
Chapter 4
Multipoint Analysis of Mendelian Loci

Each Mendelian locus occupies a specific point on a chromosome. A linkage
analysis requires two or more Mendelian loci and thus involves two or more points.
When a linkage analysis involves two Mendelian loci, as we have seen in Chap. 2 for
estimating the recombination fraction between two loci, the analysis is called two-
point analysis. When more than two Mendelian loci are analyzed simultaneously,
the method is called multipoint analysis (Jiang and Zeng 1997). Multipoint analysis
can extract more information from the data if markers are not fully informative, e.g.,
missing genotypes, dominance alleles, and so on.

When there is no interference between the crossovers of two consecutive
chromosome segments, the joint distribution of genotypes of marker loci is Marko-
vian. We can imagine that the entire chromosome behaves like a Markov chain, in
which the genotype of one locus depends only on the genotype of the “previous”
locus. A Markov chain has a direction, but a chromosome has no meaningful
direction. Its direction is defined in an arbitrary fashion. Therefore, we can use either
a forward Markov chain or a backward Markov chain to define a chromosome, and
the result will be identical, regardless of which direction has been taken.

A Markov chain is used to derive the joint distribution of all marker genotypes.
The joint distribution is eventually used to construct a likelihood function for
estimating multiple recombination fractions. Given the recombination fractions, one
can derive the conditional distribution of the genotype of a locus bracketed by
two marker loci given the genotypes of the markers. The conditional distribution
is fundamentally important in genetic mapping for complex traits, a topic to be
discussed in a later chapter.

4.1 Joint Distribution of Multiple-Locus Genotype

When three loci are considered jointly, the method is called three-point analysis.
Theory developed for three-point analysis applies to arbitrary number of loci.
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36 4 Multipoint Analysis of Mendelian Loci

4.1.1 BC Design

Let ABC be three ordered loci on the same chromosome with pairwise recombination
fractions denoted by rAB , rBC , and rAC . We can imagine that these loci form a
Markov chain as either A �! B �! C or A � B � C. The direction is arbitrary.
Each locus represents a discrete variable with two or more distinct values (states).
For an individual from a BC population, each locus takes one of two possible
genotypes and thus two states. Let A1A1 and A1A2 be the two possible genotypes
for locus A, B1B1 and B1B2 be the two possible genotypes for locus B, and C1C1

and C1C2 be the two possible genotypes for locus C. For convenience, each state
is assigned a numerical value. For example, A D 1 or A D 2 indicates that an
individual takes genotype A1A1 or A1A2. Let us take A �! B �! C as the Markov
chain; the joint distribution of the three-locus genotype is

Pr.A; B; C / D Pr.A/ Pr.BjA/ Pr.C jB/; (4.1)

where Pr.A D 1/ D Pr.A D 2/ D 1
2

assuming that there is no segregation
distortion. The conditional probabilities, Pr.BjA/ and Pr.C jB/, are called the
transition probabilities between loci A and B and between loci B and C, respectively.
The transition probabilities depend on the genotypes of the two loci and the
recombination fractions between the two loci. These transition probabilities can be
found from the following 2 � 2 transition matrix:

TAB D
�

Pr.B D 1jA D 1/ Pr.B D 2jA D 1/

Pr.B D 1jA D 2/ Pr.B D 2jA D 2/

�
: (4.2)

Because Pr.B D 1jA D 1/ D Pr.B D 2jA D 2/ D 1 � rAB represents the
probability of no recombination between the two loci and Pr.B D 2jA D 1/ D
Pr.B D 1jA D 2/ D rAB represents the probability of recombination between the
two loci, the exact form of the transition matrix between loci A and B is

TAB D
�

TAB.1; 1/ TAB.1; 2/

TAB.2; 1/ TAB.2; 2/

�
D

�
1 � rAB rAB

rAB 1 � rAB

�
; (4.3)

where TAB.k; l/ 8k; l D 1; 2 denotes the kth row and the l th column of matrix
TAB . It is now obvious that TAB.k; l/ D Pr.B D l jA D k/. Note that we have used
a special notation “8k; l D 1; 2” to indicate that k and l each takes a value from 1

to 2. Verbally, “8k; l D 1; 2” means “for all k D 1; 2 and l D 1; 2”. When using
this kind of notation, we should particularly pay attention to the positions of k and
l in TAB.k; l/ D Pr.B D l jA D k/. It is a conditional probability that B D l given
A D k. Replacing the conditional probabilities by the elements of the transition
matrix, we rewrite the joint probability of the three-locus genotype as

