
Chapter 15
Bayesian Multiple QTL Mapping

So far we have learned the least-squares method, the weighted least squares method,
and the maximum likelihood method for QTL mapping. These methods share a
common problem in handling multiple QTL, that is, the problem of multicollinear-
ity. Therefore, a model can include only a few QTL. Recently, Bayesian method has
been developed for mapping multiple QTL (Satagopan et al. 1996; Heath 1997;
Sillanpää and Arjas 1998; Sillanpää and Arjas 1999; Xu 2003; Yi 2004; Wang
et al. 2005b; Yi and Shriner 2008). Under the Bayesian framework, the model
can tolerate a much higher level of multicollinearity than the maximum likelihood
method. As a result, the Bayesian method can handle highly saturated model. This
chapter is focused on the Bayesian method via the Markov chain Monte Carlo
(MCMC) algorithm. Before introducing the methods of Bayesian mapping, it is
necessary to review briefly the background knowledge of Bayesian statistics.

15.1 Bayesian Regression Analysis

We will learn the basic principle and method of Bayesian analysis using a simple
regression model as an example. The simple regression model has the following
form:

yj D Xjˇ C �j ;8j D 1; : : : ; n (15.1)

where yj is the response (dependent) variable, Xj is the regressor (independent
variable), ˇ is the regression coefficient, and �j is the residual error with an assumed
N.0; �2/ distribution. This model is a special case of

yj D ˛ CXjˇ C �j ;8j D 1; : : : ; n (15.2)

with ˛ D 0, i.e., regression through the origin. We use this special model to
derive the Bayesian estimates of parameters. In subsequent sections, we will extend
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the model to the usual regression with nonzero intercept and also regression with
multiple explanatory variables (multiple regression). The log likelihood function is

L.�/ D �n
2

log.�2/� 1

2�2

nX

jD1
.yj � Xjˇ/

2 (15.3)

where � D fˇ; �2g. The MLEs of � are
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(15.4)

and

O�2 D 1

n

nX

jD1
.yj � Xj Ǒ/2 (15.5)

In the maximum likelihood analysis, parameters are estimated from the data. Some-
times investigators have prior knowledge of the parameters. This prior knowledge
can be incorporated into the analysis to improve the estimation of parameters. This
is the primary purpose of Bayesian analysis. The prior knowledge is formulated as
a prior distribution of the parameters. Let p.ˇ; �2/ be the joint prior density of � .
Usually, we assume that ˇ and �2 are independent so that

p.ˇ; �2/ D p.ˇ/p.�2/ (15.6)

The choice of p.ˇ/ and p.�2/ depends on investigator’s knowledge on the problem
and mathematical attractiveness. In the simple regression analysis, the following
priors are both legitimate and attractive, which are

p.ˇ/ D N.ˇj�ˇ; �2ˇ/ (15.7)

and

p.�2/ D Inv � �2.�2j�; !/ (15.8)

where N.ˇj�ˇ; �2ˇ/ is the notation for the normal density of variable ˇ with mean

�ˇ and variance �2ˇ , and Inv � �2.�2j�; !/ is the probability density for the scaled

inverse chi-square distribution of variable �2 with degree of freedom � and scale
parameter !. The notation for a distribution and the notation for the probability
density of the distribution are now consistent. For example, x � N.�; �2/ means
that x is normally distributed with mean � and variance �2, which is equivalently
described as p.x/ D N.xj�; �2/. The exact forms of these distributions are

p.ˇ/ D N.ˇj�ˇ; �2ˇ/ D 1q
2��2ˇ
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(15.9)
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and

p.�2/ D Inv � �2.�2j�; !/ D .�!=2/�=2
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�
(15.10)

where 	 .�=2/ is the gamma function with argument �=2. Conditional on the
parameter � , the data vector y has a normal distribution with probability density
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We now have the probability density of the data and the density of the prior
distribution of the parameters. We treat both the data and the parameters as random
variables and formulate the joint distribution of the data and the parameters,

p.y; �/ D p.yj�/p.�/ (15.12)

where p.�/ D p.ˇ/p.�2/. The purpose of Bayesian analysis is to infer the
conditional distribution of the parameters given the data and draw conclusion about
the parameters from the conditional distribution. The conditional distribution of the
parameters has the form of

p.� jy/ D p.y; �/

p.y/
/ p.y; �/ (15.13)

which is also called the posterior distribution of the parameters. The denominator,
p.y/, is the marginal density of the data, which is irrelevant to the parameters and
can be ignored because we are only interested in the estimation of parameters. Note
that the above conditional density is rewritten as

p.ˇ; �2jy/ D p.y; ˇ; �2/

p.y/
/ p.y; ˇ; �2/ (15.14)

which is still a joint posterior density with regard to the two components of the
parameter vector. The ultimate purpose of the Bayesian analysis is to infer the
marginal posterior distribution for each component of the parameter vector. The
marginal posterior density for ˇ is obtained by integrating the joint posterior
distribution over �2,

p.ˇjy/ D
Z 1

0

p.ˇ; �2jy/d�2 (15.15)
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The integration has an explicit form, which turns out to be the kernel of a
t-distribution with n C � � 1 degrees of freedom (Sorensen and Gianola 2002).
The ˇ itself is not a t-distributed variable. It is .ˇ � Q̌/=� Q̌ that has a t-distribution,
where
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is the marginal posterior mean of ˇ and

var.ˇjy/ D �2Q̌ D
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(15.17)

is the marginal posterior variance of ˇ. Both the mean and the variance contain Ǒ
and O�2, the MLEs of ˇ and �2, respectively. The role that O�2 plays in the above
equations is through

�2Ǒ D
�Xn

jD1 X
2
j

��1 O�2 (15.18)

The density of the t-distributed variable with mean Q̌ and variance �2Q̌ is denoted by

p.ˇjy/ D tnC��1.ˇj Q̌; �2Q̌/ (15.19)

The marginal posterior density for �2 is obtained by integrating the joint posterior
over ˇ,

p.�2jy/ D
Z 1

�1
p.ˇ; �2jy/dˇ (15.20)

which happens to be a scaled inverse chi-square distribution with

�� D nC � � 1 (15.21)

degrees of freedom and a scale parameter (Sorensen and Gianola 2002)

!� D �! CPn
jD1.yj �Xj Q̌/2
� C n � 1

(15.22)

The density of the new scaled inverse chi-square variable is denoted by

p.�2jy/ D Inv � �2.�2j��; !�/ (15.23)

The mean and variance of the above distribution are

E.�2jy/ D Q�2 D �! CPn
jD1.yj �Xj Q̌/2
� C n � 3 (15.24)
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and

var.�2jy/ D 2Œ�! CPn
jD1.yj �Xj Q̌/2
2

.� C n � 3/2.� C n � 5/ (15.25)

respectively (Sorensen and Gianola 2002).
The marginal posterior distribution of each parameter contains all the information

we have gathered for that parameter. The Bayesian estimate of that parameter
can be either the posterior mean, the posterior mode, or the posterior median,
depending on the preference of the investigator. The marginal posterior distribution
of a parameter itself can also be treated as an estimate of the parameter. Assume that
the marginal posterior mean of a parameter is considered as the Bayesian estimate
of that parameter. The Bayesian estimates of ˇ and �2 are Q̌ and Q�2, respectively.

The simple regression analysis (regression through origin) discussed above is
the simplest case of Bayesian analysis where the marginal posterior distribution of
each parameter is known. In most situations, especially when the dimensionality of
the parameter � is high, the marginal posterior distribution of a single parameter
involves high-dimensional multiple integration, and often the integration does not
have an explicit expression. Therefore, the posterior distribution of a parameter often
has an unknown form, which makes the Bayesian inference difficult. Thanks to the
ever-growing computing power, we can perform multiple numerical integrations
very efficiently. We can even utilize Monte Carlo integration by repeatedly sim-
ulating multivariate random variables. For extremely high-dimensional problems,
Monte Carlo integration is perhaps the only way to implement the Bayesian method.

