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Preface

Statistical genomics is a new interdisciplinary area of science, including statistics,
genetics, computer science, genomics, and bioinformatics. The rapid advances
in these areas have dramatically changed the amount and type of information
available for characterization of genes. In many genomic applications, existing
methods coupled with new computational technology have successfully directed
the exploration of high-dimensional data. What remains to be accomplished is
the successful statistical modeling of genomic data to support hypothesis-driven
biological research. This will ultimately lead to the exploitation of the predictive
wealth that much of the current and impending genomic data have the potential to
offer. Statistical development will continue to significantly amplify and focus the
molecular advances of the last decades toward general improvements in agriculture
and human health.

Using advanced statistical technology to study the behavior of one or a few
Mendelian loci defines the field of statistical genetics. For complex traits, such as
grain yield in crops and cancers in human, one or two loci are rarely sufficient
to explain majority of the trait variation. People then study the behavior of all
genes influencing a trait without distinguishing the effects of individual genes,
creating a field called quantitative genetics. Taking advantage of saturated DNA
markers generated with advanced molecular technology, we are now able to localize
individual genes on the genome that affect a complex trait, which leads to this new
field of statistical genomics or quantitative genomics. In statistical genomics, we
emphasize the notion of whole genome analysis and evaluate the joint effect of the
entire genome on a quantitative trait.

Any genome study requires a sample of individuals from a target population and
genomic data collected from this sample. Genomic data include (a) genotypes of
molecular markers, (b) microarray gene expressions, and (c) phenotypes of clinic
or economic traits measured from all individuals of the sample. Any particular
genomic study may involve all the three types of data or any two of them. With
the advanced biotechnology, molecular marker data will soon be replaced by whole
genome sequences. In the narrow sense, phenotypic data are not genomic data
but the ultimate purpose of genomic data analysis is to dissect these traits and
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understand the genetic architectures of these traits. Therefore, phenotypic data
are essential in genomic data analysis. This is why phenotypic data are included
as genomic data. When a study involves phenotypes and marker genotypes, it is
called QTL mapping where QTL stands for quantitative trait loci. A study involving
phenotypes and microarray gene expressions is called differential expression (DE)
analysis. If a study involves marker genotypes and microarray gene expressions, it
is called expression quantitative trait locus (eQTL) analysis. The purpose of QTL
mapping is to find the genome locations, the sizes, and other properties of QTL
through associations of marker genotypes with the variation of a quantitative trait.
In DE analysis, the phenotype of interest is usually binary such as case (represented
by one) and control (represented by zero). The primary interest of DE is to find
genes that express differently in case and control. The purpose of eQTL mapping is
to find regulation pathways of the genes. Transcripts mapped to the same locus of
the genome are considered in the same regulation pathway.

Many statistical models, methodologies, and computing algorithms are involved
in the textbook. Major statistical models include the linear model (LM), the gen-
eralized linear model (GLM), the linear mixed model (LMM), and the generalized
linear mixed model (GLMM). In a few places, the hidden Markov model (HMM)
is required to infer the unobserved genotypes of QTL given observed marker geno-
types. Another important model is the Gaussian mixture model for cluster analysis.
Commonly used statistical methods include the least squares (LS) estimation, the
maximum likelihood (ML) estimation, the Bayesian estimation implemented via
the Markov chain Monte Carlo (MCMC) algorithm, and the Bayesian method via
the maximum a posteriori (MAP) estimation. Optimization technologies include
the Newton–Raphson algorithm, the Fisher scoring algorithm, and the expectation–
maximization (EM) algorithm. For the Newton–Raphson algorithm, if the first- and
second-order partial derivatives of the target function with respect to the parameters
are easy to derive, an explicit form of the iteration equation will be given. Otherwise,
numerical evaluations of the partial derivatives are calculated using some powerful
numerical differentiation subroutines. In genomic data analysis, the number of
parameters is often very large, updating all parameters simultaneously can be
prohibitive. In this case, a coordinate descent approach may be taken, in which one
parameter is updated at a time conditional on current values of all other parameters.
This approach can improve the robustness of the optimization algorithm and save
much computer memory but at the cost of computing time and risk of trapping to a
local solution of parameters.

This book was compiled from a collection of lecture notes for the statistical
genomics course (BPSC234) offered to UCR graduate students by the author.
Approximately half of the material was collected from studies published by the
author and his research team. A small proportion of the remaining half consists
of some unpublished works conducted by the author. Much of the remaining
half of the book represents a collection of the most updated statistical genomic
methods published in various journals for the last couple of decades. The topics
selected purely reflect the author’s choices for the course according to the level of
understanding of the target students. The book is not an introduction to statistical
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genomics because statistical genomic is a diversified area including many different
topics, and this book only covers a proportion of the topics. However, the statistical
technologies chosen represent the core of statistical genomics. Understanding the
principles of these technologies, students will easily extend the methods to other
analyses of genomic data generated from different experimental designs. Although
the book narrowly focuses on a few topics, each topic introduced is provided
with the derivation of the method or at least a direction leading to the derivation.
Statistical genomics is a multidisciplinary area with a rapid development. Writing a
comprehensive book in such an area is like shooting a moving target. For example,
during the time between the completion of the first draft and the publication of
this book, new technologies and methodologies may have already been developed.
Therefore, the book can only focus on the principles of statistical genomics. Most
recently developed methods may not be covered, for which the author owes an
apology to those researchers whose works are relevant but not cited in the book.

The book consists of three parts. Part I contains Chaps. 1–4 and covers topics
related to linkage map construction for DNA markers. Part II consists of Chaps. 5–
16 and is the main part of the book. These chapters cover topics related to genetic
mapping for quantitative trait loci using various designs of experiments. Part III
(Chaps. 17–25) covers topics related to microarray gene expression data analysis.
This book intends to be used as a textbook for graduate students in statistical
genomics, but it can be used by researchers as a reference book. For advanced
readers, they can choose to read any particular chapters as they desire. However,
for junior researchers and graduate students, it is better to study from the beginning
and not to escape any chapters because some of the methods introduced in early
chapters will be used later in the book and they will only be referenced.

Former and current postdocs and graduate students in the lab all contributed
to the material published by the UCR quantitative genetics team. Postdocs who
contributed to the material relevant to this book include Damian Gessler, Chongqing
Xie, Shaoqi Rao, Nengjun Yi, Claus Vogl, Chenwu Xu, Yuan-Ming Zhang, Lide
Han, Zhiqiu Hu, and Fuping Zhao. Graduate students involved in the research
include Lang Luo, Yun Lu, Hui Wang, Yi Qu, Zhenyu Jia, Xin Chen, Xiaohong
Che, and Haimao Zhan. Without their hard work, the author would not have been
able to publish this book. Their contributions are highly appreciated. In the main
text, I choose to use the first person plural pronoun “we” instead of “I” for the
very reason that the book material was mainly contributed by my research team.
In the UCR quantitative genetics team, Nengjun Yi made the most contribution to
the material included in the book and thus he deserves a special acknowledgement.
A special appreciation goes to the three current members of the UCR quantitative
genetics team, Zhiqiu Hu (postdoc), Haimao Zhan (student), and Xiaohong Che
(student), for their help in drawing the figures, checking the accuracy of equations,
and correcting errors occurred in an early draft of the book.

Riverside, California, USA Shizhong Xu
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Part I
Genetic Linkage Map



Chapter 1
Map Functions

Genes are physically located on chromosomes. Because chromosomes are string-
like structures, genes carried by chromosomes are arranged linearly (Morgan 1928).
In other words, a particular location of a chromosome can only be occupied by
one and only one gene. Figure 1.1 shows a marker map of the barley genome
(Hayes et al. 1993), where the names of markers are given in the right-hand side
of the chromosomes and the marker positions measured in centiMorgan (cM) are
given in the left-hand side. In genetics, the terms gene and locus are often used
interchangeably, but a more precise description of a chromosome location is the
locus. Genetic loci carried by the same chromosome are physically linked, and thus,
they tend to cosegregate. These loci are said to be in the same linkage group. The
distribution of loci among chromosomes and the order of loci within chromosomes
are called genetic map. Using observed genotypes of these loci to infer the genetic
map is called genetic mapping or linkage analysis.

1.1 Physical Map and Genetic Map

The size of a genome is determined by the number of chromosomes and the size
of each chromosome. In general, there are two types of measurements for the
size of a chromosome. One measurement is the number of base pairs (bp) of the
DNA molecules carried by the chromosome. The order and relative localization
of all the loci in a genome with distances between consecutive loci measured by
the numbers of base pairs is called the physical map. Unfortunately, one must
sequence the entire chromosome to determine the size of the chromosome and
sequence the entire genome to determine the genome size. During meiosis, pairs
of duplicated homologous chromosomes unite in synapsis, and then nonsister chro-
matids exchange segments (genetic material) during crossing-over, which produces
the recombinant gametes. This phenomenon is called crossover. The number of
crossovers between two loci depends on the physical distance of the loci. More
distant loci tend to have more crossovers between them. The relationship between

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 1,
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the number of crossovers and the number of base pairs may be described by a linear
function. The slope of the linear relationship varies from one organism to another
and even varies across different chromosome regions within a species (Civardi et al.
1994; Chen et al. 2002). Nevertheless, under the assumption of a constant slope
across the genome, one can measure the size of a chromosome by the number of
crossovers and then infer the number of base pairs from the number of crossovers.
Roughly, 1 cM on a chromosome encompasses 1 megabase (Mb) .1Mb D 106 bp/
of DNA (Chen et al. 2002). The order and relative positioning of all linked loci
in a genome with distances between consecutive loci measured by the numbers
of crossovers is called the genetic map, due to the fact that crossover is a genetic
phenomenon. Although we can observe crossovers with some special cytogenetic
technology, counting the total number of crossovers of the entire genome is still
impractical. If a crossover has occurred at a point between two loci during meiosis,
the gamete formed will carry a paternal allele for one locus and a maternal allele
for the other locus. This mosaic gamete is called the recombined gamete or simply
recombinant. Crossover, however, is a random event, and it happens with a certain
probability during meiosis. If no crossover has happened, the gamete will carry
paternal alleles or maternal alleles for both loci. This type of gamete is called the
parental gamete. If two loci are far apart, crossover between the two loci may happen
twice or multiple times during meiosis. Only an odd number of crossovers will
generate recombinants. The proportion of recombinants in a gametic pool is called
the recombination fraction or recombination frequency. This fraction depends on
the number of crossovers, although not in a linear fashion. In genetic linkage study,
people often use recombination fraction in place of the number of crossovers to
measure the distances between loci. The order and relative localization of linked loci
with distances between consecutive loci measured by the recombination fractions is
also called the genetic map. Therefore, we have two different measurements for the
genetic distance between two loci: the number of crossovers and the recombination
fraction.

1.2 Derivation of Map Functions

As mentioned earlier, there are two measurements of map distance between two
linked loci, the average number of crossovers .x/ and the recombination fraction .r/.
The number of crossovers itself is a random variable in the sense that it varies from
one meiosis to another. The unit of map distance measured this way is Morgan (M),
named in honor of geneticist Thomas Hunt Morgan. One Morgan is defined as the
length of a chromosome segment bracketed by two loci that produces, on average,
one crossover per meiosis. In other words, if we can observe many meioses in a
genetic experiment for the segment under investigation, some meioses may produce
no crossover, some may produce one crossover, and others may produce more than
one crossover. But, on average, a segment of 1 M produces one crossover. We often
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use 1=100 Morgan as the unit of map distance, called one centiMorgan (cM). Note
that the unit Morgan is rarely used today.

Genetic map distance measured by Morgan or centiMorgan is additive. Assume
that three loci are ordered as A, B, and C with xAB and xBC representing the map
distance between A and B and the distance between B and C, respectively, then the
distance between A and C is xAC D xABCxBC . Because of this property, we call the
map distance measured in Morgan or centiMorgan the additive distance, as apposed
to the distance measured in recombination fraction. Recombination fraction between
two loci is defined as the ratio of the number of recombined gametes to the total
number of gametes produced. For example, assume that we sample 100 gametes
for a chromosome segment bracketed by loci A and C in a genetic experiment; if
12 gametes are recombinants and the remaining 88 gametes are parental gametes,
then the recombination fraction between A and C is rBC D 0:12. Recombination
fraction is not additive in the sense that rAC ¤ rAB C rBC . This is because only
odd-numbered crossovers can generate a recombinant.

If two loci overlap, no crossover will be expected between the two loci, and
both xAC and rAC will be zero. On the other hand, if the two loci are far away
(almost unlinked), an infinite number of crossovers will be expected. When the
segment is sufficiently long, odd- and even-numbered crossovers will be roughly
equal, leading to a recombination fraction of 1

2
. Therefore, recombination fraction

ranges between 0 and 1
2
. The relationship between rAC and xAC can be described

by a nonlinear function, called the map function. In linkage analysis, we usually
estimate the recombination frequency between loci and then convert the frequency
into the additive distance and report the additive map distance. Several functional
relationships have been proposed (Zhao and Speed 1996; Liu 1998), but the most
commonly used functions are the Haldane map function (Haldane 1919) and its
extension, called the Kosambi map function (Kosambi 1943).

Consider three ordered loci A–B–C. If the probability of crossover between
A and B and that between B and C are independent, then the probability of
double crossovers between A and C should take the product of rAB and rBC . The
recombination frequency between A and C should be

rAC D rAB.1 � rBC /C rBC .1 � rAB/ D rAB C rBC � 2rABrBC : (1.1)

The independence of crossovers between two nearby intervals is called no interfer-
ence. However, it is often observed that if the two intervals under consideration are
too close, the crossover of one interval may completely prevent the occurrence of the
crossover of the other interval. This phenomenon is called complete interference, in
which case the recombination fraction between A and C is described by

rAC D rAB C rBC : (1.2)

This relationship was given by Morgan and Bridges (1916). Under the assumption of
complete interference, the recombination frequencies are additive, like the additive
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map distance measured by the average number of crossovers. When loci A and C
are very closely linked, the recombination fractions are approximately additive, even
if interference is not complete. In practice, an intermediate level of interference is
most likely to occur. Therefore, the recombination fraction between A and C can be
described by

rAC D rAB C rBC � 2crABrBC : (1.3)

where 0 � c � 1 is called the coefficient of coincidence whose complement i D
1 � c is called the coefficient of interference. Equations (1.1) and (1.2) are special
cases of (1.3), where c D 1 for (1.1) and c D 0 for (1.2).

We now develop a general map function to describe the relationship between the
recombination frequency r and the additive map distance x measured in Morgan.
Let the map function be r D r.x/, indicating that r is a function of x. The above
equation can be rewritten as

r.xAB C xBC /
„ ƒ‚ …

rAC

D r.xAB/
„ ƒ‚ …

rAB

C r.xBC /
„ ƒ‚ …

rBC

�2c r.xAB/
„ ƒ‚ …

rAB

r.xBC /
„ ƒ‚ …

rBC

: (1.4)

Let x D xAB be the map distance between loci A and B and �x D xBC be the
increment of the map distance (extension from locus B to locus C). We can then
rewrite the above equation as

r.x C�x/
„ ƒ‚ …

rAC

D r.x/
„ƒ‚…

rAB

C r.�x/
„ƒ‚…

rBC

�2c r.x/
„ƒ‚…

rAB

r.�x/
„ƒ‚…

rBC

; (1.5)

which can be rearranged into

r.x C�x/� r.x/ D r.�x/ � 2cr.x/r.�x/: (1.6)

Dividing both sides of the equation by�x, we have

r.x C�x/� r.x/
�x

D r.�x/ � 2cr.x/r.�x/
�x

: (1.7)

Recall that when �x is small, r.�x/ � �x. Therefore, we can take the following
limit:

lim
�x!0

r.x C�x/ � r.x/
�x

D lim
�x!0

r.�x/

�x
� 2c lim

�x!0

r.x/r.�x/

�x
: (1.8)

Because lim�x!0
r.xC�x/�r.x/

�x
D d

dx r.x/ and lim�x!0
r.�x/

�x
D 1, we have

d

dx
r.x/ D 1 � 2cr.x/: (1.9)
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This is a differential equation, which can be easily solved if c is specified. This
differential equation was derived by Haldane (1919) and is the theoretical basis
from which the following specific map functions are derived.

1.3 Haldane Map Function

If c is treated as a constant, we can solve the above differential equation for function
r.x/. We then obtain

x D � 1
2c

lnŒ1 � 2cr.x/�: (1.10)

Solving for r.x/, we get

r.x/ D 1

2c
.1 � e�2cx/: (1.11)

When c D 1 is assumed, i.e., there is no interference, we have obtained the
following well-known Haldane map function (Haldane 1919):

r.x/ D 1

2
.1� e�2x/: (1.12)

Note that when using the Haldane map function, the genetic distance x should be
measured in Morgan, not in centiMorgan.

1.4 Kosambi Map Function

Kosambi (1943) expressed the coefficient of incidence as a function of the recom-
bination frequency, i.e., c D 2r.x/, based on the notion that c D 0 when the two
intervals are very close (complete interference) and c D 1 when the two intervals
are virtually not linked (no interference). Substituting c D 2r.x/ into (1.9), we have

d

dx
r.x/ D 1 � 4r2.x/: (1.13)

Solving this differential equation for r.x/, we have

x D 1

4
ln
1C 2r.x/
1 � 2r.x/ : (1.14)

A rearrangement on (1.14) leads to the famous Kosambi map function (Kosambi
1943),

r.x/ D 1

2

�

e4x � 1
e4x C 1

�

: (1.15)
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Fig. 1.2 Comparison of the
Haldane and Kosambi map
functions

The main difference between Haldane and Kosambi map functions is the as-
sumption of interference between two consecutive intervals. Haldane map function
assumes no interference, whereas Kosambi map function allows interference to
occur. This can be reflected by the following two equations under the two map
functions. Under the Haldane map function,

rAC D rAB C rBC � 2rABrBC ; (1.16)

whereas under the Kosambi map function,

rAC D rAB C rBC
1C 4rABrBC : (1.17)

Similar to the Haldane map function, when using the Kosambi map function, the
genetic distance x should be measured in Morgan, not in centiMorgan.

Kosambi map function often fits data better than Haldane map function because
it takes into account interference. Haldane map function has an attractive Markovian
property, which can be used elegantly to analyze multiple loci. Figure 1.2 illustrates
the difference between the two map functions. For the same map distance between
two loci, the recombination fraction calculated based on the Haldane map function
is always smaller than that calculated based on the Kosambi map function.

The Haldane and Kosambi map functions are the most popular ones used in
genetic mapping. There are many other map functions available in the literature.
Most of them are extensions of these two map functions. These additional map func-
tions can be found in Liu (1998) . It is important to understand that the map functions
apply to diploid organisms. For polyploid organisms, e.g., autotetraploids, the map
function can be different due to problems of multiple dosage of allelic inheritance,
the null allele, allelic segregation distortion, and mixed bivalent and quadrivalent
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pairing in meiosis. For example, the maximum recombination frequency can be 0.75
in tetraploid species rather than 0.5 in diploid. Details of tetraploid map function and
map construction can be found in the seminal studies conducted by Luo et al. (2004)
and Luo et al. (2006).



Chapter 2
Recombination Fraction

Recombination fraction (also called recombination frequency) between two loci
is defined as the ratio of the number of recombined gametes to the total number
of gametes produced. Recombination fraction, denoted by r throughout the book,
however, has a domain of 0 � r � 0:5, with r D 0 indicating perfect linkage and
r D 0:5meaning complete independence of the two loci. In most situations, gametes
are not directly observable. Therefore, special mating designs are required to infer
the number of recombined gametes. When a designed mating experiment cannot be
carried out, data collected from pedigrees can be used for estimating recombination
fractions. However, inferring the number of recombined gametes in pedigrees is
much more complicated than that in designed mating experiments. This book only
deals with designed mating experiments.

2.1 Mating Designs

Two mating designs are commonly used in linkage study, the backcross (BC) design
and the F2 design. Both designs require two inbred lines, which differ in both the
phenotypic values of traits (if marker-trait association study is to be performed)
and allele frequencies of marker loci used for constructing the linkage map. We
will use two marker loci as an example to show the mating designs and methods for
estimating recombination fraction. The BC design is demonstrated in Fig. 2.1. Let A
and B be the two loci under investigation. Let A1 and A2 be the two alleles at locus
A and B1 and B2 be the two alleles at locus B. Let P1 and P2 be the two parents that
initiate the line cross. Since both parents are inbred, we can describe the two-locus
genotype for P1 and P2 by A1B1

A1B1
and A2B2

A2B2
, respectively. The hybrid progeny of cross

between P1 and P2 is denoted by F1 whose genotype is A1B1
A2B2

. The horizontal line in
the F1 genotype separates the two parental gametes, i.e.,A1B1 is the gamete from P1
and A2B2 is the gamete from P2. The F1 hybrid crosses back to one of the parents

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 2,
© Springer Science+Business Media, LLC 2013

11
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×

× ×

P1
(A1B1//A1B1)

P1
(A1B1//A1B1)

P2
(A2B2//A2B2)

F1
(A1B1//A2B2)

(A1B1//A1B1)

(A2B2//A1B1)
(A2B1//A1B1)
(A1B2//A1B1)

BC1

(A1B1//A2B2)

(A2B2//A2B2)
(A2B1//A2B2)
(A1B2//A2B2)

BC′1

P2
(A2B2//A2B2)

Fig. 2.1 The backcross (BC)
mating design. The BC
progeny generated by F1 � P1
is called BC1, whereas the BC
population generated by
F1 � P2 is called BC0

1

Table 2.1 Count data of
two-locus genotypes
collected from a BC1 family

Genotype Count Frequency Type
A1B1
A1B1

n11
1
2
.1� r/ Parental

A1B2
A1B1

n12
1
2
r Recombinant

A2B1
A1B1

n21
1
2
r Recombinant

A2B2
A1B1

n22
1
2
.1� r/ Parental

to generate multiple BC progeny, which will be used for linkage study. The BC
population is a segregating population. Linkage analysis can only be conducted in
such a segregating population. A segregating population is defined as a population
that contains individuals with different genotypes. The two parental populations and
the F1 hybrid population are not segregating populations because individuals within
each of the three populations are genetically identical. The BC progeny generated
by F1 � P1 is called BC1, whereas the BC population generated by F1 � P2 is
called BC0

1.
We now use BC1 progeny as an example to demonstrate the BC analysis.

The gametes generated by the P1 parent are all of the same type A1B1. However,
the F1 hybrid can generate four different gametes and thus four distinguished
genotypes. Let r be the recombination fraction between loci A and B. Let nij be

the number of gametes of type AiBj or the number of genotype of AiBj
A1B1

kind for
i; j D 1; 2. The four genotypes and their frequencies are given in Table 2.1. This
table provides the data for the maximum likelihood estimation of recombination
fraction. The maximum likelihood method will be described later.

The F2 mating design requires mating of the hybrid with itself, called selfing
and denoted by the symbol ˝ (see Fig. 2.2 for the F2 design). When selfing
is impossible, e.g., in animals and self-incompatible plants, intercross between
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⊗

P1
(A1B1//A1B1)

F1
(A1B1//A2B2)

F2
(A1B1//A1B1) (A1B1//A1B2) (A1B1//A2B1) (A1B1//A2B2)
(A1B2//A1B1) (A1B2//A1B2) (A1B2//A2B1) (A1B2//A2B2)
(A2B1//A1B1) (A2B1//A1B2) (A2B1//A2B1) (A2B1//A2B2)
(A2B2//A1B1) (A2B2//A1B2) (A2B2//A2B1) (A2B2//A2B2)

P2
(A2B2//A2B2)

Fig. 2.2 The F2 mating
design

Table 2.2 The 16 possible
genotypes and their observed
counts in an F2 family

A1B1 A1B2 A2B1 A2B2

A1B1
A1B1
A1B1

; n11
A1B1
A1B2

; n12
A1B1
A2B1

; n13
A1B1
A2B2

; n14

A1B2
A1B2
A1B1

; n21
A1B2
A1B2

; n22
A1B2
A2B1

; n23
A1B2
A2B2

; n24

A2B1
A2B1
A1B1

; n31
A2B1
A1B2

; n32
A2B1
A2B1

; n33
A2B1
A2B2

; n34

A2B2
A2B2
A1B1

; n41
A2B2
A1B2

; n42
A2B2
A2B1

; n43
A2B2
A2B2

; n44

different F1 individuals initiated from the same cross is required. The progeny
of selfing F1 or intercross between two F1 hybrids is called an F2 progeny.
An F2 family consists of multiple F2 progeny. The F2 family represents another
segregating population for linkage analysis. Recall that an F1 hybrid can generate
four possible gametes for loci A and B jointly. Therefore, selfing of F1 can
generate 16 possible genotypes, as illustrated in Table 2.2. Let nij be the number of
individuals combining the i th gamete from one parent and the j th gamete from the
other parent, for i; j D 1; : : : ; 4. The frequencies of all the 16 possible genotypes
are listed in Table 2.3. This table is the basis from which the maximum likelihood
estimation of recombination fraction will be derived.

2.2 Maximum Likelihood Estimation of Recombination
Fraction

In a BC design, the four types of gametes are distinguishable. Therefore, the
recombination fraction can be directly calculated by taking the ratio of the number
of recombinants to the total number of gametes. We use BC1 as an example to
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demonstrate the method. The count data are given in Table 2.1. Let np D n11 C n22
be the number of individuals carrying the parental gametes and nr D n12 C n21 be
the number of recombinants. The estimated recombination fraction between loci A
and B is simply

Or D n12 C n21
n11 C n12 C n21 C n22 D

nr

nr C np : (2.1)

We use a hat above r to indicate estimation of r . The true value of recombination
fraction is not known, but if the sample size is infinitely large, the estimated r will
approach to the true value, meaning that the estimation is unbiased.

We now prove that Or is the maximum likelihood estimate (MLE) of r . We
introduce the ML method because it provides a significance test on the hypothesis
that r D 0:5. To construct the likelihood function, we need a probability model, a
sample of data and a parameter. The probability model is the binomial distribution,
the data are the counts of the two possible genotypes, and the parameter is r .
The binomial probability of the data given the parameter is

Pr.nr ; npjr/ D nŠ

nr ŠnpŠ

�

1

2

�nrCnp
rnr .1 � r/np ; (2.2)

where n D nrCnp is the sample size. The value of r for 0 � r � 0:5 that maximizes
the probability is the MLE of r . Two issues need to be emphasized here for any
maximum likelihood analysis, including this one. First, the probability involves a
factor that does not depend on the parameter,

const D nŠ

nr ŠnpŠ

�

1

2

�n

: (2.3)

It is a constant with respect to the parameter r . This constant is irrelevant to the
ML analysis and thus should be ignored. Secondly, the r value that maximizes
a monotonic function of the probability also maximizes this probability. For
computational convenience, we can maximize the logarithm of the probability.
Therefore, it is the log likelihood function that is maximized in the ML analysis.
The log likelihood function is defined as

L.r/ D nr ln r C np ln.1� r/: (2.4)

To find the MLE of r , we need to find the derivative of L.r/ with respect to r ,

d

dr
L.r/ D nr

r
� np

1 � r : (2.5)



2.3 Standard Error and Significance Test 15

Letting d
dr L.r/ D 0 and solving for r , we have

Or D nr

nr C np : (2.6)

which is identical to that given in (2.1).

2.3 Standard Error and Significance Test

A parameter is a fixed but unknown quantity. The estimate of the parameter,
however, is a variable because it varies from one sample to another. As the sample
size increases, the estimate will approach to the true value of the parameter, provided
that the estimate is unbiased. The deviation of the estimate from the true parameter
can be measured by the standard error of the estimate. In this section, we will learn a
method to calculate the standard error of Or . To calculate the standard error, we need
the second derivative of the log likelihood function with respect to r and obtain
a quantity called information, from which the variance of the estimated r can be
approximated. Let us call the first derivative of L.r/ with respect to r the score
function, denoted by S.r/,

S.r/ D d

dr
L.r/ D nr

r
� np

1 � r : (2.7)

The second derivative ofL.r/with respect to r is called the Hessian matrix, denoted
by H.r/,

H.r/ D d

dr
S.r/ D d2

dr2
L.r/ D np

.1 � r/2 �
nr

r2
: (2.8)

Although H.r/ is a single variable, we still call it a matrix because in subsequent
chapters we will deal with multiple dimension of parameters, in which case H.r/ is
a matrix. FromH.r/, we can find the information of r , which is

I.r/ D �EŒH.r/� D E.nr /

r2
� E.np/

.1 � r/2 : (2.9)

The symbol E represents expectation of the data given the parameter value. Here, the
data are referred to nr and np , not n, which is the sample size (a constant). Suppose
that we know the true parameter r , what is the expected number of recombinants
if we sample n individuals? This expected number is E.nr / D r n. The expected
number of the parental types is E.np/ D .1 � r/n. Therefore, the information is

I.r/ D �EŒH.r/� D rn

r2
� .1 � r/n
.1 � r/2 D

n

r.1 � r/ : (2.10)
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The variance of the estimated r takes the inverse of the information, with the true
parameter replaced by Or ,

var.Or/ � I�1.Or/ D Or.1 � Or/
n

: (2.11)

Therefore, the standard error of Or is

se.Or/ D
p

var.Or/ D
r Or.1 � Or/

n
: (2.12)

The standard error is inversely proportional to the square root of the sample size and
thus approaches zero as n becomes infinitely large.

When we report the estimated recombination fraction, we also need to report
the estimation error in a form like Or ˙ se.Or/. In addition to the sample size, the
estimation error is also a function of the recombination fraction, with the maximum
error occurring at r D 1

2
, i.e., when the two loci are unlinked. To achieve the

same precision of estimation, it requires a larger sample to estimate a recombination
fraction between two loosely linked loci than between two closely linked loci.

Because of the sampling error, even two unlinked loci may look like being
linked as the estimated r may be superficially smaller than 0.5. How small an Or
is sufficiently small so that we can claim that the two loci are linked in the same
chromosome? This requires a significance test.

The null hypothesis for such a test is denoted by H0 W r D 1
2
. Verbally, H0 is

stated that the two loci are not linked. The alternative hypothesis is HA W r < 1=2,
i.e., the two loci are linked on the same chromosome. When the sample size is
sufficiently large, we can always use the z-test to decide which hypothesis should
be accepted. Here, we will use the usual likelihood ratio test statistic to declare
the statistical significance of Or . Let L.r/jrDOr D L.Or/ be the log likelihood function
evaluated at the MLE of r using (2.4). LetL.r/jrD 1

2
D L.1=2/ be the log likelihood

function evaluated under the null hypothesis. The likelihood ratio test statistic is
defined as

� D �2ŒL.1=2/� L.Or/�: (2.13)

where

L.Or/ D nr ln Or C np ln.1� Or/: (2.14)

and

L.1=2/ D �n ln 2 D �0:6931n: (2.15)

If the null hypothesis is true, � will approximately follow a chi-square distribution
with one degree of freedom. Therefore, if � > �21;1�˛ , we will claim that the two loci
are linked, where �21;1�˛ is the .1�˛/�100 percentile of the central �21 distribution
and ˛ is the type I error determined by the investigator. In human linkage studies,
people often use LOD (log of odds) score instead. The relationship between LOD
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and � is

LOD D �

2 ln.10/
� 0:2171�: (2.16)

Conventionally, LOD > 3 is used as a criterion to declare a significant linkage. This
converts to a likelihood ratio criterion of � > 3 � ln.100/ D 13:81551. The LOD
criterion has an intuitive interpretation. An LOD of k means that the alternative
model (linkage) is 10k times more likely than the null model.

2.4 Fisher’s Scoring Algorithm for Estimating r

The F2 mating design is demonstrated in Fig. 2.2. The ML analysis described for
the BC1 mating design is straightforward. The MLE of r has an explicit form. In
fact, there is no need to invoke the ML analysis for the BC design other than to
demonstrate the basic principle of the ML analysis. To estimate r using an F2
design, the likelihood function is constructed using the same probability model
(multinomial distribution), but finding the MLE of r is complicated. Therefore, we
will resort to some special maximization algorithms. The algorithm we will learn is
the Fisher’s scoring algorithm (Fisher 1946).

Let us look at the genotype table (Table 2.2) and the table of genotype counts
and frequencies (Table 2.3) for the F2 design. If we were able to observe all the
16 possible genotypes, the same ML analysis used in the BC design would apply
here to the F2 design. Unfortunately, some of the genotypes listed in Table 2.2 are
not distinguishable from others. For example, genotypes A1B1

A1B2
and A1B2

A1B1
are not

distinguishable. These two genotypes appear to be the same because they both
carry an A1B1 gamete and an A1B2 gamete. However, the origins of the two
gametes are different for the two genotypes. Furthermore, the four genotypes in
the minor diagonal of Table 2.2 actually represent four different linkage phases
of the same observed genotype (double heterozygote). If we consider the origins
of the alleles, there are four possible genotypes for each locus. However, the two
configurations of the heterozygote are not distinguishable. Therefore, there are only
three observable genotypes for each locus, making a total of nine observable joint

Table 2.3 The counts (in parentheses) and frequencies of the 16 possible genotypes
in an F2 family

A1B1 A1B2 A2B1 A2B2

A1B1 .n11/
1
4
.1� r/2 .n12/

1
4
r.1� r/ .n13/

1
4
r.1� r/ .n14/

1
4
.1� r/2

A1B2 .n21/
1
4
r.1� r/ .n22/

1
4
r2 .n23/

1
4
r2 .n24/

1
4
r.1� r/

A2B1 .n31/
1
4
r.1� r/ .n32/

1
4
r2 .n33/

1
4
r2 .n34/

1
4
r.1� r/

A2B2 .n41/
1
4
.1� r/2 .n42/

1
4
r.1� r/ .n43/

1
4
r.1� r/ .n44/

1
4
.1� r/2
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Table 2.4 The nine observed genotypes and their counts in an F2
population

B1B1 B1B2 B2B2

A1A1 A1A1B1B1 .m11/ A1A1B1B2 .m12/ A1A1B2B2 .m13/

A1A2 A1A2B1B1 .m21/ A1A2B1B2 .m22/ A1A2B2B2 .m23/

A2A2 A2A2B1B1 .m31/ A2A2B1B2 .m32/ A2A2B2B2 .m33/

two-locus genotypes, as shown in Table 2.4. Let mij be the counts of the joint
genotype combining the i th genotype of locus A and the j th genotype of locus
B, for i; j D 1; : : : ; 3. These counts are the data from which a likelihood function
can be constructed.

