
Chapter 10
Interval Mapping for Ordinal Traits

Many disease resistance traits in agricultural crops are measured in ordered
categories. The generalized linear model (GLM) methodology (Nelder and Wed-
derburn 1972; Wedderburn 1974; McCullagh and Nelder 1999) is an ideal tool
to analyze these traits. Ordinal traits are usually controlled by the segregation of
multiple QTL and environmental factors. The genetic architecture of such traits
can be studied using linkage analysis. One can analyze the association of each
marker with the disease phenotype. If the marker information is fully observable,
i.e., marker genotypes can be observed, the standard GLM methodology can be
directly applied to the association study by screening markers of the entire genome
for their association with the disease trait. Many statistical software packages, e.g.,
SAS (SAS Institute 2008b), have built-in functions or procedures to perform the
standard GLM analysis. One can simply execute the built-in procedures many
times, one for each marker, to scan the entire genome without developing a
new computer program. In any genetic experiments, missing marker genotypes
are unavoidable. In addition, interval mapping requires detection of association
between the trait phenotype and loci that are not necessarily located at marker
positions. Genotypes of these additional loci are never observed. Therefore, GLM
with missing values must be applied. There is a rich literature on the missing value
GLM analysis (Ibrahim 1990; Horton and Laird 1999; Ibrahim et al. 2002, 2005).
The most popular method is the maximum likelihood (ML) method implemented
via the EM algorithm (Horton and Laird 1999). Other methods are also available,
such as multiple imputation (MI, Rubin (1987)), fully Bayesian (FB, Ibrahim
et al. (2002)) and weighted estimating equations (WEE, Ibrahim et al. (2005)).
A complete review on the methods can be found in Ibrahim et al. (2005). Hackett and
Weller (1995) first applied the ML method to mapping ordinal trait QTL. They took
advantage of an existing software package named GeneStat for the standard GLM
analysis (without missing covariates) and modified the software by incorporating
a weight variable. The modified GLM for missing data duplicates the data by the
number of genotypes per locus, e.g., two for a backcross population and three for
an F2 population. The weight variable is simply the posterior probabilities of the
missing genotypes. The weight variable is updated iteratively until the iteration
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132 10 Interval Mapping for Ordinal Traits

converges. The modified GLM program is not necessarily simpler than a program
written anew. Furthermore, the variance–covariance matrix of estimated parameters
is not available for the modified GML algorithm. Xu et al. (2003) developed an
explicit EM algorithm using the posterior probability of missing covariates as
the weight variable and further provided the variance–covariance matrix of the
estimated parameters by using the Louis’ (1982) adjustment for the information
matrix. Standard deviations (square roots of the variances) of estimated parameters
represent the precisions of the estimates, which are required in the final report for
publication. The variance–covariance matrix of the estimated QTL effects can also
be used to calculate the Wald-test statistic (Wald 1943), which is an alternative test
that can replace the likelihood ratio test statistic. Although using the large sample
distribution for the likelihood ratio test gives more accurate approximation for small
and moderate-sized samples, the latter has a computational advantage since it does
not require calculation of the likelihood function under the null model (McCulloch
and Searle 2001). A missing QTL genotype usually has partial information, which
can be extracted from linked markers. This information can be used to infer the
QTL genotypes using several different ways (McCulloch and Searle 2001). In QTL
mapping for continuously distributed traits, mixture model (Lander and Botstein
1989) is the most efficient way to take advantage of marker information. The least-
squares method of Haley and Knott (1992) is the simplest way to incorporate
linked markers. Performances of the weighted least-squares method of Xu (1998a,b)
and estimating equations (EE) algorithm of Feenstra et al. (2006) are usually
between the least-squares and mixture model methods. These methods have been
successfully applied to QTL mapping for continuous traits, but they have not been
investigated for ordinal trait QTL mapping. This chapter will introduce several
alternative GLM methods for mapping quantitative trait loci of ordinal traits.

10.1 Generalized Linear Model

Suppose that a disease phenotype of individual j (j D 1; : : : ; n) is measured by an
ordinal variable denoted by Sj D 1; : : : ; p C 1, where p C 1 is the total number of
disease classes and n is the sample size. Let Yj D fYjkg;8k D 1; : : : ; p C 1, be a
.pC 1/� 1 vector to indicate the disease status of individual j . The kth element of
Yj is defined as

Yjk D
�
1

0

if Sj D k

if Sj ¤ k
(10.1)

