
Chapter 11
Mapping Segregation Distortion Loci

A basic assumption in QTL mapping is that genomic loci (QTL and markers) follow
the Mendelian segregation ratio. The Mendelian ratio depends on the population
under investigation. For example, in a BC population, the Mendelian ratio is 1 W 1

for the two genotypes (A1A1, A1A2). In an F2 population, the Mendelian ratio is
1 W 2 W 1 for the three genotypes (A1A1, A1A2, and A2A2). If the segregation ratio
of a locus deviates from the Mendelian segregation ratio, we say that the locus
is a non-Mendelian locus or segregation distortion locus (SDL). In fact, a marker
whose segregation deviates from the Mendelian ratio is not necessarily an SDL. It is
most likely that a true SDL sits nearby the marker and the observed segregation
distortion of the marker is caused by the SDL because of linkage. Sometimes we
may see markers in several regions of the genome that show segregation distortion.
This may be caused by several SDL across the genome. The SDL themselves may
be caused by viability selection. In other words, different genotypes of the SDL
may have different viabilities. Genotypes that are favored by the viability selection
are overrepresented, while genotypes that are against by the viability selection
are underrepresented. Therefore, an SDL may also be called viability locus (VL).
Viability selection may happen in the gametic level or zygotic level or both. But it is
hard to tell the difference between gametic selection and zygotic selection unless we
can directly observe the gametes. Like quantitative trait loci, segregation distortion
loci can be mapped using marker information. Evolutionary biologists may be more
interested in SDL, while agricultural scientists may be more interested in QTL. In a
single experiment of genetic mapping, we may simultaneously investigate both SDL
and QTL.

The earliest work in SDL mapping was Fu and Ritland (1994). For the first
time, the authors proposed the viability selection hypothesis and tried to map SDL
using marker information under the maximum likelihood framework. Mitchell-Olds
(1995) also developed a similar ML method to map SDL in an F2 population.
A more systematic treatment of SDL mapping was made by Lorieux et al. (1995a,b)
using genome-wide markers. Vogl and Xu (2000) took a Bayesian approach to
mapping viability selection loci. Luo and Xu (2003) developed an EM algorithm to
estimate the segregation ratio under the ML framework. Luo et al. (2005) eventually
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152 11 Mapping Segregation Distortion Loci

developed a quantitative genetics model to estimate the genetic effects of viability
loci using a four-way cross design. Some of the methods have been applied to SDL
mapping in rice (Wang et al. 2005a).

This chapter will introduce methods for mapping SDL under two different
models. One is called the probabilistic model (Luo and Xu 2003), and the other
is called the liability model (Luo et al. 2005). Under some special situations, both
models will generate the same result, but in most situations, the liability model is
more efficient. In the last section, we will combine QTL mapping and SDL mapping
together and jointly map QTL and SDL (Xu and Hu 2009).

11.1 Probabilistic Model

Consider an SDL with an arbitrary segregation ratio in an F2 family derived from
the cross of two inbred lines. Let M and N be the left and right flanking markers
bracketing the SDL (denoted by G for short). The interval of the genome carrying
the three loci is denoted by a segment MGN. The three genotypes of the SDL are
denoted by G1G1, G1G2, and G2G2, respectively. Similar notation also applies to
the genotypes of the flanking markers. The interval defined by markers M and N
is divided into two segments. Let r1 and r2 be the recombination fractions for
segment MG and segment GN, respectively. The joint distribution of the marker
genotypes conditional on the SDL genotype can be derived using the Markovian
property under the assumption of no segregation interference between consecutive
loci. Let us order the three genotypes, G1G1, G1G2, and G2G2, as genotypes 1, 2,
and 3, respectively. If individual j takes the �th genotype for the SDL, we denote
the event by Gj D �; 8� D 1; 2; 3. The joint probability of the two markers
conditional on the genotype of the SDL is

Pr.Mj D �; Nj D �jGj D �/

D Pr.Mj D �jGj D �/ Pr.Nj D �jGj D �/ (11.1)

for all �; �; � D 1; 2; 3 , where Pr.Mj D �jGj D �/ D T1.�; �/ and Pr.Nj D
�jGj D �/ D T2.�; �/. We use Ti.�; �/ to denote the �th row and the �th column of
the following transition matrix