Before we construct the likelihood function, we need to find the probability for
each of the nine observed genotypes. These probabilities are listed in Table 2.5.
The count data in the second column and the frequencies in the third column of
Table 2.5 are what we need to construct the log likelihood function, which is

L.r/ D
3
X

iD1

3
X

jD1
mij ln.qij /

D Œ2.m11 Cm33/Cm12 Cm21 Cm23 Cm32� ln.1� r/
C Œ2.m13 Cm31/Cm12 Cm21 Cm23 Cm32� ln.r/

C m22 lnŒr2 C .1 � r/2�: (2.17)

The derivative of L.r/ with respect to r is

S.r/ D d

dr
L.r/

D �2.m11 Cm33/

1 � r C .m12 Cm21 Cm23 Cm32/.1 � 2r/
r.1 � r/

�2m22.1 � 2r/
1 � 2r C 2r2 C

2.m13 Cm31/

r
: (2.18)

The MLE of r is obtained by setting S.r/ D 0 and solving for r . Unfortunately,
there is no explicit solution for r . Therefore, an iterative algorithm is resorted to
solve for r . Before introducing the Fisher’s scoring algorithm (Fisher 1946), we
first try the Newton method, which also requires the second derivative of L.r/ with
respect to r ,
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Table 2.5 Frequencies of the nine observed genotypes in an F2 population

Genotype Count Probability

A1A1B1B1 D A1B1
A1B1

m11 D n11 q11 D 1
4
.1� r/2

A1A1B1B2 D A1B1
A1B2

;
A1B2
A1B1

m12 D n12 C n21 q12 D 1
2
r.1� r/

A1A1B2B2 D A1B2
A1B2

m13 D n22 q13 D 1
4
r2

A1A2B1B1 D A1B1
A2B1

;
A2B1
A1B1

m21 D n13 C n31 q21 D 1
2
r.1� r/

A1A2B1B2 D A1B1
A2B2

;
A1B2
A2B1

m22 D n14 C n23C q22 D 1
2
Œr2 C .1� r/2�

A2B1
A1B2

;
A2B2
A1B1

n32 C n41

A1A2B2B2 D A1B2
A2B2

;
A2B2
A1B2

m23 D n24 C n42 q23 D 1
2
r.1� r/

A2A2B1B1 D A2B1
A2B1

m31 D n33 q31 D 1
4
r2

A2A2B1B2 D A2B1
A2B2

;
A2B2
A2B1

m32 D n34 C n43 q32 D 1
2
r.1� r/

A2A2B2B2 D A2B2
A2B2

m33 D n44 q33 D 1
4
.1� r/2

H.r/ D d

dr
S.r/ D d2

dr2
L.r/

D � 2.m11 Cm33/

.1 � r/2 � .m12 Cm21 Cm23 Cm32/.1 � 2r C 2r2/
r2.1 � r/2

C 8m22r.1 � r/
.1 � 2r C 2r2/2 �

2.m13 Cm31/

r2
: (2.19)

The Newton method starts with an initial value of r , denoted by r.t/ for t D 0, and
update the value by

r.tC1/ D r.t/ � S.r.t//

H.r.t//
: (2.20)

The iteration process stops if

jr.tC1/ � r.t/j � �; (2.21)

where � is a small positive number, say 10�8.
The derivation of the Newton method is very simple. It uses the Taylor series

expansion to approximate the score function. Let r.0/ be the initial value of r .
The score function S.r/ can be approximated in the neighborhood of r.0/ by

S.r/ D S.r.0//C d

dr
S.r.0//.r � r.0//C 1

2Š

d2

dr2
S.r.0//.r � r.0//2 C � � �

� S.r.0//C d

dr
S.r.0//.r � r.0//: (2.22)
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The approximation is due to ignorance of the higher order terms of the Taylor series.
Recall that H.r.0// D d

dr S.r
.0// and thus

S.r/ � S.r.0//CH.r.0//.r � r.0//: (2.23)

Letting S.r/ D 0 and solving for r , we get

r D r.0/ � S.r.0//

H.r.0//
: (2.24)

We have moved from r.0/ to r , one step closer to the true solution. Let r D r.tC1/
and r.0/ D r.t/. The Newton’s equation of iteration (2.20) is obtained by substituting
r and r.0/ into (2.24).

The Newton method does not behave well when r is close to zero or 0.5 for
the reason that H�1.r/ can be easily overflowed. The Fisher’s scoring method is a
modified version of the Newton method for avoiding the overflow problem. As such,
the method behaves well in all range of the parameter in the legal domain 0 � r � 1

2
.

In the Fisher’s scoring method, the second derivative involved in the iteration is
simply replaced by the so-called expectation of the second derivative. The iteration
equation becomes

r.tC1/ D r.t/ � S.r.t//

EŒH.r.t//�
; (2.25)

where

EŒH.r.t//� D � 2nŒ1 � 3r.t/ C 3.r.t//2�
r.t/.1 � r.t//Œ1 � 2r.t/ C 2.r.t//2� : (2.26)

Let I.r.t// D �EŒH.r.t//� be the Fisher’s information. The iteration process can be
rewritten as

r.tC1/ D r.t/ C I�1.r.t//S.r.t//: (2.27)

Assume that the iteration converges at the t C 1 iteration. The MLE of r is
Or D r.tC1/. The method provides an automatic way to calculate the variance of
the estimate,

var.Or/ � I�1.Or/ D Or.1 � Or/.1 � 2 Or C 2 Or
2/

2n.1 � 3 Or C 3 Or2/ ; (2.28)

where n DP3
iD1

P3
jD1 mij is the sample size. Note that when Or ! 0; Or2 becomes

negligible and 1 � 2 Or � 1–3 Or , leading to 1–2 Or C 2 Or2 � 1–3 Or C 3 Or2. Therefore,

var.Or/ � Or.1 � Or/
2n

: (2.29)

Comparing this variance with the one in the BC design shown in (2.11), we can see
that the variance has been reduced by half. Therefore, using the F2 design is more
efficient than the BC design.
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2.5 EM Algorithm for Estimating r

The EM algorithm was developed by Dempster et al. (1977) for handling missing
data problems. The algorithm repeatedly executes an E-step and an M-step for
iterations. The E-step stands for expectation and the M-step for maximization.
The problem of estimating recombination fraction in F2 can be formulated as a
missing value problem and thus solved by the EM algorithm. The derivation of
the EM algorithm is quite involved and will be introduced later when we deal
with a simpler problem. We now only give the final equation of the EM iteration.
Recall that the F1 hybrid can produce four possible gametes, two of them are of
parental type (A1B1 and A2B2) and the other two are recombinants (A1B2 and
A2B1). Therefore, an F2 progeny can be classified into one of three categories in
terms of the number of recombinant gametes contained: 0, 1, or 2. From Table 2.3,
we can see that each of the following observed genotypes carries one recombinant
gamete: A1A1B1B2, A1A2B1B1, A1A2B2B2, and A2A2B1B2, and each of the
following observed genotypes carries two recombinant gametes: A1A1B2B2 and
A2A2B1B1. Let n1 D m12 C m21 C m23 C m32 be the number of individuals
of category 1 and n2 D m13 C m31 be the number of individuals of category 2.
The double heterozygoteA1A2B1B2 is an ambiguous genotype because it may carry
0 recombinant gamete, (A1B1

A2B2
; A2B2
A1B1

), or two recombinant gametes, (A1B2
A2B1

; A2B1
A1B2

). The
number of double heterozygote individuals that carry two recombinant gametes is
n23 C n32. Unfortunately, this number is not observable. If it were, we would be
able to take the ratio of the number of recombinant gametes to the total number of
gametes in the F2 progeny .2n/ to get the estimated recombination fraction right
away,

Or D 1

2n
Œ2.n23 C n32 C n2/C n1� (2.30)

The EM algorithm takes advantage of this simple expression by substituting the
missing values .n23 C n32/ by its expectation. The expectation, however, requires
knowledge of the parameter, which is what we want to estimate. Therefore,
iterations are required. To calculate the expectation, we need the current value of
r , denoted by r.t/, and the number of double heterozygote individuals (m22). Recall
that the overall proportion of the double heterozygote is 1

2
Œr2 C .1 � r/2�, where

1
2
r2 represents the proportion of individuals carrying two recombinant gametes and
1
2
.1�r/2 represents the proportion of individuals carrying no recombinant gametes.

The conditional expectation of n23 C n32 is

E.n23 C n32/ D .r.t//2

.r.t//2 C .1� r.t//2 m22 D w.t/m22: (2.31)

The iterative equation may be written as

r.tC1/ D 1

2n
f2ŒE.n23 C n32/C n2�C .n1/g: (2.32)
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The final equation of the EM iteration becomes

r.tC1/ D 1

2n

�

2.w.t/m22 Cm13 Cm31/C .m12 Cm21 Cm23 Cm32/
�

: (2.33)

Calculating E.n23C n32/ using (2.31) represents the E-step, and updating r.tC1/
using (2.32) represents the M-step of the EM algorithm. The final result of the EM
algorithm is so simple, yet it behaves extremely well with regard to the small number
of iterations required for convergence and the insensitiveness to the initial value of r .
A drawback of the EM algorithm is the difficulty in calculating the standard error
of the estimate. Since the solution is identical to the Fisher’s scoring method, the
variance (square of the standard error) of the estimate given in (2.28) can be used
as the variance of the EM estimate.

To test the hypothesis of no linkage, r D 1
2
, we will use the same likelihood

ratio test statistic, as described in the BC design. The log likelihood value under
the null model, however, needs to be evaluated in a slightly different way, that is,
L.1

2
/ D P3

iD1
P3

jD1 mij ln.qij /, where qij is a function of r D 1
2

(see Table 2.5).
The log likelihood value under the alternative model is evaluated at r D Or , using
L.Or/ DP3

iD1
P3

jD1 mij ln. Oqij /, where Oqij is a function of r D Or (see Table 2.5).



Chapter 3
Genetic Map Construction

Gene loci are grouped into different chromosomes. Within the same chromosome,
the loci are linearly arranged because the chromosome is a string-like structure.
The distribution of loci among chromosomes and the order of loci within chro-
mosomes are called the genetic map. The data used to construct the genetic map
are the genotypes of these loci. From the genotypic data, we can estimate all
pairwise recombination fractions. These estimated recombination fractions are used
to construct the linkage map. Construction of the genetic map may be better called
reconstruction of genetic map because the true genetic map is already present and
we simply do not know about it. This is similar to the situation where phylogeny
construction is more often called phylogeny reconstruction because we are not
constructing the phylogeny of species; rather, we infer the existing phylogeny using
observed data. Of course, the inferred map may not be the true one if the sample
size is not sufficiently large. Map construction is the first step toward gene mapping
(locating functional genes). There are two steps in genetic map construction. The
first step is to classify markers into linkage groups according to the pairwise LOD
scores or the likelihood ratio test statistics. A convenient rule is that all markers
with pairwise LOD scores greater than 3 are classified into the same linkage group.
A more efficient grouping rule may be chosen using a combination of LOD score
and the recombination fraction. For example, loci A and B may be grouped together
if LODAB > 3 and rAB < 0:45. Grouping markers into the same linkage group
is straightforward, and no additional technique is required other than comparing the
LOD score of each pair of markers to a predetermined LOD criterion. If we choose a
more stringent criterion, some markers may not be assigned into any linkage groups.
These markers are called satellite markers. On the other hand, if we choose a less
stringent criterion, markers on different chromosomes may be assigned into the
same linkage group. The second step of genetic mapping is to find the optimal orders
of the markers within the same linkage groups. In this chapter, we only discuss the
second step of map construction.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 3,
© Springer Science+Business Media, LLC 2013
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3.1 Criteria of Optimality

Given the estimated pairwise recombination fractions form loci on the same linkage
group, we want to find the optimal order of the loci. There aremŠ=2 possible ways to
arrange the m loci. The factorial of m gives the total number of permutations of all
m loci. However, the orientation of a linkage map is irrelevant. For instance, ABC
and CBA are considered the same order for loci A, B, and C, as far as the relative
positions of the loci are concerned.

We will first define a criterion of “optimality” and then select the particular
order that minimizes or maximizes the criterion. The simplest and also the most
commonly used criterion is the sum of adjacent recombination coefficients .sar/.
The criterion is defined as

sar D
m�1
X

iD1
Ori.iC1/ (3.1)

where Ori.iC1/ is the recombination fraction between loci i and i C 1 for i D
1; : : : ; m � 1, where i and i C 1 are two adjacent loci. For m loci, there are
m � 1 adjacent recombination fractions. If there is no estimation error for each
of the adjacent recombination fraction, the true sar should have the minimum value
compared with any other orders. Consider the following example of three loci with
the correct order of ABC. The sar value for this correct order is

sarABC D rAB C rBC (3.2)

If we evaluate an alternative order, say ACB, we found that

sarACB D rAC C rBC (3.3)

Remember that the true order is ABC so that rAC D rABCrBC �2rABrBC assuming
that there is no interference. Substituting rAC into the above equation, we get

sarACB D rAB C rBC � 2rABrBC C rBC
D rAB C rBC C rBC .1 � 2rAB/ (3.4)

Because rBC .1 � 2rAB/ � 0, we conclude that sarACB � sarABC . In reality,
we always use estimated recombination fractions, which are subject to estimation
errors, and thus the marker order with minimum sar may not be the true order.

Similar to sar , we may use sad (sum of adjacent distances) as the criterion,
which is defined as

sad D
m�1
X

iD1
Oxi.iC1/ (3.5)

where Oxi.iC1/ is the estimated additive distance between loci i and i C 1 and is
converted from the estimated recombination fraction using either the Haldane or
Kosambi map function. Similar to the sar criterion, the order of loci that minimizes
sad is the optimal order.
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The sum of adjacent likelihoods .sal/ is another criterion for map construction.
Note that the likelihood refers to the log likelihood. In contrast to sar , the
optimal order should be the one which maximizes sal . Define L.Ori.iC1// as the log
likelihood value for the recombination fraction between loci i and i C 1. The sal is
defined as

sal D
m�1
X

iD1
L.Ori.iC1// (3.6)

Both sad and sal are additive, which is a property required by the branch and bound
algorithm for searching the optimal order of markers (see next section).

3.2 Search Algorithms

3.2.1 Exhaustive Search

Exhaustive search is an algorithm in which all possible orders are evaluated. As a
result, it guarantees to find the optimal order. Recall that form loci, the total number
of orders to be evaluated is n D mŠ=2. The number of orders .n/ grows quickly as
m increases, as shown in the following table.

m n

2 1
3 3
4 12
5 60
6 360
7 2,520
8 20,160
9 181,440
10 1,814,400

The algorithm will use up the computing resource quickly as m increases.
Therefore, this algorithm is rarely used when m > 10. When writing the computer
code to evaluate the orders, we want to make sure that all possible orders are
evaluated. This can be done using the following approach. Assume that there are
five loci, denoted by A, B, C, D, and E, that need to be ordered. First, we arbitrarily
choose two loci, say A and B, to initiate the map. We then add locus C to the
existing map. There are three possible places where we can put C in the existing
map: CAB, ACB, and ABC. For each of the three orders of the three-locus map, we
add locus D. For example, to add locus D to the existing order ACB, we need to
evaluate the following four possible orders: DACB, ADCB, ACDB, and ACBD. We
then add locus E (the last locus) to each of the four orders of the four-locus map.
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AB (0.10)

CAB (0.35) ACB (0.40) ABC(0.25)

DCAB (0.40)

CDAB (0.45)

CADB (0.75)

CABD (0.55)

EDCAB
DECAB
DCEAB
DCAEB
DCABE

ECDAB
CEDAB
CDEAB
CDAEB
CDABE

ECADB
CEADB
CAEDB
CADEB
CADBE

ECABD
CEABD
CAEBD
CABED
CABDE

DABC (0.55)

ADBC (0.65)

ABDC (0.35)

ABCD (0.30)

EDABC
DEABC
DAEBC
DABEC
DABCE

EADBC
AEDBC
ADEBC
ADBEC
ADBCE

EABDC
AEBDC
ABEDC
ABDEC
ABDCE

EABCD
AEBCD
ABECD
ABCED
ABCDE

DACB (0.70) ADCB (0.50)

ACDB (0.50) ACBD (0.60)

EDACB
DEACB
DAECB
DACEB
DACBE

EADCB
AEDCB
ADECB
ADCEB
ADCBE

EACDB
AECDB
ACEDB
ACDEB
ACDBE

EACBD
AECBD
ACEBD
ACBED
ACBDE

Fig. 3.1 All possible orders (60) of a map with five loci

For example, locus E can be added to the existing order DACB in five different
places, leading to EDACB, DEACB, DAECB, DACEB, and DACBE. We can see
that all the 3 � 4 � 5 D 5Š=2 D 60 possible orders have been evaluated so far
(see Fig. 3.1). This ends the exhaustive search.

3.2.2 Heuristic Search

When the number of loci is too large to permit the exhaustive search, the optimal
order can be sought via a heuristic approach that sacrifices the guarantee of
optimality in favor of the reduced computing time. With a heuristic search, one
starts with an arbitrary order and evaluates this particular order. The order is then
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rearranged in a random fashion and reevaluated. If the new order is “better” than the
initial order, the new order is accepted. If the new order is “worse” than the initial
order, the initial order is kept. This completes one cycle of the search. The second
cycle of the search starts with a rearrangement of the order of the previous cycle.
The rearranged order is then accepted or rejected depending on whether or not
the value of the order has been improved. The process continues until no further
improvement is achieved for a certain number of consecutive cycles, e.g., 50 cycles.
This method is also called the greedy method because it is too greedy to “climb up”
the hill. It is likely to end up with a local optimum instead of a global one. Therefore,
there is no guarantee that the method finds the global optimal order.

The so-called random rearrangement may be conducted in several different ways.
One is called complete rearrangement or global rearrangement. This is done by
selecting a completely different order by random permutation. Information of the
previous order has no effect on the selection of the new order. This approach is
conceptually simple but may not be efficient. For example, if a previous order is
already close to the optimal one, a complete random rearrangement may be far
worse than this order, leading to many cycles of random rearrangements before an
improved order appears. The other way of rearranging the order is called partial
or local rearrangement. This is done by randomly rearranging a subset of the loci.
Let ms.2 � ms < m/ be the size of the subset. Although ms may be chosen in a
arbitrary fashion, ms D 3 may be a convenient choice. First, we randomly choose
a triplet from the m loci. We then rearrange the three loci within their existing
positions and leave the order of the remaining loci intact. There are 3Š D 6 possible
ways to rearrange the three loci, and all of them are evaluated. The best one of the
six is chosen as a candidate new order for reevaluation. If this new order is better
than the order in the previous cycle, the order is updated; otherwise, the previous
order is carried over to the next cycle.

The result of heuristic search depends on the initial order selected to start the
search. We will use the five-locus example to demonstrate a simple way to choose
the initial map order. Let A, B, C, D, and E be the five loci. We start with two
most closely linked loci, say loci A and D. We then add a third locus to the existing
two-locus map. The third locus is chosen such that it has the minimum average
recombination fractions from loci A and D. Assume that locus C satisfies this
criterion. We then add locus C to the existing map AD. There are three places where
locus C can be added: CAD, ACD, and ADC. Choose the best of the three orders as
the optimal map, say ACD. We then choose a next locus to add to the existing map
ACD, using the same criterion, i.e., minimum average recombination fractions from
loci A, C, and D. Assume that locus E satisfies this criterion. There are four places
that locus E can be inserted into the existing map ACD, which are EACD, AECD,
ACED, and ACDE. Assume that EACD is the best of the four orders. Finally, we
add locus B (the last locus) to the four-locus map. We evaluate all the five different
orders: BEACD, EBACD, EABCD, EACBD, and EACDB. Assume that BEACD is
the best of the five orders. This order (BEACD) can be used as the initial order to
start the heuristic search.
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3.2.3 Simulated Annealing

Simulated annealing is a method which examines a much larger subset of the
possible orders. The method was developed to prevent the solution from being
trapped into a local optimum. Like the heuristic search, we start with an arbitrary
order and evaluate the order using sar, sad, or �sal as the criterion. Note that sal is
replaced by�sal because the method always searches for the minimum value of the
criterion. The score of the initial order is denoted byE0. The order is then subject to
local rearrangement in a random fashion. This involves Monte Carlo simulation for
the order. Note that the rearrangement should be local rather than global. Assume
that the score for the new order is E1. If the new order is “better” than the initial
order, i.e., E1 < E0, the new order is accepted. If the new order is “worse” than the
initial order, i.e., E1 > E0, it is accepted with a probability,

˛ D exp

�

�E1 � E0
kbT

�

(3.7)

where kb is a physical constant called Boltsman constant and T corresponds to the
temperature. Once the new order is accepted, we replace E0 by E1 and continue
the search for another order. This sampling strategy was proposed by Metropolis
et al. (1953) and thus also is referred to as the Metropolis algorithm. By trial and
error, it is found that kb D 0:95 usually works well. However, different values
should be chosen if kb D 0:95 does not. The value of the temperature T can be
chosen arbitrarily, say T D 2 or any other values. For m loci, 100m new orders
should be examined for each value of T , and then T should be changed to kbT

(the temperature has been lowered) at this point. With a pseudocode notation, the
change of temperature is expressed as T D kbT when the temperature is decided
to change. The algorithm stops after 100 rearrangements have failed to provide a
better order. When we write the computer code to simulate the event of accepting
or rejecting a new order, we do not care about whether E1 < E0 or E1 > E0. We
simply let the new order to be accepted with probability ˛, which is defined as

˛ D min

�

1; exp

�

�E1 �E0
kbT

��

(3.8)

If E1 < E0, i.e., the new order is better than the old order, ˛ D 1, meaning
that the new order is always accepted. If E1 > E0, then ˛ < 1; the probability of
accepting the new order is not 100 %. When the temperature T gets lower, it makes
the acceptance of a worse order harder. This can be shown by looking at the profile
of the acceptance probability as a function of the deviation of the new orderE1 from
the current orderE0 (see Fig. 3.2). The initial length of the map is E0 D 3. The new
length E1 ranges from 2 to 6. The Boltsman constant is kb D 0:95. The three lines
represent three different T values (T D 2; 0:5; 0:1). WhenE1 � E0, the probability
of acceptance is 1. After E1 passes E0 D 3 (E1 > E0), i.e., the new order is
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Fig. 3.2 Change of
acceptance probability as E1
deviates from E0 D 3:0

worse than the current order, the acceptance probability starts to decrease but very
slowly for T D 2 (high temperature). As the temperature cools down (T D 0:5),
the acceptance probability decreases more sharply, meaning that it is hard to accept
a worse order. When T D 0:1, very low temperature, the acceptance probability
decreases very sharply, making the acceptance of a worse order extremely difficult.
In the end, only a better order gets accepted, and no worse order will be accepted.
This will end the search.

The intention of allowing a worse order to be accepted is to prevent the algorithm
from settling down at a local optimal order and ignoring a global optimum elsewhere
in the space of possible orders. Simulated annealing was set up in a language from
the observation that when liquids are cooled very slowly, they will crystallize in a
state of minimum energy (Metropolis et al. 1953).

3.2.4 Branch and Bound

The branch and bound method is often used in search for evolutionary trees (also
called phylogenies). The method was first developed by Land and Doig (1960).
It is adopted here to search for the optimal order of loci. This algorithm is not the
exhaustive search, but it guarantees to find the global optimum order. There will be
occasions when it would require examination of all orders, but generally, it requires
examination of only a small subset of all possible orders. The criterion of evaluation
must be “additive.” This property will make sure that the map length for a particular
order with k loci cannot be shortened by adding another locus to the existing map
of k loci. Both sad and �sal follow the additive rule and thus can be used as the
length of a map for the branch and bound search. However, sar cannot be used
here because it is not additive. Let us assume that there are four loci, ABCD, to be
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ordered. Suppose that the first two loci to be considered are AB. The next locus C
can be inserted in one of three positions, corresponding to orders CAB, ACB, and
ABC, respectively. The fourth locus D can be inserted in four different positions
for each of the three-locus orders. There will be 4Š=2 D 12 possible orders after
locusD is inserted. In general, we start with two loci (one possible order) and insert
the third locus to the two-locus map (three possible places to insert the third locus).
When the i th locus .i D 3; : : : ; m/ is inserted into the map of i � 1 loci, there will
be i branch points (places) to insert the i th locus. Overall, there are 3�4�� � ��m D
.1 � 2 � 3 � 4 � � � � �m/=.1 � 2/ D mŠ=2 possible orders. This process is similar
to a tree growing process, as illustrated in Fig. 3.1 for the example of five loci,
except that this tree is drawn upside down with the root at the top. Each tip of the
tree represents a particular order of the map for all the m loci, called a child. Each
branch point represents an order withm�1 or a lower number of loci, called a parent.
The initial order of two loci is the root of the tree, called the ancestor. Each member
of the tree (including the ancestor, the parents, and the children) is associated with
an sad value, i.e., the length of the member.

If all the possible orders were evaluated, the method would be identical to the
exhaustive search. The branch and bound method, however, starts with an arbitrarily
chosen order of them locus map (a child) and assigns the length of this order to E0,
called the upper bound. It is more efficient to select the shortest map order found
from a heuristic search as the initial upper bound. Once an upper bound is assigned,
it is immediately known that the optimal order cannot have a value greater than E0.
Let T0 be the map order for the selected child (the length has been chosen as the
upper bound). The branch and bound algorithm starts evaluating all the siblings of
T0. The upper bound will be replaced by the shortest length of the siblings in the
family if the current T0 is not the shortest one. Once all the siblings of the current
family are evaluated, we backtrack to the parent and evaluate all the siblings of the
parent (the uncles of T0). Remember that all members in the parental generation
havem� 1 loci. Any uncles whose scores are longer that E0 will be disqualified for
further evaluation because they will not produce children with scores shorter than
E0 due to the property that inserting additional loci cannot possibly decrease the
score. Therefore, we can dispense with the evaluation of all children that descend
from those disqualified uncles in the search and immediately backtrack and proceed
down a different path. Only uncles whose scores are shorter than E0 will be subject
to further evaluation. The upper bound will be updated if a shorter member is found
in the uncle’s families. Once all the uncles and their families are evaluated, we
backtrack to the great grandparent and the siblings of the grandparent and evaluate
the families of all the siblings of the grandparent. The process continues until all
qualified families have been evaluated. The upper boundE0 is constantly updated to
ensure that it holds the length of the shortest map order among the orders evaluated
so far. Constantly updating the upper bound is important, as it may enable other
search paths to be terminated more quickly.

The following example is used to demonstrate the branch and bound algorithm.
Let A, B, C, and D be four loci with unknown order. The recombination fractions are
stored in the upper triangular positions of the matrix given in Table 3.1. The additive
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Table 3.1 Recombination fractions and additive distances for four
marker loci

A B C D

A rAB.0:0906/ rAC .0:1967/ rAD.0:2256/

B xAB.0:10/ rBC .0:1296/ rBD.0:1648/

C xAC .0:25/ xBC .0:15/ rCD.0:0476/

D xAD.0:30/ xBD.0:20/ xCD.0:05/

Table 3.2 The 12 possible
orders of a four locus map
and their sad scores

Order Map sad score

1 DCAB 0.40
2 CDAB 0.45
3 CADB 0.75
4 CABD 0.55
5 DACB 0.70
6 ADCB 0.50
7 ACDB 0.50
8 ACBD 0.60
9 DABC 0.55
10 ADBC 0.65
11 ABDC 0.35
12 ABCD 0.30

distances converted from the recombination fractions using the Haldane map
function are stored in the lower triangular positions of the matrix (Table 3.1). The
12 possible orders of the loci are given in Table 3.2 along with the sad score for
each order. For example, the sad score for order CABD is

sadDBAC D xBD C xAB C xAC D 0:20C 0:10C 0:25 D 0:55: (3.9)

From Table 3.2, we can see that the optimal order is order 12, i.e., ABCD, because
its sad score (0.30) is minimum among all other orders. This would be the result
of exhaustive search because we had evaluated all the 12 possible orders. Let us
pretend that we had not looked at Table 3.2 and we want to proceed with the branch
and bound method to search for the optimal order.

The entire tree of four loci is given in Fig. 3.3. Each child has four loci and
a length given in parentheses. Note that order ACBD has a length 0.60. The five
children of ACBD do not belong to this tree of four loci. They are presented here
to indicate that the tree of five loci can be expanded from the tree of four loci in
this way. A randomly selected order, say DCAB, is used as T0 whose sad score is
used as the upper bound, E0 D sadDCAB D 0:40. All the siblings of DCAB are
evaluated for the sad scores. It turns out that sadDCAB D 0:40 is the shortest order
in the family, and thus E0 cannot be improved. The search is backtracked to CAB
(the parent of DCAB), and the two siblings of the parent are evaluated, with scores
of sadACB D 0:40 and sadABC D 0:25. Because sadACB D sadDCAB D E0 D 0:40,
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Fig. 3.3 All possible orders (12) of a map with four loci. The five-locus children of order ACBD
are also given to show that the tree can be expanded this way for more loci

it is concluded that the optimal order cannot occur in the “lineage” descending from
ACB because adding one more locus cannot possibly make the sad score shorter.
Therefore, only children of ABC are qualified for further evaluation. The shortest
order occurs in this family, and it is ABCD with sadABCD D 0:30. We only evaluate
two families out of three .2=3/ to find the optimal order by using the branch and
bound algorithm.

Let us use the sad of a different order as the upper bound to start the search and
show that the branch and bound algorithm may end up with evaluating all possible
orders. Assume that we choose the score of ACDB as the upper bound, i.e., E0 D
sadACDB D 0:50. We first evaluated all the siblings of ACDB and found that the
upper bound cannot be improved. We then backtracked to the parent of ACDB,
which is ACB. The parent has two siblings, CAB and ABC; both are shorter than
E0, and thus both should be further evaluated. However, which of the lineages is
evaluated first can make a difference regarding the efficiency of the search. Assume
that the lineage under CAB is evaluated first. This leads to an improved upper bound
E0 D sadDCAB D 0:40. This upper bound is identical to the length of the parent
of the family that we started the search. This family would not have been evaluated
if we had chosen E0 D 0:40 as the upper bound in the beginning. Unfortunately,
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it was too late that we had already evaluated this family. Since ABC is shorter than
E0 D 0:40, the lineage under ABC is subject to further evaluation. The shortest
order occurs in this lineage, which is ABCD with sadABCD D 0:30. All the 12
possible orders have been evaluated before the optimal order is found. However, if
we had evaluated the lineage under ABC first, we would not have to evaluate the
lineage under CAB, leading to a 1/3 cut of the computing load.

Finally, if the upper bound is assigned a value from a member in the ABC lineage,
say E0 D sadABDC D 0:35, the upper bound is immediately updated as E0 D
sadABCD D 0:30. This upper bound immediately disqualifies the other two lineages,
leading to a 2/3 reduction of the number of orders for evaluation.

The branch and bound algorithm guarantees to find the shortest order, but the
efficiency depends on the upper bound chosen and the sequence in which the paths
are visited.

3.3 Bootstrap Confidence of a Map

In phylogeny analysis, an empirical confidence can be put on each internal branch
of a particular phylogeny via bootstrap samplings (Felsenstein 1985). This idea
can be adopted here for map construction. A map with m markers have m � 1
internal segments, similar to the internal branches of a phylogenetic tree. We can
put a confidence on each segment. Let us assume that C–D–B–A–E is the optimal
order we found. We want to put a bootstrap confidence on segment D–B. First,
we draw a large number of bootstrap samples, say N . Each bootstrap sample
contains n randomly sampled progeny from the original sample (map population)
with replacement. This means that in a bootstrap sample, some progeny may be
drawn several times while others may not be drawn at all. For each bootstrap sample,
we estimate all the pairwise recombination fractions and construct a map (find the
optimal order of the markers for that particular bootstrap sample). In the end, we will
have N different maps, one from each bootstrap sample. We then count the number
of maps that have segment D–B, i.e., D and B are joined together. The proportion of
the maps that reserve this segment is the confidence of this segment. Let N D 100

be the number of bootstrap samples and ND�B D 95 be the number of samples
reserving segment D–B; the confidence for segment D–B is ND�B=N D 0:95.
Each segment of the map can be put a confidence using the same approach.

The way to place a bootstrap confidence for a segment of a map described here
appears to be different from the bootstrap confidence of an internal branch of a
phylogenetic tree. We simply adopted the idea of phylogenetic bootstrap analysis,
not the way of confidence assignment. To fully adopt the bootstrap confidence
assignment, we need to find the number of bootstrap samples that partition the loci
into fC,Dg and fB,A,Eg subsets and also reserve the D–B segment. That number
divided by N D 100 would give the confidence for the D–B segment.



Chapter 4
Multipoint Analysis of Mendelian Loci

Each Mendelian locus occupies a specific point on a chromosome. A linkage
analysis requires two or more Mendelian loci and thus involves two or more points.
When a linkage analysis involves two Mendelian loci, as we have seen in Chap. 2 for
estimating the recombination fraction between two loci, the analysis is called two-
point analysis. When more than two Mendelian loci are analyzed simultaneously,
the method is called multipoint analysis (Jiang and Zeng 1997). Multipoint analysis
can extract more information from the data if markers are not fully informative, e.g.,
missing genotypes, dominance alleles, and so on.

When there is no interference between the crossovers of two consecutive
chromosome segments, the joint distribution of genotypes of marker loci is Marko-
vian. We can imagine that the entire chromosome behaves like a Markov chain, in
which the genotype of one locus depends only on the genotype of the “previous”
locus. A Markov chain has a direction, but a chromosome has no meaningful
direction. Its direction is defined in an arbitrary fashion. Therefore, we can use either
a forward Markov chain or a backward Markov chain to define a chromosome, and
the result will be identical, regardless of which direction has been taken.

A Markov chain is used to derive the joint distribution of all marker genotypes.
The joint distribution is eventually used to construct a likelihood function for
estimating multiple recombination fractions. Given the recombination fractions, one
can derive the conditional distribution of the genotype of a locus bracketed by
two marker loci given the genotypes of the markers. The conditional distribution
is fundamentally important in genetic mapping for complex traits, a topic to be
discussed in a later chapter.