Using the probit link function, the expectation of Yjk is defined as

�jk D E.Yjk/ D ˚.˛k CXjˇ CZj �/ �˚.˛k�1 CXjˇ CZj �/ (10.2)
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where ˛k (˛0 D �1 and ˛pC1 D C1) is the intercept, ˇ is a q � 1 vector for
some systematic effects (not related to the effects of quantitative trait loci), and � is
an r � 1 vector for the effects of a quantitative trait locus. The symbol ˚.:/ is the
standardized cumulative normal function. The design matrix Xj is assumed to be
known, butZj may not be fully observable because it is determined by the genotype
of j for the locus of interest. Because the link function is probit, this type of analysis
is called probit analysis. Let �j D f�jkg be a .p C 1/ � 1 vector. The expectation
for vector Yj is E.Yj / D �j , and the variance matrix of Yj is

Vj D var.Yj / D  j C �j�
T
j (10.3)

where  j D diag.�j /. The method to be developed requires the inverse of matrix
Vj . However, Vj is not of full rank. We can use a generalized inverse of Vj , such
as V �

j D  �1
j , in place of V �1

j . The parameter vector is � D f˛; ˇ; �g with a
dimensionality of .p C q C r/ � 1. Binary data is a special case of ordinal data in
that p D 1 so that there are only two categories, Sj D f1; 2g. The expectation of
Yjk is

�jk D
�
˚.˛1 CXjˇ CZj �/ �˚.˛0 CXjˇ CZj �/

˚.˛2 CXjˇ CZj �/ �˚.˛1 CXjˇ CZj �/

for k D 1

for k D 2
(10.4)

Because ˛0 D �1 and ˛2 D C1 in the binary case, we have

�jk D
�

˚.˛1 CXjˇ CZj�/

1 � ˚.˛1 CXjˇ CZj �/

for k D 1

for k D 2
(10.5)

We can see that �j2 D 1 � �j1 and

˚�1.�j1/ D ˛1 CXjˇ CZj � (10.6)

The link function is ˚�1.:/, and thus, it is called the probit link function. Once
we take the probit transformation, the model becomes a linear model. Therefore,
this type of model is called a generalized linear model (GLM). The ordinary linear
model we learned before for continuous traits is a special case of the GLM because
the link function is simply the identity, i.e.,

I�1.�j1/ D ˛1 CXjˇ CZj � (10.7)

or simply

�j1 D ˛1 CXjˇ CZj � (10.8)

Most techniques we learned for the linear model apply to the generalized linear
model.
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10.2 ML Under Homogeneous Variance

Let us first assume that the genotypes of the QTL are observed for all individuals.
In this case, variableZj is not missing. The log likelihood function under the probit
model is

L.�/ D
nX

jD1
Lj .�/ (10.9)

where

Lj .�/ D
pC1X
kD1

Yjk lnŒ˚.˛k CXjˇ CZj �/� ˚.˛k�1 CXjˇ CZj �/� (10.10)

and � D f˛; ˇ; �g is the vector of parameters. This is the simplest GLM problem,
and the classical iteratively reweighted least-squares approach for GLM (Nelder
and Wedderburn 1972; Wedderburn 1974) can be used without any modification.
The iterative equation under the classical GLM is given below:

�.tC1/ D �.t/ C I�1.�.t//S.�.t// (10.11)

where �.t/ is the parameter value in the current iteration, I.�.t// is the information
matrix, and S.�.t// is the score vector, both evaluated at �.t/. We can interpret

�� D I�1.�.t//S.�.t// (10.12)

in (10.11) as the adjustment for �.t/ to improve the solution in the direction that
leads to the ultimate maximum likelihood estimate of � . Equation (10.3) shows that
the variance of Yj is a function of the expectation of Yj . This special relationship
leads to a convenient way to calculate the information matrix and the score vector,
as given by Wedderburn (1974),

I.�/ D
Xn

jD1 D
T
j WjDj (10.13)

and

S.�/ D
Xn

jD1 D
T
j Wj .Yj � �j / (10.14)

where Wj D  �1
j . Therefore, the increment (adjustment) of the parameter can be

estimated using the following iteratively reweighted least-squares approach:

�� D
hXn

jD1 D
T
j WjDj

i�1 hXn

jD1 D
T
j Wj .Yj � �j /

i
(10.15)

where Dj is a .p C 1/ � .p C q C r/ matrix for the first partial derivatives of �j
with respect to the parameters and Wj D V �

j D  �1
j is the weight matrix. Matrix

Dj can be partitioned into three blocks,
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Dj D @�j

@�T
D

�
@�j

@˛T
@�j

@̌ T

@�j

@�T

�
(10.16)