Pr.A; B; C / D 1

2
TAB.A; B/TBC .B; C /: (4.4)
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For example, the probability that A D 1, B D 2, and C D 2 is

Pr.A D 1; B D 2; C D 2/ D 1

2
TAB.1; 2/TBC .2; 2/ D 1

2
rAB.1 � rBC /:

This joint probability can be written in matrix notation. Let us use a 2 � 2 diagonal
matrix DA to denote the genotype of locus A. This matrix is defined as

DA D
�

1 0

0 0

�
for A D 1 and DA D

�
0 0

0 1

�
for A D 2:

Diagonal matrices DB and DC are defined similarly for loci B and C, respectively.
The original data are in the form of genotype indicator variables, A, B , and C , but
the new form of the data is represented by the diagonal matrices. Let us define a
2 � 1 unity vector by J D Œ1 1�0. The joint distribution given in (4.4) is rewritten
in matrix notation as

Pr.A; B; C / D 1

2
J 0DATABDBTBC DC J: (4.5)

One can verify that

Pr.A D 1; B D 2; C D 2/

D 1

2

h
1 1

i "
1 0

0 0

# "
1 � rAB rAB

rAB 1 � rAB

# "
0 0

0 1

# "
1 � rBC rBC

rBC 1 � rBC

# "
0 0

0 1

# "
1

1

#

D 1

2
rAB .1� rBC /:

4.1.2 F2 Design

Taking into consideration the order of the two alleles carried by an F2 individual,
we have four possible genotypes: A1A1; A1A2; A2A1, and A2A2. The first and
the last genotypes are homozygotes, while the second and third genotypes are
heterozygotes. The two forms of heterozygote represent two different origins of the
alleles. They are indistinguishable from each other. Therefore, we adopt a special
notation, .A1A2/, to denote the unordered heterozygote. The alleles and genotypes
for the other loci are expressed using similar notation. Let A D k;8k D 1; : : : ; 4

be an indicator variable to indicate the four genotypes of locus A. Variables B
and C are similarly defined for loci B and C, respectively. The joint probability
of the three-locus genotype is Pr.A; B; C / D Pr.A/ Pr.BjA/ Pr.C jB/ where
Pr.ADk/D 1

4
;8k D 1; : : : ; 4. Pr.BjA/ and Pr.C jB/ are the transition probabilities
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from locus A to locus B and from locus B to locus C, respectively. The transition
probabilities from locus A to locus B can be found from the following 4�4 transition
matrix:

TAB D

2
664

.1 � rAB/2 .1 � rAB/rAB rAB.1 � rAB/ r2
AB

.1 � rAB/rAB .1 � rAB/2 r2
AB rAB.1 � rAB/

rAB.1 � rAB/ r2
AB .1 � rAB/2 1 � rAB/rAB

r2
AB rAB.1 � rAB/ 1 � rAB/rAB .1 � rAB/2

3
775 : (4.6)

The transition matrix from locus B to locus C is denoted by TBC , which is equivalent
to matrix (4.6) except that the subscript AB is replaced by subscript BC .

Note that this transition matrix is obtained by the Kronecker square (denoted by
a superscript Œ2�) of a 2 � 2 transition matrix,

HAB D
�

1 � rAB rAB

rAB 1 � rAB

�
; (4.7)

that is,

TAB D
�

1 � rAB rAB

rAB 1 � rAB

�Œ2�

D
�

1 � rAB rAB

rAB 1 � rAB

�
˝

�
1 � rAB rAB

rAB 1 � rAB

�
:

The 4�4 transition matrix (4.6) may be called the zygotic transition matrix, and the
2 � 2 transition matrix (4.7) may be called the gametic transition matrix. That the
zygotic transition matrix is the Kronecker square of the gametic transition matrix is
very intuitive because a zygote is the product of two gametes. Let TAB.k; l/ be the
kth row and the l th column of the 4 � 4 transition matrix TAB , 8k; l D 1; : : : ; 4.
The joint probability of the three-locus genotype is expressed as