4.1 Joint Distribution of Multiple-Locus Genotype

When three loci are considered jointly, the method is called three-point analysis.
Theory developed for three-point analysis applies to arbitrary number of loci.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 4,
© Springer Science+Business Media, LLC 2013

35



36 4 Multipoint Analysis of Mendelian Loci

4.1.1 BC Design

Let ABC be three ordered loci on the same chromosome with pairwise recombination
fractions denoted by rAB , rBC , and rAC . We can imagine that these loci form a
Markov chain as either A �! B �! C or A � B � C. The direction is arbitrary.
Each locus represents a discrete variable with two or more distinct values (states).
For an individual from a BC population, each locus takes one of two possible
genotypes and thus two states. Let A1A1 and A1A2 be the two possible genotypes
for locus A, B1B1 and B1B2 be the two possible genotypes for locus B, and C1C1
and C1C2 be the two possible genotypes for locus C. For convenience, each state
is assigned a numerical value. For example, A D 1 or A D 2 indicates that an
individual takes genotypeA1A1 or A1A2. Let us take A �! B �! C as the Markov
chain; the joint distribution of the three-locus genotype is

Pr.A;B; C / D Pr.A/ Pr.BjA/ Pr.C jB/; (4.1)

where Pr.A D 1/ D Pr.A D 2/ D 1
2

assuming that there is no segregation
distortion. The conditional probabilities, Pr.BjA/ and Pr.C jB/, are called the
transition probabilities between loci A and B and between loci B and C, respectively.
The transition probabilities depend on the genotypes of the two loci and the
recombination fractions between the two loci. These transition probabilities can be
found from the following 2 � 2 transition matrix:

TAB D
�

Pr.B D 1jA D 1/ Pr.B D 2jA D 1/
Pr.B D 1jA D 2/ Pr.B D 2jA D 2/

�

: (4.2)

Because Pr.B D 1jA D 1/ D Pr.B D 2jA D 2/ D 1 � rAB represents the
probability of no recombination between the two loci and Pr.B D 2jA D 1/ D
Pr.B D 1jA D 2/ D rAB represents the probability of recombination between the
two loci, the exact form of the transition matrix between loci A and B is

TAB D
�

TAB.1; 1/ TAB.1; 2/

TAB.2; 1/ TAB.2; 2/

�

D
�

1 � rAB rAB
rAB 1 � rAB

�

; (4.3)

where TAB.k; l/ 8k; l D 1; 2 denotes the kth row and the l th column of matrix
TAB . It is now obvious that TAB.k; l/ D Pr.B D l jA D k/. Note that we have used
a special notation “8k; l D 1; 2” to indicate that k and l each takes a value from 1

to 2. Verbally, “8k; l D 1; 2” means “for all k D 1; 2 and l D 1; 2”. When using
this kind of notation, we should particularly pay attention to the positions of k and
l in TAB.k; l/ D Pr.B D l jA D k/. It is a conditional probability that B D l given
A D k. Replacing the conditional probabilities by the elements of the transition
matrix, we rewrite the joint probability of the three-locus genotype as

Pr.A;B; C / D 1

2
TAB.A;B/TBC .B;C /: (4.4)
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For example, the probability that A D 1, B D 2, and C D 2 is

Pr.A D 1; B D 2; C D 2/ D 1

2
TAB.1; 2/TBC .2; 2/ D 1

2
rAB.1 � rBC /:

This joint probability can be written in matrix notation. Let us use a 2 � 2 diagonal
matrixDA to denote the genotype of locus A. This matrix is defined as

DA D
�

1 0

0 0

�

for A D 1 and DA D
�

0 0

0 1

�

for A D 2:

Diagonal matrices DB and DC are defined similarly for loci B and C, respectively.
The original data are in the form of genotype indicator variables, A, B , and C , but
the new form of the data is represented by the diagonal matrices. Let us define a
2 � 1 unity vector by J D Œ1 1�0. The joint distribution given in (4.4) is rewritten
in matrix notation as

Pr.A;B; C / D 1

2
J 0DATABDBTBCDCJ: (4.5)

One can verify that

Pr.A D 1;B D 2; C D 2/

D 1

2

h

1 1

i

"

1 0

0 0

#"

1 � rAB rAB

rAB 1 � rAB

#"

0 0

0 1

#"

1 � rBC rBC

rBC 1 � rBC

#"

0 0

0 1

#"

1

1

#

D 1

2
rAB.1� rBC /:

4.1.2 F2 Design

Taking into consideration the order of the two alleles carried by an F2 individual,
we have four possible genotypes: A1A1; A1A2; A2A1, and A2A2. The first and
the last genotypes are homozygotes, while the second and third genotypes are
heterozygotes. The two forms of heterozygote represent two different origins of the
alleles. They are indistinguishable from each other. Therefore, we adopt a special
notation, .A1A2/, to denote the unordered heterozygote. The alleles and genotypes
for the other loci are expressed using similar notation. Let A D k;8k D 1; : : : ; 4

be an indicator variable to indicate the four genotypes of locus A. Variables B
and C are similarly defined for loci B and C, respectively. The joint probability
of the three-locus genotype is Pr.A;B; C / D Pr.A/ Pr.BjA/ Pr.C jB/ where
Pr.ADk/D 1

4
;8k D 1; : : : ; 4. Pr.BjA/ and Pr.C jB/ are the transition probabilities
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from locus A to locus B and from locus B to locus C, respectively. The transition
probabilities from locus A to locus B can be found from the following 4�4 transition
matrix:

TAB D

2

6

6

4

.1 � rAB/2 .1 � rAB/rAB rAB.1 � rAB/ r2AB
.1 � rAB/rAB .1 � rAB/2 r2AB rAB.1 � rAB/
rAB.1 � rAB/ r2AB .1 � rAB/2 1 � rAB/rAB

r2AB rAB.1 � rAB/ 1 � rAB/rAB .1 � rAB/2

3

7

7

5

: (4.6)

The transition matrix from locus B to locus C is denoted by TBC , which is equivalent
to matrix (4.6) except that the subscript AB is replaced by subscript BC .

Note that this transition matrix is obtained by the Kronecker square (denoted by
a superscript Œ2�) of a 2 � 2 transition matrix,

HAB D
�

1 � rAB rAB

rAB 1 � rAB
�

; (4.7)

that is,

TAB D
�

1 � rAB rAB
rAB 1 � rAB

�Œ2�

D
�

1 � rAB rAB
rAB 1 � rAB

�

˝
�

1 � rAB rAB
rAB 1 � rAB

�

:

The 4�4 transition matrix (4.6) may be called the zygotic transition matrix, and the
2 � 2 transition matrix (4.7) may be called the gametic transition matrix. That the
zygotic transition matrix is the Kronecker square of the gametic transition matrix is
very intuitive because a zygote is the product of two gametes. Let TAB.k; l/ be the
kth row and the l th column of the 4 � 4 transition matrix TAB , 8k; l D 1; : : : ; 4.
The joint probability of the three-locus genotype is expressed as

Pr.A;B; C / D 1

4
TAB.A;B/TBC .B;C /: (4.8)

For example, the joint three-locus genotype A1A1B1B2C2C1 is numerically coded
as A D 1, B D 2, and C D 3, whose probability is

Pr.A D 1; B D 2; C D 3/ D 1

4
TAB.1; 2/TBC .2; 3/ D 1

4
.1� rAB/rABr2BC :

In practice, people will never observe a three-locus genotype likeA1A1B1B2C2C1
because the two forms of the heterozygote are not distinguishable. The joint three-
locus genotypeA1A1.B1B2/.C1C2/ is actually what we can observe. The numerical
code for the first locus is A D 1, but the codes for loci B and C are ambiguous.
For example, locus B can be coded as either B D 2 or B D 3 with an equal
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cross mating design

probability. This ambiguous situation is denoted by B D .2; 3/. Similar notation
applies to locus C as C D .2; 3/. The joint distribution for A1A1.B1B2/.C1C2/ is

PrŒA D 1; B D .2; 3/; C D .2; 3/� D 1

4

3
X

kD2

"

TAB.1; k/

3
X

lD2
TBC .k; l/

#

D 1

2
rAB.1 � rAB/Œr2BC C .1 � rBC /2�:

Again, the joint distribution of the three-locus genotype (4.8) can be expressed
in matrix notation. We now use a 4 � 4 diagonal matrix to denote the genotype of a
locus. For locus A, this diagonal matrix is defined as

DA D

2

6

6

4

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

5

; DA D

2

6

6

4

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

3

7

7

5

andDA D

2

6

6

4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

3

7

7

5

;

for A D 1;A D .2; 3/ and A D 4, respectively. Verbally, matrix DA is a diagonal
matrix with unity values for the diagonal elements corresponding to the positions
pointed by the value of A. Having defined these diagonal matrices for all loci, we
can rewrite the joint distribution of the three-locus genotype as

Pr.A;B; C / D 1

4
J 0DATABDBTBCDCJ; (4.9)

where J is now a 4�1 vector of unity, rather than a 2�1 vector as in the BC design
(Fig. 2.1).
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4.1.3 Four-Way Cross Design

A four-way cross design involves two different crosses and four different inbred
parents. Let F.12/1 be the hybrid progeny derived from the cross of P1 and P2 and

F.34/1 be the progeny derived from the cross of P3 and P4. The cross between F.12/1 and

F.34/1 is called the four-way cross. Such a design is called the four-way cross design
(FW) as illustrated in Fig. 4.1. Let AkAkBkBkCkCk be the three-locus genotype
for the k parent, 8k D 1; : : : ; 4. The three-locus genotypes for F.12/1 and F.34/1

areA1A2B1B2C1C2 andA3A4B3B4C3C4, respectively. Consider a single locus, say
locus A. An FW progeny can take one of the four genotype: A1A3; A1A4; A2A3,
and A3A4. Let A D 1; : : : ; 4 denote the numerical code for each of the four
genotypes. The joint three-locus genotype is still expressed by (4.9) with the same
transition matrices as defined earlier in the F2 design. The diagonal matrices, DA,
DB , and DC , are defined similarly to those in the F2 design except that the second
and third genotypes are distinguishable. The numerical code of A D k is translated
into a DA matrix whose elements are all zero except that the kth row and the kth
column are unity. For example, the joint probability that A D 3, B D 1, and C D 4
is

Pr.A D 3; B D 1; C D 4/ D 1

4
J 0DATABDBTBCDCJ

D 1

4
TAB.3; 1/TBC .1; 4/

D 1

4
rAB.1 � rAB/r2BC :

4.2 Incomplete Genotype Information

4.2.1 Partially Informative Genotype

The FW cross design described earlier represents a situation where all the four
genotypes in the progeny are distinguishable. In reality, it is often that not
all genotypes are distinguishable. This may happen when two or more of the
grandparents carry the same allele at the locus of interest. The consequence is
that the F1 hybrid initiated by the first level of the cross may be homozygous
or the two F1 parents may have the same genotype. Assume that F .34/

1 has a
genotype of A3A3, which is homozygous. This may be caused by a cross between
two parents, both of which are fixed at A3 allele. Regardless of the reason that
causes the homozygosity of the F1 hybrid, let us focus on the genotypes of the
two F1 parents and consider the four possible genotypes of the FW progeny.
Assume that F .12/

1 and F
.34/
1 have genotypes of A1A2 and A3A3, respectively.
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The four possible genotypes of the progeny are A1A3, A1A3, A2A3, and A2A3.
The first and the second genotypes are not distinguishable, although the A3 allele
carried by the two genotypes has different origins. This situation applies to the
third and fourth genotypes. Considering the allelic origins, we have four ordered
genotypes, but we only observe two distinguishable genotypes. This phenomenon is
called incomplete information for the genotype. Such a genotype is called partially
informative genotype. If we observe a genotype A1A3, the numerical code for the
genotype is A D .1; 2/. In matrix notation, it is represented by

DA D

2

6

6

4

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

3

7

7

5

:

If an observed genotype is A2A3, the numerical code becomes A D .3; 4/,
represented by

DA D

2

6

6

4

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

3

7

7

5

:

If both parents are homozygous and fixed to the same allele, sayA1, then all the four
genotypes of the progeny have the same observed form, A1A1. The numerical code
for the genotype is A D .1; 2; 3; 4/, a situation called no information. Such a locus
is called uninformative locus and usually excluded from the analysis. The diagonal
matrix representing the genotype is simply a 4 � 4 identity matrix.

The following is an example showing how to calculate the three-locus joint
genotype using the FW cross approach with partial information. LetA1A3B2B3C1C1
and A4A4B2B3C1C2 be the three-locus genotypes for two parents. The link-
age phases of markers in the parents are assumed to be known so that the order of the
two alleles within a locus is meaningful. In fact, the phase-known genotypes of the
parents are better denoted by A1B2C1

A3B3C1
and A4B2C1

A4B3C2
, respectively, for the two parents.

Assume that a progeny has a genotype of A3A4B2B2C1C1. We want to calculate
the probability of observing such a progeny given the genotypes of the parents.
First, we examine each single-locus genotype to see which one of the four possible
genotypes this individual belongs to. For locus A, the parental genotypes are A1A2
and A4A4. The four possible genotypes of a progeny are A1A4, A1A4, A3A4, and
A3A4, respectively. The single-locus genotype of the progeny isA3A4, matching the
third and fourth genotypes, and thusA D .3; 4/. For locus B, the parental genotypes
are B2B3 and B2B3. The four possible genotypes of a progeny are B2B2, B2B3,
B3B2, and B3B3, respectively. The single-locus genotype B2B2 for the progeny
matches the first genotype and thus B D 1. For locus C, the parental genotypes are
C1C1 and C1C2. The four possible genotypes of a progeny are C1C1, C1C2, C1C1,
and C1C2, respectively. The single-locus genotype of the progenyC1C1 matches the
first and the third genotypes and thus C D .1; 3/. In summary, the numerical codes
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for the three loci are A D .3; 4/, B D 1, and C D .1; 3/, respectively. We now
convert the three single-locus genotypes into their corresponding diagonal matrices,

DA D

2

6

6

4

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

3

7

7

5

; DB D

2

6

6

4

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

5

andDC D

2

6

6

4

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3

7

7

5

:

Substituting these matrices into (4.9), we have

PrŒA D .3; 4/; B D 1; C D .1; 3/� D 1

4
J 0DATABDBTBCDCJ

D 1

4
ŒTAB.3; 1/C TAB.4; 1/�ŒTBC .1; 1/C TBC .1; 3/�

D 1

4
rAB.1 � rBC /

4.2.2 BC and F2 Are Special Cases of FW

The four-way cross design is a general design where the BC and F2 designs are
special cases of the general design with partial information. For example, the two
parents of the BC1 design have genotypes of A1A2 and A1A1, respectively. If we
treat a BC progeny as a special FW progeny, the four possible genotypes are A1A1,
A1A1, A2A1, andA2A1, only two distinguishable observed types. If a progeny has a
genotypeA1A1, the numerical code of the genotype in terms of an FW cross is A D
.1; 2/. If a progeny has a genotype ofA2A1, its numerical codes becomeA D .3; 4/.
The two parents of a BC0

1 design have genotypes of A1A2 and A2A2, respectively.
In terms of an FW cross, the four possible genotypes are A1A2; A1A2; A2A2, and
A2A2. Again, there are only two distinguishable genotypes. The two parents of an
F2 design have genotypes ofA1A2 andA1A2, respectively. If we treat an F2 progeny
as a special FW progeny, the four possible genotypes are A1A1; A1A2, A2A1, and
A2A2, only three distinguishable genotypes. The numerical codes for the two types
of homozygote are A D 1 and A D 4, respectively, whereas the numerical code for
the heterozygote is A D .2; 3/. In summary, when the general FW design is applied
to a BC design, only two of the four possible genotypes are distinguishable, and the
numerical codes are A D .1; 2/ for one observed genotype and A D .3; 4/ for the
other observed genotype. When the general FW design is applied to the F2 design,
the two forms of heterozygote are not distinguishable. When coding the genotype,
we use A D .2; 3/ to represent the heterozygote and A D 1 and A D 4 to represent
the two types of homozygote, respectively. The transition matrices remain the same
as those used in an FW cross design.
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We have learned the BC design in Sec. 4.1.1 using the 2 � 2 transition matrix.
When using the FW design for the BC problem, we have combined the first and
second genotypes to form the first observable genotype and combined the third and
fourth genotypes to form the second observable genotype for the BC design. It can
be shown that the joint probability calculated by the Markov chain with two states
(using the 2�2 transition matrix) and that calculated by the Markov chain with four
states (the 4 � 4 transition matrix) are identical.

The F2 design we learned earlier can be handled by combining the second and
third genotypes into the observed heterozygote. The 4 � 4 transition matrix is
converted into a 3 � 3 transition matrix,

TAB D
2

4

.1� rAB/2 2.1� rAB/rAB r2AB
.1 � rAB/rAB r2AB C .1 � rAB/2 .1 � rAB/rAB

r2AB 2.1� rAB/rAB .1� rAB/2

3

5 :

The joint probability of multiple-locus genotype for an F2 individual can be
calculated using a Markov chain with the 3�3 transition matrix. The numerical code
for a genotype must be redefined in the following way. The three defined genotypes,
A1A1; A1A2, and A2A2, are numerically coded by A D 1; A D 2, and A D 3, re-
spectively.
In matrix notation, the three genotypes are denoted by

DA D
2

4

1 0 0

0 0 0

0 0 0

3

5 ; DA D
2

4

0 0 0

0 1 0

0 0 0

3

5 andDA D
2

4

0 0 0

0 0 0

0 0 1

3

5 ;

respectively.
The general FW design using a Markov chain with four states is computationally

more intensive when applied to BC and F2 designs compared to the specialized
BC (with 2 � 2 transition matrix) and F2 (with 3 � 3 transition matrix) algorithm.
However, the difference in computing times is probably unnoticeable given the
current computing power. In addition, the 3�3 transition matrix is not symmetrical,
a factor that may easily cause a programming error. Therefore, the general FW
design is recommended for all line crossing experiments.

4.2.3 Dominance and Missing Markers

A dominance marker is a type of marker whose heterozygous genotype cannot
be distinguished from one of the two homozygous genotypes. Therefore, dominance
markers cannot be used in a BC design. However, partial information can be
extracted from dominance markers in an F2 design. Consider locus A with four
possible genotypes in an F2 population under a biallelic system, alleles A1 vs A2.
The four ordered genotypes are A1A1, A1A2, A2A1, and A2A2. Dominance can be
found in two directions. If A1 is dominant over A2, we cannot distinguish the three
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genotypes, A1A1, A1A2, and A2A1. If A2 is dominant over A1, however, we cannot
distinguish the three genotypes, A1A2, A2A1, and A2A2. Therefore, we can only
observe two possible genotypes for a particular locus. The two possible genotypes
are represented by A1A� and A2A2 if A1 dominates over A2, or A2A� and A1A1 if
A2 dominates overA1. AlleleA� is a wild card and can be eitherA1 orA2. WhenA1
dominates overA2, we use A D .1; 2; 3/ to code genotypeA1A� and A D 4 to code
genotypeA2A2. IfA2 dominates overA1, we useA D 1 to code genotypeA1A1 and
A D .2; 3; 4/ to code genotype A2A�. The numerical code for each locus is then
converted into an appropriate diagonal matrix, DA; DB , or DC , for calculating the
joint probability of a joint three-locus genotype.

If the genotype for a locus, say locus A, is missing, the numerical code for the
locus isA D .1; 2; 3; 4/, and the corresponding diagonal matrixDA is simply a 4�4
identity matrix. Missing marker genotypes are treated the same way as genotypes of
uninformative loci.

4.3 Conditional Probability of a Missing Marker Genotype

An important application of the three-point analysis to genetic mapping is to
calculate the probability of genotype of a locus conditional on genotypes of flanking
markers. Note that flanking markers are the two nearby markers of a locus, one in
each side. Consider three loci, ABC, where A and C are two markers with known
genotypes and B is a locus whose genotype is not observable. The conditional
probability of genotype of locus B is

Pr.BjA;C / D Pr.A;B; C /

Pr.A; C /
: (4.10)

The joint probability of the three-locus genotype in the numerator can be rewritten as

Pr.A;B; C / D Pr.B/ Pr.A; C jB/ D Pr.B/ Pr.AjB/ Pr.C jB/:

We are able to write Pr.A; C jB/ D Pr.AjB/ Pr.C jB/ because conditional on the
genotype of B, the genotypes of A and C are independent due to the Markovian
property of Mendelian loci. The joint probability of the two-locus genotype in the
denominator of (4.10) is expressed as

Pr.A; C / D
4
X

BD1
Pr.A;B; C / D

4
X

BD1
Pr.B/ Pr.AjB/ Pr.C jB/:

Eventually, the conditional probability is expressed as

Pr.BjA;C / D Pr.B/ Pr.AjB/ Pr.C jB/
P4

BD1 Pr.B/ Pr.AjB/ Pr.C jB/ (4.11)
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We realize that Pr.AjB/ and Pr.C jB/ are the transition probabilities and
Pr.B D k/ D 1

4
; 8k D 1; : : : ; 4; is the marginal probability. The conditional

probability expressed this way (4.11) is an expression of Bayes’ theorem.
We now use matrix notation to express the conditional probability. Assume that

we want to calculate Pr.B D kjA;C /;8k D 1; : : : ; 4, where the genotypes of loci
A and C are known and represented by matrices DA and DC . Since marker B is
treated as a missing marker, its genotype is represented by DB D I4�4, an identity
matrix. The matrix version of the numerator of (4.11) is

Pr.B D k/ Pr.AjB D k/jPr.C jB D k/ D 1

4
J 0DATABD.k/TBCDCJ; (4.12)

where D.k/ is a diagonal matrix with all elements equal to zero except the element
at the kth row and the kth column, which is unity. The matrix expression of the
denominator of (4.11) is

4
X

BD1
Pr.B D k/ Pr.AjB D k/jPr.C jB D k/ D 1

4
J 0DATABDBTBCDCJ: (4.13)

Therefore, the matrix expression of the conditional probability is

Pr.B D kjA;C / D J 0DATABD.k/TBCDCJ

J 0DATABDBTBCDCJ
: (4.14)

We now use an F2 progeny as an example to show how to calculate the
conditional probabilities of a locus given genotypes of the flanking markers. Let
A1A1 and .C1C2/ be the genotypes of loci A and C, respectively. Recall that .C1C2/
means that locus C is heterozygous, which has two forms, C1C2 and C2C1. We
want to calculate the conditional probability that locus B is B1B1. The numerical
codes for the genotypes of A and C are A D 1 and C D .2; 3/, respectively, which
are translated into matrices of DA D D.1/ and DC D D.2/ C D.3/, respectively.
Let DB D I4�4 because locus B is a missing marker. The numerator and the
denominator of the conditional probability are

J 0DATABD.1/TBCDCJ D TAB.1; 1/.TBC .1; 2/C TBC .1; 3//
D 2.1� rAB/2rBC .1 � rBC /

and

J 0DATABDBTBCDCJ D
4
X

kD1
TAB.1; k/.TBC .k; 2/C TBC .k; 3//

D 2rAC .1 � rAC /
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respectively. Therefore, the conditional probability is

PrŒB D 1jA D 1; C D .2; 3/� D 2.1 � rAB/2rBC .1 � rBC /
2rAC .1 � rAC /

D .1 � rAB/2rBC .1 � rBC /
rAC .1 � rAC /

where

rAC D rAB.1 � rBC /C rBC .1� rAB/
For the same genotypes of marker A and C, what is the conditional probability

that marker B is heterozygous? This probability is represented by

PrŒB D .2; 3/jA D 1; C D .2; 3/� D J 0DATAB.D.2/ CD.3//TBCDCJ

J 0DATABDBTBCDCJ

4.4 Joint Estimation of Recombination Fractions

The three-locus genotype distribution can be used to estimate rAB and rBC jointly.
Again, let ABC be the three ordered loci under consideration. Assume that we have
collected n progeny from a line cross family. The family can be a BC, an F2, or an
FW, but all represented by the generalized FW family so that the 4 � 4 transition
matrix between consecutive markers applies to all designs. Let Ai be the numerical
code for the genotype of individual i at locus A, 8i D 1; : : : ; n, where Ai can take
a subset of f1; 2; 3; 4g, depending on the actual genotype of individual i . The three-
locus genotype is denoted by AiBiC i . The corresponding diagonal matrices for the
individual locus genotypes are denoted byDi

A,Di
B , andDi

C , respectively. The joint
three-locus genotype for individual i is

Pr.AiBiC i/ / J 0Di
ATABD

i
BTBCD

i
CJ: (4.15)

The equal sign is replaced by the sign of “proportional to” because the expression
in the right-hand side of the equation differs from that in the left-hand side by
a constant factor ( 1

4
). The log likelihood function of the recombination fractions

established from all the n individuals is

L.rAB; rBC / D
n
X

iD1
ln.J 0Di

ATABD
i
BTBCD

i
CJ /: (4.16)

Explicit solutions for the ML estimates of the recombination fractions are
possible if there are no missing genotypes of the markers. In this case, the above
log likelihood function can be rewritten as
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L.rAB; rBC / D
n
X

iD1
lnTAB.Ai ; Bi /C

n
X

iD1
lnTBC .Bi ; Ci/: (4.17)

The first term is simply a function of rAB , and the second term is a function of
rBC , which are denoted by L.rAB/ and L.rBC /, respectively. Therefore, the log
likelihood function for the three-point analysis is simply the sum of the two pairwise
log likelihood functions,

L.rAB; rBC / D L.rAB/C L.rBC /: (4.18)

As a consequence, the three-point analysis provides identical results for the
estimated recombination fractions as the pairwise analysis. Therefore, when mark-
ers are all fully informative, there is no reason to invoke the three-point analysis.
The three-point analysis, however, can extract additional information from the
data if partially informative markers are present or there are missing marker
genotypes. One reason for the increased efficiency of the three-point analysis is
the incorporation of the marker order. For the pairwise analysis of three markers,
one would have to estimate rAC also from the same data. However, the three-
point analysis treats the estimated rAC as a function of the other two recombination
fractions, i.e., OrAC D OrABC OrBC �2 OrAB OrBC . Therefore, information about the order
of the three markers has been incorporated implicitly in the three-point analysis.

In general, there is no explicit solution for the joint estimate of the two
recombination fractions, unless all markers are fully informative and there are no
missing marker genotypes. A general numerical algorithm, e.g., the simplex method
of Nelder and Mead (1965), can be adopted here to search for the MLE of the
parameters. For problems with two clearly bounded parameters, such as this one
with .0 < rAB; rBC < 0:5/, we may even use the simple grid search algorithm,
which guarantees that the global optimal solutions for the parameters are obtained.

4.5 Multipoint Analysis for m Markers

We have just learned the three-point analysis (m D 3) as a special case of the general
multipoint analysis. We now extend the methods to situations where m > 3. Let us
use j D 1; : : : ; m to index the locus. We now havem�1 consecutive recombination
fractions and thus m � 1 transition matrices. The recombination fraction between
loci j and j C 1 is denoted by rj.jC1/, and the corresponding transition matrix is
denoted by Tj.jC1/. Let Dj be the diagonal matrix for the genotype of locus j .
We now use Gj D k;8k D 1; : : : ; 4, to denote the numerical code for the genotype
of the j th locus. Recall that there are four possible genotypes for the generalized
four-way cross design. Again, Dj is a matrix version of the numerical code for the
genotype of locus j with Dj D D.k/ for Gj D k. For an ambiguous genotype like
Gj D .2; 3/ or Gj D .1; 2; 3; 4/, the corresponding diagonal matrix is denoted by
Dj D D.2/ CD.3/ or Dj D D.1/ CD.2/ CD.3/ CD.4/ D I4�4, respectively.
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We now discuss the joint distribution for the m locus genotype, the conditional
distribution of a missing marker genotype given the observed genotypes of m � 1
markers, and the log likelihood function for jointly estimatingm� 1 recombination
fractions using m markers. The joint distribution of the m locus genotype is
denoted by

Pr.G1;G2; : : : ; Gm/ D 1

4
J 0D1T12D2 : : : T.j�1/jDj Tj.jC1/ : : : Dm�1T.m�1/mDmJ:

(4.19)

Assume that the genotype of the j th marker is missing. The conditioning probability
of Gj D k given the genotypes of all the m � 1 markers is

Pr.Gj D kjG1; : : : ; Gm/

D J 0D1T12D2 : : : T.j�1/jD.k/Tj.jC1/ : : : Dm�1T.m�1/mDmJ

J 0D1T12D2 : : : T.j�1/jDjTj.jC1/ : : : Dm�1T.m�1/mDmJ
: (4.20)

Recall that Dj D I4�4 because j is the missing marker. The probability that Gj D
.2; 3/ is simply obtained by substitutingD.k/ in the numerator of the above equation
by D.2/ CD.3/. Let Di

j be the matrix representation of Gj for individual i for i D
1; : : : ; n. The log likelihood function for estimating � D fr12; r23; : : : ; r.m�1/mg is

L.�/ D
n
X

iD1
lnJ 0Di

1T12D
i
2 : : : T.j�1/jDi

j Tj.jC1/ : : : Di
m�1T.m�1/mDi

mJ: (4.21)

One property of the multipoint analysis is that

Pr.Gj D kjG1; : : : ; Gm/ D Pr.Gj D kjGj�1; GjC1/; (4.22)

if markers j � 1 and j C 1 are fully informative. Verbally, this property is stated as
“the genotype of a marker only depends on the genotypes of the flanking markers.”
This can be proved by the following argument. If loci j � 1 and j C 1 are fully
informative, the numerator of (4.20) can be rewritten as

Hl � .J 0Dj�1T.j�1/jD.k/Tj.jC1/DjC1J / �Hr (4.23)

and the denominator of (4.20) can be rewritten as

Hl � .J 0Dj�1T.j�1/jDj Tj.jC1/DjC1J / �Hr; (4.24)

where

Hl D J 0D1T12D2 : : : Dj�1J
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and
Hr D J 0DjC1 : : : Dm�1T.m�1/mDmJ:

Note that Hl and Hr are scalars and they appear in both the numerator and the
denominator. Therefore, they are canceled out in the conditional probability, leaving

Pr.Gj D kjG1; : : : ; Gm/ D Hl � .J 0Dj�1T.j�1/jD.k/Tj.jC1/DjC1J / �Hr

Hl � .J 0Dj�1T.j�1/jDj Tj.jC1/DjC1J / �Hr

D J 0Dj�1T.j�1/jD.k/Tj.jC1/DjC1J
J 0Dj�1T.j�1/jDj Tj.jC1/DjC1J

D Pr.Gj D kjGj�1; GjC1/; (4.25)

which is the conditional probability we have learned in the three-point analysis.

4.6 Map Construction with Unknown Recombination
Fractions

The multipoint analysis described so far has only been used when the order of the
markers is known, in which only m � 1 recombination fractions are estimated.
Recombination fractions between nonconsecutive markers are irrelevant and thus
are not estimated. The recombination fraction between any two nonconsecutive
markers can be obtained using Haldane map function if such information is required.
Taking the map ABCD for example, the multipoint analysis only provides estimates
for rAB , rBC , and rCD . One can obtain the remaining three recombination fractions
by rAC D rAB C rBC � 2rABrBC , rAD D rAC C rCD � 2rAC rCD, and rBD D
rBC C rCD � 2rBC rCD . Alternatively, one may convert the recombination fractions
into additive distances and join the additive distances to make an additive map, from
which all pairwise recombination fractions can be calculated using the Haldane map
function.

For those understudied species, marker orders may be unknown. The multipoint
method provides a mechanism to order markers and estimate recombination frac-
tions simultaneously. The marker order and the estimated recombination fractions
under that order should be the joint ML estimates if such an order and the estimated
recombination fractions under that order generate the maximum likelihood value
compared to all other orders.
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Chapter 5
Basic Concepts of Quantitative Genetics

Quantitative genetics is a special branch of genetics, which is concerned with the
inheritance of the differences between individuals that are measured in degree rather
than in kind. These individual differences are referred to as quantitative differences
or quantitative traits. Formally, a quantitative trait is defined as a trait whose value
varies continuously across individuals (Falconer and Mackay 1996; Lynch and
Walsh 1998). The phenotype of a quantitative trait measured from an individual
is not determined by genes alone; it is also determined by environmental variants.
The proportion of the phenotypic variance explained by the segregation of a single
gene is usually small. However, the contribution of all these small-effect genes
collectively is significant to the variation of the phenotype. Genes controlling the
variation of a quantitative trait are called quantitative trait loci (QTL). Note that the
term QTL defined in this book is used for both the singular and plural forms, e.g.,
one QTL for weight and two QTL for height. In the quantitative genetics literature,
QTL represents the singular form and QTLs is used as the plural form. No matter
how small a QTL is, it segregates just like a regular Mendelian locus. For small-
effect QTL, we simply cannot observe the segregation and must resort to statistical
methods to infer the segregation. Most statistical methods applied in quantitative
genetics require specific genetic models, which will be the focus of this chapter.

5.1 Gene Frequency and Genotype Frequency

Throughout the entire book, we consider only diploid organisms. A diploid organ-
ism carries two copies of the homologous genome, one from the paternal parent and
the other from the maternal parent. Each copy of the genome is called a haploid.
Each locus of the genome, therefore, contains two alleles, one from each parent.
Although each individual carries at most two different alleles, the entire population
may have many different alleles, called multiallelic population. For simplicity, we
only consider a population that contains two different alleles, called a biallelic

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 5,
© Springer Science+Business Media, LLC 2013

53
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population. LetA1 andA2 be the two alleles of locus A in the population of interest.
In the biallelic population, there are only three possible genotypes, denoted by
A1A1, A1A2 and A2A2, respectively. Depending on the structure and the mating
system of the population, the population may have different proportions of the three
genotypes. Let P11 D Pr.A1A1/, P12 D Pr.A1A2/, and P22 D Pr.A2A2/ be the
frequencies of the three genotypes. The genotypesA1A2 and A1A1 contain one and
two copies of allele A1, respectively. Therefore, the frequency of allele A1 in the
population is p1 D Pr.A1/ D P11 C 1

2
P12. The allelic frequency for A2 is then

p2 D Pr.A2/ D P22 C 1
2
P12. These relationships hold regardless the population

history and structure. However, to express genotypic frequencies as functions of
the allele frequencies, some assumptions are required. In a large random-mating
population, there is a unique relationship between genotype frequencies and gene
frequencies, which is represented by P11 D p21 , P12 D 2p1p2, and P22 D p22 .
This can be interpreted as independence of the two alleles joining together to form
the genotype. The frequency of the heterozygote is 2p1p2 because it contains two
configurations of the same genotype, that is, A1A2 and A2A1, representing two
different origins of the gametes. This particular relationship is represented by the
binomial expansion,

.p1 C p2/2 D p21 C 2p1p2 C p22 (5.1)

corresponding to the event of

.A1 C A2/2 D A1A1 C 2.A1A2/C A2A2 (5.2)

If such a population undergoes no selection, no mutation, and no migration, the
gene frequencies and genotypic frequencies will remain constant from generation to
generation. Such a population is said to be in Hardy–Weinberg equilibrium (Hardy
1908; Weinberg 1908; Li 1955). If a large population is not in Hardy–Weinberg
equilibrium, one generation of random mating will suffice to lead the population to
Hardy–Weinberg equilibrium.

The Hardy–Weinberg equilibrium for a population with k.k > 2/ alleles is
represented by Pij D 2pipj for i ¤ j and Pii D p2i for i D j , where
Pij D Pr.AiAj / and pi D Pr.Ai / for i; j D 1; : : : ; k.

Gene frequencies and genotypic frequencies are properties of a population.
The genes studied are usually related to fitness and thus determine the adaption of
the population to environmental changes and the evolution of the population. These
are contents of population genetics. In quantitative genetics, we are interested in
genes that determine the expression of quantitative traits. Therefore, we must first
assign some value to a genotype and a value to an allele. These values are called
genetic effects.
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5.2 Genetic Effects and Genetic Variance

Each individual of a population has a phenotypic value for a particular quantitative
trait. Assume that we can observe the genotypes of all individuals in the population.
The genetic effect for genotype A1A1 is defined as the average phenotypic value
of all individuals bearing genotype A1A1. This genotypic value is denoted by G11.
Similar notation applies to genotypesA1A2 andA2A2. The reason thatG11 takes the
average phenotypic value is explained as follows. Let Y11 be the phenotypic value
for an individual with genotype A1A1, which can be expressed as

Y11 D G11 C E11: (5.3)

whereE11 is a random environmental deviation. The environmental deviation varies
from one individual to another, even though all the individuals have the same
genotypic value. When we take the average value across all individuals of type
A1A1, the equation becomes

NY11 D G11 C NE11: (5.4)

For a sufficient number of individuals collected from this genotype, we have NE11�0
because positive and negative deviations tend to cancel out each other. This leads to
NY11 D G11.

We now define three parameters as functions of the three genotypic values,

� D 1

2
.G11 CG22/

a D G11 � 1
2
.G11 CG22/

d D G12 � 1
2
.G11 CG22/; (5.5)

where � is called the midpoint value, a the additive effect, and d the dominance
effect. The three genotypic values are then expressed as

G11 D �C a
G12 D �C d
G22 D �� a (5.6)

We then express each genotypic value as a deviation from the midpoint value

˚11 D G11 � � D a
˚12 D G12 � � D d
˚22 D G22 � � D �a (5.7)
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Under Hardy–Weinberg equilibrium, the population mean of the genotypic values
(expressed as deviations from the midpoint value) is

�G D E.˚/ D P11˚11 C P12˚12 C P22˚22
D p21aC 2p1p2d C p22.�a/
D .p1 � p2/aC 2p1p2d (5.8)

and the variance of the genotypic values is

	2G D var.˚/ D E.˚2/ � E2.˚/; (5.9)

where

E.˚2/ D P11˚112 C P12˚122 C P22˚222

D p21a2 C 2p1p2d2 C p22.�a/2

D .p21 C p22/a2 C 2p1p2d2 (5.10)

After some algebraic manipulations, we have

	2G D 2p1p2ŒaC .p2 � p1/d �2 C .2p1p2d/2: (5.11)

5.3 Average Effect of Allelic Substitution

A single locus of an individual consists of two alleles, one from each of the two
parents. When the individual reproduces, the two alleles will go to different gametes.
The gametes will reunite in the next generation to form the genotypes of the next
generation. Therefore, a genotype cannot be inherited from generation to generation.
It is the allele (haplotype) that is passed from one generation to another. Therefore,
we need to define the effect of an allele. Let us look at the following 2 � 2 table for
the definition of the allelic effect (Table 5.1).