Let us now discuss the relationship between the joint distribution and the
marginal distribution. Let � D f�1; �2; : : : ; �mg be an m dimensional multiple vari-
ables. Let p.�/ D p.�1; : : : ; �mjy/ be the joint posterior distribution. The marginal
posterior distribution for the kth component is

p.�kjy/ D
Z
: : :

Z
p.�1; : : : ; �mjy/d�1 : : : d�k�1d�kC1 : : : d�m (15.26)

If the multiple integration has an explicit form and we can recognize the marginal
distribution of �k, i.e., p.�kjy/ is the density of a well-known distribution, then
the expectation (or mode) of this distribution is what we want to know in the
Bayesian analysis. Suppose that we know neither the joint posterior distribution
nor the marginal posterior distribution, but somehow we have a joint posterior
sample of multivariate � with size N . In other words, we are only given N joint
observations of � . The sample is denoted by f�.1/; � .2/; : : : ; � .N/g. We can imagine
that the data in the sample are arranged in a N � m matrix. Each row represents
an observation, while each column represents a variable. What is the estimated
marginal expectation of �k drawn from this sample? Remember that this sample is
supposed to be generated from the joint posterior distribution. The answer is simple;
we only need to calculate the algebraic mean of variable �k from this sample, i.e.,

N�k D 1

N

NX

jD1
�
.j /

k (15.27)
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This average value of �k is an empirical marginal posterior mean of �k , i.e., a
Bayesian estimate of �k. We can see that as long as we have a joint sample of � ,
we can infer the marginal mean of a single component of � simply by calculating
the mean of that component from the sample. While calculating the mean only
requires knowledge learned from elementary school, generating the joint sample
of � becomes the main focus of the Bayesian analysis.

15.2 Markov Chain Monte Carlo

There are many different ways to generate a sample of � from the joint distribution.
The classical method is to use the following sequential approach to generate the first
observation, denoted by �.1/:

• Simulate �.1/1 from p.�1jy/
• Simulate �.1/2 from p.�2j�.1/1 ; y/

• Simulate �.1/3 from p.�3j�.1/1 ; �
.1/
2 ; y/

• : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

• Simulate �.1/m from p.�mj�.1/1 ; : : : ; �
.1/
m�1; y/

The process is simply repeated N times to simulate an entire sample of � .
Observations generated this way are independent. We can see that we still need the
marginal distribution for �1 and various levels of marginality of other components.
Only �m is generated from a fully conditional posterior, which does not involve any
integration. Therefore, this sequential approach of generating random sample is not
what we want.

The MCMC approach draws all variables from their fully conditional posterior
distributions. To draw a variable from a conditional distribution, we must have some
values of the variables that are conditioned on. For example, to draw y from p.yjx/,
the value of x must be known. Let �.0/ be the initial value of multivariate � . The
first observation of � is drawn using the following process:

• Simulate �.1/1 from p.�1j�.0/�1 ; y/
• Simulate �.1/2 from p.�2j�.0/�2 ; y/
• Simulate �.1/3 from p.�3j�.0/�3 ; y/
• : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

• Simulate �.1/m from p.�mj�.0/�m; y/

where �.0/�k is a subset of vector �.0/ that excludes the kth element, i.e.,

�
.0/

�k D f�.0/1 ; : : : ; �
.0/

k�1; �
.0/

kC1; : : : ; �
.0/
m g

This special notation (negative subscript) has tremendously simplified the
expressions of the MCMC sampling algorithm. The above process concludes the



15.2 Markov Chain Monte Carlo 229

simulation for the first observation. The process is repeated N times to generate
a sample of � with size N . The sampled �.t/ depends on �.t�1/, i.e., the sampled
� in the current cycle only depends on the � in the previous cycle. Therefore, the
sequence

f�.0/ ! �.1/ ! � � � ! �.N/g
forms a Markov chain, which explains why the method is called Markov chain
Monte Carlo. Because of the Markov chain property, the observations are not
independent, and the first few hundred (or even thousand) observations highly
depend on the initial value �.0/ used to start the chain. Once the chain is stabilized,
i.e., the sampled � does not depend on the initial value, we say that the chain has
reached its stationary distribution. The period from the beginning to the time when
the stationary distribution is reached is called the burn-in period. Observations in
the burn-in period should be deleted. After the burn-in period, the observations
are presumably sampled from the joint distribution. The observations may still be
correlated; such a correlation is called serial correlation or autocorrelation. We can
save one observation in every sth cycle to remove the serial correlation, where
s D 20 or s D 50 or any other integers, depending on the particular problem.
This process is called trimming or thinning the Markov chain. After burn-in deleting
and chain trimming, we collect N � observations from the total of N observations
simulated. The sample of � with N � observations is the posterior sample (sampled
from the p.� jy/ distribution). Any Bayesian statistics can be inferred empirically
from this posterior sample.

Recall that the marginal posterior for ˇ is a t-distribution and the marginal
posterior for �2 is a scaled inverse chi-square distribution. Both distributions have
complicated forms of expression. The MCMC sampling process only requires the
conditional posterior distribution, not the marginal posterior. Let us now look at
the conditional posterior distribution of each parameter of the simple regression
analysis.

As previously shown, the MLE of ˇ is

Ǒ D
�Xn

jD1 X
2
j

��1 �Xn

jD1 Xjyj
�

(15.28)

and the variance of the estimate is

�2Ǒ D
�Xn

jD1 X
2
j

��1
�2 (15.29)

Note that �2Ǒ differs from that defined in (15.18) in that �2 is used here in place

of O�2. So, just from the data without any prior information, we can infer ˇ. The
estimated ˇ itself is a variable, which follows a normal distribution denoted by

ˇ � N1. Ǒ; �2Ǒ/ (15.30)
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The subscript 1 means that this is an estimate drawn from the first source
of information. Before we observed the data, the prior information about ˇ is
considered the second source of information, which is denoted by

ˇ � N2.�ˇ; �
2
ˇ/ (15.31)

The posterior distribution of ˇ is obtained by combining the two sources of
information (Box and Tiao 1973), which remains normal and is denoted by

ˇ � N. Ň; �2Ň/ (15.32)

where

Ň D
0

@ 1

�2Ǒ
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and

�2Ň D
0
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(15.34)

We now have the conditional posterior distribution for ˇ denoted by

p.ˇj�2; y/ D N.ˇj Ň; �2Ň/ (15.35)

from which a random ˇ is sampled.
Given ˇ, we now evaluate the conditional posterior distribution of �2. The prior

for �2 is a scaled inverse chi-square distribution with � degrees of freedom and a
scale parameter !, denoted by

p.�2/ D Inv � �2.�2j�; !/ (15.36)

The posterior distribution remains a scaled inverse chi-square with a modified
degree of freedom and a modified scale parameter, denoted by

p.�2jˇ; y/ D Inv � �2.�2j��; !�/ (15.37)

where

�� D � C n (15.38)

and

!� D �! CPn
jD1 .yj � Xjˇ/

2

� C n
(15.39)

Note that !� defined here differs from that defined in (15.22) in that ˇ is used
here while Q̌ is used in (15.22). The conditional posterior of ˇ is normal, which
belongs to the same distribution family as the prior distribution. Similarly, the
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conditional posterior of �2 remains a scaled inverse chi-square, also the same type
of distribution as the prior. These priors are called conjugate priors because they
lead to the conditional posterior distributions of the same type.

The MCMC sampling process is summarized as:

1. Initialize ˇ D ˇ.0/ and �2 D �2.0/

2. Simulate ˇ.1/ from N.ˇj Ň; �2Ň/
3. Simulate �2.1/ from Inv � �2.�2j��; !�/
4. Repeat Steps (2) and (3) until N observations of the posterior sample are

collected.

It can be seen that the MCMC sampling-based regression analysis only involves two
distributions, a normal distribution and a scaled inverse chi-square distribution. Most
software packages have built-in functions to generate random variables from some
simple distributions, e.g., N.0; 1/ and �2.�/. Let Z � N.0; 1/ be a realized value
drawn from the standardized normal distribution and X � �2.��/ be a realized
value drawn from a chi-square distribution with �� degrees of freedom. To sample
ˇ from N. Ň; �2Ň/, we sample Z first and then take

ˇ D � ŇZ C Ň (15.40)

To sample �2 from Inv � �2.��; !�/, we first sample X and then take

�2 D �� !�

X
(15.41)

In summary, the MCMC process requires sampling a parameter only from the
fully conditional posterior distribution, which usually has a simple form, e.g.,
normal or chi-square, and it draws one variable at a time. This type of MCMC
sampling is also called Gibbs sampling (Geman and Geman 1984). With the MCMC
procedure, we turn ourselves into experimentalists. Like plant breeders who plant
seeds, let the seeds grow into plants, and measure the average plant yield, we plant
the seeds of parameters in silico, let the parameters “grow,” and measure the average
of each parameter. The Bayesian posterior mean of a parameter simply takes the
algebraic mean of a parameter in the posterior sample collected from the in silico
experiment. Once the Bayesian method is implemented via the MCMC algorithm,
it is no longer owned by a few “Bayesians”; rather, it has become a popular tool that
can be used by people in all areas, including engineers, biologists, plant and animal
breeders, social scientists, and so on.