Ti D
2
4

.1 � ri /
2 2ri .1 � ri / r2

i

ri .1 � ri / .1 � ri /
2 C r2

i ri .1 � ri /

r2
i 2ri .1 � ri / .1 � ri /

2

3
5 ; 8i D 1; 2 (11.2)

For example,

Pr.Mj D 1; Nj D 2jGj D 3/

D Pr.Mj D 1jGj D 3/ Pr.Nj D 2jGj D 3/ (11.3)

D T1.3; 1/ T2.3; 2/ D 2r2
1 r2.1 � r2/ (11.4)
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Let !� D Pr.G D �/; 8� D 1; 2; 3, be the probability that a randomly sampled
individual from the F2 family takes the �th genotype. Let ! D f!1; !2; !3g be the
array of the genotype frequencies, and it is the vector of parameters for estimation
and test. Under Mendelian segregation, the three genotype frequencies are denoted
by � D f 1

4
; 1

2
; 1

4
g. Therefore, the null hypothesis is that the F2 population is a

Mendelian population, i.e., ! D �. We use a generic notation p for probability,
so that p.Gj D �/ represents Pr.Gj D �/ and p.Mj ; Nj jGj D �/ stands for
Pr.Mj ; Nj jGj D �/. Given the parameters !, the data (flanking marker genotypes),
and the multinomial probability model, we are ready to construct the log likelihood
function, which is

L.!/ D
nX

j D1

ln

�X3

�D1
p.Gj D �/p.Mj ; Nj jGj D �/

�

D
nX

j D1

ln

�X3

�D1
!�T1.�; Mj /T2.�; Nj /

�
(11.5)

where the parameters have a restriction
P3

�D1 !� D 1. Note that without any other
information, p.Gj D �/ D !�; 8j D 1; : : : ; n. Under the assumption of
Mendelian segregation, ! D �, i.e., !1 D !3 D 1

2
!2 D 1

4
. However, we treat !

as unknown parameters. We postulate that deviation of ! from the Mendelian ratio
will cause a marker linked to locus G to show distorted segregation. This likelihood
function has been used by Luo et al. (2005) for mapping SDL.

11.1.1 The EM Algorithm

The MLE of the parameters can be solved via the EM algorithm (Dempster et al.
1977). We need to rewrite the likelihood function in a form of complete-data. Let us
define a delta function as

ı.Gj ; �/ D
�

1

0

if Gj D �

if Gj ¤ �
(11.6)

If the genotypes of the SDL are known for all individuals, i.e., given ı.Gj ; �/ for all
j D 1; : : : ; n and � D 1; 2; 3, the complete-data log likelihood is

L.!; ı/ D
nX

j D1

lnŒp.Mj ; Nj jGj /p.Gj /� (11.7)
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where

p.Mj ; Nj jGj / D
3Y

�D1

p.Mj ; Nj jGj D �/ı.Gj ;�/

D
3Y

�D1

ŒT1.�; Mj /T2.�; Nj /�ı.Gj ;�/ (11.8)

and

p.Gj / D
3Y

�D1

!
ı.Gj ;�/
� (11.9)

Therefore, the complete-data log likelihood function can be rewritten as

L.!; ı/ D
nX

j D1

3X
�D1

ı.Gj ; �/flnŒT1.�; Mj /� C lnŒT2.�; Nj /� C ln.!�/g (11.10)

This log likelihood function involves missing value ı.Gj ; �/ and thus cannot be
used directly. We need to take expectation of this function with respect to ı.Gj ; �/.
In addition, we introduce a Lagrange multiplier to make sure that the parameters
are estimated within their restriction, i.e.,

P3
�D1 !� D 1. Therefore, the actual log

likelihood function that is maximized in the EM algorithm is

EŒL.!; ı/� D
nX

j D1

3X
�D1

EŒı.Gj ; �/�flnŒT1.�; Mj /� C lnŒT2.�; Nj /� C ln.!�/g

C �

�
1 �

X3

�D1
!�

�
(11.11)

where � is a Lagrange multiplier and is treated as a parameter for estimation. Before
we maximize the above expected complete-data log likelihood function, we need
to calculate EŒı.Gj ; �/�, which is called the posterior expectation of the missing
genotype and is calculated using Bayes’ theorem,

