
Chapter 7
Segregation Analysis

Quantitative traits, by definition, are controlled by the segregation of multiple genes.
However, the continuous distribution of a quantitative trait does not require the
segregation of too many genes. Segregation of just a few genes or even a single
gene may be sufficient to generate a continuously distributed phenotype, provided
that the environmental variant contributes substantial amount of the trait variation.
It is often postulated that a quantitative trait may be controlled by one or a few
“major genes” plus multiple modifier genes (genes with very small effects). Such
a model is called oligogenic model, which is in contrast to the so called polygenic
model where multiple genes with small and equal effects are assumed.

In this chapter, we will discuss a method to test the hypothesis that a quantitative
trait is controlled by a single major gene even without observing the genotypes
of the major gene. The method is called segregation analysis of quantitative traits.
Although segregation analysis belongs to major gene detection, we discuss this
topic separately from the previous topic to emphasize a slight difference between
segregation analysis and the major gene detection discussed earlier. Here, we define
major gene detection as an association study between a single-locus genotype with a
quantitative trait where genotypes of the major gene are observed for all individuals.
Segregation analysis, however, refers to a single-locus association study where
genotypes of the major gene are not observed at all. Another reason for separating
major gene detection from segregation analysis is that the statistical method and
hypothesis test for segregation analysis can be quite different from those of the major
gene detection.

7.1 Gaussian Mixture Distribution

We will use an F2 population as an example to discuss the segregation analysis.
Consider the three genotypes in the following order: A1A1, A1A2, and A2A2.
Let k D 1; 2; 3 indicate the three ordered genotypes. The means of individuals
bearing the three ordered genotypes are denoted by �1, �2, and �3, respectively.
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Fig. 7.1 Gaussian mixture with three components. The solid line represents the mixture distribu-
tion, while the three dashed lines represent the three components

Let yj be the phenotypic value of individual j for j D 1; : : : ; n, where n is the
sample size. Given that individual j has the kth genotype, the linear model for yj is

yj D �k C �j ; (7.1)

where �j � N.0; �2/ and �2 is the residual error variance. The probability density
of yj conditional on the kth genotype is

fk.yj / D 1p
2��

exp

�
� 1

2�2
.yj � �k/2

�
: (7.2)

In reality, the genotype of an individual is not observable, and thus, a mixture
distribution is needed to describe the probability density of yj . Let �k; 8k D 1; 2; 3,
be the proportion of genotype k (also called the mixing proportion). Without any
prior knowledge, �k may be described by the Mendelian segregation ratio, i.e.,
�1 D �3 D 1

2
�2 D 1

4
. Therefore, under the assumption of Mendelian segregation,

the �k’s are constants, not parameters. The distribution of yj is a mixture of three
normal distributions, each is weighted by the Mendelian mixing proportion. The
mixture distribution is demonstrated by Fig. 7.1.
The probability density of yj is

f .yj / D
3X

kD1

�kfk.yj /: (7.3)

The overall observed log likelihood function for parameters � D f�1; �2; �3; �2g is

L.�/ D
nX

j D1

ln f .yj / D
nX

j D1

ln

"
3X

kD1

�kfk.yi /

#
: (7.4)



7.2 EM Algorithm 81

Any numerical algorithms may be used to estimate the parameters. However, the
EM algorithm (Dempster et al. 1977) appears to be the most convenient method for
such a mixture model problem and thus will be introduced in this chapter.

7.2 EM Algorithm

The expectation-maximization (EM) algorithm was developed by Dempster et al.
(1977) as a special numerical algorithm for finding the maximum likelihood
estimates (MLE) of parameters. In contrast to the Newton–Raphson algorithm, the
EM algorithm is not a general algorithm for MLE; rather, it can only be applied to
some special problems. If the following two conditions hold, then we should
consider using the EM algorithm. The first condition is that the maximum likelihood
problem can be formulated as a missing value problem. The second condition is that
if the missing values were not missing, the MLE would have a closed form solution
or, at least, a mathematically attractive form of the solution. We now evaluate the
mixture model problem to see whether the two conditions apply.