Pr.A; B; C / D 1

4
TAB.A; B/TBC .B; C /: (4.8)

For example, the joint three-locus genotype A1A1B1B2C2C1 is numerically coded
as A D 1, B D 2, and C D 3, whose probability is

Pr.A D 1; B D 2; C D 3/ D 1

4
TAB.1; 2/TBC .2; 3/ D 1

4
.1� rAB/rABr2

BC :

In practice, people will never observe a three-locus genotype like A1A1B1B2C2C1

because the two forms of the heterozygote are not distinguishable. The joint three-
locus genotype A1A1.B1B2/.C1C2/ is actually what we can observe. The numerical
code for the first locus is A D 1, but the codes for loci B and C are ambiguous.
For example, locus B can be coded as either B D 2 or B D 3 with an equal
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P1
(A1|A1)

F1
(A1|A2)

F1
(A3|A4)

FW
(A1|A3) (A1|A4) (A2|A3) (A2|A4)

P2
(A2|A2)

P3
(A3|A3)

P4
(A4|A4)

Fig. 4.1 Four-way (FW)
cross mating design

probability. This ambiguous situation is denoted by B D .2; 3/. Similar notation
applies to locus C as C D .2; 3/. The joint distribution for A1A1.B1B2/.C1C2/ is

PrŒA D 1; B D .2; 3/; C D .2; 3/� D 1

4

3X
kD2

"
TAB.1; k/

3X
lD2

TBC .k; l/

#

D 1

2
rAB.1 � rAB/Œr2

BC C .1 � rBC /2�:

Again, the joint distribution of the three-locus genotype (4.8) can be expressed
in matrix notation. We now use a 4 � 4 diagonal matrix to denote the genotype of a
locus. For locus A, this diagonal matrix is defined as

DA D

2
664

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
775 ; DA D

2
664

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3
775 and DA D

2
664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

3
775 ;

for A D 1; A D .2; 3/ and A D 4, respectively. Verbally, matrix DA is a diagonal
matrix with unity values for the diagonal elements corresponding to the positions
pointed by the value of A. Having defined these diagonal matrices for all loci, we
can rewrite the joint distribution of the three-locus genotype as

Pr.A; B; C / D 1

4
J 0DATABDBTBC DC J; (4.9)

where J is now a 4�1 vector of unity, rather than a 2�1 vector as in the BC design
(Fig. 2.1).
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4.1.3 Four-Way Cross Design

A four-way cross design involves two different crosses and four different inbred
parents. Let F.12/

1 be the hybrid progeny derived from the cross of P1 and P2 and

F.34/
1 be the progeny derived from the cross of P3 and P4. The cross between F.12/

1 and

F.34/
1 is called the four-way cross. Such a design is called the four-way cross design

(FW) as illustrated in Fig. 4.1. Let AkAkBkBkCkCk be the three-locus genotype
for the k parent, 8k D 1; : : : ; 4. The three-locus genotypes for F.12/

1 and F.34/
1

are A1A2B1B2C1C2 and A3A4B3B4C3C4, respectively. Consider a single locus, say
locus A. An FW progeny can take one of the four genotype: A1A3; A1A4; A2A3,
and A3A4. Let A D 1; : : : ; 4 denote the numerical code for each of the four
genotypes. The joint three-locus genotype is still expressed by (4.9) with the same
transition matrices as defined earlier in the F2 design. The diagonal matrices, DA,
DB , and DC , are defined similarly to those in the F2 design except that the second
and third genotypes are distinguishable. The numerical code of A D k is translated
into a DA matrix whose elements are all zero except that the kth row and the kth
column are unity. For example, the joint probability that A D 3, B D 1, and C D 4

is

Pr.A D 3; B D 1; C D 4/ D 1

4
J 0DATABDBTBC DC J

D 1

4
TAB.3; 1/TBC .1; 4/

D 1

4
rAB.1 � rAB/r2

BC :

4.2 Incomplete Genotype Information

4.2.1 Partially Informative Genotype

The FW cross design described earlier represents a situation where all the four
genotypes in the progeny are distinguishable. In reality, it is often that not
all genotypes are distinguishable. This may happen when two or more of the
grandparents carry the same allele at the locus of interest. The consequence is
that the F1 hybrid initiated by the first level of the cross may be homozygous
or the two F1 parents may have the same genotype. Assume that F

