and the person is to open his eyes a little wider).
The system produces concise reports that are easy to read, and all the ap-
plications employ standard Graphical User Interface (GUI) components such
as buttons, pull-down menus etc. The Components of the Enrollment Centers
and the Iris Remote Workstations are available in both Arabic and English.
The components of the Central Iris Repository are available in English only.
However, where appropriate, and for information that is needed in both lan-
guages such as site names and system names, the Central Iris Repository offers
bilingual entry and display capabilities.
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22.2.7 External Interfaces

The system is designed with an external interface capable of consolidating
information from external applications (such as the country’s Criminal Inves-
tigation Department (CID) system). This interface automatically imports into
the IRT system those fields supplied by the external system. The information
can be defined at runtime and will be displayed at the border point when a
match is found at an Iris Finder Workstation.

System Performance and Scalability

The overall search turn-around time from Iris Finder Workstations at border
points does not exceed a few seconds. The Central Iris Repository can per-
form over 650,000 Iris searches per second using a single Iris Search Engine.
The architecture of the system allows for significant growth in Central Iris
Repository size without loss of performance. The built-in feature of multiple
search engines sustains this scalability. The Central Iris Repository can be
served by a large number of engines, each capable of searching with speeds
exceeding 650,000 irises per second. Furthermore, the system can be extended
to serve other functions in the future, such as tracking residents, driver li-
cense holders, narcotics users, pedophiles etc. At the Enrollment Centers, a
full enrollment process of one person by a trained operator takes approxi-
mately 30-45 seconds. This includes enrollment of both irises and typing the
associated information for this person. The system will not allow duplicate
irises to be enrolled from the same center and alerts are issued to the operator
of the fact that this same person, whose iris has just been scanned, already
has a record in the Enrollment Center. For cases where a person has been
enrolled in two Enrollment Centers (as is the case with having two residency
records in two states within the same country) the system will merge the
two IrisCode templates at the Central Iris Repository and maintain only one.
However, an information record created during that merge process would hold
all the information associated with this person in any other center.

22.2.8 Synchronization of the Central Database

As stated before, the Central Iris Repository synchronizes data from vari-
ous Enrollment Centers. As the enrollment of persons takes place in various
geographically detached enrollment centers, the central database polls each
Enrollment Center and reads in the latest set of information that may have
been acquired by that center since the last time it was polled. This efficient,
regular and fully automatic procedure ensures that the central database is
kept up to date. The System Administrator can set the frequency of these
polls per day from the central database site. As information is obtained from
each Enrollment Center, the central database merges this information with
the information already present. This intelligent merge activity performs an
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iris search on each new iris to detect duplicates, resulting from a person having
been enrolled in two centers. Information generated during duplicate detection
is also used to enrich the information presented when a search is conducted
from an Iris Finder Workstation. Should a match for the person’s iris occur,
the central database reports the existence of multiple enrollment data result-
ing from a duplicate detection. At the same time that the central database is
performing its synchronization and merge functions, its database is available
to Iris Finder Remote Workstations for screening new subjects. No interrup-
tion of service or any noticeable loss in performance occurs.

22.2.9 Application Security

While the system employs username and password security at the Enrollment
Centers, it also allows operators to log on using their own iris template, which
is stored locally and not with the templates of expellees. The enrollee data
transmitted to the Central Iris Repository includes the username of the en-
rolling officer and the date the record was created. The same information is
recorded for the most recent modification of the enrollee data. This lends ac-
countability to the enrollment process. The Iris Finder Workstation at the
border point is monitored by the Central Iris Repository, which maintains
an audit trail for each workstation that includes records found, searches per-
formed, and operator access records. Standard security and performance re-
ports can be produced at the Central Iris Repository to monitor remote Iris
Finder Workstations at any time.

22.2.10 Data Security

All IrisCode templates in the system are encrypted using the Triple Data
Encryption Standard (Triple DES) with a 192-bit key. All transmissions to
and from the central database are encrypted, as are templates stored in the
database.

22.2.11 Fault Tolerance

The system is designed to handle a large number of Enrollment Centers and
Iris Finder Workstations working simultaneously. If an enrollment center loses
its connection to the Central Iris Repository, it can continue performing en-
rollments without any loss of functionality, simply storing the enrollment data
it collects locally. When communication is restored, stored enrollment data is
automatically transmitted to the Central Iris Repository. At border points,
each Iris Finder Workstation must be connected directly to the Central Iris
Repository. Therefore, a telecommunications failure will result in loss of ser-
vice. However, the configuration includes a secondary (backup) Central Iris
Repository that is automatically synchronized with the Primary Repository.
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Iris Finder Workstations are programmed to automatically switch over to the
secondary site if the connection to the primary site is lost. This changeover is
completed within 30 seconds.

22.2.12 Backup Procedures

The system performs automatic backup procedures that operate without user
intervention where backups are performed for the iris information at the En-
rollment Centers and the Central Iris Repository onto hard disks and tapes.
The system is temporarily not available while the backup procedure executes
but automatically becomes available when the backup is concluded. The total
down time for each backup session does not exceed a few minutes. During
the backup time, the Remote Iris Workstations will advise the user that the
system is temporarily down and will connect back automatically when the
backup at the center is concluded. No user intervention is required at any
location for the backup to be carried out. The client can request the backup
procedure to occur multiple times within one day if that is desired. The system
supports a frequency setting of 0 (no backup) up to 24 (once every hour).

22.2.13 Rapid Deployment

As previously mentioned, the IDTS is constructed from a variety of COTS
components integrated with special iris technology cameras, interfaces and
software. The system components are installed in indoor locations, such as in
prisons and deportation centers. The system is sensitive to ambient light and
special care is taken to limit light reflections from nearby windows. Overhead
ambient (fluorescent) lighting does not affect system operation. The Iris Cam-
eras are wall mounted to preserve floor space and Iris Workstations, used for
processing and data entry, are typically several meters away.

The Iris Cameras have operated with very high MTBF (Mean Time Be-
tween Failure). They do not require any special maintenance or care other
than that normally expected for computer devices.

22.2.14 Biometrics related findings

The accuracy and speed of the IDTS has met all of the expectations of the
UAE government. The system handles on average 9,000 and at times up to
12,000 searches per day, stopping dozens of previously expelled persons from
re-entering the country each day. Iris recognition is ideally suited to this large-
scale identity management task. Its ability to quickly and accurately identify
a large number of people in real-time against large databases is impressive
and not easy to achieve with other biometric technologies.

No Failure to Enroll (FTE) or Failure to Acquire (FTA) events have been
reported. There is no limit on the number of attempts allowed for image cap-
ture, and to date no subject has been encountered that could not be acquired,
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although some certainly require more attempts than others. No false accepts
have been reported. Since this is a “watch list” or “negative authentication”
application, false rejects are not reported. False rejects are minimized by re-
quiring that eyeglasses be removed for enrollment, and also for recognition if
the system encounters difficulty capturing an image with eyeglasses on. False
rejects are also minimized by checking for unusually large pupil diameters,
which might indicate an attempt to avoid detection through use of eye drops
that cause the pupil to dilate, reducing the iris area and increasing the false
reject rate. A number of other criteria, such as visible iris area and number
of usable template bits, are used to assure excellent image quality and a low
false reject rate. Independent performance tests of commercial iris recognition
systems have reported that the false reject rate with commercially available
cameras and multiple attempts is well under 1 percent. If a usable image can-
not be captured at the border crossing, the arriving traveler must submit to
an interview and manual check against a computer blacklist.

22.3 Registered Traveler Program Case Study

This case study will describe the application of biometrics to the Registered
Traveler Program in the United States with particular focus on the approach
to achieving interoperability with a standards-based approach.

22.3.1 Description of the application

The Registered Traveler (RT) program is an airport traveler facilitation ini-
tiative for outbound passengers at the security screening checkpoint. RT is an
opt-in or voluntary program geared toward frequent air travelers. An individ-
ual seeking the privileges of the RT program will enroll (with an Enrollment
Provider) and pay a fixed annual fee for membership. Upon successful comple-
tion of a security background check, the traveler is granted privileged access to
security checkpoints at participating US airports. The benefits to the traveler
may include a shorter and more predictable time to reach the TSA passenger
screening checkpoint, and fewer secondary screening procedures.

The program establishes competition in the private sector for the business
of the Enrollment Provider and the Verification Provider, which are selected by
US airports wishing to participate in the program. The key requirement for in-
teroperability across both airport locations and Service Providers spawned
the development of the technical specification, known as the RTIC Technical
Interoperability Specification, version 1 [6]. This document, developed by the
industry participants and approved by the TSA, provides the technical frame-
work for all aspects of the program, with particular emphasis on Information
System Security, Enrollment/Verification Process and Ongoing Compliance
with RT Standards.
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22.3.2 Role of Government

The US Department of Homeland Security (DHS) Transportation Security
Administration (TSA) participates in the RT program. TSAs role includes
both active participation in the operations of RT, as well as having regulatory
control and oversight of the program. RT can be termed a “public-private
partnership” with a clearly defined delineation of roles and responsibilities.

As shown in Figure 22.2 below, the TSA performs traveler risk analysis and
background checks as a service to the Enrollment Service Providers via the
CIMS (Central Information Management System). In addition to establishing
and maintaining the eligibility status for RT Participants, the TSA has the
on-going responsibility to perform all passenger screening at the airport prior
to allowing passengers access to the airport sterile area and aircraft boarding.
Membership in the RT program does not allow RT Participants to by-pass
this TSA screening.

 

Fig. 22.2. Basic Enrollment Process Flow Diagram.

22.3.3 Enrollment

Biometrics is used to support two distinctly different processes in the RT
Program: risk assessment and identity verification. At the time of enrollment,
each applicant submits a full set of 10 fingerprints. The fingerprint acquisition
uses a “slap” style capture, resulting in three images: 4 left hand fingers, 4
right hand fingers and two thumbs. Fingerprint quality is determined during
enrollment using the NFIQ (NIST Fingerprint Image Quality) scale. Appli-
cants unable to provide at least 4 quality fingerprint images fail to enroll and
are ineligible for the program. The applicant also has the option to enroll with
iris image capture. If so, then the enrollment will include two iris images (left
and right). In addition, a face image is captured for all RT applicants (but is
not currently used for identification).



22 Biometrics in the Government Sector 471

22.3.4 Standardized Data Formats

For an interoperable, open, standards-based system design, one critical factor
is the precise technical specification of standards. In the RT Program, the bio-
metric standards and usage of these standards are defined in the RTIC Tech-
nical Interoperability Specification, version 1. Table 22.1 contains the specific
standards references for the fingerprint and iris data interchanges. Note that
due to the participation of multiple Enrollment Providers, the CIMS must
receive biometric enrollment data in a consistent and standardized format, as
dictated in the “Enrollment Data Standards” column of the table. To support
interoperability at the point of verification, the CIMS employs the standards
as defined in the “RT Card Data Standards” to develop the biometric payload
(the data record to be loaded onto the card) which can then be read and used
by all Verification Providers.

Biometric Enrollment Data Standards RT Card Data Standards
Fingerprint EFTS 7.1 Type-14

3 Type-14 records, represented as
XML

INCITS 378-2004
1 to 2 CBEFF records, each con-
taining 1 INCITS 378 record
- The first INCITS 378-2004
record contains 2 fingerprint tem-
plates
- The second INCITS 378-2004
record, if used, contains 1 to 2 fin-
gerprint templates

Iris ISO/IEC 19794-6:2005
0 to 2 CBEFF records, each con-
taining 1 ISO/IEC 19794-6:2005
record
- Each ISO/IEC 19794-6:2005
record contains 1 iris rectilinear
image, compressed using a com-
pression ratio no higher than 6:1

ISO/IEC 19794-6:2005
0 to 2 CBEFF records, each con-
taining 1 ISO/IEC 19794-6:2005
record
- Each ISO/IEC 19794-6:2005
record contains 1 iris polar image,
compressed
- Compression ratio is arbi-
trary, provided resulting record
fits within the specified iris con-
tainer size on the RT card.

Table 22.1. Applicable Data Interchange Standards.

Electronic Fingerprint Transmission Specification (EFTS)

The U.S. Department of Justice has defined an implementation (profile) of
the ANSI/NIST-ITL 1-2000 standard, for use by law-enforcement agencies:
the Electronic Fingerprint Transmission Specification (EFTS) [7]. As part of
fingerprint enrollment, the Enrollment Provider will format fingerprint slap
impressions using an XML representation of EFTS Type-14 records.
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INCITS 378-2004

INCITS 378-2004 is the US national standard defining methods for repre-
senting fingerprint information using the concept of minutiae. It defines the
placement of the minutiae on a fingerprint, a record format for containing the
minutiae data, and optional extensions for ridge count and core/delta infor-
mation. It is intended to be used within a CBEFF-compliant structure in the
CBEFF Biometric Data Block (BDB) as specified in INCITS 398-2005. This
standard applies to fingerprint templates, as opposed to fingerprint images,
and allows processed fingerprint data to be exchanged. The basic INCITS
378-2004 format (with no extended data) consists of minutia type, location
(X,Y in pixels), angle (in two degree increments), and quality (0-100).

RT utilizes one or two CBEFF records. The first CBEFF record contains
one INCITS 378-2004 record with two fingerprint templates. The second CB-
EFF record, if used, contains one INCITS 378-2004 record with one or two
fingerprint templates. Note that the CIMS will always attempt to generate
four fingerprint templates. If the CIMS cannot generate four fingerprint tem-
plates (e.g., due to poor fingerprint quality or technical error), then the second
CBEFF record will not be provided by CIMS.

Several manufacturers of fingerprint processing software (algorithms) that
generate minutiae templates, and/or perform minutiae template matching
have adopted this standard, and testing for interoperability using this stan-
dard has been performed by NIST (MINEX test) [8], and similar testing has
been conducted for the ILO Seafarer Identification Card program [9].

Common Biometric Exchange Formats Framework (CBEFF)

The Common Biometric Exchange Formats Framework is described in IN-
CITS 398-2005. CBEFF describes a set of data elements necessary to support
biometric technologies in a common way. These data can be placed in a single
file used to exchange biometric information between different system compo-
nents or between systems. The result promotes interoperability of biometric-
based application programs and systems developed by different vendors by
facilitating biometric data interchange.

ISO/IEC 19794-6:2005

ISO/IEC 19794-6:2005 specifies two alternative image interchange formats
for biometric authentication systems that utilize iris recognition. The first is
based on a rectilinear image storage format that may be a raw, uncompressed
array of intensity values or a compressed format. The second format is based
on a polar image specification that requires certain pre-processing steps, but
produces a much more compact data structure. Iris image data is intended to
be embedded in a CBEFF-compliant structure in the CBEFF Biometric Data
Block (BDB) as specified in INCITS 398-2005. Note that unlike fingerprint
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minutiae, this standard does not specify a template format (because of their
diverse and proprietary nature) but rather facilitates the interchange of iris
image data.

The primary intended use for iris data within the RT program is for ver-
ification of RT Participants at the verification station. For this purpose, iris
enrollment data is stored on the RT card in polar format to assure compact
data size and interoperability. Other potential uses exist, including checking
for duplicate traveler enrollments, search of iris watch lists using data records
presented for enrollment, and archival storage of iris enrollments to enable
future technology upgrades.

In order to achieve the highest level of performance and interoperability, it
is appropriate to specify a number of parameters and options that are defined
in the ISO/IEC 19794-6:2005 standard. The RT Program provides specifica-
tions (in Table 3-3 of RTIC Technical Interoperability Specification, version
1 [6]). Rectilinear iris images are compressed using JPEG, with a compres-
sion ratio no higher than 6:1. For the RT card, RT utilizes up to two CBEFF
records, each containing one ISO/IEC 19794-6:2005 record with one iris image
in polar format. The polar iris image may be compressed using JPEG 2000,
with a compression ratio that produces the best fit to the allocated memory
space on the RT card.

22.3.5 Duplicate Enrollment Check

Enrollment Providers collect the biometric data for all RT applicants and
forward the collected biometric data to the CIMS. To maintain the integrity
of the RT system, it is important that RT cards not be issued to the same
person under different identities. The only way to ensure this is to perform a
1:N biometric check against a central database at the CIMS. The individual
may be able to obtain identity documents under different names, but cannot
change his intrinsic biometrics. The CIMS is responsible for detecting any
instance of duplicate enrollments and the biometric data is used at that point
to enable duplicate identification.

Both fingerprint and iris technologies are able to support 1:N searches
of very large databases with acceptable accuracy. The identification must be
done against a single (logical) database of biometric records. However, since
iris enrollment is optional for the RT Applicant, iris technology is not used
as the primary basis for a duplicate check. Therefore, the CIMS provides a
1:N matching capability for fingerprint data. Iris data is used as a secondary
means of duplicate identification in the event such information is available.

If an applicant is detected as having been previously enrolled, decisions
of eligibility will be performed. If the applicant is matched with a previous
enrollee with the same claim of identity, and the previous enrollment was not
revoked, then the application is valid and proceeds. An application can be
denied further processing if the applicant had previously been denied, had his
RT privilege revoked or the applicant was detected as enrolling under an alias
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(false identity). The deduplication process (also called database scrubbing) is
performed within the CIMS, using only RT biometric data retained within
the CIMS.

22.3.6 Background Check - Risk Determination

Applicants’ fingerprint information is sent from the CIMS via the TSA to the
FBI IAFIS (Federal Bureau of Investigation, Integrated Automated Finger-
print Identification System) for background checking (criminal history). TSA
uses the results of the FBI search and makes a final risk determination of
applicant eligibility for enrollment in the RT Program.

22.3.7 Biometric Storage on the RT Card

To support biometric verification at the verification station, the RT Partici-
pant’s biometric authentication data is securely stored (digitally) on the RT
card. The RT card contains the following biometric authentication data:

• Four distinct fingerprint templates (left and right index and middle fingers
preferred, but any can be used, at least two are required).

• Two iris images in polar format (if provided).

In order to maximize interoperability and ensure the chain of trust, the
CIMS has been assigned the responsibility for generating the standards-based
fingerprint templates and the iris polar images for storage on the RT card.
This concept of centralizing the creation of the biometric data used for verifi-
cation (known as the “biometric payload”) is the key ingredient for achieving
an efficient and simplified approach to interoperability. Once created at the
CIMS, this data is transmitted back to the Enrollment Provider for use in RT
card production.

Iris Polar Image Form

One particular note of special interest concerns the specification of the polar
image format. In the detailed specifications table, the parameter “Boundary
Extraction (6.5.1)” includes the comment “For polar: pupil and iris bound-
aries shall not be extracted”. It was determined that use of the more com-
pact version of the iris format, which includes iris image data only (based on
the determination of the pupil and iris boundaries), may cause interoperabil-
ity or performance difficulties. The precise method of boundary localization
and iris region extraction could be variable across service providers (depend-
ing upon the iris recognition software in current or future use). Therefore, for
the assurance of the highest levels of performance and interoperability, the
specification requires no boundary extraction. This results in a storage size
(on the card) increase from 5KB (for polar images with boundary extraction)
to 8KB.
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Fingerprint Enrollment Selection

For fingerprint templates, the Enrollment Provider may indicate which fin-
gers from the fingerprint enrollment data should be included on the RT card.
If these preferences are provided, and the prints meet the minimum NFIQ
quality requirements, the CIMS attempts to generate fingerprint templates
for the preferred fingers. If no preferences are provided, the CIMS attempts
to generate fingerprint templates for the left index, right index, left middle,
and right middle fingers. If the CIMS cannot generate a fingerprint template
(e.g., due to poor fingerprint quality or technical error), then the CIMS se-
lects an alternate finger. The CIMS notifies the Enrollment Provider which
fingerprint templates were generated. If the full four fingerprint templates can
not be generated, then a minimum of two are generated for storage on the
RT card. If at least two fingerprint templates can not be generated, then the
enrollment application will be rejected and new fingerprint samples will need
to be captured from the RT Applicant.