The first block @�j
ı
@˛T D ˚

@�jk
ı
@˛l

�
is a .p C 1/ � p matrix with

@�jk

@˛k�1
D ��.˛k�1 CXjˇ CZj �/

@�jk

@˛k
D �.˛k CXjˇ CZj �/

@�jk

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.17)

The second block @�j
ı
@̌ T D ˚

@�jk
ı
@̌

�
is a .p C 1/ � q matrix with

@�jk

@̌
D XT

j Œ�.˛k CXjˇ CZj �/ � �.˛k�1 CXjˇ CZj�/� (10.18)

The third block @�j
ı
@�T D ˚

@�jk
ı
@�

�
is a .p C 1/ � r matrix with

@�jk

@�
D ZT

j Œ�.˛k CXjˇ CZj �/� �.˛k�1 CXjˇ CZj �/� (10.19)

In all the above partial derivatives, the range of k is k D 1; : : : ; p C 1.
The sequence of parameter values during the iteration process converges to a local
maximum likelihood estimate, denoted by O� . The variance–covariance matrix of O�
is approximately equal to var. O�/ D I�1. O�/, which is a by-product of the iteration
process. Here, we are actually dealing with a situation where the QTL overlaps
with a fully informative marker because observed marker genotypes represent the
genotypes of the disease locus. If the QTL of interest does not overlap with any
markers, the genotype of the QTL is not observable, i.e.,Zj is missing. The classical
GLM does not apply directly to such a situation. The missing value Zj still
has some information due to linkage with some markers. Again, we use an F2
population as an example to show how to handle the missing value of Zj . The
ML estimation of parameters under the homogeneous variance model is obtained
simply by substituting Zj with the conditional expectation of Zj given flanking
marker information. Let

pj .2 � g/ D Pr.Zj D Hgjmarker/;8g D 1; 2; 3 (10.20)

be the conditional probability of the QTL genotype given marker information, where
the marker information can be either drawn from two flanking markers (interval
mapping, Lander and Botstein 1989) or multiple markers (multipoint analysis, Jiang
and Zeng 1997). Note that pj .2 � g/ is not pj multiplied by .2 � g/; rather, it is
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a notation for the probabilities of the three genotypes. For g D 1; 2; 3, we have
pj .�1/, pj .0/, and pj .C1/, respectively, where pj .�1/, etc., are defined early in
Chap. 9. Vector Hg for g D 1; 2; 3 is also defined in Chap. 9 as genotype indicator
variables.

Using marker information, we can calculate the expectation of Zj , which is

Uj D E.Zj / D
3X

gD1
pj .2� g/Hg (10.21)

The method is called ML under the homogeneous residual variance because when
we substituteZj byUj , the residual error variance is no longer equal to unity; rather
it is inflated, and the inflation varies across individuals. However, the homogeneous
variance model here assumed the residual variance is constant across individuals.
This method is the ordinal trait analogy of the Haley and Knott’s (1992) method of
QTL mapping.

10.3 ML Under Heterogeneous Variance

The homogeneous variance model is only a first moment approximation because the
uncertainty of the estimated Zj has been ignored. Let

˙j D var.Zj / D
3X

gD1
pj .2 � g/HT

g Hg � UT
j Uj (10.22)

be the conditional covariance matrix for Zj . Note that model (10.2) with Zj
substituted by Uj is

�jk D E.Yjk/ D ˚.˛k CXjˇ C Uj�/ �˚.˛k�1 CXjˇ C Uj�/ (10.23)

An underlying assumption for this probit model is that the residual error variance
for the “underlying liability” of the disease trait is unity across individuals. Once Uj
is used in place of Zj, the residual error variance becomes

�2j D �T˙j � C 1 (10.24)

This is an inflated variance, and it is heterogeneous across individuals. In order to
apply the probit model, we need to rescale the model effects as follows (Xu and Hu
2010):

�jk D ˚
h
1
�j
.˛k CXjˇ C Uj�/

i
� ˚

h
1
�j
.˛k�1 CXjˇ C Uj�/

i
(10.25)
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This modification leads to a change in the partial derivatives of �j with respect to
the parameters. Corresponding changes in the derivatives are given below.

@�jk

@˛k�1
D � 1

�j
�

h
1
�j
.˛k�1 CXjˇ C Uj�/

i

@�jk

@˛k
D 1

�j
�

h
1
�j
.˛k CXjˇ C Uj�/

i

@�jk

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.26)

@�jk

@̌
D 1

�j
�

h
1
�j
.˛k CXjˇ C Uj�/

i
XT
j

� 1
�j
�

h
1
�j
.˛k�1 CXjˇ C Uj�/

i
XT
j (10.27)

and

@�jk

@�
D 1

�j
�

h
1
�j
.˛k CXjˇ C Uj�/

i �
UT
j � 1

�2j
.˛k CXjˇ C Uj�/˙j �

�

� 1
�j
�

h
1
�j
.˛k�1 CXjˇ C Uj�/

i �
UT
j � 1

�2j
.˛k�1 CXjˇ C Uj�/˙j �

�

(10.28)

The iteration formula remains the same as (10.11) except that the modified weight
and partial derivatives are used under the heterogeneous residual variance model.

