
Chapter 9
Interval Mapping

Interval mapping is an extension of the individual marker analysis so that two
markers are analyzed at a time. In the marker analysis (Chap. 8), we cannot
estimate the exact position of a QTL. With interval mapping, we use two markers
to determine an interval, within which a putative QTL position is proposed.
The genotype of the putative QTL is not observable but can be inferred with a certain
probability using the three-point or multipoint method introduced in Chap. 4. Once
the genotype of the QTL is inferred, we can estimate and test the QTL effect at that
particular position. We divide the interval into many putative positions of QTL with
one or two cM apart and investigate every putative position within the interval. Once
we have searched the current interval, we move on to the next interval and so on
until all intervals have been searched. The putative QTL position (not necessarily at
a marker) that has the maximum test statistical value is the estimated QTL position.
Figure 9.1 demonstrates the process of genome scanning for markers only (panel a),
for markers and virtual markers (panel b), and for every point of the chromosome
(panel c).

Interval mapping was originally developed by Lander and Botstein (1989) and
further modified by numerous authors. Interval mapping has revolutionized genetic
mapping because we can really pinpoint the exact location of a QTL. In each of the
four sections that follow, we will introduce one specific statistical method of interval
mapping based on the F2 design. Methods of interval mapping for a BC design are
straightforward and thus will not be discussed in this chapter. Maximum likelihood
(ML) method of interval mapping (Lander and Botstein 1989) is the optimal method
for interval mapping. Least-squares (LS) method (Haley and Knott 1992) is a
simplified approximation of Lander and Botstein method. The iteratively reweighted
least-squares (IRLS) method (Xu 1998a,b) is a further improved method over
the least-squares method. Recently Feenstra et al. (2006) developed an estimating
equation (EE) method for QTL mapping, which is an extension of the IRLS with
improved performance. Han and Xu (2008) developed a Fisher scoring algorithm
(FISHER) for QTL mapping. Both the EE and FISHER algorithms maximize the
same likelihood function, and thus, they generate identical result. In this chapter,
we introduce the methods based on their simplicity rather than their chronological
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Fig. 9.1 The LOD test statistics for (a) marker effects (top panel), (b) virtual marker effects (panel
in the middle), and (c) every point of a simulated chromosome (bottom panel)

orders of development. Therefore, the methods will be introduced in the following
order: LS, IRLS, FISHER, and ML. Bayesian method will be discussed in a later
chapter where multiple QTL mapping is addressed.

9.1 Least-Squares Method

The LS method was introduced by Haley and Knott (1992) aiming to improving
the computational speed. The statistical model for the phenotypic value of the j th
individual is

yj D Xj ˇ C Zj � C "j (9.1)
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where ˇ is a p � 1 vector for some model effects that are irrelevant to QTL effects,
Xj is a 1 � p known design vector, � D fa; d g is a 2 � 1 vector for QTL effects of
a putative locus (a for additive effect and d for dominance effect), and Zj is a 1 � 2

vector for the genotype indicator variable defined as

Zj D

8
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(9.2)

where Hk for k D 1; 2; 3 is the kth row of matrix
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The residual error "j is assumed to be a N.0; �2/ variable. Although normal
distribution for "j is not a required assumption for the LS method, it is required
for the ML method. It is important to include non-QTL effects ˇ in the model to
control the residual error variance as small as possible. For example, location and
year effects are common in replicated experiments. These effects are not related to
QTL but will contribute to the residual error if not included in the model. If there
is no such a non-QTL effect to consider in a nice designed experiment, ˇ will be a
single parameter (intercept) and Xj will be unity across all j D 1; : : : ; n.