Centralized Biometric Payload Creation

The design of the RT biometric information flow was based on the concept
of having a centralized fingerprint template and iris polar image conversion
function within the CIMS. The individual fingerprint images are obtained from
the segmented slap fingerprint enrollment images, and minutiae templates are
generated using a single (CIMS selected) extraction algorithm. Similarly, the
iris image polar conversion is performed centrally using one (CIMS selected)
polar image localization and transformation algorithm.

The major benefit of this approach is the drastic simplification of the bio-
metric interoperability testing requirements. At the time a new (or revised)
product is qualified as being interoperable with the legacy deployed equip-
ment, the testing will be significantly less complex, since it will be limited
to verifying the end-to-end performance of verification stations all using a
common enrollment template or iris image.

22.3.8 Biometric decision logic

At the verification station, the identity of the RT Participant must be verified
to ensure that he/she is the person to whom the RT card was issued. (Other
checks are also performed to ensure that the card is still valid and privileges
have not been revoked, but these do not involve biometrics.) Figure 22.3 shows
the basic steps in the verification process.

Upon authentication and verification of a valid RT card, the Verification
Provider matches the presented biometrics from the RT Participant against
the enrolled biometrics stored on the RT card. This involves the following
steps:
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Fig. 22.3. Basic Verification Process Steps [6].

• The RT Participant’s preferred biometric option and selected biometric
data are read off of the RT card.

• The RT Participant is prompted to interact with the biometric capture
device on the verification station.

• The RT Participant presents their biometric to the sensor, and the data
is captured.

• The presented biometric data is processed for matching.
• 1:1 matching is performed on the verification station between the enrolled

biometric data obtained from the RT card and the processed presented
sample obtained from the RT Participant.

• Throughout the process, strict data security and integrity practices are
present to protect the biometric template data.

If the match to the preferred biometric is successful, then the RT Par-
ticipant is permitted to proceed forward in the security checkpoint process.
If the match is not successful, the Verification Provider may recapture bio-
metric data from the RT Participant and try the match again, up to three
verification attempts. If a match to the preferred biometric is not made, the
Verification Provider shall attempt to match to a secondary biometric stored
on the RT card. The Verification Provider may make up to three verification
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attempts using the secondary biometric. If the match is still unsuccessful, the
RT Participant is redirected to a non-RT airport checkpoint screening lane.

For the RT Program biometric verification process, the required false reject
rate may not exceed 1% (1 in 100) at a fixed 1% false accept rate operating
point. Verification Providers are not precluded from using more stringent false
accept rate criteria. (Note that the TSA has established verification and val-
idation procedures to enforce these performance criteria.)

A Verification Provider may choose to use more than one biometric in
either a layered/cascaded fashion or with true multi-biometric fusion, as long
as the above false reject rate and false accept rate requirements are still met.

22.3.9 The operating environment

The RT Program components are typically placed within the public areas of
US airport terminals. The verification station is of necessity located in imme-
diate proximity to the entry point for the TSA screening checkpoint, so that
flow control of the verified traveler can be enforced. The enrollment station
is usually nearby, or in another more central location in the airport terminal
(or occasionally elsewhere entirely). In general the operating environment can
be characterized as indoor, with controlled climate conditions and variable
lighting conditions.

With regard to the biometric devices operating in the environment, the
fingerprint devices should be expected to have no adverse effects. Capture of
the enrollment face image may be adversely affected by lighting and back-
ground conditions. Iris image capture may be adversely affected by lighting
conditions, particularly in the presence of direct sunlight (or possibly also the
close proximity of fluorescent lighting sources).

22.3.10 Biometrics related findings

The RT Program (at the time of this writing) is in the early stages of de-
ployment, so real-world findings relative to the operation of the biometrics
will be a subject for future consideration. However, the establishment of the
detailed technical specifications for a truly open and interoperable, multiple
biometric, standards-based and distributed large scale application presented
a significant challenge to the TSA and its industry partners. Achieving both
industry and government consensus on these specifications revealed the fol-
lowing interesting points.

This may be (probably is) the very first initiative using iris recognition in
an open system configuration. The iris recognition field is evolving, due in part
to the expiration of the concept patent, and the emergence of new devices and
software. In order to ensure that the RT Program can transition, if desired,
to future iris technologies and techniques, the standards-based polar form iris
image (without boundary extraction) was specified, despite its sub-optimal
card storage requirement. This zealous effort to achieve immediate and long
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term interoperability and open architecture deserves acknowledgement and
astute observation of its outcome. There will be lessons learned.

The choice of interoperable minutiae templates for on-card storage and
verification may be an indication of a trend. Prior to the RT decision, the
ILO Seafarer Identity Card Program, and notably the US FIPS-201 Personal
Identity Verification (PIV) initiatives chose the same approach. Not long ago,
prior to the creation of ISO Subcommittee 37 (2002) and the US INCITS
M1 standards committees, there were no biometric standards addressing in-
teroperability. Now these standards are published, frequently referenced and
specified, and deployments based on these standards are flourishing. Through
the continued efforts of these standards bodies and the support of government
(and other) programs utilizing these standards, the biometrics community will
gain the long awaited status of a fully adopted and embraced technology.
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23.1 Introduction

Biometrics systems have long captured people’s imagination as the inevitable
way people will authenticate their identity in the future. Sometimes such
a world is depicted as sinister Big Brother, other times it is with the cool
sex appeal of James Bond. The reality is much more mundane: commercial
organizations are driven by a desire to improve their bottom-line. They do so
by improving efficiency and customer service as well as reducing fraud and risk.
Biometrics technology has matured into a viable tool to solve many business
problems. In this chapter, we will give you a glimpse of some of the business
problems that biometric systems are solving in the commercial sector.

23.1.1 Opportunities for biometrics in the commercial sector

There are primarily three unmet business needs that are creating an urgency
for enterprises to adopt biometrics:

• Reduce Fraud: Businesses are losing billions of U.S. dollars annually due
to fraudulent activities. The amount of fraud has reached epidemic pro-
portions in our global electronically interconnected society. No longer is it
the case that a business deal is done with a handshake and signature on
paper; business transactions conducted fully automatically from remote
locations are the norm. This makes it easier for hackers to commit fraud
from remote location without the risk of getting caught. Surrogate repre-
sentations of identity such as passwords and tokens have proven deficient
in keeping fraud down to acceptable levels. When the fraud is committed
by a single person by faking multiple identities, no technology other than
biometrics can address it (for example, a single person availing certain
benefits multiple times under multiple identities). Strong tools to link a
person to their digital identity is imperatively needed to check fraud.
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• Improve convenience of security: Traditional technologies used for authen-
tication such as passwords and tokens are not only expensive to maintain
but they are also inconvenient to use. Businesses enforce strong password
policies to improve security but people disdain them because remember-
ing several different, long, random, passwords that have to be changed
every so often is frustrating. To overcome this nuisance, people write their
passwords down on post-it notes or in a computer file, defeating their
purpose. Otherwise, people forget their passwords and call the business’s
helpdesk for a reset, which is expensive to the businesses. For example, SC
magazine reported in 2002 that organizations spend $150 on an average
per employee/per year on helpdesk costs driven by forgotten and expired
passwords. In addition, productivity is lost when people are “locked out”.
Tokens cause similar problems to businesses - people lose them or for-
get to carry them. A more convenient method of providing strong user
authentication is needed.

• Provide increased security and non-repudiation: Passwords and tokens pro-
vide inadequate security and privacy and are ineffective in providing audit
trails and regulatory compliance. Passwords and tokens can be shared
and cannot ascertain that the person begin authenticated was physically
present at the point of authentication. A stronger method of security and
accountability is needed.

Businesses understand that foolproof personal recognition and security
systems do not exist and perhaps never will. Security is a risk management
strategy that identifies, controls, eliminates, or minimizes uncertain events
that may adversely affect system resources, information assets, and a busi-
ness’s bottom-line. The security requirements of a system depend on the
threat model of a commercial application and a cost-benefit analysis. When
businesses conduct such an analysis, an assessment of security risks, and an
evaluation of available systems and products, they often find out that bio-
metric systems provide a layer of security that alleviates threats that other
technologies don’t.

23.1.2 Benefits of biometrics in the commercial sector

Traditional technologies used in the commercial sector for achieving a pos-
itive recognition primarily include knowledge-based methods (for example,
personal identification numbers (PIN) and passwords) and token-based meth-
ods (for example, keys and cards). Earlier we alluded to their deficiencies. Let
us elaborate:

• Weak passwords are easy to crack. Most people set their passwords to
words or digits they can easily remember, for example, names and birth-
days of family members, favorite movie or music stars, and dictionary
words. In 2001, a survey of 1,200 British office workers conducted by Cen-
tralNic found that almost half chose their own name, a pet’s name, or a
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family member’s name as a password. Others based their passwords on
celebrity or movie character names, such as “Darth Vader” and “Homer
Simpson”. Such passwords are easy to crack by guessing or by simple
brute-force dictionary attacks. Although it is possible, and even advisable,
to keep different passwords for different applications and to change them
frequently, most people use the same password across different applica-
tions and never change it. Compromising a single password can thus cause
a break in security in many applications. For example, a hacker might
create a bogus Web site enticing users with freebies if they register with
a login name and password. The hacker could then have a good chance of
success in using the same login name and password to attack the users’
corporate accounts.

• Strong passwords are difficult to remember. In an effort to address weak
passwords, businesses often enforce policies to make passwords strong, for
example, a business may require that a password is at least 8 characters
long, contains at least one digit and one special character, and must be
changed every couple of weeks. Such policies backfire. Certainly, longer
complex random passwords are more secure, but they are so much harder
to remember, that they prompt users to write them down in accessible
locations such as Post-it notes hidden under the keyboard, an unprotected
electronic file on their computer, or other electronic devices such as cellular
phones or personal digital assistants (PDAs), creating a security vulnera-
bility. Else, people forget their passwords, which creates a financial night-
mare to businesses as they have to employ helpdesk support staff to reset
forgotten or expired passwords. Cryptographic techniques can provide very
long passwords (encryption keys) that the users need not remember; how-
ever, these are in turn protected by weak passwords, which defeats their
purpose.

• Password cracking is scalable. In a password-based network authentication
application, a hacker may launch an attack remotely against all the user
accounts without knowing any of the users. It costs the hacker almost the
same amount of time, effort, and money to attack millions of accounts as
it costs to attack one. In fact, the same password (for example, a dictio-
nary word) can be used to launch an attack against (a dictionary of) user
accounts. Given that a hacker needs to break only one password among
those of all the employees to gain access to a company’s intranet, a single
weak password compromises the overall security of every system that user
has access to. Thus, the entire system’s security is only as good as the
weakest password.

• Password and tokens do not provide non-repudiation. When a user shares a
password with a colleague, there is no way for the system to know who the
actual user is. Similarly, tokens can be lost, stolen, shared, duplicated or a
hacker could make a master key that opens many locks. Only biometrics
can provide a guarantee of authentication that cannot subsequently be
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refused by a user. It is very hard for the user to deny having accessed a
biometric-based system.

In the case of negative recognition (to find if a single person has multiple
identities in a commercial application/database), any other useful technology
simply does not exist. For example, passwords and tokens cannot be used
to find out duplicate identities in a database. Either the businesses have to
trust that the government has not issued multiple identity documents (such as
driver licenses and passports) to a single person and that the issued documents
are unforgeable (for example, by using anti-counterfeiting technologies) or the
businesses have to depend on biometrics technology to find the duplicates
themselves. Even in the case when the businesses rely on the government-
issued identification documents, they are merely transferring a function that
only biometric technology can provide from the commercial sector to the gov-
ernment sector.

It is significantly more difficult to copy, share, or distribute biometrics than
passwords and tokens. Biometrics cannot be lost or forgotten, and biometrics-
based recognition systems require the person being recognized to be present
at the point of recognition. Biometrics strongly links an identity to a physical
human being. Biometrics are difficult for attackers to forge and for users to
repudiate. Furthermore, the security level is relatively equal for all users in
a system, which means that one account is not much easier to break than
any other (for example, through social engineering methods). The main ad-
vantage of a biometric system in the commercial applications is that it gives
users greater convenience (they no longer have to remember multiple, long
and complex, frequently changing passwords or carry multiple keys) while
maintaining sufficiently high accuracy and ensuring that the user is present
at the point and time of recognition and later cannot deny having accessed the
system. Biometrics addresses the human factor of authentication and used to-
gether with standard cryptographic techniques to guard against Trojan horse
and replay attacks, provides a good balance of convenience, security, privacy,
and accountability.

23.1.3 Barriers to biometrics adoption in the commercial sector

While there is no doubt in our minds that biometric systems address an
important security function in the commercial sector applications and that
its adoption is increasing, the rate of adoption has been somewhat slower
than expected. We believe that this is primarily because of lack of education
and awareness about the benefits and capabilities of biometric technologies.
Secondarily, it may be because the business case for biometrics has often
proven to be somewhat difficult due to the following reasons:

• The business value of “security” and “deterrence” has always been difficult
to quantify in terms of return on investment, regardless of the technology.
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• Fraud rates and costs of long standing business systems (for example, to-
kens and passwords) are not well understood, quantified, and documented.

• Biometrics, being an emerging technology is sometimes confronted with
unrealistic performance expectations and not fairly compared with exist-
ing alternatives (for example, tokens and passwords), whose inconvenience
and high cost businesses have resigned to tolerate. A successful biometric
solution does not have to be 100% accurate and 100% secure. A particular
application demands a satisfactory performance justifying the additional
investments needed for the biometric system. The system designer can ex-
ploit the application context to engineer the system to achieve the target
performance levels.

• The “quality” of biometric technology varies quite dramatically from one
biometric characteristic to another (for example, from fingerprint to gait)
and from one vendor to another. Businesses cannot easily access credible
reports on vendor comparisons because of a dearth of standardized sce-
nario testing of biometric systems. Vendor’s own claims of performance
could sometimes be misleading due to vast differences in their testing pro-
tocols and demographics of test subjects. Certain biometrics vendors have,
unfortunately at times, even made bogus performance claims. This leaves
businesses to either perform their own evaluation (which delays deploy-
ment) or rely on references (which could be difficult to obtain because of
unique operational scenarios). If a business has a poor experience with a
certain specific vendor/system whose claim of high performance could not
be substantiated in a pilot, unfortunately they are inclined to incorrectly
dismiss all of biometrics as a premature technology.

• Several biometric system vendors are not financially stable, leaving busi-
nesses with concerns over continued product and support availability.

23.1.4 Biometrics technology adoption in the commercial sector

In the past, the most concrete return on investment estimation for businesses
has come from taking people out of business processes and transactions. For
example, forgotten passwords result in helpdesk calls which are expensive
to businesses. It is abundantly clear and widely documented in popular press
that biometric systems can significantly reduce the spending on helpdesk calls
much beyond the cost of investment. In many commercial applications, the use
of biometrics can facilitate businesses to move to a user-friendly self-service
model of service and support while providing the same or even higher level of
security as the attended model, thus lowering their expenses. It is slowly but
surely becoming apparent to businesses that they do indeed lose significant
amounts of money due to fraudulent activities against their data systems
and centers often conducted over electronic medium by uncatchable remote
hackers. A reduction of fraud alone provides businesses significant savings that
often more than justify the investment in appropriate biometrics technology.
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Biometrics technology, when properly implemented, provides more secu-
rity, convenience, and efficiency than other means. No other technology has
the capability to provide non-repudiation or ensure that the person being au-
thenticated is physically present at the point of authentication. We believe
that any system assuring reliable person recognition must necessarily involve
a biometric component. Because of the unique person recognition capability
provided by biometrics, biometric systems have and will continue to offer use-
ful value by providing convenience, deterring crime, identifying criminals, and
eliminating fraud. We believe that as businesses become more educated on
biometric technologies and their strengths and weaknesses in the context of
their business problems, the adoption rate will accelerate further.

23.2 Biometric system functions and trade-offs

Biometrics provides two main functions for businesses: positive recognition (to
prevent multiple people from using the same identity) and negative recognition
(to prevent a single person from using multiple identities). In positive recog-
nition, the claim of identity could be explicit, leading to a system deployed in
verification mode (also called authentication mode or 1-to-1 matching mode)
or implicit, leading to a system deployed in identification mode (also called
1-to-many matching mode). The positive recognition function can be subdi-
vided into logical access control, physical access control, time and attendance,
transactional authentication, wireless device security, etc. functions based on
the differences in an application’s requirements. Negative recognition systems
are always deployed in the identification mode. Notably, negative recognition
can not be accomplished without the use of biometrics.

In other words, when a biometric system is deployed by a business for pos-
itive recognition, for example to authenticate a user’s identity for logical or
physical access control, it is typically done as a better alternative over other
types of credentials such as passwords and tokens. If the claim of identity is
explicit, the user types in her username and presents her biometric as the
means of confirmation that she indeed is that person. The biometric itself
could also be used to identify the user, eliminating the need to enter a user-
name and make the transaction more efficient as well. In this case, the claim
of identity is implicit. The user’s account is already enrolled in the system
and the biometric is a more convenient and secure approach for that user to
verify her identity. The goal is to allow enrolled users a better way to access
their accounts.

In the case of negative recognition, the goal is to detect if a person attempt-
ing to enroll is already present in the system, for example under a different
name. In other words, identification during enrollment solves account fraud,
where a person attempts to take out multiple accounts under different identi-
ties. Commercial applications can be found to take advantage of either or both
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positive and negative recognition functions of biometric systems for different
aspects of their business problems.

Each commercial application presents its own opportunities and challenges
and each one has a different threat model and thus different requirements for
the biometric system. For example, requirements of a nuclear facility physi-
cal access control application may differ quite a bit from the requirements of
a health club physical access control application. Each biometric has its own
strengths and weaknesses and no single biometric is suitable for all commercial
applications. Table 23.1 shows Frost & Sullivan’s estimate of the market adop-
tion trend for the most widely used biometric technologies in the commercial
and the government applications (forensic applications are excluded).

Table 23.1. Total Biometrics Market: Application Markets Adoption Trends
(World), World Biometrics Markets report, 2006. Table courtesy of Frost & Sul-
livan. Key: T&A = Time and Attendance; PC = Personal Computer; Govnt/LE =
Government and Law enforcement; TA = Transactional Authentication.

Biometric Physical Access PC Govnt/LE TA Wireless
Technology Control / Network Device

/ T&A Security Security

Finger-scan Dominant Dominant Dominant Dominant Dominant

Face Niche Limited Gaining Limited Limited
applications activity traction activity activity

Iris Niche Limited Gaining None None
applications activity traction

Hand Significant None Limited None None
Geometry activity activity

Voice None Limited Limited Limited None
Verification activity activity activity

Fingerprint is the most mature technology that is dominant in almost
all areas of the commercial applications. Fingerprint readers are available in
various sizes and many mature products and solutions are available for a wide
variety of commercial applications. Face recognition has been primarily used
in the government applications such as airport security and border control.
Usage of face recognition technology in the commercial sector are emerging
in some niche applications such as casino surveillance and user authentication
at Automatic Teller Machines (ATMs). Iris recognition technology is being
deployed in high security government applications such as airport security
and passport issuance, especially where identification is needed against large
databases. Iris technology is also gaining some traction in physical access
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control, time and attendance, commercial surveillance, and ATM applications.
Hand geometry technology is primarily deployed in physical access control and
time and attendance applications, especially in harsh physical environments
(hand geometry readers are very rugged). Voice verification is primarily being
used by financial institutions to authenticate the identity of remote users over
telecommunication channels.