7.2.1 Closed Form Solution

We introduce a label �j to indicate the genotype of individual j . The definition of
�j is

�j D
8<
:

1

2

3

for A1A1

for A1A2

for A2A2

(7.5)

Since the genotype of an individual is not observable, the label �j is missing.
Therefore, we can formulate the problem as a missing value problem. The missing
values are the genotypes of the major gene and denoted by variable �j for j D
1; : : : ; n. Therefore, the first condition for using the EM algorithm is met. If �j is not
missing, do we have a closed form solution for the parameters? Let us now define
three more variables as functions of �j . These three variables are called ı.�j ; 1/,
ı.�j ; 2/, and ı.�j ; 3/, and their values are defined as

ı.�j ; k/ D
�

1

0

if �j D k

if �j ¤ k
(7.6)

for k D 1; 2; 3. We now use ı.�j ; k/ to represent the missing values. If ı.�j ; k/

were not missing, the linear model would be described by

yj D ı.�j ; 1/�1 C ı.�j ; 2/�2 C ı.�j ; 3/�3 C �j : (7.7)
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Let us define ıj D Œı.�j ; 1/ ı.�j ; 2/ ı.�j ; 3/� as a 1�3 vector and ˇ D Œ�1 �2 �3�T

as a 3 � 1 vector. The linear model can be rewritten as

yj D ıj ˇ C �j : (7.8)

When �j � N.0; �2/ is assumed, the maximum likelihood estimates of parame-
ters are

Ǒ D
2
4 nX

j D1

ıT
j ıj

3
5

�1 2
4 nX

j D1

ıT
j yj

3
5 (7.9)

for the means and

O�2 D 1

n

nX
j D1

.yj � ıj ˇ/2 (7.10)

for the residual variance. We see that if the missing variables were not missing,
the MLE of the parameters do have an attractive closed form solution. Since both
requirements of the EM algorithm are met, we can adopt the EM algorithm to search
for the MLE of parameters.

7.2.2 EM Steps

Before we derive the EM algorithm, let us show the expectation and maximization
steps of the EM algorithm. The E-step involves calculating the expectations of all
items containing the missing variables ıj . The M-step is simply to estimate ˇ and �2

using the closed form solutions given above with the items containing the missing
variables replaced by the expectations obtained in the E-step, as shown below:

ˇ D
2
4 nX

j D1

E.ıT
j ıj /

3
5

�1 2
4 nX

j D1

E.ıT
j /yj

3
5 (7.11)

and

�2 D 1

n

nX
j D1

EŒ.yj � ıj ˇ/2�: (7.12)

We can see that the EM algorithm is better described by introducing the M-step first
and then describing the E-step (in a reverse direction). The detail of the E-step is
now given below:

E.ıT
j ıj / D

2
4EŒı.�j ; 1/� 0 0

0 EŒı.�j ; 2/� 0

0 0 EŒı.�j ; 3/�

3
5; (7.13)
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E.ıT
j /yj D

2
4EŒı.�j ; 1/�yj

EŒı.�j ; 2/�yj

EŒı.�j ; 3/�yj

3
5 (7.14)

and

EŒ.yj � ıj ˇ/2� D
3X

kD1

EŒı.�j ; k/�.yj � �k/2: (7.15)

Here, we only need to calculate EŒı.�j ; k/�, which is the conditional expectation of
ı.�j ; k/ given the parameter values and the phenotypic value. The full expression of
the conditional expectation should be EŒı.�j ; k/jyj ; ˇ; �2�, but we use EŒı.�j ; k/�

as a short notation.

EŒı.�j ; k/� D �kfk.yj j�/P3
k0D1 �k0fk0.yj j�/

: (7.16)

where �1 D �3 D 1
2
�2 D 1

4
is the Mendelian segregation ratio and fk.yj j�/ D

N.yj j�k; �2/ is the normal density. In summary, the EM algorithm is described by

• Initialization: set t D 0 and let � D �.t/.
• E-step: calculate EŒı.�j ; k/jyj ; �.t/�.
• M-step: update ˇ.tC1/ and �2.tC1/.
• Iteration: set t D t C 1 and iterate between the E-step and the M-step.

The convergence criterion is

jj�.tC1/ � �.t/jj D
q

.�.tC1/ � �.t//0.�.tC1/ � �.t//=dim.�/ � �; (7.17)

where dim.�/ D 4 is the dimension of the parameter vector and � is an arbitrarily
small positive number, say 10�8.