.34/
1 has a

genotype of A3A3, which is homozygous. This may be caused by a cross between
two parents, both of which are fixed at A3 allele. Regardless of the reason that
causes the homozygosity of the F1 hybrid, let us focus on the genotypes of the
two F1 parents and consider the four possible genotypes of the FW progeny.
Assume that F

.12/
1 and F

.34/
1 have genotypes of A1A2 and A3A3, respectively.
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The four possible genotypes of the progeny are A1A3, A1A3, A2A3, and A2A3.
The first and the second genotypes are not distinguishable, although the A3 allele
carried by the two genotypes has different origins. This situation applies to the
third and fourth genotypes. Considering the allelic origins, we have four ordered
genotypes, but we only observe two distinguishable genotypes. This phenomenon is
called incomplete information for the genotype. Such a genotype is called partially
informative genotype. If we observe a genotype A1A3, the numerical code for the
genotype is A D .1; 2/. In matrix notation, it is represented by

DA D

2
664

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3
775 :

If an observed genotype is A2A3, the numerical code becomes A D .3; 4/,
represented by

DA D

2
664

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

3
775 :

If both parents are homozygous and fixed to the same allele, say A1, then all the four
genotypes of the progeny have the same observed form, A1A1. The numerical code
for the genotype is A D .1; 2; 3; 4/, a situation called no information. Such a locus
is called uninformative locus and usually excluded from the analysis. The diagonal
matrix representing the genotype is simply a 4 � 4 identity matrix.

The following is an example showing how to calculate the three-locus joint
genotype using the FW cross approach with partial information. Let A1A3B2B3C1C1

and A4A4B2B3C1C2 be the three-locus genotypes for two parents. The link-
age phases of markers in the parents are assumed to be known so that the order of the
two alleles within a locus is meaningful. In fact, the phase-known genotypes of the
parents are better denoted by A1B2C1

A3B3C1
and A4B2C1

A4B3C2
, respectively, for the two parents.

Assume that a progeny has a genotype of A3A4B2B2C1C1. We want to calculate
the probability of observing such a progeny given the genotypes of the parents.
First, we examine each single-locus genotype to see which one of the four possible
genotypes this individual belongs to. For locus A, the parental genotypes are A1A2

and A4A4. The four possible genotypes of a progeny are A1A4, A1A4, A3A4, and
A3A4, respectively. The single-locus genotype of the progeny is A3A4, matching the
third and fourth genotypes, and thus A D .3; 4/. For locus B, the parental genotypes
are B2B3 and B2B3. The four possible genotypes of a progeny are B2B2, B2B3,
B3B2, and B3B3, respectively. The single-locus genotype B2B2 for the progeny
matches the first genotype and thus B D 1. For locus C, the parental genotypes are
C1C1 and C1C2. The four possible genotypes of a progeny are C1C1, C1C2, C1C1,
and C1C2, respectively. The single-locus genotype of the progeny C1C1 matches the
first and the third genotypes and thus C D .1; 3/. In summary, the numerical codes
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for the three loci are A D .3; 4/, B D 1, and C D .1; 3/, respectively. We now
convert the three single-locus genotypes into their corresponding diagonal matrices,

DA D

2
664

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

3
775 ; DB D

2
664

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
775 and DC D

2
664

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
775 :

Substituting these matrices into (4.9), we have

PrŒA D .3; 4/; B D 1; C D .1; 3/� D 1

4
J 0DATABDBTBC DC J

D 1

4
ŒTAB .3; 1/C TAB .4; 1/�ŒTBC .1; 1/C TBC .1; 3/�

D 1

4
rAB .1 � rBC /

4.2.2 BC and F2 Are Special Cases of FW

The four-way cross design is a general design where the BC and F2 designs are
special cases of the general design with partial information. For example, the two
parents of the BC1 design have genotypes of A1A2 and A1A1, respectively. If we
treat a BC progeny as a special FW progeny, the four possible genotypes are A1A1,
A1A1, A2A1, and A2A1, only two distinguishable observed types. If a progeny has a
genotype A1A1, the numerical code of the genotype in terms of an FW cross is A D
.1; 2/. If a progeny has a genotype of A2A1, its numerical codes become A D .3; 4/.
The two parents of a BC0