Given the scenario and goals of a commercial application, there are a num-
ber of trade-offs that the vendors of biometric systems must take into account
during design. These trade-off may include recognition reliability, system in-
tegrity, complexity, cost (component price as well as integration and support
costs), privacy, government standards, liveness detection, ease of integration,
durability, modality of usage, etc. For example, a commercial application that
requires the biometric system to work for all the people all the time demands
a high recognition reliability which may come at an expense of requiring high
computation/memory power or specialized capture equipment (for example,
large-area fingerprint readers or face recognition booths with controlled light-
ing). In another example, compliance with certain government standards may
facilitate inter-operability but may decrease recognition reliability.

The biometric system vendors spend a great deal of effort in optimizing
and balancing the various trade-offs for the commercial applications they tar-
get. They try to find a sweet-spot of the trade-offs that satisfies a majority
of their target applications. For example, a vendor who targets large-scale
government applications may make a trade-off on cost to provide high recog-
nition reliability or compliance with government standards. A vendor who
targets commercial applications may make the trade-off on government stan-
dards to provide low cost and high recognition reliability. Similarly, within
the commercial applications, a vendor who targets mission-critical enterprise
applications may make the trade-off on reader size to provide high recognition
reliability. Another vendor who targets the commercial application of access
control to miniature personal computing devices may make the trade-off on
recognition reliability to provide low reader cost and small size. Trade-offs in
the commercial applications typically include reader size, reader cost, reader
ruggedness, accuracy reliability, template size, memory and cache size, se-
curity issues, system design, etc. In general, all commercial applications are
typically cost sensitive with a strong incentive for being user-friendly.

In this chapter, when we discuss a commercial application and the ben-
efits of using biometrics in it, we assume that the biometric system vendor
has addressed the trade-offs and has achieved a satisfactory balance/sweet-
spot. Use of an inappropriate biometric system can of course make matters
worse instead of improving them. And depending on the application, a bio-
metric system may not be the best choice - other technologies, with their own
strengths and weaknesses, or a layered approach may be a better fit. Finally,
a vendor may have gone too far with some of their trade-offs rendering their
product stunted. Therefore, businesses must perform due diligence in selecting
the technology and the vendor.
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It is not possible to divide the infinite number of commercial applications
of biometrics into any meaningful categories. Each application has different
requirements and desires different trade-offs from the biometric system. We
have categorized the commercial applications into sections below based on a
few primary functions and a few vertical industries. First, we cover the four
broad functional categories: logical access control, physical access control, time
and attendance, and negative recognition, that have wide applicability across
all industries. Thereafter we delve into some of the business problems that
various functions of biometrics solve in three specific industries - healthcare,
finance, and retail. While this classification is somewhat artificial and certainly
non-exhaustive, we hope that it provides some orderliness to the readers in
browsing the vast landscape of commercial biometric applications.

23.3 Commercial Function: Logical Access Control

The key to opening almost any door in the digital realm has traditionally
been a password. This was a natural consequence of the fact that at any place
where someone manipulated data, from a desktop personal computer (PC) to
a cellular phone, a keypad was already available. Furthermore, from a theoret-
ical standpoint, a password can offer extremely strong security since the only
place a password needs to be stored un-encrypted is in the user’s mind. In
practice however, the mind is a terrible place to store complex secrets; people
cannot easily remember complex passwords so they write them down or tell
them to others, and most people end up using the same password everywhere.
Exploiting these human factors that affect security are increasingly the quick-
est path for hackers to break into computer systems. In addition, there are
many automated points of attacks on password-based security systems. For
instance, a user’s password can be compromised via insertion of a hardware or
software-based key-logger to trap the keystrokes as they are being entered. As
computers gain speed, it has become easy to reverse a cryptographic hash, or
any other cryptographic representation of a password stored in the computer,
even if the password is very complex.

End users do not want to be encumbered with complexities and incon-
veniences that slow them down while doing their job. On the other hand,
businesses increasingly find out that they must implement strong authentica-
tion to satisfy industry and government auditors. It is fairly straightforward
for a system administrator to patch a piece of software or install a firewall,
but it is not trivial to tackle the human factors of security. A secure password
policy, such as requiring users to change their passwords every month enforces
complexity in construction but in reality makes it more likely that users will
find ways to simplify and recall, such as by writing their passwords down on a
note under their keyboard. Information technology support costs also go up as
more people forget their passwords and need to call the helpdesk. In the end,
since passwords are chosen not by the system administrator in a corporation,
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but by the end users, the system administrator must rely on each user to follow
the policy. This typically becomes the weakest link in network security. Other
methods, such as tokens and smartcards, succumb to the same challenge - it
remains the end user who bears the responsibility of maintaining the security
of the credential. Biometrics provide the only credential that does not rely
on the end user to maintain its security. Furthermore, biometric systems are
potentially cheaper to support and easier to use since the end user does not
need to remember complex secrets.

Shrink-wrapped packaged software solutions are available today to enable
the use of biometric-based authentication to logon to virtually any consumer
and enterprise application, including Microsoft Windows networks, websites,
web services, and virtual private networks. Since few applications implement
biometric authentication natively, the role of many such software solutions is
to map a successful biometric authentication to a long and complex password,
which is then used by the application for logon. The end user, however, will
likely not need to know her underlying password or be able to enter it, and
thus, a biometric solution effectively eliminates passwords for the user. Simi-
larly, a user’s biometric credential can be bound to the private key associated
with a digital certificate, to facilitate digital signing of data, such as financial
transactions, email, forms, and documents. In addition, to aid compliance,
the system administrator can access an event log to confirm that a biometric
match was performed for access and whether the match was successful or not.

Fingerprint-based solutions, in particular, have emerged as the most com-
mon method for logical access control with biometrics (see Table 23.1). The
use of a fingerprint requires the user to declare their credential with a defini-
tive action, such as a finger press or swipe, for authentication. Fingerprint
readers have attained the size, price, and performance necessary to be inte-
grated in a range of logical access devices, including notebooks, keyboards,
mice, and smartphones.

Fig. 23.1. A swipe fingerprint reader is embedded into an IBM notebook to prevent
anyone other than the owner from accessing data on it.
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It is typical for the logical access control applications to have only one
user per biometric reader, a reader that may be attached to the user’s PC
or embedded in her notebook or smartphone (see Figure 23.1). This is unlike
most other commercial applications such as physical access control, time and
attendance, or authentication at point of sale terminals, where the biometric
reader would be shared among many users. Certain logical access control ap-
plication deployments may offer the biometric authentication as a choice to
the users. A user could chose to use the biometric system or chose to continue
using the passwords. In such deployments, the intention of the enterprise is
to provide maximum end user convenience while still availing cost savings by
reducing helpdesk calls. The above properties of logical access control deploy-
ments drive fundamentally different requirements for the single-user biometric
reader in terms of accuracy, ease of use, cost, size, and security, as compared to
the requirements for the shared-use biometric readers. Shared-use biometric
readers traditionally focus on ease of use, durability, and accuracy over a wide
demographic population. Single-use biometric readers prioritize low cost, small
size, and cryptographic security. For fingerprint-based readers, this trend has
manifested itself through the use of placement-based readers for shared-use
applications, and swipe-based readers for individual use applications.

Most platforms and peripherals that come with embedded fingerprint read-
ers include software to access the local PC and applications. These applica-
tions may include biometric-based access to the PC, pre-boot authentication,
full disk encryption, Windows logon, and a general password manager appli-
cation to facilitate the use of biometrics for other applications and websites.
Such a suite of applications protects the specific PC on which it is deployed
and makes personal access to data more secure, convenient, and fun. Com-
panies such as Dell, Lenovo, Microsoft, and Hewlett-Packard ship platforms
and peripherals pre-loaded with such capability. However, these are end user
utilities with the scope of use only on the local PC. As a result, they may
be challenging and costly to manage if deployed widely in an enterprise since
each user will need to setup, enroll her biometric, and configure the appro-
priate policy, all by herself. Usually the user is given the option to use the
biometric system as a cool individual convenience, rather than enforced by an
enterprise-wide authentication policy.

The other major class of logical access control biometric application for the
enterprise network are server-based solutions. These solutions typically limit
the flexibility given to the end user and instead focus on the needs of the orga-
nization and the system administrator to deploy, enroll users’ biometric cre-
dentials into the enterprise directory, and centrally configure enterprise-wide
policies. An enterprise-wide policy, however, drives stronger requirements for
the reliability, security, and inter-operability of the biometric authentication.
If it is a business policy that everyone in the organization must use the bio-
metric system for authentication, the reliability of the biometric system must
be higher than a client-side-only solution where the user can opt-in to use the
biometric system just for convenience. A server-based logical access control
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solution generally needs to be inter-operable with data coming from many
different biometric readers since not every platform in the organization will
use the same model of the biometric reader. Inter-operability can be accom-
plished at either the enrollment template level or the biometric image level.
Lastly, since a server-based solution typically stores biometric credentials in
a central database, the security model of the whole chain from the reader to
the server must be considered to protect against hackers and maintain user
privacy. However, unlike government deployments that store the user’s actual
biometric image(s) for archival purposes, a biometric solution used for enter-
prise authentication typically stores only the biometric enrollment templates.

Biometric systems remove the responsibility of managing credentials from
the hands of the end users and therefore resolve the human factors affecting
the system security. However, the flip-side is that the biometric capture and
match process must be trustworthy. Logical access control for users is typi-
cally accomplished through a client device, such as a notebook or a desktop
PC, by authenticating the user to a trusted, managed server. The root chal-
lenge of protecting the biometric match process is to remove all means by
which a hacker could affect the user authentication by tampering with the
client operating system. This can be accomplished by carefully monitoring
the health of the client operating system with adequate virus and spyware
software, and in the future, with the use of trusted computing. Or, if operat-
ing from an untrusted client, by removing the client operating system entirely
from the system security equation. The practical means to accomplish this
is by either performing the biometric match in a secure co-processor, or by
encrypting/digitally-signing the raw biometric data on the biometric reader
itself so that the biometric data is trusted by the server. Of course, depending
on the threats present in a given environment, some deployments of logical ac-
cess control may need to resolve more than just the human factors of security
and will need to use multiple factors of authentication, such as two-factor (bio-
metric plus password) or even three-factor (biometric, smartcard, and PIN)
to protect against active adversaries.

After many years of fits and starts as a niche technology, the use of bio-
metrics for logical access control has gained a foothold in protecting corporate
assets and networks as the cost of solutions has gone down, and the security
and reliability has gone up. Use of biometric authentication for logical access
control resolves threats that other secret-based methods such as passwords and
tokens cannot, the main threat being the human factors that lower security
and are costly and difficult to manage. No security method is a magic bullet,
but biometric solutions for logical access control can be a reliable tool/layer
to add to a holistic approach to enterprise security.
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23.4 Commercial Function: Physical Access Control

In the same manner that a password is a universal unlocking mechanism
in the digital realm, almost any application that uses a physical lock opens
with a token (key, proximity card, access card, etc.) and is an application
where access to some physical space or property such as building, hall, room,
office, cabinet, car, house, garage, locker, mailbox, safety deposit box, etc.
is being controlled. Only authorized users are allowed access to the physical
locations. Tokens do not provide sufficient security (since they can be stolen
or shared), convenience (since they need to be carried around and can be
lost or misplaced), or non-repudiation (since an employee may claim that his
key had been lost or stolen). Stronger physical access control is provided by
either replacing the older system with a biometric system or layering the token
and/or PIN-based system with a biometric system.

As an example, a biometric physical access control system may be used
at schools and daycare centers. For children’s safety, it is important that only
authorized parents and staff is allowed to enter a school or a daycare center.
It is important to record who dropped off and who picked up a child and
to record staff hours. A biometric system archives this very effectively by
offering security and providing convenience. It is a deterrent to criminals and
gives peace of mind to the parents. Some other examples of biometric physical
access control commercial applications are shown in Figures 23.2, 23.3, and
23.4.

Fig. 23.2. Rental lockers at an Airport. These lockers, manufactured by Smarte
Carte, use biometrics for locker access control.

A biometric physical access control system may be a stand-alone system. A
stand-alone system is not networked and usually does not have access to large
amounts of memory, computational power, and disk storage. In general, these
stand-alone embedded systems tend to have a very small footprint and require
the biometric reader to be of very small size. Limited resources and small size
of the reader puts significant strain on the recognition reliability since small
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Fig. 23.3. The first picture shows a biometric-enabled stand-alone physical access
control system for room entry. The second picture shows a biometric-enabled stand-
alone door lock.

readers are not very accurate and high performance biometric matching algo-
rithms tend to be very computationally intensive. Stand-alone physical access
control biometric systems typically perform the user biometric enrollment on
the self-contained device, store the enrolled templates on the device, conduct
feature extraction and matching on the device, and have a controller on board
to control the external locking mechanism. Upon a successful biometric ver-
ification, the system may accentuate a door locking mechanism without any
external means to grant access. Often, these systems are used by a single user
(or very few users such as members of a family). They cannot be connected
to a printer for printing audit logs and do not have network connections, dis-
plays, and input/output interfaces, with the exception of perhaps a keypad
that can often be found on such systems. Although the lock and the biometric
systems may be physically separated (just electronically connected), there is
a trend to integrate such stand-alone biometric systems onto the lock itself
(see figure 23.3).

Networked biometric physical access control systems are desirable in com-
mercial applications where access to a physical location is controlled through
multiple doors. For example, large enterprises usually have several buildings
and each building has several doors. Authorized employees may enter any of
the buildings through any of the doors. Further, certain employees may have
special privileges to enter selected areas of the building. Networked biometric
physical access control systems offer many advantages over stand-alone sys-
tems. A more powerful computer (with more memory, processing power, and
disk storage) can be used as a server. Enrollment templates of a large num-
ber of users can be stored here and the biometric matching and/or feature
extraction can be performed more accurately. A networked system provides
better administration since all the doors can be managed from a central loca-
tion. Functions such as user enrollment, deleting a user record, changing user
access privileges, etc. can be performed by the system administrator from
a single location. The server typically has other resources such as displays,
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Fig. 23.4. The first picture shows a biometric physical access control system based
on iris recognition used in Tokyo to gain entry into a condominium building. The
elevator is automatically called and programmed to bring the residents to their
residential floor. Picture courtesy of Dr. John Daugman. The second picture shows
an iris recognition system from LG Iris being used for physical access control at
Equinox Health Club in New York. Picture courtesy of LG Iris.

input/outout interfaces, and printers to print audit logs, and if needed, can
even relay the authentication information to other information systems over
the network. Such networked physical access control systems use biometric
readers that are typically larger, more expensive, and more accurate than
those used in stand-alone systems.

Finally, large enterprises are expressing a need to integrate their physical
and logical access control systems into a single homogeneous seamless system
such that both types of access controls can be centrally managed from a single
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place. The advantage of such an integrated system is rooted in manageability
– a user needs to be enrolled only once for both physical and logical access,
the enrollment can occur at one or more central locations, the system admin-
istrator can delete a user record or change access control rights for a user for
both physical and logical access from a central place, and so on. Such require-
ments translate into a number of trade-offs that the vendor of the system
must balance to provide an effective solution at a reasonable price.

23.5 Commercial Function: Time and Attendance

The objective of an automated time and attendance system is to keep track
of working hours for employee pay computation and payroll processing, avoid
unauthorized overtime, enforce company policies (for example, store open and
close times), and so forth. Time and attendance systems that are based on
badges, cards, or PIN numbers are plagued with buddy-punching fraud (unau-
thorized person serving as a proxy for a worker) because cards and PIN num-
bers can be shared. American Payroll Association reported in its January
2002 issue of PayTech Magazine that over 5% of gross payroll in the U.S. is
fraudulent. A biometric system can eliminate buddy-punching fraud and the
costs associated with badges/cards. As a result of the efficiency of a biometric
system, businesses also save money by quicker and more accurate payroll pro-
cessing. Workers do not need to carry cards or remember and punch in PINs
and thus biometric systems are more convenient to them as well.

Fig. 23.5. A hand-geometry biometric time and attendance system being used in
a factory environment. Picture courtesy of Ingersoll Rand.
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There is another type of time and attendance fraud/inefficiency that is
quite prevalent, called lollygagging (when workers get distracted and take a
long time to get from the time and attendance station to the location of their
work). For example, in a department store, time and attendance stations
may be attended and the workers may need to go to a manager’s office to
clock-in. They then may take half an hour to get to their point-of-sale (POS)
station, which may be on a different floor or a different area of a departmental
store, without the knowledge of the manager that so much time was wasted.
The reason why many traditional time and attendance systems are operated
in an attended mode is to reduce buddy-punching. However, this increases
lollygagging. By integrating biometrics-based time and attendance into the
point-of-sale terminal itself, the time and attendance can be made unattended
and lollygagging can be significantly reduced together with buddy-punching.

Biometrically-enabled time and attendance systems are used today in
school and colleges for students and in factories (see Figure 23.5), retail stores,
offices, hospitals, health clubs, and many other places of work for employees.
They are especially useful in places and industries where workers are paid on
an hourly basis, work in shifts, and the employee turn-over rate is high.

A biometric system may be used either exclusively for time and attendance
purposes or could provide time and attendance function in the background
while being actively used for some other purpose such as logical access to work
computer/network, physical access into a factory, or employee authentication
at the POS terminal.

An interesting example of a biometric time and attendance system is in the
area of distance learning. In traditional class-room based learning, an instruc-
tor is present during learning, and especially during testing. In a departure
from this, in distance learning, the learning occurs in the absence of an in-
structor in any location such as home or office. The students can take tests
remotely often over the Internet in the absence of an instructor/proctor. Since
passwords and tokens can be shared, it would be impossible to detect if a stu-
dent has enlisted a proxy for taking the test. A biometric system can solve
this problem. For example, a face-based biometric system could use a video
camera mounted on the top of the student’s computer screen and continually
verify the student every few minutes or even on every frame of the video. If
high-stake tests (and certifications) are conducted over the Internet (for ex-
ample, for airplane pilots) it is imperative that the student is authenticated
by strong means.

23.6 Commercial Function: Negative Recognition

The above three functions of biometrics: logical access control, physical ac-
cess control, and time and attendance, are primarily positive recognition func-
tions. In such positive recognition functions, biometric systems provide better
balance of convenience and security over traditional authentication methods
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such as passwords and tokens. There is no alternative technology that can
provide negative recognition function. A biometric system used for negative
recognition function must necessarily work in the identification (that is, 1-to-
many matching) mode. Negative recognition biometric systems have been used
extensively in government applications such as criminal identification, back-
ground checks, welfare disbursement, border control, etc. with tremendous
success. Such negative recognition biometric systems are increasingly being
deployed in many employee-facing as well as and customer-facing commercial
applications.

In order to reduce fraud and increase security, enterprises like to avoid do-
ing business with known cheats, criminals, and terrorists. If enterprises could
prepare a “blacklist” or a “watchlist” of such undesirable individuals (for ex-
ample, card counters in casinos, shoplifters in stores, criminals/terrorists at
sports events, etc.), they could use a biometric system to achieve their objec-
tive. However, they must do so without inconveniencing their legitimate cus-
tomers. Therefore, a non-intrusive biometric system is desirable. Since many
businesses such as casinos and retail stores already have cameras mounted
in the gaming and shopping areas, they have been drawn by face recogni-
tion technology to achieve non-intrusive surveillance and negative recogni-
tion. Businesses may share their watchlist databases with each other to bar
the undesirable individuals from entering each other’s casinos or stores. The
biometric system may be fully automated or may raise a flag and inform a
security personnel when it finds a match.