Once the three genotypic values are estimated, the additive and dominance effects
are estimated using linear contrasts of the genotypic values, e.g.,

(
Oa D Ǒ

1 � 1
2
. Ǒ

1 C Ǒ
3/

Od D Ǒ
2 � 1

2
. Ǒ

1 C Ǒ
3/

: (7.18)

7.2.3 Derivation of the EM Algorithm

The observed log likelihood function is given in (7.4). The MLE of � is the (vector)
value that maximizes this log likelihood function. The EM algorithm, however, does
not directly maximize this likelihood function; instead, it maximizes the expectation
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of the complete-data log likelihood function with the expectation taken with respect
to the missing variable ı.�j ; k/. The complete-data log likelihood function is

Lc.�/ D �
nX

j D1

"
1

2�2

3X
kD1

ı.�j ; k/.yj � �k/2 C
3X

kD1

ı.�j ; k/ ln.�k/

#

� n

2
ln.�2/ (7.19)

The expectation of the complete-data log likelihood is E�.t/ ŒLc.�/jy; �.t/�, which is
denoted in short by L.� j�.t// and is defined as

L.� j�.t// D �n

2
ln.�2/ � 1

2�2

nX
j D1

3X
kD1

EŒı.�j ; k/�.yj � �k/2

C
nX

j D1

3X
kD1

EŒı.�j ; k/� ln.�k/ (7.20)

With the EM algorithm, the target likelihood function for maximization is neither
the complete-data log likelihood function (7.19) nor the observed log likelihood
function (7.4); rather, it is the expected complete-data log likelihood function (7.20).
An alternative expression of the above equation is

L.� j�.t// D � n

2
ln.�2/ � 1

2�2

nX
j D1

EŒ.yj � ıj ˇ/2�

C
nX

j D1

3X
kD1

EŒı.�j ; k/� ln.�k/: (7.21)

The partial derivatives of L.� j�.t// with respect to ˇ and �2 are

@

@̌
L.� j�.t// D 1

�2
E.ıT

j /yj � 1

�2

nX
j D1

E.ıT
j ıj /ˇ (7.22)

and

@

@�2
L.� j�.t// D � n

2�2
C 1

2�4

nX
j D1

EŒ.yj � ıT
j ˇ/2�; (7.23)

respectively. Setting @
@ˇ

L.� j�.t// D @
@�2 L.� j�.t// D 0, we get

ˇ D
2
4 nX

j D1

E.ıT
j ıj /

3
5

�1 2
4 nX

j D1

E.ıT
j /yj

3
5 (7.24)
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and

�2 D 1

n

nX
j D1

EŒ.yj � ıj ˇ/2�: (7.25)

This concludes the derivation of the EM algorithm.

7.2.4 Proof of the EM Algorithm

The target likelihood function for maximization in the EM algorithm is the
expectation of the complete-data log likelihood function. However, the actual MLE
of � is obtained by maximization of the observed log likelihood function. To prove
that the EM solution of the parameters is indeed the MLE, we only need to show
that the partial derivative of the expected complete-data likelihood is identical to the
partial derivative of the observed log likelihood, i.e., @

@�
L.� j�.t// D @

@�
L.�/. If the

two partial derivatives are the same, then the solutions must be the same because
they both solve the same equation system, i.e., @

@�
L.�/ D 0.

Recall that the partial derivative of the expected complete-data log likelihood
function with respect to ˇ is

@

@̌
L.� j�.t// D 1

�2
E.ıT

j /yj � 1

�2
E.ıT

j ıj /ˇ; (7.26)

which is a 3 � 1 vector as shown below:

@

@̌
L.� j�.t// D

h
@

@�1
L.� j�.t// @

@�2
L.� j�.t// @

@�3
L.� j�.t//

iT

:

The kth component of this vector is

@

@�k

L.� j�.t// D 1

�2
EŒı.�j ; k/�yj � 1

�2
EŒı2.�j ; k/��k

D 1

�2
EŒı.�j ; k/�yj � 1

�2
EŒı.�j ; k/��k

D 1

�2
EŒı.�j ; k/�.yj � �k/ (7.27)