EŒı.Gj ; �/� D !�T1.�; Mj /T2.�; Nj /P3
�0 !�0T1.�0; Mj /T2.�0; Nj /

(11.12)

Note that this posterior expectation requires the value of parameter !, which
happens to be what we want to estimate. Therefore, iterations are required. Once
an initial value of ! is provided, we can find the posterior expectation of the
missing genotype, which further allows us to maximize the expected complete-
data log likelihood function, (11.11). To maximize EŒL.!; ı/�, we take the partial
derivatives of EŒL.!; ı/� with respect to the parameters and equate the partial
derivative to zero and solve for the parameters. The partial derivatives are
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@

@!�

EŒL.�; ı/� D
nX

j D1

EŒı.Gj ; �/�
1

!�

� �; 8� D 1; 2; 3 (11.13)

and

@

@�
EŒL.!; ı/� D 1 �

3X
�D1

!� (11.14)

Setting (11.13) to zero, we get

!� D 1

�

nX
j D1

EŒı.Gj ; �/�; 8� D 1; 2; 3 (11.15)

Equation (11.14) is just the restriction, which allows us to solve for �. Note thatP3
�D1 EŒı.Gj ; �/� D 1, i.e., the sum of the three conditional probabilities is unity.

This leads to

3X
�D1

!� D 1

�

3X
�D1

nX
j D1

EŒı.Gj ; �/� D 1

�

nX
j D1

3X
�D1

EŒı.Gj ; �/� D n

�
D 1 (11.16)

As a result, we get � D n. Substituting � D n into (11.15) leads to

!� D 1

n

nX
j D1

EŒı.Gj ; �/�; 8� D 1; 2; 3 (11.17)

The Lagrange multiplier � is a nuisance parameter that allows us to find solution of
!k in a convenient way. The EM algorithm is summarized as:

1. Initialize ! D !.0/.
2. Calculate EŒı.Gj ; �/� using (11.12) (the E-step).
3. Update ! using (11.17) (the M-step).
4. Repeat the E-step and the M-step until a certain criterion of convergence is

satisfied.

11.1.2 Hypothesis Test

The null hypothesis is H0: ! D �. The alternative hypothesis is HA: ! ¤ �.
The likelihood ratio test statistic is used to test the null hypothesis. The likelihood
ratio test statistic is

LRT D �2ŒL0.�/ � L1. O!/� (11.18)
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where

L1. O!/ D
nX

j D1

ln

�X3

�D1
O!�T1.�; Mj /T2.�; Nj /

�
(11.19)

is the observed log likelihood function evaluated at ! D O! and

L0.�/ D
nX

j D1

ln

�X3

�D1
��T1.�; Mj /T2.�; Nj /

�
(11.20)

is the log likelihood function evaluated at ! D �. Under the null hypothesis, LRT
will follow a chi-square distribution with 2 degrees of freedom. The reason for the
2 degrees of freedom is that we only have two (not three) independent parameters
to estimate.

11.1.3 Variance Matrix of the Estimated Parameters

There are three parameters in vector ! D f!1; !2; !3g, but only two are independent
because of the restriction

P3
�D1 !� D 1. Therefore, we only need to find the

variance matrix of two components. Let us express !3 D 1 � !1 � !2 so that

var. O!3/ D var. O!1/ C var. O!2/ C 2cov. O!1; O!2/ (11.21)

var. O!1; O!3/ D cov. O!1; 1 � O!1 � O!2/ D �var. O!1/ � cov. O!1; O!2/ (11.22)

and

var. O!2; O!3/ D cov. O!2; 1 � O!1 � O!2/ D �var. O!2/ � cov. O!1; O!2/ (11.23)

We now redefine ! D f O!1; O!2g as a vector with two components only. Therefore,
we only need to derive the variance–covariance matrix for vector ! D f O!1; O!2g
because the variance for O!3 and the covariances involving O!3 are all functions of
var.!/. Let

Lj .!; ı/ D
3X

�D1

ı.Gj ; �/flnŒT1.�; Mj /� C lnŒT2.�; Nj /� C ln.!�/g (11.24)

be the complete-data log likelihood function for individual j so that L.!; ı/ D
nP

j D1

Lj .!; ı/. Note that whenever !3 occurs, it is replaced by !3 D 1 � !1 � !2.