Negative recognition biometric systems are now being used by financial
institutions to deny access to new accounts or lines of credit to recidivists
listed in their blacklist. Further, the biometric system may be used before a
new account or credit line is approved to find out if the user already has an
account under a different name/identity. In such an application, the biometric
database size could grow over time and become quite large. For example, a
bank may have millions of customers. Matching a new enrollment against such
a large database puts a heavy strain on recognition accuracy and throughput
of the biometric system. High-end servers or specialized hardware may be
used to improve throughput. To improve the recognition accuracy, there is a
trend to use multi-biometric systems in such large scale applications. A multi-
biometric system may combine, for example, multiple fingers of a person or
multiple biometrics such as fingerprint and iris. Multi-biometric systems may
also improve the throughput. In some of these applications, the biometric
system can be used in an off-line batch mode, for example, in processing a
loan application.

So far we have covered four primary functions of biometric systems. Next,
we will cover three vertical commercial sectors: healthcare, financial, and re-
tail. We will cover a few other functions of biometric systems such as financial
transaction authentication in the context of these vertical commercial sectors.
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23.7 Commercial Sector: Healthcare

Compliance with the security requirements of the Health Insurance Portability
and Accountability Act (HIPAA) of 1996 accelerated the adoption of biomet-
ric systems in the U.S. healthcare industry. This regulation does not specify
the use of biometrics explicitly, but it states that access to any healthcare
data must be restricted through strong user authentication. Such a require-
ment made access to healthcare information technology systems and patient
data more burdensome. The healthcare industry turned to the biometric sys-
tems to get a good balance of convenience, security, and compliance. The Joint
Commission on Accreditation of Healthcare Organizations (JCAHO) auditing
requirements also contributed to the adoption rate. Once the healthcare indus-
try was educated on the biometric technologies, it adopted biometric systems
for other applications as well. Today the healthcare industry uses biomet-
ric systems in many different applications to reduce fraud that is prevalent
in the industry and to provide convenience to medical professional without
compromising their need for quick and easy access to critical health data.

The majority of initial adoption in the healthcare industry was in the
employee-facing applications. Customer-facing applications have started get-
ting some traction recently. Some examples of business objectives in the
healthcare industry that are being successfully met with biometrics deploy-
ments are given below.

Restrict logical access to medical information systems.

Medical records are private and government regulations such as HIPAA re-
quire that access to them is controlled. No one other than the authorized
doctors, nurses, administrative personal in hospitals and testing laboratories,
and the patient herself, may have access to them. Further, an auditable record
of access instances must be maintained. Doctors and nurses may not use com-
puters very often and therefore are likely to forget their passwords frequently.
With the use of a biometric logical access control system, there is no need
to remember the passwords and the medical records are readily available to
them with a quick and easy biometric authentication. Such biometric systems
often record the access instances transparently in the background and provide
efficient government regulation compliance to the enterprise.

Improve hospital efficiency and compliance.

When a doctor orders a drug for a hospitalized patient, the drug is typically
sent over from a centralized hospital pharmacy. To improve the efficiency of
drug dispensing, hospitals are now using smart networked medicine cabinets
can work like an ATM. These cabinets decentralize drug dispensing in hos-
pitals to nursing floors. Medicines are more easily accessible on each floor or
area of a hospital instead of being sent every time from the central pharmacy.
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These medicine cabinets often use biometric systems to restrict access to sen-
sitive drugs such as narcotics, reduce opportunities for medication errors, and
provide government regulatory compliance. Scrubs worth thousands of U.S.
dollars are lost every year creating unnecessary expense for the hospitals. A
biometrically-enabled scrub dispensing and return unit limits scrub access to
only authorized people by providing a secure station for scrub management
and thus improves hospital operational efficiency as well as cost of scrub man-
agement (see Figure 23.6).

Fig. 23.6. A biometrically-enabled scrub management station manufactured by
Cardinal Health.

Improve pharmacy efficiency and compliance.

In U.S. pharmacies, a pharmacist needs to personally sign out each bottle
of prescription drug dispensed. There may be many pharmacist in a single
pharmacy and each pharmacist needs to record each dispensed prescription
in a computer that is shared with other pharmacists. A pharmacist needs to
first logout the previous pharmacist from the system and then login to her
own account. Given that each pharmacist may need to sign out hundred of
bottles each day and maintain records and audit trails, entering long and
frequently changing passwords that are compliant with high security poli-
cies/requirements of government privacy regulations can be very tedious and
slow. Replacing the authentication mechanism with biometric authentication
replaces the tedious authentication method with the ease of a simple biomet-
ric authentication, raises the bar of security, provides compliance with regula-
tions, provides audit trails, and promotes prescription accuracy and customer
privacy.
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Reduce medical benefits fraud.

Hospitals and insurance agencies are facing growing medical benefits fraud,
especially in developing countries. Fraud occurs when a single person pur-
chases a health insurance policy that is then used by many people. Usually
the proof of health coverage is provided by a benefits card. The card often
does not have even a photograph of the insured person printed on it. Such
cards can be easily shared with family members and friends to defraud the
hospitals and insurance agencies. Hospitals are successfully reducing this type
of fraud by implementing a biometric solution. When a patient presents her
card to avail a medical benefit, the system retrieves the patient record from
the hospital’s database. If the patient does not have a record (that is, this
is a new patient), the patient is required to enroll in the hospital’s biometric
system as the rightful owner of the card. At subsequent visits, the patient
verifies at the hospital that she is the person authorized to use that benefits
card. A problem still remains that the same card may be used by different
people at different hospitals. However, this can be solved if insurance agencies
and hospitals cooperate and combine their biometrics enrollment and card
issuance operations.

Patient verification.

There have been a few cases in hospitals where a surgery was performed on
a wrong patient. Such cases, even though very few, are obviously traumatic
to the patient and very embarrassing for the hospital. Biometrics can come
in handy for solving this problem. A patient can be quickly verified using
her biometric just before a procedure is performed to assure the nurses and
the doctors that they are performing the correct procedure on the correct
patient. Biometric systems can be used to correctly match the patient with
the prescribed procedure even when the patient may not be in a condition to
answer questions.

23.8 Commercial Sector: Financial

In the U.S., Financial Services Modernization Act of 1999, also known as
Gramm-Leach-Bliley Act of 1999 mandates high standards of safeguarding
financial transactions, data, and assets. The U.S. Sarbanes-Oxley (SOX) Act
of 2002 requires higher security standards for data that is financial or confi-
dential. According to this act, any public company may be liable if it has not
taken adequate steps to protect financial records and data. The government
considers financial records to be confidential and private. It is imperative that
they are secure and access is allowed only to authorized users. Many existing
password and security policies would not be considered sufficient under SOX.
Compliance with these two acts is contributing to an increase in the rate of
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adoption of biometrics in the financial sector applications. In this respect the
financial industry is somewhat similar to the healthcare industry - adoption of
biometric systems in both these industries is being accelerated by government
regulations.

Financial institutions are using biometric systems for logical access con-
trol as well as physical access control both in employee-facing and customer-
facing applications. They are using biometrics systems for employee time and
attendance as well as background checks for new hires. Biometric systems
are beginning to be used by financial institutions in customer-facing negative
recognition applications to reduce fraud. Some of the interesting and emerging
applications are described below.

Improve financial service efficiency.

Banks and credit unions are increasingly becoming automated. Employees
need to constantly use a number of different computer and database systems
to provide service to customers for various banking functions. When a financial
service is being provided at a teller or over the phone, the bank employee must
access many databases and accounts, all of which could have different complex
passwords that are required to change frequently by the bank’s information
technology security policy. In order to switch databases, an employee must
logout of one system and login to the next one. Customers must wait at the
teller or at the phone as employees recall and enter the correct username
and password for each system. It is difficult for a bank employee to provide
quick, personalized, and friendly service when burdened with this cumbersome
authentication process. In fact, a forgotten password could severely impact a
service call. If the employees use a biometric-based single sign-on solution,
they can quickly, easily, and safely access information from several different
databases in a fraction of the time previously required. If audit trails are
required for regulation compliance, the biometric system can provide a secure
way of doing so in the background. Thus, the use of biometric systems delivers
not only convenience to the bank employees but also a pleasant experience to
their customers during financial services.

Reduce new-account fraud.

A significant amount of new-account fraud is committed by repeat offenders
– people who have defrauded the bank before. Financial institutions that
have been using biometric systems for other functions have started to use
the system to reduce this type of fraud. When a bank determines that a
certain account holder has committed fraud, they put the biometric enrollment
template associated with the account from customer database into a “blacklist
database” (or a “watchlist database”). When a person goes to a bank branch
to open a new account, the teller requires the customer to provide a sample
of her biometric, which is then matched against the blacklist database. If the
biometric system finds a match, the customer’s new-account application is



23 Biometrics in the Commercial Sector 501

Fig. 23.7. A customer authenticating her account using a fingerprint reader at a
Banco Azteca bank teller.

denied. If a match is not found, a new account is opened and the customer’s
biometric enrollment is put into the customer database. Depending on the
policies adopted by the bank, the bank may make other similar databases.
For example, a bank may have a policy that it does not extend credit to
its own employees. In this case, a similar biometric identification may be
performed against an “employee database” and new account application may
be denied if a match is found against this database. Such applications often
require attended use since users may appoint a proxy or provide corrupted
biometric signal at remote unattended locations.

A blacklist database is useful in preventing repeat fraud once the first in-
stance of the fraud has been detected through some other means. Financial
institutions would benefit by going one step further and detect the first time
offenders. They can find some of these cases by detecting if a single person is
trying to open more than one account under different identities. In this case,
the bank can extend the concept of the blacklist database to their entire “cus-
tomer database” (all the people who already have an account at the bank).
A new account application is denied if the biometric sample of the account
opener results in a successful match against the customer database. A financial
institution may have millions of customers and an identification against mil-
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lions of identities presents challenges to the biometric system in terms of both
response time and matching accuracy. By designing a system where the pro-
cessing is done off-line (for example, a new application is approved after a few
hours or the next day) and more biometric information is used (for example,
several fingers of a person), the bank can achieve significant reduction in new
account fraud. Such financial applications are witnessing a rapid adoption of
biometrics in developing countries that do not have an identity infrastructure
(such as social security numbers and driver licenses in the U.S.) and the banks
must reply on biometrics in the absence of other reliable identity documents.

Reduce transaction fraud.

Most people in developed countries have accounts in several banks and pos-
sess several debit and credit cards. They often carry all their cards in a single
wallet or purse and often use the same PIN number for all their cards since
remembering many different PINs is hard. Else, people write down the PIN
on the card itself. Loss or theft of a single wallet or purse puts all of their
accounts at risk of fraud. Banks and credit unions have now begun to bio-
metrically authenticate the rightful owner of the card each time it is used
at an in-branch teller or an ATM. The bank enrolls the customer into the
biometric system at the time a new account is opened or a new debit/credit
card is issued. When the customer uses the debit/credit card, or performs an
in-branch cash withdrawal, or accesses a bank safe-deposit box, etc., the cus-
tomer verifies through the biometric system that she is the rightful owner of
the account number or the card, thus reducing transaction fraud. The biomet-
ric system eliminates the need to remember several PINs and thus improves
customer convenience. Such user-friendly service distinguishes a bank from
other financial institutions (see Figure 23.7).

A significant fraction of financial transactions are now being conducted
remotely either over the Internet or over the phone. Traditionally, customers
have been required to provide either a password or some “secret information”
(such as social security number, street address, and mother’s maiden name)
to verify their identity. Passwords are hard to remember, easy to guess, and
the secret information is not really very secret! While digital certificates can
authenticate the involved computers and public key infrastructure can ascer-
tain that the electronic messages have not been read or modified, only bio-
metrics can reliably authenticate the users in a remote financial transaction
conducted over the Internet. Adoption of fingerprint-based authentication for
transactions over the Internet and voice-based authentication for transactions
over the phone is resulting in reduced fraud and increased security for the
enterprises and increased convenience for the customers.
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23.9 Commercial Sector: Retail

In the retail industry, biometrics systems are primarily used at the point-of-
sale. The phrase point-of-sale (POS) describes a wide range of applications
where payment is exchanged for some good or service. POS could be a self-
service kiosk (such as a vending machine or an ATM) or attended (such as a
checkout lane in a store). POS typically have high volume of transaction and
thus experience very heavy shared usage of the deployed biometric readers.
Depending on the deployment, a POS terminal could be a resource constraint
computing device or a high-end computer, stand-alone or networked, wired or
wireless, mobile or stationary, and so forth. There is a large variety of POS ter-
minals that are used today in restaurants, night clubs, bars, delivery and quick
service restaurants, hotels, stadiums, retailers, casinos, tanning salons, fitness
and health clubs, and any number of other places where goods or services are
sold. Below we give some examples of employee-facing and customer-facing
POS applications benefiting from a deployment of the biometric systems.

Improve service efficiency.

POS terminals are often shared kiosks. For example, in a restaurant envi-
ronment, a few POS terminals are shared by many waiters. A waiter has to
logout the previous waiter and authenticate herself to the POS station in or-
der to record meal orders for a table. Waiters are often very busy at peak meal
times. Biometric systems provide a quick and easy method of authentication
and bring efficiency to the restaurant. The speed of authentication process
results in faster service and savings for the restaurant owners.

Reduce cash register fraud.

Employees sometimes steal from cash drawers of POS terminals. This results
in losses to the businesses. According to the University of Florida’s annual
National Retail Security Survey, 2004, retailers lost U.S. $31 billion or about
1.6% of annual sales, to employee theft, shoplifting, fraud, and error. The su-
permarket industry provides an even more compelling evidence of cash register
vulnerability. The National Supermarket Research Groups 2003/2004 Shrink
Survey reported that supermarket shrinkage was 2.32% of sales in 2002. Due
to this, retailers often require store manager’s approval for high risk POS
functions such as merchandise returns or discounts. The store managers have
traditionally used either PIN numbers or tokens to perform the overrides. Due
to the weaknesses of these methods described in earlier sections, significant
fraud continues to occur at the POS terminals. Use of biometric systems for
verifying employees and managers as well as keeping an audit trail of the
authentications is reducing the fraud at the POS terminals.

Businesses using a biometrically enabled POS system can use the same
biometric system (with additional solution software) to perform employee time
and attendance and thus further save money by reducing buddy-punching and
improving efficiency.
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Reduce lunch benefits fraud.

In the U.S., about 30 million eligible school children receive subsidized or free
lunch through federal government funded programs. An estimated 10-20% of
government funds go towards purchase of lunches by ineligible children, some
of whom are non-students who sneak into school dining halls at lunch times.
Eligible children receive a lunch card but children often forget their card or
they share it with their friends or the cards get stolen. Many schools are now
using biometric systems to successfully reduce this type of benefits fraud.

Reduce payment fraud.

A significant number of merchants accept credit and debit cards from their
customers for payment of the purchased goods and services. Credit and debit
cards are tokens that can be lost or stolen. These lost or stolen cards are
used by criminals to purchase merchandise against the owner’s account. At
the POS register, card holder’s identity is either not checked at all or checked
with just a cursory manual inspection of signature. Therefore, it is quite easy
for the criminals to commit payment fraud. While a victim cardholder may
be liable only for a small amount (for example $50 per U.S. Federal law), the
victim merchant is often held responsible for the full amount plus research
and investigation fees levied by the banks. Merchants loose not only their
merchandise and services but also have to pay the research and investigative
fees to the banks. Merchants anticipate a certain amount of credit card fraud
and set prices accordingly, passing the cost to their customers. To remain
competitive on pricing, merchants must reduce the credit card fraud to a
minimum. Financial institutions that issue the credit cards may not always
cooperate with the merchants since they do not bear the brunt of the fraud.
As a result, merchants are implementing biometric systems to reduce credit
card payment fraud. Merchants often issue their own credit and loyalty card
to customers and link them to the customer’s bank account or credit history.
During a transaction at the POS terminal, the rightful owner of the card is
authenticated using biometrics. Merchants not only lower their losses from
fraud but also have to pay less to banks in credit card transaction fees. Some
of these savings are eventually passed on to the customers in the form of lower
prices.

Merchants face similar losses from check fraud. A very large number of
“non-sufficient funds” checks (that is, the issuer of a check does not have
enough money in the account to honor payment of the check), valued at bil-
lions of U.S. dollars are written to merchants and retailers annually. Merchants
issue the merchandise to the customers with a hope that their check will clear.
Later when the check does not clear, the merchants are left with losses as they
cannot track down the offending customers. These costs translate to as much
as 5-12% in lost revenues for the merchant and are eventually passed on to
the customers as higher merchandise prices. Biometrics systems are now being
used by merchants to reduce check fraud.
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Fig. 23.8. A Point-Of-Sale terminal with integrated fingerprint reader. In this com-
mercial application, the customers do not need to carry a credit/loyalty card to make
payment for merchandise; they are authenticated by fingerprints against their ac-
count number entered through the keypad.

Improve customer convenience.

Biometric system at the POS terminals brings advantage of not only lower
prices but also convenience to the customers by not requiring them to carry a
card or remember a PIN. Instead of presenting a credit/debit card, a customer
can pay at the POS by entering her account number on a keypad to claim an
identity and providing a quick biometric sample to verify the claimed identify
(see Figure 23.8). The transaction is more secure and more convenient.

Most card-based systems can be replaced by biometric systems to provide
more security and convenience. For example, customers may need to present
a store loyalty card to receive discounts in stores, to purchase goods in stores
such the Costco and Sam’s club in the U.S., to rent videos, to receive health
clubs services, to checkout books from libraries (see Figure 23.9), to receive
frequent flier miles from airlines, and so on. Customers may use gift cards and
stored value cards instead of making payment by cash or credit card. They
may have to provide identity card for age verification when purchasing tobacco
or alcohol. It is very inconvenient for customers to manage so many different
cards and remember to take a certain card before visiting that store/library. If
the card(s) are lost, customers can loose many discounts. Merchants will need
to reissue new cards, which is expensive. Biometric systems make it easier and
faster to conduct POS transactions and reduce fraud at the same time.
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Fig. 23.9. Children using a biometric-enabled library management system from
Micro Librarian Systems to check out books from the library. The children do not
need to worry about lost or damaged library cards and cannot share them with
other borrowers. Picture courtesy of Micro Librarian Systems.

23.10 Summary

In this chapter we covered some of the most significant commercial applica-
tions of biometrics by classifying them under four major functions (logical ac-
cess control, physical access control, time and attendance, and negative recog-
nition) and three major sectors (healthcare, financial, and retail). There are so
many commercial applications of biometrics that it is not possible to list them
all exhaustively. Let us name just a few that are emerging in the commercial
sector to give you a flavor of the vastness of the landscape. Biometric devices
may be embedded on automobile doors and dashboards for keyless entry and
ignition. Guests at hotels may have the convenience of biometrically-enabled
keyless entry to their rooms after they enroll their biometric at the front desk
at the time of check-in. Residential apartment complexes may use biometrics
to control access to the main entrance, swimming pool, or gymnasium areas.
Biometrics may also be used for personalization. For example, an elevator may
be programmed to take residents to their floor in a condominium (see Figure
23.4). In an automobile, the driver seat position, mirrors, and climate control
may be set to the personal preference of the driver. Different fingers of a user
may serve as “hot keys” in a PC application.

While biometric systems may not be foolproof (no security systems are)
and may not solve all security problems, businesses today are adopting them
because they address the human component of security, produce measurable
cost savings over passwords and tokens, and result in a significant reduction
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in fraud. Plus they are extremely convenient to use. The dollar value of such
convenience may be difficult for businesses to quantify today but we think not
having to carry around a credit card in a nudist colony is just priceless!
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24.1 Role of Standards

This chapter is intended as an introduction to biometric standards, and as a
survey of the major efforts in the field. Published consensus standards in a
wide range of fields have existed for many years. Biometric standards, however,
have been developed only recently as biometric technologies have matured to
offer a reliable additional factor for personal authentication and, crucially,
as large-scale deployment involving multiple organizations and suppliers has
been rolled out.