The equation holds because EŒı.�j ; k/� D EŒı2.�j ; k/�, a property for the
Bernoulli distribution. We now evaluate the partial derivative of the expected
complete-data log likelihood with respect to �2,

@

@�2
L.� j�.t// D � n

2�2
C 1

2�2

nX
j D1

EŒ.yj � ıT
j ˇ/2�

D � n

2�2
C 1

2�2

nX
j D1

EŒı.�j ; k/�.yj � �k/2 (7.28)
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We now look at the partial derivatives of L.�/ with respect to the parameters.
The observed log likelihood function is

L.�/ D
nX

j D1

ln
3X

kD1

�kfk.yj / (7.29)

where

fk.yj / D 1p
2��

exp

�
� 1

2�2
.yj � �k/2

�
: (7.30)

The partial derivatives of L.�/ with respect to ˇ D Œ�1 �2 �3�T are

@

@�k

L.�/ D
nX

j D1

�kP3
k0D1 �k0fk0.yj /

@

@�k

fk.yj /; (7.31)

where

@

@�k

fk.yj / D fk.yj /

�
1

�2
.yj � �k/

�
: (7.32)

Hence,

@

@�k

L.�/ D 1

�2

nX
j D1

�kfk.yj /P3
k0D1 �k0fk0.yj /

.yj � �k/: (7.33)

Recall that

EŒı.�j ; k/� D �kfk.yj /P3
k0D1 �k0fk0.yj /

: (7.34)

Therefore,

@

@�k

L.�/ D 1

�2

nX
j D1

EŒı.�j ; k/�.yj � �k/; (7.35)

which is exactly the same as @
@�k

L.� j�.t// given in (7.27). Now, let us look at the

partial derivative of L.�/ with respect to �2.

@

@�2
L.�/ D

nX
j D1

3X
kD1

�kP3
k0D1 �k0fk0.yj /

@

@�2
fk.yj /; (7.36)

where

@

@�2
fk.yj / D � 1

2�2
fk.yj / C

�
1

2�4
.yj � �k/2

�
fk.yj /: (7.37)
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Hence,

@

@�2
L.�/ D � 1

2�2

nX
j D1

3X
kD1

�kfk.yj /P3
k0D1 �k0fk0.yj /

C 1

2�4

nX
j D1

"
3X

kD1

�kfk.yj /P3
k0D1 �k0fk0.yj /

.yj � �k/2

#
(7.38)

Note that
3X

kD1

�kfk.yj /P3
k0D �k0fk0.yj /

D
3X

kD1

EŒı.�j ; k/� D 1: (7.39)

Therefore,

@

@�2
L.�/ D � 1

2�2

nX
j D1

3X
kD1

EŒı.�j ; k/� C 1

2�4

nX
j D1

3X
kD1

EŒı.�j ; k/�.yj � �k/2

D � n

2�2
C 1

2�4

nX
j D1

3X
kD1

EŒı.�j ; k/�.yj � �k/2 (7.40)

which is exactly the same as @
@�2 L.� j�.t// given in (7.28). We now have con-

firmed that

@

@�2
L.� j�.t// D @

@�2
L.�/ (7.41)

and

@

@�k

L.� j�.t// D @

@�k

L.�/; 8k D 1; 2; 3: (7.42)

This concludes the proof that the EM algorithm does lead to the MLE of the
parameters.

7.3 Hypothesis Tests

The overall null hypothesis is “no major gene is segregating” denoted by

H0 W �1 D �2 D �3 D �: (7.43)

The alternative hypothesis is “at least one of the means is different from others,”
denoted by

H1 W �1 ¤ �3 or �2 ¤ 1

2
.�1 C �3/: (7.44)
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The likelihood ratio test statistic is

	 D �2ŒL0. O�/ � L1. O�/�; (7.45)

where L1. O�/ is the observed log likelihood function evaluated at the MLE of � for
the full model, and

L0. O�/ D �n

2
ln. O�2/ � 1

2 O�2

nX
j D1

.yj � O�/2 (7.46)

is the log likelihood values evaluated at the null model where

O� D 1

n

nX
j D1

yj (7.47)

and

O�2 D 1

n

nX
j D1

.yj � O�/2: (7.48)

Under the null hypothesis, 	 will follow approximately a chi-square distribution
with two degrees of freedom. Therefore, H0 will be rejected if 	 > 
2

2;1�˛ , where
˛ D 0:05 may be chosen as the type I error.