1 design have genotypes of A1A2 and A2A2, respectively.
In terms of an FW cross, the four possible genotypes are A1A2; A1A2; A2A2, and
A2A2. Again, there are only two distinguishable genotypes. The two parents of an
F2 design have genotypes of A1A2 and A1A2, respectively. If we treat an F2 progeny
as a special FW progeny, the four possible genotypes are A1A1; A1A2, A2A1, and
A2A2, only three distinguishable genotypes. The numerical codes for the two types
of homozygote are A D 1 and A D 4, respectively, whereas the numerical code for
the heterozygote is A D .2; 3/. In summary, when the general FW design is applied
to a BC design, only two of the four possible genotypes are distinguishable, and the
numerical codes are A D .1; 2/ for one observed genotype and A D .3; 4/ for the
other observed genotype. When the general FW design is applied to the F2 design,
the two forms of heterozygote are not distinguishable. When coding the genotype,
we use A D .2; 3/ to represent the heterozygote and A D 1 and A D 4 to represent
the two types of homozygote, respectively. The transition matrices remain the same
as those used in an FW cross design.
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We have learned the BC design in Sec. 4.1.1 using the 2 � 2 transition matrix.
When using the FW design for the BC problem, we have combined the first and
second genotypes to form the first observable genotype and combined the third and
fourth genotypes to form the second observable genotype for the BC design. It can
be shown that the joint probability calculated by the Markov chain with two states
(using the 2�2 transition matrix) and that calculated by the Markov chain with four
states (the 4 � 4 transition matrix) are identical.

The F2 design we learned earlier can be handled by combining the second and
third genotypes into the observed heterozygote. The 4 � 4 transition matrix is
converted into a 3 � 3 transition matrix,

TAB D
2
4 .1� rAB/2 2.1� rAB/rAB r2

AB

.1 � rAB/rAB r2
AB C .1 � rAB/2 .1 � rAB/rAB

r2
AB 2.1� rAB/rAB .1� rAB/2

3
5 :

The joint probability of multiple-locus genotype for an F2 individual can be
calculated using a Markov chain with the 3�3 transition matrix. The numerical code
for a genotype must be redefined in the following way. The three defined genotypes,
A1A1; A1A2, and A2A2, are numerically coded by A D 1; A D 2, and A D 3, re-
spectively.
In matrix notation, the three genotypes are denoted by

DA D
2
4 1 0 0

0 0 0

0 0 0

3
5 ; DA D

2
4 0 0 0

0 1 0

0 0 0

3
5 and DA D

2
4 0 0 0

0 0 0

0 0 1

3
5 ;

respectively.
The general FW design using a Markov chain with four states is computationally

more intensive when applied to BC and F2 designs compared to the specialized
BC (with 2 � 2 transition matrix) and F2 (with 3 � 3 transition matrix) algorithm.
However, the difference in computing times is probably unnoticeable given the
current computing power. In addition, the 3�3 transition matrix is not symmetrical,
a factor that may easily cause a programming error. Therefore, the general FW
design is recommended for all line crossing experiments.

4.2.3 Dominance and Missing Markers

A dominance marker is a type of marker whose heterozygous genotype cannot
be distinguished from one of the two homozygous genotypes. Therefore, dominance
markers cannot be used in a BC design. However, partial information can be
extracted from dominance markers in an F2 design. Consider locus A with four
possible genotypes in an F2 population under a biallelic system, alleles A1 vs A2.
The four ordered genotypes are A1A1, A1A2, A2A1, and A2A2. Dominance can be
found in two directions. If A1 is dominant over A2, we cannot distinguish the three
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genotypes, A1A1, A1A2, and A2A1. If A2 is dominant over A1, however, we cannot
distinguish the three genotypes, A1A2, A2A1, and A2A2. Therefore, we can only
observe two possible genotypes for a particular locus. The two possible genotypes
are represented by A1A� and A2A2 if A1 dominates over A2, or A2A� and A1A1 if
A2 dominates over A1. Allele A� is a wild card and can be either A1 or A2. When A1

dominates over A2, we use A D .1; 2; 3/ to code genotype A1A� and A D 4 to code
genotype A2A2. If A2 dominates over A1, we use A D 1 to code genotype A1A1 and
A D .2; 3; 4/ to code genotype A2A�. The numerical code for each locus is then
converted into an appropriate diagonal matrix, DA; DB , or DC , for calculating the
joint probability of a joint three-locus genotype.