Table 5.1 Definitions for allelic effects and dominance deviations

A1 .p1/ A2 .p2/

A1 .p1/ A1A1 .p
2
1/ A1A2 .p1p2/ ˛1

˚11 � �G D ˛1 C ˛1 C ı11 ˚12 � �G D ˛1 C ˛2 C ı12
A2 .p2/ A2A1 .p2p1/ A2A2 .p

2
2/

˚12 � �G D ˛2 C ˛1 C ı12 ˚22 � �G D ˛2 C ˛2 C ı22 ˛2
˛1 ˛2
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Table 5.2 Breeding values and dominance deviations of the three genotypes
in a Hardy–Weinberg population

Dominance
Genotype Frequency Genotypic value Breeding value deviation

A1A1 p21 a 2p2˛ �2p22d
A1A2 2p1p2 d .p2 � p1/˛ 2p1p2d

A2A2 p22 �a �2p1˛ �2p21d

The effect of allele A1 is defined as

˛1 D .˚11 � �G/ p21 C .˚12 � �G/ p2p1
p1

D p2ŒaC d.p2 � p1/� (5.12)

and the effect of allele A2 is defined as

˛2 D .˚12 � �G/ p1p2 C .˚22 � �G/ p22
p2

D �p1ŒaC d.p2 � p1/� (5.13)

The difference between the two allelic effects is called the average effect of allelic
substitution, denoted by ˛,

˛ D ˛1 � ˛2 D aC .p2 � p1/d (5.14)

The sum of the two allelic effects included in a genotype is called the “breeding
value,” which is the expected genotypic value of the progeny of an individual
bearing this genotype. Therefore, the breeding value for genotype A1A1 is A11 D
2˛1 D 2p2˛. The breeding values for the other two genotypes are A12 D ˛1 C
˛2 D .p2 � p1/˛ and A22 D 2˛2 D �p1˛, respectively. The deviations of the
actual genotypic values from the breeding values are called dominance deviations.
The three dominance deviations are

ı11 D ˚11 � �G � A11 D �2p22d
ı12 D ˚12 � �G � A12 D 2p1p2d
ı22 D ˚22 � �G � A22 D �2p21d (5.15)

The genotypic values .G/, the breeding values (A), and the dominance deviations
(D) for the three genotypes are listed in Table 5.2.

5.4 Genetic Variance Components

One can verify that the expectations of both the breeding values and the dominance
deviations are zero, i.e.,

E.A/ D P11A11 C P12A12 C P22A22
D p21.2p2˛/C 2p1p2Œ.p2 � p1/˛�C p22.�2p1˛/ D 0 (5.16)
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and

E.D/ D P11ı11 C P12ı12 C P22ı22
D p21.�2p22d/C 2p1p2.2p1p2d/C p22.�2p21d/ D 0: (5.17)

This leads to

	2A D E.A2/ D p21.2p2˛/2 C 2p1p2Œ.p2 � p1/˛�2 C p22.�2p1˛/2 D 2p1p2˛2
(5.18)

and

	2D D E.D2/ D p21.�2p22d/2 C 2p1p2.2p1p2d/2 C p22.�2p1˛/2 D .2p1p2d/2
(5.19)

Looking at the genetic variance given in (5.11), we found that the first part is 	2A
and the second part is 	2D . Therefore,

	2G D 	2A C 	2D; (5.20)

i.e., the total genetic variance has been partitioned into an additive variance
component and a dominance variance component.

5.5 Heritability

The phenotypic value Y can be expressed by the following linear model:

Y D G C E D ACD C E; (5.21)

whereE is an environmental error with mean zero and variance 	2E . The phenotypic
variance 	2P D var.Y / is

	2P D 	2G C 	2E D 	2A C 	2D C 	2E: (5.22)

The phenotypic variance contributed by the total genetic variance is called broad-
sense heritability, denoted by

H2 D 	2A C 	2D
	2A C 	2D C 	2E

; (5.23)

while the proportion contributed by the additive variance is called narrow-sense
heritability, denoted by
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h2 D 	2A
	2A C 	2D C 	2E

: (5.24)

The narrow-sense heritability reflects the proportion of variance that is heritable.
Therefore, it is a very important parameter to consider in developing a selection
program for genetic improvement.

5.6 An F2 Family Is in Hardy–Weinberg Equilibrium

An F2 family initiated from the cross of linesA1A1 andA2A2 is in Hardy–Weinberg
equilibrium, and thus, the theory developed in this chapter applies to an F2 family.
The allele frequencies are p1 D p2 D 1

2
, and the genotypic frequencies are P11 D

p21 D 1
4
, P12 D 2p1p2 D 1

2
, and P22 D p22 D 1

4
. The average effect of allelic

substitution is ˛ D aC .p2 � p1/d D a: Therefore,

	2G D 2p1p2˛2 C .2p1p2d/2 D
1

2
a2 C 1

4
d2: (5.25)

The same result can be obtained from a different perspective. The genotypic
value of an F2 individual can be expressed as

G D �CZaCWd; (5.26)

where

Z D

8

ˆ
<

ˆ
:

C1
0

�1

for A1A1 with probability 1
4

for A1A2 with probability 1
2

for A2A2 with probability 1
4

(5.27)

and

W D

8

ˆ
<

ˆ
:

0

1

0

for A1A1 with probability 1
4

for A1A2 with probability 1
2

for A2A2 with probability 1
4

(5.28)

The genotypic variance is partitioned into

	2G D 	2Za2 C 	2W d2 D
1

2
a2 C 1

4
d2: (5.29)

where

	2Z D E.Z2/ � E2.Z/

D
�

1

4
.C1/2 C 1

2
.0/2 C 1

4
.�1/2

�

�
�

1

4
.C1/C 1

2
.0/C 1

4
.�1/

�2

D 1

2
� 0 D 1

2
(5.30)
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and

	2W D E.W 2/� E2.W /

D
�

1

4
.0/2 C 1

2
.1/2 C 1

4
.0/2

�

�
�

1

4
.0/C 1

2
.1/C 1

4
.0/

�2

D 1

2
� 1
4
D 1

4
(5.31)

Note that the covariance between Z and W is zero. Otherwise, a term
2cov.Z;W /ad should be added to the genotype variance.



Chapter 6
Major Gene Detection

When a quantitative trait is controlled by the segregation of a major gene and the
genotypes of the major gene can be observed, the effect of the major gene can be
estimated and tested. In reality, the genotypes of a major gene cannot be observed.
We normally evaluate a candidate gene whose genotypes can be measured using a
particular molecular technique. We may have some reason to believe that the gene
has a function on the variation of a quantitative trait. We can even evaluate a DNA
marker whose genotypes are known but with unknown function on the trait. If this
DNA marker is closely linked to a major gene, the effect of the gene can also be
estimated and tested through the marker. In either case, major gene analysis means
estimation and test of the effect of an observed Mendelian locus on a quantitative
trait.

Major gene detection is more often conducted in designed line crossing
experiments. In humans, forest trees, and some large animals where designed
crossing experiments are infeasible, pedigree data can be used for major gene
detection (Elston and Steward 1971). In this chapter, we only discuss major gene
detection in line crossing experiments.

6.1 Estimation of Major Gene Effect

6.1.1 BC Design

We will first discuss the backcross (BC) design and then extend the model to the
F2 design. Let P1 and P2 be the two inbred parents with A1A1 and A2A2 being the
genotypes of the major gene for the two inbred lines, respectively. The F1 hybrid
has a genotype of A1A2 for the major gene. There are two types of BC design,
depending on which parent the F1 hybrid is backcrossed to. Let us assume that P1
is the backcrossed parent. The mating type is represented by A1A2 � A1A1, and
the BC progeny has two possible genotypes, A1A1 and A1A2, each with a 50 %
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of the chance in the absence of segregation distortion. Recall that the genotypic
values of A1A1 and A1A2 are denoted by a and d , respectively. In the BC family,
there are two segregating genotypes, which are not enough for us to estimate two
genotypic values. Therefore, one cannot estimate a and d separately using a BC
design. In the absence of dominance, i.e., d D 0, we can estimate the additive
effect a. We use a general linear model to describe the relationship between the
genetic effect of the major gene and the phenotypic value. Let yj be the phenotypic
value of a quantitative trait for individual j , 8j D 1; : : : ; n, where n is the sample
size. The linear model is expressed as

yj D �CXjaC �j ; (6.1)

where � is a constant and �j is a residual error with an assumed N.0; 	2/

distribution. The independent variable, Xj , is an indicator variable, defined as

Xj D
(

1 for A1A1

0 for A1A2
(6.2)

There are three parameters in the model,�, a, and 	2. We have assumed that d D 0
so that the trait is only controlled by the additive effect. If d ¤ 0, this effect will not
disappear. Using the above linear model (6.1), this effect will be absorbed by � and
a, that is, the population mean and the additive effect in the presence of d in fact are
confounded effects with � D �Cd and a D a�d . In other words, in the presence
of dominance effect, the BC design can only estimate and test a � d , the difference
between the additive effect and the dominance effect.

More often, people use a different scale to define the X variable, such as

Xj D
(

C1 for A1A1

�1 for A1A2

(6.3)

In this case, the major gene effect is different from that defined under the original
scale (6.2). Although the estimated major gene effects are different under different
scales of X , the test statistics will be the same, and thus, the difference in the scale
of X does not affect the result of major gene detection.

The three parameters in the BC design, �, a, and 	2, can be estimated using the
least-squares (LS) method. Once we code the genotypes into numerical values of
variable X , the genetic model (6.1) becomes a standard regression model. We now
change the notation to follow the standard regression analysis. Let b0 D � be the
intercept and b1 D a be the regression coefficient. The regression model is

yj D b0 CXjb1 C �j : (6.4)

The least-squares estimates of the parameters are

Ob1 D
Pn

jD1.Xj � NX/.yj � Ny/
Pn

jD1.Xj � NX/2
; (6.5)
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for the regression coefficient (also called the genetic effect because b1 D a),

Ob0 D Ny � NX Ob1; (6.6)

for the intercept (also called the population mean because b0 D �), and

O	2 D
Pn

jD1.yj � Ob0 � Xj Ob1/2
n � 2 : (6.7)

for the residual error variance, where NX and Ny are the sample means of variables X
and y, respectively.

6.1.2 F2 Design

The F2 progeny are generated by selfing the F1 hybrid of a cross or intercrossing
different F1 individuals that are derived from the same cross. The F1 hybrid has a
genotype of A1A2 at the major gene. The mating type A1A2 � A1A2 will generate
three different genotypes in the F2 family,A1A1,A1A2, andA2A2, with the expected
Mendelian ratio 1 W 2 W 1 for the three genotypes if absence of segregation distortion
is assumed. Recall that the three genotypes can be assigned the following genotypic
values, a, d , and �a, respectively. There are three genotypes, sufficient to estimate
both a and d . The genetic model can be expressed as

yj D �CZjaCWjd C �j : (6.8)

The two independent variables are genotype indicators, defined as

Zj D
8

<

:

C1
0

�1

for A1A1
for A1A2
for A2A2

(6.9)

and

Wj D
8

<

:

0

1

0

for A1A1
for A1A2
for A2A2

(6.10)

Redefining the genetic model under the standard regression framework, we have

yj D b0 CXj1b1 CXj2b2 C �j (6.11)

where b0 D � is a constant, b1 D a is the additive effect, and b2 D d is the
dominance effect. Variable Xj1 D Zj is the additive genetic effect indicator, and
Xj2 D Wj is the dominance effect indicator. Define b D fb0; b1; b2g as a 3�1 vector
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for the regression coefficients (including the intercept) andXj D
�

Xj0 Xj1 Xj2
�

be
an 1 � 3 vector where Xj0 D 1 for j D 1; : : : ; n. The above linear model may be
further simplified as

yj D Xjb C �j : (6.12)

We can express the LS estimates of b in a single simultaneous equation set, i.e.,

Ob D
2

4

n
X

jD1
XT
j Xj

3

5

�12

4

n
X

jD1
XT
j yj

3

5 : (6.13)

Details of the above LS estimate of b are shown below:
2

6

4

Ob0
Ob1
Ob2

3

7

5 D

2

6

4

n
Pn

jD1 Xj1
Pn

jD1 Xj2
Pn

jD1 Xj1
Pn

jD1 X2
j1

Pn
jD1 Xj1Xj2

Pn
jD1 Xj2

Pn
jD1 Xj1Xj2

Pn
jD1 X2

j 2

3

7

5

�12

6

4

Pn
jD1 yj

Pn
jD1 Xj1yj

Pn
jD1 Xj2yj

3

7

5 :

(6.14)

The estimated residual variance is

O	2 D 1

n� 3
n
X

jD1
.yj �Xj Ob/T .yj � Xj Ob/

D 1

n� 3
n
X

jD1
yTj .yj � Xj Ob/: (6.15)

The second expression of the above equation can be verified using the following
equivalence:

ObT
Xn

jD1 X
T
j yj D ObT

�
Xn

jD1 X
T
j Xj

	 Ob (6.16)

which is due to the following least-squares equation used to derive the LS estimation
for parameter b:

Xn

jD1 X
T
j yj D

�
Xn

jD1 X
T
j Xj

	 Ob (6.17)

6.2 Hypothesis Tests

6.2.1 BC Design

Once the parameters are estimated, they are subject to statistical tests. Hypothesis
test for a D 0 is equivalent to b1 D 0 in the BC design. The test can be accomplished
using either the t-test or the F -test. However, the t-test may be confusing due to the



6.2 Hypothesis Tests 65

difference between one-tailed and two-tailed tests, while the F -test does not have
such a concern. In major gene detection, we rarely use one-tailed t-test. For the
two-tailed t-test, the result is identical to the F -test. Therefore, we only concentrate
on the F -test statistic for major gene detection.

To perform a hypothesis test, we first need to know the precision of the
estimated parameter, i.e., the precision of Oa in the BC design. The precision of an
estimated parameter may also be called the information. It is easy to understand
the information than the precision because the reciprocal of the information of
an estimated parameter is often used as the variance of the estimated parameter.
Therefore, we need to find the variance of Oa first before we can conduct a hypothesis
test.

The variance of Ob1, and thus the variance of Oa, has the following expression:

var. Ob1/ D O	2
Pn

jD1



Xj � NX
�2

(6.18)

where O	2 is the estimated residual error variance. It is important to understand that
when Oa is reported, it is often accompanied by the standard error of Oa, denoted by
se. Oa/ or s Oa, in the format Oa˙ s Oa. The standard error, however, is simply the square
root of the variance of the estimate. The F -test statistic is

F D
Ob21

var. Ob1/
(6.19)

The critical value for the F to compare is F1;n�2;1�˛ , where ˛ D 0:05 or 0:01 is
the type I error rate set by the investigator. The critical value is the .1 � ˛/ � 100
percentile of the F1;n�2 distribution. The subscripts 1 and n� 2 of the F-distribution
are the numerator and denominator degrees of freedom, respectively.

6.2.2 F2 Design

In the F2 design, there are two genetic effects to be tested. A complete analysis of
F2 design requires three different hypothesis tests. The first hypothesis is that there
is no genetic effect for the major gene on the quantitative trait. This is denoted by
H0 W a D d D 0 or H0 W b1 D b2 D 0. Once H0 is rejected, we can further test
Ha W a D 0; d ¤ 0, which is also denoted by Ha W b1 D 0; b2 ¤ 0. The hypothesis
for no dominance effect is denoted by Hd W d D 0; a ¤ 0 or equivalently denoted
by Hd W b2 D 0; b1 ¤ 0. Like the hypothesis test in the BC design, we need the
estimation errors of the regression coefficients. The estimation errors are drawn from
the so-called variance–covariance matrix of the estimated regression coefficients.
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Let us define var. Ob/ as a 3 � 3 variance–covariance matrix,

var. Ob/ D var

2

6

4

Ob0
Ob1
Ob2

3

7

5 D

2

6

4

var. Ob0/ cov. Ob0; Ob1/ cov. Ob0; Ob2/
cov. Ob0; Ob1/ var. Ob1/ cov. Ob1; Ob2/
cov. Ob0; Ob2/ cov. Ob1; Ob2/ var. Ob2/

3

7

5 (6.20)

This 3 � 3 matrix can be obtained using

var. Ob/ D V D
2

4

n
X

jD1
XT
j Xj

3

5

�1

O	2: (6.21)

To test the first hypothesisH0, we use the following F -test statistic:

F D 1

2

h Ob1 Ob2
i

"

var. Ob1/ cov. Ob1; Ob2/
cov. Ob1; Ob2/ var. Ob2/

#�1 " Ob1
Ob2

#

(6.22)

Under the null hypothesis, i.e., H0 is true, the F -test statistic follows an F-
distribution with 2 degrees of freedom for the numerator and n � 3 degrees of
freedom for the denominator. Therefore, the critical value used to declare statistical
significance is F2;n�3;1�˛ , which is the .1 � ˛/ � 100 percentile of the F2;n�3
distribution. The hypotheses Ha and Hd are tested using the following F -test
statistics, respectively:

Fa D
Ob21

var. Ob1/
(6.23)

Fd D
Ob22

var. Ob2/
(6.24)

Under the null hypotheses, each one of Fa and Fd will follow an F1;n�3 distribution.
Therefore, the critical value for the test statistics to compare is F1;n�3;1�˛ .

In general, an F -test statistic is constructed as a quadratic form of the estimated
parameters. We can show that a subset of vector b can be expressed as linear
combinations of vector b. For example, fb1; b2g is a subset of vector b. This subset
can be expressed as

�

b1

b2

�

D
�

0 1 0

0 0 1

�

2

4

b0
b1

b2

3

5 D Lb; (6.25)

where L is a 2 � 3 subset selection matrix. Similarly, b1 and b2 can be expressed
as Lab and Ldb, respectively, where La D Œ 0 1 0 � and Ld D Œ 0 0 1 �. The

variance–covariance matrix for L Ob is var.L Ob/ D LVLT . Similarly, var. Ob1/ D
var.La Ob/ D LaVL

T
a and var. Ob2/ D var.Ld Ob/ D LdVL

T
d . Let r D rank.L/ D 2,

ra D rank.La/ D 1, and rd D rank.Ld / D 1. The F -test statistic can be
expressed by
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F D 1

r
bT LT .LVLT /�1Lb (6.26)

for the overall test,

Fa D 1

ra
bT LTa .LaVL

T
a /

�1Lab (6.27)

for testing the additive effect and

Fd D 1

rd
bT LTd .LdVL

T
d /

�1Ldb (6.28)

for testing the dominance effect.
When n is sufficiently large, people often use the Wald-test statistic (Wald 1943),

which is

W D bTLT .LVLT /�1Lb D r F: (6.29)

Under the null hypothesis H0 W Lb D 0, W approximately follows the �2r
distribution, and hence, �2r;1�˛ is used as the critical value for declaring statistical
significance. When testing the additive effect or the dominance effect (but not both),
similar Wald test can be used. The degree of freedom for either test is ra D rd D 1.
Therefore, the Wald-test and F -test statistics are identical because of the unity
degree of freedom. Furthermore, when the degree of freedom is unity, the F -test
statistic is equivalent to the squared t-test statistic.

6.3 Scale of the Genotype Indicator Variable

Genotype indicator variables in the F2 design are denoted by Z for the additive
effect and W for the dominance effect. These two variables are defined in an
arbitrary manner. The locations (means) and scales (variances) of these variables
affect the estimated values of the regression coefficients (including the intercept) but
do not affect the significance tests. Recall that the genetic model for the phenotypic
value y for an F2 population is

y D �CZaCWd C � (6.30)

Within this F2 population, y, Z, W , and � are variables, whereas �, a, and d are
constants (but unknown). This is because the observed values of y,Z,W , and � vary
across individuals, but the values of �, a, and d are the same for all individuals. The
expectation and variance of an individual y in an F2 population are

E.y/ D �C E.Z/aC E.W /d (6.31)

and

var.y/ D var.Z/a2 C var.W /d2 C 	2: (6.32)
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respectively. If the central locations of variables Z and W are defined differently
from what have been defined before, E.Z/ and E.W / will change, leading to a
different estimate of �, but the estimated a and d remain the same. If the scales
of Z and W are defined differently from those defined before, the estimated � will
remain the same but the estimated a and d will change. However, var.y/ and 	2 are
independent of the locations and the scales ofZ andW , so are var.Za/ D var.Z/a2

and var.Wd/ D var.W /d2. If we increase the scale for Z, the estimated a must be
decreased to maintain a constant var.Za/. This also applies to variable W . In the
hypothesis test for a BC design, we learned that the variance of the estimated genetic
effect is

var. Ob1/ D 	2
Pn

jD1.Xj � NX/2
D 	2

.n � 1/var.X/
; (6.33)

where

var.X/ D 1

n � 1
n
X

jD1
.Xj � NX/2:

This equation suggests that a large variance (scale) for the independent variable will
decrease the variance of the estimated regression coefficient and thus increase the
precision of the estimation. However, one cannot arbitrarily choose a large scale
for the independent variable and hope to increase the precision of the estimation.
The scales of the independent variables are chosen for convenience of parameter
estimation and interpretation, not for increase of estimation precision.

We now demonstrate that scales of the independent variables will not affect
significance tests of the regression coefficients. Let X D f1;Z;W g be the n � 3
design matrix where each of the three components is an n � 1 vector. Let us rescale
variables Z and W by czZ and cwW where cz and cw are some positive numbers
(constants). Let X� D f1; czX; cwW g be the rescaled design matrix, which can be
rewritten as X� D XC where C D diagf1; cz; cwg. The original model can be
reformulated in the new scale,

y D Xb C � D XCC�1b C � D .XC/.C�1b/C � D X�b� C �; (6.34)

where b� D C�1b is the regression coefficients defined in the new scale. Let Ob� be
the LS solution for b� and

var. Ob�/ D V � D Œ.X�/T X���1 O	2 D C�1.XT X/�1C�1 O	2 D C�1VC�1: (6.35)

The null hypothesis for the rescaled regression coefficients is H0 W Lb� D 0. The
F -test statistic is

F D 1

r
.b�/T LT .LV �LT /�1Lb�

D 1

r
bTC�1LT .LC�1VC�1LT /�1LC�1b
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D 1

r
bT LTC�1.C�1LVLT C�1/�1C�1Lb

D 1

r
bT LTC�1C.LVLT /�1CC�1Lb

D 1

r
bT LT .LVLT /�1Lb; (6.36)

which is identical to the F-statistic for H0 W Lb D 0 defined in the original scale.
Therefore, the scales of the independent variables do not affect the significance test.

The scales for Z and W defined in this chapter are adopted from Falconer and
Mackay (1996). Let 	2z D var.Z/, 	2w D var.W /, and 	zw D cov.Z;W /. We can
show that

	2z D E.Z2/ � E2.Z/ D
�

1

4
.1/2C1

2
.0/2C1

4
.�1/2

�

�
�

1

4
.1/C1

2
.0/C 1

4
.�1/

�2

D
�

1

2

�

� Œ0�2 D 1

2
;

	2w D E.W 2/ � E2.W / D
�

1

4
.0/2 C 1

2
.1/2 C 1

4
.0/2

�

�
�

1

4
.0/C1

2
.1/C 1

4
.0/

�2

D
�

1

2

�

�
�

1

2

�2

D 1

4

and

	zw D E.ZW / � E.Z/E.Z/ D
�

1

4
.1/.0/C 1

2
.0/.1/C 1

4
.�1/.0/

�

� Œ0�
�

1

2

�

D 0 � 0 D 0:

The total genetic variance is

	2G D 	2z a2 C 	2wd2 C 2	zwad D 1

2
a2 C 1

4
d2: (6.37)

We can see that the scales defined this way are nice in terms of biological
interpretation but not attractive in terms of statistical convenience because the
independent variables are not centered, although they are orthogonal. The following
scales for Z and W appear to be odd, but they are statistically more attractive.

Z D
8

<

:

Cp2
0

�p2

for A1A1
for A1A2
for A2A2

(6.38)
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and

W D
8

<

:

�1
C1
�1

for A1A1
for A1A2
for A2A2

(6.39)

We can prove that E.Z/ D E.W / D 0 and 	2z D 	2w D 1. Variables Z and W with
such properties are said to be in a standardized scale. Furthermore, 	zw D 0, i.e., Z
andW are orthogonal. As a result,

	2G D a2 C d2; (6.40)

which is the mathematical attractiveness of the new scale. One should be cautious
that the nice properties for the new scale only apply to an F2 population and the
major gene must follow the Mendelian segregation ratio.

The magnitudes and the biological interpretations of the additive effect .a/
and the dominance effect .d/ depend on the scales we choose for variables Z
and W . This may have frustrated many experimental quantitative geneticists. An
alternative way for major gene detection that may eliminate the above frustration
is to estimate the genotypic value for each of the three genotypes. In the first step,
we can utilize the general linear model to estimate the genotypic values. This step
is independent of the scales of the independent variables. In the second step, linear
contrasts are established to estimate and test the additive and dominance effects. Let
ˇ D fˇ1; ˇ2; ˇ3g be a vector for the means of the three genotypes,A1A1, A1A2, and
A2A2. Let Xj1, Xj2, and Xj3 be the genotype indicators for the three genotypes.
Each one of them takes either 0 or 1, depending on which genotype individual j
takes. If j has a genotype A1A1, Xj1 D 1, Xj2 D 0, and Xj3 D 0. If individual
j has a genotype A1A2, Xj1 D 0, Xj2 D 1, and Xj3 D 0. If individual j takes
genotype A1A2, Xj1 D 0, Xj2 D 0, and Xj3 D 1. The linear model for yj is

yj D Xj1ˇ1 CXj2ˇ2 CXj3ˇ3 C �j : (6.41)

In matrix notation,

y D Xˇ C �: (6.42)

The LS estimate of ˇ is

Ǒ D .XTX/�1XT y (6.43)

and the estimated residual variance is

O	2 D 1

n � 3.y �X
Ǒ/T .y �X Ǒ/ (6.44)

The variance–covariance matrix for Ǒ is

var. Ǒ/ D V D .XT X/�1 O	2: (6.45)
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Once we have the LS estimate of ˇ, the additive and dominance effects can be
converted using any convenient scale. For example, to find � (the midpoint value),
a, and d in the original scale (Falconer and Mackay 1996), we take the following
transformations:

O� D 1

2
. Ǒ1 C Ǒ3/

Oa D Ǒ1 � 1
2
. Ǒ1 C Ǒ3/

Od D Ǒ2 � 1
2
. Ǒ1 C Ǒ3/ (6.46)

In matrix notation, we have

2

4

O�
Oa
Od

3

5 D
2

4

1
2
0 1

2
1
2
0 � 1

2

� 1
2
1 � 1

2

3

5

2

6

4

Ǒ
1

Ǒ
2

Ǒ
3

3

7

5 (6.47)

Let b D f�; a; d g be the vector of regression coefficients defined in the original
scale. In compact matrix notation, it is expressed as b D Aˇ, where A is the 3 � 3
transformation matrix given above. The variance–covariance matrix of Ob is var. Ob/ D
var.A Ǒ/ D Avar. Ǒ/AT D AVAT . Hypothesis tests for b can be performed using
the same technique we have learned before.

When formulating the genotypic values as the original parameters, researchers
have their own freedom to choose the A matrix. For example, in the orthogonal and
standardized scale defined earlier, the A matrix has a form shown in the following
equation:

2

4

O�
Oa
Od

3

5 D

2

6

4

1
4
1
2

1
4p

2
4
0 �

p
2
4

� 1
4
1
2
� 1
4

3

7

5

2

6

4

Ǒ
1

Ǒ
2

Ǒ
3

3

7

5 : (6.48)

6.4 Statistical Power

Before conducting an experiment for major gene detection or QTL mapping,
investigators may want to know the sample size required to detect a gene that
explains a certain percent of the phenotypic variance with a specific statistical
power. Sometimes, the sample size may be fixed due to limitation of resources,
but the investigators may be interested in the statistical power to detect a major gene
that explains a certain percent of the phenotypic variance of a quantitative trait.
Therefore, the statistical power and sample size are closely related. To study the
statistical power, we also need to know the type I and type II errors, which are very
important statistical concepts. They are also very closely related to the statistical
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Table 6.1 Relationship of the type I error, the type II error, and the statistical
power

OH
H H0 HA

H0  D Pr. OH D H0jH D H0/ ˛ D Pr. OH D HAjH D H0/

HA ˇ D Pr. OH D H0jH D HA/ ! D Pr. OH D HAjH D HA/

power. In this chapter, we will learn how to calculate the statistical powers under
the F -test framework. When the sample size is not too small, say n > 30, the
F -test statistic is almost identical to the Wald test (Wald 1943). Since the Wald test
is much more convenient to deal with in terms of power calculation, we will discuss
the Wald test.

6.4.1 Type I Error and Statistical Power

In major gene detection, we always deal with two hypotheses under each test,
the null hypothesis (H0) and the alternative hypothesis (HA). Let H be the true
hypothesis, which can take either H0 or HA but not both. Let OH be the estimated
hypothesis (conclusion drawn from the data), which also takes either H0 or HA but
not both. We can make two mistakes for each test. If H D H0 but we conclude that
OH D HA, we then make a type I error, which means that the null hypothesis is true

but we accept the alternative hypothesis. A type II error occurs if H D HA but we
conclude that OH D H0. The probability that we make a type I error is denoted by
˛ D Pr. OH D HAjH D H0/. The probability that we make a type II error is denoted
by ˇ D Pr. OH D H0jH D HA/. Corresponding to the two errors, we can make two
correct decisions. One correct decision is that we accept HA while in fact HA is
true. The probability to make this correct decision is called the statistical power,
denoted by ! D Pr. OH D HAjH D HA/ D 1 � ˇ. The other correct decision is
that we acceptH0 while in factH0 is true. The probability that we make this correct
decision is denoted by  D Pr. OH D H0jH D H0/ D 1 � ˛. There is no name for
this probability because it is not something of interest. These four probabilities are
summarized in Table 6.1.

6.4.2 Wald-Test Statistic

In the BC design, we have learned the F -test statistic for testing the hypothesis
H0 W b1 D 0, i.e., H0 W a D 0. Because we are testing a single genetic effect,
the F -test is equivalent to the Wald test. For simplicity, let b be the estimated
regression coefficient, i.e., the estimated additive effect, and a be the true additive
effect. The Wald-test statistic is
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W D b2

	2b
� n	2X

b2

	2
: (6.49)

This relationship holds because

	2b D
	2

Pn
jD1.Xj � NX/2

� 	2

n	2X
: (6.50)

The variance of X is a constant, depending on the design of experiment. If H0 W
aD0 is true, the Wald-test statistic will follow a central chi-square distribution with
one degree of freedom. Therefore, the critical value used to declare significance
for the Wald test is �21;1�˛ , the .1 � ˛/ � 100 percentile of the �21 distribution. If
the alternative hypothesis, HA W a ¤ 0, is true, then the Wald test will follow a
noncentral chi-square distribution with a noncentrality parameter

ı D n	2X
a2

	2
: (6.51)

Note that the noncentrality parameter differs from the Wald-test statistic by
replacing b by a, where b is the estimated regression coefficient and a is the true
additive genetic effect. Before we study the power calculation, let us first introduce
the central and noncentral chi-square distributions. The central chi-square is often
called chi-square distribution for simplicity. Let �2 denote a chi-square variable.
If �2 follows a central chi-square distribution with d degrees of freedom, the
cumulative distribution function is denoted by ±.�2jd; 0/. If �2 follows a noncentral
chi-square distribution with d degrees of freedom and noncentrality parameter ı, the
cumulative distribution function is denoted by ±.�2jd; ı/. The inverse function of
the �2 distribution is called the quantile of the chi-square distribution, which can
be described as follows. Let p D ±.�2jd; 0/ be the cumulative probability of the
central chi-square distribution, then �21;p D ±�1.pjd; 0/ is the quantile or p � 100
percentile of the central chi-square distribution. If p D ±.�2jd; ı/ is the cumulative
probability of the noncentral chi-square distribution, then �21;p;ı D ±�1.pjd; ı/ is
the quantile of the noncentral chi-square distribution. For the noncentral chi-square
distribution, there is another type of inverse function that is ıp D ±�1.�2jd; p/,
i.e., given the chi-square value and the probability, we can find the noncentrality
parameter. We use ±�1 and ±�1 to express the two different inverse functions of
the noncentral chi-square distribution. These inverse functions may be calculated as
built-in functions in some software packages, e.g., SAS (SAS Institute 2008b).

Once we understand the noncentral chi-square distribution and its inverse
functions, we can perform power calculation and find the minimum sample size
required to detect a major gene. Let ˛ be the type I error. The critical value used for
the Wald-test statistic to compare is

�21;1�˛ D ±�1.1 � ˛j1; 0/: (6.52)
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Given the noncentrality parameter (6.51), the type II error .ˇ/ is given by

ˇ D ±.�21;1�˛ j1; ı/: (6.53)

The statistical power is simply

! D 1 � ˇ D 1 � ±.�21;1�˛ j1; ı/: (6.54)

Given the power ! (or the type II error ˇ D 1 � !), we can calculate the
noncentrality parameter using

ıˇ D ±�1.�21;1�˛j1; ˇ/: (6.55)

The noncentrality parameter allows us to calculate the minimum sample size
required to detect a major gene using the following relationship:

ıˇ D n	2X
a2

	2
: (6.56)

Rearranging the equation, we get

n D ıˇ

	2X

�

	2

a2

�

: (6.57)

which is the minimum sample size required to detect a gene of size a with a power
of ! D 1� ˇ.

6.4.3 Size of a Major Gene

The size of a major gene is determined by the genetic effect, which is a under
the additive model. However, it is only meaningful when expressed relative to
the standard deviation of the residual error. In other words, the major gene effect
influences the power and sample size calculation only through a

	
(see (6.56) and

(6.57)). Therefore, we often use the proportion of phenotypic variance contributed
by the gene as a measurement of the size of the major gene. This proportion is often
called the “heritability” of the major gene. Although “heritability of a gene” is an
inappropriate phrase, we still use it for the very reason that people have adopted
it ever since marker-trait association studies started. Under the additive model, the
heritability of a major gene is

H2 D VG

VG C VE D
	2Xa

2

	2Xa
2 C 	2 D

	2X

�

a2

	2

	

	2X

�

a2

	2

	

C 1
(6.58)
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Rearranging the above equation leads to the following relationship:

a2

	2
D H2

	2X.1 �H2/
: (6.59)

Substituting this into (6.57) yields

n D ıˇ.1 �H2/

H2
: (6.60)

We now discuss 	2X because it depends on the designs of line crossing experi-
ments. Let

yj D �CXjaC �j (6.61)

be the linear model for the major gene with additive effect only. For the F2 mating
design, the genotype indicator variable X may be coded as

Xj D
8

<

:

C1
0

�1

for A1A1
for A1A2
for A2A2

(6.62)

For the BC mating design, the corresponding code is

Xj D
�

1

0

for A1A1
for A1A2

(6.63)

Under Mendelian segregation, i.e., 1:2:1 for F2 and 1:1 for BC, the variance of X
for the F2 design is 	2X D 1

2
, while for the BC design, this variance is 	2X D 1

4
. If

a is fixed (the same for both designs), the F2 design only requires half the sample
size as needed for the BC design to achieve the same power because the sample size
is inversely proportional to 	2X (see (6.57)). On the other hand, if H2 is fixed (the
same for both designs), the sample sizes required for the two designs are the same
(see (6.60)). This phenomenon appears to contradict with the notion that the F2
design is more efficient than the BC design. This contradiction can be explained as
follows. The a2 required for the BC design is twice as large as that required for the
F2 design to achieve the same H2 due to the fact that 	2Xa

2 is the genetic variance
contributed by the major gene. The inefficiency of the BC design has already been
taken into account when H2 is fixed.