In virtually all cases, standards are developed in response to a need for
interoperability. This creates a foundation for a marketplace of off-the-shelf
products, and is a necessary condition to achieve supplier independence, and
to avoid vendor lock-in. Interoperability allows modular integration of prod-
ucts without compromising architectural scope, and it facilitates the upgrade
process and thereby mitigates against obsolescence.

The business implications of these benefits are many. A good standard,
well implemented, may create entirely new markets (e.g. smartcards). On the
other hand, robust standards tend to lead to competition and reduced profit
margins. This process, commoditization, is an inhibitory factor for many tech-
nology companies that balance the promise of new or expanded marketplaces
against reduced barriers to entry for competitors. The decision is determined
by the amount of intellectual property that a standard allows suppliers to
hide behind its implementation. From the user perspective, standards may
serve to enhance competition and performance. For example, fingerprint minu-
tiae standards (primarily ISO/IEC 19794-2), which are currently being man-
dated in a number of large government and international programs (see sec.
24.7.4), specify containers for minutiae without requiring particular extraction
or matching algorithms.
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Biometric Data Format Standards
ISO/IEC 19794-x (e.g. -5 Face)

Signal or Image Data
e.g. ISO/IEC 15948:2004 (PNG)

Biometric Data Performance Testing
Standards ISO/IEC 19795-x

IEEE 754-1985 Binary
Floating-Point Arithmetic

Application Profiles
ISO/IEC 24709-x

ISO/IEC 846-1991 ASCII

Biometric Record Encapsulation
CBEFF ISO/IEC 19785-x

Interfaces
(BioAPI) 19784-x

Cross-jurisdictional + Societal Aspects
ISO/IEC TR 24714-x

Legislative or Treaty Constraints
e.g. International Civil Aviation Organization

Biometric

Technical

Standards

Biometric Data Conformance Testing
Standards ISO/IEC 29109-x

Procurement or Requirements Documents

Interface Conformance Testing
(BioAPI) 19784-x

Fig. 24.1. The layers of the standards “cake”.

Standards do not in and of themselves assure interoperability. Specifically,
when a standard is not fully prescriptive, or it allows for optional content,
then two implementations that are both exactly conformant to the standard
may still not interoperate. This situation may be averted by applying further
constraints on the application of the standard. This is done by means of “ap-
plication profile” standards which formally call out the needed base standards
and refine their optional content and interpretation.

Figure 24.1 depicts this layering of biometrics standards. The lowest levels
establish data representations, the higher levels are concerned with applica-
tions, the application programming interfaces (APIs) they call, and assurance
tests they may require. From top to bottom, a large scale program may rest
on legal aspects, policy questions, and on an application profile which in turn
calls out certain performance targets and interoperable data formats. The in-
tent of the figure is not to suggest a definitive and complete exposition of the
standards hierarchy, but instead to show the context for their development.
The figure is a variation on a famous onion model of standards [7, 9, 8], in
which the upper layers completely wrap the lower ones.
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24.2 Standards Development Organizations

Standards are developed by a multitude of standards development organi-
zations (SDOs) operating in a great variety of technical disciplines. SDO’s
exist within companies and governments, and underneath trade associations
and international body umbrellas. International standards promise to regulate
larger marketplaces and the development process involves more diverse and
thorough review and so consensus is more difficult to achieve. With stakes
often high, development processes are conducted according to definitive sets
of rules. These are intended to achieve consensus standards that are legally
defensible, implementable, and effective.

The following sub-sections give an overview of the relevant SDOs. These
precede a more complete overview of the major standards in sections 24.3
through 24.8. The reader is cautioned that standards under development, or
revision, are subject to change - the documents are owned by the respective
working groups and their content can shift as a result of technical difficulties,
the level of support, the need to gain consensus, or simple re-prioritization.
Also note that standards drafts are only sometimes available to the public -
the usual case is that interested parties must participate in the appropriate
committees. Further, published standards are usually copyrighted documents
and available only by purchase.

24.2.1 ISO JTC 1 SC 37

Although biometric standardization is underway within a number of SDOs,
by far the most work is conducted in the main international forum, SubCom-
mittee 37 (SC 37) Biometrics. This body was established in mid 2002 as the
newest of seventeen active subcommittees beneath Joint Technical Commit-
tee 1 (JTC 1) and its parent the International Organization for Standard-
ization (ISO)1. Although its focus is development of standards in support of
generic identity management and security applications, its establishment was
substantially motivated by a need for improved international border crossing
mechanisms.

Its portfolio is divided into six working groups (WGs) addressing respec-
tively, a biometric vocabulary (WG 1), data exchange infrastructure and ap-
plication programming interfaces (WG 2), data interchange formats (WG 3),
related applications profiles (WG 4), performance evaluation (WG 5), and
cross jurisdictional and societal aspects (WG 6). These areas are covered in
more detail in sections 24.3 through 24.8 respectively.

1 ISO maintains a catalog of its standards development efforts at
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
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24.2.2 M1

M1 is the United States Technical Advisory Group (TAG) to SC 37. It was
established in June 2002 and is responsible for formulating U.S. positions
in SC 37 where it holds the U.S. vote. Staff from its member organizations
represent these positions in SC 37. It is notable because it is a standards
development organization in its own right - its standards are published in
the US as INCITS2 standards, but may be purchased worldwide. M1’s work
has often been contributed to SC 37 as base documents for its development
activities.

24.2.3 Other SDOs

JTC 1/SC 27, IT Security Techniques, develops many standards for security
in the information technology arena, including three related to biometrics (see
sec. 24.9). SC 27 maintains formal liaisons with SC 37.

JTC 1/SC 17, Cards and Personal Identification, develops smartcard stan-
dards. On the biometric side, it has codified the International Civil Aviation
Organization (ICAO) passport specification as ISO/IEC 7501-1:2005 Machine
Readable Passports. More recently, it has started work on ISO/IEC NP 24787,
On-Card Fingerprint Matching.

ISO TC 68, Financial Services, develops Financial Services standards one
of which addresses biometrics (see sec. 24.9).

The U.S. National Institute of Standards and Technology (NIST) is also a
SDO. It develops biometric standards for law enforcement (see sec. 24.5.12).

24.3 Biometric Vocabulary

Vocabularies are frequently developed in standards bodies and SC 37 is devel-
oping ISO/IEC JTC1/SC 37 Standing Document 2, its Harmonized Biometric
Vocabulary. The document systematically describes biometric concepts, and
attempts to reconcile the variant terms of pre-existing biometric standards
against the preferred terms, thereby clarifying the use of terms in this field.

24.4 Interface Standardization

Table 24.1 gives the program of work of Working Group 2 of SC 37. The
group’s primary activity is to refine interface specifications that date back to
the late 1990s. The work items are detailed in the following subsections.

2 INCITS, which stands for International Committee for Information Technology
Standards, is the SDO arm of the Information Technology Industry Council based
in Washington DC.
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ISO/IEC Pub. Date Title
Project or Stage
19784-1 2006 BioAPI specification

Amend BioGUI
19784-2 2007 Biometric archive function provider interface
19784-3 NP BioAPI Lite
19784-4 NP Biometric sensor function provider interface
24708 WD BioAPI Interworking Protocol (BIP)
19785-1 2006 CBEFF Data element specification
19785-2 2006 CBEFF Procedures for the operation of the Biometric Registration Au-

thority
19785-3 FCD CBEFF Patron format specifications
24709-1 FDIS BioAPI Conformance Testing Methods and procedures
24709-2 FDIS BioAPI Conformance Test assertions for biometric service providers
24709-3 NP BioAPI Conformance Test assertions for BioAPI frameworks
24709-4 BioAPI Conformance Test assertions for biometric applications
24741 TR Technical Report for a Biometrics Tutorial
24722 TR Multi-modal and other multibiometric fusion

Table 24.1. Standardization within SC 37’s Working Group 2 - Application Pro-
gramming Interfaces.

24.4.1 ISO/IEC 19784 BioAPI

ISO/IEC 19784 is a multipart standard defining application programming in-
terfaces for biometric products. The first part, published in 2006, defines a
ISO/IEC 9899 C language API known as BioAPI. Its data structures and
function calls allow the components of a biometric system to be provided by
different vendors in support of a high-level and modality-independent authen-
tication model. At the top level, a BioAPI Framework supports calls by one or
more application components (provided by different vendors, and potentially
running concurrently). The BioAPI Framework provides this support by in-
voking (through a Service Provider Interface) one or more biometric service
provider (BSP) components (provided by different vendors, and potentially
running concurrently) which can be dynamically loaded and invoked.

At the lowest level BioAPI consists of “units” which may be pieces of hard-
ware or software and which perform biometric functions such as capture, sam-
ple comparison, or storage. These units may be integral to a BSP or supplied
as a separate BioAPI Function Provider (BFP) component. Interactions can
occur between BSPs via the BioAPI Framework. Between vendors these will
be mediated by standardized data records such as those defined by ISO/IEC
19794-x. An amendment to the standard defines a graphical user interface,
BioGUI. Two other parts, ISO/IEC 19784-2 and -4, define, respectively, the
archive and sensor function provider interfaces. The ISO/IEC 19784-3 stan-
dard will define a lightweight version known as BioAPI Lite.

An application may call BioAPI’s high level functions: BioAPI Enrol,
BioAPI Verify, and BioAPI Identify which embed the necessary capture,
template generation, feature extraction and comparison phases. Alternatively,
in order to support, for example, client-server deployments, an application
can more finely control when and where the core activities are conducted
by calling the primitive functions: BioAPI Capture, BioAPI CreateTemplate,
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BioAPI Process, BioAPI VerifyMatch, and BioAPI IdentifyMatch. Although
BioAPI does not explicitly support fusion, multimodal biometrics could be
handled if the various components are capable of generating and consuming
complex biometric information records. (e.g. bundled ISO 19794-5 face and
19794-6 iris samples).

24.4.2 ISO/IEC 24709 BioAPI Conformance Testing

This suite of standards is currently under development. The documents es-
tablish procedures for testing the conformance of ISO/IEC 19784-x BioAPI
implementations. Conformance standards generally define a list of testing as-
sertions that establish a very procedural means of determining the correctness
of the implementation to the underlying standard, in this case BioAPI.

24.4.3 ISO/IEC 19785 CBEFF

The Common Biometric Exchange Formats Framework (CBEFF) standard
establishes a means of defining standard structures for biometric information
records (BIRs). A BIR is depicted in Figure 24.2 - it has at least two parts:
a standard biometric header (SBH) and one or more biometric data blocks
(BDBs). It may also have a third part called the security block (SB). CBEFF
places no requirements on BDB content and encoding except that its length
shall be an integral number of octets. The ISO/IEC 19794 data interchange
standards (see sec. 24.5) define BDBs. CBEFF defines abstract data elements
and defined abstract values for the SBH. The elements are expected to be
of general utility - one example is the “creation date” of the biometric data.
CBEFF itself does not establish datatypes for these values. Instead it conceives
of Patron Formats, authored by Patrons (i.e. SDOs), that specify which fields
must be present, and what their datatypes are. The standard also allows
nested BIR structures to support, for example, multimodal encapsulation.

The standard has three parts: 19785-1 defines the data elements; 19785-2
gives procedures for the establishment and operation of a registration author-
ity (to maintain BDB identifiers), and 19785-3 which defines several patron
formats, including a Tag-Length-Value smartcard format.

24.4.4 ISO/IEC 24741 Biometrics Tutorial

This project is developing a technical report (i.e. a similarly drafted document
but without the normative requirements of a standard) that will cover the
properties of a biometric, the history of biometrics, the major modalities and
technologies, a component-level functional view of systems, descriptions of the
enrollment, verification and identification processes, and additional material
on standards, applications, testing and privacy.
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Fig. 24.2. CBEFF encapsulation of biometric data blocks.

24.4.5 ISO/IEC 24742 Multimodal and Other Biometric Fusion

This technical report articulates the concepts peculiar to fusion in biomet-
rics. It describes the various levels of fusion (sample, feature, score, rank and
decision), and includes material on correlation, score-normalization, character-
ization data (see section 24.5.11). It also discusses the future standardization
of various data elements or functions in support of fusion, and notes that
score-level fusion is likely to be the most immediate area of activity.

24.5 Data Format Standards

Standardization of data structures for interoperable use of biometric data
between organizations is in many respects the largest and most important
part of biometric standardization efforts. Activity is centered in two arenas:
the ANSI-NIST process for law enforcement data (section 24.5.12), and SC
37 for all other applications. The goal is the same in both cases: seamless,
correct and effective exchange of data between multiple vendors’ products.

SC 37’s Working Group 3 develops biometric data interchange format stan-
dards. It is the largest WG in SC 37 and is developing the standards with
the highest profile adoption in the marketplace. For example, the ISO/IEC
19794-5 face image data standard has been specified by the International Civil
Aviation Organization (ICAO) as the mandatory biometric in the electronic
Passports now being issued in many developed nations.

Thus far the group has developed, or is developing, the thirteen standards
of ISO/IEC 19794 shown in Table 24.2. Although all parts are developed inde-
pendently, with different editors and interested experts, they all normatively
cite the Part 1 Framework document.

In addition, the records defined by the standards all have (more or less)
a similar design and structure. As depicted in Figure 24.2, each BDB holds
one or more biometric samples of the same modality captured from a sin-
gle individual. Each sample may be accompanied by “extended data” which
would most often be proprietary feature information. The figure shows the
record embedded within a ISO/IEC 19785-1 Common Biometric Exchange
Formats Framework structure which may aid interoperability in applications
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ISO/IEC Pub. Date Title of Standard or Amendment
Project or Stage
19794-1 2007 Framework
19794-2 2005 Finger minutiae data
19794-3 2006 Finger pattern spectral data
19794-4 2005 Finger image data
19794-5 2005 Face image data

Amend 1 Conditions for Taking Photographs for Face Image Data
Amend 2 3 Dimensional Face Image Data Interchange Format

19794-6 2005 Iris image data
19794-7 2007 Signature/sign time series data
19794-8 2006 Finger pattern skeletal data
19794-9 2007 Vascular image data
19794-10 2007 Hand geometry silhouette data
19794-11 WD Signature/sign processed dynamic data
19794-12 WD Face identity data
19794-13 WD Speaker recognition data

Table 24.2. Standardization within SC 37 Working Group 3.

involving multiple biometrics. The standards are intended to be application
independent so they do not usually mandate, for example, minimum image
resolutions. Some, however, contain informative “best-practice” annexes re-
flecting the common goal of high performance and interoperability. In addi-
tion, the common approach is to define a format without specifying how it is to
be instantiated. For example, medial axis thinning algorithms for fingerprint
minutiae extraction are not given in ISO/IEC 19795-2.

24.5.1 ISO/IEC 19794-1 Framework

ISO/IEC 19794-1 serves as a framework for the subsequent parts of the 19794
suite of biometric data interchange format standards. It establishes the pur-
pose and role of those standards, it defines basic terms such as biometric
type and biometric template, and addresses the common aspects associated
with sample acquisition, processing and use. In so doing, it advances a generic
architectural model of a biometric application. It enumerates conditions for
proposed future data format standards: that kind of data should already be in
use; the standard should enhance interoperability; reduce record size; offer low
recognition error rates and define a format that is not already standardized
yet is suitable for standardization. The standard also regulates format owner
and type information so that 19794-x records can be embedded in CBEFF
structures.

24.5.2 ISO/IEC 19794-2 Finger Minutiae Data

This standard defines a BDB container for minutiae points. As shown in Figure
24.3, three encodings are permitted, a default “record” format and two “card”
formats for smartcards (e.g. ISO/IEC 7816-11) and other credentials. The
minutiae type field has three possible values: unknown, ridge ending, and
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Name Fields and size in bits Total in bytes
Record type x-coord reserved y-coord angle quality 6

2 14 2 14 8 8
Card type x-coord reserved y-coord angle 5
Normal 2 14 2 14 8
Card x-coord y-coord type angle 3
Compact 8 8 2 6

Table 24.3. Minutia encoding alternatives in ISO/IEC 19794-2.

ridge bifurcation. The standard also defines structures for recording ridge
count information. The standard does not specify image processing algorithms
- for example while it defines a ridge skeleton, it does not specify, nor require,
morphological operators for their preparation. For the “card” formats the
standard allows a ridge ending to be encoded as the “center point of the
ending ridge” or as “the point of forking of the medial skeleton of the valley
area immediately in front of the ridge ending”. Although this distinction is
recorded within an optional enclosing ISO/IEC 19785-1 CBEFF header, it
will lead to a displacement of the reported minutiae point and this is likely to
degrade interoperable matching accuracy.

The performance available from templates conforming to the simpler U.S.
variant of this standard, INCITS 378, has been compared with existing fully
proprietary technologies in the MINEX evaluation [2]. That test also con-
ducted interoperability trials, comparing one-to-one verification performance
available when single vs. multiple vendors execute the template extraction and
matching steps. Both the international and U.S. standards are being revised
to include more extensive guidance on which minutiae may be included in the
record, and on how angles should be computed.

24.5.3 ISO/IEC 19794-3 Finger Pattern Spectral Data

This standard encodes fingerprint ridge data by applying a spectral decompo-
sition to each cell of an array. The cells may overlap and be rectangular. Three
decomposition methods are permitted: co-sinusoidal triplets, discrete Fourier
transform (DFT), and Gabor filters. The co-sinusoidal format encodes, in each
cell, the propagation angle, ridge spacing, and a phase offset. The DFT rep-
resentation allows the storage of the magnitude and phase values at all, or
an arbitrary set of, the frequencies obtained from the 2D DFT of the pos-
sibly windowed cell data. The Gabor representation records in the header a
single global wavelet width, and an enumerated set of frequencies and orien-
tations. Then, in each cell, the record allows the highest magnitude value to
be reported, or the magnitude, and optionally the phase, values of the Gabor
wavelet at those frequencies and orientations. The standard does not support
hierarchical multiscale decomposition of the image. The issue of whether the
three encodings are interoperable (i.e. whether DFT-encoded templates can
be compared with Gabor-encoded templates, for example) is an open ques-
tion. Such interoperability would be mediated by an image reconstruction.
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The use of this standard, therefore, probably rests on the existence of a ro-
bust governing application profile which would mandate, for example, the use
of co-sinusoidal triplets. Indeed a U.S. variant, INCITS 377, encodes only the
co-sinusoidal format.

24.5.4 ISO/IEC 19794-4 Finger Image Data

This standard defines a container for 2D raster images of greyscale fingers and
palms. The record includes fields to indicate the finger position (index, ring
etc), impression type (rolled, plain, latent, swipe etc), scanning and stored
resolution, and certification status of the acquisition device. Precision may
be 1-16 bits, and images may be either uncompressed (bit packed or byte
aligned), or encoded using JPEG [4], JPEG 2000 [5], PNG [6], or WSQ [1].
The standard encodes essentially the same content as its law enforcement
parent, the ANSI/NIST standard [3], and it directly inherits content such as
enumerated values for impression type and finger position from it.

24.5.5 ISO/IEC 19794-5 Face Image Data

This standard defines a data structure for the storage of face images. The
record includes fields for expression, eye-color, hair color, and gender. It op-
tionally allows the inclusion of ISO/IEC 14496-2 MPEG 4 feature points. The
standard includes various quality related requirements. For example the pose
angle is required to be ±5 deg, and there must be at least 7 bits of greylevel
information on the face. Conformance to these requirements will elevate face
recognition performance. Testing of conformance to such specifications re-
quires application of non-trivial image analyses.

The standard establishes requirements for each image in an object oriented
hierarchy of face images. A “basic” image, with few normative requirements on
its semantic content is accompanied by an abstract frontal image from which
two more regulated image types are derived. As shown in Figure 24.3, these
differ geometrically: the Token image requires the eyes to be at predefined
coordinates specified parametrically on the width of the image, while the Full
Frontal image relaxes this3. The Token image will require the use of an eye-
detection algorithm (or trained operator) to drive an affine transformation of
the raw data. The intention is that face recognition products can be expedited
if they are handed a Token image. However, successful interoperability may
depend on the uniformity of eye-placement algorithms.