Before we move on to the next section, let us demonstrate the MCMC sampling
process using the simple regression as an example. The values of x and y for 20
observations are given in Table 15.1.

The model is
yj D Xjˇ C �j ; 8j D 1; : : : ; 20
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Table 15.1 Data used in the
text to demonstrate the
MCMC sampling process

x y x y

1 2:95 �1 �1:23
1 0:61 1 1:06

1 4:61 1 0:41

1 3:46 �1 �3:09
1 1:12 �1 �2:08
1 4:15 �1 �1:55
�1 �2:46 1 1:07

1 4:49 �1 �5:39
1 3:34 �1 �1:26
�1 �1:44 �1 �4:46

The sample size is n D 20. Before introducing the prior distributions, we provide
the MLEs of the parameters, which are

Ǒ D
�Xn

jD1 X
2
j

��1Xn

jD1 Xjyj D 2:5115

O�2 D 1

n

nX

jD1
.yj � Xj Ǒ/2 D 2:3590

The variance of Ǒ is

�2Ǒ D
�Xn

jD1 X
2
j

��1 O�2 D 0:1180

Let us choose the following prior distributions:

p.ˇ/ D N.ˇj�ˇ; �2ˇ/ D N.ˇj0:1; 1:0/

and

p.�2/ D Inv � �2.�2j�; !/ D Inv � �2.�2j3; 3:5/
The marginal posterior mean and posterior variance of ˇ are

E.ˇjy/ D Q̌ D
0
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�2Ǒ
C 1
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A
�10
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�2Ǒ
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�2ˇ
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A D 2:2571

and

var.ˇjy/ D �2Q̌ D
0

@ 1

�2Ǒ
C 1

�2ˇ

1

A
�1

D 0:1055

respectively. The marginal poster mean and posterior variance of �2 are
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Fig. 15.1 Changes of the sampled parameters over the number of iterations since the MCMC
starts. The top panel is the change for ˇ, and the bottom panel is that for �2

E.�2jy/ D Q�2 D �! CPn
jD1.yj � Xj Q̌/2
� C n � 3

D 2:8308

and

var.�2jy/ D 2Œ�! CPn
jD1.yj � Xj Q̌/2
2

.� C n � 3/2.� C n � 5/
D 0:8904

respectively.
We now use the MCMC sampling approach to generating the joint posterior

sample for ˇ and �2 and calculate the empirical marginal posterior means and
posterior variances for the two parameters. For a problem as simple as this, the burn-
in period can be very short or even without burn-in. Figure 15.1 shows the first 500
cycles of MCMC sampler (including the burn-in period) for the two parameters,
ˇ and �2. The chains converge immediately to the stationary distribution. To be
absolutely sure that we actually collect samples from the stationary distribution,
we set the burn-in period to 1,000 iterations (very safe), and the chain was
subsequently trimmed to save one observation in every 50 iterations after the burn-
in. The posterior sample size was 10,000. The total number of MCMC cycles was
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Table 15.2 Empirical
marginal posterior means and
posterior variances for the
two parameters, ˇ and �2

Parameter Posterior mean Posterior variance

ˇ 2.2171 0.1320
�2 2.8489 0.9497

1; 000 C 50 � 10; 000 D 5; 01; 000. The empirical marginal posterior means and
marginal posterior variances for ˇ and �2 are given in Table 15.2, which are very
close to the theoretical values given before.

15.3 Mapping Multiple QTL

Although interval mapping (under the single QTL model) can detect multiple QTL
by evaluating the number of peaks in the test statistic profile, it cannot provide
accurate estimates of QTL effects. The best way to handle multiple QTL is to use
a multiple QTL model. Such a model requires knowledge of the number of QTL.
Most QTL mappers consider that the number of QTL is an important parameter and
should be estimated in QTL mapping experiments. Therefore, model selection is
often conducted to determine the number of QTL (Broman and Speed 2002). Under
the Bayesian framework, model selection is implemented through the reversible
jump MCMC algorithm (Sillanpää and Arjas 1998). Xu (2003) and Wang et al.
(2005b) had a quite different opinion, in which the number of QTL is not considered
as an important parameter. According to Wang et al. (2005b), we can propose a
model that includes as many QTL as the model can handle. Such a model is called
an oversaturated model. Some of the proposed QTL may be real, but most of them
are spurious. As long as we can force the spurious QTL to have zero or close to zero
estimated effects, the oversaturated model is considered satisfactory. The selective
shrinkage Bayesian method can generate the result of QTL mapping exactly the
same as we expect, that is, spurious QTL effects are shrunken to zero while true
QTL have effects subject to no shrinkage.

15.3.1 Multiple QTL Model

The multiple QTL model can be described as

yj D
qX

iD1
Xj iˇi C

pX

kD1
Zjk�k C �j (15.42)

where yj is the phenotypic value of a trait for individual j for j D 1; : : : ; n and n
is the sample size. The non-QTL effects are included in vector ˇ D fˇ1; : : : ; ˇqg
with matrix Xj D fXj1; : : : ; Xjqg being the design matrix to connect ˇ and yj .
The effect of the kth QTL is denoted by �k for k D 1; : : : ; p where p is the
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proposed number of QTL in the model. Vector Zj D fZj1; : : : ; Zjpg is determined
by the genotypes of the proposed QTL in the model. The residual error �j is
assumed to be i.i.d. N.0; �2/. Let us use a BC population as an example. For the
kth QTL, Zjk D 1 for one genotype and Zjk D �1 for the alternative genotype.
Extension to F2 population and adding the dominance effects are straightforward
(only requires adding more QTL effects and increasing the model dimension). The
proposed number of QTL is p, which must be larger than the true number of QTL to
make sure that large QTL will not be missed. The optimal strategy is to put one QTL
in every d cM of the genome, where d can be any value between 5 and 50. If d < 5,
the model will be ill conditioned due to multicollinearity. If d > 50, some genome
regions may not be visited by the proposed QTL even if there are true QTL located
in those regions. Of course, a larger sample size is required to handle a larger model
(more QTL).

15.3.2 Prior, Likelihood, and Posterior

The data involved in QTL mapping include the phenotypic values of the trait and
marker genotypes for all individuals in the mapping population. Unlike Wang et al.
(2005b) who expressed marker genotypes explicitly as data in the likelihood, here
we suppress the marker genotypes from the data to simplify the notation. The
linkage map of markers and the marker genotypes only affect the way to calculate
QTL genotypes. We first use the multipoint method to calculate the genotype
probabilities for all putative loci of the genome. These probabilities are then treated
as the prior probabilities of QTL genotypes, from which the posterior probabilities
are calculated by incorporating the phenotype and the current parameter values.
Therefore, the data used to construct the likelihood are represented by y D
fyj ; : : : ; yng. The vector of parameters is denoted by � , which consists of the
positions of the proposed QTL denoted by � D f�1; : : : ; �pg, the effects of the QTL
denoted by � D f�1; : : : ; �pg, the non-QTL effects denoted by ˇ D fˇ1; : : : ; ˇqg,
and the residual error variance �2. Therefore, � D f�; ˇ; �;  ; �2g, where  D
f�21 ; : : : ; �2pg, will be defined later. The QTL genotypes Zj D fZj1; : : : ; Zjpg
are not parameters but missing values. The missing genotypes can be redundantly
expressed as ıj D fıj1; : : : ; ıjpg where

ıjk D ı.Gjk; 
/

is the ı function. If Gjk D 
, then ı.Gjk; 
/ D 1, else ı.Gjk; 
/ D 0, where Gjk is
the genotype of the kth QTL for individual j and 
 D 1; 2; 3 for an F2 population
(three genotypes per locus). The probability density of ı is

p.ıj j�/ D
pY

kD1
p.ıjkj�k/ (15.43)
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The independence of the QTL genotype across loci is due to the fact that they are
the conditional probabilities given marker information. So, the marker information
has entered here to infer the QTL genotypes. The prior for the ˇ is

p.ˇ/ D
qY

iD1
p.ˇi / D constant (15.44)