10.4 ML Under Mixture Distribution

The mixture model approach defines genotype-specific expectation, variance matrix,
and all derivatives for each individual. Let

�jk.g/ D E.Yjk/ D ˚.˛k CXjˇ CHg�/ �˚.˛k�1 CXjˇ CHg�/ (10.29)

be the expectation of Yjk if j takes the gth genotype for g D 1; 2; 3. The corre-
sponding variance–covariance matrix is

Vj .g/ D  j .g/ � �j .g/�Tj .g/ (10.30)
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where j .g/ D diagŒ�j .g/�. LetDj .g/ be the partial derivatives of the expectation
with respect to the parameters. The corresponding values of Dj .g/ are

@�jk.g/

@˛k�1
D ��.˛k�1 CXjˇ CHg�/

@�jk.g/

@˛k
D �.˛k CXjˇ CHg�/

@�jk.g/

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.31)

@�jk.g/

@̌
D XT

j Œ�.˛k CXjˇ CHg�/� �.˛k�1 CXjˇ CHg�/�

(10.32)

and

@�jk.g/

@�
D HT

g Œ�.˛k CXjˇ CHg�/� �.˛k�1 CXjˇ CHg�/� (10.33)

Let us define the posterior probability of QTL genotype after incorporating the
disease phenotype for individual j as

p�
j .2 � g/ D pj .2 � g/Y Tj �j .g/P3

g0D1 pj .2 � g0/Y Tj �j .g0/
(10.34)

The increment for parameter updating under the mixture model is

�� D
hXn

jD1 E
�
DT
j WjDj

�i�1 hXn

jD1 E
�
DT
j Wj .Yj � �j /

�i
(10.35)

where

E
�
DT
j WjDj

�
D

3X
gD1

p�
j .g/D

T
j .g/Wj .g/Dj .g/ (10.36)

E
�
DT
j Wj .Yj � �j /

�
D

3X
gD1

p�
j .2 � g/DT

j .g/Wj .g/.Yj � �j .g//

(10.37)

and

Wj .g/ D  �1
j .g/ (10.38)
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This is actually an EM algorithm where calculating the posterior probabilities of

QTL genotype and using the posterior probabilities to calculate E
�
DT
j WjDj

�

and E
�
DT
j Wj .Yj � �j /

�
constitute the E-step and calculating the increment of

the parameter using the weighted least-squares formula makes up the M-step.
A problem with this EM algorithm is that var. O�/ is not a by-product of the iteration
process. For simplicity, if the markers are sufficiently close to the trait locus of
interest, we can use

var. O�/ �
hXn

jD1 E
�
DT
j WjDj

�i�1
(10.39)

to approximate the covariance matrix of estimated parameters. This is an underes-
timated variance matrix. A more precise method to calculate var. O�/ is to adjust the
above equation by the information loss due to uncertainty of the QTL genotype. Let

S. O� jZ/ D
nX

jD1
DT
j Wj .Yj � �j / (10.40)

be the score vector as ifZ were observed. Louis (1982) showed that the information
loss is due to the variance–covariance matrix of the score vector, which is

varŒS. O� jZ/� D
nX

jD1
var

h
DT
j Wj .Yj � �j /

i
(10.41)

The variance is taken with respect to the missing value Z using the posterior
probability of QTL genotype. The information matrix after adjusting for the
information loss is

I. O�/ D
nX

jD1
E

�
DT
j WjDj

�
�

nX
jD1

var
h
DT
j Wj .Yj � �j /

i
(10.42)

The variance–covariance matrix for the estimated parameters is then approximated
by var. O�/ D I�1. O�/. Details of varŒDT

j Wj .Yj � �j /� are given by Xu and Hu
(2010).