7.4 Variances of Estimated Parameters

Unlike other iterative methods of parameter estimation, e.g., Newton–Raphson
method, that variance–covariance matrix of the estimated parameters are provided
automatically as a by-product of the iteration process, the EM algorithm does not fa-
cilitate an easy way for calculating the variance–covariance matrix of the estimated
parameters. We now introduce a special method for calculating the variance–
covariance matrix. The method was developed by Louis (1982) particularly for
calculating the variance–covariance matrix of parameters that are estimated via the
EM algorithm. The method requires the first and second partial derivatives of the
complete-data log likelihood function (not the observed log likelihood function).
The complete-data log likelihood function is

L.�; ı/ D
nX

j D1

Lj .�; ı/; (7.49)

where

Lj .�; ı/ D �1

2
ln.�2/ � 1

2�2
.y � ıj ˇ/2: (7.50)
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The first partial derivative of this log likelihood with respect to the parameter is
called the score function, which is

S.�; ı/ D @

@�
L.�; ı/ D

nX
j D1

@

@�
Lj .�; ı/ D

nX
j D1

Sj .�; ı/; (7.51)

where

Sj .�; ı/ D @

@�
Lj .�; ı/ D

"
@

@ˇ
Lj .�; ı/

@
@�2 Lj .�; ı/

#
D
"

1
�2 ıT

j .yj � ıj ˇ/

� 1
2�2 C 1

2�4 .yj � ıj ˇ/2

#
:

(7.52)

The second partial derivative is called the Hessian matrix H.�; ı/. The negative
value of the Hessian matrix is denoted by B.�; ı/ D �H.�; ı/,

B.�; ı/ D �@2L.�; ı/

@� @�T
D �

nX
j D1

@2Lj .�; ı/

@� @�T
D

nX
j D1

Bj .�; ı/; (7.53)

where

Bj .�; ı/ D �@2Lj .�; ı/

@� @�T
D
2
4� @2Lj .�;ı/

@ˇ @ˇT � @2Lj .�;ı/

@ˇ @�2

� @2Lj .�;ı/

@�2 @ˇT � @2Lj .�;ı/

@�2 @�2

3
5 (7.54)

Detailed expression of Bj .�; ı/ is given below:

Bj .�; ı/ D
"

1
�2 ıT

j ıj
1

�4 ıT
j .yj � ıj ˇ/

1
�4 .yj � ıj ˇ/T ıj

1
�6 .yj � ıj ˇ/2 � 1

2�2

#
: (7.55)

Louis (1982) gave the following information matrix:

I.�/ D EŒB.�; ı/� � varŒS.�; ı/�

D
nX

j D1

EŒBj .�; ı/� �
nX

j D1

varŒSj .�; ı/�; (7.56)

where the expectation and variance are taken with respect to the missing variable
ıj using the posterior probability of ıj . Detailed expressions of EŒBj .�; ı/� and
varŒSj .�; ı/� are given in the end of this section. Readers may also refer to Han and
Xu (2008) and Xu and Hu (2010) for the derivation and the results. Replacing � by
O� and taking the inverse of the information matrix, we get the variance–covariance
matrix of the estimated parameters,

var. O�/ D I �1. O�/ D fEŒB. O� ; ı/� � varŒS. O�; ı/�g�1: (7.57)
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This is a 4 � 4 variance–covariance matrix, as shown below:

var. O�/ D
"

var. Ǒ/ cov. Ǒ; O�2/

cov. O�2; ǑT / var. O�2/

#
; (7.58)

where var. Ǒ/ is a 3 � 3 variance matrix for the estimated genotypic values.
The additive and dominance effects can be expressed as linear functions of ˇ, as

demonstrated below:

�
a

d

�
D
"

1
2

0 � 1
2

� 1
2

1 � 1
2

#2
4ˇ1

ˇ2

ˇ3

3
5 D LT ˇ; (7.59)

where

L D
"