The Louis (1982) information matrix is

I. O!/ D �EŒH. O!; ı/� � varŒS. O!; ı/� (11.25)
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where

EŒH. O!; ı/� D

2
66664

nP
j D1

E
�

@2Lj .!;ı/

@!2
1

� nP
j D1

E
�

@2Lj .!;ı/

@!1@!2

�

nP
j D1

E
�

@2Lj .!;ı/

@!1@!2

� nP
j D1

E
�

@2Lj .!;ı/

@!2
2

�

3
77775

(11.26)

is the expectation of the Hessian matrix of the complete-data log likelihood
function and

varŒS. O!; ı/� D

2
6664

nP
j D1

var
�

@Lj .!;ı/

@!1

� nP
j D1

cov
�

@Lj .!;ı/

@!1
;

@Lj .!;ı/

@!2

�

nP
j D1

cov
�

@Lj .!;ı/

@!1
;

@Lj .!;ı/

@!2

� nP
j D1

var
�

@Lj .!;ı/

@!2

�

3
7775

(11.27)

is the variance–covariance matrix of the score vector of the complete-data log
likelihood function. Both the expectation and the variance are taken with respect
to the missing value ı.Gj ; �/ using the posterior distribution of the genotype of
the SDL. The inverse of the information matrix is used as an approximation of the
variance matrix of O! D f O!1; O!2g as shown below:

var. O!/ D
"

var. O!1/ cov. O!1; O!2/

cov. O!1; O!2/ var. O!2/

#
(11.28)

i.e., var. O!/ � I �1. O!/.
We now evaluate each element of EŒH. O!; ı/� and varŒS. O!; ı/�. For the expected

Hessian matrix, we have

E

�
@2Lj .!; ı/

@!2
1

�
D �EŒı.Gj ; 1/�

1

!2
1

� EŒı.Gj ; 3/�
1

.1 � !1 � !2/2

E

�
@2Lj .!; ı/

@!2
2

�
D �EŒı.Gj ; 2/�

1

!2
2

� EŒı.Gj ; 3/�
1

.1 � !1 � !2/2

E

�
@2Lj .!; ı/

@!1@!2

�
D �EŒı.Gj ; 3/�

1

.1 � !1 � !2/2
(11.29)

For the variance matrix of the score vector, we have

var

�
@Lj .!; ı/

@!1

�
D 1

!2
1

varŒı.Gj ; 1/� C 1

!2
3

varŒı.Gj ; 3/�

� 2

!1!3

covŒı.Gj ; 1/; ı.Gj ; 3/�
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var

�
@Lj .!; ı/

@!2

�
D 1

!2
2

varŒı.Gj ; 2/� C 1

!2
3

varŒı.Gj ; 3/�

� 2

!2!3

covŒı.Gj ; 2/; ı.Gj ; 3/�

cov

�
@Lj .!; ı/

@!1

;
@Lj .!; ı/

@!2

�
D 1

!1!2

covŒı.Gj ; 1/; ı.Gj ; 2/�

� 1

!2!3

covŒı.Gj ; 2/; ı.Gj ; 3/�

� 1

!1!3

covŒı.Gj ; 1/; ı.Gj ; 3/�

C 1

!2
3

varŒı.Gj ; 3/� (11.30)

Note again that !3 D 1�!1 �!2 for notational simplicity. The variance–covariance
matrix of the score vector requires the variance–covariance matrix of vector ıj D
fı.Gj ; 1/; ı.Gj ; 2/; ı.Gj ; 3/g. Let 	j� D EŒı.Gj ; �/�; 8� D 1; 2; 3 be the short
notation for the posterior expectation of ı.Gj ; �/. The variance–covariance matrix
of vector ıj is

var.ıj / D

2
664

	j1.1 � 	j1/ �	j1	j 2 �	j1	j 3

�	j1	j 2 	j 2.1 � 	j 2/ �	j 2	j 3

�	j1	j 3 �	j 2	j 3 	j 3.1 � 	j 3/

3
775 (11.31)