10.5 ML via the EM Algorithm

The EM algorithm to be introduced here is different from the EM under the
mixture model described in the previous section. We now use a liability model
(Xu et al. 2003) to derive the EM algorithm. Xu et al. (2003) hypothesizes that
there is an underlying liability that controls the observed phenotype. The liability
is a continuous variable and has exactly the same behavior as a quantitative trait.
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a

b

0 1discrete phenotype

Liability

1 2 3discrete phenotype

Liability

Fig. 10.1 Connection between the unobserved continuous liability and the observed discrete
phenotype. The top panel shows the connection for an ordinal trait with two categories, and the
bottom panel shows the connection for an ordinal trait with three categories

The only difference is that the liability is not observable while the quantitative trait
can be measured in experiments. The observed ordinal trait phenotype is connected
with the liability by a series of thresholds, as demonstrated in Fig. 10.1. In the
generalized linear model under the mixture distribution, the EM algorithm treats the
QTL genotype as missing value. Here, we treat the liability as missing value as well.
Let yj be the liability for the j th individual. This is different from Yj D fYjkg, the
multivariate representation of the ordered categorical phenotype in the generalized
linear model. The liability can be described by the following linear model:

yj D Xjˇ CZj � C "j (10.43)

where "j � N.0; �2/ is assumed. Under the liability model, �2 cannot be estimated,
and thus, we set �2 D 1. This arbitrary scale will not affect the significance
test because the estimated parameters � D f˛; ˇ; �g are defined relative to �2.
The connection between yj and the observed phenotype is
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Sj D k ; for ˛k�1 < yj � ˛k (10.44)

where k D 1; : : : ; p C 1. The thresholds ˛ do not appear in the linear model
explicitly but serve as converters from yj to Sj . Xu et al. (2003) developed an
EM algorithm for ordinal trait QTL mapping by using this liability model. They
used a three-step approach, where the first step is to estimate the non-QTL effects
(ˇ), the second step is to estimate the QTL effects (� ), and the third step is to
estimate the thresholds (˛). The method does not have a simple way to calculate
the variance–covariance matrix of the estimated parameters. Xu and Xu (2006)
extended the method using a multivariate version of the GLM. This method gives a
way to calculate the variance–covariance matrix of the estimated parameters. Both
methods (Xu et al. 2003; Xu and Xu 2006) are quite complicated in the E-step.
When the number of categories is two (the binary case), both methods can be
simplified. This section will deal with the simplified binary trait QTL mapping
where only one threshold is applied. In this case, the single threshold is set to zero
so that it is not a parameter for estimation, and thus, we only estimate ˇ and � . In
the binary situation, Sj D f1; 2g and

Yj1 D
�
1

0

for
for

Sj D 1

Sj D 2
(10.45)

and

Yj2 D
�
0

1

for
for

Sj D 1

Sj D 2
(10.46)

The liability model remains the same as that given in (10.43). The derivation of
the EM algorithm starts with the complete-data situation. If both Zj and yj were
observed, the ML estimates of ˇ and � would be

2
4ˇ
�

3
5 D

2
66664

nP
jD1

XT
j Xj

nP
jD1

XT
j Zj

nP
jD1

ZT
j Xj

nP
jD1

ZT
j Zj

3
77775

�1 2
66664

nP
jD1

XT
j yj

nP
jD1

ZT
j yj

3
77775 (10.47)

This is simply the ordinary least-squares estimates of the parameters. The EM
algorithm takes advantage of this explicit solution in the maximization step. If we
had observed yj but still not been able to estimate Zj , the maximization step of the
EM algorithm would be

2
4ˇ
�

3
5 D

2
66664

nP
jD1

XT
j Xj

nP
jD1

XT
j E.Zj /

nP
jD1

E.ZT
j /Xj

nP
jD1

E.ZT
j Zj /

3
77775

�1 2
66664

nP
jD1

XT
j yj

nP
jD1

E.ZT
j /yj

3
77775 (10.48)
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The problem here is that we observe neitherZj nor yj . Intuitively, the maximization
step of the EM should be

2
4ˇ
�

3
5 D

2
66664

nP
jD1

XT
j Xj

nP
jD1

XT
j E.Zj /

nP
jD1

E.ZT
j /Xj

nP
jD1

E.ZT
j Zj /

3
77775

�1 2
66664

nP
jD1

XT
j E.yj /

nP
jD1

E.ZT
j yj /

3
77775 (10.49)

where the expectations are taken with respect to bothZj and yj using the posterior
probabilities of QTL genotypes. We now present the method for calculating these
expectation terms. We first address E.Zj / and E.ZT

j Zj / using the posterior
probabilities of the QTL genotypes.

p�
j .2� g/ D pj .2 � g/ �

˚.Xjˇ CHg�/
	Yj1 �

1 �˚.Xjˇ CHg�/
	Yj2

P3
g0D1 pj .2� g0/

�
˚.Xjˇ CHg0�/

	Yj1 �
1 � ˚.Xjˇ CHg0�/

	Yj2
(10.50)

