
Chapter 3
Genetic Map Construction

Gene loci are grouped into different chromosomes. Within the same chromosome,
the loci are linearly arranged because the chromosome is a string-like structure.
The distribution of loci among chromosomes and the order of loci within chro-
mosomes are called the genetic map. The data used to construct the genetic map
are the genotypes of these loci. From the genotypic data, we can estimate all
pairwise recombination fractions. These estimated recombination fractions are used
to construct the linkage map. Construction of the genetic map may be better called
reconstruction of genetic map because the true genetic map is already present and
we simply do not know about it. This is similar to the situation where phylogeny
construction is more often called phylogeny reconstruction because we are not
constructing the phylogeny of species; rather, we infer the existing phylogeny using
observed data. Of course, the inferred map may not be the true one if the sample
size is not sufficiently large. Map construction is the first step toward gene mapping
(locating functional genes). There are two steps in genetic map construction. The
first step is to classify markers into linkage groups according to the pairwise LOD
scores or the likelihood ratio test statistics. A convenient rule is that all markers
with pairwise LOD scores greater than 3 are classified into the same linkage group.
A more efficient grouping rule may be chosen using a combination of LOD score
and the recombination fraction. For example, loci A and B may be grouped together
if LODAB > 3 and rAB < 0:45. Grouping markers into the same linkage group
is straightforward, and no additional technique is required other than comparing the
LOD score of each pair of markers to a predetermined LOD criterion. If we choose a
more stringent criterion, some markers may not be assigned into any linkage groups.
These markers are called satellite markers. On the other hand, if we choose a less
stringent criterion, markers on different chromosomes may be assigned into the
same linkage group. The second step of genetic mapping is to find the optimal orders
of the markers within the same linkage groups. In this chapter, we only discuss the
second step of map construction.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 3,
© Springer Science+Business Media, LLC 2013

23



24 3 Genetic Map Construction

3.1 Criteria of Optimality

Given the estimated pairwise recombination fractions for m loci on the same linkage
group, we want to find the optimal order of the loci. There are mŠ=2 possible ways to
arrange the m loci. The factorial of m gives the total number of permutations of all
m loci. However, the orientation of a linkage map is irrelevant. For instance, ABC
and CBA are considered the same order for loci A, B, and C, as far as the relative
positions of the loci are concerned.

We will first define a criterion of “optimality” and then select the particular
order that minimizes or maximizes the criterion. The simplest and also the most
commonly used criterion is the sum of adjacent recombination coefficients .sar/.
The criterion is defined as

sar D
m�1X

iD1

Ori.iC1/ (3.1)

where Ori.iC1/ is the recombination fraction between loci i and i C 1 for i D
1; : : : ; m � 1, where i and i C 1 are two adjacent loci. For m loci, there are
m � 1 adjacent recombination fractions. If there is no estimation error for each
of the adjacent recombination fraction, the true sar should have the minimum value
compared with any other orders. Consider the following example of three loci with
the correct order of ABC. The sar value for this correct order is

sarABC D rAB C rBC (3.2)

If we evaluate an alternative order, say ACB, we found that

sarACB D rAC C rBC (3.3)

Remember that the true order is ABC so that rAC D rAB CrBC �2rABrBC assuming
that there is no interference. Substituting rAC into the above equation, we get

sarACB D rAB C rBC � 2rABrBC C rBC

D rAB C rBC C rBC .1 � 2rAB/ (3.4)

Because rBC .1 � 2rAB/ � 0, we conclude that sarACB � sarABC . In reality,
we always use estimated recombination fractions, which are subject to estimation
errors, and thus the marker order with minimum sar may not be the true order.

Similar to sar , we may use sad (sum of adjacent distances) as the criterion,
which is defined as

sad D
m�1X

iD1

Oxi.iC1/ (3.5)

where Oxi.iC1/ is the estimated additive distance between loci i and i C 1 and is
converted from the estimated recombination fraction using either the Haldane or
Kosambi map function. Similar to the sar criterion, the order of loci that minimizes
sad is the optimal order.