With interval mapping, the QTL genotype is never known unless the putative
QTL position overlaps with a fully informative marker. Therefore, Haley and Knott
(1992) suggested to replace the unknown Zj by the expectation of Zj conditional
on flanking marker genotype. Let pj .1/, pj .0/, and pj .�1/ be the conditional
probabilities for the three genotypes given flanking marker information (see Chap. 4
for the method of calculating conditional probability). The LS model of Haley and
Knott (1992) is

yj D Xj ˇ C Uj � C ej (9.4)

where

Uj D E.Zj / D pj .C1/H1 C pj .0/H2 C pj .�1/H3 (9.5)

is the conditional expectation of Zj . The residual error ej (different from "j )
remains normal with mean zero and variance �2, although this assumption has been
violated (see next section). The least-squares estimate of ˇ and � is
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and the estimated residual error variance is

O�2 D 1

n � p � 2

nX
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.yj � Xj
Ǒ � Uj O�/2 (9.7)

The variance–covariance matrix of the estimated parameters is
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which is a .p C 2/ � .p C 2/ matrix. Let

var. O�/ D V D
"

var. Oa/ cov. Oa; Od/

cov. Oa; Od/ var. Od/

#

(9.9)

be the 2�2 lower diagonal bock of matrix (9.8). The standard errors of the estimated
additive and dominance effects are the square roots of the diagonal elements of
matrix (9.9).

We can use either the F -test or the W -test statistic to test the hypothesis of H0 W
� D 0. The W -test statistic is
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(9.10)

The likelihood ratio test statistic can also be applied if we assume that ej �
N.0; �2/ for all j D 1; : : : ; n. The log likelihood function for the full model is
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The reduced model under H0 W � D 0 is
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where
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and

OO�2 D 1

n � p

nX

j D1

.yj � Xj
OǑ/2 (9.14)

The likelihood ratio test statistic is

� D �2.L0 � L1/ (9.15)

9.2 Weighted Least Squares

Xu (1995) realized that the LS method is flawed because the residual variance is
heterogeneous after replacing Xj by its conditional expectation Uj . The conditional
variance of Xj given marker information varies from one individual to another, and
it will contribute to the residual variance. Xu (1998a,b) modified the exact model

yj D Xj ˇ C Zj � C "j (9.16)

by

yj D Xj ˇ C Uj � C .Zj � Uj /� C "j (9.17)

which differs from the Haley and Knott’s (1992) model by .Zj � Uj /� . Since Zj is
not observable, this additional term is merged into the residual error if ignored. Let

ej D .Zj � Uj /� C "j (9.18)

be the new residual error. The Haley and Knott’s (1992) model can be rewritten as

yj D Xj ˇ C Uj � C ej (9.19)

Although we assume "j � N.0; �2/, this does not validate the normal assumption
of ej . The expectation for ej is

E.ej / D ŒE.Zj / � Uj �� C E."j / D 0 (9.20)

The variance of ej is

var.ej / D �2
j D �T var.Zj /� C �2 D

�
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�

�2 (9.21)
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where ˙j D var.Zj /, which is defined as a conditional variance–covariance matrix
given flanking marker information. The explicit forms of ˙j are

˙j D E.ZT
j Zj / � E.ZT

j /E.Zj /; (9.22)

where

E.ZT
j Zj / D pj .1/H T

1 H1 C pj .0/H T
2 H2 C pj .�1/H T

3 H3 (9.23)

and

E.Zj / D Uj D pj .1/H1 C pj .0/H2 C pj .�1/H3: (9.24)
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where
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(9.26)

is the weight variable for the j th individual. The weighted least-squares estimate of
the parameters is
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and

O�2 D 1

n � p � 2

nX

j D1

Wj .yj � Xj
Ǒ � Uj O�/2 (9.28)

Since Wj is a function of �2, iterations are required. The iteration process is
demonstrated as below:

1. Initialize � and �2.
2. Update ˇ and � using 9.27.
3. Update �2 using 9.28.
4. Repeat Step 2 to Step 3 until a certain criterion of convergence is satisfied.

The iteration process is very fast, usually taking less than 5 iterations to converge.
Since the weight is not a constant (it is a function of the parameters), repeatedly
updating the weight is required. Therefore, the weighted least-squares method is
also called iteratively reweighted least squares (IRLS). The few cycles of iterations
make the results of IRLS very close to that of the maximum likelihood method (to be
introduced later). A nice property of the IRLS is that the variance–covariance matrix
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of the estimated parameters is automatically given as a by-product of the iteration
process. This matrix is
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As a result, the F - or W -test statistic can be used for significance test. Like the
least-squares method, a likelihood ratio test statistic can also be established for
significance test. The L0 under the null model is the same as that described in the
section of least-squares method. The L1 under the alternative model is
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9.3 Fisher Scoring

The weighted least-squares solution described in the previous section does not
maximize the log likelihood function (9.30). We can prove that it actually maximizes
(9.30) if Wj is treated as a constant. The fact that Wj is a function of parameters
makes the above weighted least-squares estimates suboptimal. The optimal solution
should be obtained by maximizing (9.30) fully without assuming Wj being a
constant.