6.4.4 Relationship Between W -test and Z -test

People may be more familiar with the Z-test than the W -test (full name of the
W -test is the Wald test). The two-tailedZ-test is identical to theW -test. TheZ-test
statistic is

Z D jbj
	b
: (6.64)
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Therefore, the relationship between the two test statistics is

W D Z2 D b2

	2b
: (6.65)

The Z-test is also called the normal test. Let p D ˚.Z/ be the standardized
cumulative normal distribution function and Zp D ˚�1.p/ be the inverse function
(quantile) of the normal distribution. Let ˛ be the type I error and ˇ be the type II
error. TheZ-test statistic is significant if Z > Z1�˛=2. The relationship between the
type I and type II errors is

ˇ D ˚
�

Z1�˛=2 �
p
n	X

a

	

	

: (6.66)

Therefore, the statistical power is

! D 1 � ˇ D 1 �˚
�

Z1�˛=2 �
p
n	X

a

	

	

: (6.67)

The sample size required to detect a major gene is

n D .Z1�˛=2 CZ1�ˇ/2
	2X

�

	2

a2

�

(6.68)

or

n D .Z1�˛=2 CZ1�ˇ/2.1 �H2/

H2
: (6.69)

Comparing this equation with (6.60), we can see that

ıˇ D .Z1�˛=2 CZ1�ˇ/2: (6.70)

This provides a different way to calculate the noncentrality parameter of a noncen-
tral chi-square distribution, i.e.,

ıˇ D ±�1.�21;1�˛j1; ˇ/ D .Z1�˛=2 CZ1�ˇ/2: (6.71)

This particular relationship only holds when the degree of freedom is one. In ad-
dition, �21;1�˛ D Z2

1�˛=2. Therefore, one can use either the Z-test or the W -test to
perform power and sample size calculations, and the results are identical.

6.4.5 Extension to Dominance Effect

To calculate the statistical power for a model with both additive (a) and dominance
(d ) effects, one can only use the W -test statistic (the Z-test does not apply here).
The W -test statistic is given in (6.29). The critical value under a type I error ˛ is

�22;1�˛ D ±�1.1 � ˛j2; 0/: (6.72)
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The noncentrality parameter is

ı D n	
2
G

	2
; (6.73)

where

	2G D 	2Xa2 C 	2W d2 (6.74)

assuming thatX andW are defined in such a way that they are not correlated. Given
the noncentrality parameter, the power can be calculated using

! D 1 � ˇ D 1 � ±.�22;1�˛ j2; ı/: (6.75)

Given the power !, and thus the type II error ˇ D 1 � !, the noncentrality
parameter is

ıˇ D ±�1.�22;1�˛ j2; ˇ/: (6.76)

Therefore, the sample size required to detect a major gene is

n D ıˇ 	
2

	2G
: (6.77)

In summary, one simply modifies the following two steps for the dominance effect
extension. The first step is to replace the noncentral chi-square distribution with one
degree of freedom for the additive model by the noncentral chi-square distribution
with two degrees of freedom for the model with both effects. The second step is to
replace 	2Xa

2 for the additive model by 	2G D 	2Xa
2 C 	2W d2 for the additive and

dominance model.

Examples

Example 1: Calculate the statistical power to detect a major gene with a D 5:0 in an
F2 population of size n D 200 under a type I error rate of ˛ D 0:05, assuming that
	2 D 400.

For an F2 population, the variance of the genotype indicator variable is 	2X D 1
2
.

Given the parameters in the example, we found that

�21;1�0:05 D ±�1.0:95j1; 0/ D 3:84:

The noncentrality parameter is

ı D n	2X
a2

	2
D 200 � 1

2
� 52

202
D 6:25:
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The statistical power is

! D 1 � ±.�21;1�˛ j1; ı/ D 1 � ±.3:84j1; 6:25/ D 1 � 0:2946 D 0:7054:

Example 2: Find the minimum sample size required to detect a gene that explains
3 % of the phenotypic variance with a 90 % power under a type I error rate of 5 %.

The parameter values for this question are ˛ D 0:05, ˇ D 1 � ! D 1 � 0:9 D
0:10, and H2 D 0:3. From these values, we get

�21;1�0:05 D ±�1.0:95j1; 0/ D 3:84:

The noncentrality parameter is

ıˇ D ±�1.�21;1�˛j1; ˇ/ D ±�1.3:84j1; 0:1/D 10:505:

Therefore, the sample size required is

n D ıˇ.1 �H2/

H2
D 10:505 � .1� 0:03/

0:03
D 340:



Chapter 7
Segregation Analysis

Quantitative traits, by definition, are controlled by the segregation of multiple genes.
However, the continuous distribution of a quantitative trait does not require the
segregation of too many genes. Segregation of just a few genes or even a single
gene may be sufficient to generate a continuously distributed phenotype, provided
that the environmental variant contributes substantial amount of the trait variation.
It is often postulated that a quantitative trait may be controlled by one or a few
“major genes” plus multiple modifier genes (genes with very small effects). Such
a model is called oligogenic model, which is in contrast to the so called polygenic
model where multiple genes with small and equal effects are assumed.

In this chapter, we will discuss a method to test the hypothesis that a quantitative
trait is controlled by a single major gene even without observing the genotypes
of the major gene. The method is called segregation analysis of quantitative traits.
Although segregation analysis belongs to major gene detection, we discuss this
topic separately from the previous topic to emphasize a slight difference between
segregation analysis and the major gene detection discussed earlier. Here, we define
major gene detection as an association study between a single-locus genotype with a
quantitative trait where genotypes of the major gene are observed for all individuals.
Segregation analysis, however, refers to a single-locus association study where
genotypes of the major gene are not observed at all. Another reason for separating
major gene detection from segregation analysis is that the statistical method and
hypothesis test for segregation analysis can be quite different from those of the major
gene detection.

7.1 Gaussian Mixture Distribution

We will use an F2 population as an example to discuss the segregation analysis.
Consider the three genotypes in the following order: A1A1, A1A2, and A2A2.
Let k D 1; 2; 3 indicate the three ordered genotypes. The means of individuals
bearing the three ordered genotypes are denoted by �1, �2, and �3, respectively.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 7,
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Fig. 7.1 Gaussian mixture with three components. The solid line represents the mixture distribu-
tion, while the three dashed lines represent the three components

Let yj be the phenotypic value of individual j for j D 1; : : : ; n, where n is the
sample size. Given that individual j has the kth genotype, the linear model for yj is

yj D �k C �j ; (7.1)

where �j � N.0; 	2/ and 	2 is the residual error variance. The probability density
of yj conditional on the kth genotype is

fk.yj / D 1p
2
	

exp

�

� 1

2	2
.yj � �k/2

�

: (7.2)

In reality, the genotype of an individual is not observable, and thus, a mixture
distribution is needed to describe the probability density of yj . Let 
k;8k D 1; 2; 3,
be the proportion of genotype k (also called the mixing proportion). Without any
prior knowledge, 
k may be described by the Mendelian segregation ratio, i.e.,

1 D 
3 D 1

2

2 D 1

4
. Therefore, under the assumption of Mendelian segregation,

the 
k’s are constants, not parameters. The distribution of yj is a mixture of three
normal distributions, each is weighted by the Mendelian mixing proportion. The
mixture distribution is demonstrated by Fig. 7.1.
The probability density of yj is

f .yj / D
3
X

kD1

kfk.yj /: (7.3)

The overall observed log likelihood function for parameters � D f�1; �2; �3; 	2g is

L.�/ D
n
X

jD1
ln f .yj / D

n
X

jD1
ln

"

3
X

kD1

kfk.yi /

#

: (7.4)
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Any numerical algorithms may be used to estimate the parameters. However, the
EM algorithm (Dempster et al. 1977) appears to be the most convenient method for
such a mixture model problem and thus will be introduced in this chapter.

7.2 EM Algorithm

The expectation-maximization (EM) algorithm was developed by Dempster et al.
(1977) as a special numerical algorithm for finding the maximum likelihood
estimates (MLE) of parameters. In contrast to the Newton–Raphson algorithm, the
EM algorithm is not a general algorithm for MLE; rather, it can only be applied to
some special problems. If the following two conditions hold, then we should
consider using the EM algorithm. The first condition is that the maximum likelihood
problem can be formulated as a missing value problem. The second condition is that
if the missing values were not missing, the MLE would have a closed form solution
or, at least, a mathematically attractive form of the solution. We now evaluate the
mixture model problem to see whether the two conditions apply.

7.2.1 Closed Form Solution

We introduce a label �j to indicate the genotype of individual j . The definition of
�j is

�j D
8

<

:

1

2

3

for A1A1
for A1A2
for A2A2

(7.5)

Since the genotype of an individual is not observable, the label �j is missing.
Therefore, we can formulate the problem as a missing value problem. The missing
values are the genotypes of the major gene and denoted by variable �j for j D
1; : : : ; n. Therefore, the first condition for using the EM algorithm is met. If �j is not
missing, do we have a closed form solution for the parameters? Let us now define
three more variables as functions of �j . These three variables are called ı.�j ; 1/,
ı.�j ; 2/, and ı.�j ; 3/, and their values are defined as

ı.�j ; k/ D
�

1

0

if �j D k
if �j ¤ k (7.6)

for k D 1; 2; 3. We now use ı.�j ; k/ to represent the missing values. If ı.�j ; k/
were not missing, the linear model would be described by

yj D ı.�j ; 1/�1 C ı.�j ; 2/�2 C ı.�j ; 3/�3 C �j : (7.7)
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Let us define ıj D Œı.�j ; 1/ ı.�j ; 2/ ı.�j ; 3/� as a 1�3 vector and ˇ D Œ�1 �2 �3�T
as a 3 � 1 vector. The linear model can be rewritten as

yj D ıj ˇ C �j : (7.8)

When �j � N.0; 	2/ is assumed, the maximum likelihood estimates of parame-
ters are

Ǒ D
2

4

n
X

jD1
ıTj ıj

3

5

�1 2

4

n
X

jD1
ıTj yj

3

5 (7.9)

for the means and

O	2 D 1

n

n
X

jD1
.yj � ıj ˇ/2 (7.10)

for the residual variance. We see that if the missing variables were not missing,
the MLE of the parameters do have an attractive closed form solution. Since both
requirements of the EM algorithm are met, we can adopt the EM algorithm to search
for the MLE of parameters.

7.2.2 EM Steps

Before we derive the EM algorithm, let us show the expectation and maximization
steps of the EM algorithm. The E-step involves calculating the expectations of all
items containing the missing variables ıj . The M-step is simply to estimate ˇ and 	2

using the closed form solutions given above with the items containing the missing
variables replaced by the expectations obtained in the E-step, as shown below:

ˇ D
2

4

n
X

jD1
E.ıTj ıj /

3

5

�1 2

4

n
X

jD1
E.ıTj /yj

3

5 (7.11)

and

	2 D 1

n

n
X

jD1
EŒ.yj � ıj ˇ/2�: (7.12)

We can see that the EM algorithm is better described by introducing the M-step first
and then describing the E-step (in a reverse direction). The detail of the E-step is
now given below:

E.ıTj ıj / D
2

4

EŒı.�j ; 1/� 0 0

0 EŒı.�j ; 2/� 0

0 0 EŒı.�j ; 3/�

3

5; (7.13)
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E.ıTj /yj D
2

4

EŒı.�j ; 1/�yj
EŒı.�j ; 2/�yj

EŒı.�j ; 3/�yj

3

5 (7.14)

and

EŒ.yj � ıj ˇ/2� D
3
X

kD1
EŒı.�j ; k/�.yj � �k/2: (7.15)

Here, we only need to calculateEŒı.�j ; k/�, which is the conditional expectation of
ı.�j ; k/ given the parameter values and the phenotypic value. The full expression of
the conditional expectation should be EŒı.�j ; k/jyj ; ˇ; 	2�, but we use EŒı.�j ; k/�
as a short notation.

EŒı.�j ; k/� D 
kfk.yj j�/
P3

k0D1 
k0fk0.yj j�/
: (7.16)

where 
1 D 
3 D 1
2

2 D 1

4
is the Mendelian segregation ratio and fk.yj j�/ D

N.yj j�k; 	2/ is the normal density. In summary, the EM algorithm is described by

• Initialization: set t D 0 and let � D �.t/.
• E-step: calculate EŒı.�j ; k/jyj ; �.t/�.
• M-step: update ˇ.tC1/ and 	2.tC1/.
• Iteration: set t D t C 1 and iterate between the E-step and the M-step.

The convergence criterion is

jj�.tC1/ � �.t/jj D
q

.�.tC1/ � �.t//0.�.tC1/ � �.t//=dim.�/ � �; (7.17)

where dim.�/ D 4 is the dimension of the parameter vector and � is an arbitrarily
small positive number, say 10�8.

Once the three genotypic values are estimated, the additive and dominance effects
are estimated using linear contrasts of the genotypic values, e.g.,

(

Oa D Ǒ1 � 1
2
. Ǒ1 C Ǒ3/

Od D Ǒ2 � 1
2
. Ǒ1 C Ǒ3/ : (7.18)

7.2.3 Derivation of the EM Algorithm

The observed log likelihood function is given in (7.4). The MLE of � is the (vector)
value that maximizes this log likelihood function. The EM algorithm, however, does
not directly maximize this likelihood function; instead, it maximizes the expectation
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of the complete-data log likelihood function with the expectation taken with respect
to the missing variable ı.�j ; k/. The complete-data log likelihood function is

Lc.�/ D�
n
X

jD1

"

1

2	2

3
X

kD1
ı.�j ; k/.yj � �k/2 C

3
X

kD1
ı.�j ; k/ ln.
k/

#

� n
2

ln.	2/ (7.19)

The expectation of the complete-data log likelihood is E�.t/ ŒLc.�/jy; �.t/�, which is
denoted in short by L.� j�.t// and is defined as

L.� j�.t// D �n
2

ln.	2/ � 1

2	2

n
X

jD1

3
X

kD1
EŒı.�j ; k/�.yj � �k/2

C
n
X

jD1

3
X

kD1
EŒı.�j ; k/� ln.
k/ (7.20)

With the EM algorithm, the target likelihood function for maximization is neither
the complete-data log likelihood function (7.19) nor the observed log likelihood
function (7.4); rather, it is the expected complete-data log likelihood function (7.20).
An alternative expression of the above equation is

L.� j�.t// D� n
2

ln.	2/� 1

2	2

n
X

jD1
EŒ.yj � ıj ˇ/2�

C
n
X

jD1

3
X

kD1
EŒı.�j ; k/� ln.
k/: (7.21)

The partial derivatives of L.� j�.t// with respect to ˇ and 	2 are

@

@̌
L.� j�.t// D 1

	2
E.ıTj /yj �

1

	2

n
X

jD1
E.ıTj ıj /ˇ (7.22)

and

@

@	2
L.� j�.t// D � n

2	2
C 1

2	4

n
X

jD1
EŒ.yj � ıTj ˇ/2�; (7.23)

respectively. Setting @
@ˇ
L.� j�.t// D @

@	2
L.� j�.t// D 0, we get

ˇ D
2

4

n
X

jD1
E.ıTj ıj /

3

5

�1 2

4

n
X

jD1
E.ıTj /yj

3

5 (7.24)
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and

	2 D 1

n

n
X

jD1
EŒ.yj � ıj ˇ/2�: (7.25)

This concludes the derivation of the EM algorithm.

7.2.4 Proof of the EM Algorithm

The target likelihood function for maximization in the EM algorithm is the
expectation of the complete-data log likelihood function. However, the actual MLE
of � is obtained by maximization of the observed log likelihood function. To prove
that the EM solution of the parameters is indeed the MLE, we only need to show
that the partial derivative of the expected complete-data likelihood is identical to the
partial derivative of the observed log likelihood, i.e., @

@�
L.� j�.t// D @

@�
L.�/. If the

two partial derivatives are the same, then the solutions must be the same because
they both solve the same equation system, i.e., @

@�
L.�/ D 0.

Recall that the partial derivative of the expected complete-data log likelihood
function with respect to ˇ is

@

@̌
L.� j�.t// D 1

	2
E.ıTj /yj �

1

	2
E.ıTj ıj /ˇ; (7.26)

which is a 3 � 1 vector as shown below:

@

@̌
L.� j�.t// D

h

@
@�1
L.� j�.t// @

@�2
L.� j�.t// @

@�3
L.� j�.t//

iT

:

The kth component of this vector is

@

@�k
L.� j�.t// D 1

	2
EŒı.�j ; k/�yj � 1

	2
EŒı2.�j ; k/��k

D 1

	2
EŒı.�j ; k/�yj � 1

	2
EŒı.�j ; k/��k

D 1

	2
EŒı.�j ; k/�.yj � �k/ (7.27)

The equation holds because EŒı.�j ; k/� D EŒı2.�j ; k/�, a property for the
Bernoulli distribution. We now evaluate the partial derivative of the expected
complete-data log likelihood with respect to 	2,

@

@	2
L.� j�.t// D� n

2	2
C 1

2	2

n
X

jD1
EŒ.yj � ıTj ˇ/2�

D� n

2	2
C 1

2	2

n
X

jD1
EŒı.�j ; k/�.yj � �k/2 (7.28)
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We now look at the partial derivatives of L.�/ with respect to the parameters.
The observed log likelihood function is

L.�/ D
n
X

jD1
ln

3
X

kD1

kfk.yj / (7.29)

where

fk.yj / D 1p
2
	

exp

�

� 1

2	2
.yj � �k/2

�

: (7.30)

The partial derivatives of L.�/ with respect to ˇ D Œ�1 �2 �3�T are

@

@�k
L.�/ D

n
X

jD1


k
P3

k0D1 
k0fk0.yj /

@

@�k
fk.yj /; (7.31)

where
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@�k
fk.yj / D fk.yj /
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.yj � �k/

�

: (7.32)

Hence,
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@�k
L.�/ D 1
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jD1


kfk.yj /
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k0D1 
k0fk0.yj /
.yj � �k/: (7.33)

Recall that

EŒı.�j ; k/� D 
kfk.yj /
P3

k0D1 
k0fk0.yj /
: (7.34)

Therefore,

@

@�k
L.�/ D 1

	2

n
X

jD1
EŒı.�j ; k/�.yj � �k/; (7.35)

which is exactly the same as @
@�k
L.� j�.t// given in (7.27). Now, let us look at the

partial derivative of L.�/ with respect to 	2.
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L.�/ D
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jD1
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where

@

@	2
fk.yj / D � 1

2	2
fk.yj /C
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2	4
.yj � �k/2

�

fk.yj /: (7.37)
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Hence,
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Note that
3
X

kD1


kfk.yj /
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k0D 
k0fk0.yj /
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X
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EŒı.�j ; k/� D 1: (7.39)

Therefore,
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kD1
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kD1
EŒı.�j ; k/�.yj � �k/2 (7.40)

which is exactly the same as @
@	2
L.� j�.t// given in (7.28). We now have con-

firmed that

@

@	2
L.� j�.t// D @

@	2
L.�/ (7.41)

and

@

@�k
L.� j�.t// D @

@�k
L.�/; 8k D 1; 2; 3: (7.42)

This concludes the proof that the EM algorithm does lead to the MLE of the
parameters.

7.3 Hypothesis Tests

The overall null hypothesis is “no major gene is segregating” denoted by

H0 W �1 D �2 D �3 D �: (7.43)

The alternative hypothesis is “at least one of the means is different from others,”
denoted by

H1 W �1 ¤ �3 or �2 ¤ 1

2
.�1 C �3/: (7.44)
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The likelihood ratio test statistic is

� D �2ŒL0. O�/� L1. O�/�; (7.45)

where L1. O�/ is the observed log likelihood function evaluated at the MLE of � for
the full model, and

L0. O�/ D �n
2

ln. O	2/ � 1

2 O	2
n
X

jD1
.yj � O�/2 (7.46)

is the log likelihood values evaluated at the null model where

O� D 1

n

n
X

jD1
yj (7.47)

and

O	2 D 1

n

n
X

jD1
.yj � O�/2: (7.48)

Under the null hypothesis, � will follow approximately a chi-square distribution
with two degrees of freedom. Therefore, H0 will be rejected if � > �22;1�˛ , where
˛ D 0:05 may be chosen as the type I error.

7.4 Variances of Estimated Parameters

Unlike other iterative methods of parameter estimation, e.g., Newton–Raphson
method, that variance–covariance matrix of the estimated parameters are provided
automatically as a by-product of the iteration process, the EM algorithm does not fa-
cilitate an easy way for calculating the variance–covariance matrix of the estimated
parameters. We now introduce a special method for calculating the variance–
covariance matrix. The method was developed by Louis (1982) particularly for
calculating the variance–covariance matrix of parameters that are estimated via the
EM algorithm. The method requires the first and second partial derivatives of the
complete-data log likelihood function (not the observed log likelihood function).
The complete-data log likelihood function is

L.�; ı/ D
n
X

jD1
Lj .�; ı/; (7.49)

where

Lj .�; ı/ D �1
2

ln.	2/ � 1

2	2
.y � ıj ˇ/2: (7.50)
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The first partial derivative of this log likelihood with respect to the parameter is
called the score function, which is

S.�; ı/ D @
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L.�; ı/ D

n
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where
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(7.52)

The second partial derivative is called the Hessian matrix H.�; ı/. The negative
value of the Hessian matrix is denoted by B.�; ı/ D �H.�; ı/,

B.�; ı/ D �@
2L.�; ı/

@� @�T
D �

n
X

jD1

@2Lj .�; ı/

@� @�T
D

n
X

jD1
Bj .�; ı/; (7.53)

where

Bj .�; ı/ D �@
2Lj .�; ı/

@� @�T
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@ˇ @	2
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@	2 @ˇT
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@	2 @	2
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5 (7.54)

Detailed expression of Bj .�; ı/ is given below:

Bj .�; ı/ D
"

1
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ıTj ıj

1
	4
ıTj .yj � ıj ˇ/

1
	4
.yj � ıj ˇ/T ıj 1

	6
.yj � ıj ˇ/2 � 1

2	2

#

: (7.55)

Louis (1982) gave the following information matrix:

I.�/ D EŒB.�; ı/� � varŒS.�; ı/�

D
n
X

jD1
EŒBj .�; ı/� �

n
X

jD1
varŒSj .�; ı/�; (7.56)

where the expectation and variance are taken with respect to the missing variable
ıj using the posterior probability of ıj . Detailed expressions of EŒBj .�; ı/� and
varŒSj .�; ı/� are given in the end of this section. Readers may also refer to Han and
Xu (2008) and Xu and Hu (2010) for the derivation and the results. Replacing � by
O� and taking the inverse of the information matrix, we get the variance–covariance
matrix of the estimated parameters,

var. O�/ D I�1. O�/ D fEŒB. O� ; ı/� � varŒS. O�; ı/�g�1: (7.57)



90 7 Segregation Analysis

This is a 4 � 4 variance–covariance matrix, as shown below:

var. O�/ D
"

var. Ǒ/ cov. Ǒ; O	2/
cov. O	2; ǑT / var. O	2/

#

; (7.58)

where var. Ǒ/ is a 3 � 3 variance matrix for the estimated genotypic values.
The additive and dominance effects can be expressed as linear functions of ˇ, as

demonstrated below:
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where

L D
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2
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� 1
2
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#T

: (7.60)

The variance–covariance matrix for the estimated major gene effects is

var

"

Oa
Od

#

D LT var. Ǒ/L D
"

var. Oa/ cov. Oa; Od/
cov. Oa; Od/ var. Od/

#

: (7.61)

The variance–covariance matrix of the estimated major gene effects also facili-
tates an alternative method for testing the hypothesis of H0 W a D d D 0. This test
is called the Wald-test statistic (Wald 1943),

W D ˇT LŒLT var. Ǒ/L��1LT ˇ D
h

Oa Od
i

"

var. Oa/ cov. Oa; Od/
cov. Oa; Od/ var. Od/

#�1 " Oa
Od

#

: (7.62)

The Wald-test statistic is much like the likelihood ratio test statistic. Under the
null model, W follows approximately a �2 distribution with 2 degrees of freedom.
However, Wald test is usually considered inferior compared to the likelihood ratio
test statistic, especially when the sample size is small.

Before exiting this section, we now provide the derivation of EŒBj .�; ı/� and
varŒSj .�; ı/�. Recall that ıj is a 1� 3 multinomial variable with sample size 1 and
defined as

ıj D
�

ı.�j ; 1/ ı.�j ; 2/ ı.�j ; 3/
�

(7.63)

This variable has the following properties:

ı2.�j ; k/ D ı.�j ; k/ (7.64)



7.4 Variances of Estimated Parameters 91

and
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Therefore, the expectation of ıj is
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�

E
�

ı.�j ; 2/
�

E
�

ı.�j ; 3/
� �

(7.66)

The expectation of its quadratic form is

E.ıTj ıj / D diag
�

E.ıj /
� D

2

6

6

4

E
�

ı.�j ; 1/
�

0 0

0 E
�

ı.�j ; 3/
�

0

0 0 E
�

ı.�j ; 3/
�

3

7

7

5

(7.67)

The variance–covariance matrix of ıj is

var.ıj / D E.ıTj ıj /� E.ıj /ET .ıj / (7.68)

To derive the observed information matrix, we need the first and second partial
derivatives of the complete-data log likelihood with respect to the parameter vector
� D Œ ˇT 	2 �T . The score vector is rewritten as

Sj .�; ı/ D
"

1
	2
ıTj .yj � ıj ˇ/
1
2	4
.yj � ıj ˇ/2

#

C
"

03�1
� 1
2	2

#

(7.69)

where 03�1 is a 3�1 vector of zeros, and thus, the score is a 4�1 vector. The negative
of the second partial derivative is

Bj .�; ı/ D
"

1
	2
ıTj ıj

1
	4
ıTj .yj � ıj ˇ/

1
	4
.yj � ıj ˇ/T ıj 1

	6
.yj � ıj ˇ/2

#

C
"

03�3 03�1
01�3 � 1

2	2

#

(7.70)

where 03�3 is a 3 � 3 matrix of zeros, and thus, Bj .�; ı/ is a 4 � 4 matrix.
The expectation of Bj .�; ı/ is easy to derive, but derivation of the variance–
covariance matrix of the score vector is very difficult. Xu and Xu (2003) used
a Monte Carlo approach to approximating the expectation and the variance–
covariance matrix. They simulated multiple (e.g., 5,000) samples of ıj from the
posterior distribution and then took the sample mean of Bj .�; ı/ and the sample
variance–covariance matrix of Sj .�; ı/ as the approximations of the corresponding
terms. Here, we took a theoretical approach for the derivation and provide explicit
expressions for the expectation and variance–covariance matrix. We can express the
score vector as a linear function of ıj and theBj .�; ı/matrix as a quadratic function
of ıj . By trial and error, we found that
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where ATj is the 4 � 3 coefficient matrix and C is the 4 � 1 vector of constants. Let
us define a 4 � 1 matrixHT

j as

HT
j D T Tj ıTj D
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(7.72)

where T Tj is the 4 � 3 coefficient matrix. We can now express matrix Bj .�; ı/ as

Bj .�; ı/ D HT
j Hj CD D T Tj ıTj ıj Tj CD (7.73)

where

D D diag.C / D
"

03�3 03�1
01�3 � 1

2	2

#

(7.74)

is a 4 � 4 constant matrix. The expectation of Bj .�; ı/ is

E
�

Bj .�; ı/
� D T Tj E.ıTj ıj /Tj CD (7.75)

The expectation vector and the variance–covariance matrix of Sj .�; ı/ are

E
�

Sj .�; ı/
� D ATj E.ıTj /C C (7.76)

and

var
�

Sj .�; ı/
� D ATj var.ıj /Aj D ATj

h

E.ıTj ıj /� E.ıTj /E.ıj /
i

Aj (7.77)

respectively. Expressing Sj .�; ı/ and Bj .�; ı/ as linear and quadratic functions of
the missing vector ıj has significantly simplified the derivation of the information
matrix.
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7.5 Estimation of the Mixing Proportions

We used an F2 population as an example for segregation analysis. Extension of the
segregation analysis to other populations is straightforward and will not be discussed
here. For the F2 population, we assumed that the major gene follows the Mendelian
segregation ratio, i.e., 
1 D 
3 D 1

2

2 D 1

4
. Therefore, 
k is a constant, not

a parameter for estimation. The method can be extended to a situation where the
major gene does not follow the Mendelian segregation ratio. In this case, the values
of 
k are also parameters for estimation. This section will introduce a method to
estimate the 
k’s. These 
k’s are called the mixing proportions.

We simply add one more step in the EM algorithm to estimate 
k; 8k D 1; 2; 3.
Again, we maximize the expected complete-data log likelihood function. To enforce
the restriction that

P3
kD1 
k D 1, we introduce a Lagrange multiplier �. Therefore,

the actual function to be maximized is

L.� j�.t// D� n
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jD1

3
X

kD1
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C
n
X

jD1

3
X

kD1
EŒı.�j ; k/� ln.
k/C �

 

1 �
3
X

kD1

k

!

: (7.78)

The partial derivatives of L.� j�.t// with respect to 
k and � are
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X

jD1
EŒı.�j ; k/� � �;8k D 1; 2; 3 (7.79)

and
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X
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k; (7.80)

respectively. Let @
@
k
L.� j�.t// D @

@�
L.� j�.t// D 0, and solve for 
k’s and �. The

solution for 
k is


k D 1

�

n
X

jD1
EŒı.�j ; k/�;8k D 1; 2; 3: (7.81)

The solution for � is obtained by
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kD1

k D 1

�

3
X

kD1
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jD1
EŒı.�j ; k/� D 1

�

n
X

jD1

3
X

kD1
EŒı.�j ; k/� D n

�
D 1: (7.82)

This is because
P3

kD1 EŒı.�j ; k/� D 1 and
Pn

jD1 D n. As a result, � D n and thus



.tC1/
k D 1

n

n
X

jD1
EŒı.�j ; k/�;8k D 1; 2; 3: (7.83)



Chapter 8
Genome Scanning for Quantitative Trait Loci

In the previous chapters, we learned the basic concept of quantitative genetics,
the quantitative genetics model, the method for major gene detection (genotypes
of the major gene are observed), and the algorithm for segregation analysis
(genotypes of the major gene are not observed). We also learned some analytical
techniques to analyze a molecular marker linked to a major gene. The real focus of
statistical genomics, however, is to identify functional genes that are responsible
for the genetic variation of quantitative traits or complex traits if they are not
normally distributed. These chapters provide the necessary technology (knowledge
preparation) for gene identification, which is the theme of this book.

Molecular markers are not genes but they are inherited following Mendel’s laws,
and their genotypes are observable. The functional genes also follow Mendel’s laws
of inheritance, but their genotypes are not observable. Since both markers and genes
are carried by a limited number of chromosomes in the genome, some genes must
be physically linked with some markers. If a marker sits in the neighborhood of a
gene, the segregation pattern of the marker must be associated with the phenotypic
variation of a trait that is controlled by the gene due to linkage. Therefore, we
can study marker and trait association and hope to identify important markers
that are closely linked to the gene. Since a quantitative trait is often controlled
by the segregation of more than one gene, more markers are needed to identify
all genes for a quantitative trait. These multiple genes are called quantitative
trait loci (QTL). This chapter deals with marker-trait association study in line
crosses. The association study using line crosses is different from the association
study using randomly sampled populations. The former takes advantage of linkage
disequilibrium, while the latter assumes no linkage disequilibrium. As a result,
markers associated with the trait of interest in line crosses are not equivalent to the
genes, while markers associated with the traits in randomly sampled populations are
most likely the actual genes. The statistical methods for association study, however,
are the same, regardless whether the populations are derived from line crosses or
not.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 8,
© Springer Science+Business Media, LLC 2013
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8.1 The Mouse Data

A dataset from an F2 mouse population consisting of 110 individuals was used as an
example for the genetic analysis. The data were published by Lan et al. (2006) and
are freely available from the Internet. The parents of the F2 population were B6 (29
males) and BTBR (31 females). The F2 mice used in this study were measured for
various clinical traits related to obesity and diabetes. The framework map consists
of 194 microsatellite markers, with an average marker spacing of about 10 cM. The
mouse genome has 19 chromosomes (excluding the sex chromosome). The data
analyzed in this chapter contain 110 F2 mice and 193 markers. The second marker
(D7Mit76) on chromosome 7 was excluded from the analysis because it overlaps
with the first marker (D7Mit56). The 193 markers cover about 1,800 cM of the
entire mouse genome. The trait of interest was the 10th-week body weight. The
marker map, the genotypes of the 110 mice for the 193 markers, and the 10th-week
body weights of the F2 mice are also provided in the author’s personal website
(www.statgen.ucr.edu). The files stored in our website are not the original data but
preprocessed by our laboratory members, and thus, they are ready for analysis using
QTL mapping software packages such as the QTL procedure in SAS (Hu and Xu
2009).

8.2 Genome Scanning

In major gene identification, we used an F -test statistic to test the significance of a
major gene. In genome scanning, we simply treat each marker as a major gene and
analyze every single marker. The test statistics of all markers across the genome are
plotted against the genome location of the markers, forming a test statistic profile.
Some regions of the genome may show peaks, while majority of the genome may
be flat. The regions with peaks may suggest QTL nearby the peaks. If the marker
density is sufficiently high, some markers may actually overlap with the QTL. The
genome scanning is also called individual marker analysis. We scan all markers
across the genome but with one marker at a time. The entire genome scanning
requires many repeated single-marker analyses. The genetic model and test statistic
in genome scanning are of no difference from the major gene detection except that
we now deal with multiple markers. Sometimes, investigators already have prior
knowledge about the functions of some genes. The functions may be related to the
development of the quantitative trait of interest. These genes are called candidate
genes for the trait of interest. Genome scanning may also include these candidate
genes. Figure 8.1 shows the LOD score profile of the mouse genome for the trait of
10th-week body weight (wt10week). Note that the LOD (log of odds) score is often
used in human genetics. The Wald-test statistic is often converted into the LOD
score using (see a later section for the definition of LOD)

LOD D W

2 � ln.10/
(8.1)

www.statgen.ucr.edu
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Fig. 8.1 LOD score profile of the entire genome (19 chromosomes) for the 10th-week body weight
of F2 mice derived from the cross of two inbred lines. The 19 chromosomes are separated by the
dotted reference lines
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Fig. 8.2 QTL effect profile of the entire genome (19 chromosomes) for the 10th-week body weight
of F2 mice derived from the cross of two inbred lines. The 19 chromosomes are separated by the
dotted reference lines

There are many peaks in the LOD score profile, but the peaks in chromosome 2
appear to be too high (LOD > 3) to be explained by chance. Therefore, one or more
QTL may exist in chromosome two for this trait.

The model used for the analysis is called the additive genetic model because the
dominance effect has been ignored. Figure 8.2 shows the additive effects plotted
against markers, the so-called QTL effect profile. We can see that QTL effects in
some regions of the genome are positive, while in other regions, they are negative.
The way we coded the genotypes determined the signs of the QTL effects. Assume
that the original genotypic data were coded as “A” for line B6, “B” for line BTBR,



98 8 Genome Scanning for Quantitative Trait Loci

and “H” for heterozygote. We numerically recoded the genotype as 1 for “A,” 0 for
“H,” and �1 for “B.” Based on this coding system, a negative QTL effect means
that the B6 allele is “low” and the BTBR allele is “high.” Therefore, the QTL allele
carried by B6 in the second chromosome is the “low” allele, that is, it is responsible
for the low body weight. Of course, if “A” and “B” alleles represent BTBR and
B6, respectively, the negative and positive signs should be explained in just the
opposite way.