3.2 Search Algorithms 25

The sum of adjacent likelihoods .sal/ is another criterion for map construction.
Note that the likelihood refers to the log likelihood. In contrast to sar , the
optimal order should be the one which maximizes sal . Define L.Ori.iC1// as the log
likelihood value for the recombination fraction between loci i and i C 1. The sal is
defined as

sal D
m�1X

iD1

L.Ori.iC1// (3.6)

Both sad and sal are additive, which is a property required by the branch and bound
algorithm for searching the optimal order of markers (see next section).

3.2 Search Algorithms

3.2.1 Exhaustive Search

Exhaustive search is an algorithm in which all possible orders are evaluated. As a
result, it guarantees to find the optimal order. Recall that for m loci, the total number
of orders to be evaluated is n D mŠ=2. The number of orders .n/ grows quickly as
m increases, as shown in the following table.

m n

2 1
3 3
4 12
5 60
6 360
7 2,520
8 20,160
9 181,440
10 1,814,400

The algorithm will use up the computing resource quickly as m increases.
Therefore, this algorithm is rarely used when m > 10. When writing the computer
code to evaluate the orders, we want to make sure that all possible orders are
evaluated. This can be done using the following approach. Assume that there are
five loci, denoted by A, B, C, D, and E, that need to be ordered. First, we arbitrarily
choose two loci, say A and B, to initiate the map. We then add locus C to the
existing map. There are three possible places where we can put C in the existing
map: CAB, ACB, and ABC. For each of the three orders of the three-locus map, we
add locus D. For example, to add locus D to the existing order ACB, we need to
evaluate the following four possible orders: DACB, ADCB, ACDB, and ACBD. We
then add locus E (the last locus) to each of the four orders of the four-locus map.



26 3 Genetic Map Construction

AB (0.10)

CAB (0.35) ACB (0.40) ABC(0.25)

DCAB (0.40)

CDAB (0.45)

CADB (0.75)

CABD (0.55)

EDCAB
DECAB
DCEAB
DCAEB
DCABE

ECDAB
CEDAB
CDEAB
CDAEB
CDABE

ECADB
CEADB
CAEDB
CADEB
CADBE

ECABD
CEABD
CAEBD
CABED
CABDE

DABC (0.55)

ADBC (0.65)

ABDC (0.35)

ABCD (0.30)

EDABC
DEABC
DAEBC
DABEC
DABCE

EADBC
AEDBC
ADEBC
ADBEC
ADBCE

EABDC
AEBDC
ABEDC
ABDEC
ABDCE

EABCD
AEBCD
ABECD
ABCED
ABCDE

DACB (0.70) ADCB (0.50)

ACDB (0.50) ACBD (0.60)

EDACB
DEACB
DAECB
DACEB
DACBE

EADCB
AEDCB
ADECB
ADCEB
ADCBE

EACDB
AECDB
ACEDB
ACDEB
ACDBE

EACBD
AECBD
ACEBD
ACBED
ACBDE

Fig. 3.1 All possible orders (60) of a map with five loci

For example, locus E can be added to the existing order DACB in five different
places, leading to EDACB, DEACB, DAECB, DACEB, and DACBE. We can see
that all the 3 � 4 � 5 D 5Š=2 D 60 possible orders have been evaluated so far
(see Fig. 3.1). This ends the exhaustive search.

3.2.2 Heuristic Search

When the number of loci is too large to permit the exhaustive search, the optimal
order can be sought via a heuristic approach that sacrifices the guarantee of
optimality in favor of the reduced computing time. With a heuristic search, one
starts with an arbitrary order and evaluates this particular order. The order is then



3.2 Search Algorithms 27

rearranged in a random fashion and reevaluated. If the new order is “better” than the
initial order, the new order is accepted. If the new order is “worse” than the initial
order, the initial order is kept. This completes one cycle of the search. The second
cycle of the search starts with a rearrangement of the order of the previous cycle.
The rearranged order is then accepted or rejected depending on whether or not
the value of the order has been improved. The process continues until no further
improvement is achieved for a certain number of consecutive cycles, e.g., 50 cycles.
This method is also called the greedy method because it is too greedy to “climb up”
the hill. It is likely to end up with a local optimum instead of a global one. Therefore,
there is no guarantee that the method finds the global optimal order.