Recall that the linear model for yj is

yj D Xj ˇ C Uj � C ej (9.31)

where the residual error ej D .Zj � Uj /� C "j has a zero mean and variance
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If we assume that ej � N.0; �2
j /, we can construct the following log likelihood

function:
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where � D fˇ; �; �2g is the vector of parameters. The maximum likelihood solution
for the above likelihood function is hard to obtain because Wj is not a constant but a
function of the parameters. The Newton–Raphson algorithm may be adopted, but it
requires the second partial derivative of the log likelihood function with respect
to the parameter, which is very complicated. In addition, the Newton–Raphson
algorithm often misbehaves when the dimensionality of � is high. We now introduce
the Fisher scoring algorithm for finding the MLE of � . The method requires the first
partial derivative of L.�/ with respect to the parameters, called the score vector and
denoted by S.�/, and the information matrix, denoted by I.�/. The score vector has
the following form:
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(9.34)

where

�j D Xj ˇ C Uj � (9.35)

The information matrix is given below
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(9.36)

The Fisher scoring algorithm is implemented using the following iteration equation:

�.tC1/ D �.t/ C I �1.�.t//S.�.t// (9.37)

where �.t/ is the parameter value at iteration t and �.tC1/ is the updated value. Once
the iteration process converges, the variance–covariance matrix of the estimated
parameters is automatically given, which is

var. O�/ D I �1. O�/ (9.38)

The detailed expression of this matrix is
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which can be compared with the variance–covariance matrix of the iteratively
reweighted least-squares estimate given in the previous section (9.29).

We now give the derivation of the score vector and the information matrix. We
can write the log likelihood function as
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The score vector is a vector of the first partial derivatives, as shown below:
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Therefore, we only need to take the sum of the first partial derivatives across
individuals to get the score vector. Note that when deriving Sj .�/, we need the
following derivatives:
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and
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The information matrix is
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is the second partial derivative of Lj .�/ with respect to the parameters and called
the Hessian matrix. Derivation of this matrix is very tedious, but the negative
expectation of the Hessian matrix is identical to the expectation of the product of
the score vector (Wedderburn 1974),

� EŒHj .�/� D EŒSj .�/ST
j .�/� (9.49)

Using this identity, we can avoid the Hessian matrix. Therefore, the information
matrix is
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Note that the expectation is taken with respect to the phenotypic value yj. In other
words, after taking the expectation, variable yj will disappear from the expressions.
There are six different blocks in the above matrix. We will only provide the
derivation for one block as an example. The derivations of the remaining five blocks
are left to students for practice. The result can be found in Han and Xu (2008). We
now show the derivation of the first block of the matrix. The product (before taking
the expectation) is
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The expectation of it is
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The second line of the above equation requires the following identity:

E
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Taking the sum of (9.53) across individuals, we get
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which is the first block of the information matrix. When deriving the expectations
for the remaining five blocks, we need the following expectations:
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The above expectations requires the assumption of yj � N.�j ; �2
j / where �2

j D
W �1

j �2.
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9.4 Maximum Likelihood Method

The maximum likelihood method (Lander and Botstein 1989) is the optimal one
compared to all other methods described in this chapter. The linear model for the
phenotypic value of yj is

yj D Xj ˇ C Zj � C "j (9.57)

where "j � N.0; �2/ is assumed. The genotype indicator variable Zj is a missing
value because we cannot observe the genotype of a putative QTL. Rather than
replacing Zj by Uj as done in the least-squares and the weighted least-squares
methods, the maximum likelihood method takes into consideration the mixture
distribution of yj . We have learned the mixture distribution in Chap. 7 when we deal
with segregation analysis of quantitative traits. We now extend the mixture model
to interval mapping. When the genotype of the putative QTL is observed, the
probability density of yj is

fk.yj / D Pr.yj jZj D Hk/

D 1p
2��

exp

�

� 1

2�2
.yj � Xj ˇ C Hk�/2

	