8.3 Missing Genotypes

In the section of major gene detection, we assumed that the genotype of a major gene
is observed for every individual. In the section of segregation analysis, the genotype
of the major gene is missing for every individual. This section deals with marker
analysis. Although most individuals in the mapping population should be genotyped
for all markers, still some individuals may not be genotyped for some markers,
either due to technical errors or human errors. If an individual is not genotyped
for all markers, this individual should be eliminated from the analysis. However,
most individuals may just have a few missing genotypes. These individuals must be
included in the analysis; otherwise, we may not have enough sample size to perform
genetic mapping. We now use the F2 population as an example to show how to deal
with the missing marker problem.

Let yj be the phenotypic value of individual j , and it can be described by the
following linear model:

yj D b0 CXjb1 C ej ; (8.2)

where b0 is the intercept, b1 is the additive genetic effect, i.e., a, and ej is the
residual error. The genotype indicator variable Xj depends on the genotype of the
marker under consideration. Let us define Xj as

Xj D
8

<

:

C1
0

�1

forA1A1
forA1A2
forA2A2

: (8.3)

Let Gj be the genotype of the marker under consideration and pj .1/ D Pr.Gj D
A1A1jmarker/ be the probability of Gj D A1A1 given the genotypes of the
two markers flanking the marker of interest. Similarly, let pj .0/ D Pr.Gj D
A1A2jmarker/ and pj .�1/ D Pr.Gj D A2A2jmarker/. The conditional expectation
ofXj given the flanking marker genotypes isE.Xj / D pj .1/�pj .�1/. The model
for missing markers is the same as (8.2) except that Xj is replaced by E.Xj /, i.e.,

yj D b0 C E.Xj /b1 C ej : (8.4)
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To include the dominance effect, the revised model is

yj D b0 C E.Xj1/b1 C E.Xj2/b2 C ej (8.5)

whereXj1 is the genotype indicator variable for the additive effect, as defined earlier
(8.3), and Xj2 is the genotype indicator variable for the dominance effect,

Xj2 D
8

<

:

0

1

0

forA1A1
forA1A2
forA2A2

: (8.6)

The conditional expectation of Xj2 is simply E.Xj / D pj .0/. The second
regression coefficient b2 is the dominance effect, i.e., b2 D d .

8.4 Test Statistics

There are many different test statistics we can use for genome scanning. The one we
learned in the major gene detection is the F -test statistic. We now discuss the test
statistics when only a single model effect is subject to test. In genetic analysis, this
is equivalent to testing only the additive effect. Let Ob1 be the estimated genetic effect
and 	2Ob1 be the variance of the estimate. The F -test statistic for the null hypothesis

H0 W b1 D 0 is

F D
Ob21
	2Ob1
: (8.7)

This F -test statistic appears to be different from the F -test statistic occurring in the
analysis of variances (ANOVA). The latter is defined as the ratio of the between-
group mean squares MSB to the within-group mean squares MSW. However, the
two test statistics are two different forms of the same test statistic (derivation is
not shown). As an F -test statistic, it will follow an F-distribution with a numerator
degree of freedom 1 and a denominator degree of freedom n � 2.

A single genetic effect can also be tested using the t-test statistic. The t-test
statistic is simply the square root of the F -test statistic,

t D pF D j
Ob1j
	 Ob1

(8.8)

Under the null hypothesisH0 W b1 D 0, this test statistic will follow a t-distribution
with n � 2 degrees of freedom. As the sample size increases, n � 2 is not much
different from n; therefore, the degrees of freedom in the F -test and the t-test are
approximately equal to the sample size.
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When n!1, the F -test will be identical to the �2-test statistic, which follows
a �2 distribution with one degree of freedom. The corresponding t-test statistic will
approach to the Z-test statistic.

The F -test statistic in the form of F D Ob21
	2

Ob1

is actually called the Wald-test

statistic or simply W -test statistic (Wald 1943). Although the Wald-test statistic
is not called as often as the F - and t-test statistics in genome scanning, it will be
used more often here in this textbook due to the fact that the Wald-test statistic is
comparable or similar to the likelihood ratio test statistic.

The likelihood ratio test (LRT) statistic is defined as

� D �2ŒL0. O�0/ �L1. O�1/� (8.9)

where L0. O�0/ is the log likelihood function evaluated under the null model (H0 W
b1 D 0) and L1. O�1/ is the log likelihood function evaluated under the full model
(H1 W b1 ¤ 0). The null model and the full model differ by one parameter, i.e., �0 D
fb0; 	2g and �1 D fb0; b1; 	2g. We often call the null model the restricted model or
reduced model because it has b1 D 0 as the restriction or simply has one parameter
less than the full model. Because L1. O�1/ is guaranteed to be larger than L0. O�0/, the
log likelihood difference is negative. A negative test statistic looks strange, and thus,
we put a minus sign in front of the difference to make the test statistic positive. The
constant multiplier 2 is simply to make the likelihood ratio test statistic follow a
standard distribution under the null model. This standard distribution happens to be
a �2 distribution with one degree of freedom. The degree of freedom is one, not any
other value, because the null model has one parameter less than the full model.

We now realize that the Wald-test statistic, the F -test statistic, and the likelihood
ratio test statistic all approach a �2 distribution with one degree of freedom as the
sample size is sufficiently large. Therefore, these three test statistics can be used
interchangeably with very little difference, although the likelihood ratio test statistic
is considered a slightly better test statistic than the others.

The likelihood ratio test statistic is defined using the natural logarithm, i.e., the
logarithm with base e � 2:718281828459. In human genetics, people often use the
LOD (log of odds) score as the test statistic. Let L0 D L0. O�0/ and L1 D L1. O�1/ be
short expressions of the natural logarithms of the likelihood functions under the null
model and the full model, respectively. The original likelihood functions (before
taking the natural log) are l0 D eL0 and l1 D eL1 , respectively. The LOD score is
defined as

LOD D log10

�

l1

l0

�

D log10

�

eL1

eL0

�

D log10 eL1 � log10 eL0 D log10 e.L1�L0/ (8.10)
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It is the log of the likelihood ratio with base 10 rather than base e. The relationship
between LOD and the likelihood ratio test statistic (�) is

LOD D log10 e.L1�L0/ D 1

2
log10 eŒ�2.L0�L1/�

DŒ�2.L0 � L1/�
�

1

2
log10 e

�

D �
�

1

2
log10 e

�

(8.11)

The constant 1
2

log10 e � 0:2171 and the inverse of the constant are approximately
4.6052. Therefore, we may use the following approximation to convert � to LOD:

LOD D 0:2171 � D �

4:6052
(8.12)

The LOD score has an intuitive interpretation because of the base 10. An LOD score
of x means that the full model is 10x times more likely than the restricted model.
For example, an LOD score 3 means that the full model (with the marker effect) is
1,000 times more likely than the reduced model (without the marker effect).

We now turn our attention to the hypotheses where two or more genetic effects
are tested simultaneously. For example, in an F2 population, we can test both the
additive and dominance effects. The null hypothesis is H0 W a D d D 0 or H0 W
b1 D b2 D 0. In this case, the t-test is not a valid choice, because it is designed for
testing only a single effect. The F -test, although can be used, is rarely chosen as
the test statistic for genome scanning. The F -test statistic for testing two effects is
defined as

F D 1

2
Œ Ob1 Ob2 �

"

var. Ob1/ cov. Ob1; Ob2/
cov. Ob1; Ob2/ var. Ob2/

#�1 " Ob1
Ob2

#

(8.13)

The 1
2

multiplier appears because we are testing two effects. If we test k effects
simultaneously, the multiplier will be 1

k
, and the dimensionality of the effect vector

and the variance matrix will be changed to k � 1 and k � k accordingly. The F -test
statistic follows an F-distribution with degrees of freedom k and n � .k C 1/ or
simply k and n when n is sufficiently large.

In contrast to the test for a single genetic effect where the F -test statistic is
equivalent to the W -test statistic, when testing two or more effects, the W -test
statistic is

W D Œ Ob1 Ob2 �
"

var. Ob1/ cov. Ob1; Ob2/
cov. Ob1; Ob2/ var. Ob2/

#�1 " Ob1
Ob2

#

(8.14)

The relationship between the W -test and the F -test is W D kF . When the sample
size is sufficiently large, the W -test statistic will approach a �2 distribution with k
degrees of freedom (k D 2 in this case).

The corresponding likelihood ratio test statistic for two or more effects has the
same form as that for testing a single effect except that �0 D fb0; 	2g under the null
model has two parameters less than the �1 D fb0; b1; b2; 	2g under the full model.
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As a result, the � test statistic follows a �2 distribution with k D 2 degrees of
freedom. Both the W -test and the likelihood ratio test statistics follow the same �2

distribution, and thus, they can be used interchangeably with very little difference.
TheW -test statistic requires calculation of the variance–covariance matrix of the

estimated parameters and its inverse. However, some of the algorithms for parameter
estimation, e.g., the EM algorithm, do not have an automatic way to calculate this
matrix. For these methods, the likelihood ratio test statistic may be preferred because
of the ease of calculating the test statistic. When both the W -test and the �-test
statistics are available, which one is better? The answer is that the �-test statistic is
more desirable if the sample size is small. For large samples sizes, these two test
statistics are virtually the same.

In summary, the W -test and the �-test statistics are preferable for genome
scanning because they can be used for testing both a single effect and multiple
effects (compared to the t-test and the Z-test which are only useful for testing a
single effect). The LOD score test statistic is simply a rescaled likelihood ratio test
statistic, and thus, they are used interchangeably without any difference at all.

8.5 Bonferroni Correction

Genome scanning involves multiple tests. Sometimes the number of tests may reach
hundreds or even thousands. For a single test, the critical value for any test statistic
simply takes the 95 % or 99 % quantile of the distribution that the test statistic
follows under the null hypothesis. For example, the F -test statistic follows an F-
distribution, the likelihood ratio test statistic follows a chi-square distribution, and
the W -test statistic also follows a chi-square distribution. When multiple tests are
involved, the critical value used for a single test must be adjusted to make the
experiment-wise type I error at a desired level, say 0.05.

The Bonferroni correction is a multiple-test correction used when multiple
statistical tests are being performed in a single experiment (Dunn 1961). While a
given alpha value ˛ may be appropriate for each individual test, it is not for the set
of all tests involved in a single experiment. In order to avoid spurious positives, the
alpha value needs to be lowered to account for the number of tests being performed.
The Bonferroni correction sets the type I error for the entire set of k tests equal
to ˇ by taking the alpha value for each test equal to ˛. The ˇ is now called the
experiment-wise type I error rate, and ˛ is called the test-wise type I error rate or
nominal type I error rate. The Bonferroni correction states that, in an experiment
involving k tests, if you want to control the experiment-wise type I error rate at ˇ,
the nominal type I error rate for a single test should be

˛ D ˇ

k
(8.15)

For example, if an experiment involves 100 tests and the investigator wants to
control the experiment-wise type I error at ˇ D 0:05, for each of the individual tests,
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the nominal type I error rate should be ˛ D ˇ

k
D 0:05

100
D 0:0005. In other words,

for any individual test, the p-value should be less than 0.0005 in order to declare
significance for that test. The Bonferroni correction does not require independence
of the multiple tests.

When the multiple tests are independent, there is an alternative correction for the
type I error, which is called the Šidák correction (Abdi 2007). This correction is
often confused with the Bonferroni correction. If a test-wise type I error is ˛, the
probability of nonsignificance is 1�˛ for this particular test. For k independent tests
and none of them is significant, the probability is .1�˛/k . The experiment-wise type
I error is defined as the probability that at least one of the k tests is significant. This
probability is

ˇ D 1 � .1 � ˛/k (8.16)

To find the nominal ˛ value given the experiment-wise value ˇ, we use the reverse
function

˛ D 1 � .1 � ˇ/1=k (8.17)

This correction is the Šidák correction. The two corrections are approximately the
same when ˇ is small because .1 � ˇ/1=k � 1 � ˇ

k
, and thus,

˛ � ˇ

k
(8.18)

Therefore, the Bonferroni correction is an approximation of the Šidák correction for
multiple independent tests for small ˇ.

8.6 Permutation Test

When the number of tests is large, the Bonferroni and Šidák corrections tend to
be overconservative. In addition, if a test statistic does not follow any standard
distribution under the null model, calculation of the p-value may be difficult for each
individual test. In this case, we can adopt the permutation test to draw an empirical
critical value. This method was developed by Churchill and Doerge (1994) for QTL
mapping. The idea is simple, but implementation can be time consuming. When
the sample size n is small, we can evaluate all nŠ different permuted samples of
the original phenotypic values while keeping the marker genotype data intact. In
other words, we only reshuffle the phenotypes, not the marker genotypes. For each
permuted sample, we apply any method of genome scanning to calculate the test
statistical values for all markers. In each of the permuted sample, the association
of the phenotype and genotypes of markers has been (purposely) destroyed so that
the distribution of the test statistics will mimic the actual distribution under the null
model, from which a desirable critical value can be drawn from the empirical null
distribution.
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Table 8.1 Phenotypic values
of trait y and the genotypes
of five markers from ten
plants (the original dataset)

Plant y M1 M2 M3 M4 M5

1 55.0 H H H H A
2 54.2 H H H H U
3 61.6 H H U A A
4 66.6 H H H H U
5 67.4 H H H B U
6 64.3 H H H H H
7 54.0 H A B B B
8 57.2 H B H H H
9 63.7 H H H H H
10 55.0 H H A H U

The number of permuted samples can be extremely large if the sample size is
large. In this case, we can randomly reshuffle the data to purposely destroy the
association between the phenotype and the marker genotype. By random reshuffling
the phenotypes, individual j may take the phenotypic value of individual i for
i ¤ j , while the marker genotype of individual j remains unchanged. After
reshuffling the phenotypes, we analyze the data and scan the entire genome. By
chance, we may find some peaks in the test statistic profile. We know that these
peaks are false because we have already destroyed the association between markers
and phenotypes. We record the value of the test statistic at the highest peak of the
profile and denote it by �1. We then reshuffle the data and scan the genome again. We
may find some false peaks again. We then record the highest peak and write down
the value, �2, and put it in the dataset. We repeat the reshuffling process many times
to form a large sample of �’s, denoted by f�1; : : : ; �M g, whereM is a large number,
say 1,000. These � values will form a distribution, called the null distribution. The
95 % or 99 % quantile of the null distribution is the empirical critical value for our
test statistic. We then compare our test statistic for each marker (from the original
data analysis) against this empirical critical value. If the test statistic of a marker
is larger than this critical value, we can declare this marker as being significant.
Note that permutation test is time consuming, but it is realistic with the advanced
computing system currently available in most laboratories.

We now provide an example to show how to use the permutation test to draw
the critical value of a test statistic. Table 8.1 gives a small sample of ten plants (the
original dataset).

Ten randomly reshuffled samples are demonstrated in Table 8.2. We can see that
the first observation of sample 1 (S1) takes the phenotype of plant number 6 while
the genotypes of the five markers remain unchanged. Another example is that the
second observation of sample 2 (S2) takes the phenotype of plant number 8 while
the genotypes of the five markers are still the genotypes for plant number 2.

The phenotypic values corresponding to the ten reshuffled samples are given in
Table 8.3. Each sample is subject to genome scanning, i.e., five F -test statistics
are calculated, one for each marker. The maximum F -test statistic value for each
reshuffled sample is given in the last row of Table 8.3. For example, the maximum
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Table 8.2 Plant IDs of ten
randomly reshuffled samples,
denoted by S1; S2; : : : ; S10 ,
respectively

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

6 5 9 10 5 6 2 10 1 10
2 8 6 8 1 2 7 6 4 5
4 1 5 7 8 4 1 9 3 9
3 10 1 4 10 3 10 8 5 3
8 3 2 1 7 8 4 5 8 1
9 4 3 5 2 9 3 3 7 8

10 7 10 2 4 10 8 2 9 2
1 9 7 6 3 1 9 1 10 6
7 6 8 3 6 7 6 7 6 7
5 2 4 9 9 5 5 4 2 4

Table 8.3 The corresponding phenotypic values and the maximum F -test statistical values (last
row) in the ten randomly reshuffled samples

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

64.3 67.4 63.7 55.0 67.4 64.3 54.2 55.0 55.0 55.0
54.2 57.2 64.3 57.2 55.0 54.2 54.0 64.3 66.6 67.4
66.6 55.0 67.4 54.0 57.2 66.6 55.0 63.7 61.6 63.7
61.6 55.0 55.0 66.6 55.0 61.6 55.0 57.2 67.4 61.6
57.2 61.6 54.2 55.0 54.0 57.2 66.6 67.4 57.2 55.0
63.7 66.6 61.6 67.4 54.2 63.7 61.6 61.6 54.0 57.2
55.0 54.0 55.0 54.2 66.6 55.0 57.2 54.2 63.7 54.2
55.0 63.7 54.0 64.3 61.6 55.0 63.7 55.0 55.0 64.3
54.0 64.3 57.2 61.6 64.3 54.0 64.3 54.0 64.3 54.0
67.4 54.2 66.6 63.7 63.7 67.4 67.4 66.6 54.2 66.6

F -test 2.12 1.28 3.51 1.85 2.33 4.51 3.21 3.95 1.11 0.95

F-value in the first sample (S1) is 2.12, the maximum F-value for S2 is 1.28, and
so on. We then sorted the ten F-values from the ten samples in descending order as
shown in the following sequence:

f4:51; 3:95; 3:51; 3:21; 2:33; 2:12; 1:85; 1:28; 1:11; 0:95g

The ten F-values are assumed to be sampled from the null distribution. The empirical
90 % quantile is 3.95, which can be used as the critical value for the F -test statistic
to compare under the type I error of 0.10. The number of reshuffled samples in
the example is not sufficiently large to give 95 % quantile for the type I error of
˛ D 0:05. In practice, the number of randomly reshuffled samples depends on ˛ D
0:05 due to Monte Carlo error. Nettleton and Doerge (2000) recommended that the
permutation sample size should be at least 5

˛
, where ˛ is the experiment-wise type I

error rate. In permutation analysis, there is no such a thing as nominal type I error.
In practice, we often choose 1,000 as the permutation sample size.

Permutation test is not a method for genome scanning; rather, it is only a way
to draw an empirical critical value of a test statistic for us to decide statistical
significance of a marker. It applies to all test statistics, e.g., the F -test, the W -test,
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and the likelihood ratio test. The phrase “permutation test” can be confusing because
it is not a method for significance test. “Permutation analysis” may be a better phrase
to describe this empirical approach of critical value calculation.

8.7 Piepho’s Approximate Critical Value

Permutation analysis is perhaps the best method for drawing the empirical critical
value to control the genome-wise type I error rate. However, it can be time con-
suming. Piepho (2001) developed an approximate method, which does not require
randomly reshuffling of the data. The method simply uses exiting test statistical
values of all points across the genome. The test statistic must be the likelihood
ratio test statistic. If the test statistic is the LOD score, a simple conversion to
the likelihood ratio test statistic is required. The W -test statistic may also be used
because it also follows a chi-square distribution under the null model. Let ˇ D 0:05
be the genome-wise type I error and C D �2k;1�˛ be the .1 � ˛/ � 100% quantile
of the chi-square distribution, and k (the degrees of freedom of the test statistic)
is the number of genetic effects subject to statistical test, where k D 1 for a BC
design and k D 2 for an F2 design. The following relations provide a way to solve
for C D �2k;1�˛ , the critical value for the likelihood ratio test statistic to compare so
that the genome-wise type I error is controlled at ˇ.

ˇ D m Pr.�2k > C/C
2

� 1
2
k
C

� 1
2
.1�k/e� 1

2
C


 .k
2
/

m
X

iD1
vi (8.19)

where m is the number of chromosomes and 
 .k
2
/ is the gamma function. The vi

for the i th chromosome is defined as
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ˇ
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ˇ
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�2 �
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ˇ

ˇ

ˇC � � � C
ˇ

ˇ

ˇ

p

�mi�1 �
p

�mi

ˇ

ˇ

ˇ (8.20)

where �l for l D 1; : : : ; mi is the likelihood ratio test statistic for marker l in
chromosome i and mi is the total number of markers in chromosome i . Once
ˇ is given, the above equation is simply a function of C . A numerical solution
can be found using the bisection algorithm. Once C is found, the type I error for
an individual marker can be obtained using the inverse function of the chi-square
distribution function. The gamma function 
 .k

2
/ depends on k, the number of

genetic effects. For the common designs of experiments, k only takes 1, 2, or 3.
For example, k D 1 for BC, DH (double haploid), and RIL (recombinant inbred
line) designs. If the additive effect is the only one to be tested in the F2 design, k
also equals 1. If both the additive and dominance effects are tested in the F2 design,
k D 2. In a four-way cross design, k equals 3. Therefore, we only need the value of


 .1
2
/ D p
 , 
 .2

2
/ D 
 .1/ D 1, and 
 .3

2
/ D

p



2
.
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8.8 Theoretical Consideration

Genome scanning described in this chapter refers to marker analysis. Since a marker
is not a QTL, the estimated marker effect only reflects a fraction of the QTL effect.
Take a BC design as an example. Assume that a QTL with effect a is d cM away
from a marker. If we use this marker to estimate the QTL effect, the marker effect
will not be equal to a; rather, it will be .1 � 2r/a, where r D 1

2
.1 � e�d=.2�100// is

the recombination fraction between the marker and the QTL. The marker effect is
only a fraction of the QTL effect. This fraction is .1 � 2r/, which is the correlation
coefficient between the marker and the QTL genotype indicator variables. When
r D 0, a situation where the marker overlaps with the QTL, the marker effect is
identical to the QTL effect. On the other hand, if r D 0:5, a situation where the
marker is not linked to the QTL, the marker effect equals zero, regardless how
large the QTL effect is. When 0 < r < 0:5, what we estimate for the marker is
a confounded effect between the QTL effect and the linkage parameter. A small
marker effect may be due to a large QTL effect but weakly linked to the marker or a
small QTL effect with a strong linkage. There is no way to tell the actual QTL effect
unless more markers are taken into account simultaneously, which is the topic to be
addressed in the next chapter when interval mapping is introduced.

We now prove that the correlation between the marker and the QTL is 1�2r . Let
X be the indicator variable for the QTL genotype, i.e., X D 1 for A1A1 and X D 0
for A1A2. Let M be the corresponding indicator variable for the marker genotype,
i.e., M D 1 and M D 0, respectively, for the two genotypes of the marker. The
joint distribution of X and M is given in Table 8.4. This joint distribution table is
symmetrical, meaning that bothM andX have the same marginal distribution. First,
let us look at the marginal distribution of variable M . From the joint distribution
table, we get Pr.M D 1/ D 1�r

2
C r

2
D 1

2
and Pr.M D 0/ D r

2
C 1�r

2
D 1

2
.

Therefore, the variance of M is

var.M/ DE.M2/ �E2.M/

D
�

1

2
� 12 C 1

2
� 02

�

�
�

1

2
� 1C 1

2
� 0

�2

D1
4

(8.21)

Table 8.4 Joint distribution
of X (QTL genotype) and M
(marker genotype)

M
1 0

1 .1� r/=2 r=2 1=2

X
0 r=2 .1� r/=2 1=2

1=2 1=2
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Similarly, var.X/ D 1
4
, due to the symmetrical nature. We now evaluate the

covariance betweenM and X .

cov.M;X/ D E.MX/� E.M/E.X/

D 1 � r
2
� 1 � 1 � 1

2
� 1
2
D 1

4
Œ2.1 � r/ � 1�

D 1

4
.1 � 2r/ (8.22)

The correlation coefficient between the two variables is

�MX D cov.M;X/
p

var.M/var.X/
D

1
4
.1 � 2r/

1
4

D 1 � 2r (8.23)

Because of the symmetry ofX andM , this correlation is also equal to the regression
coefficient, i.e.,

ˇXM D cov.M;X/

var.M/
D

1
4
.1 � 2r/

1
4

D 1 � 2r (8.24)

Recall that when a marker is used to estimate the effect of a linked QTL, the QTL
effect will be biased by a factor .1� 2r/. This fraction is the correlation between X
andM . In fact, it is the regression coefficient ofX onM . Because �MX D ˇXM , we
say .1� 2r/ is the correlation coefficient. We now show why the factor of reduction
is ˇXM . Recall that the QTL model is

yj D b0 C E.Xj jMj/b1 C ej (8.25)

whereE.Xj jM/ is the conditional mean of Xj givenMj . We use marker genotype
Mj to infer the QTL genotype Xj . The conditional mean can be expressed as the
predicted value of X fromM using the following regression equation:

E.Xj jMj/ D E.Xj /CMjˇXM D 1

2
CMj.1 � 2r/ (8.26)

Substituting this (8.26) into the above model (8.25), we get

yj D
�

b0 C 1

2

�

CMj.ˇXMb1/C ej

D b�
0 CMjb

�
1 C ej (8.27)

where b�
0 D b0 C 1

2
and b�

1 D ˇXMb1 D .1� 2r/a. Note that b1 D a is the genetic
effect and ˇXM D 1 � 2r as given in (8.24).



Chapter 9
Interval Mapping

Interval mapping is an extension of the individual marker analysis so that two
markers are analyzed at a time. In the marker analysis (Chap. 8), we cannot
estimate the exact position of a QTL. With interval mapping, we use two markers
to determine an interval, within which a putative QTL position is proposed.
The genotype of the putative QTL is not observable but can be inferred with a certain
probability using the three-point or multipoint method introduced in Chap. 4. Once
the genotype of the QTL is inferred, we can estimate and test the QTL effect at that
particular position. We divide the interval into many putative positions of QTL with
one or two cM apart and investigate every putative position within the interval. Once
we have searched the current interval, we move on to the next interval and so on
until all intervals have been searched. The putative QTL position (not necessarily at
a marker) that has the maximum test statistical value is the estimated QTL position.
Figure 9.1 demonstrates the process of genome scanning for markers only (panel a),
for markers and virtual markers (panel b), and for every point of the chromosome
(panel c).

Interval mapping was originally developed by Lander and Botstein (1989) and
further modified by numerous authors. Interval mapping has revolutionized genetic
mapping because we can really pinpoint the exact location of a QTL. In each of the
four sections that follow, we will introduce one specific statistical method of interval
mapping based on the F2 design. Methods of interval mapping for a BC design are
straightforward and thus will not be discussed in this chapter. Maximum likelihood
(ML) method of interval mapping (Lander and Botstein 1989) is the optimal method
for interval mapping. Least-squares (LS) method (Haley and Knott 1992) is a
simplified approximation of Lander and Botstein method. The iteratively reweighted
least-squares (IRLS) method (Xu 1998a,b) is a further improved method over
the least-squares method. Recently Feenstra et al. (2006) developed an estimating
equation (EE) method for QTL mapping, which is an extension of the IRLS with
improved performance. Han and Xu (2008) developed a Fisher scoring algorithm
(FISHER) for QTL mapping. Both the EE and FISHER algorithms maximize the
same likelihood function, and thus, they generate identical result. In this chapter,
we introduce the methods based on their simplicity rather than their chronological

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 9,
© Springer Science+Business Media, LLC 2013
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Fig. 9.1 The LOD test statistics for (a) marker effects (top panel), (b) virtual marker effects (panel
in the middle), and (c) every point of a simulated chromosome (bottom panel)

orders of development. Therefore, the methods will be introduced in the following
order: LS, IRLS, FISHER, and ML. Bayesian method will be discussed in a later
chapter where multiple QTL mapping is addressed.

9.1 Least-Squares Method

The LS method was introduced by Haley and Knott (1992) aiming to improving
the computational speed. The statistical model for the phenotypic value of the j th
individual is

yj D Xjˇ CZj � C "j (9.1)
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where ˇ is a p � 1 vector for some model effects that are irrelevant to QTL effects,
Xj is a 1 � p known design vector, � D fa; d g is a 2 � 1 vector for QTL effects of
a putative locus (a for additive effect and d for dominance effect), andZj is a 1� 2
vector for the genotype indicator variable defined as

Zj D

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

H1

H2

H3

for A1A1

for A1A2

for A2A2

(9.2)

whereHk for k D 1; 2; 3 is the kth row of matrix

H D

2

6

6

4

C1 0
0 1

�1 0

3

7

7

5

(9.3)

The residual error "j is assumed to be a N.0; 	2/ variable. Although normal
distribution for "j is not a required assumption for the LS method, it is required
for the ML method. It is important to include non-QTL effects ˇ in the model to
control the residual error variance as small as possible. For example, location and
year effects are common in replicated experiments. These effects are not related to
QTL but will contribute to the residual error if not included in the model. If there
is no such a non-QTL effect to consider in a nice designed experiment, ˇ will be a
single parameter (intercept) and Xj will be unity across all j D 1; : : : ; n.

With interval mapping, the QTL genotype is never known unless the putative
QTL position overlaps with a fully informative marker. Therefore, Haley and Knott
(1992) suggested to replace the unknown Zj by the expectation of Zj conditional
on flanking marker genotype. Let pj .1/, pj .0/, and pj .�1/ be the conditional
probabilities for the three genotypes given flanking marker information (see Chap. 4
for the method of calculating conditional probability). The LS model of Haley and
Knott (1992) is

yj D Xjˇ C Uj� C ej (9.4)

where

Uj D E.Zj / D pj .C1/H1 C pj .0/H2 C pj .�1/H3 (9.5)

is the conditional expectation of Zj . The residual error ej (different from "j )
remains normal with mean zero and variance 	2, although this assumption has been
violated (see next section). The least-squares estimate of ˇ and � is
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(9.6)
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and the estimated residual error variance is

O	2 D 1

n � p � 2
n
X

jD1
.yj �Xj Ǒ � Uj O�/2 (9.7)

The variance–covariance matrix of the estimated parameters is
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which is a .p C 2/ � .p C 2/ matrix. Let

var. O�/ D V D
"

var. Oa/ cov. Oa; Od/
cov. Oa; Od/ var. Od/

#

(9.9)

be the 2�2 lower diagonal bock of matrix (9.8). The standard errors of the estimated
additive and dominance effects are the square roots of the diagonal elements of
matrix (9.9).

We can use either the F -test or the W -test statistic to test the hypothesis of H0 W
� D 0. The W -test statistic is

W D O�T V �1 O� D
h

Oa Od
i

"

var. Oa/ cov. Oa; Od/
cov. Oa; Od/ var. Od/

#�1 " Oa
Od

#

(9.10)

The likelihood ratio test statistic can also be applied if we assume that ej �
N.0; 	2/ for all j D 1; : : : ; n. The log likelihood function for the full model is

L1 D �n
2

ln. O	2/ � 1

2 O	2
n
X

jD1
.y �Xj Ǒ � Uj O�/2

� �n
2

�

ln. O	2/C 1� (9.11)

The reduced model underH0 W � D 0 is

L0 D �n
2

ln. OO	2/� 1

2 OO	2
n
X

jD1
.y � Xj OǑ/2

� �n
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(9.12)
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where
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and

OO	2 D 1

n � p
n
X

jD1
.yj � Xj OǑ/2 (9.14)

The likelihood ratio test statistic is

� D �2.L0 �L1/ (9.15)

9.2 Weighted Least Squares

Xu (1995) realized that the LS method is flawed because the residual variance is
heterogeneous after replacingXj by its conditional expectationUj . The conditional
variance of Xj given marker information varies from one individual to another, and
it will contribute to the residual variance. Xu (1998a,b) modified the exact model

yj D Xjˇ CZj � C "j (9.16)

by

yj D Xjˇ C Uj � C .Zj � Uj /� C "j (9.17)

which differs from the Haley and Knott’s (1992) model by .Zj �Uj /� . SinceZj is
not observable, this additional term is merged into the residual error if ignored. Let

ej D .Zj � Uj /� C "j (9.18)

be the new residual error. The Haley and Knott’s (1992) model can be rewritten as

yj D Xjˇ C Uj� C ej (9.19)

Although we assume "j � N.0; 	2/, this does not validate the normal assumption
of ej . The expectation for ej is

E.ej / D ŒE.Zj / � Uj �� C E."j / D 0 (9.20)

The variance of ej is

var.ej / D 	2j D �T var.Zj /� C 	2 D
�

1

	2
�T ˙j � C 1

�

	2 (9.21)
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where˙j D var.Zj /, which is defined as a conditional variance–covariance matrix
given flanking marker information. The explicit forms of ˙j are

˙j D E.ZT
j Zj /� E.ZT

j /E.Zj /; (9.22)

where

E.ZT
j Zj / D pj .1/HT

1 H1 C pj .0/HT
2 H2 C pj .�1/HT

3 H3 (9.23)

and

E.Zj / D Uj D pj .1/H1 C pj .0/H2 C pj .�1/H3: (9.24)

Let
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	2 (9.25)

where

Wj D
�

1
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�T˙j � C 1

��1
(9.26)

is the weight variable for the j th individual. The weighted least-squares estimate of
the parameters is
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(9.27)

and

O	2 D 1

n � p � 2
n
X

jD1
Wj .yj � Xj Ǒ � Uj O�/2 (9.28)

Since Wj is a function of 	2, iterations are required. The iteration process is
demonstrated as below:

1. Initialize � and 	2.
2. Update ˇ and � using 9.27.
3. Update 	2 using 9.28.
4. Repeat Step 2 to Step 3 until a certain criterion of convergence is satisfied.

The iteration process is very fast, usually taking less than 5 iterations to converge.
Since the weight is not a constant (it is a function of the parameters), repeatedly
updating the weight is required. Therefore, the weighted least-squares method is
also called iteratively reweighted least squares (IRLS). The few cycles of iterations
make the results of IRLS very close to that of the maximum likelihood method (to be
introduced later). A nice property of the IRLS is that the variance–covariance matrix
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of the estimated parameters is automatically given as a by-product of the iteration
process. This matrix is
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As a result, the F - or W -test statistic can be used for significance test. Like the
least-squares method, a likelihood ratio test statistic can also be established for
significance test. The L0 under the null model is the same as that described in the
section of least-squares method. The L1 under the alternative model is

L1 D �n
2

ln. O	2/C 1
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n
X
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ln.Wj / � 1

2 O	2
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ln. O	2/C 1�C 1

2

n
X

jD1
ln.Wj / (9.30)

9.3 Fisher Scoring

The weighted least-squares solution described in the previous section does not
maximize the log likelihood function (9.30). We can prove that it actually maximizes
(9.30) if Wj is treated as a constant. The fact that Wj is a function of parameters
makes the above weighted least-squares estimates suboptimal. The optimal solution
should be obtained by maximizing (9.30) fully without assuming Wj being a
constant.