The so-called random rearrangement may be conducted in several different ways.
One is called complete rearrangement or global rearrangement. This is done by
selecting a completely different order by random permutation. Information of the
previous order has no effect on the selection of the new order. This approach is
conceptually simple but may not be efficient. For example, if a previous order is
already close to the optimal one, a complete random rearrangement may be far
worse than this order, leading to many cycles of random rearrangements before an
improved order appears. The other way of rearranging the order is called partial
or local rearrangement. This is done by randomly rearranging a subset of the loci.
Let ms.2 � ms < m/ be the size of the subset. Although ms may be chosen in a
arbitrary fashion, ms D 3 may be a convenient choice. First, we randomly choose
a triplet from the m loci. We then rearrange the three loci within their existing
positions and leave the order of the remaining loci intact. There are 3Š D 6 possible
ways to rearrange the three loci, and all of them are evaluated. The best one of the
six is chosen as a candidate new order for reevaluation. If this new order is better
than the order in the previous cycle, the order is updated; otherwise, the previous
order is carried over to the next cycle.

The result of heuristic search depends on the initial order selected to start the
search. We will use the five-locus example to demonstrate a simple way to choose
the initial map order. Let A, B, C, D, and E be the five loci. We start with two
most closely linked loci, say loci A and D. We then add a third locus to the existing
two-locus map. The third locus is chosen such that it has the minimum average
recombination fractions from loci A and D. Assume that locus C satisfies this
criterion. We then add locus C to the existing map AD. There are three places where
locus C can be added: CAD, ACD, and ADC. Choose the best of the three orders as
the optimal map, say ACD. We then choose a next locus to add to the existing map
ACD, using the same criterion, i.e., minimum average recombination fractions from
loci A, C, and D. Assume that locus E satisfies this criterion. There are four places
that locus E can be inserted into the existing map ACD, which are EACD, AECD,
ACED, and ACDE. Assume that EACD is the best of the four orders. Finally, we
add locus B (the last locus) to the four-locus map. We evaluate all the five different
orders: BEACD, EBACD, EABCD, EACBD, and EACDB. Assume that BEACD is
the best of the five orders. This order (BEACD) can be used as the initial order to
start the heuristic search.



28 3 Genetic Map Construction

3.2.3 Simulated Annealing

Simulated annealing is a method which examines a much larger subset of the
possible orders. The method was developed to prevent the solution from being
trapped into a local optimum. Like the heuristic search, we start with an arbitrary
order and evaluate the order using sar, sad, or �sal as the criterion. Note that sal is
replaced by �sal because the method always searches for the minimum value of the
criterion. The score of the initial order is denoted by E0. The order is then subject to
local rearrangement in a random fashion. This involves Monte Carlo simulation for
the order. Note that the rearrangement should be local rather than global. Assume
that the score for the new order is E1. If the new order is “better” than the initial
order, i.e., E1 < E0, the new order is accepted. If the new order is “worse” than the
initial order, i.e., E1 > E0, it is accepted with a probability,

˛ D exp

�
�E1 � E0

kbT

�
(3.7)

where kb is a physical constant called Boltsman constant and T corresponds to the
temperature. Once the new order is accepted, we replace E0 by E1 and continue
the search for another order. This sampling strategy was proposed by Metropolis
et al. (1953) and thus also is referred to as the Metropolis algorithm. By trial and
error, it is found that kb D 0:95 usually works well. However, different values
should be chosen if kb D 0:95 does not. The value of the temperature T can be
chosen arbitrarily, say T D 2 or any other values. For m loci, 100m new orders
should be examined for each value of T , and then T should be changed to kbT

(the temperature has been lowered) at this point. With a pseudocode notation, the
change of temperature is expressed as T D kbT when the temperature is decided
to change. The algorithm stops after 100 rearrangements have failed to provide a
better order. When we write the computer code to simulate the event of accepting
or rejecting a new order, we do not care about whether E1 < E0 or E1 > E0. We
simply let the new order to be accepted with probability ˛, which is defined as

˛ D min

�
1; exp

�
�E1 � E0

kbT

��
(3.8)