The standard is currently being amended to include fields for storage of
co-temporal uncompressed 3D data, and to establish best practices for taking
photographs in photo studios and automated photo booths.
3 Note, however, the standard requires Full Frontal images to have a width of at

least 180 pixels, implying about 90 pixels between the eyes.
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Fig. 24.3. Geometries of the ISO/IEC 19794-5 Frontal Face Images

24.5.6 ISO/IEC 19794-6 Iris Image Data

This standard defines a data structure for the storage of either a conventional
rectilinear 2D raster image of an eye, or a polar coordinate representation of
the iris data4. The polar format uses the region delimited by the inner iris-
pupil and outer iris-sclera boundaries that are assumed to be circular but not
necessarily concentric. The polar image, obtained by bilinear interpolation of
the rectilinear image data, is considerably smaller than its parent. The stan-
dard does not regulate the sensor nor the illumination - the resulting images
may be monochrome or color, but must have at least 8 bits per channel. A
best-practice annex suggests quality values based solely on the optical resolu-
tion of the scan, and regards irides of greater than 200 pixels diameter to be
of highest quality. This implies a scanner requirement of 16.7 lines pairs per
mm.

24.5.7 ISO/IEC 19794-7 Signature/Sign Time Series Data

This standard defines a container for recording data captured when a person
writes a signature or a personal sign on a digitizing tablet or with an advanced
pen system. The standard does not regulate the capture device other than
4 Some implementations are including more than just the iris itself in the polar

format; This is an example of how an otherwise well-written standard can be
re-interpreted yet remain conformant.



520 Patrick Grother

to require generation of pen location time series data (x, y, t). It optionally
allows recording of thirteen other variables including pressure exerted, velocity
and acceleration, and pen orientation. This comprehensive set is designed to
support generic applications, and the standard acknowledges that a profile is
needed to restrict these for a specific application.

24.5.8 ISO/IEC 19794-8 Finger Pattern Skeletal Data

This standard defines a container for the skeletal structure of a fingerprint’s
ridges and its minutiae points. The ridge skeletons are regarded as a sequence
of line elements, and encoded using arbitrary precision location and angle
information. The result is that the standard supports both minutiae and
spectrally-based matching algorithms, and further, it claims to support the
proliferation of low-cost commercial fingerprint sensors with limited cover-
age, dynamic range, or resolution. The standard also provides for recording
of sweat-pore locations.

24.5.9 ISO/IEC 19794-9 Vascular Image Data

This standard establishes a simple record format for conventional 2D raster
images of the front and back of fingers or hands. The record includes a field
for indicating the use of transparency or reflectance imaging. A bitfield is
provided to record whether the illuminant was visible, near IR, or midrange
IR. Mixed illumination is allowed.

24.5.10 ISO/IEC 19794-10 Hand Geometry Silhouette Data

This standard establishes a container for silhouette information extracted from
images of hands. The data is represented by a Freeman chain encoding of the
outline of the binary hand silhouette viewed from the top and from the side.
The result is a compact representation that supports perimeter image recon-
struction and thereby any number of feature extraction algorithms. The record
has fields for view direction, the subset of the fingers that are represented, the
(isotropic) imaging resolution, a measure of (symmetric) distortion, quality,
camera and hand position, chain code starting point coordinates, and boolean
indicators of 4 or 8 way encoding, and optical or linear scanning array sensor
class. This compact encoding supports reconstruction of the perimeter of the
silhouette and this affords interoperability at the image level.

24.5.11 FIF - Fusion Information Format

Within the U.S, M1 is developing a standard to support score-level fusion
[12]. The intent is to facilitate applications in which samples from one or
more modalities are compared using two or more matching algorithms and
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the respective similarity scores are fused. The fusion process itself is not reg-
ulated. Accordingly the standard defines a container for either the location
and scale parameters, or for the full cumulative distribution function, of the
genuine and/or impostor scores. Operationally, score-level fusion is attractive
because the clearly defined modularity of separately-supplied matching algo-
rithms maps well to a large-scale systems integration paradigm: each matching
algorithm supplier would contribute an appropriate record to an integrator or
a third party fusion specialist. This concept means that the standard does not
attempt to record joint score distributions. This limitation is minor if different
modalities can be assumed independent.

24.5.12 ANSI/NIST ITL 1-2007

Initiated in 1986 as a minutiae transmission format, this standard [3] is the
earliest [11], most widely deployed, and probably the most important bio-
metric standard. It establishes formats for the markup and transmission of
textual, minutiae, and image data between law enforcement agencies, both
within the United States and internationally. The standard was developed at
NIST by many collaborating parties in response to the Federal Bureau of In-
vestigation’s need to establish a consistent encoding for the data sent to it for
criminal searches. It’s maturity has led to its adoption by, among others, U.S.
Department of Homeland Security for its internal applications, most notably
those relating to border crossing, and for interoperability with the FBI.

The FBI formally leverages the ANSI/NIST standard in its Electronic
Biometric Transmission Standard (EBTS)5 which defines the interface be-
tween the FBI’s biometric matching facility (known as IAFIS) and other agen-
cies’ systems. The standard is needed when a local law enforcement agency,
equipped with its own sensors and workstations, collects and stores finger-
prints for forwarding to State, and then FBI, search facilities. This entails the
production (and storage) of a transaction consisting of mandatory Type 1 and
2 metadata records, optional Type 10 facial mugshots, and fourteen Type 4
fingerprint records (ten rolled fingers, two four-finger flat “slap” impressions,
and two flat thumbs).

The standard has been revised three times (ANSI mandates a five year
update cycle) and is more widely deployed than other, more recent, biometric
standards. In its latest version [3], the standard now defines the sixteen record
types shown in Table 24.4. Some material from recent ISO standardization
efforts on face and iris have been introduced.

The standard is unique among biometric data formats standards in that it
makes use of tag-delimited fields. A XML-based analogue of the sixteen typed
records is under development.

5 EBTS was for many years the Electronic Fingerprint Transmission Specification,
or EFTS. The change reflects a migration toward multimodal biometrics.
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Type Contents or Purpose
1 Transaction information
2 User-defined descriptive text
3 Low resolution grayscale fingerprint image
4 High resolution grayscale fingerprint image - Most common submission to FBI
5 Low resolution binary fingerprint image
6 High resolution binary fingerprint image
7 User-defined image
8 Signature image
9 Minutiae data
10 Facial, Scar, Mark and Tattoo image (identified by tags)
13 Variable-resolution latent image
14 Variable-resolution fingerprint image - This is an improved Type 4
15 Variable-resolution palmprint image
16 User-defined variable-resolution testing image
17 Iris rectilinear image - Essentially the ISO/IEC 19794-6 rectilinear format image must

be transmitted in the Type 99 record
99 CBEFF wrapped biometric data - Any other kind of biometric not already supported by

Types 1-17. ISO/IEC 19794-x could reside here.

Table 24.4. The defined Types of the ANSI-NIST ITL 1-2007 standard.

24.6 Performance Testing

24.6.1 ISO/IEC 19795-1 Principles and Framework

Published in 2006, this standard provides a wealth of material on biometric
testing and reporting. It is an evolution of a seminal biometric evaluation Best
Practices document [10]. It serves as a definitive guide to the development of
all “technical performance” evaluations of biometric systems and devices. The
aim is to estimate error and throughput rates, with the goal of understanding
and predicting the real-world performance of a biometric system. The stan-
dard addresses verification and identification, online and offline testing, crew
recruitment and use, and statistical aspects. It establishes and differentiates
core matching error rates from transactional rates and also defines failure-to-
enroll and failure-to-acquire rates.

24.6.2 ISO/IEC 19795-2 Technology and Scenario Evaluation

Published in 2007, this standard regulates two mostly distinct kinds of biomet-
ric tests - technology tests (with offline test corpora) of core algorithmic capa-
bility of components, and scenario tests (with a live population) of products
intended to be predictive of deployed operation. For scenario tests the stan-
dard defines the interaction of a person with a system in terms of placements,
attempts and transactions and guides data collection activities for impostors
and genuine users. The standard also establishes extensive requirements for
what must be reported in an evaluation report.

24.6.3 ISO/IEC 19795-3 Modality-specific Testing

This technical report is under development to cover modality-specific aspects
of biometric testing. It includes guidance on the unique aspects of composition
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of the test population, data collection, formulation of impostor transactions,
and reporting requirements. It gives detailed enumeration of the influential
factors for each modality (e.g. pose for face).

24.6.4 ISO/IEC 19795-4 Interoperability Performance Testing

This standard is under development to address interoperability evaluation of
modular biometric components. It was initiated after completion of data in-
terchange standards (most prominently the ISO/IEC 19794-2,3,8 fingerprint
templates and 19794-6 iris image standards) and the question arose of just
how interoperable conformant samples are. For example, if standard minutiae
templates enrolled using product A are authenticated against templates from
product B, using a matching algorithm C, is there an accuracy penalty with
respect to single-supplier execution of the same tasks. The standard man-
dates an offline matching phase due to the polynomial cost of cross-vendor
testing. The standard considers interoperability at all stages (acquisition, fea-
ture extraction, etc) in terms of recognition error rates. This departs from a
conformance-only approach in which interoperability is assumed to follow if
products can be certified in a standalone manner (by validating the optical
properties of a fingerprint sensor, for example).

24.6.5 ISO/IEC 19795-5 Performance of Biometric Access Control
Systems

This standard is under development to establish a definitive procedure for the
testing of biometric access control products. It mandates a specific crew size,
and regulates the minimum and maximum time periods for subject revisit.
It guides on measurement and reporting of habituation effects. The standard
is likely to include procedures to map receiver operating characteristic (Type
I vs. Type II error rates) performance statements to ordered achievement
indicators.

24.6.6 ISO/IEC 19795-6 Performance of Operational Systems

This standard is under development to address evaluation of fielded systems.
It is intended to give a snapshot estimate of performance. It will enumerate
aspects that are specific to live operations. For example, it allows a population
to have been enrolled before the test. One peculiar aspect is that the presence
of an impostor is usually not known operationally. To this end the standard
is likely to include guidance on the instrumentation of various components to
support interception of otherwise temporary data. Such activity could be of
value if offline impostor comparisons can be executed.
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24.7 Profiles

As indicated in Figure 24.1, application profiles are standards that tailor one
or more underlying standards for a specific activity or operation. Profiles
usually call out specific values for the optional content of standards, and for
parameter values. For example, an application profile for iris-based verification
of system administrators might specify that two ISO/IEC 19794-6 polar iris
images must accompany a 19794-5 token face image on an identity credential.
The following subsections give SC 37’s activity in this area, while the final
subsection describes a U.S. government application profile.

24.7.1 ISO/IEC 24713-1 Biometric System Reference Architecture

This standard enumerates the functional components of generic biometric sys-
tems, and identifies the nature of each. It also advances a biometric reference
architecture that embeds the SC 37 base standards and shows their role in
support of interoperability and data exchange.

24.7.2 ISO/IEC 24713-2 Physical Access Control for Employees at
Airports

This standard describes a token-based role for biometrics in airport environ-
ments. It defines the environment as: the relevant parties (employees, author-
ities etc.), the token they carry, the physical infrastructure, and the token
management and command systems. It defines enrollment, issuance, activa-
tion and usage processes. It includes profiles of Parts 2 to 8 of ISO/IEC 19794,
and of BioAPI, ISO/IEC 19784-1.

24.7.3 ISO/IEC 24713-3 Biometric Based Verification and
Identification of Seafarers

This standard is under development essentially as a codification of the bio-
metric requirements of the International Labour Organization’s Convention
No. 185 (2003) that establishes specifications for an identity document that
must be issued to seafarers from ratifying nations. This standard refers to
Parts 2, 5 and 7 of ISO/IEC 19794.

24.7.4 NIST SP 800-76 Personal Identity Verification

In August 2004, Homeland Security Presidential Directive 12 directed the
executive branch of the U.S. government to establish a highly secure creden-
tialing mechanism and universally interoperable identification token for its
employees and contractors. Under the legislative authority given to it by the
2002 Federal Information Security Management Act (FISMA), NIST authored
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Federal Information Processing Standard 201, Personal Identity Verification,
in January 2005. That standard mandated a smart-card credential contain-
ing fingerprint data from two fingers. The exact biometric specifications were
subsequently published in NIST Special Publication 800-76 [13] which, serv-
ing essentially as an application profile, requires two INCITS 378 (the U.S.
precursor to ISO/IEC 19794-2) fingerprint minutiae templates to be stored
on the card. Further, the standard requires authentication processes involv-
ing those templates to use products certified as being interoperable under
ISO/IEC 19795-4 testing procedures.

NIST SP 800-76 also rigidly specifies standardized face and fingerprint
records, and requires FBI certified scanners. All biometric data must be digi-
tally signed.

24.8 Societal and Cross-Jurisdictional Aspects

SC 37 Working Group 6 is developing two technical reports in the technical
policy arena. The first, ISO/IEC 24714-1, Guide to the Accessibility, Privacy
and Health and Safety Issues in the Deployment of Biometric Systems for
Commercial Application, guides the design of systems using biometric tech-
nologies and recording biometric information with regards to: societal norms
and legal requirements; privacy protection applicable to identifiable individ-
uals; an individuals access to and use of recorded information provided by
systems; and, health, safety and legal issues associated with capture of bio-
metric data.

ISO/IEC 24714-2, Practical Application to Specific Contexts, is likely to
list for many biometric modalities their individual jurisdictional accessibility,
health and safety, usability, acceptance, and societal, cultural and ethical is-
sues. Two examples: The possible need to re-enroll cataract surgery patients
in iris systems is listed as an accessibility issue; the capture of a face photo is
regarded as intrusive in some cultures.

24.9 Security Standards

24.9.1 ISO/IEC 19792 Security Evaluation of Biometrics

This standard is under development in SC 27. It considers active attacks and
is distinct from SC 37’s testing standards described in section 24.6 for which
active attacks are out of scope. The standard differentiates between biometric
components, systems, and applications and it quantifies security in terms of
error rates, including the error rate encountered given specific active impostor
attempts. It includes requirements on testing of vulnerability and on privacy
(i.e. protection of enrolled data).
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24.9.2 ISO/IEC 24761 Authentication Context for Biometrics

This standard is under development in SC 27 to enable organizations who
receive results of users’ biometric authentications over an open network to
ascertain whether the circumstances of the remote authentication satisfied
their requirements. It conceives of six “biometric processing units” (capture,
intermediate and final signal processing, storage, comparison and decision)
which may be tamper-proof. Each unit signs its standardized output data
records (known as an AcBio) with its own private key.

24.9.3 ISO/IEC 24745 Biometric Template Protection

This standard is under development in SC 27 to guide the protection of bio-
metric templates with respect to confidentiality, integrity and availability. It
also discusses various techniques for binding the template with other user data
and how the binding impacts confidentiality, integrity, availability and privacy
concerns. In that context, the standard may discuss biometric templates for
key generation.

24.9.4 ISO/IEC 19092-1 Security Framework

Published in 2006, this international standard was developed in ISO’s TC 68.
It establishes a security framework for biometric-based authentication of indi-
viduals in the financial services arena. It requires integrity protection (digital
signature, for example) for biometric data and authentication results when
these are transmitted between components. It also requires mutual authen-
tication of the source and destination in such transactions. This standard
originated as X9.84, X9 being the U.S. TAG to TC 68.
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25.1 Introduction

Biometric recognition systems are beginning to see broad deployment. The
general trend in system use includes an increase in number of subjects sensed
and an increase in number of samples acquired per subject and per mode. An-
ticipating the increase in deployment and driven by the desire for objective
performance comparisons, a number of evaluation efforts have been mounted
by governmental agencies, consortia, and by industrial groups [12, 13, 1]. Cred-
ible evaluations require statistical rigor, and hence require data of sufficient
quantity and quality to underpin the performance claims made. Toward this
end, a number of databases of biometric samples have been collected at re-
search organizations across the world in support of evaluation efforts and are
made available to researchers under a variety of conditions.

This chapter provides motivations for the assembly of biometric samples,
notes desirable features of such collections of data, summarizes the most
prominent databases available to research organizations and the terms of col-
lection and distribution, and comments on potential future directions as well
as challenges. Some of the issues raised here reflect the experiences of the
author’s research group in its multiple-year efforts to assemble data sets for
several US Government sponsored biometrics data collections [12, 13], but the
comments in this paper represent the conclusions and opinions of the author.

25.2 Motivation for biometric databases

Many biometric identification techniques are demonstrating excellent perfor-
mance according to developers and vendors. The data used to make such
claims is often proprietary, and the characteristics of the data set (e.g., demo-
graphic distributions, type of sensor used, etc.) may not be provided. Opaque
performance statements of this sort are difficult to assess comparatively, which
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is essential in a procurement context, assuming solutions from multiple ven-
dors are available. These issues motivate vendor tests, of which several have
been conducted since the advent of biometrics products.

The notable advances in the performance of commercial biometrics prod-
ucts has been driven by sustained research efforts in industry and academia.
Many of these research accomplishments have been documented in the archival
literature, which serves as the institutional memory (albeit incomplete and
noisy) of the advancing science of biometrics. The use of custom or propri-
etary data sets (typically small) was common in years past, since the number
of research groups was small, sensors were locally constructed and/or expen-
sive, and computing facilities available at research groups often did not allow
large-scale processing.

The emergence of a commercial market for biometrics, the maturation
of research activity, and the increase in computer power have jointly driven
efforts to perform comparable assessments of biometrics techniques. As the
results of such assessments have been publicized, subsequent research can em-
ploy the data used in the assessment (if available) in order to show where a
new technique stands relative to those tested in the prior assessment. Doc-
umented advances can, in the aggregate, motivate subsequent assessments.
One example of this is the sequence of US government sponsored evaluations:
FERET (1993 and 1997), FRVT (2000, 2002, 2006) and FRGC (2004). An-
other example is the sequence of fingerprint verification competitions (FVC
2000, 2002, 2004, 2006) organized by The University of Bologne and Michigan
State University.

Lest the impression be given that custom or proprietary databases have
no value, it must be noted that public data sets are not always appropriate
for some products or some new techniques arising from basic research. One
example would be a biometric systems product that tightly couples a matching
technique to a novel sensor design. In such cases, it may be impossible, or at
least inappropriate, to substitute the public data for the optimized data from
the local sensor. The data from a new sensor design might, after suitable
intellectual property protection is in place, be made available in response to
broad interest.

25.2.1 Desiderata for biometrics databases

Having established the value of biometrics databases both to foster advanced
research and to compare existing techniques, we next consider the properties
of such databases.

1. Relevance – While it is impossible to predict every use to which a database
may be put, the biometric applications area is dominated by three canon-
ical tasks: 1-to-1 matching (verification), 1-to-many matching (identifica-
tion), and 1-to-many matching plus rejection (watch list). Performance in
each domain is characterized differently.
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• In a verification scenario, accurate estimation of error rates militates
a sufficiently large number of true positives to support the applicable
statistical claims (e.g., confidence intervals on the false reject rate).

• In an identification scenario, correct recognition rate (perhaps aver-
aged across subjects) is typically the performance number of interest,
in which case the number of samples per subject should be sufficiently
large.

• In the watch list scenario, assuming a simple sequential classifier first
performs identification and then rejects candidate matches based on a
threshold, features of both scenarios apply. The number of true pos-
itives must be large enough to estimate the FRR on rejections from
the watch list, and the number of samples per subject must be large
enough to allow averaging to estimate the correct recognition rate for
watch list matches.