This is a uniform prior or, more appropriately, uninformative prior. The reason for
choosing uninformative prior for ˇ is that the dimensionality of ˇ is usually very
low so that ˇ can be precisely estimated from the data alone without resorting to
any prior knowledge. The prior for the QTL effects is

p.� j / D
pY

kD1
p.�kj�2k / D

pY

kD1
N.�kj0; �2k / (15.45)

where �2k is the variance of the prior distribution for the kth QTL effect. Collectively,
these variances are denoted by  D f�21 ; : : : ; �2pg. This is a highly informative prior
because of the zero expectation of the prior distribution. The variance of the prior
distribution determines the relative weights of the prior information and the data.
If �2k is very small, the prior will dominate the data, and thus, the estimated �k
will be shrunken toward the prior expectation, that is, zero. If �2k is large, the data
will dominate the prior so that the estimated �k will be largely unaltered (subject
to no shrinkage). The key difference between this prior and the prior commonly
used in Bayesian regression analysis is that different regression coefficient has a
different prior variance and thus different level of shrinkage. Therefore, this method
is also called the selective shrinkage method (Wang et al. 2005b). The classical
Bayesian regression method, however, often uses a common prior for all regression
coefficients, i.e., �21 D �22 D � � � D �2p D �2� , which is also called ridge
regression (Hoerl and Kennard 1970). The problem with this selective shrinkage
method is that there are too many prior variances and it is hard to choose the
appropriate values for the variances. There are two approaches to choosing the prior
variances, empirical Bayesian (Xu 2007) and hierarchical modeling (Gelman 2006).
The empirical Bayesian approach attempts to estimate the prior variances under
the mixed model methodology by treating each regression coefficient as a random
effect. The hierarchical modeling treats the prior variances as parameters and assigns
a higher level prior to each variance component. By treating the variances as
parameters, rather than as hyperparameters, we can estimate the variances along
with the regression coefficients. Here, we take the hierarchical model approach and
assign each �2k a prior distribution. The empirical Bayesian method will be discussed
in the next chapter. The scaled inverse chi-square distribution is chosen for each
variance component,

p.�2k / D Inv � �2.�2k j�; !/; 8k D 1; : : : ; p (15.46)
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The degree of freedom � and the scale parameter ! are hyperparameters, and
their influence on the estimated regression coefficients is much weaker because
the influence is through the �2k ’s. It is now easy to choose � and !. The degree
of freedom � is also called the prior belief. Although the proper prior should have
� > 0 and ! > 0, our past experience showed that an improper prior works better
than the proper prior. Therefore, we choose � D ! D 0, which leads to

p.�2k / / 1

�2k
; 8k D 1; : : : ; p (15.47)

The joint prior for all the �2k is

p. / D
pY

kD1
p.�2k / (15.48)

The residual error variance is also assigned to the improper prior,

p.�2/ / 1

�2
(15.49)

The positions of the QTL depend on the number of QTL proposed, the number of
chromosomes, and the size of each chromosome. Based on the average coverage per
QTL (e.g., 30 cM per QTL), the number of QTL allocated to each chromosome can
be calculated. Let pc be the number of QTL proposed for the cth chromosome.
These pc QTL should be placed evenly along the chromosome. We can let the
positions fixed throughout all the MCMC process so that the positions are simply
constants (not parameters of interest). In this case, more QTL should be proposed
to make sure that the genome is well covered by the proposed QTL. The alternative
and also more efficient approach is to allow QTL position to move along the genome
during the MCMC process. There is a restriction for the moving range of each QTL.
The positions are disjoint along the chromosome. The first QTL must move between
the first marker and the second QTL. The last QTL must move between the last
marker and the second last QTL. All other QTL must move between the QTL in the
left and the QTL in the right of the current QTL, i.e., the QTL that flank the current
QTL. Based on this search strategy, the joint prior probability is

p.�/ D p.�1/p.�2j�1/ : : : p.�pc j�pc�1/ (15.50)

Given the positions of all other QTL, the conditional probability of the position of
QTL k is

p.�k/ D 1

�kC1 � �k�1
(15.51)

If QTL k is located at either end of a chromosome, the above prior needs to be
modified by replacing either �k�1 or �kC1 by the position of the nearest end marker.
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We now have a situation where the prior probability of one variable depends on
values of other variables. This type of prior is called adaptive prior.

Since marker information has been used to calculate the prior probabilities of
QTL genotypes, they are no longer expressed as data. The only data appearing
explicitly in the model are the phenotypic values of the trait. Conditional on
all parameters and the missing values, the probability density of yj is normal.
Therefore, the joint probability density of all the yj ’s (called the likelihood) is

p.yj�; ı/ D
nY

jD1
p.yj j�; ıj /

D
nY

jD1
N
�
yj

ˇ̌
ˇ
Xq

iD1 Xj iˇi C
Xp

kD1 Zjk�k; �
2
�

(15.52)

The fully conditional posterior of each variable is defined as

p.�i j��i ; ı; y/ / p.�i ; ��i ; ı; y/ (15.53)

where �i is a single element of the parameter vector � and ��i is the collection of
the remaining elements. The symbol / means that a constant factor (not a function
of parameter �i ) has been ignored. The joint probability density p.�i ; ��i ; ı; y/ D
p.�; ı; y/ is expressed as

p.�; ı; y/ /p.yj�; ı/p.ıj�/p.�/
Dp.yj�; ı/p.ˇj /p. /p.ıj�/p.�/p.�2/ (15.54)

The fully conditional posterior probability density for each variable is simply
derived by treating all other variables as constants and comparing the kernel of the
density with a standard distribution. After some algebraic manipulation, we obtain
the fully conditional distribution for most of the unknown variables (including
parameters and missing values).

The fully conditional posterior for the non-QTL effect is

p.ˇi j : : : / D N.ˇi j Ǒ
i ; �

2
Ǒ
i
/ (15.55)

The special notation p.ˇi j : : : / is used to express the fully conditional probability
density. The three dots (: : : ) after the vertical bar mean everything else except the
variable of interest. The posterior mean and posterior variance are calculated using
(15.58) and (15.59) given below:

Ǒ
i D

0

@
nX

jD1
X2
j i

1

A
�1

nX

jD1
Xj i

0

@yj �
qX

i 0¤i
Xj i 0ˇi 0 �

pX

kD1
Zjk�k

1

A (15.56)
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and

�2Ǒ
i

D
0

@
nX

jD1
X2
j i

1

A
�1

�2 (15.57)

The fully conditional posterior for the kth QTL effect is

p.�kj : : : / D N.�kj O�k; �2O�k / (15.58)

where

O�k D
0

@
nX

jD1
Z2
jk C �2

�2k

1

A
�1

nX

jD1
Zj i

0

@yj �
qX

iD1
Xj iˇi �

pX

k0¤k
Zjk0�k0

1

A (15.59)

and

�2O�k D
0

@
nX

jD1
Z2
jk C �2

�2k

1

A
�1

�2 (15.60)

Comparing the conditional posterior distributions of ˇi and �k, we notice the
difference between a normal prior and a uniform prior with respect to the effects
on the posterior distributions. When a normal prior is used, a shrinkage factor, �

2

�2k
, is

added to
Pn

jD1 Z2
jk . If �2k is very large, the shrinkage factor disappears, meaning no

shrinkage. On the other hand, if �2k is small, the shrinkage factor will dominate overPn
jD1 Z2

jk , and in the end, the denominator will become infinitely large, leading
to zero expectation and zero variance for the conditional posterior distribution �k .
As such, the estimated �k is completely shrunken to zero. The conditional posterior
distribution for each of the variance component �2k is a scaled inverse chi-square
variable with probability density

p.�2k j : : : / D Inv � �2
�
�2k

ˇ̌
ˇ̌� C 1;

�! C �2k
� C 1

�
(15.61)

where � D ! D 0. The conditional posterior density for the residual error
variance is

p.�2j : : : / D Inv � �2
�
�2
ˇ̌
ˇ̌� C n;

�! C nS2e
� C n

�
(15.62)

where

S2e D 1

n

nX

jD1

 
yj �

qX

iD1
Xj iˇi C

pX

kD1
Zjk�k

!2
(15.63)

The next step is to sample QTL genotypes, which determine the values of the Zj
variables. Let us again use a BC population as an example and consider sampling the
kth QTL genotype given that every other variable is known. There are two sources
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of information available to infer the probability for each of the two genotypes of the
QTL. One information comes from the markers denoted by pj .C1/ and pj .�1/,
respectively, for the two genotypes, where pj .C1/ C pj .�1/ D 1. These two
probabilities are calculated from the multipoint method (Jiang and Zeng 1997).
The other source of information comes from the phenotypic value. The connection
between the phenotypic value and the QTL genotype is through the probability
density of yj given the QTL genotype. For the two alternative genotypes of the
QTL , i.e., Zjk D 1 and Zjk D �1, the two probability densities are

p.yj jZjk D C1/ D N
�
yj

ˇ̌
ˇ
Xq

iD1 Xj iˇi C
Xp

k0¤k Zjk0�k0 C �k; �
2
�

p.yj jZjk D �1/ D N
�
yj

ˇ̌
ˇ
Xq

iD1 Xj iˇi C
Xp

k0¤k Zjk0�k0 � �k; �2
�

(15.64)