Elements of the score vector and the Hessian matrix for individual j are the first and
second partial derivatives of Lj .!; ı/ with respect to !. These are given as follows:

@Lj .!; ı/

@!1

D ı.Gj ; 1/
1

!1

� ı.Gj ; 3/
1

1 � !1 � !2

@Lj .!; ı/

@!2

D ı.Gj ; 2/
1

!2

� ı.Gj ; 3/
1

1 � !1 � !2

(11.32)

and

@2Lj .!; ı/

@!2
1

D �ı.Gj ; 1/
1

!2
1

� ı.Gj ; 3/
1

.1 � !1 � !2/2

@2Lj .!; ı/

@!2
2

D �ı.Gj ; 2/
1

!2
2

� ı.Gj ; 3/
1

.1 � !1 � !2/2

@2Lj .!; ı/

@!1@!2

D �ı.Gj ; 3/
1

.1 � !1 � !2/2
(11.33)
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11.1.4 Selection Coefficient and Dominance

In viability selection, we often use selection coefficient and the degree of dominance
to express the intensity of selection. There is a unique relationship between segrega-
tion distortion and the selection intensity. Let w11, w12, and w22 be the relative fitness
of the three genotypes (G1G1,G1G2, and G2G2) of the SDL, respectively. Let s and
h be the selection coefficient and degree of dominance. The relative fitness can be
expressed as (Hartl and Clark 1997)

w11 D 1

w12 D 1 � sh

w22 D 1 � s (11.34)

In an F2 population, the average fitness is

Nw D 1

4
w11 C 1

2
w12 C 1

4
w22 D 1

4
C 1

2
.1 � sh/ C 1

4
.1 � s/ (11.35)

The segregation ratio after the viability selection is

!1 D
1

4
w11

Nw D 1

1 C 2.1 � sh/ C .1 � s/

!2 D
1

2
w11

Nw D 2.1 � sh/

1 C 2.1 � sh/ C .1 � s/

!3 D
1

4
w11

Nw D 1 � s

1 C 2.1 � sh/ C .1 � s/
(11.36)

This equation system represents the relationship between the segregation ratio and
the intensity of viability selection. The inverse relationship is given by Luo et al.
(2005)

s D !1 � !3

!1

h D
!1 � 1

2
!2

!1 � !3

(11.37)

which is used to obtain the MLE of s and h given the MLE of ! D f!1; !2; !3g.

11.2 Liability Model

Systematic environmental effects may mask the effects of viability loci and cause
low power of detection. It is impossible to remove the systematic error from the
analysis using the probabilistic model described above. However, the liability model
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proposed here provides an extremely convenient way to remove such systematic
errors. Let yj be an underlying liability for individual j in the F2 population. We use
the following linear model to describe yj :

yj D Xj ˇ C Zj 
 C "j (11.38)

where ˇ is a vector of nongenetic effects (systematic error effects), Xj is a design
matrix for the systematic errors, Zj D fZj1; Zj 2g represents the genotypes of the
SDL and has been defined earlier in QTL mapping, 
 D fa; d g are the genetic
effects of QTL as defined earlier, and "j � N.0; 1/ is the residual error for the
liability. We can see that the liability is simply a regular quantitative trait, except
that it is not observable. Because the liability is a hypothetical variable, the residual
variance cannot be estimated, and thus, we set the variance to unity. We assume
that viability selection acts on the liability under the truncation selection scheme,
i.e., individual j will survive if yj � 0 ; otherwise, it will be eliminated from the
population. Since all individuals observed in the F2 population are survivors, yj � 0

applies to all individuals. The probability that yj � 0 is

Pr.yj � 0/ D ˚.Xj ˇ C Zj 
/ (11.39)

where ˚.:/ is the standardized cumulative normal function. This probability may be
considered as the relative fitness. Recall that

Zj1 D

8̂
<̂
ˆ̂:

C1

0

�1

for G1G1

for G1G2

for G2G2

(11.40)

and

Zj 2 D

8̂
<
:̂

0

1

0

for G1G1

for G1G2

for G2G2

(11.41)

are the indicator variables for the QTL genotype. Therefore, given each of the three
genotypes, we have

Pr.yj � 0jG1G1/ D wj .11/ D ˚.Xj ˇ C a/

Pr.yj � 0jG1G2/ D wj .12/ D ˚.Xj ˇ C d/

Pr.yj � 0jG2G2/ D wj .22/ D ˚.Xj ˇ � a/ (11.42)

Let us define the expected relative fitness for individual j by

Nwj D 1

4
wj .11/ C 1

2
wj .12/ C 1

4
wj .22/

D 1

4
˚.Xj ˇ C a/ C 1

2
˚.Xj ˇ C d/ C 1

4
˚.Xj ˇ � a/ (11.43)
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The normalized fitness for individual j is

!j .1/ D
1

4
wj .11/

Nwj

D ˚.Xj ˇ C a/

˚.Xj ˇ C a/ C 2˚.Xj ˇ C d/ C ˚.Xj ˇ � a/

!j .2/ D
1

2
wj .12/

Nwj

D 2˚.Xj ˇ C d/

˚.Xj ˇ C a/ C 2˚.Xj ˇ C d/ C ˚.Xj ˇ � a/

!j .3/ D
1

4
wj .22/

Nwj

D ˚.Xj ˇ � a/

˚.Xj ˇ C a/ C 2˚.Xj ˇ C d/ C ˚.Xj ˇ � a/

(11.44)

Under the liability model, the parameter vector is � D fˇ; 
g. We have formulated
the problem of mapping SDL into that of mapping QTL. The log likelihood
function is

L.�/ D
nX

j D1

ln

�X3

�D1
!j .�/T1.�; Mj /T2.�; Nj /

�
(11.45)

11.2.1 EM Algorithm

Due to the complexity of the likelihood function, there has been no simple algorithm
for the MLE of the parameters. Therefore, Luo et al. (2005) used the simplex
algorithm (Nelder and Mead 1965) to search for the MLE of parameters. An EM
algorithm does exist except that the maximization step is much more complicated
than that under the probabilistic model. Let us look at the log likelihood function
used in the complete-data situation, i.e., ı.Gj ; �/ is treated as known:

L.�; ı/ D
nX

j D1

Lj .�; ı/ (11.46)

where

Lj .�; ı/ D C ı.Gj ; 1/Œln.T1.1; Mj // C ln.T2.1; Nj // C ln ˚.Xj ˇ C a/�

C ı.Gj ; 2/Œln.T1.2; Mj // C ln.T2.2; Nj // C ln 2 C ln ˚.Xj ˇ C d/�

C ı.Gj ; 3/Œln.T1.3; Mj // C ln.T2.3; Nj // C ln ˚.Xj ˇ � a/�

� lnŒ˚.Xj ˇ C a/ C 2˚.Xj ˇ C d/ C ˚.Xj ˇ � a/� (11.47)
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The first partial derivatives are

S.�; ı/ D
nX

j D1

Sj .�; ı/ D

2
666666664

nP
j D1

@Lj .�;ı/

@ˇ

nP
j D1

@Lj .�;ı/

@a

nP
j D1

@Lj .�;ı/

@d

3
777777775

(11.48)

where
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The Fisher information matrix is
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Let S.�/ D EŒS.�; ı/� be the expectation of the first partial derivative. We have the
following iteration equation, which is the maximization step of the EM algorithm:

�.tC1/ D �.t/ C I �1.�.t//S.�.t// (11.51)



11.2 Liability Model 163

The expectation step is to calculate the expectation of ıj using

EŒı.Gj ; �/� D !j .�/T1.�; Mj /T2.�; Nj /P3
�0 !j .�0/T1.�0; Mj /T2.�0; Nj /

(11.52)

Before we proceed to the next section, let us look at the details of the Fisher
information matrix. In a slightly more compact notation, it is rewritten as
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j .�; ı/
i

(11.53)

where Sj .�; ı/ can be expressed as a linear function of vector ıj , i.e.,

Sj .�; ı/ D AT
j ıj C Cj (11.54)

where Aj is a 3 � .p C 2/ matrix and Cj is a .p C 2/ � 1 vector. The expressions
of Aj and Cj can be found from (11.49). The dimension of vector ˇ is p. Since
var.ıj / and E.ıj / are known (given before), we can write
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j (11.55)

where

E.ıj ıT
j / D var.ıj / C E.ıj /E.ıT

j / (11.56)

Definition of var.ıj / can be found in (11.31).