Without proposing a solution, we note the existence of a chicken-and-egg
problem in balancing sample size across subjects. It is sensible to assume
that some subjects are more valuable than others in defining the deci-
sion regions for correct identification. It is necessary, however, to perform
matching experiments to determine which subjects have this property.

2. Database size – The number of human subjects used in a collection and
the number of samples collected from each subject are database design pa-
rameters and may be strictly controlled, weakly controlled, or completely
uncontrolled. As noted earlier, a key requirement is that the number of
samples and subjects be large enough to support the analyses and perfor-
mance estimates made. Within this requirement, considerable flexibility
is available. For a fixed desired number of match scores, there is a tradeoff
between number of subjects and number of sessions of acquisition. Many
biometric databases consist of two subject-sessions with a fixed or vari-
able time-lapse between acquisitions. These are relatively easy to collect:
all that must be done is to make sure subjects return for a second acqui-
sition. Some databases (e.g., the FRGC, ICE and FRVT database com-
ponents collected at Notre Dame) contain multiple sessions per subject.
Logistically, these are more difficult to construct.
An error rate (performance) target may dictate the number of samples
in the database. For example, the FRGC program was designed to spur
research that would cause the false reject rate at a fixed false accept rate
of 0.1% to decrease from 20% (the rate achieved in FRVT 2002) to 2%.
One thousand false rejects would be expected from 50,000 match scores
at that error rate. A minimal number of subject sessions to permit that
number of errors to be measured would be roughly

√
50, 000, or about

225. This equates to 113 subjects at two sessions each, two subjects at
113 acquisition sessions each, or any intermediate values that yield or
exceed this product. This minimal number arises from a “rule of thumb”
for estimation of equal-error-rate ellipses. Realistically, several times this
number is necessary. Guyon et al. [8] and Dass et al. [4] document thorough
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studies of validation sample set size that take into account factors that
may be common in biometric systems (e.g., the correlation in matching
scores from the same user, from the same sensor, etc.).
All of the performance constraints and evaluation preferences argue in
favor of the largest logistically possible number of subject-sessions. Once
that number is established, practitioners should be careful not to make
empirical or predictive claims that are not supported by the amount of
data collected.

3. Demographic distribution – The variety in gender, ethnicity, age, and
other demographic properties of the subject set is sometimes controllable
and sometimes not easily controlled without post-acquisition editing. The
acquisition location will sometimes determine the diversity of the pool. At
Notre Dame, our acquisition subjects are composed of three broad “oc-
cupational” groups. One group contains undergraduate students who are
primarily engineering majors. This group is predominantly Caucasian and
all subjects are between 18 and 22 years of age. The second group contains
graduate students, and is dominated by students with Asian ethnicity be-
tween 22 and 30 years of age. The third group consists of faculty and staff
members and is balanced in gender, largely Caucasian in ethnicity, and
between 30 and 65 years of age. When grouped, these subjects are 57%
male/43% female, 68% Caucasian/22% Asian/10% other ethnicity, 65%
18-22 years old/18% 23-27 years old/17% 28 or more years old.
In situations where the demographic balance cannot be controlled, it is
in the database team’s interest to note any imbalance so that it may be
taken into account in analysis. If a specified demographic mix is needed,
the gathering organization must be prepared to over-acquire in order to
capture a correctly-sized sample from the most infrequent demographic
combination.

4. Sensor type(s), models, etc. – There are many biometric sensing modalities
(e.g., grayscale or color photometry (still or video), long-, medium-, or
short-wave infrared, structured light or stereo for 3D sensing, and other
specialized or esoteric types) and biometric sensing sites (face, ear, iris,
finger, hand, gait, etc.). Irrespective of whether the data is being collected
to enable a vendor comparison or to further a research program, the choice
of modes and sites is likely to be highly constrained. Generally, the context
of evaluations and research programs leaves open only the choice of sensor
model and capabilities. The natural choices in such a case are: (a) choose
a vendor-specified model, or (b) choose the “best” sensor available, where
sensors are ranked according to age, price, resolution, acquisition speed,
or other criteria.

5. Metadata recording – It is highly useful to record enough information
about each biometric sample to allow the database to be segmented by
subject, date of acquisition, mode, site, sensor, and demographic char-
acteristics. Rich metadata associated with samples is not burdensome to
collect if an appropriate enrollment and registration is developed. For
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large-scale acquisitions, metadata should be stored in a back-end database
and accessible through standard SQL queries. The baseline matching soft-
ware distributed with the biometric sample database in the FRGC and
ICE programs uses an XML dialect to store data descriptors as well as
experiments and software configurations.

6. Elapsed time – The dependency of face recognition performance on time
elapsed between enrollment and trial was noted in the FRVT 2002 re-
port [11]. The stability of biometrics over significant elapsed time (years)
has not been well studied, except in the domain of fingerprint recognition
and potentially iris recognition. In addition to the physical effects of ag-
ing (which would take years to manifest), there are physicological changes
such as weight gain or loss and illness that can potentially affect some bio-
metrics over shorter time scales. Acquisition plans with multiple sampling
opportunities spaced in time are the obvious approach to capturing short-
and long-range changes in the same batch of subjects. The circumstances
of acquisition can affect a group’s ability to capture multiple samples from
a subject set of sufficient size. For example, in a university setting where
many samples come from students, the largest lapse that can be realisti-
cally captured is a few years, due to graduation of students. Conversely,
biometric sampling of a stable employee pool over a period of many years
is feasible.

7. Data editing – Ideally, biometric samples captured should be distributed
without editing of any kind. In practice, editing of various sorts is com-
mon and may be essential. The most common type of post-acquisition
editing is likely the omission of samples that are judged to be useless
because of poor quality. Such samples can be omitted without qualm if
they arise from subject factors (e.g., an iris acquisition subject blinking
at the wrong time) or operator error (although the fact that such edits
were made and the reason they were made should be noted). Errors at-
tributable to subject processing (e.g., an incorrect subject identifier on
an image, or an incorrect site attribute such as labeling a left iris as a
right iris) should be repaired before the data is distributed, or noted and
repaired via a database update after the initial release. However, there is
value in preserving and distributing data of poorer quality from a sen-
sor that is being operated correctly, or instances of lower-quality samples
from a subject who also provided good quality samples. For example, the
ICE 2005 data corpus [13] contains iris 12 iris images per subject session,
organized as two three-image “shots” from the left iris and two shots from
the right iris. The sensor used for these acquisition is varying focus during
these shots and assigns quality metrics to all images, ultimately labeling
one image in each shot as “best” and preserving its quality metrics. A
conscious decision was made to distribute all twelve images, including the
eight not labeled as “best”, to preserve a spectrum of iris image quality
in the database made available to ICE project participants.
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While the preceding paragraph provides examples of situations where
complete biometric samples can be omitted from distribution based on
post-acquisition analysis, the editing of the contents of samples is more
problematic. Such edits must, without exception, be justified and docu-
mented precisely. Examples of this sort of editing are not common in the
biometrics community. One common form of sample content editing is
the distortion that accompanies lossy compression of image files. Lossy
compression is often motivated by the need to save storage space and/or
reduce download times and bandwidth requirements. Of course, if a sensor
produces image files that are stored in a lossy format (e.g., JPEG, a very
common format used by digital cameras), preserving this data is not an
instance of data editing. Subsequent additional compression would con-
stitute editing and would require documentation. The need to carefully
document data editing performed on samples in widely distributed data
sets cannot be overemphasized.

25.3 Collecting Biometric Samples

The assembly of a biometrics database of significant size entails requirements
and issues as well as logistical challenges. The following remarks are offered
to researchers and practitioners interested in collecting and distributing data
but curious about the housekeeping and other issues that may be unfamiliar.

25.3.1 Issues Surrounding the use of Human Subjects

Biometrics samples are collected from humans; hence, legal requirements for
the protection and safety of experimental subjects are applicable in most ju-
risdictions. In the United States, experiments involving human subjects are
governed by experimental protocols that are to be approved by a competent
local authority. Subjects are generally required to read and sign an informed-
consent form before data is collected and used, every time they are used as a
subject. US universities have a human subjects review committee that peri-
odically reviews and approves protocol documents. No data collections should
occur in the absence of such approvals. While the safety issues for biomet-
rics data collection are much less significant than in medical experiments (for
example), there are privacy concerns that are unique and may represent a
challenge to researchers intending to mount a collection effort. Researchers
should contact the chair of the relevant committee and discuss the research
project and its context prior to submission of a protocol for approval.

The consent form that must be completed by every subject used in acqui-
sition should be written to clearly describe the general purpose of the research
project. It must describe the data that will be taken, the qualifications for par-
ticipation, the reason it is being collected, and the benefits and risks of such
collection (including the privacy risks). It should also describe the disposition
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of the data after collection, the compensation (if any) for participation, and
the names of the investigators. Subjects should indicate consent for partici-
pation and for publication of sample data if such publication is contemplated
(by the researcher or by any party licensed to use the data). Subjects should
also be given the opportunity to revoke consent within a grace period and to
obtain their biometric sample data by request.

Demographic information on the subject is most easily gathered by self-
reporting. In our acquisitions at Notre Dame, the subject’s gender, age, height,
weight, presence or absence of contact lenses, and eye color are requested.
Subjects may decline to provide any or all of this information.

The issue of personal data protection with biometric sampling in Europe
is discussed comprehensively by Rejman-Greene [15].

25.3.2 Anonymizing Samples and Privacy Risks

Researchers involved in a collection effort should be sensitive to the privacy
issues associated with biometric sampling. It is impossible to remove identi-
fying information from biometric sample data. However, some modes (e.g.,
face images) are much more revealing than others (e.g., fingerprints or iris
images). Moreover, researchers collecting multibiometric data should consider
the benefits and risks of releasing linked samples collected from one subject
at multiple sites and/or in multiple modes. Multibiometric databases are not
numerous; yet, they are essential to proper empirical evaluation of multibio-
metric recognition systems. At a minimum, personal identifiers not inherent
in biometric samples must be removed from collected data prior to distribu-
tion. Under no circumstances should a subject name or government-issued ID
number of any sort be distributed along with the data. An unique “subject
ID” should be associated with each subject and all samples labeled with that
ID, perhaps as part of the name of the file containing the sample.

25.3.3 Pre-collection and Post-collection tasks

The acquisition of images may be the most important component of a collec-
tion effort, but if a large-scale effort (hundreds of subjects and/or repeat col-
lections) is envisioned, appropriate pre-acquisition and post-acquisition work
can facilitate smooth operation of the collection process. While most of these
tasks are rather mundane, they can affect the quality of the process and its
output.

1. Personnel – An appropriate number of workers must be present for bio-
metric acquisition sessions. We routinely use one trained sensor operator
per sensor in our acquisitions, and often have a spare person available
to handle the “check-in” process, where new subjects are enrolled in the
subject database and existing subjects are logged. In our experience, tal-
ented students (undergraduate or graduate) are easily trained to use even
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the most complicated sensors and so we rely exclusively on student work.
Each sensor must have a key operator who trains every other operator in
its proper use. In some cases, two key operators may be called for. The
key operator should back up data collected on “their” sensor at the end
of each acquisition session. It is also useful to designate a supervisor of
the acquisition process, who is responsible for scheduling operators, pub-
licizing the acquisition sessions to the human subjects and prospective
recruits, and ensuring that staffing is present. We have used postdoctoral
scholars, hourly staff, and students in this role.

2. Communications – When several hundred human subjects are to be used
in acquisitions, there must be an effective communications medium. We
use an email list to communicate with subjects. This list is constantly
updated as new subjects join and existing subjects become unavailable
due to graduation, loss of interest, and other reasons.

3. Compensation – When multiple repeat acquisitions are desired, an incen-
tive should be provided to bring subjects back for each new acquisition
session (curiosity generally wears off after the first session!). Some research
groups provide a small food and/or drink item to participants. The acqui-
sitions at Notre Dame carry a small cash award. We do not manage actual
cash due to the security risk, but simply supply the list of participants to
the University’s food services office, which adds the award amount to the
balance on their student account. In the past we have also used gift cer-
tificates to the campus bookstore, which was workable but more difficult
logistically.

4. Acquisition error checking and prevention – Any large-scale data collec-
tion effort will produce errors of various sorts. Some are easily detected.
For example, we have had data lost due to incorrect camera settings, lack
of backup, lost consent forms, and the like. In other cases, errors are more
difficult to detect, such as out-of-order acquisitions. When several subjects
are being processed, they generally proceed pipeline-fashion from sensor
to sensor. If they arrive at a sensor in a different order than when they
checked in, the data sequencing may be incorrect (a package of samples
ostensibly collected from one subject may in fact contain samples from
two or more subjects). Occasionally, we have had subjects leave acquisi-
tion before all samples have been collected, or skip a sensor entirely. These
problems are easily detected for face images, but considerably more dif-
ficult for non-face images and nonvisual modes. On occasion, sequencing
errors are detected by running matching experiments and looking foren-
sically at the errors. Untangling this sort of error strongly motivates the
use of an acquisition log (who arrived when?), as well as collection of a to-
ken from the subjects. We have experimented with different token-passing
strategies. Sometimes we have subjects carry their enrollment form with
them, and the operator records their daily ID from the form. More re-
cently, we have experimented with using a card reader at every acquisi-
tion station. Students are required to swipe their student ID card through
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the reader to begin acquisition, and swipe again at every station. This
provides per-station sequencing.

5. Ground-truthing acquired data – In some cases, it is useful to have a
human operator mark features on each collected image. We marked every
face image acquired between 2002 and Spring 2005 with the locations of
the subjects’ eyes. When several hundred images are collected per week,
this is a nontrivial task, requiring hours of effort from lab personnel as
well as custom software to facilitate the marking.

25.3.4 Distribution

If a research group plans to distribute biometric samples to others, some pol-
icy and operational decisions are required. A key question is to whom shall
data be provided?. Generally, databases of biometric samples are distributed
under nontrivial restrictions and license agreements. At Notre Dame, we have
developed a license agreement that every organization must execute (by sig-
nature of an authorized party such as a legal officer) prior to the delivery
of download instructions. This license motivates the reason for the database,
states the qualifications for recipients, forbids redistribution, claims a collec-
tion copyright on the data, forbids modification and commercial use (beyond
use in product development) of the data, imposes a citation requirement on
publications using the data, and requires indemnification by the licensee for
any claims or litigation arising from improper use of the data by the licensee.

The other key question is how shall the data be delivered? This question
is of some importance since biometrics databases tend to be very large (our
databases range from gigabytes to terabytes in size). During the first few
years of our collection activity, we required licensees to ship us a hard drive
upon which we placed the data and shipped it back to the licensee. Since 2005,
however, we have delivered all of our data over the Internet using rsync, a bulk
data transfer protocol with security and restart features (so that data transfers
interrupted by network problems can be restarted where they stopped).

25.4 Extant Unimodal, single-site databases

This section describes some available unimodal databases for biometrics re-
search and evaluation. The list of databases here is not intended to be ex-
haustive, but instead is designed to note those databases that have been used
in significant numbers of papers since their introduction. For each database,
a URL containing information about the database is listed along with some
of its key descriptors including mode, size of image, number of images, and
number of subjects.

Some of the databases listed here are components of multimodal databases
noted later in this chapter.
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25.4.1 Face Image Databases

MIT face database

(URL: ftp://whitechapel.media.mit.edu/pub/images)1

• Size: 432 images; 16 subjects, 27 images per subject.
• Notes: variety of lighting conditions and head poses. This database was

one of the first released and is not large enough to support strong claims
about face recognition system performance. Its use is not recommended.

Olivetti/AT&T face database

(http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html)

• Size: 400 images; 40 subjects, 10 images per subject.
• Notes: various lighting and expression combinations, with and without glasses.

This database was one of the first released and is not large enough to support
strong claims about face recognition system performance. Its use is not recom-
mended.

FERET and Color FERET

(URL: http://www.itl.nist.gov/iad/humanid/feret/)

• Size: 14,051 images; 1204 subjects, variable number of images per subject.
• Notes: varying lighting, face pose, facial expressions. Pose and illumination

prompted. License agreement required.

PIE

(URL: http://www.ri.cmu.edu/projects/project 418 text.html)

• Size: 41,368 images; 68 subjects, variable number of images per subject.
• Notes: varying and tightly controlled lighting, head pose, and facial expression.

Includes descriptive metadata.

FRGC2.0

(URL: http://face.nist.gov/FRGC)

• Size: Training partition contains 12,776 images; 275 subjects, variable number
of sessions per subject, 6 images per session.

• Size: Testing partition contains 24,042 images; 466 subjects, variable number of
sessions per subject, 6 images per session.

1 Link was dead as of February 3, 2007.
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• Notes: varying lighting and facial expression. Accompanied by the FRGC soft-
ware infrastructure (Biometric Experimentation Environment). Additional color
images were acquired from a 3D scanner but are not counted as 2D face images
here. Subject ID encoded in file names; consistent with Notre Dame biometrics
database file names.

Figure 25.1 shows a pair of images from the FRGC 2.0 database. Part (a) shows
an image captured under ambient light in a hallway, and (b) contains a controlled-
illumination image.

Fig. 25.1. FRGC 2.0 data samples: (a) Image 02463d254 from the FRGC 2.0 image
database, depicting a human subject photographed under uncontrolled illumination.
(b): Image 02463d256 from the FRGC 2.0 image database, containing a human
subject photographed under controlled illumination.

Notre Dame face data

(URL: http://www.nd.edu/%7Ecvrl/UNDBiometricsDatabase.html)

• Size: two databases of face images excluding 3D images.
• Size: Collection B contains 33,247 2D color images; 487 subjects, variable number

of images per subject.
• Size: Collection C contains 2,492 infrared images; 241 subjects, variable number

of images per subject.
• Notes: Collection B contains ground truth and session encodings.

Figure 25.1 contains examples of images in Collection B (some images are common
to both the Notre Dame collection and to the FRGC database). Figure 25.2 shows
an infrared image of a human subject in database C.

AR face database

(URL: http://cobweb.ecn.purdue.edu/%7Ealeix/aleix face DB.html)
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Fig. 25.2. Image 02463d349 from the Notre Dame Collection C, depicting a long-
wave infrared image of a human subject.

• Size: 1534 images; 126 subjects, variable number of images per subject. Two
sessions per subject.

• Notes: varying expression, lighting, glasses, head coverings.

BANCA

(URL: http://www.ee.surrey.ac.uk/Research/VSSP/banca/)

• Size: Four databases of stills.
• Database C (cooperative): 2,080 images, 52 subjects, 4 sessions, 10 images per

session per subject.
• Database D (degraded): 2,080 images, 52 subjects, 4 sessions, 10 images per

session per subject.
• Database A (adversarial): 2,080 images, 52 subjects, 4 sessions, 10 images per

session per subject.
• WorldModel: 200 images; 40 subjects, 10 images per subject.

Yale face database B

(URL: http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html)

• Size: 5,850 images; 10 subjects, 585 pose/illumination combinations per subject.
• Some metadata available.

CAS-PEAL database

(URL: http://www.jdl.ac.cn/peal/index.html)

• Size: 30,900 images; 1,040 subjects, varying number of images per subject.
• Notes: 21 pose variations per subject, plus lighting, expression, time-lapse, and

other variations; subjects are all ethnic Chinese.
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25.4.2 Iris Image Databases

CASIA 1.0, 2.0, 3.0 databases

(URLs:http://www.nlpr.ia.ac.cn/english/irds/irisdatabase.htm (CASIA 1.0);
no URL for CASIA 2.0 (details provided when CASIA 1.0 download is authorized);
http://www.cbsr.ia.ac.cn/Databases.htm (CASIA 3.0))

• CASIA 1.0 Size: 756 images; 108 eyes, 7 images per eye.
• Note: The CASIA 1.0 database images have been edited to suppress illuminant

specularities in the pupil. The CASIA 3.0 database contains all of the CASIA
1.0 images in unedited form.