1
2

0 � 1
2

� 1
2

1 � 1
2

#T

: (7.60)

The variance–covariance matrix for the estimated major gene effects is

var

"
Oa
Od

#
D LT var. Ǒ/L D

"
var. Oa/ cov. Oa; Od/

cov. Oa; Od/ var. Od/

#
: (7.61)

The variance–covariance matrix of the estimated major gene effects also facili-
tates an alternative method for testing the hypothesis of H0 W a D d D 0. This test
is called the Wald-test statistic (Wald 1943),

W D ˇT LŒLT var. Ǒ/L��1LT ˇ D
h

Oa Od
i " var. Oa/ cov. Oa; Od/

cov. Oa; Od/ var. Od/

#�1 " Oa
Od

#
: (7.62)

The Wald-test statistic is much like the likelihood ratio test statistic. Under the
null model, W follows approximately a 
2 distribution with 2 degrees of freedom.
However, Wald test is usually considered inferior compared to the likelihood ratio
test statistic, especially when the sample size is small.

Before exiting this section, we now provide the derivation of EŒBj .�; ı/� and
varŒSj .�; ı/�. Recall that ıj is a 1 � 3 multinomial variable with sample size 1 and
defined as

ıj D �
ı.�j ; 1/ ı.�j ; 2/ ı.�j ; 3/

�
(7.63)

This variable has the following properties:

ı2.�j ; k/ D ı.�j ; k/ (7.64)
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and

ı.�j ; k/ı.�j ; k0/ D
�

ı.�j ; k/

0

for
for

k D k0
k ¤ k0 (7.65)

Therefore, the expectation of ıj is

E.ıj / D �
E
�
ı.�j ; 1/

�
E
�
ı.�j ; 2/

�
E
�
ı.�j ; 3/

� �
(7.66)

The expectation of its quadratic form is

E.ıT
j ıj / D diag

�
E.ıj /

� D

2
664

E
�
ı.�j ; 1/

�
0 0

0 E
�
ı.�j ; 3/

�
0

0 0 E
�
ı.�j ; 3/

�

3
775 (7.67)

The variance–covariance matrix of ıj is

var.ıj / D E.ıT
j ıj / � E.ıj /ET .ıj / (7.68)

To derive the observed information matrix, we need the first and second partial
derivatives of the complete-data log likelihood with respect to the parameter vector
� D Œ ˇT �2 �T . The score vector is rewritten as

Sj .�; ı/ D
"

1
�2 ıT

j .yj � ıj ˇ/

1
2�4 .yj � ıj ˇ/2

#
C
"

03�1

� 1
2�2

#
(7.69)

where 03�1 is a 3�1 vector of zeros, and thus, the score is a 4�1 vector. The negative
of the second partial derivative is

Bj .�; ı/ D
"

1
�2 ıT

j ıj
1

�4 ıT
j .yj � ıj ˇ/

1
�4 .yj � ıj ˇ/T ıj

1
�6 .yj � ıj ˇ/2

#
C
"

03�3 03�1

01�3 � 1
2�2

#
(7.70)

where 03�3 is a 3 � 3 matrix of zeros, and thus, Bj .�; ı/ is a 4 � 4 matrix.
The expectation of Bj .�; ı/ is easy to derive, but derivation of the variance–
covariance matrix of the score vector is very difficult. Xu and Xu (2003) used
a Monte Carlo approach to approximating the expectation and the variance–
covariance matrix. They simulated multiple (e.g., 5,000) samples of ıj from the
posterior distribution and then took the sample mean of Bj .�; ı/ and the sample
variance–covariance matrix of Sj .�; ı/ as the approximations of the corresponding
terms. Here, we took a theoretical approach for the derivation and provide explicit
expressions for the expectation and variance–covariance matrix. We can express the
score vector as a linear function of ıj and the Bj .�; ı/ matrix as a quadratic function
of ıj . By trial and error, we found that
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Sj .�; ı/ D