11.2.2 Variance Matrix of Estimated Parameters

The variance–covariance matrix of the estimated parameters can be approximated
by var. O�/ � I �1. O�/. However, a better approximation is to adjust the Fisher
information matrix by the variance–covariance matrix of the score vector, i.e.,

var. O�/ �
2
4I. O�/ �

nX
j D1

varŒSj .�; ı/�

3
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�1

(11.57)
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where

varŒSj .�; ı/� D var.Aj ıj / D AT
j var.ıj /Aj (11.58)

This adjustment gives the Louis (1982) information matrix.

11.2.3 Hypothesis Test

The null hypothesis is that there is no segregation distortion. This has been
formulated as H0 W a D d D 0. The log likelihood function evaluated at � D O� is

L1. O�/ D
nX
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�X3

�D1
!j .�/T1.�; Mj /T2.�; Nj /

�
(11.59)

The log likelihood function evaluated under the null model is

L0.�/ D
nX
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ln

�X3

�D1
��T1.�; Mj /T2.�; Nj /

�
(11.60)

This is because under H0 W a D d D 0, we have !j .�/ D ��; 8� D 1; 2; 3.
Given L0 and L1, the usual likelihood ratio test statistic LRT is used to test the null
hypothesis, where LRT D �2.L0 � L1/.

The liability model has two advantages over the probabilistic model: (1) Cofac-
tors can be removed from the analysis by fitting a ˇ vector in the model and (2) the
Wald (1943) test statistic may be used to test the null hypothesis.

11.3 Mapping QTL Under Segregation Distortion

Segregation distortion has long been treated as an error in the area of QTL mapping.
Its impact on the result of QTL mapping is generally considered detrimental.
Therefore, QTL mappers usually delete markers with segregation distortion before
conducting QTL mapping. However, a recent study (Xu 2008) shows that segrega-
tion distortion can help QTL mapping in some circumstances. Rather than deleting
markers with segregation distortion, we can take advantage of these markers in QTL
mapping. This section will combine QTL mapping and SDL mapping to map QTL
and SDL jointly. The method was recently published by Xu and Hu (2009).

11.3.1 Joint Likelihood Function

Consider that a QTL itself is also an SDL, i.e., the QTL is not necessarily
a Mendelian locus. We now go back to the probabilistic model for the SDL.
The parameter for SDL is ! D f!1; !2; !3g. Let yj be the phenotypic value of
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a quantitative trait (not the liability) measured from individual j . The probability
density of yj conditional on Gj D � for individual j is normal with mean
�j D Xj ˇ C H�
 and variance �2, i.e.,

p.yj jGj D �/ D f�.yj / D 1p
2	�2

exp

�
� 1

2�2
.yj � Xj ˇ � H�
/2

�
(11.61)

The conditional probability for the (flanking) markers is

p.Mj ; Nj jGj D �/ D T1.�; Nj /T2.�; Nj / (11.62)

The probability that Gj D � is

p.Gj D �/ D !� (11.63)

The joint likelihood function can be obtained by combining the three probabilities,
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which is rewritten as
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(11.65)

where the parameter vector is � D fˇ; 
; !g.

11.3.2 EM Algorithm

Derivation of the EM algorithm is given by Xu and Hu (2009). Here we only provide
the final result. The expectation step of the EM algorithm requires computing
the expectation of ıj conditional on the data and � . Because ıj is a multivariate
Bernoulli variable, the expectation is simply the probability of ı.Gj ; �/ D 1, i.e.,
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(11.66)
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The maximization step of the EM algorithm involves the following equations:
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11.3.3 Variance–Covariance Matrix of Estimated Parameters

Let us define the complete-data log likelihood function for individual j as
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where !3 D 1 � !1 � !2 so that !3 is excluded from the parameter vector. Elements
of the score vector for individual j are
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Elements of the Hessian matrix are
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The score vector and the Hessian matrix provide the original material from which
�EŒH.�; ı/� and varŒS.�; ı/� are calculated (see Xu and Hu 2009). The Louis



168 11 Mapping Segregation Distortion Loci

(1982) information matrix is

I.�/ D �EŒH.�; ı/� � varŒS.�; ı/� (11.74)

from which, we can get the variance matrix of the estimated parameters using
var. O�/ � I �1. O�/.