If E1 < E0, i.e., the new order is better than the old order, ˛ D 1, meaning
that the new order is always accepted. If E1 > E0, then ˛ < 1; the probability of
accepting the new order is not 100 %. When the temperature T gets lower, it makes
the acceptance of a worse order harder. This can be shown by looking at the profile
of the acceptance probability as a function of the deviation of the new order E1 from
the current order E0 (see Fig. 3.2). The initial length of the map is E0 D 3. The new
length E1 ranges from 2 to 6. The Boltsman constant is kb D 0:95. The three lines
represent three different T values (T D 2; 0:5; 0:1). When E1 � E0, the probability
of acceptance is 1. After E1 passes E0 D 3 (E1 > E0), i.e., the new order is



3.2 Search Algorithms 29

E1

A
cc

ep
ta

nc
e 

pr
ob

ab
ili

ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T=2.0
T=0.5
T=0.1

Fig. 3.2 Change of
acceptance probability as E1

deviates from E0 D 3:0

worse than the current order, the acceptance probability starts to decrease but very
slowly for T D 2 (high temperature). As the temperature cools down (T D 0:5),
the acceptance probability decreases more sharply, meaning that it is hard to accept
a worse order. When T D 0:1, very low temperature, the acceptance probability
decreases very sharply, making the acceptance of a worse order extremely difficult.
In the end, only a better order gets accepted, and no worse order will be accepted.
This will end the search.

The intention of allowing a worse order to be accepted is to prevent the algorithm
from settling down at a local optimal order and ignoring a global optimum elsewhere
in the space of possible orders. Simulated annealing was set up in a language from
the observation that when liquids are cooled very slowly, they will crystallize in a
state of minimum energy (Metropolis et al. 1953).

3.2.4 Branch and Bound

The branch and bound method is often used in search for evolutionary trees (also
called phylogenies). The method was first developed by Land and Doig (1960).
It is adopted here to search for the optimal order of loci. This algorithm is not the
exhaustive search, but it guarantees to find the global optimum order. There will be
occasions when it would require examination of all orders, but generally, it requires
examination of only a small subset of all possible orders. The criterion of evaluation
must be “additive.” This property will make sure that the map length for a particular
order with k loci cannot be shortened by adding another locus to the existing map
of k loci. Both sad and �sal follow the additive rule and thus can be used as the
length of a map for the branch and bound search. However, sar cannot be used
here because it is not additive. Let us assume that there are four loci, ABCD, to be



30 3 Genetic Map Construction

ordered. Suppose that the first two loci to be considered are AB. The next locus C
can be inserted in one of three positions, corresponding to orders CAB, ACB, and
ABC, respectively. The fourth locus D can be inserted in four different positions
for each of the three-locus orders. There will be 4Š=2 D 12 possible orders after
locus D is inserted. In general, we start with two loci (one possible order) and insert
the third locus to the two-locus map (three possible places to insert the third locus).
When the i th locus .i D 3; : : : ; m/ is inserted into the map of i � 1 loci, there will
be i branch points (places) to insert the i th locus. Overall, there are 3�4�� � ��m D
.1 � 2 � 3 � 4 � � � � � m/=.1 � 2/ D mŠ=2 possible orders. This process is similar
to a tree growing process, as illustrated in Fig. 3.1 for the example of five loci,
except that this tree is drawn upside down with the root at the top. Each tip of the
tree represents a particular order of the map for all the m loci, called a child. Each
branch point represents an order with m�1 or a lower number of loci, called a parent.
The initial order of two loci is the root of the tree, called the ancestor. Each member
of the tree (including the ancestor, the parents, and the children) is associated with
an sad value, i.e., the length of the member.