Therefore, the conditional posterior probabilities for the two genotypes of the
QTL are

p�
j .C1/ D pj .C1/p.yj jZjk D C1/

pj .C1/p.yj jZjk D C1/C pj .�1/p.yj jZjk D �1/

p�
j .�1/ D pj .�1/p.yj jZjk D �1/

pj .C1/p.yj jZjk D C1/C pj .�1/p.yj jZjk D �1/ (15.65)

where p�
j .C1/ D p.Zjk D C1j : : : / and p�

j .�1/ D p.Zjk D �1j : : : / are the
posterior probabilities of the two genotypes. The genotype of the QTL is Zjk D
2u � 1, where u is sampled from a Bernoulli distribution with probability p�

j .C1/.
So far we have completed the sampling process for all variables except the QTL
positions. If we place a large number of QTL evenly distributed along the genome,
say one QTL in every 10 cM, we can let the positions fixed (not moving) across
the entire MCMC process. Although this fixed-position approach does not generate
accurate result, it does provide some general information about the ranges where the
QTL are located. Suppose that the trait of interest is controlled by only 5 QTL and
we place 100 QTL evenly distributed on the genome, then majority of the assumed
QTL are spurious. The Bayesian shrinkage method allows the spurious QTL to
be shrunken to zero. This is why the Bayesian shrinkage method does not need
variable selection. A QTL with close to zero estimated effect is equivalent to being
excluded from the model. When the assumed QTL positions are fixed, investigators
actually prefer to put the QTL at marker positions because marker positions contain
the maximum information. This multiple-marker analysis is recommended before
conducting detailed fully Bayesian analysis with QTL positions moving. Result
of the detailed analysis is more or less the same as that of the multiple-marker
analysis. Further detailed analysis is only conducted after the investigators get a
general picture of the result.

We now discuss several different ways to allow QTL positions to move across
the genome. If our purpose of QTL mapping is to find the regions of the genome
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that most likely carry QTL, the number of QTL is irrelevant and so are the QTL
identities. If we allow QTL positions to move, the most important information we
want to capture is how many times a particular segment (position) of the genome is
hit or visited by nonspurious QTL. A position can be visited many times by different
QTL, but all these QTL have negligible effects; such a position is not of interest. We
are interested in positions that are visited repeatedly by QTL with large effects.
Keeping this in mind, we propose the first strategy of QTL moving, the random
walking strategy. We start with a “sufficient” number of QTL evenly placed on the
genome. How sufficient is sufficient enough? This perhaps depends on the marker
density and sample size of the mapping population. Putting one QTL in every 10 cM
seems to work well. Each QTL is allowed to travel freely between the left and the
right QTL, i.e., the QTL are distributed along the genome in a disjoint manner. The
positions of the QTL are moving but the order of the QTL is preserved. This is the
simplest method of QTL traveling. Let us take the kth QTL for example; the current
position of the QTL is denoted by �k . The new position can be sampled from the
following distribution:

��
k D �˙�� (15.66)

where �� � U.0; ı/ and ı is the maximum distance (in cM) that the QTL is
allowed to move away from the current position. The following restriction �k�1 <
��
k < �kC1 is enforced to preserve the current order of the QTL. Empirically,
ı D 2 cM seems to work well. The new position is always accepted, regardless
whether it is more likely or less likely to carry a true QTL relative to the current
position. The Markov chain should be sufficiently long to make sure that all putative
positions are visited a number of times. Theoretically, there is no need to enforce
the disjoint distribution for the QTL positions. The only reason for such a restriction
is the convenience of programming if the order is preserved. With the random walk
strategy of QTL moving, the frequency of hits by QTL at a position is not of interest;
instead, the average effect of all the QTL hitting that position is the important
information. The random walk approach does not distinguish “hot regions” (regions
containing QTL) and “cold regions” (regions without QTL) of the genome. All
regions are visited with equal frequency. The hot regions, however, are supposed
to be visited more often than the cold regions to get a more accurate estimate of
the average QTL effects for those regions. The random walk approach does not
discriminate against the cold regions and thus needs a very long Markov chain to
ensure that the hot regions are sufficiently visited for accurate estimation of the
QTL effects.

The optimal strategy for QTL moving is to allow QTL to visit the hot regions
more often than the cold regions. This sampling strategy cannot be accomplished
using the Gibbs sampler because the conditional posterior of the position of a QTL
does not have a well-known form of the distribution. Therefore, the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) is adopted here to
sample the QTL positions. Again, the new position is randomly generated in the
neighborhood of the old position using the same approach as used in the random
walk approach, but the new position ��

k is only accepted with a certain probability.
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The acceptance probability is determined based on the Metropolis–Hastings rule,
denoted by min

�
1; ˛.��

k ; �k/
�
. The new position ��

k has an 1 � min
�
1; ˛.��

k ; �k/
�

chance to be rejected, where

˛.��
k ; �k/ D

Qn
jD1

�P
lD�1;C1 Pr.Zjk D l j��

k /p.yj jZjk D l/
�

Qn
jD1

�P
lD�1;C1 Pr.Zjk D l j�k/p.yj jZjk D l/

� q.�kj�
�
k /

q.��
k j�k/

(15.67)

If it is rejected, the QTL remains at the current position, i.e., ��
k D �k . If the

new position is accepted, the old position is replaced by the new position, i.e.,
��
k D � ˙ ��. Whether the new position is accepted or not, all other variables

are updated based on the information from position ��
k , where Pr.Zjk D �1j�k/

and Pr.Zjk D C1j�k/ are the conditional probabilities that Zjk D �1 and
Zjk D C1, respectively, calculated from the multipoint method. These probabilities
depend on position �k . Previously, these probabilities were denoted by pj .�1/ D
Pr.Zjk D �1j�k/ and pj .C1/ D Pr.Zjk D C1j�k/, respectively. For the new
position ��

k , these probabilities are Pr.Zjk D �1j��
k/ and Pr.Zjk D C1j��

k /,
respectively. The proposal probabilities q.��

k j�k/ and q.�kj��
k / are usually equal

to 1
2ı

and thus are canceled out each other. However, once �k and ��
k are near the

boundaries, these two probabilities may not be the same. Since the new position is
always restricted to the interval where the old position occurs, the proposal density
q.��

k j�k/ and its reverse partner q.�kj��
k / may be different. Let us denote the

positions of the left and right QTL by �k�1 and �kC1, respectively. If �k is close
to the left QTL so that �k � �k�1 < ı, then the new position must be sampled from
��
k � U.�k ��k�1; �k Cı/ to make sure that the new position is within the required

sample space. Similarly, if �k is close to the right QTL so that �kC1 � �k < ı, then
the new position must be sampled from ��

k � U.�k � ı; �kC1/. In either case, the
proposal density should be modified. The general formula of the proposal density
after incorporating the modification is

q.�kj��
k / D

8
<̂

:̂

1
ıC.�k��k�1/

1
ıC.�kC1��k/

1
2ı

if �k � �k�1 < ı
if �kC1 � �k < ı

otherwise
(15.68)

The assumption of using the above proposal density is that the distance between any
two QTL must be larger than ı. The reverse partner of this proposal density is

q.��
k j�k/ D

8
<̂

:̂

1
ıC.��

k ��k�1/
1

ıC.�kC1���

k /
1
2ı

if ��
k � �k�1 < ı

if �kC1 � ��
k < ı

otherwise
(15.69)

The differences between sampling �k and sampling other variables are the follow-
ing: (1) The proposed new position may or may not be accepted, while the new
values of all other variables are always accepted, and (2) when calculating the
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acceptance probability for a new position, the likelihood does not depend on the
QTL genotype, while the conditional posterior probabilities of all other variables
depend on sampled QTL genotypes.

15.3.3 Summary of the MCMC Process

The MCMC process is summarized as follows:

1. Choose the number of QTL to be placed in the model, p.
2. Initialize parameters and missing values, � D �.0/ and Zj D Z

.0/
j .

3. Sample ˇi from N.ˇi j Ǒ
i ; �

2
Ǒ
i
/.