If the genotype for a locus, say locus A, is missing, the numerical code for the
locus is A D .1; 2; 3; 4/, and the corresponding diagonal matrix DA is simply a 4�4

identity matrix. Missing marker genotypes are treated the same way as genotypes of
uninformative loci.

4.3 Conditional Probability of a Missing Marker Genotype

An important application of the three-point analysis to genetic mapping is to
calculate the probability of genotype of a locus conditional on genotypes of flanking
markers. Note that flanking markers are the two nearby markers of a locus, one in
each side. Consider three loci, ABC, where A and C are two markers with known
genotypes and B is a locus whose genotype is not observable. The conditional
probability of genotype of locus B is

Pr.BjA; C / D Pr.A; B; C /

Pr.A; C /
: (4.10)

The joint probability of the three-locus genotype in the numerator can be rewritten as

Pr.A; B; C / D Pr.B/ Pr.A; C jB/ D Pr.B/ Pr.AjB/ Pr.C jB/:

We are able to write Pr.A; C jB/ D Pr.AjB/ Pr.C jB/ because conditional on the
genotype of B, the genotypes of A and C are independent due to the Markovian
property of Mendelian loci. The joint probability of the two-locus genotype in the
denominator of (4.10) is expressed as

Pr.A; C / D
4X

BD1

Pr.A; B; C / D
4X

BD1

Pr.B/ Pr.AjB/ Pr.C jB/:

Eventually, the conditional probability is expressed as

Pr.BjA; C / D Pr.B/ Pr.AjB/ Pr.C jB/P4
BD1 Pr.B/ Pr.AjB/ Pr.C jB/

(4.11)
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We realize that Pr.AjB/ and Pr.C jB/ are the transition probabilities and
Pr.B D k/ D 1

4
; 8k D 1; : : : ; 4; is the marginal probability. The conditional

probability expressed this way (4.11) is an expression of Bayes’ theorem.
We now use matrix notation to express the conditional probability. Assume that

we want to calculate Pr.B D kjA; C /;8k D 1; : : : ; 4, where the genotypes of loci
A and C are known and represented by matrices DA and DC . Since marker B is
treated as a missing marker, its genotype is represented by DB D I4�4, an identity
matrix. The matrix version of the numerator of (4.11) is

Pr.B D k/ Pr.AjB D k/jPr.C jB D k/ D 1

4
J 0DATABD.k/TBC DC J; (4.12)

where D.k/ is a diagonal matrix with all elements equal to zero except the element
at the kth row and the kth column, which is unity. The matrix expression of the
denominator of (4.11) is

4X
BD1

Pr.B D k/ Pr.AjB D k/jPr.C jB D k/ D 1

4
J 0DATABDBTBC DC J: (4.13)

Therefore, the matrix expression of the conditional probability is

Pr.B D kjA; C / D J 0DATABD.k/TBC DC J

J 0DATABDBTBC DC J
: (4.14)

We now use an F2 progeny as an example to show how to calculate the
conditional probabilities of a locus given genotypes of the flanking markers. Let
A1A1 and .C1C2/ be the genotypes of loci A and C, respectively. Recall that .C1C2/

means that locus C is heterozygous, which has two forms, C1C2 and C2C1. We
want to calculate the conditional probability that locus B is B1B1. The numerical
codes for the genotypes of A and C are A D 1 and C D .2; 3/, respectively, which
are translated into matrices of DA D D.1/ and DC D D.2/ C D.3/, respectively.
Let DB D I4�4 because locus B is a missing marker. The numerator and the
denominator of the conditional probability are

J 0DATABD.1/TBC DC J D TAB.1; 1/.TBC .1; 2/C TBC .1; 3//

D 2.1� rAB/2rBC .1 � rBC /

and

J 0DATABDBTBC DC J D
4X

kD1

TAB.1; k/.TBC .k; 2/C TBC .k; 3//

D 2rAC .1 � rAC /
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respectively. Therefore, the conditional probability is

PrŒB D 1jA D 1; C D .2; 3/� D 2.1 � rAB/2rBC .1 � rBC /

2rAC .1 � rAC /

D .1 � rAB/2rBC .1 � rBC /

rAC .1 � rAC /

where

rAC D rAB.1 � rBC /C rBC .1� rAB/

For the same genotypes of marker A and C, what is the conditional probability
that marker B is heterozygous? This probability is represented by