Recall that the linear model for yj is

yj D Xjˇ C Uj� C ej (9.31)

where the residual error ej D .Zj � Uj /� C "j has a zero mean and variance

	2j D
�

1

	2
�T˙j � C 1

�

	2 D 1

Wj

	2 (9.32)

If we assume that ej � N.0; 	2j /, we can construct the following log likelihood
function:

L.�/ D �n
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n
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Wj .y � Xjˇ � Uj �/2 (9.33)
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where � D fˇ; �; 	2g is the vector of parameters. The maximum likelihood solution
for the above likelihood function is hard to obtain becauseWj is not a constant but a
function of the parameters. The Newton–Raphson algorithm may be adopted, but it
requires the second partial derivative of the log likelihood function with respect
to the parameter, which is very complicated. In addition, the Newton–Raphson
algorithm often misbehaves when the dimensionality of � is high. We now introduce
the Fisher scoring algorithm for finding the MLE of � . The method requires the first
partial derivative of L.�/ with respect to the parameters, called the score vector and
denoted by S.�/, and the information matrix, denoted by I.�/. The score vector has
the following form:
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(9.34)

where

�j D Xjˇ C Uj� (9.35)

The information matrix is given below
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The Fisher scoring algorithm is implemented using the following iteration equation:

�.tC1/ D �.t/ C I�1.�.t//S.�.t// (9.37)

where �.t/ is the parameter value at iteration t and �.tC1/ is the updated value. Once
the iteration process converges, the variance–covariance matrix of the estimated
parameters is automatically given, which is

var. O�/ D I�1. O�/ (9.38)

The detailed expression of this matrix is
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(9.39)

which can be compared with the variance–covariance matrix of the iteratively
reweighted least-squares estimate given in the previous section (9.29).

We now give the derivation of the score vector and the information matrix. We
can write the log likelihood function as
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n
X

jD1
Lj .�/ (9.40)
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and

�j D Xjˇ C Uj� (9.42)

The score vector is a vector of the first partial derivatives, as shown below:
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Therefore, we only need to take the sum of the first partial derivatives across
individuals to get the score vector. Note that when deriving Sj .�/, we need the
following derivatives:
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and
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The information matrix is
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is the second partial derivative of Lj .�/ with respect to the parameters and called
the Hessian matrix. Derivation of this matrix is very tedious, but the negative
expectation of the Hessian matrix is identical to the expectation of the product of
the score vector (Wedderburn 1974),

�EŒHj .�/� D EŒSj .�/STj .�/� (9.49)

Using this identity, we can avoid the Hessian matrix. Therefore, the information
matrix is
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Note that the expectation is taken with respect to the phenotypic value yj. In other
words, after taking the expectation, variable yj will disappear from the expressions.
There are six different blocks in the above matrix. We will only provide the
derivation for one block as an example. The derivations of the remaining five blocks
are left to students for practice. The result can be found in Han and Xu (2008). We
now show the derivation of the first block of the matrix. The product (before taking
the expectation) is
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The expectation of it is
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The second line of the above equation requires the following identity:
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	2 (9.54)

Taking the sum of (9.53) across individuals, we get

I11.�/ D 1
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n
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jD1
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j WjXj (9.55)

which is the first block of the information matrix. When deriving the expectations
for the remaining five blocks, we need the following expectations:
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The above expectations requires the assumption of yj � N.�j ; 	
2
j / where 	2j D

W �1
j 	2.
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9.4 Maximum Likelihood Method

The maximum likelihood method (Lander and Botstein 1989) is the optimal one
compared to all other methods described in this chapter. The linear model for the
phenotypic value of yj is

yj D Xjˇ CZj � C "j (9.57)

where "j � N.0; 	2/ is assumed. The genotype indicator variable Zj is a missing
value because we cannot observe the genotype of a putative QTL. Rather than
replacing Zj by Uj as done in the least-squares and the weighted least-squares
methods, the maximum likelihood method takes into consideration the mixture
distribution of yj . We have learned the mixture distribution in Chap. 7 when we deal
with segregation analysis of quantitative traits. We now extend the mixture model
to interval mapping. When the genotype of the putative QTL is observed, the
probability density of yj is

fk.yj / D Pr.yj jZj D Hk/

D 1p
2
	

exp

�

� 1

2	2
.yj � Xjˇ CHk�/

2

�

(9.58)

When flanking marker information is used, the conditional probability that Zj D
Hk is

pj .k/ D Pr.Zj D Hk/;8k D 1; 2; 3 (9.59)

for the three genotypes, A1A1, A1A2, and A2A2. These probabilities are different
from the Mendelian segregation ratio ( 1

4
; 1
2
; 1
4
) as described in the segregation

analysis. They are the conditional probabilities given marker information and thus
vary from one individual to another because different individuals may have different
marker genotypes. Using the conditional probabilities as weights, we get the mixture
distribution

f .yj / D
3
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pj .2 � k/fk.yj / (9.60)

where
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(9.61)

is a special notation for the conditional probability and should not be interpreted as
pj times .2 � k/. The log likelihood function is
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L.�/ D
n
X

jD1
Lj .�/ (9.62)

where Lj .�/ D lnf .yj /.

9.4.1 EM Algorithm

The MLE of � can be obtained using any numerical algorithms but the EM algorithm
is generally more preferable than others because we can take advantage of the
mixture distribution. Derivation of the EM algorithm has been given in Chap. 7
when segregation analysis was introduced. Here we simply give the result of the
EM algorithm. Assuming that the genotypes of all individuals are observed, the
maximum likelihood estimates of parameters would be
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(9.63)

and
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The EM algorithm takes advantage of the above explicit solutions of the parameters
by substituting all entities containing the missing value Zj by their posterior
expectations, i.e.,
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(9.65)

and
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E
�

.yj � Xjˇ �Zj �/2
�

(9.66)

where the expectations are taken using the posterior probabilities of QTL genotypes,
which is defined as

p�
j .2 � k/ D

pj .2 � k/fk.yj /
P3

k0D1 pj .2 � k0/fk0.yj /
;8k D 1; 2; 3 (9.67)
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The posterior expectations are
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Since fk.yj / is a function of parameters, thus p�
j .2 � k/ is also a function of

the parameters. However, the parameters are unknown, and they are the very
quantities we want to find out. Therefore, iterations are required. Here is the iteration
process:

1. Initialize � D �.t/ for t D 0.
2. Calculate the posterior expectations using (9.67) and (9.68).
3. Update parameters using (9.65) and (9.66).
4. Increment t by 1, and repeat Step 2 to Step 3 until a certain criterion of

convergence is satisfied.

Once the iteration converges, the MLE of the parameters is O� D �.t/, where t is the
number of iterations required for convergence.

9.4.2 Variance–Covariance Matrix of O�

Unlike the weighted least-squares and the Fisher scoring algorithms where the
variance–covariance matrix of the estimated parameters is automatically given as a
by-product of the iteration process, the EM algorithm requires an additional step to
calculate this matrix. The method was developed by Louis (1982), and it requires the
score vectors and the Hessian matrix for the complete-data log likelihood function
rather than the actual observed log likelihood function. The complete-data log
likelihood function is the log likelihood function as if Zj were observed, which is
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n
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Lj .�;Z/ (9.69)

wheres

Lj .�;Z/ D �1
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2	2
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The score vector is
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The second partial derivative (Hessian matrix) is

H.�;Z/ D
n
X

jD1
Hj .�;Z/ (9.73)

where

Hj .�;Z/ D

2

6

6

6

6

6

4

@2Lj .�;Z/

@ˇ@ˇT
@2Lj .�;Z/

@ˇ@�T
@2Lj .�;Z/

@ˇ@	2

@2Lj .�;Z/

@�@ˇT
@2Lj .�;Z/

@�@�T
@2Lj .�;Z/

@�@	2

Lj .�;Z/

@	2@ˇT
Lj .�;Z/

@	2@�T
Lj .�;Z/

@	2@	2

3

7

7

7

7

7

5

(9.74)

The six different blocks of the above matrix are
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We now have the score vector and the Hessian matrix available for the complete-data
log likelihood function. The Louis information matrix is

I.�/ D �EŒH.�;Z/� � EŒS.�;Z/ST .�;Z/� (9.76)

where the expectations are taken with respect to the missing value (Zj ) us-
ing the posterior probabilities of QTL genotypes. At the MLE of parameters,
EŒS. O�;Z/� D 0. Therefore,

EŒS.�;Z/ST .�;Z/� D varŒS.�;Z/�C EŒS.�;Z/�EŒST .�;Z/�
D varŒS.�;Z/� (9.77)

As a result, an alternative expression of the Louis information matrix is
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The six different blocks of the above matrix are
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Again, all the expectations are taken with respect to the missing value Zj , not the
observed phenotype yj . This is very different from the information matrix of the
Fisher scoring algorithm. The variance–covariance matrix of the score vector is

varŒS.�;Z/� D
n
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varŒSj .�;Z/� (9.82)

where varŒSj .�;Z/� is a symmetric matrix as shown below:
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@Lj .�;Z/

@	2
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�

@Lj .�;Z/

@	2
;
@Lj .�;Z/

@ˇT
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�

@Lj .�;Z/

@	2
;
@Lj .�;Z/

@�T

	

var
�

@Lj .�;Z/

@	2

	

3

7

7

7

7

7

5

(9.83)

The variances are calculated with respect to the missing valueZj using the posterior
probabilities of QTL genotypes. We only provide the detailed expression of one
block of the above matrix. The remaining blocks are left to students for practice.
The block that is used as an example is the (1,2) block.

cov

�

@Lj .�;Z/

@̌
;
@Lj .�;Z/

@�T

�

D E
�

@Lj .�;Z/

@̌

@Lj .�;Z/

@�T

�

�E
�

@Lj .�;Z/

@̌

�

E

�

@Lj .�;Z/

@�T

�

(9.84)

where

E

�

@Lj .�;Z/

@̌

�

D 1

	2
XT
j Œyj �Xjˇ � E.Zj /��

E

�

@Lj .�;Z/

@�T

�

D 1

	2
EŒ.yj � Xjˇ �Zj �/Zj �

E

�

@Lj .�;Z/

@̌

@Lj .�;Z/

@�T

�

D 1

	4
E
h

XT
j .yj �Xjˇ �Zj �/2Zj

i

(9.85)

We already learned how to calculate E.Zj / using the posterior probability of QTL
genotype. The other expectations are

EŒ.yj � Xjˇ �Zj �/Zj � D
3
X

kD1
p�
j .2 � k/.yj �Xjˇ �Hk�/Hk

E
h

XT
j .yj � Xjˇ �Zj �/2ZT

j

i

D
3
X

kD1
p�
j .2 � k/XT

j .yj � Xjˇ �Hk�/
2HT

k

(9.86)
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When calculating the information matrix, the parameter � is substituted by O� , the
MLE of � . Therefore, the observed information matrix is

I. O�/ D �EŒH. O�;Z/� � varŒS. O�;Z/� (9.87)

and the variance–covariance matrix of the estimated parameters is var. O�/ D I�1. O�/.

9.4.3 Hypothesis Test

The hypothesis thatH0 W � D 0 can be tested using several different ways. If var. O�/
is already calculated, we can use the F - or W -test statistic, which requires var. O�/,
the variance–covariance matrix of the estimated QTL effects. It is a submatrix of
var. O�/. The W -test statistic is

W D O�T var�1. O�/ O� (9.88)

Alternatively, the likelihood ratio test statistic can be applied to test H0. We have
presented two log likelihood functions; one is the complete-data log likelihood
function, denoted by L.�;Z/, and the other is the observed log likelihood function,
denoted by L.�/. The log likelihood function used to construct the likelihood
ratio test statistic is L.�/, not L.�;Z/. This complete-data log likelihood function,
L.�;Z/, is only used to derive the EM algorithm and the observed information
matrix. The likelihood ratio test statistic is

� D �2.L0 �L1/

where L1 D L. O�/ is the observed log likelihood function evaluated at O� D
f Ǒ; O�; O	2g and L0 is the log likelihood function evaluated at OO� D f OǑ; 0; OO	2g under

the restricted model. The estimated parameter OO� under the restricted model and L0
are the same as those given in the section of the least-squares method.

9.5 Remarks on the Four Methods of Interval Mapping

The LS method (Haley and Knott 1992) is an approximation of the ML method,
aiming to improve the computational speed. The method has been extended
substantially to many other situations, e.g., multiple-trait QTL mapping (Knott
and Haley 2000) and QTL mapping for binary traits (Visscher et al. 1996). When
used for binary and other nonnormal traits, the method is no longer called LS.
Because of the fast speed, the method remains a popular method, even though
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the computer power has increased by many orders of magnitude since the LS
was developed. In some literature (e.g., Feenstra et al. 2006), the LS method is
also called the H–K method in honor of the authors, Haley and Knott (1992).
Xu (1995) noticed that the LS method, although a good approximation to ML in
terms of estimates of QTL effects and test statistic, may lead to a biased (inflated)
estimate for the residual error variance. Based on this work, Xu (1998a,b) eventually
developed the iteratively reweighted least-squares (IRLS) method. In these works
(Xu 1998a,b), the iteratively reweighted least squares was abbreviated IRWLS. Xu
(1998b) compared LS, IRLS, and ML in a variety of situations and concluded
that IRLS is always better than LS and as efficient as ML. When the residual
error does not have a normal distribution, which is required by the ML method,
LS and IRLS can be better than ML. In other words, LS and IRLS are more
robust than ML to the departure from normality. Kao (2000) and Feenstra et al.
(2006) conducted more comprehensive investigation on LS, IRLS, and ML and
found that when epistatic effects exist, LS can generate unsatisfactory results, but
IRLS and ML usually map QTL better than LS. In addition, Feenstra et al. (2006)
modified the weighted least-squares method by using the estimating equations (EE)
algorithm. This algorithm further improved the efficiency of the weighted least
squares by maximizing an approximate likelihood function. Most recently, Han
and Xu (2008) developed a Fisher scoring (FISHER) algorithm to maximize the
approximate likelihood function. Both the EE and Fisher algorithm maximize the
same likelihood function, and thus, they produce identical results.

The LS method ignores the uncertainty of the QTL genotype. The IRLS, FISHER
(or EE), and ML methods use different ways to extract information from the
uncertainty of QTL genotype. If the putative location of QTL overlaps with a
fully informative marker, all four methods produce identical result. Therefore, if
the marker density is sufficiently high, there is virtually no difference for the four
methods. For low marker density, when the putative position is far away from either
flanking marker, the four methods will show some difference. This difference will
be magnified by large QTL. Han and Xu (2008) compared the four methods in a
simulation experiment and showed that when the putative QTL position is fixed
in the middle of a 10-cM interval, the four methods generated almost identical
results. However, when the interval expands to 20 cM, the differences among the
four methods become noticeable.

Interval mapping with a 1-cM increment for the mouse 10th-week body weight
data was conducted using all the four methods by Han and Xu (2008). The LOD test
statistic profiles are shown in Fig. 9.2 for the four methods of interval mapping (LS,
IRLS, FISHER, and ML). There is virtually no difference for the four methods.
The difference in LOD profiles is noticeable when the marker density is low.
Comparisons for the estimated QTL effects were also conducted for the mouse data.
Figure 9.3 shows the estimated QTL effect profiles along the genome for the four
methods. Again the difference is barely noticeable.

A final remark on interval mapping is the way to infer the QTL genotype
using flanking markers. If only flanking markers are used to infer the genotype
of a putative position bracketed by the two markers, the method is called interval
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Fig. 9.2 The LOD test statistic profiles for four methods of interval mapping (LS, least square;
IRLS, iteratively reweighted least square; FISHER, Fisher scoring; and ML, maximum likelihood).
The mouse data were obtained from Lan et al. (2006). The trait investigated is the 10th-week body
weight. The 19 chromosomes (excluding the sex chromosome) are separated by the vertical dotted
lines. The unevenly distributed black ticks on the horizontal axis indicate the marker locations
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mouse data were obtained from Lan et al. (2006). The trait investigated is the 10th-week body
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mapping. Strictly speaking, interval mapping only applies to fully informative
markers because we always use flanking markers to infer the QTL genotype.
However, almost all datasets obtained from real-life experiments contain missing,
uninformative, or partially informative markers. To extract maximum information
from markers, people always use the multipoint method (Jiang and Zeng 1997)
to infer a QTL genotype. The multipoint method uses more markers or even all
markers of the entire chromosome (not just flanking markers) to infer the genotype
of a putative position. With the multipoint analysis, we no longer have the notion of
interval, and thus, interval mapping is no longer an appropriate phrase to describe
QTL mapping. Unfortunately, a more appropriate phrase has not been proposed,
and people are used to the phrase of interval mapping. Therefore, the so-called
interval mapping in the current literature means QTL mapping under a single QTL
model, regardless of whether the genotype of a putative QTL position is inferred
from flanking markers or all markers.



Chapter 10
Interval Mapping for Ordinal Traits

Many disease resistance traits in agricultural crops are measured in ordered
categories. The generalized linear model (GLM) methodology (Nelder and Wed-
derburn 1972; Wedderburn 1974; McCullagh and Nelder 1999) is an ideal tool
to analyze these traits. Ordinal traits are usually controlled by the segregation of
multiple QTL and environmental factors. The genetic architecture of such traits
can be studied using linkage analysis. One can analyze the association of each
marker with the disease phenotype. If the marker information is fully observable,
i.e., marker genotypes can be observed, the standard GLM methodology can be
directly applied to the association study by screening markers of the entire genome
for their association with the disease trait. Many statistical software packages, e.g.,
SAS (SAS Institute 2008b), have built-in functions or procedures to perform the
standard GLM analysis. One can simply execute the built-in procedures many
times, one for each marker, to scan the entire genome without developing a
new computer program. In any genetic experiments, missing marker genotypes
are unavoidable. In addition, interval mapping requires detection of association
between the trait phenotype and loci that are not necessarily located at marker
positions. Genotypes of these additional loci are never observed. Therefore, GLM
with missing values must be applied. There is a rich literature on the missing value
GLM analysis (Ibrahim 1990; Horton and Laird 1999; Ibrahim et al. 2002, 2005).
The most popular method is the maximum likelihood (ML) method implemented
via the EM algorithm (Horton and Laird 1999). Other methods are also available,
such as multiple imputation (MI, Rubin (1987)), fully Bayesian (FB, Ibrahim
et al. (2002)) and weighted estimating equations (WEE, Ibrahim et al. (2005)).
A complete review on the methods can be found in Ibrahim et al. (2005). Hackett and
Weller (1995) first applied the ML method to mapping ordinal trait QTL. They took
advantage of an existing software package named GeneStat for the standard GLM
analysis (without missing covariates) and modified the software by incorporating
a weight variable. The modified GLM for missing data duplicates the data by the
number of genotypes per locus, e.g., two for a backcross population and three for
an F2 population. The weight variable is simply the posterior probabilities of the
missing genotypes. The weight variable is updated iteratively until the iteration
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converges. The modified GLM program is not necessarily simpler than a program
written anew. Furthermore, the variance–covariance matrix of estimated parameters
is not available for the modified GML algorithm. Xu et al. (2003) developed an
explicit EM algorithm using the posterior probability of missing covariates as
the weight variable and further provided the variance–covariance matrix of the
estimated parameters by using the Louis’ (1982) adjustment for the information
matrix. Standard deviations (square roots of the variances) of estimated parameters
represent the precisions of the estimates, which are required in the final report for
publication. The variance–covariance matrix of the estimated QTL effects can also
be used to calculate the Wald-test statistic (Wald 1943), which is an alternative test
that can replace the likelihood ratio test statistic. Although using the large sample
distribution for the likelihood ratio test gives more accurate approximation for small
and moderate-sized samples, the latter has a computational advantage since it does
not require calculation of the likelihood function under the null model (McCulloch
and Searle 2001). A missing QTL genotype usually has partial information, which
can be extracted from linked markers. This information can be used to infer the
QTL genotypes using several different ways (McCulloch and Searle 2001). In QTL
mapping for continuously distributed traits, mixture model (Lander and Botstein
1989) is the most efficient way to take advantage of marker information. The least-
squares method of Haley and Knott (1992) is the simplest way to incorporate
linked markers. Performances of the weighted least-squares method of Xu (1998a,b)
and estimating equations (EE) algorithm of Feenstra et al. (2006) are usually
between the least-squares and mixture model methods. These methods have been
successfully applied to QTL mapping for continuous traits, but they have not been
investigated for ordinal trait QTL mapping. This chapter will introduce several
alternative GLM methods for mapping quantitative trait loci of ordinal traits.

10.1 Generalized Linear Model

Suppose that a disease phenotype of individual j (j D 1; : : : ; n) is measured by an
ordinal variable denoted by Sj D 1; : : : ; p C 1, where p C 1 is the total number of
disease classes and n is the sample size. Let Yj D fYjkg;8k D 1; : : : ; p C 1, be a
.pC 1/� 1 vector to indicate the disease status of individual j . The kth element of
Yj is defined as

Yjk D
�

1

0

if Sj D k
if Sj ¤ k (10.1)

Using the probit link function, the expectation of Yjk is defined as

�jk D E.Yjk/ D ˚.˛k CXjˇ CZj �/ �˚.˛k�1 CXjˇ CZj �/ (10.2)
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where ˛k (˛0 D �1 and ˛pC1 D C1) is the intercept, ˇ is a q � 1 vector for
some systematic effects (not related to the effects of quantitative trait loci), and � is
an r � 1 vector for the effects of a quantitative trait locus. The symbol ˚.:/ is the
standardized cumulative normal function. The design matrix Xj is assumed to be
known, butZj may not be fully observable because it is determined by the genotype
of j for the locus of interest. Because the link function is probit, this type of analysis
is called probit analysis. Let �j D f�jkg be a .p C 1/ � 1 vector. The expectation
for vector Yj is E.Yj / D �j , and the variance matrix of Yj is

Vj D var.Yj / D  j C �j�Tj (10.3)

where  j D diag.�j /. The method to be developed requires the inverse of matrix
Vj . However, Vj is not of full rank. We can use a generalized inverse of Vj , such
as V �

j D  �1
j , in place of V �1

j . The parameter vector is � D f˛; ˇ; �g with a
dimensionality of .p C q C r/ � 1. Binary data is a special case of ordinal data in
that p D 1 so that there are only two categories, Sj D f1; 2g. The expectation of
Yjk is

�jk D
�

˚.˛1 CXjˇ CZj �/ �˚.˛0 CXjˇ CZj �/
˚.˛2 CXjˇ CZj �/ �˚.˛1 CXjˇ CZj �/

for k D 1
for k D 2 (10.4)

Because ˛0 D �1 and ˛2 D C1 in the binary case, we have

�jk D
�

˚.˛1 CXjˇ CZj�/
1 � ˚.˛1 CXjˇ CZj �/

for k D 1
for k D 2 (10.5)

We can see that �j2 D 1 � �j1 and

˚�1.�j1/ D ˛1 CXjˇ CZj � (10.6)

The link function is ˚�1.:/, and thus, it is called the probit link function. Once
we take the probit transformation, the model becomes a linear model. Therefore,
this type of model is called a generalized linear model (GLM). The ordinary linear
model we learned before for continuous traits is a special case of the GLM because
the link function is simply the identity, i.e.,

I�1.�j1/ D ˛1 CXjˇ CZj � (10.7)

or simply

�j1 D ˛1 CXjˇ CZj � (10.8)

Most techniques we learned for the linear model apply to the generalized linear
model.
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10.2 ML Under Homogeneous Variance

Let us first assume that the genotypes of the QTL are observed for all individuals.
In this case, variableZj is not missing. The log likelihood function under the probit
model is

L.�/ D
n
X

jD1
Lj .�/ (10.9)

where

Lj .�/ D
pC1
X

kD1
Yjk lnŒ˚.˛k CXjˇ CZj �/� ˚.˛k�1 CXjˇ CZj �/� (10.10)

and � D f˛; ˇ; �g is the vector of parameters. This is the simplest GLM problem,
and the classical iteratively reweighted least-squares approach for GLM (Nelder
and Wedderburn 1972; Wedderburn 1974) can be used without any modification.
The iterative equation under the classical GLM is given below:

�.tC1/ D �.t/ C I�1.�.t//S.�.t// (10.11)

where �.t/ is the parameter value in the current iteration, I.�.t// is the information
matrix, and S.�.t// is the score vector, both evaluated at �.t/. We can interpret

�� D I�1.�.t//S.�.t// (10.12)

in (10.11) as the adjustment for �.t/ to improve the solution in the direction that
leads to the ultimate maximum likelihood estimate of � . Equation (10.3) shows that
the variance of Yj is a function of the expectation of Yj . This special relationship
leads to a convenient way to calculate the information matrix and the score vector,
as given by Wedderburn (1974),

I.�/ D
Xn

jD1 D
T
j WjDj (10.13)

and

S.�/ D
Xn

jD1 D
T
j Wj .Yj � �j / (10.14)

where Wj D  �1
j . Therefore, the increment (adjustment) of the parameter can be

estimated using the following iteratively reweighted least-squares approach:

�� D
h
Xn

jD1 D
T
j WjDj

i�1 hXn

jD1 D
T
j Wj .Yj � �j /

i

(10.15)

where Dj is a .p C 1/ � .p C q C r/ matrix for the first partial derivatives of �j
with respect to the parameters and Wj D V �

j D  �1
j is the weight matrix. Matrix

Dj can be partitioned into three blocks,
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Dj D @�j

@�T
D
�

@�j

@˛T
@�j

@̌ T

@�j

@�T

�

(10.16)

The first block @�j
ı

@˛T D ˚@�jk
ı

@˛l



is a .p C 1/ � p matrix with

@�jk

@˛k�1
D ��.˛k�1 CXjˇ CZj �/

@�jk

@˛k
D �.˛k CXjˇ CZj �/

@�jk

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.17)

The second block @�j
ı

@̌ T D ˚@�jk
ı

@̌



is a .p C 1/ � q matrix with

@�jk

@̌
D XT

j Œ�.˛k CXjˇ CZj �/ � �.˛k�1 CXjˇ CZj�/� (10.18)

The third block @�j
ı

@�T D ˚@�jk
ı

@�



is a .p C 1/ � r matrix with

@�jk

@�
D ZT

j Œ�.˛k CXjˇ CZj �/� �.˛k�1 CXjˇ CZj �/� (10.19)

In all the above partial derivatives, the range of k is k D 1; : : : ; p C 1.
The sequence of parameter values during the iteration process converges to a local
maximum likelihood estimate, denoted by O� . The variance–covariance matrix of O�
is approximately equal to var. O�/ D I�1. O�/, which is a by-product of the iteration
process. Here, we are actually dealing with a situation where the QTL overlaps
with a fully informative marker because observed marker genotypes represent the
genotypes of the disease locus. If the QTL of interest does not overlap with any
markers, the genotype of the QTL is not observable, i.e.,Zj is missing. The classical
GLM does not apply directly to such a situation. The missing value Zj still
has some information due to linkage with some markers. Again, we use an F2
population as an example to show how to handle the missing value of Zj . The
ML estimation of parameters under the homogeneous variance model is obtained
simply by substituting Zj with the conditional expectation of Zj given flanking
marker information. Let

pj .2 � g/ D Pr.Zj D Hgjmarker/;8g D 1; 2; 3 (10.20)

be the conditional probability of the QTL genotype given marker information, where
the marker information can be either drawn from two flanking markers (interval
mapping, Lander and Botstein 1989) or multiple markers (multipoint analysis, Jiang
and Zeng 1997). Note that pj .2 � g/ is not pj multiplied by .2 � g/; rather, it is
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a notation for the probabilities of the three genotypes. For g D 1; 2; 3, we have
pj .�1/, pj .0/, and pj .C1/, respectively, where pj .�1/, etc., are defined early in
Chap. 9. Vector Hg for g D 1; 2; 3 is also defined in Chap. 9 as genotype indicator
variables.

Using marker information, we can calculate the expectation of Zj , which is

Uj D E.Zj / D
3
X

gD1
pj .2� g/Hg (10.21)

The method is called ML under the homogeneous residual variance because when
we substituteZj byUj , the residual error variance is no longer equal to unity; rather
it is inflated, and the inflation varies across individuals. However, the homogeneous
variance model here assumed the residual variance is constant across individuals.
This method is the ordinal trait analogy of the Haley and Knott’s (1992) method of
QTL mapping.

10.3 ML Under Heterogeneous Variance

The homogeneous variance model is only a first moment approximation because the
uncertainty of the estimated Zj has been ignored. Let

˙j D var.Zj / D
3
X

gD1
pj .2 � g/HT

g Hg � UT
j Uj (10.22)

be the conditional covariance matrix for Zj . Note that model (10.2) with Zj
substituted by Uj is

�jk D E.Yjk/ D ˚.˛k CXjˇ C Uj�/ �˚.˛k�1 CXjˇ C Uj�/ (10.23)

An underlying assumption for this probit model is that the residual error variance
for the “underlying liability” of the disease trait is unity across individuals. Once Uj
is used in place of Zj, the residual error variance becomes

	2j D �T˙j � C 1 (10.24)

This is an inflated variance, and it is heterogeneous across individuals. In order to
apply the probit model, we need to rescale the model effects as follows (Xu and Hu
2010):

�jk D ˚
h

1
	j
.˛k CXjˇ C Uj�/

i

� ˚
h

1
	j
.˛k�1 CXjˇ C Uj�/

i

(10.25)
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This modification leads to a change in the partial derivatives of �j with respect to
the parameters. Corresponding changes in the derivatives are given below.

@�jk

@˛k�1
D � 1

	j
�
h

1
	j
.˛k�1 CXjˇ C Uj�/

i

@�jk

@˛k
D 1

	j
�
h

1
	j
.˛k CXjˇ C Uj�/

i

@�jk

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.26)

@�jk

@̌
D 1

	j
�
h

1
	j
.˛k CXjˇ C Uj�/

i

XT
j

� 1
	j
�
h

1
	j
.˛k�1 CXjˇ C Uj�/

i

XT
j (10.27)

and

@�jk

@�
D 1

	j
�
h

1
	j
.˛k CXjˇ C Uj�/

i
�

UT
j � 1

	2j
.˛k CXjˇ C Uj�/˙j �

�

� 1
	j
�
h

1
	j
.˛k�1 CXjˇ C Uj�/

i
�

UT
j � 1

	2j
.˛k�1 CXjˇ C Uj�/˙j �

�

(10.28)

The iteration formula remains the same as (10.11) except that the modified weight
and partial derivatives are used under the heterogeneous residual variance model.

10.4 ML Under Mixture Distribution

The mixture model approach defines genotype-specific expectation, variance matrix,
and all derivatives for each individual. Let

�jk.g/ D E.Yjk/ D ˚.˛k CXjˇ CHg�/ �˚.˛k�1 CXjˇ CHg�/ (10.29)

be the expectation of Yjk if j takes the gth genotype for g D 1; 2; 3. The corre-
sponding variance–covariance matrix is

Vj .g/ D  j .g/ � �j .g/�Tj .g/ (10.30)
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where j .g/ D diagŒ�j .g/�. LetDj .g/ be the partial derivatives of the expectation
with respect to the parameters. The corresponding values of Dj .g/ are

@�jk.g/

@˛k�1
D ��.˛k�1 CXjˇ CHg�/

@�jk.g/

@˛k
D �.˛k CXjˇ CHg�/

@�jk.g/

@˛l
D 0; 8l ¤ fk � 1 ; kg (10.31)

@�jk.g/

@̌
D XT

j Œ�.˛k CXjˇ CHg�/� �.˛k�1 CXjˇ CHg�/�

(10.32)

and

@�jk.g/

@�
D HT

g Œ�.˛k CXjˇ CHg�/� �.˛k�1 CXjˇ CHg�/� (10.33)

Let us define the posterior probability of QTL genotype after incorporating the
disease phenotype for individual j as

p�
j .2 � g/ D

pj .2 � g/Y Tj �j .g/
P3

g0D1 pj .2 � g0/Y Tj �j .g0/
(10.34)

The increment for parameter updating under the mixture model is

�� D
h
Xn

jD1 E
�

DT
j WjDj

	i�1 hXn

jD1 E
�

DT
j Wj .Yj � �j /

	i

(10.35)

where

E
�

DT
j WjDj

	

D
3
X

gD1
p�
j .g/D

T
j .g/Wj .g/Dj .g/ (10.36)

E
�

DT
j Wj .Yj � �j /

	

D
3
X

gD1
p�
j .2 � g/DT

j .g/Wj .g/.Yj � �j .g//

(10.37)

and

Wj .g/ D  �1
j .g/ (10.38)
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This is actually an EM algorithm where calculating the posterior probabilities of

QTL genotype and using the posterior probabilities to calculate E
�

DT
j WjDj

	

and E
�

DT
j Wj .Yj � �j /

	

constitute the E-step and calculating the increment of

the parameter using the weighted least-squares formula makes up the M-step.
A problem with this EM algorithm is that var. O�/ is not a by-product of the iteration
process. For simplicity, if the markers are sufficiently close to the trait locus of
interest, we can use

var. O�/ �
h
Xn

jD1 E
�

DT
j WjDj

	i�1
(10.39)

to approximate the covariance matrix of estimated parameters. This is an underes-
timated variance matrix. A more precise method to calculate var. O�/ is to adjust the
above equation by the information loss due to uncertainty of the QTL genotype. Let

S. O� jZ/ D
n
X

jD1
DT
j Wj .Yj � �j / (10.40)

be the score vector as ifZ were observed. Louis (1982) showed that the information
loss is due to the variance–covariance matrix of the score vector, which is

varŒS. O� jZ/� D
n
X

jD1
var

h

DT
j Wj .Yj � �j /

i

(10.41)

The variance is taken with respect to the missing value Z using the posterior
probability of QTL genotype. The information matrix after adjusting for the
information loss is

I. O�/ D
n
X

jD1
E
�

DT
j WjDj

	

�
n
X

jD1
var

h

DT
j Wj .Yj � �j /

i

(10.42)

The variance–covariance matrix for the estimated parameters is then approximated
by var. O�/ D I�1. O�/. Details of varŒDT

j Wj .Yj � �j /� are given by Xu and Hu
(2010).

10.5 ML via the EM Algorithm

The EM algorithm to be introduced here is different from the EM under the
mixture model described in the previous section. We now use a liability model
(Xu et al. 2003) to derive the EM algorithm. Xu et al. (2003) hypothesizes that
there is an underlying liability that controls the observed phenotype. The liability
is a continuous variable and has exactly the same behavior as a quantitative trait.
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a

b

0 1discrete phenotype

Liability

1 2 3discrete phenotype

Liability

Fig. 10.1 Connection between the unobserved continuous liability and the observed discrete
phenotype. The top panel shows the connection for an ordinal trait with two categories, and the
bottom panel shows the connection for an ordinal trait with three categories

The only difference is that the liability is not observable while the quantitative trait
can be measured in experiments. The observed ordinal trait phenotype is connected
with the liability by a series of thresholds, as demonstrated in Fig. 10.1. In the
generalized linear model under the mixture distribution, the EM algorithm treats the
QTL genotype as missing value. Here, we treat the liability as missing value as well.
Let yj be the liability for the j th individual. This is different from Yj D fYjkg, the
multivariate representation of the ordered categorical phenotype in the generalized
linear model. The liability can be described by the following linear model:

yj D Xjˇ CZj � C "j (10.43)

where "j � N.0; 	2/ is assumed. Under the liability model, 	2 cannot be estimated,
and thus, we set 	2 D 1. This arbitrary scale will not affect the significance
test because the estimated parameters � D f˛; ˇ; �g are defined relative to 	2.
The connection between yj and the observed phenotype is
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Sj D k ; for ˛k�1 < yj � ˛k (10.44)

where k D 1; : : : ; p C 1. The thresholds ˛ do not appear in the linear model
explicitly but serve as converters from yj to Sj . Xu et al. (2003) developed an
EM algorithm for ordinal trait QTL mapping by using this liability model. They
used a three-step approach, where the first step is to estimate the non-QTL effects
(ˇ), the second step is to estimate the QTL effects (� ), and the third step is to
estimate the thresholds (˛). The method does not have a simple way to calculate
the variance–covariance matrix of the estimated parameters. Xu and Xu (2006)
extended the method using a multivariate version of the GLM. This method gives a
way to calculate the variance–covariance matrix of the estimated parameters. Both
methods (Xu et al. 2003; Xu and Xu 2006) are quite complicated in the E-step.
When the number of categories is two (the binary case), both methods can be
simplified. This section will deal with the simplified binary trait QTL mapping
where only one threshold is applied. In this case, the single threshold is set to zero
so that it is not a parameter for estimation, and thus, we only estimate ˇ and � . In
the binary situation, Sj D f1; 2g and

Yj1 D
�

1

0

for
for

Sj D 1
Sj D 2 (10.45)

and

Yj2 D
�

0

1

for
for

Sj D 1
Sj D 2 (10.46)

The liability model remains the same as that given in (10.43). The derivation of
the EM algorithm starts with the complete-data situation. If both Zj and yj were
observed, the ML estimates of ˇ and � would be
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(10.47)

This is simply the ordinary least-squares estimates of the parameters. The EM
algorithm takes advantage of this explicit solution in the maximization step. If we
had observed yj but still not been able to estimate Zj , the maximization step of the
EM algorithm would be
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(10.48)
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The problem here is that we observe neitherZj nor yj . Intuitively, the maximization
step of the EM should be
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(10.49)

where the expectations are taken with respect to bothZj and yj using the posterior
probabilities of QTL genotypes. We now present the method for calculating these
expectation terms. We first address E.Zj / and E.ZT

j Zj / using the posterior
probabilities of the QTL genotypes.

p�
j .2� g/ D

pj .2 � g/
�

˚.Xjˇ CHg�/
�Yj1
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1 �˚.Xjˇ CHg�/
�Yj2

P3
g0D1 pj .2� g0/

�

˚.Xjˇ CHg0�/
�Yj1
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1 � ˚.Xjˇ CHg0�/
�Yj2

(10.50)

Given the posterior probabilities, we have
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3
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and
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The expectations for terms that involve yj can be expressed as
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and
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where
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(10.55)
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Therefore, the EM algorithm can be summarized as:

1. Initialize parameters �.0/ D fˇ.0/; � .0/g.
2. Calculate E.Zj /, E.ZT

j Zj / , E.yj /, and E.ZT
j yj /.