Given the posterior probabilities, we have

E.Zj / D
3X

gD1
p�
j .2 � g/Hg (10.51)

and

E.ZT
j Zj / D

3X
gD1

p�
j .2 � g/HT

g Hg (10.52)

The expectations for terms that involve yj can be expressed as

E.yj / D E
Z

�
E
y
.yj jZj /

�
D

3X
gD1

p�
j .2 � g/E

y
.yj jHg/ (10.53)

and

E.ZT
j yj / D E

Z

�
ZT
j E
y
.yj jZj /

�
D

3X
gD1

p�
j .2 � g/HT

g E
y
.yj jHg/ (10.54)

where

E
y
.yj jHg/ D Xjˇ CHg� C .Yj 2 � Yj1/�.Xjˇ CHg�/�

˚.Xjˇ CHg�/
	Yj1 �

1 � ˚.Xjˇ CHg�/
	Yj2
(10.55)
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Therefore, the EM algorithm can be summarized as:

1. Initialize parameters �.0/ D fˇ.0/; � .0/g.
2. Calculate E.Zj /, E.ZT

j Zj / , E.yj /, and E.ZT
j yj /.

3. Update ˇ and � using (10.49).
4. Repeat Step 2 to Step 3 until convergence is reached.

Once the EM algorithm converges, we obtain the estimated parameters and are ready
to calculate the Louis (1982) information matrix. The variance–covariance matrix
of the estimated parameters simply takes the inverse of the information matrix. Let

H.�;Z; y/ D �

2
66664

nP
jD1

XT
j Xj

nP
jD1

XT
j Zj

nP
jD1

ZT
j Xj

nP
jD1

ZT
j Zj

3
77775 (10.56)

be the Hessian matrix of the complete-data log likelihood function and

S.�;Z; y/ D

2
66664

nP
jD1

XT
j .yj � Xjˇ �Zj �/

nP
jD1

ZT
j .yj �Xjˇ �Zj �/

3
77775 (10.57)

be the score vector of the complete-data log likelihood function. The Louis
information matrix is

I.�/ D �E ŒH.�;Z; y/�� E
�
S.�;Z; y/ST .�;Z; y/

	
(10.58)

where the expectations are taken with respect to the missing values of Z and y.
Note that

var ŒS.�;Z; y/� D E
�
S.�;Z; y/ST .�;Z; y/

	 � E ŒS.�;Z; y/�E
�
ST .�;Z; y/

	
(10.59)

and EŒS.�;Z; y/� D 0 at � D O� . This leads to

E
�
S.�;Z; y/ST .�;Z; y/

	 D var ŒS.�;Z; y/� (10.60)

Therefore, the Louis information matrix is also expressed as

I.�/ D �E ŒH.�;Z; y/� � var ŒS.�;Z; y/� (10.61)
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The first term is easy to obtain, as shown below:

�E ŒH.�;Z; y/� D

2
664

nP
jD1

XT
j Xj

nP
jD1

XT
j E.Zj /

nP
jD1

E.ZT
j /Xj

nP
jD1

E.ZT
j Zj /

3
775 (10.62)

The second term can be expressed as

var ŒS.�;Z; y/� D
nX

jD1
var

�
Sj .�;Z; y/

	
(10.63)

where

Sj .�;Z; y/ D
"
XT
j .yj �Xjˇ �Zj �/

ZT
j .yj � Xjˇ �Zj�/

#
(10.64)

Explicit form of var
�
Sj .�;Z; y/

	
can be derived. This matrix is a 2�2 block matrix,

denoted by

var
�
Sj .�;Z; y/

	 D
2
4˙11 ˙12

˙21 ˙22

3
5 (10.65)

we now provide detailed expressions of the blocks.

˙11 D E
h
XT
j var.yj �Xjˇ �Zj �/Xj

i

˙22 D E
h
ZT
j var.yj �Xjˇ �Zj �/Zj

i

˙12 D E
h
XT
j var.yj �Xjˇ �Zj �/Zj

i (10.66)

where var.yj � Xjˇ � Zj �/ is the variance of a truncated normal variable (the
truncation point being zero) conditional on Yj D fYj1; Yj 2g and Zj . Let

'.Zj / D var.yj � Xjˇ � Zj �/ (10.67)

be the short notation for the variance of the truncated normal variable. With some
manipulation on Cohen (1991) formula, we get