4. Sample �k from N.�kj O�k; �2O�k /.
5. Sample �2k from Inv � �2.�2k j1; �2k/.
6. Sample �2 from Inv � �2.�2jn; S2e /.
7. Sample Zjk from its conditional posterior distribution.
8. Sample �k using the Metropolis–Hastings algorithm.
9. Repeat Step (3) to Step (8) until the chain reaches a desired length.

The length of the chain should be sufficiently long to make sure that, after
burn-in deleting and chain trimming, the posterior sample size is large enough to
allow accurate estimation of the posterior means (modes or medians) of all QTL
parameters. Methods and computer programs are available to check whether the
chain has converged to the stationary distribution (Gelfand et al. 1990; Gilks et al.
1996). Our past experience showed that the burn-in period may only contain a
few thousand observations. The trimming frequency of saving one in every 20
observations is sufficient. The posterior sample size of 1,000 usually works well.
However, if the model is not very large, it is always a good practice to delete more
observations for the burn-in and trim more observations to make the chain thinner.

15.3.4 Post-MCMC Analysis

The MCMC process is much like doing an experiment. It only generates data for
further analysis. The Bayesian estimates will only be available after summarizing
the data (posterior sample). The parameter vector � is very long, but not all
parameters are of interest. Unlike other methods in which the number of QTL is an
important parameter, the Bayesian shrinkage method uses a fixed number of QTL,
and thus, p is not a parameter of interest. Although the variance component for the
kth QTL, �2k , is a parameter, it is also not a parameter of interest. It only serves as
a factor to shrink the estimated QTL effect. Since the marginal posterior of �2k does
not exist, the empirical posterior mean or mode of �2k does not have any biological
meaning. In some observations, the sampled �2k can be very large, and in others,
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it may be very small. The residual error variance �2 is meaningful only if the number
of QTL placed in the model is small to moderate. When p is very large, the residual
error variance will be absorbed by the very large number of spurious QTL. The only
parameters that are of interest are the QTL effects and QTL positions. However, the
QTL identity, k, is also not something of interest. Since the kth QTL may jump
all of places over the chromosome where it is originally placed, the average effect
�k does not have any meaningful biological interpretation. The only things left are
the positions of the genome that are hit frequently by QTL with large effects. Let
us consider a fixed position of a genome. A position of a genome is only a point
or a locus. Since the QTL position is a continuous variable, a particular point of
the genome that is hit by a QTL has a probability of zero. Therefore, we define a
genome position by a bin with a width of d cM, where d can be 1 or 2 or any other
suitable value. The middle point value of the bin represents the genome location.
For example, if d D 2 cM, the genome location 15 cM actually represents the bin
covering a region of the genome from 14 cM to 16 cM, where 14 D 15 � 1

2
d and

16 D 15C 1
2
d . Once we define the bin width of a genome location, we can count

the number of QTL that hit the bin. For each hit, we record the effect of that hit. The
same location may be hit many times by QTL with the same or different identities.
The average effect of the QTL hitting the bin is the most important parameter in
the Bayesian shrinkage analysis. Each and every bin of the genome has an average
QTL effect. We can then plot the effect against the genome location to form a QTL
(effect) profile. This profile represents the overall result of the Bayesian mapping.
In the BC example of Bayesian analysis, the kth QTL effect is denoted by �k . Since
the QTL identity k is irrelevant, it is now replaced by the average QTL effect at
position �, which is a continuous variable. The � without a subscript indicates a
genome location. The average QTL effect at position � can be expressed as �.�/ to
indicate that the effect is a function of the genome location. The QTL effect profile
is now represented by �.�/. If we use �.�/ to denote the posterior mean of QTL
effect at position �, we may use �2.�/ to denote the posterior variance of QTL
effect at position �. If QTL moving is not random but guided by the Metropolis–
Hastings rule, the posterior sample size at position � should be a useful piece of
information to indicate how often position � is hit by a QTL. Let n.�/ be the
posterior sample size at �; the standard error of the QTL effect at � should be
�.�/=

p
n.�/. Therefore, another useful profile is the so-called t-test statistic profile

expressed as

t.�/ D
p
n.�/

�.�/

�.�/
(15.70)

The correspondingF -test statistic profile is

F.�/ D n.�/
�2.�/

�2.�/
(15.71)

The t-test statistic profile is more informative than the F -test statistic profile
because it also indicates the direction of the QTL effect (positive or negative) while
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the F -test statistic profile is always positive. On the other hand, the F -test statistic
can be extended to multiple effects per locus, e.g., additive and dominance in an
F2 design. Both the t-test and F -test statistic profiles can be interpreted as kinds of
weighted QTL effect profiles because they incorporated the posterior frequency of
the genome location.

Before moving on to the next section, let us use a simulated example to
demonstrate the behavior of the Bayesian shrinkage mapping and its difference from
the maximum likelihood interval mapping. The mapping population was a simulated
BC family with 500 individuals. A single chromosome of 2,400 cM in length was
evenly covered by 121 markers (20 cM per marker interval). The positions and
effects of 20 simulated QTL are demonstrated in Fig. 15.2 (top panel). In the
Bayesian model, we placed one QTL in every 25 cM to start the search. The QTL
positions constantly moved according to the Metropolis–Hastings rule. The burn-in
period was set at 2,000, and one observation was saved in every 50 iterations after
the burn-in. The posterior sample size was 1,000. We also analyzed the same data set
using the maximum likelihood interval mapping procedure. The QTL effect profiles
for both the Bayesian and ML methods are demonstrated in Fig. 15.2 also (see the
panels in the middle and at the bottom). The Bayesian shrinkage estimates of the
QTL effects are indeed smaller than the true values, but the resolution of the signal
is much clearer that the maximum likelihood estimates. The Bayesian method has
separated closely linked QTL in several places of the genome very well, which is
clearly in contrast to the maximum likelihood method. The ML interval mapping
provides exaggerated estimates of the QTL effects across the entire genome.

15.4 Alternative Methods of Bayesian Mapping

15.4.1 Reversible Jump MCMC

Reversible jump Markov chain Monte Carlo (RJMCMC) was originally developed
by Green (1995) for model selection. It allows the model dimension to change
during the MCMC sampling process. Most people believe that QTL mapping is
a model selection problem because the number of QTL is not known a priori.
Sillanpää and Arjas (1998, 1999) are the first people to apply the RJMCMC
algorithm to QTL mapping. They treated the number of QTL, denoted by p, as an
unknown parameter and infer the posterior distribution of p. The assumption is that
p is a small number for a quantitative trait and thus can be assigned a Poisson prior
distribution with mean �. Sillanpää and Arjas (1998) used the Metropolis–Hastings
algorithm to sample all parameters, even though most QTL parameters have known
forms of the fully conditional posterior distributions. The justification for use of
M–H sampling strategy is that it is a general sampling approach while the Gibbs
sampling is only a special case of the M–H sampling. The M–H sampler does not
require derivation of the conditional posterior distribution for a parameter. However,
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Fig. 15.2 Plots of QTL effect against genome location (QTL effect profiles) for the simulated BC
population. The top panel shows the true locations and effects of the simulated QTL. The panel
in the middle shows the Bayesian shrinkage estimates of the QTL effects. The panel at the bottom
gives the maximum likelihood estimates of the QTL effects
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the acceptance probability for a proposed new value of a parameter is usually less
than unity because the proposal distribution from which the new value is sampled
is a uniform distribution in the neighborhood of the old value and not from the
conditional posterior distribution. Therefore, the M–H sampler is computationally
less efficient. Yi and Xu (1999, 2000, 2001) extended RJMCMC to QTL mapping
for binary traits in line crosses and random mating populations using Gibbs sampler
for all parameters except the number of QTL and the location of QTL. In this
section, we only introduce the RJMCMC for sampling the number of QTL. All other
variables are sampled using the same method as described in the Bayesian shrinkage
analysis. Another difference between the RVJMCMC and the Bayesian shrinkage
method is that �k is assigned a uniform prior distribution for the RVJMCMC method
while aN.0; �2k / prior is chosen for the shrinkage method. The conditional posterior
distribution of �k remains normal but with mean and variance defined as
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respectively.
We now introduce the reversible jump MCMC. The prior distribution for p is

assumed to be a truncated Poisson with mean � and maximum P . The probability
distribution function of p is