2
666664

1
�2 .yj � ˇ1/ 0 0

0 1
�2 .yj � ˇ1/ 0

0 0 1
�2 .yj � ˇ3/

1
2�4 .yj � ˇ1/2 1

2�4 .yj � ˇ2/2 1
2�4 .yj � ˇ3/2

3
777775

2
664

ı.�j ; 1/

ı.�j ; 2/

ı.�j ; 3/

3
775C

2
666664

0

0

0

� 1
2�2

3
777775

D AT
j ıT

j C C (7.71)

where AT
j is the 4 � 3 coefficient matrix and C is the 4 � 1 vector of constants. Let

us define a 4 � 1 matrix H T
j as

H T
j D T T

j ıT
j D

2
666664

1
�2 0 0

0 1
�2 0

0 0 1
�2

1
�3 .yj � ˇ1/

1
�3 .yj � ˇ2/ 1

�3 .yj � ˇ3/

3
777775

2
664

ıj .1/

ıj .2/

ıj .3/

3
775 (7.72)

where T T
j is the 4 � 3 coefficient matrix. We can now express matrix Bj .�; ı/ as

Bj .�; ı/ D H T
j Hj C D D T T

j ıT
j ıj Tj C D (7.73)

where

D D diag.C / D
"

03�3 03�1

01�3 � 1
2�2

#
(7.74)

is a 4 � 4 constant matrix. The expectation of Bj .�; ı/ is

E
�
Bj .�; ı/

� D T T
j E.ıT

j ıj /Tj C D (7.75)

The expectation vector and the variance–covariance matrix of Sj .�; ı/ are

E
�
Sj .�; ı/

� D AT
j E.ıT

j / C C (7.76)

and

var
�
Sj .�; ı/

� D AT
j var.ıj /Aj D AT

j

h
E.ıT

j ıj / � E.ıT
j /E.ıj /

i
Aj (7.77)

respectively. Expressing Sj .�; ı/ and Bj .�; ı/ as linear and quadratic functions of
the missing vector ıj has significantly simplified the derivation of the information
matrix.



7.5 Estimation of the Mixing Proportions 93

7.5 Estimation of the Mixing Proportions

We used an F2 population as an example for segregation analysis. Extension of the
segregation analysis to other populations is straightforward and will not be discussed
here. For the F2 population, we assumed that the major gene follows the Mendelian
segregation ratio, i.e., �1 D �3 D 1

2
�2 D 1

4
. Therefore, �k is a constant, not

a parameter for estimation. The method can be extended to a situation where the
major gene does not follow the Mendelian segregation ratio. In this case, the values
of �k are also parameters for estimation. This section will introduce a method to
estimate the �k’s. These �k’s are called the mixing proportions.

We simply add one more step in the EM algorithm to estimate �k; 8k D 1; 2; 3.
Again, we maximize the expected complete-data log likelihood function. To enforce
the restriction that

P3
kD1 �k D 1, we introduce a Lagrange multiplier �. Therefore,

the actual function to be maximized is

L.� j�.t// D � n

2
ln.�2/ � 1

2�2

nX
j D1

3X
kD1

EŒı.�j ; k/�.yj � �k/2

C
nX

j D1

3X
kD1

EŒı.�j ; k/� ln.�k/ C 	

 
1 �

3X
kD1

�k

!
: (7.78)

The partial derivatives of L.� j�.t// with respect to �k and 	 are

@

@�k

L.� j�.t// D 1

�k

nX
j D1

EŒı.�j ; k/� � 	; 8k D 1; 2; 3 (7.79)

and

@

@	
L.� j�.t// D 1 �

3X
kD1

�k; (7.80)

respectively. Let @
@�k

L.� j�.t// D @
@	

L.� j�.t// D 0, and solve for �k’s and 	. The
solution for �k is

�k D 1

	

nX
j D1

EŒı.�j ; k/�; 8k D 1; 2; 3: (7.81)

The solution for 	 is obtained by

3X
kD1

�k D 1

	

3X
kD1

nX
j D1

EŒı.�j ; k/� D 1

	

nX
j D1

3X
kD1

EŒı.�j ; k/� D n

	
D 1: (7.82)

This is because
P3

kD1 EŒı.�j ; k/� D 1 and
Pn

j D1 D n. As a result, 	 D n and thus

�
.tC1/

k D 1

n

nX
j D1

EŒı.�j ; k/�; 8k D 1; 2; 3: (7.83)
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