'.Zj / D 1�  .Xjˇ CZj �/
�
 .Xjˇ CZj �/� .Yj1 � Yj2/.Xjˇ CZj �/

	
(10.68)

where

 .Xjˇ CZj �/ D �.Xjˇ CZj �/�
1 � ˚.Xjˇ CZj �/

	Yj1 �
˚.Xjˇ CZj �/

	Yj2 (10.69)
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Therefore,

˙11 D
3X

gD1
p�
j .2 � g/XT

j '.Hg/Xj

˙12 D
3X

gD1
p�
j .2 � g/XT

j '.Hg/Hg

˙22 D
3X

gD1
p�
j .2 � g/HT

g '.Hg/Hg (10.70)

Further manipulation on the information matrix, we get

I.�/ D

2
664

nP
jD1

E
h
XT
j



1 � '.Zj /

�
Xj

i
;

nP
jD1

E
h
XT
j



1 � '.Zj /

�
Zj

i
nP

jD1
E

h
ZT
j



1 � '.Zj /

�
Xj

i
;

nP
jD1

E
h
ZT
j



1 � '.Zj /

�
Zj

i
3
775 (10.71)

which is a 2 � 2 matrix.
Xu and Xu (2003) proposed an alternative method to calculate the Louis infor-

mation matrix via Monte Carlo simulations. The method does not involve the above
complicated derivation; instead, it simply simulates the QTL genotype .Zj / using
the posterior distribution for each individual and the liability .yj / conditional on
the genotype using the truncated normal distribution for the individual. The method
directly uses the following information matrix:

I.�/ D �E ŒH.�;Z; y/�� E
�
S.�;Z; y/ST .�;Z; y/

	
(10.72)

with EŒS.�;Z; y/ST .�;Z; y/� obtained via Monte Carlo simulations. Let Z.t/

and y.t/ be simulated Z and y at the t th sample so that S.�;Z.t/; y.t// is the
score vector given Z.t/, y.t/, and � D O� . The Monte Carlo approximation of
EŒS.�;Z; y/ST .�;Z; y/� is

E
�
S.�;Z; y/ST .�;Z; y/

	 � 1

T

TX
tD1

S.�;Z.t/; y.t//ST .�;Z.t/; y.t// (10.73)

where T is a large number, say 10,000. The liability for the j th individual, yj , is
simulated from a truncated normal distribution. We adopt the inverse transformation
method that has an acceptance rate of 100 % (Rubinstein 1981). With this method,
we first defined

v D 1 �˚.Xjˇ CZj �/ (10.74)
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and then simulated a variable u from U.0; 1/. Finally, we took the inverse function
of the standardized normal distribution to obtain

yj D Yj1˚
�1.u v/C Yj2˚

�1Œv C u.1 � v/� (10.75)

Intrinsic functions for both ˚.:/ and ˚�1.:/ are available in many computer
software packages. For example, in the SAS package (SAS Institute 2008a), ˚.x/
is coded as ˚.x/ D probnorm.x/ and ˚�1.u/ is coded as ˚�1.u/ D probit.u/.
The Monte Carlo approximation is time consuming so that we cannot calculate
the information matrix for every point of the genome scanned. Instead, we only
calculate the information matrix at the points where evidences of QTL are strong.

10.6 Logistic Analysis

Similar to the probit link function, we may also use the logit link function to perform
the generalized linear model analysis. Let

	jk D exp.˛k CXjˇ CZj �/

1C exp.˛k CXjˇ CZj �/
(10.76)

be the cumulative distribution function of ˛k C Xjˇ C Zj � . Under the logistic
model, the mean of Yjk is modeled by

�jk D E.Yjk/ D 	jk � 	j.k�1/ (10.77)

The logistic model for the binary data is

�jk D
�

	j1
1 � 	j1

for k D 1

for k D 2
(10.78)

From �j1 D 	j1, we obtain

logit.�j1/ D ln

�
�j1

1 � �j1



D ˛1 CXjˇ CZj � (10.79)

Both the probit and logit transformations of the expectation of Yj1 lead to a
linear model. Note that the linear model obtained here only shows the property
of the transformation. In the actual theory development and data analysis, the
linear transformations in (10.6) and (10.79) are never used. Showing the linear
transformations may potentially cause confusion to students because, by intuition,
they may try to transform the ordinal data (Yjk) first and then conduct the usual
linear regression on the transformed data, which is not appropriate and certainly
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not the intention of the GLM developers. The maximum likelihood analysis under
the homogeneous variance, heterogeneous variance, and mixture model and the EM
algorithm described previously in the probit analysis apply to the logistic analysis.
We only show the logistic analysis under the homogeneous variance model as an
example. Note that under this model, we only need to substitute Zj by Uj to define
the expectation, i.e.,

	jk D exp.˛k CXjˇ C Uj�/

1C exp.˛k CXjˇ C Uj�/
(10.80)

and

�jk D E.Yjk/ D 	jk � 	j.k�1/ (10.81)