Pr.p/ D
�
	 .P C 1; �/

P Š

��1 �
�pe��

pŠ

�
/ �pe��

pŠ
(15.74)

where 	 .P C 1; �/ is an incomplete Gamma function and

	 .P C 1; �/

P Š
D

PX

pD0
Pr.p/ (15.75)

is the cumulative Poisson distribution up to P , which is irrelevant to p and thus a
constant. We make a random choice among three move types of the dimensionality
change: (1) Do not change the dimension, but update all other parameters except p
with probability p0; (2) add a QTL to the model with probability pa; and (3) delete
a QTL from the model with probability pd . The three probabilities of move types
sum to one, i.e., p0 C pa C pd D 1. The following values of the probabilities may
be chosen, p0 D pa D pd D 1

3
. If no change is proposed, all other parameters are

sampled from their conditional posterior distributions. If adding a QTL is proposed,
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we choose a chromosome to place the QTL. The probability of each chromosome
being chosen is proportional to the size of the chromosome. Once a chromosome
is chosen, we place the proposed new QTL randomly on the chromosome. All
parameters associated with this new QTL are sampled from their prior distributions.
The new QTL is then accepted with a probability determined by minŒ1; ˛.pC1; p/
,
where

˛.p C 1; p/ D
Qn
jD1 p.yj jp C 1/
Qn
jD1 p.yj jp/ � �

p C 1
� pd

.p C 1/pa
(15.76)

There are three ratios occurring in the above equation. The first ratio is the likelihood
ratio, the second one is the prior ratio of the number of QTL, and the third ratio is
the proposal ratio. The likelihood is defined as
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and
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The prior probability for p is

Pr.p/ D �pe��

pŠ
(15.79)

and the prior probability for p C 1 is

Pr.p C 1/ D �pC1e��

.p C 1/Š
(15.80)

Therefore, the prior ratio is

Pr.p C 1/

Pr.p/
D �pC1e��

.p C 1/Š
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�pe�� D �

p C 1
(15.81)

The proposal probability for adding a QTL is �.pC1; p/ D pa. The reverse partner
is �.p; pC1/ D pd

pC1 . It is easy to understand �.pC1; p/ D pa because we already
defined that pa is the probability of adding a QTL. However, the reverse partner is
not pd but pd=.p C 1/, which is hard to understand if we do not understand the
Hastings’ adjustment for the proposal probability. This probability says that if a
deletion has occurred (with probability pd ) given that we have p C 1 QTL in the
model, the probability that the newly added QTL (not any other QTL) is deleted is
1=.pC1/ due to the fact that each QTL has an equal chance to be deleted. Therefore,
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the probability that the newly added QTL (not others) is deleted is pd=.p C 1/. As
a result, the proposal ratio is

�.p; p C 1/

�.p C 1; p/
D pd=.p C 1/

pa
D pd

.p C 1/pa
(15.82)

Note that the proposal ratio is the probability of deleting a QTL to the probability
of adding a QTL, not the other way around. This Hastings’ adjustment is important
to prevent the Markov chain from being trapped at a particular QTL number. This
is the very reason for the name “reversible jump.” The dimension of the model can
jump in either direction without being stuck at a local value of p.

If deleting a QTL is proposed, we randomly select one of the p QTL to be
deleted. Suppose that the kth QTL happens to be the unlucky one. The number
of QTL would change from p to p � 1. The reduced model with p � 1 QTL is
accepted with probability minŒ1; ˛.p � 1; p/
, where

˛.p � 1; p/ D
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where
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The prior ratio is

Pr.p � 1/
Pr.p/

D �p�1e��
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�pe�� D p

�
(15.85)

The proposal ratio is

�.p; p � 1/

�.p � 1; p/ D pa

pd=p
D pap

pd
(15.86)

The reversible jump MCMC requires more cycles of simulations because of
the frequent change of model dimension. When a QTL is deleted, all parameters
associated with this QTL are gone. The chain does not memorize this QTL. In
the future, if a new QTL is added to the neighborhood of this deleted QTL, the
parameter associated to this added QTL must be sampled anew from the prior
distribution. Even if the newly added QTL occupies exactly the same location as
a previously deleted QTL, the information of the previously deleted QTL is gone
permanently and cannot be reused. An improved RJMCMC may be developed
to memorize the information associated with deleted QTL. If the position of a
deleted QTL is sampled again later in the MCMC process (a new QTL is added
to a previously deleted QTL), the parameters associated with that deleted QTL can
be used again to facilitate the sampling for the newly added QTL. The improved
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method can substantially improve the mixing of the Markov chain and speed up the
MCMC process. The tradeoff is the increased computer memory requirement for
the improved method.

With the RJMCMC, the QTL number is a very important parameter. Its posterior
distribution is always reported. Each QTL occurring in the model is deemed to be
important and counted. In addition, the positions of QTL are usually determined by
the so-called QTL intensity profile, which is simply the plot of a scaled posterior
sample at a particular location n.�/ against the genome location �.

15.4.2 Stochastic Search Variable Selection

Stochastic search variable selection (SSVS) is a variable selection strategy for
large models. The method was originally developed by George and McCulloch
(1993, 1997) and applied to QTL mapping for the first time by Yi et al. (2003).
The difference between this method and many other methods of model selection is
that the model dimension is fixed at a predetermined value, just like the Bayesian
shrinkage analysis. Model selection is actually conducted by introducing a series of
binary variables, one for each model effect, i.e., the QTL effect. For p QTL effects,
p indicator variables are required. Let �k be the indicator variable for the kth QTL.
If �k D 1, the QTL is equivalent to being included in the model, and the effect will
not be shrunken. If �k D 0, the effect will be forced to take a value closed to, but
not exactly equal to, zero. Essentially, the prior distribution of the kth QTL takes
one of two normals. The switching button is variable �k , as given below:

p.�k/ D �kN.�kj0;�/C .1 � �k/N.�kj0; ı/ (15.87)

where ı is a small positive number closed to zero, say 0.0001, and � is a large
positive value, say 1,000. The two variances (ı and�) are constant hyperparameters.
The indicator variable is not known, and thus, the above distribution is a mixture of
two normal distributions. Let p.�k D 1/ D � be the probability that �k comes from
the first distribution; the mixture distribution is

p.�k/ D �N.�kj0;�/C .1 � �/N.�kj0; ı/ (15.88)

The mixture proportion � is unknown and is treated as a parameter. When the
indicator variable (�k) is known, the posterior distribution of �k is p.�kj � � � / D
N.�kj O�k; �2O�k /. The mean and variance of this normal are
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respectively, where

�k D �k�C .1 � �k/ı (15.91)

is the actual variance of the posterior distribution. Let the prior distribution for �k be

p.�k/ D Bernoulli.�kj�/ (15.92)

The conditional posterior distribution of �k D 1 is

p.�k D 1j � � � / D �N.�kj0;�/
�N.�kj0;�/C .1 � �/N.�kj0; ı/ (15.93)

There is another parameter � involved in the conditional posterior distribution.
Yi et al. (2003) treated � as a hyperparameter and set � D 1

2
. This prior works well

for small models but fails most often for large models. The optimal strategy is to
assign another prior to � so that � can be estimated from the data. Xu (2007) took a
beta prior for � , i.e.,

p.�/ D Beta.�j�0; �1/ D 	 .�0 C �1/

	 .�0/	 .�1/
��1�1.1 � �/�0�1 (15.94)

Under this prior, the conditional posterior distribution for � remains beta,
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(15.95)

The values of the hyperparameters were chosen by Xu (2007) as �0 D 1 and �1 D 1,
leading to an uninformative prior for �, i.e.,

p.�/ D Beta.�j1; 1/ D constant (15.96)

The Gibbs sampler for �2k in the Bayesian shrinkage analysis is replaced by sampling
�k from

p.�k j � � � / D Bernoulli

�
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and sampling � from

p.�j � � � / D Beta
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kD1 �k; 1C
Xp

kD1 �k
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(15.98)

in the SSVS analysis.
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The additional information extracted from SSVS is the probabilistic statement
about a QTL. If the marginal posterior mean of �k is large, say p.�kjdata/>95%,
the evidence of locus k being a QTL is strong. If the QTL position is allowed to
move, �k does not have any particular meaning. Instead, the number of hit of a
particular location of the genome by QTL with �.�/ D 1 is more informative.