If all the possible orders were evaluated, the method would be identical to the
exhaustive search. The branch and bound method, however, starts with an arbitrarily
chosen order of the m locus map (a child) and assigns the length of this order to E0,
called the upper bound. It is more efficient to select the shortest map order found
from a heuristic search as the initial upper bound. Once an upper bound is assigned,
it is immediately known that the optimal order cannot have a value greater than E0.
Let T0 be the map order for the selected child (the length has been chosen as the
upper bound). The branch and bound algorithm starts evaluating all the siblings of
T0. The upper bound will be replaced by the shortest length of the siblings in the
family if the current T0 is not the shortest one. Once all the siblings of the current
family are evaluated, we backtrack to the parent and evaluate all the siblings of the
parent (the uncles of T0). Remember that all members in the parental generation
have m � 1 loci. Any uncles whose scores are longer that E0 will be disqualified for
further evaluation because they will not produce children with scores shorter than
E0 due to the property that inserting additional loci cannot possibly decrease the
score. Therefore, we can dispense with the evaluation of all children that descend
from those disqualified uncles in the search and immediately backtrack and proceed
down a different path. Only uncles whose scores are shorter than E0 will be subject
to further evaluation. The upper bound will be updated if a shorter member is found
in the uncle’s families. Once all the uncles and their families are evaluated, we
backtrack to the great grandparent and the siblings of the grandparent and evaluate
the families of all the siblings of the grandparent. The process continues until all
qualified families have been evaluated. The upper bound E0 is constantly updated to
ensure that it holds the length of the shortest map order among the orders evaluated
so far. Constantly updating the upper bound is important, as it may enable other
search paths to be terminated more quickly.

The following example is used to demonstrate the branch and bound algorithm.
Let A, B, C, and D be four loci with unknown order. The recombination fractions are
stored in the upper triangular positions of the matrix given in Table 3.1. The additive



3.2 Search Algorithms 31

Table 3.1 Recombination fractions and additive distances for four
marker loci

A B C D

A rAB.0:0906/ rAC .0:1967/ rAD.0:2256/

B xAB.0:10/ rBC .0:1296/ rBD.0:1648/

C xAC .0:25/ xBC .0:15/ rCD.0:0476/

D xAD.0:30/ xBD.0:20/ xCD.0:05/

Table 3.2 The 12 possible
orders of a four locus map
and their sad scores

Order Map sad score

1 DCAB 0.40
2 CDAB 0.45
3 CADB 0.75
4 CABD 0.55
5 DACB 0.70
6 ADCB 0.50
7 ACDB 0.50
8 ACBD 0.60
9 DABC 0.55
10 ADBC 0.65
11 ABDC 0.35
12 ABCD 0.30

distances converted from the recombination fractions using the Haldane map
function are stored in the lower triangular positions of the matrix (Table 3.1). The
12 possible orders of the loci are given in Table 3.2 along with the sad score for
each order. For example, the sad score for order CABD is

sadDBAC D xBD C xAB C xAC D 0:20 C 0:10 C 0:25 D 0:55: (3.9)

From Table 3.2, we can see that the optimal order is order 12, i.e., ABCD, because
its sad score (0.30) is minimum among all other orders. This would be the result
of exhaustive search because we had evaluated all the 12 possible orders. Let us
pretend that we had not looked at Table 3.2 and we want to proceed with the branch
and bound method to search for the optimal order.

The entire tree of four loci is given in Fig. 3.3. Each child has four loci and
a length given in parentheses. Note that order ACBD has a length 0.60. The five
children of ACBD do not belong to this tree of four loci. They are presented here
to indicate that the tree of five loci can be expanded from the tree of four loci in
this way. A randomly selected order, say DCAB, is used as T0 whose sad score is
used as the upper bound, E0 D sadDCAB D 0:40. All the siblings of DCAB are
evaluated for the sad scores. It turns out that sadDCAB D 0:40 is the shortest order
in the family, and thus E0 cannot be improved. The search is backtracked to CAB
(the parent of DCAB), and the two siblings of the parent are evaluated, with scores
of sadACB D 0:40 and sadABC D 0:25. Because sadACB D sadDCAB D E0 D 0:40,



32 3 Genetic Map Construction

AB (0.10)

CAB (0.35) ACB (0.40) ABC (0.25)

(0.40) DCAB

(0.45) CDAB

(0.75) CADB

(0.55) CABD

DABC (0.40)

ADBC (0.45)

ABDC (0.75)

ABCD (0.55)

DACB
(0.70)

ADCB
(0.50)

ACDB
(0.50)

ACBD
(0.60)

EACBD AECBD ACEBD ACBED ACBDE

Fig. 3.3 All possible orders (12) of a map with four loci. The five-locus children of order ACBD
are also given to show that the tree can be expanded this way for more loci

it is concluded that the optimal order cannot occur in the “lineage” descending from
ACB because adding one more locus cannot possibly make the sad score shorter.
Therefore, only children of ABC are qualified for further evaluation. The shortest
order occurs in this family, and it is ABCD with sadABCD D 0:30. We only evaluate
two families out of three .2=3/ to find the optimal order by using the branch and
bound algorithm.