(9.58)

When flanking marker information is used, the conditional probability that Zj D
Hk is

pj .k/ D Pr.Zj D Hk/; 8k D 1; 2; 3 (9.59)

for the three genotypes, A1A1, A1A2, and A2A2. These probabilities are different
from the Mendelian segregation ratio ( 1

4
; 1

2
; 1

4
) as described in the segregation

analysis. They are the conditional probabilities given marker information and thus
vary from one individual to another because different individuals may have different
marker genotypes. Using the conditional probabilities as weights, we get the mixture
distribution

f .yj / D
3X

kD1

pj .2 � k/fk.yj / (9.60)

where

pj .2 � k/ D

8
ˆ̂
<̂

ˆ̂
:̂

pj .�1/

pj .0/

pj .C1/

for

for

for

k D 1

k D 2

k D 3

(9.61)

is a special notation for the conditional probability and should not be interpreted as
pj times .2 � k/. The log likelihood function is
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L.�/ D
nX

j D1

Lj .�/ (9.62)

where Lj .�/ D ln f .yj /.

9.4.1 EM Algorithm

The MLE of � can be obtained using any numerical algorithms but the EM algorithm
is generally more preferable than others because we can take advantage of the
mixture distribution. Derivation of the EM algorithm has been given in Chap. 7
when segregation analysis was introduced. Here we simply give the result of the
EM algorithm. Assuming that the genotypes of all individuals are observed, the
maximum likelihood estimates of parameters would be
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(9.63)

and

�2 D 1

n

nX

j D1

.yj � Xj ˇ � Zj �/2 (9.64)

The EM algorithm takes advantage of the above explicit solutions of the parameters
by substituting all entities containing the missing value Zj by their posterior
expectations, i.e.,
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(9.65)

and

�2 D 1

n

nX

j D1

E
�
.yj � Xj ˇ � Zj �/2

�
(9.66)

where the expectations are taken using the posterior probabilities of QTL genotypes,
which is defined as

p�
j .2 � k/ D pj .2 � k/fk.yj /

P3
k0D1 pj .2 � k0/fk0.yj /

; 8k D 1; 2; 3 (9.67)
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The posterior expectations are

E.Zj / D
3X

kD1

p�
j .2 � k/Hk

E.ZT
j Zj / D

3X

kD1

p�
j .2 � k/H T

k Hk

E
�
.yj � Xj ˇ � Zj �/2

� D
3X

kD1

p�
j .2 � k/.yj � Xj ˇ � Hk�/2 (9.68)

Since fk.yj / is a function of parameters, thus p�
j .2 � k/ is also a function of

the parameters. However, the parameters are unknown, and they are the very
quantities we want to find out. Therefore, iterations are required. Here is the iteration
process:

1. Initialize � D �.t/ for t D 0.
2. Calculate the posterior expectations using (9.67) and (9.68).
3. Update parameters using (9.65) and (9.66).
4. Increment t by 1, and repeat Step 2 to Step 3 until a certain criterion of

convergence is satisfied.

Once the iteration converges, the MLE of the parameters is O� D �.t/, where t is the
number of iterations required for convergence.

9.4.2 Variance–Covariance Matrix of O�

Unlike the weighted least-squares and the Fisher scoring algorithms where the
variance–covariance matrix of the estimated parameters is automatically given as a
by-product of the iteration process, the EM algorithm requires an additional step to
calculate this matrix. The method was developed by Louis (1982), and it requires the
score vectors and the Hessian matrix for the complete-data log likelihood function
rather than the actual observed log likelihood function. The complete-data log
likelihood function is the log likelihood function as if Zj were observed, which is

L.�; Z/ D
nX

j D1

Lj .�; Z/ (9.69)

wheres

Lj .�; Z/ D �1

2
ln.�2/ � 1

2�2
.yj � Xj ˇ � Zj �/2 (9.70)
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The score vector is