15.4.3 Lasso and Bayesian Lasso

Lasso

Lasso refers to a method called least absolute shrinkage and selection operator
(Tibshirani 1996). The method can handle extremely large models by minimizing
the residual sum of squares subject to a predetermined constraint, the constraint that
the sum of absolute values of all regression coefficients is smaller than a predeter-
mined shrinkage factor. Mathematically, the solution of regression coefficients is
obtained by

min
�

nX

jD1

�
yj �

Xp

kD1 Zjk�k
�2

(15.99)

subject to constraint
pX

kD1
j�kj � t (15.100)

where t > 0. When t D 0, all regression coefficients must be zero. As t increases,
the number of nonzero regression coefficients progressively increases. As t ! 1,
the Lasso estimates of the regression coefficients are equivalent to the ordinary least-
squares estimates. Another expression of the problem is

min
�
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kD1 Zjk�k
�2 C �

pX

kD1
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where � � 0 is a Lagrange multiplier (unknown) which relates implicitly to the
bound t and controls the degree of shrinkage. The effect of � on the level of
shrinkage is just the opposite of t , with � D 0 being no shrinkage and � ! 1
being the strongest shrinkage where all �k are shrunken down to zero. Note that
the Lasso model does not involve Xjˇ, the non-QTL effect described earlier in the
chapter. The non-QTL effect in the original Lasso refers to the population mean.
For simplicity, Tibshirani (1996) centered yj and all the independent variables.
The centered yj is simply the original yj subtracted by Ny, the population mean.
The corresponding centered independent variables are also obtained by subtraction
of NZk from Zjk . The Lasso estimates of regression coefficients can be efficiently
computed via quadratic programming with linear constraints. An efficient algorithm
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called LARS (least angle regression) was developed by Efron et al. (2004) to
implement the Lasso method. The Lagrange multiplier � or the original t is
called the Lasso parameter. The original Lasso estimates � using the fivefold cross
validation approach. One can also use any other fold cross validations, for example,
the n-fold (leave-one-out) cross validation. Under each � value, the fivefold cross
validation is used to calculate the prediction error (PE),

PE D 1

n

nX

jD1

�
yj �

Xp

kD1 Zjk O�k
�2

(15.102)

This formula appears to be the same as the estimated residual error variance.
However, the prediction error differs from the residual error in that the individ-
uals predicted do not contribute to parameter estimation. With the fivefold cross
validation, we use 4

5
of the sample to estimate �k and then use the estimated �k to

predict the errors for the remaining 1
5

sample. In other words, when we calculate�
yj �Pp

kD1 Zjk O�k
	2

, the �k is estimated from 4
5

of the sample that excludes yj .
Under each �, the PE is calculated, denoted by PE.�/. We vary � from 0 to large
value. The � value that minimizes PE.�/ is the optimal value of �.

Bayesian Lasso

Lasso can be interpreted as Bayesian posterior mode estimation of regression
coefficients when each regression coefficient is assigned an independent double-
exponential prior (Tibshirani 1996; Yuan and Lin 2005; Park and Casella 2008).
However, Lasso provides neither the estimate for the residual error variance nor the
interval estimate for a regression coefficient. These deficiencies of Lasso can be
overcome by the Bayesian Lasso (Park and Casella 2008). The double-exponential
prior for �k is

p.�kj�/ D �

2
exp.��j�kj/ (15.103)

where � is the Lagrange multiplier in the classical Lasso method (see (15.101)).
This prior can be derived from a two-level hierarchical model. The first level is

p.�kj�2k / D N.�kj0; �2k / (15.104)

and the second level is
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Therefore,

p.�kj�/ D
Z 1

0

p.�kj�2k /p.�2k j�/d�2k D �

2
exp.��j�kj/ (15.106)

The Bayesian Lasso method uses the same model as the Lasso method. However,
centralization of independent variables is not required, although it is still recom-
mended. The model is described as follows:

yj D
qX

iD1
Xj iˇi C

pX

kD1
Zjk�k C �j (15.107)

where ˇi remains in the model and can be estimated along with the residual variance
�2 and all QTL effects. Bayesian Lasso provides the posterior distributions for all
parameters. The marginal posterior mean of each parameter is the Bayesian Lasso
estimate, which is different from the posterior mode estimate obtained from the
Lasso analysis. The Bayesian Lasso differs from the Bayesian shrinkage analysis
only in the prior distribution for �2k . Under the Bayesian Lasso, the prior for �2k is

p.�2k j�/ D �2

2
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��2k
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2

�
(15.108)

The Lasso parameter � needs a prior distribution so that we can estimate � from the
data rather than choosing an arbitrary value a priori. Park and Casella (2008) choose
the following gamma prior for �2 (not �):

p.�2ja; b/ D Gamma.�2ja; b/ D ba

	 .a/
.�2/a�1 exp

��b�2	 (15.109)

The reason for choosing such a prior is to enjoy the conjugate property. The
hyperparameters, a and b, are sufficiently remote from �2k and �k , and thus, their
values can be chosen in an arbitrary fashion. Yi and Xu (2008) used several different
sets of values for a and b and found no significant differences among those values.
For convenience, we may simply set a D b D 1, which is sufficiently different
from 0. Note that a D b D 0 produces an improper prior for �2. Once a and b
values are chosen, everything else can be estimated from the data.

The fully conditional posterior distributions for most variables remain the same
as the Bayesian shrinkage analysis except that the following variables must be
sampled using the posterior distribution derived under the Bayesian Lasso prior
distribution. For the kth QTL variance, it is better to deal with ˛k D 1

�2k
. The

conditional posterior for ˛k is an inverse Gaussian distribution,
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Algorithm for sampling a random variable from an inverse Gaussian is available.
Once ˛k is sampled, �2k simply takes the inverse of ˛k . The fully conditional
posterior distribution for �2 remains gamma because of the conjugate property of
the gamma prior,

p.�2j � � � / D Gamma

�
�2
ˇ̌
ˇ̌p C a;

1

2

Xp

kD1 �
2
k C b

�
(15.111)

The Bayesian Lasso can potentially improve the estimation of regression coef-
ficients for the following reasons: (1) It assigns an exponential prior, rather than a
scaled inverse chi-square prior, distribution to �2k , and (2) it increases the hierarchy
of the prior to another level so that the hyperparameters do not have strong influence
on the Bayesian estimates of the regression coefficients.

15.5 Example: Arabidopsis Data

The first example is the recombinant inbred line data of Arabidopsis data (Loudet
et al. 2002), where the two parents initiating the line cross were Bay-0 and Shahdara
with Bay-0 as the female parent. The recombinant inbred lines were actually F7
progeny of single-seed descendants of the F2 plants. Flowering time was recorded
for each line in two environments: long day (16-h photoperiod) and short day (8-h
photoperiod). We used the short-day flowering time as the quantitative trait for QTL
mapping. The two parents had very little difference in short-day flowering time.
The sample size (number of recombinant inbred lines) was 420. A couple of lines
did not have the phenotypic records, and their phenotypic values were replaced by
the population mean for convenience of data analysis. A total of 38 microsatellite
markers were used for the QTL mapping. These markers are more or less evenly
distributed along five chromosomes with an average 10.8 cM per marker interval.
The marker names and positions are given in the original article (Loudet et al. 2002).
We inserted a pseudomarker in every 5 cM of the genome. Including the inserted
pseudomarkers, the total number of loci subject to analysis was 74 (38 true markers
plus 36 pseudomarkers). All the 74 putative loci were evaluated simultaneously in a
single model. Therefore, the model for the short-day flowering time trait is

y D Xˇ C
74X

kD1
Zk�k C �

where X is a 420 � 1 vector of unity, Zk coded as 1 for one genotype and 0 for the
other genotype for locus k. If locus k is a pseudomarker,Zk D Pr.genotype D 1/,
which is the conditional probabilities of marker k being of genotype 1. Finally,
�k is the QTL effect of locus k. For the original data analysis, the burn-in period
was 1,000. The thinning rate was 10. The posterior sample size was 10,000,
and thus, the total number of iterations was 1; 000 C 10; 000 � 10 D 101; 000.
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Fig. 15.3 The estimated QTL effects (black) and the permutation generated 1 % (blue) and 5 %
(red) confidence intervals for the Arabidopsis short-time flowering time trait. The dotted reference
lines separate the five chromosomes

We also performed a permutation analysis (Che and Xu 2010) to generate empirical
quantiles of the QTL effects under the null model. The posterior sample size in
permutation analysis was 80,000. The total number of iterations was 1; 000 C
80; 000� 10D 801; 000. The estimated QTL effects and the permutation generated
0.5 % and 99.5 % (corresponding to a type I error of 0.01) and 2.5 % and 97.5 %
(corresponding to a type I error of 0.05) are shown in Fig. 15.3. Based on the 0.01
criterion, a total of five QTL were detected on four chromosomes (1, 3, 4, and 5).
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