Let us use the sad of a different order as the upper bound to start the search and
show that the branch and bound algorithm may end up with evaluating all possible
orders. Assume that we choose the score of ACDB as the upper bound, i.e., E0 D
sadACDB D 0:50. We first evaluated all the siblings of ACDB and found that the
upper bound cannot be improved. We then backtracked to the parent of ACDB,
which is ACB. The parent has two siblings, CAB and ABC; both are shorter than
E0, and thus both should be further evaluated. However, which of the lineages is
evaluated first can make a difference regarding the efficiency of the search. Assume
that the lineage under CAB is evaluated first. This leads to an improved upper bound
E0 D sadDCAB D 0:40. This upper bound is identical to the length of the parent
of the family that we started the search. This family would not have been evaluated
if we had chosen E0 D 0:40 as the upper bound in the beginning. Unfortunately,



3.3 Bootstrap Confidence of a Map 33

it was too late that we had already evaluated this family. Since ABC is shorter than
E0 D 0:40, the lineage under ABC is subject to further evaluation. The shortest
order occurs in this lineage, which is ABCD with sadABCD D 0:30. All the 12
possible orders have been evaluated before the optimal order is found. However, if
we had evaluated the lineage under ABC first, we would not have to evaluate the
lineage under CAB, leading to a 1/3 cut of the computing load.

Finally, if the upper bound is assigned a value from a member in the ABC lineage,
say E0 D sadABDC D 0:35, the upper bound is immediately updated as E0 D
sadABCD D 0:30. This upper bound immediately disqualifies the other two lineages,
leading to a 2/3 reduction of the number of orders for evaluation.

The branch and bound algorithm guarantees to find the shortest order, but the
efficiency depends on the upper bound chosen and the sequence in which the paths
are visited.

3.3 Bootstrap Confidence of a Map

In phylogeny analysis, an empirical confidence can be put on each internal branch
of a particular phylogeny via bootstrap samplings (Felsenstein 1985). This idea
can be adopted here for map construction. A map with m markers have m � 1

internal segments, similar to the internal branches of a phylogenetic tree. We can
put a confidence on each segment. Let us assume that C–D–B–A–E is the optimal
order we found. We want to put a bootstrap confidence on segment D–B. First,
we draw a large number of bootstrap samples, say N . Each bootstrap sample
contains n randomly sampled progeny from the original sample (map population)
with replacement. This means that in a bootstrap sample, some progeny may be
drawn several times while others may not be drawn at all. For each bootstrap sample,
we estimate all the pairwise recombination fractions and construct a map (find the
optimal order of the markers for that particular bootstrap sample). In the end, we will
have N different maps, one from each bootstrap sample. We then count the number
of maps that have segment D–B, i.e., D and B are joined together. The proportion of
the maps that reserve this segment is the confidence of this segment. Let N D 100

be the number of bootstrap samples and ND�B D 95 be the number of samples
reserving segment D–B; the confidence for segment D–B is ND�B=N D 0:95.
Each segment of the map can be put a confidence using the same approach.

The way to place a bootstrap confidence for a segment of a map described here
appears to be different from the bootstrap confidence of an internal branch of a
phylogenetic tree. We simply adopted the idea of phylogenetic bootstrap analysis,
not the way of confidence assignment. To fully adopt the bootstrap confidence
assignment, we need to find the number of bootstrap samples that partition the loci
into fC,Dg and fB,A,Eg subsets and also reserve the D–B segment. That number
divided by N D 100 would give the confidence for the D–B segment.


	Chapter
3 Genetic Map Construction
	3.1 Criteria of Optimality
	3.2 Search Algorithms
	3.2.1 Exhaustive Search
	3.2.2 Heuristic Search
	3.2.3 Simulated Annealing
	3.2.4 Branch and Bound

	3.3 Bootstrap Confidence of a Map