PrŒB D .2; 3/jA D 1; C D .2; 3/� D J 0DATAB.D.2/ CD.3//TBC DC J

J 0DATABDBTBC DC J

4.4 Joint Estimation of Recombination Fractions

The three-locus genotype distribution can be used to estimate rAB and rBC jointly.
Again, let ABC be the three ordered loci under consideration. Assume that we have
collected n progeny from a line cross family. The family can be a BC, an F2, or an
FW, but all represented by the generalized FW family so that the 4 � 4 transition
matrix between consecutive markers applies to all designs. Let Ai be the numerical
code for the genotype of individual i at locus A, 8i D 1; : : : ; n, where Ai can take
a subset of f1; 2; 3; 4g, depending on the actual genotype of individual i . The three-
locus genotype is denoted by Ai Bi C i . The corresponding diagonal matrices for the
individual locus genotypes are denoted by Di

A, Di
B , and Di

C , respectively. The joint
three-locus genotype for individual i is

Pr.Ai Bi C i/ / J 0Di
ATABDi

BTBC Di
C J: (4.15)

The equal sign is replaced by the sign of “proportional to” because the expression
in the right-hand side of the equation differs from that in the left-hand side by
a constant factor ( 1

4
). The log likelihood function of the recombination fractions

established from all the n individuals is

L.rAB; rBC / D
nX

iD1

ln.J 0Di
ATABDi

BTBC Di
C J /: (4.16)

Explicit solutions for the ML estimates of the recombination fractions are
possible if there are no missing genotypes of the markers. In this case, the above
log likelihood function can be rewritten as
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L.rAB; rBC / D
nX

iD1

ln TAB.Ai ; Bi /C
nX

iD1

ln TBC .Bi ; Ci/: (4.17)

The first term is simply a function of rAB , and the second term is a function of
rBC , which are denoted by L.rAB/ and L.rBC /, respectively. Therefore, the log
likelihood function for the three-point analysis is simply the sum of the two pairwise
log likelihood functions,

L.rAB; rBC / D L.rAB/C L.rBC /: (4.18)

As a consequence, the three-point analysis provides identical results for the
estimated recombination fractions as the pairwise analysis. Therefore, when mark-
ers are all fully informative, there is no reason to invoke the three-point analysis.
The three-point analysis, however, can extract additional information from the
data if partially informative markers are present or there are missing marker
genotypes. One reason for the increased efficiency of the three-point analysis is
the incorporation of the marker order. For the pairwise analysis of three markers,
one would have to estimate rAC also from the same data. However, the three-
point analysis treats the estimated rAC as a function of the other two recombination
fractions, i.e., OrAC D OrABC OrBC �2 OrAB OrBC . Therefore, information about the order
of the three markers has been incorporated implicitly in the three-point analysis.

In general, there is no explicit solution for the joint estimate of the two
recombination fractions, unless all markers are fully informative and there are no
missing marker genotypes. A general numerical algorithm, e.g., the simplex method
of Nelder and Mead (1965), can be adopted here to search for the MLE of the
parameters. For problems with two clearly bounded parameters, such as this one
with .0 < rAB; rBC < 0:5/, we may even use the simple grid search algorithm,
which guarantees that the global optimal solutions for the parameters are obtained.

4.5 Multipoint Analysis for m Markers

We have just learned the three-point analysis (m D 3) as a special case of the general
multipoint analysis. We now extend the methods to situations where m > 3. Let us
use j D 1; : : : ; m to index the locus. We now have m�1 consecutive recombination
fractions and thus m � 1 transition matrices. The recombination fraction between
loci j and j C 1 is denoted by rj.j C1/, and the corresponding transition matrix is
denoted by Tj.j C1/. Let Dj be the diagonal matrix for the genotype of locus j .
We now use Gj D k;8k D 1; : : : ; 4, to denote the numerical code for the genotype
of the j th locus. Recall that there are four possible genotypes for the generalized
four-way cross design. Again, Dj is a matrix version of the numerical code for the
genotype of locus j with Dj D D.k/ for Gj D k. For an ambiguous genotype like
Gj D .2; 3/ or Gj D .1; 2; 3; 4/, the corresponding diagonal matrix is denoted by
Dj D D.2/ CD.3/ or Dj D D.1/ CD.2/ CD.3/ CD.4/ D I4�4, respectively.
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We now discuss the joint distribution for the m locus genotype, the conditional
distribution of a missing marker genotype given the observed genotypes of m � 1

markers, and the log likelihood function for jointly estimating m� 1 recombination
fractions using m markers. The joint distribution of the m locus genotype is
denoted by