11.3.4 Hypothesis Tests

Hypothesis 1

There are several different hypotheses we can test. The first null hypothesis is H0 W

 D 0, i.e., there is no QTL for the quantitative trait. To test this hypothesis, we
need the full-model likelihood value as shown below:
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(11.75)

where the parameters in the right-hand side of the equation are replaced by the MLE.
The reduced-model likelihood value is calculated using
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where 
 D 0 is enforced and OO� is the estimated parameter vector under the reduced
model. The usual likelihood ratio test statistic is then constructed using the two
likelihood values.

Hypothesis 2

The second hypothesis is H0 W ! D �, i.e., the population is Mendelian. The log
likelihood functions under the full model are
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This is the same as that given in (11.75). The likelihood value under the reduced
model is

L1.
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ln
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��f�.yj /T1.�; Mj /T2.�; Nj /

)
(11.78)

where ! D � is enforced and OO� is the estimated parameter vector under the restricted
model. The usual likelihood ratio test statistic is then constructed using the two
likelihood values.

Hypothesis 3

The third hypothesis is H0 W 
 D 0 & ! D �, i.e., Mendelian population with no
QTL effect for the quantitative trait. The full model remains the same as that given
in (11.75) and (11.77). The reduced model is
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where OO� is the estimated parameter vector under the restricted model. This hypoth-
esis will be rejected if 
 ¤ 0 or ! ¤ � or both inequalities hold. This hypothesis
is particularly interesting for QTL mapping under selective genotyping. If the
F2 population is a Mendelian population, i.e., there is no segregation distortion,
individuals are only genotyped based on the extremity of the phenotype values.
Selective genotyping will lead to ! ¤ �, even if the original F2 population is
Mendelian.

11.3.5 Example

The mouse data introduced in Sect. 8.1 of Chap. 8 is used again for the joint QTL
and SDL analysis. The mouse genome is scanned for QTL of the 10th-week body
weight, the segregation distortion locus (SDL), and both QTL and SDL with a
1-cM increment for all the 19 chromosomes (excluding the sex chromosome) of
the genome. The LOD scores are depicted in Fig. 11.1. Let LOD D 3 be the
criterion of significance for gene detection. Two QTL appear to be significant, and
both are on chromosome 2. Three SDL are significant with one on chromosome 6
(LOD � 42:5), one on chromosome 14 (LOD � 5:5), and one on chromosome 18
(LOD � 3:5). The joint test has the highest LOD score across the entire genome.
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Fig. 11.1 The LOD test statistics profiles for the mouse genome (excluding the sex chromosome).
The three LOD score profiles represent (1) the LOD test for QTL of the 10th-week body weight
(blue), (2) the LOD score for SDL (segregation distortion locus, red), and (3) the LOD score for
both the QTL and SDL (black). The dashed horizontal line indicates the LOD D 3 criterion. The
19 chromosomes are separated by the vertical reference dotted lines
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Fig. 11.2 Estimated genotypic frequencies for the mouse genome. Frequencies of the three
genotypes are represented by areas with different patterns (A1A1 at top, A1A2 in the middle, and
A2A2 at the bottom). The chromosomes are separated by the reference lines on the horizontal axis.
The two reference lines on the vertical axis (0.25 and 0.75) divide the area into three parts based
on the Mendelian segregation ratio (0.25, 0.5, and 0.25)

The estimated frequencies of the three genotypes (A1A1, A1A2, and A2A2) are
shown in Fig. 11.2. The large SDL on chromosome 6 was extremely strong, and it
wiped out all heterozygotes and homozygotes of the other type. The allele of this
locus was fixed for the A2 allele.
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