• CASIA 2 size: 2,400 images; 60 eyes, 20 images per eye, 2 sensors.
• CASIA 3.0 size: 22,051 images organized as three databases with largely disjoint

subject groups. The “Interval” subset contains 2,655 images from 396 irises and
is an unedited superset of the CASIA 1.0 database; images were acquired with
a CASIA-developed sensor. The “Lamp” subset contains 16,213 images from
819 irises and an OKI Irispass camera was used to acquire images. The “Twins”
database contains 3,183 images from 100 pairs of twins, and images were acquired
using an OKI Irispass camera.

UPOL iris database

(URL: http://phoenix.inf.upol.cz/iris/)

• Size: 384 images; 3 images per eye, 64 subjects, both eyes. Images were acquired
with a Sony DXC-950P camera.

UBIRIS database [14]

(URL: http://iris.di.ubi.pt/)

• Size: 1877 images; 241 subjects, 2 sessions.
• Note: includes controlled noise levels. Image were acquired from a Nikon E5700

camera.

Bath University iris database

(URL: http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/database.htm)

• Size: 8,000 images (1,000 available free of charge); 800 irises, 400 subjects.
• Notes: images are high-resolution and stored in a proprietary compressed format.

Camera type not specified.

ICE 2005 data set

(URL: http://iris.nist.gov/ICE)

• Size: 2,953 iris images; 132 individuals, varying number of images per subject.
• Note: collected from an LG 2200 iris camera.

Figure 25.3 contains an iris image from the ICE 2005 database.
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Fig. 25.3. Image 239320 from the ICE 2005 image database, containing an iris image
of a cooperative human subject photographed by an LG 2200 EOU iris sensor.

25.4.3 Fingerprint Databases

NIST Fingerprint databases

(URL: http://www.itl.nist.gov/iad/894.03/databases/defs/dbases.html)

The US National Institute of Standards and Technology is to be credited for the
earliest broad releases of biometrics data to the research and development commu-
nity.

• Special Database 4: 2,000 fingerprint image pairs; 400 pairs from each of five
classes (arch, left loop, right loop, tented arch, whorl). 8-bit grayscale images,
scanned at 19.7 pixels per mm and stored in a variant of the lossless JPEG
format. Cost: US$90.

• Special Database 9: five volumes with 2,700 matched tenprint card pairs in each
volume. 8-bit grayscale images, scanned at 19.7 pixels per mm and stored in a
variant of the lossless JPEG format. Cost: US$90 per volume.

• Special Database 10: Supplemental fingerprint data set containing samples of
low-frequency and transitional fingerprints. 5,520 images, scanned at 19.7 pixels
per mm and stored in a variant of the lossless JPEG format. Cost: US$90.

• Special Database 14: 27,000 mated image pairs (half are also contained in Special
Database 9), scanned at 19.7 pixels per mm and stored in the wavelet scalar
quantization (WSQ) fingerprint image compression format. Cost: US$90.

• Special Database 24: 200 MPEG-2 video files depicting live fingerprint scanning
situations (e.g., plastic distortions of the print). Cost: US$90.

• Special Database 27: 258 latent fingerprint matching cases, each consisting of
a latent print, a matching tenprint image, and minutiae from the latent and
matching prints (minutiae are validated by professional examiners). Data are
scanned at 19.7 pixels per mm and encoded using the ANSI/NIST-ITL 1-2000
standard format. Cost: US$90.

• Special Database 29: 216 tenprint card images scanned at 19.7 pixels per mm
and scored in WSQ format. Some images are repeated from Special Database 4.
Cost: US$90.
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• Special Database 30: 36 tenprint cards containing rolled and plain prints scanned
at two resolutions (19.7 pixels per mm and 39.4 pixels per mm). Images are stored
in 8-bit grayscale lossless JPEG format. Cost: US$90.

FVC Databases

Fingerprint image databases were made available for the Fingerprint Verification
Competitions organized by the University of Bologna, Michigan State University,
and San Jose State University in 2000, 2002, and 2004 [9, 3].

• FVC2000: URL: http://bias.csr.unibo.it/fvc2000/default.asp.
3,520 images (four sensors, 110 fingers, 8 impressions each). Image resolutions
are approximately 500 pixels per inch and image sizes vary. The data files are
available as a DVD supplement to [9].

• FVC2002: URL: http://bias.csr.unibo.it/fvc2002/default.asp.
3,520 images (four sensors, 110 fingers, 8 impressions each). Image resolutions
are approximately 500 pixels per inch and image sizes vary. The data files are
available as a DVD supplement to [9].

• FVC2004: URL: http://bias.csr.unibo.it/fvc2004/default.asp.
3,520 images (four sensors, 110 fingers, 8 impressions each). The subject sets for
the four sensor were almost completely disjoint. Image resolutions were about
500 pixels per inch and image sizes range from 328x364 to 260x480. Subjects
were primed to vary finger moisture and placement on the sensor. The data files
are available online at the URL above.

• FVC2006: URL: http://bias.csr.unibo.it/fvc2006/default.asp.
The competition is currently in progress as of this writing. Fingerprint data
in this case come from the BioSec multimodal database [6], and will be made
available by the organizers during 2007.

MCYT fingerprint corpus

(URL: http://atvs.ii.uam.es/bbdd EN.html)

The fingerprint portion of the MCYT bimodal database [10] contains 79,200
fingerprint images collected from 330 subjects with two sensors (one optical and one
capacitive, 12 impressions per finger, all 10 fingers per subject). A subset of 24,000
images (all images from 100 subjects) is freely. This data is available by license.

25.4.4 Speech Databases

There is a variety of digitized speech available on the Internet. Descriptions of
several archives of such data in a variety of languages can be found. The YOHO
database, described in [2] and available from the Linguistic Data Consortium (URL:
http://www.ldc.upenn.edu), contains speech samples from 180 males and 30 fe-
males with 14 sessions of data collection each. Each session employed 24 test
phrases (number-phrases that would be used to describe the setting of a combi-
nation lock). Speech samples were digitized at 8 kHz. The cost of this data de-
pends on the profit status of the requesting institution and its status as a mem-
ber of LDC. NIST has sponsored evaluations of speaker recognition systems yearly
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since 1996. The data for these evaluations is obtained from LDC. The corpus
assembled for the DARPA TIMIT project is also a well-known speech data set
(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1).

25.4.5 Gait video

(URL: http://www.gaitchallenge.org)

Sarkar et al. [16] describe a baseline challenge problem assembled for gait recog-
nition as part of the HumanID research program sponsored by the US Government.
The data available to researchers interested in this challenge problem consists of
1,870 video sequences captured from 122 subjects in a variety of conditions (shoes
worn, unloaded or carrying a briefcase, surface, viewpoint, and time of acquisition).

25.4.6 Other Unimodal databases

On-line signature data

As noted in [7], signature data is not routinely distributed outside of research groups.
While the peripherals that capture handwriting (either as images, or as time-series
data recording pen position and perhaps pressure and pen angle as a function
of time) are quite affordable, meaningful comparisons require shared data. There
was data assembled for the 2004 Signature Verification Competition [17] (URL:
http://www.cs.ust.hk/svc2004/) which is available to researchers. The available
data consists of two tasks, with 1,600 time-series captures in each task (40 sub-
jects, 40 signatures each, half of them forgeries). The MCYT bimodal biometrics
database [10] (URL: http://atvs.ii.uam.es/bbdd EN.html) includes two corpora
of signature data: an on-line collection containing 25 authentic signatures and 25
forged signatures from 330 users (all signatures from 100 users freely available by
license), and an off-line collection obtained from 75 subjects with 2,250 signatures
including both forgeries and genuine signatures, scanned at 600 pixels per inch. (all
of them available by license).

Palmprint database

(URL: http://www.comp.polyu.edu.hk/∼biometrics/)

Hong Kong Polytechnic University has developed a sensor for palmprint sensing
and assembled a database to foster research in the area [18]. It contains 7,752 images
captured from 386 palms, with about 10 samples captured in each of two capture
sessions.

25.5 Multimodal databases

Databases assembled to support research in multimodal biometric applications have
begun to appear over the last several years. A key requirement for such databases is
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that they represent real multimodal samples. The early practice of “chimeric” multi-
modal databases containing synthetic subjects (face images from one subject in one
database, fingerprint images from another subject in another database, aligned so
that the “subject” identity determined the identity of the source unimodal subjects)
is no longer necessary in many application areas. The additional burden of collecting
multimodal samples as part of a data collection effort has these aspects:

• More time is generally required for acquisition; if not well managed, subjects
may react negatively to the need to wait longer for processing.

• More sensors are needed to acquire the new samples. If some modes are to be
collected using rare and/or expensive sensors, sensor procurement issues may be
complex, and exacerbated by the understandable desire to have a backup sensor
available in case of primary sensor failure. This is easily and cheaply done in the
case of a consumer-grade digital camera, but significantly more difficult in the
case of commercial-grade fingerprint sensors, infrared cameras, and the like.

25.5.1 FRGC database

(URL: http://face.nist.gov/FRGC)

The FRGC/FRVT2006 technology evaluation and vendor test program con-
ducted by the US National Institute of Standards and Technology was designed
to assess commercial and research systems for multimodal face recognition. The
FRGC and FRVT data corpus was collected at Notre Dame in the 2003-2004 and
2004-2005 academic years. A detailed description of the FRVT2006 data corpus will
be published in the project reports, which are not available as of this writing. The
color face image component of the FRGC corpus was described in Section 25.4.1. Ac-
companying each of the intensity image bundles in a subject-session was one 3D face
image of the same subject taken within five minutes (usually within 30 seconds) of
the color face images’ acquisition. The 3D image was captured using a Minolta Vivid
900/910 range camera (which was chosen after a length evaluation of 3D cameras
to provide the best overall data quality and resolution). The 3D image contained
a 3D polygonal mesh capturing the shape of the face with a 640x480 rectangular
sampling grid in the row and column coordinates and a measured depth value along
the camera’s optical direction. Accompanying this 3D mesh image was a color image
captured a second or two after the 3D data was acquired. In the absence of sub-
ject motion, the color and 3D images were registered and the range data could be
viewed as an image with a six-dimensional measurement at each pixel (except that
some range pixels had no valid measurements due to shadowing of the structured
light source). In practice, the images are often treated separately. The FRGC 2.0
data contains 4,960 of these 3D images (4,007 test images and 953 training images).
Thus, the FRGC 2.0 data set enables research in 2D, 3D, and 2D+3D face recog-
nition. FRGC2.0 data is available by permission of the NIST office that organized
the program.
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25.5.2 XM2VTS

(URL: http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/)

The XM2VTS database was collected to support 2D and 3D face recognition,
voice recognition, face recognition in video sequences, and various combinations of
these modes. The data was collected at the University of Surrey and is available by
license for a nominal fee to bona fide research groups. The data is distributed in
multiple volumes.

• There are two volumes of face images. Each contains 1 frontal view for 295
human subjects at four acquisition sessions. The four sessions are common to
the two volumes; they differ in the image retrieved from a session-specific video
sequence of the head rotating.

• There is one volume of audio samples containing 7,080 16-bit 32kHz monophonic
recordings obtained during the acquisition sessions of the 295 subjects. Audio
has been segmented into sentences.

• One volume contains a polygonal mesh 3D head model for each of the 295
subjects.

• One volume contains profile face images and darkened face images (one of each)
for the 295 subjects in 8 acquisition sessions, for a total of 2,360 images.

• One volume contains 4 frontal images of each subject present at the last of four
acquisition sessions, captured under four lighting combinations.

• There are four volumes of video data available. One contains an audio/video
clip from each subject speaking the same sentence at each of the four acquisition
sessions. Another volume contains a video clip of the head being rotated by
the subject. An additional volume contains two audio/video clips for 200 of the
295 subjects speaking two sentences containing numerical digits at four different
sessions. Another volume contains two sequences per subject for 95 subjects
(some posing as impostors) across four acquisition sessions.

25.5.3 BANCA database

URL: http://www.ee.surrey.ac.uk/banca/

The BANCA database and an associated experimental protocol were developed
at a set of European Universities [1]. The BANCA database is a bimodal database
containing face video and speech samples (captured simultaneously). 208 subjects
were captured (52 subjects in each of four European languages). Each subject partic-
ipated in 12 sessions, of which four represented a controlled (cooperative) scenario,
four a degraded scenario, and four an adversarial scenario. A high-quality camera
was used in the controlled and adversarial scenario, and a webcam was used in the
degraded scenario. Each session contained both a genuine identity claim and an
impostor claim.

25.5.4 MyIDea database

(URL: http://diuf.unifr.ch/diva/biometrics/MyIdea/en/institutions.html)

The MyIDea database [5] is relatively new and sponsored by the European BioSe-
cure initiative. As of this writing, a signature + voice portion of its corpus has been
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made available. It contains data collected from 70 subjects and three acquisition ses-
sions. At each session, subjects produced data representing true and false identity
claims, yielding hundreds of genuine tests and thousands of impostor tests.

25.5.5 MCYT, BIOSEC, BIOSECUR-ID, and BIOSECURE
databases

(URL: http://atvs.ii.uam.es/bbdd EN.html)

The MCYT multimodal database bimodal database distributed by the Univer-
sity Autonoma de Madrid consists of fingerprint and signature data as noted above.

Although not yet available as of this writing, the European BioSec IP research
project collected a multimodal database called BIOSEC with a baseline experimental
component containing 19,200 fingerprint images, 1,600 face images, 11,200 speech
utterances, and 3,200 iris images [6]. Additional multimodal databases (BIOSECUR-
ID and BIOSECURE) will also be made available in 2007 and 2008 from other
European research consortia.

25.6 Conclusions

The distribution of data by a research group may be mandated by research con-
tract requirements, a gesture of goodwill to the research community, a promotional
exercise, or some combination of these. All such efforts should be applauded and en-
couraged because the entire community benefits from contributions of useful data.
Groups using such data have an obligation to protect it in keeping with the terms
under which the data was provided, and the provider has an obligation to monitor
its use and control unauthorized spread of the data. In the area of biometric data,
there are special concerns associated with the implicit disclosure of identifying in-
formation in presentations and publications. The terms of distribution should be
designed to protect the interests of human subject participants.
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Multi-sensor systems, 272, 315
Multi-unit systems, see Multi-instance

systems
Multibiometrics, 272, 315
Multispectral face recognition, 294
Multispectral imaging, 415
Musculo-skeletal, 109
MYIDEA database, 197, 546

Naive Bayes rule, 286
NCIC code, 438
Negative recognition, 3, 482, 484, 495
NIST fingerprint databases, 542
NIST SDK Testing, 35
Noisy data, 271, 336
Non-repudiation, 3, 382, 482
Non-universality, 271
Notre Dame database, 539

Odontology, 234
Off-axis gaze, 78
Olivetti face database, 538
One-to-many comparison, 6
One-to-one comparison, 6
OpenCV library, 303
Optical path, 98
OR rule, 284

PalmCode, 177
Palmprint, 17, 172

features, 172
principal lines, 172
representation, 173

Palmprint database, 544
Pattern recognition system, 3
Performance, 15
Permanence, 15
Personal Identity Verification, 525
Personalization, 506
Phone recognition, 163
Phonetics, 153
Phonotactic features, 162

Phonotactics, 154
Photomultiplication, 297
PIE database, 538
Poincare index, 30
Point pattern matching, 33
Point-Of-Sale (POS), 503
Pointer-based devices, 189
Positive identification, 234
Positive recognition, 6, 484
Postmortem, 231, 234
Pre-alignment, 194
Principal Component Analysis (PCA),

45, 137, 218, 279, 300, 318, 319
Principal curvature, 144
Privacy, 20, 359

Act of 1974, 369
data protection, 197
decisional, 361
information, 361
international law, 377
physical, 361
right, 358
risks, 535
threat, 399
zones of, 359

Privacy-Enhancing Technologies, 20
Probe images, 6, 324
Product rule, 281
Project IRIS, 71
Prosthetic finger, 418
Pseudo-polar coordinate system, 74
Pseudo-stationary signals, 155
Pulse oximetry, 410
Pyroelectric sensor, 297

Quality assessment, 5, 336, 386
Query images, see Probe images

Random forgery, 189
Rational basis test, 362
Receiver Operating Characteristic

(ROC) curve, 8
Reed-Solomon code, 396
Reflectivity, 296
Registered Traveler Program, 469
Resampling, 193
Revocable biometrics, 393

Sampling frequency, 193
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Sarbanes-Oxley Act, 499
Schiphol Airport, 13
Score normalization, 83, 196, 281

user-dependent, 196
Score quantization, 391
Secure sketches, 397
Sensor, 3
Sequential backward floating search,

279
Sequential backward selection, 279
Sequential forward floating search, 279
Sequential forward selection, 279
SFinGe, 38
SGM Plus system, 446
Shape index, 144
Shielding functions, 394
Signature, 18, 189

offline, 190
online, 189, 192
standards, 519
verification, 189

Signature databases, 197
Signature enrollment

model-based, 194
reference-based, 194

Signature features
function-based, 193, 201
global, 193, 199

Signature Verification Competition,
197, 198

Silhouette
hand, 99
manual, 113
quality, 122
segmentation, 122
template matching, 114

Singular Value Decomposition (SVD),
48

Sir Francis Galton, 24, 437
Skilled forgery, 189, 198
Smart card, 525
Smart cards, 20
Snakes, 75
Soft biometric likelihoods, 350
Soft biometrics, 275, 348
Speaker detection, 151
Speaker recognition

acoustic characteristics, 153
fixed text, 157

idiolectal characteristics, 153, 161
linguistic characteristics, 153
phonotactic, 162

language modeling, 163
phonetic decoder, 162

prosodic features, 154, 156, 163
short-term analysis, 155
sociolinguistic factors, 152
text dependent, 152, 157
text independent, 152, 160
tokenization, 154
variable text, 157

Speaker Recognition Evaluation (SRE),
152

Spectral characteristics, 154
Spoof, 405, 418

contact lens, 411
detection, 39, 405, 410, 411
photograph, 411

Spoof attack, see Spoofing
Spoofing, 272, 381, 385
Standards, 509

organizations, 511
performance testing, 522
security, 525

Stereo imaging, 213
Stored images, see Gallery images
Structured light, 212

profilers, 215
scanner, 213

Subcutaneous vascular pattern, 253
Sum rule, 281
Super-resolution, 62
Support Vector Machine (SVM), 47, 55
Surface normal, 217
Synthetic fingerprints, 37

Tanimoto similarity, 115
Template, 5

adaptation, 100, 194
capacity, 272
security, 389

Temporal alignment, 116
Tensorfaces, 48, 56
Thermal biometrics, 299
Three bears problem, 124
Threshold, 8
Throughput rate, 12
TI-DIGITS database, 158
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Time and attendance, 91–93, 494
TIMIT database, 158
Tippett plot, 428
Transmittance, 262

UAE iris database, 71, 87
UBIRIS database, 541
Uniqueness, 15
Universal background model (UBM),

161
Universality, 15
UPOL iris database, 541
US-VISIT program, 13, 273, 357
User acceptance, see Acceptability

Vascular
finger, 254
hand, see Hand vascular
palm, 254
standards, 520

Vector quantization, 160
Veins, see Vascular
Verification, 6

Victim identification, 231
Visible spectrum, 261, 294
Voice, 18
Voice databases, 158, 164
Voice recognition, see Speaker

recognition

Watchlist, 12, 461, 496, 500
Wavelet Scalar Quantization (WSQ),

440
Weighted majority voting, 285
Weighted sum rule, 344
Whalen vs Roe, 364
WVU multimodal database, 351

XM2VTS database, 225, 546
XM2VTS multimodal database, 282

Yale face database, 540
YOHO database, 158, 159

Zero-effort, 381