Pr.G1; G2; : : : ; Gm/ D 1

4
J 0D1T12D2 : : : T.j �1/j Dj Tj.j C1/ : : : Dm�1T.m�1/mDmJ:

(4.19)

Assume that the genotype of the j th marker is missing. The conditioning probability
of Gj D k given the genotypes of all the m � 1 markers is

Pr.Gj D kjG1; : : : ; Gm/

D J 0D1T12D2 : : : T.j �1/j D.k/Tj.j C1/ : : : Dm�1T.m�1/mDmJ

J 0D1T12D2 : : : T.j �1/j Dj Tj.j C1/ : : : Dm�1T.m�1/mDmJ
: (4.20)

Recall that Dj D I4�4 because j is the missing marker. The probability that Gj D
.2; 3/ is simply obtained by substituting D.k/ in the numerator of the above equation
by D.2/ CD.3/. Let Di

j be the matrix representation of Gj for individual i for i D
1; : : : ; n. The log likelihood function for estimating � D fr12; r23; : : : ; r.m�1/mg is

L.�/ D
nX

iD1

ln J 0Di
1T12D

i
2 : : : T.j �1/j Di

j Tj.j C1/ : : : Di
m�1T.m�1/mDi

mJ: (4.21)

One property of the multipoint analysis is that

Pr.Gj D kjG1; : : : ; Gm/ D Pr.Gj D kjGj �1; Gj C1/; (4.22)

if markers j � 1 and j C 1 are fully informative. Verbally, this property is stated as
“the genotype of a marker only depends on the genotypes of the flanking markers.”
This can be proved by the following argument. If loci j � 1 and j C 1 are fully
informative, the numerator of (4.20) can be rewritten as

Hl � .J 0Dj �1T.j �1/j D.k/Tj.j C1/Dj C1J / �Hr (4.23)

and the denominator of (4.20) can be rewritten as

Hl � .J 0Dj �1T.j �1/j Dj Tj.j C1/Dj C1J / �Hr; (4.24)

where

Hl D J 0D1T12D2 : : : Dj �1J
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and
Hr D J 0Dj C1 : : : Dm�1T.m�1/mDmJ:

Note that Hl and Hr are scalars and they appear in both the numerator and the
denominator. Therefore, they are canceled out in the conditional probability, leaving

Pr.Gj D kjG1; : : : ; Gm/ D Hl � .J 0Dj �1T.j �1/j D.k/Tj.j C1/Dj C1J / �Hr

Hl � .J 0Dj �1T.j �1/j Dj Tj.j C1/Dj C1J / �Hr

D J 0Dj �1T.j �1/j D.k/Tj.j C1/Dj C1J

J 0Dj �1T.j �1/j Dj Tj.j C1/Dj C1J

D Pr.Gj D kjGj �1; Gj C1/; (4.25)

which is the conditional probability we have learned in the three-point analysis.

4.6 Map Construction with Unknown Recombination
Fractions

The multipoint analysis described so far has only been used when the order of the
markers is known, in which only m � 1 recombination fractions are estimated.
Recombination fractions between nonconsecutive markers are irrelevant and thus
are not estimated. The recombination fraction between any two nonconsecutive
markers can be obtained using Haldane map function if such information is required.
Taking the map ABCD for example, the multipoint analysis only provides estimates
for rAB , rBC , and rCD . One can obtain the remaining three recombination fractions
by rAC D rAB C rBC � 2rABrBC , rAD D rAC C rCD � 2rAC rCD, and rBD D
rBC C rCD � 2rBC rCD . Alternatively, one may convert the recombination fractions
into additive distances and join the additive distances to make an additive map, from
which all pairwise recombination fractions can be calculated using the Haldane map
function.

For those understudied species, marker orders may be unknown. The multipoint
method provides a mechanism to order markers and estimate recombination frac-
tions simultaneously. The marker order and the estimated recombination fractions
under that order should be the joint ML estimates if such an order and the estimated
recombination fractions under that order generate the maximum likelihood value
compared to all other orders.
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