S.�; Z/ D
nX

j D1

Sj .�; Z/ (9.71)

where
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The second partial derivative (Hessian matrix) is
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The six different blocks of the above matrix are
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We now have the score vector and the Hessian matrix available for the complete-data
log likelihood function. The Louis information matrix is

I.�/ D �EŒH.�; Z/� � EŒS.�; Z/ST .�; Z/� (9.76)

where the expectations are taken with respect to the missing value (Zj ) us-
ing the posterior probabilities of QTL genotypes. At the MLE of parameters,
EŒS. O�; Z/� D 0. Therefore,

EŒS.�; Z/ST .�; Z/� D varŒS.�; Z/� C EŒS.�; Z/�EŒST .�; Z/�

D varŒS.�; Z/� (9.77)

As a result, an alternative expression of the Louis information matrix is

I.�/ D �EŒH.�; Z/� � varŒS.�; Z/� (9.78)
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Again, all the expectations are taken with respect to the missing value Zj , not the
observed phenotype yj . This is very different from the information matrix of the
Fisher scoring algorithm. The variance–covariance matrix of the score vector is

varŒS.�; Z/� D
nX

j D1

varŒSj .�; Z/� (9.82)

where varŒSj .�; Z/� is a symmetric matrix as shown below:
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The variances are calculated with respect to the missing value Zj using the posterior
probabilities of QTL genotypes. We only provide the detailed expression of one
block of the above matrix. The remaining blocks are left to students for practice.
The block that is used as an example is the (1,2) block.
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We already learned how to calculate E.Zj / using the posterior probability of QTL
genotype. The other expectations are
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When calculating the information matrix, the parameter � is substituted by O� , the
MLE of � . Therefore, the observed information matrix is

I. O�/ D �EŒH. O�; Z/� � varŒS. O�; Z/� (9.87)

and the variance–covariance matrix of the estimated parameters is var. O�/ D I �1. O�/.

9.4.3 Hypothesis Test

The hypothesis that H0 W � D 0 can be tested using several different ways. If var. O�/

is already calculated, we can use the F - or W -test statistic, which requires var. O�/,
the variance–covariance matrix of the estimated QTL effects. It is a submatrix of
var. O�/. The W -test statistic is

W D O�T var�1. O�/ O� (9.88)

Alternatively, the likelihood ratio test statistic can be applied to test H0. We have
presented two log likelihood functions; one is the complete-data log likelihood
function, denoted by L.�; Z/, and the other is the observed log likelihood function,
denoted by L.�/. The log likelihood function used to construct the likelihood
ratio test statistic is L.�/, not L.�; Z/. This complete-data log likelihood function,
L.�; Z/, is only used to derive the EM algorithm and the observed information
matrix. The likelihood ratio test statistic is

� D �2.L0 � L1/

where L1 D L. O�/ is the observed log likelihood function evaluated at O� D
f Ǒ; O�; O�2g and L0 is the log likelihood function evaluated at OO� D f OǑ; 0; OO�2g under

the restricted model. The estimated parameter OO� under the restricted model and L0

are the same as those given in the section of the least-squares method.

9.5 Remarks on the Four Methods of Interval Mapping

The LS method (Haley and Knott 1992) is an approximation of the ML method,
aiming to improve the computational speed. The method has been extended
substantially to many other situations, e.g., multiple-trait QTL mapping (Knott
and Haley 2000) and QTL mapping for binary traits (Visscher et al. 1996). When
used for binary and other nonnormal traits, the method is no longer called LS.
Because of the fast speed, the method remains a popular method, even though
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the computer power has increased by many orders of magnitude since the LS
was developed. In some literature (e.g., Feenstra et al. 2006), the LS method is
also called the H–K method in honor of the authors, Haley and Knott (1992).
Xu (1995) noticed that the LS method, although a good approximation to ML in
terms of estimates of QTL effects and test statistic, may lead to a biased (inflated)
estimate for the residual error variance. Based on this work, Xu (1998a,b) eventually
developed the iteratively reweighted least-squares (IRLS) method. In these works
(Xu 1998a,b), the iteratively reweighted least squares was abbreviated IRWLS. Xu
(1998b) compared LS, IRLS, and ML in a variety of situations and concluded
that IRLS is always better than LS and as efficient as ML. When the residual
error does not have a normal distribution, which is required by the ML method,
LS and IRLS can be better than ML. In other words, LS and IRLS are more
robust than ML to the departure from normality. Kao (2000) and Feenstra et al.
(2006) conducted more comprehensive investigation on LS, IRLS, and ML and
found that when epistatic effects exist, LS can generate unsatisfactory results, but
IRLS and ML usually map QTL better than LS. In addition, Feenstra et al. (2006)
modified the weighted least-squares method by using the estimating equations (EE)
algorithm. This algorithm further improved the efficiency of the weighted least
squares by maximizing an approximate likelihood function. Most recently, Han
and Xu (2008) developed a Fisher scoring (FISHER) algorithm to maximize the
approximate likelihood function. Both the EE and Fisher algorithm maximize the
same likelihood function, and thus, they produce identical results.