Once�j is defined, the weightWj is also defined. The only item left isDj , which is

Dj D @�j

@�T
D

�
@�j

@˛T
@�j

@̌ T

@�j

@�T

�
(10.82)

The first block @�j
ı
@˛T D ˚

@�jk
ı
@˛l

�
is a .p C 1/ � p matrix with

@�jk

@˛k�1
D �	j.k�1/.1 � 	j.k�1//

@�jk

@˛k
D 	jk.1 � 	jk/

@�jk

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.83)

The second block @�j
ı
@̌ T D ˚

@�jk
ı
@̌

�
is a .p C 1/ � q matrix with

@�jk

@̌
D XT

j 	jk.1 � 	jk/� XT
j 	j.k�1/.1 � 	j.k�1// (10.84)

The third block @�j
ı
@�T D ˚

@�jk
ı
@�

�
is a .p C 1/ � r matrix with

@�jk

@�
D UT

j 	jk.1 � 	jk/� UT
j 	j.k�1/.1 � 	j.k�1// (10.85)

In the above partial derivatives, the range of k is k D 1; : : : ; p C 1.

10.7 Example

The experiment was conducted by Dou et al. (2009). A female sterile line of
wheat XND126 and an elite wheat cultivar Gaocheng 8901 with normal fertility
were crossed for genetic analysis of female sterility measured as the number of



148 10 Interval Mapping for Ordinal Traits

Marker location (cM)

LO
D

 s
co

re

0 60 120 180 240 300 360

0
3

6
9

12
15 LOD−Homogeneous

LOD−Heterogeneous
LOD−Mixture

Fig. 10.2 The LOD test statistic profiles for three methods of interval mapping (HOMOGE-
NEOUS, HETEROGENEOUS, and MIXTURE). The data were obtained from Dou et al. (2009).
The trait investigated is the female fertility of wheat measured as a binary trait (seed presence and
absence). The five chromosomes (part of the wheat genome) are separated by the vertical dotted
lines. The unevenly distributed black ticks on the horizontal axis indicate the marker locations

seeded spikelets per plant. The parents, their F1 and F2 progeny, were planted at
the Huaian experimental station in China for the 2006–2007 growing season under
the normal autumn sowing condition. The mapping population was an F2 family
consisting of 243 individual plants. About 84 % of the F2 progeny had seeded
spikelets, and the remaining 16 % plants did not have any seeds at all. Among
the plants with seeded spikelets, the number of seeded spikelets varied from one
to as many as 31. The phenotype is the count data point and can be modeled
using the Poisson distribution. The phenotype can also be treated as a binary data
point and analyzed using the Bernoulli distribution. In this example, we treated the
phenotype as a binary data (seed presence and absence) and analyzed it using the
Bernoulli distribution. A total of 28 SSR markers were used in this experiment.
These markers covered five chromosomes of the wheat genome with an average
genome marker density of 15.5 cM per marker interval. The five chromosomes
are only part of the wheat genome. These chromosomes were scanned for QTL
of the binary data. Let A1 and A2 be the alleles carried by Gaocheng 8901 and
XDN128, respectively. Let A1A1, A1A2, and A2A2 be the three genotypes for the
QTL of interest. The genotype is numerically coded as 1, 0, and �1, respectively, for
the three genotypes. The genome was scanned with 1-cM increment. All the three
methods described in this chapter were used for the interval mapping. They are
the homogeneous variance model (HOMOGENEOUS), the heterogeneous variance
model (HETEROGENEOUS), and the mixture model (MIXTURE). The LOD score
profiles are depicted in Fig. 10.2. When LOD D 3 is used as the threshold value, all
three methods detected two major QTL on chromosome 2. The LOD score for the
mixture model appears to be higher than the other two models, but the difference is
very small and can be safely ignored.
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Fig. 10.3 The QTL effect profiles for three methods of interval mapping (HOMOGENEOUS,
HETEROGENEOUS, and MIXTURE). The data were obtained from Dou et al. (2009). The trait
investigated is the female fertility of wheat measured as a binary trait (seed presence and absence).
The five chromosomes (part of the wheat genome) are separated by the vertical dotted lines.
The unevenly distributed black ticks on the horizontal axis indicate the marker locations

The estimated QTL effect profiles are given in Fig. 10.3. Again the three methods
are almost the same for the estimated QTL effects except that the mixture model
and the heterogeneous model give slightly higher estimates than the homogeneous
model. In practice, we recommend the heterogeneous model because it produces
almost the same result as the mixture model but with much less computing time
than the mixture model.
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