The LS method ignores the uncertainty of the QTL genotype. The IRLS, FISHER
(or EE), and ML methods use different ways to extract information from the
uncertainty of QTL genotype. If the putative location of QTL overlaps with a
fully informative marker, all four methods produce identical result. Therefore, if
the marker density is sufficiently high, there is virtually no difference for the four
methods. For low marker density, when the putative position is far away from either
flanking marker, the four methods will show some difference. This difference will
be magnified by large QTL. Han and Xu (2008) compared the four methods in a
simulation experiment and showed that when the putative QTL position is fixed
in the middle of a 10-cM interval, the four methods generated almost identical
results. However, when the interval expands to 20 cM, the differences among the
four methods become noticeable.

Interval mapping with a 1-cM increment for the mouse 10th-week body weight
data was conducted using all the four methods by Han and Xu (2008). The LOD test
statistic profiles are shown in Fig. 9.2 for the four methods of interval mapping (LS,
IRLS, FISHER, and ML). There is virtually no difference for the four methods.
The difference in LOD profiles is noticeable when the marker density is low.
Comparisons for the estimated QTL effects were also conducted for the mouse data.
Figure 9.3 shows the estimated QTL effect profiles along the genome for the four
methods. Again the difference is barely noticeable.

A final remark on interval mapping is the way to infer the QTL genotype
using flanking markers. If only flanking markers are used to infer the genotype
of a putative position bracketed by the two markers, the method is called interval
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Fig. 9.2 The LOD test statistic profiles for four methods of interval mapping (LS, least square;
IRLS, iteratively reweighted least square; FISHER, Fisher scoring; and ML, maximum likelihood).
The mouse data were obtained from Lan et al. (2006). The trait investigated is the 10th-week body
weight. The 19 chromosomes (excluding the sex chromosome) are separated by the vertical dotted
lines. The unevenly distributed black ticks on the horizontal axis indicate the marker locations
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Fig. 9.3 The QTL effect profiles for four methods of interval mapping (LS, least square; IRLS,
iteratively reweighted least square; FISHER, Fisher scoring; and ML, maximum likelihood). The
mouse data were obtained from Lan et al. (2006). The trait investigated is the 10th-week body
weight. The 19 chromosomes (excluding the sex chromosome) are separated by the vertical dotted
lines. The unevenly distributed black ticks on the horizontal axis indicate the marker locations
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mapping. Strictly speaking, interval mapping only applies to fully informative
markers because we always use flanking markers to infer the QTL genotype.
However, almost all datasets obtained from real-life experiments contain missing,
uninformative, or partially informative markers. To extract maximum information
from markers, people always use the multipoint method (Jiang and Zeng 1997)
to infer a QTL genotype. The multipoint method uses more markers or even all
markers of the entire chromosome (not just flanking markers) to infer the genotype
of a putative position. With the multipoint analysis, we no longer have the notion of
interval, and thus, interval mapping is no longer an appropriate phrase to describe
QTL mapping. Unfortunately, a more appropriate phrase has not been proposed,
and people are used to the phrase of interval mapping. Therefore, the so-called
interval mapping in the current literature means QTL mapping under a single QTL
model, regardless of whether the genotype of a putative QTL position is inferred
from flanking markers or all markers.
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