3. Update ˇ and � using (10.49).
4. Repeat Step 2 to Step 3 until convergence is reached.

Once the EM algorithm converges, we obtain the estimated parameters and are ready
to calculate the Louis (1982) information matrix. The variance–covariance matrix
of the estimated parameters simply takes the inverse of the information matrix. Let
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(10.56)

be the Hessian matrix of the complete-data log likelihood function and
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(10.57)

be the score vector of the complete-data log likelihood function. The Louis
information matrix is

I.�/ D �E ŒH.�;Z; y/�� E �S.�;Z; y/ST .�;Z; y/� (10.58)

where the expectations are taken with respect to the missing values of Z and y.
Note that

var ŒS.�;Z; y/� D E �S.�;Z; y/ST .�;Z; y/� � E ŒS.�;Z; y/�E �ST .�;Z; y/�

(10.59)

and EŒS.�;Z; y/� D 0 at � D O� . This leads to

E
�

S.�;Z; y/ST .�;Z; y/
� D var ŒS.�;Z; y/� (10.60)

Therefore, the Louis information matrix is also expressed as

I.�/ D �E ŒH.�;Z; y/� � var ŒS.�;Z; y/� (10.61)
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The first term is easy to obtain, as shown below:
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The second term can be expressed as

var ŒS.�;Z; y/� D
n
X

jD1
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(10.63)

where
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Explicit form of var
�

Sj .�;Z; y/
�

can be derived. This matrix is a 2�2 block matrix,
denoted by

var
�

Sj .�;Z; y/
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5 (10.65)

we now provide detailed expressions of the blocks.
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h

XT
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i
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(10.66)

where var.yj � Xjˇ � Zj �/ is the variance of a truncated normal variable (the
truncation point being zero) conditional on Yj D fYj1; Yj 2g and Zj . Let

'.Zj / D var.yj � Xjˇ � Zj �/ (10.67)

be the short notation for the variance of the truncated normal variable. With some
manipulation on Cohen (1991) formula, we get

'.Zj / D 1�  .Xjˇ CZj �/
�

 .Xjˇ CZj �/� .Yj1 � Yj2/.Xjˇ CZj �/
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(10.68)

where
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(10.69)
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Therefore,
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Further manipulation on the information matrix, we get
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which is a 2 � 2 matrix.
Xu and Xu (2003) proposed an alternative method to calculate the Louis infor-

mation matrix via Monte Carlo simulations. The method does not involve the above
complicated derivation; instead, it simply simulates the QTL genotype .Zj / using
the posterior distribution for each individual and the liability .yj / conditional on
the genotype using the truncated normal distribution for the individual. The method
directly uses the following information matrix:

I.�/ D �E ŒH.�;Z; y/�� E �S.�;Z; y/ST .�;Z; y/� (10.72)

with EŒS.�;Z; y/ST .�;Z; y/� obtained via Monte Carlo simulations. Let Z.t/

and y.t/ be simulated Z and y at the t th sample so that S.�;Z.t/; y.t// is the
score vector given Z.t/, y.t/, and � D O� . The Monte Carlo approximation of
EŒS.�;Z; y/ST .�;Z; y/� is

E
�

S.�;Z; y/ST .�;Z; y/
� � 1

T

T
X

tD1
S.�;Z.t/; y.t//ST .�;Z.t/; y.t// (10.73)

where T is a large number, say 10,000. The liability for the j th individual, yj , is
simulated from a truncated normal distribution. We adopt the inverse transformation
method that has an acceptance rate of 100 % (Rubinstein 1981). With this method,
we first defined

v D 1 �˚.Xjˇ CZj �/ (10.74)
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and then simulated a variable u from U.0; 1/. Finally, we took the inverse function
of the standardized normal distribution to obtain

yj D Yj1˚�1.u v/C Yj2˚�1ŒvC u.1 � v/� (10.75)

Intrinsic functions for both ˚.:/ and ˚�1.:/ are available in many computer
software packages. For example, in the SAS package (SAS Institute 2008a), ˚.x/
is coded as ˚.x/ D probnorm.x/ and ˚�1.u/ is coded as ˚�1.u/ D probit.u/.
The Monte Carlo approximation is time consuming so that we cannot calculate
the information matrix for every point of the genome scanned. Instead, we only
calculate the information matrix at the points where evidences of QTL are strong.

10.6 Logistic Analysis

Similar to the probit link function, we may also use the logit link function to perform
the generalized linear model analysis. Let

�jk D exp.˛k CXjˇ CZj �/
1C exp.˛k CXjˇ CZj �/ (10.76)

be the cumulative distribution function of ˛k C Xjˇ C Zj � . Under the logistic
model, the mean of Yjk is modeled by

�jk D E.Yjk/ D �jk � �j.k�1/ (10.77)

The logistic model for the binary data is

�jk D
�

�j1
1 � �j1

for k D 1
for k D 2 (10.78)

From �j1 D �j1, we obtain

logit.�j1/ D ln

�

�j1

1 � �j1
�

D ˛1 CXjˇ CZj � (10.79)

Both the probit and logit transformations of the expectation of Yj1 lead to a
linear model. Note that the linear model obtained here only shows the property
of the transformation. In the actual theory development and data analysis, the
linear transformations in (10.6) and (10.79) are never used. Showing the linear
transformations may potentially cause confusion to students because, by intuition,
they may try to transform the ordinal data (Yjk) first and then conduct the usual
linear regression on the transformed data, which is not appropriate and certainly
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not the intention of the GLM developers. The maximum likelihood analysis under
the homogeneous variance, heterogeneous variance, and mixture model and the EM
algorithm described previously in the probit analysis apply to the logistic analysis.
We only show the logistic analysis under the homogeneous variance model as an
example. Note that under this model, we only need to substitute Zj by Uj to define
the expectation, i.e.,

�jk D exp.˛k CXjˇ C Uj�/
1C exp.˛k CXjˇ C Uj�/ (10.80)

and

�jk D E.Yjk/ D �jk � �j.k�1/ (10.81)

Once�j is defined, the weightWj is also defined. The only item left isDj , which is
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(10.82)

The first block @�j
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is a .p C 1/ � p matrix with
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is a .p C 1/ � q matrix with
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The third block @�j
ı
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ı
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is a .p C 1/ � r matrix with

@�jk

@�
D UT

j �jk.1 � �jk/� UT
j �j.k�1/.1 � �j.k�1// (10.85)

In the above partial derivatives, the range of k is k D 1; : : : ; p C 1.

10.7 Example

The experiment was conducted by Dou et al. (2009). A female sterile line of
wheat XND126 and an elite wheat cultivar Gaocheng 8901 with normal fertility
were crossed for genetic analysis of female sterility measured as the number of
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Fig. 10.2 The LOD test statistic profiles for three methods of interval mapping (HOMOGE-
NEOUS, HETEROGENEOUS, and MIXTURE). The data were obtained from Dou et al. (2009).
The trait investigated is the female fertility of wheat measured as a binary trait (seed presence and
absence). The five chromosomes (part of the wheat genome) are separated by the vertical dotted
lines. The unevenly distributed black ticks on the horizontal axis indicate the marker locations

seeded spikelets per plant. The parents, their F1 and F2 progeny, were planted at
the Huaian experimental station in China for the 2006–2007 growing season under
the normal autumn sowing condition. The mapping population was an F2 family
consisting of 243 individual plants. About 84 % of the F2 progeny had seeded
spikelets, and the remaining 16 % plants did not have any seeds at all. Among
the plants with seeded spikelets, the number of seeded spikelets varied from one
to as many as 31. The phenotype is the count data point and can be modeled
using the Poisson distribution. The phenotype can also be treated as a binary data
point and analyzed using the Bernoulli distribution. In this example, we treated the
phenotype as a binary data (seed presence and absence) and analyzed it using the
Bernoulli distribution. A total of 28 SSR markers were used in this experiment.
These markers covered five chromosomes of the wheat genome with an average
genome marker density of 15.5 cM per marker interval. The five chromosomes
are only part of the wheat genome. These chromosomes were scanned for QTL
of the binary data. Let A1 and A2 be the alleles carried by Gaocheng 8901 and
XDN128, respectively. Let A1A1, A1A2, and A2A2 be the three genotypes for the
QTL of interest. The genotype is numerically coded as 1, 0, and�1, respectively, for
the three genotypes. The genome was scanned with 1-cM increment. All the three
methods described in this chapter were used for the interval mapping. They are
the homogeneous variance model (HOMOGENEOUS), the heterogeneous variance
model (HETEROGENEOUS), and the mixture model (MIXTURE). The LOD score
profiles are depicted in Fig. 10.2. When LODD 3 is used as the threshold value, all
three methods detected two major QTL on chromosome 2. The LOD score for the
mixture model appears to be higher than the other two models, but the difference is
very small and can be safely ignored.
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Fig. 10.3 The QTL effect profiles for three methods of interval mapping (HOMOGENEOUS,
HETEROGENEOUS, and MIXTURE). The data were obtained from Dou et al. (2009). The trait
investigated is the female fertility of wheat measured as a binary trait (seed presence and absence).
The five chromosomes (part of the wheat genome) are separated by the vertical dotted lines.
The unevenly distributed black ticks on the horizontal axis indicate the marker locations

The estimated QTL effect profiles are given in Fig. 10.3. Again the three methods
are almost the same for the estimated QTL effects except that the mixture model
and the heterogeneous model give slightly higher estimates than the homogeneous
model. In practice, we recommend the heterogeneous model because it produces
almost the same result as the mixture model but with much less computing time
than the mixture model.



Chapter 11
Mapping Segregation Distortion Loci

A basic assumption in QTL mapping is that genomic loci (QTL and markers) follow
the Mendelian segregation ratio. The Mendelian ratio depends on the population
under investigation. For example, in a BC population, the Mendelian ratio is 1 W 1
for the two genotypes (A1A1, A1A2). In an F2 population, the Mendelian ratio is
1 W 2 W 1 for the three genotypes (A1A1, A1A2, and A2A2). If the segregation ratio
of a locus deviates from the Mendelian segregation ratio, we say that the locus
is a non-Mendelian locus or segregation distortion locus (SDL). In fact, a marker
whose segregation deviates from the Mendelian ratio is not necessarily an SDL. It is
most likely that a true SDL sits nearby the marker and the observed segregation
distortion of the marker is caused by the SDL because of linkage. Sometimes we
may see markers in several regions of the genome that show segregation distortion.
This may be caused by several SDL across the genome. The SDL themselves may
be caused by viability selection. In other words, different genotypes of the SDL
may have different viabilities. Genotypes that are favored by the viability selection
are overrepresented, while genotypes that are against by the viability selection
are underrepresented. Therefore, an SDL may also be called viability locus (VL).
Viability selection may happen in the gametic level or zygotic level or both. But it is
hard to tell the difference between gametic selection and zygotic selection unless we
can directly observe the gametes. Like quantitative trait loci, segregation distortion
loci can be mapped using marker information. Evolutionary biologists may be more
interested in SDL, while agricultural scientists may be more interested in QTL. In a
single experiment of genetic mapping, we may simultaneously investigate both SDL
and QTL.

The earliest work in SDL mapping was Fu and Ritland (1994). For the first
time, the authors proposed the viability selection hypothesis and tried to map SDL
using marker information under the maximum likelihood framework. Mitchell-Olds
(1995) also developed a similar ML method to map SDL in an F2 population.
A more systematic treatment of SDL mapping was made by Lorieux et al. (1995a,b)
using genome-wide markers. Vogl and Xu (2000) took a Bayesian approach to
mapping viability selection loci. Luo and Xu (2003) developed an EM algorithm to
estimate the segregation ratio under the ML framework. Luo et al. (2005) eventually
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developed a quantitative genetics model to estimate the genetic effects of viability
loci using a four-way cross design. Some of the methods have been applied to SDL
mapping in rice (Wang et al. 2005a).

This chapter will introduce methods for mapping SDL under two different
models. One is called the probabilistic model (Luo and Xu 2003), and the other
is called the liability model (Luo et al. 2005). Under some special situations, both
models will generate the same result, but in most situations, the liability model is
more efficient. In the last section, we will combine QTL mapping and SDL mapping
together and jointly map QTL and SDL (Xu and Hu 2009).

11.1 Probabilistic Model

Consider an SDL with an arbitrary segregation ratio in an F2 family derived from
the cross of two inbred lines. Let M and N be the left and right flanking markers
bracketing the SDL (denoted by G for short). The interval of the genome carrying
the three loci is denoted by a segment MGN. The three genotypes of the SDL are
denoted by G1G1, G1G2, and G2G2, respectively. Similar notation also applies to
the genotypes of the flanking markers. The interval defined by markers M and N
is divided into two segments. Let r1 and r2 be the recombination fractions for
segment MG and segment GN, respectively. The joint distribution of the marker
genotypes conditional on the SDL genotype can be derived using the Markovian
property under the assumption of no segregation interference between consecutive
loci. Let us order the three genotypes, G1G1, G1G2, and G2G2, as genotypes 1, 2,
and 3, respectively. If individual j takes the �th genotype for the SDL, we denote
the event by Gj D �; 8� D 1; 2; 3. The joint probability of the two markers
conditional on the genotype of the SDL is

Pr.Mj D �;Nj D �jGj D �/
D Pr.Mj D �jGj D �/ Pr.Nj D �jGj D �/ (11.1)

for all �; �; � D 1; 2; 3 , where Pr.Mj D �jGj D �/ D T1.�; �/ and Pr.Nj D
�jGj D �/ D T2.�; �/. We use Ti.�; �/ to denote the �th row and the �th column of
the following transition matrix

Ti D
2

4

.1 � ri /2 2ri .1 � ri / r2i
ri .1 � ri / .1 � ri /2 C r2i ri .1 � ri /

r2i 2ri .1 � ri / .1 � ri /2

3

5 ;8i D 1; 2 (11.2)

For example,

Pr.Mj D 1;Nj D 2jGj D 3/
D Pr.Mj D 1jGj D 3/ Pr.Nj D 2jGj D 3/ (11.3)

D T1.3; 1/ T2.3; 2/ D 2r21 r2.1 � r2/ (11.4)
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Let !� D Pr.G D �/;8� D 1; 2; 3, be the probability that a randomly sampled
individual from the F2 family takes the �th genotype. Let ! D f!1; !2; !3g be the
array of the genotype frequencies, and it is the vector of parameters for estimation
and test. Under Mendelian segregation, the three genotype frequencies are denoted
by � D f 1

4
; 1
2
; 1
4
g. Therefore, the null hypothesis is that the F2 population is a

Mendelian population, i.e., ! D �. We use a generic notation p for probability,
so that p.Gj D �/ represents Pr.Gj D �/ and p.Mj ;Nj jGj D �/ stands for
Pr.Mj ;Nj jGj D �/. Given the parameters!, the data (flanking marker genotypes),
and the multinomial probability model, we are ready to construct the log likelihood
function, which is

L.!/ D
n
X

jD1
ln

�

X3

�D1 p.Gj D �/p.Mj ;Nj jGj D �/
�

D
n
X

jD1
ln

�

X3

�D1 !�T1.�;Mj /T2.�;Nj /

�

(11.5)

where the parameters have a restriction
P3

�D1 !� D 1. Note that without any other
information, p.Gj D �/ D !�; 8j D 1; : : : ; n. Under the assumption of
Mendelian segregation, ! D �, i.e., !1 D !3 D 1

2
!2 D 1

4
. However, we treat !

as unknown parameters. We postulate that deviation of ! from the Mendelian ratio
will cause a marker linked to locus G to show distorted segregation. This likelihood
function has been used by Luo et al. (2005) for mapping SDL.

11.1.1 The EM Algorithm

The MLE of the parameters can be solved via the EM algorithm (Dempster et al.
1977). We need to rewrite the likelihood function in a form of complete-data. Let us
define a delta function as

ı.Gj ; �/ D
�

1

0

if Gj D �
if Gj ¤ � (11.6)

If the genotypes of the SDL are known for all individuals, i.e., given ı.Gj ; �/ for all
j D 1; : : : ; n and � D 1; 2; 3, the complete-data log likelihood is

L.!; ı/ D
n
X

jD1
lnŒp.Mj ;Nj jGj /p.Gj /� (11.7)
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where

p.Mj ;Nj jGj / D
3
Y

�D1
p.Mj ;Nj jGj D �/ı.Gj ;�/

D
3
Y

�D1
ŒT1.�;Mj /T2.�;Nj /�

ı.Gj ;�/ (11.8)

and

p.Gj / D
3
Y

�D1
!
ı.Gj ;�/
� (11.9)

Therefore, the complete-data log likelihood function can be rewritten as

L.!; ı/ D
n
X

jD1

3
X

�D1
ı.Gj ; �/flnŒT1.�;Mj /�C lnŒT2.�;Nj /�C ln.!�/g (11.10)

This log likelihood function involves missing value ı.Gj ; �/ and thus cannot be
used directly. We need to take expectation of this function with respect to ı.Gj ; �/.
In addition, we introduce a Lagrange multiplier to make sure that the parameters
are estimated within their restriction, i.e.,

P3
�D1 !� D 1. Therefore, the actual log

likelihood function that is maximized in the EM algorithm is

EŒL.!; ı/� D
n
X

jD1

3
X

�D1
EŒı.Gj ; �/�flnŒT1.�;Mj /�C lnŒT2.�;Nj /�C ln.!�/g

C �
�

1 �
X3

�D1 !�
�

(11.11)

where � is a Lagrange multiplier and is treated as a parameter for estimation. Before
we maximize the above expected complete-data log likelihood function, we need
to calculate EŒı.Gj ; �/�, which is called the posterior expectation of the missing
genotype and is calculated using Bayes’ theorem,

EŒı.Gj ; �/� D !�T1.�;Mj /T2.�;Nj /
P3

�0 !�0T1.�0;Mj /T2.�0; Nj /
(11.12)

Note that this posterior expectation requires the value of parameter !, which
happens to be what we want to estimate. Therefore, iterations are required. Once
an initial value of ! is provided, we can find the posterior expectation of the
missing genotype, which further allows us to maximize the expected complete-
data log likelihood function, (11.11). To maximize EŒL.!; ı/�, we take the partial
derivatives of EŒL.!; ı/� with respect to the parameters and equate the partial
derivative to zero and solve for the parameters. The partial derivatives are
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@

@!�
EŒL.�; ı/� D

n
X

jD1
EŒı.Gj ; �/�

1

!�
� �;8� D 1; 2; 3 (11.13)

and

@

@�
EŒL.!; ı/� D 1 �

3
X

�D1
!� (11.14)

Setting (11.13) to zero, we get

!� D 1

�

n
X

jD1
EŒı.Gj ; �/�;8� D 1; 2; 3 (11.15)

Equation (11.14) is just the restriction, which allows us to solve for �. Note that
P3

�D1 EŒı.Gj ; �/� D 1, i.e., the sum of the three conditional probabilities is unity.
This leads to

3
X

�D1
!� D 1

�

3
X

�D1

n
X

jD1
EŒı.Gj ; �/� D 1

�

n
X

jD1

3
X

�D1
EŒı.Gj ; �/� D n

�
D 1 (11.16)

As a result, we get � D n. Substituting � D n into (11.15) leads to

!� D 1

n

n
X

jD1
EŒı.Gj ; �/�;8� D 1; 2; 3 (11.17)

The Lagrange multiplier � is a nuisance parameter that allows us to find solution of
!k in a convenient way. The EM algorithm is summarized as:

1. Initialize ! D !.0/.
2. Calculate EŒı.Gj ; �/� using (11.12) (the E-step).
3. Update ! using (11.17) (the M-step).
4. Repeat the E-step and the M-step until a certain criterion of convergence is

satisfied.

11.1.2 Hypothesis Test

The null hypothesis is H0: ! D �. The alternative hypothesis is HA: ! ¤ �.
The likelihood ratio test statistic is used to test the null hypothesis. The likelihood
ratio test statistic is

LRT D �2ŒL0.�/� L1. O!/� (11.18)
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where

L1. O!/ D
n
X

jD1
ln

�

X3

�D1 O!�T1.�;Mj /T2.�;Nj /

�

(11.19)

is the observed log likelihood function evaluated at ! D O! and

L0.�/ D
n
X

jD1
ln

�

X3

�D1 ��T1.�;Mj /T2.�;Nj /

�

(11.20)

is the log likelihood function evaluated at ! D �. Under the null hypothesis, LRT
will follow a chi-square distribution with 2 degrees of freedom. The reason for the
2 degrees of freedom is that we only have two (not three) independent parameters
to estimate.

11.1.3 Variance Matrix of the Estimated Parameters

There are three parameters in vector! D f!1; !2; !3g, but only two are independent
because of the restriction

P3
�D1 !� D 1. Therefore, we only need to find the

variance matrix of two components. Let us express !3 D 1 � !1 � !2 so that

var. O!3/ D var. O!1/C var. O!2/C 2cov. O!1; O!2/ (11.21)

var. O!1; O!3/ D cov. O!1; 1 � O!1 � O!2/ D �var. O!1/� cov. O!1; O!2/ (11.22)

and

var. O!2; O!3/ D cov. O!2; 1 � O!1 � O!2/ D �var. O!2/� cov. O!1; O!2/ (11.23)

We now redefine ! D f O!1; O!2g as a vector with two components only. Therefore,
we only need to derive the variance–covariance matrix for vector ! D f O!1; O!2g
because the variance for O!3 and the covariances involving O!3 are all functions of
var.!/. Let

Lj .!; ı/ D
3
X

�D1
ı.Gj ; �/flnŒT1.�;Mj /�C lnŒT2.�;Nj /�C ln.!�/g (11.24)

be the complete-data log likelihood function for individual j so that L.!; ı/ D
n
P

jD1
Lj .!; ı/. Note that whenever !3 occurs, it is replaced by !3 D 1 � !1 � !2.

The Louis (1982) information matrix is

I. O!/ D �EŒH. O!; ı/� � varŒS. O!; ı/� (11.25)
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where

EŒH. O!; ı/� D

2

6

6

6

6

4

n
P

jD1
E
�

@2Lj .!;ı/

@!21

	 n
P

jD1
E
�

@2Lj .!;ı/

@!1@!2

	

n
P

jD1
E
�

@2Lj .!;ı/

@!1@!2

	 n
P

jD1
E
�

@2Lj .!;ı/

@!22

	

3

7

7

7

7

5

(11.26)

is the expectation of the Hessian matrix of the complete-data log likelihood
function and

varŒS. O!; ı/� D

2

6

6

6

4

n
P

jD1
var

�

@Lj .!;ı/

@!1

	 n
P

jD1
cov

�

@Lj .!;ı/

@!1
;
@Lj .!;ı/

@!2

	

n
P

jD1
cov

�

@Lj .!;ı/

@!1
;
@Lj .!;ı/

@!2

	 n
P

jD1
var

�

@Lj .!;ı/

@!2

	

3

7

7

7

5

(11.27)

is the variance–covariance matrix of the score vector of the complete-data log
likelihood function. Both the expectation and the variance are taken with respect
to the missing value ı.Gj ; �/ using the posterior distribution of the genotype of
the SDL. The inverse of the information matrix is used as an approximation of the
variance matrix of O! D f O!1; O!2g as shown below:

var. O!/ D
"

var. O!1/ cov. O!1; O!2/
cov. O!1; O!2/ var. O!2/

#

(11.28)

i.e., var. O!/ � I�1. O!/.
We now evaluate each element of EŒH. O!; ı/� and varŒS. O!; ı/�. For the expected

Hessian matrix, we have

E

�

@2Lj .!; ı/

@!21

�

D �EŒı.Gj ; 1/� 1
!21
�EŒı.Gj ; 3/� 1

.1 � !1 � !2/2

E

�

@2Lj .!; ı/

@!22

�

D �EŒı.Gj ; 2/� 1
!22
�EŒı.Gj ; 3/� 1

.1 � !1 � !2/2

E

�

@2Lj .!; ı/

@!1@!2

�

D �EŒı.Gj ; 3/� 1

.1 � !1 � !2/2 (11.29)

For the variance matrix of the score vector, we have

var

�

@Lj .!; ı/

@!1

�

D 1

!21
varŒı.Gj ; 1/�C 1

!23
varŒı.Gj ; 3/�

� 2

!1!3
covŒı.Gj ; 1/; ı.Gj ; 3/�
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var

�

@Lj .!; ı/

@!2

�

D 1

!22
varŒı.Gj ; 2/�C 1

!23
varŒı.Gj ; 3/�

� 2

!2!3
covŒı.Gj ; 2/; ı.Gj ; 3/�

cov

�

@Lj .!; ı/

@!1
;
@Lj .!; ı/

@!2

�

D 1

!1!2
covŒı.Gj ; 1/; ı.Gj ; 2/�

� 1

!2!3
covŒı.Gj ; 2/; ı.Gj ; 3/�

� 1

!1!3
covŒı.Gj ; 1/; ı.Gj ; 3/�

C 1

!23
varŒı.Gj ; 3/� (11.30)

Note again that !3 D 1�!1�!2 for notational simplicity. The variance–covariance
matrix of the score vector requires the variance–covariance matrix of vector ıj D
fı.Gj ; 1/; ı.Gj ; 2/; ı.Gj ; 3/g. Let 
j� D EŒı.Gj ; �/�;8� D 1; 2; 3 be the short
notation for the posterior expectation of ı.Gj ; �/. The variance–covariance matrix
of vector ıj is

var.ıj / D

2

6

6

4


j1.1 � 
j1/ �
j1
j2 �
j1
j3
�
j1
j2 
j2.1 � 
j2/ �
j2
j3
�
j1
j3 �
j2
j3 
j3.1 � 
j3/

3

7

7

5

(11.31)

Elements of the score vector and the Hessian matrix for individual j are the first and
second partial derivatives ofLj .!; ı/ with respect to !. These are given as follows:

@Lj .!; ı/

@!1
D ı.Gj ; 1/ 1

!1
� ı.Gj ; 3/ 1

1� !1 � !2
@Lj .!; ı/

@!2
D ı.Gj ; 2/ 1

!2
� ı.Gj ; 3/ 1

1� !1 � !2 (11.32)

and

@2Lj .!; ı/

@!21
D �ı.Gj ; 1/ 1

!21
� ı.Gj ; 3/ 1

.1 � !1 � !2/2

@2Lj .!; ı/

@!22
D �ı.Gj ; 2/ 1

!22
� ı.Gj ; 3/ 1

.1 � !1 � !2/2

@2Lj .!; ı/

@!1@!2
D �ı.Gj ; 3/ 1

.1 � !1 � !2/2 (11.33)
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11.1.4 Selection Coefficient and Dominance

In viability selection, we often use selection coefficient and the degree of dominance
to express the intensity of selection. There is a unique relationship between segrega-
tion distortion and the selection intensity. Let w11, w12, and w22 be the relative fitness
of the three genotypes (G1G1,G1G2, and G2G2) of the SDL, respectively. Let s and
h be the selection coefficient and degree of dominance. The relative fitness can be
expressed as (Hartl and Clark 1997)

w11 D 1
w12 D 1 � sh
w22 D 1 � s (11.34)

In an F2 population, the average fitness is

Nw D 1

4
w11 C 1

2
w12 C 1

4
w22 D 1

4
C 1

2
.1 � sh/C 1

4
.1 � s/ (11.35)

The segregation ratio after the viability selection is

!1 D
1

4
w11

Nw D 1

1C 2.1� sh/C .1 � s/

!2 D
1

2
w11

Nw D 2.1� sh/
1C 2.1� sh/C .1 � s/

!3 D
1

4
w11

Nw D 1� s
1C 2.1� sh/C .1 � s/ (11.36)

This equation system represents the relationship between the segregation ratio and
the intensity of viability selection. The inverse relationship is given by Luo et al.
(2005)

s D !1 � !3
!1

h D
!1 � 1

2
!2

!1 � !3 (11.37)

which is used to obtain the MLE of s and h given the MLE of ! D f!1; !2; !3g.

11.2 Liability Model

Systematic environmental effects may mask the effects of viability loci and cause
low power of detection. It is impossible to remove the systematic error from the
analysis using the probabilistic model described above. However, the liability model
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proposed here provides an extremely convenient way to remove such systematic
errors. Let yj be an underlying liability for individual j in the F2 population. We use
the following linear model to describe yj :

yj D Xjˇ CZj � C "j (11.38)

where ˇ is a vector of nongenetic effects (systematic error effects), Xj is a design
matrix for the systematic errors, Zj D fZj1;Zj2g represents the genotypes of the
SDL and has been defined earlier in QTL mapping, � D fa; d g are the genetic
effects of QTL as defined earlier, and "j � N.0; 1/ is the residual error for the
liability. We can see that the liability is simply a regular quantitative trait, except
that it is not observable. Because the liability is a hypothetical variable, the residual
variance cannot be estimated, and thus, we set the variance to unity. We assume
that viability selection acts on the liability under the truncation selection scheme,
i.e., individual j will survive if yj � 0 ; otherwise, it will be eliminated from the
population. Since all individuals observed in the F2 population are survivors, yj � 0
applies to all individuals. The probability that yj � 0 is

Pr.yj � 0/ D ˚.Xjˇ CZj �/ (11.39)

where˚.:/ is the standardized cumulative normal function. This probability may be
considered as the relative fitness. Recall that

Zj1 D

8

ˆ
ˆ
<

ˆ
ˆ
:

C1
0

�1

for G1G1

for G1G2

for G2G2

(11.40)

and

Zj2 D

8

ˆ
<

ˆ
:

0

1

0

for G1G1

for G1G2

for G2G2

(11.41)

are the indicator variables for the QTL genotype. Therefore, given each of the three
genotypes, we have

Pr.yj � 0jG1G1/ D wj .11/ D ˚.Xjˇ C a/
Pr.yj � 0jG1G2/ D wj .12/ D ˚.Xjˇ C d/
Pr.yj � 0jG2G2/ D wj .22/ D ˚.Xjˇ � a/ (11.42)

Let us define the expected relative fitness for individual j by

Nwj D 1

4
wj .11/C 1

2
wj .12/C 1

4
wj .22/

D 1

4
˚.Xjˇ C a/C 1

2
˚.Xjˇ C d/C 1

4
˚.Xjˇ � a/ (11.43)
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The normalized fitness for individual j is

!j .1/ D
1

4
wj .11/

Nwj D ˚.Xjˇ C a/
˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/

!j .2/ D
1

2
wj .12/

Nwj D 2˚.Xjˇ C d/
˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/

!j .3/ D
1

4
wj .22/

Nwj D ˚.Xjˇ � a/
˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/

(11.44)

Under the liability model, the parameter vector is � D fˇ; �g. We have formulated
the problem of mapping SDL into that of mapping QTL. The log likelihood
function is

L.�/ D
n
X

jD1
ln

�

X3

�D1 !j .�/T1.�;Mj /T2.�;Nj /

�

(11.45)

11.2.1 EM Algorithm

Due to the complexity of the likelihood function, there has been no simple algorithm
for the MLE of the parameters. Therefore, Luo et al. (2005) used the simplex
algorithm (Nelder and Mead 1965) to search for the MLE of parameters. An EM
algorithm does exist except that the maximization step is much more complicated
than that under the probabilistic model. Let us look at the log likelihood function
used in the complete-data situation, i.e., ı.Gj ; �/ is treated as known:

L.�; ı/ D
n
X

jD1
Lj .�; ı/ (11.46)

where

Lj .�; ı/ DC ı.Gj ; 1/Œln.T1.1;Mj //C ln.T2.1;Nj //C ln˚.Xjˇ C a/�
C ı.Gj ; 2/Œln.T1.2;Mj //C ln.T2.2;Nj //C ln 2C ln˚.Xjˇ C d/�
C ı.Gj ; 3/Œln.T1.3;Mj //C ln.T2.3;Nj //C ln˚.Xjˇ � a/�
� lnŒ˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/� (11.47)
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The first partial derivatives are

S.�; ı/ D
n
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jD1
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(11.48)

where

@Lj .�; ı/

@̌
DC ı.Gj ; 1/

XT
j �.Xjˇ C a/
˚.Xjˇ C a/ C ı.Gj ; 2/

XT
j �.Xjˇ C d/
˚.Xjˇ C d/

C ı.Gj ; 3/
XT
j �.Xjˇ � a/
˚.Xjˇ � a/

� X
T
j �.Xjˇ C a/C 2XT

j �.Xjˇ C d/CXT
j �.Xjˇ � a/

˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/
@Lj .�; ı/

@a
DC ı.Gj ; 1/ �.Xjˇ C a/

˚.Xjˇ C a/ � ı.Gj ; 3/
�.Xjˇ � a/
˚.Xjˇ � a/

� �.Xjˇ C a/ � �.Xjˇ � a/
˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/

@Lj .�; ı/

@d
DC ı.Gj ; 2/ �.Xjˇ C d/

˚.Xjˇ C d/

� 2�.Xjˇ C d/
˚.Xjˇ C a/C 2˚.Xjˇ C d/C ˚.Xjˇ � a/ (11.49)

The Fisher information matrix is
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(11.50)

Let S.�/ D EŒS.�; ı/� be the expectation of the first partial derivative. We have the
following iteration equation, which is the maximization step of the EM algorithm:

�.tC1/ D �.t/ C I�1.�.t//S.�.t// (11.51)
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The expectation step is to calculate the expectation of ıj using

EŒı.Gj ; �/� D !j .�/T1.�;Mj /T2.�;Nj /
P3

�0 !j .�0/T1.�0;Mj /T2.�0; Nj /
(11.52)

Before we proceed to the next section, let us look at the details of the Fisher
information matrix. In a slightly more compact notation, it is rewritten as

I.�/ D
n
X

jD1
E
h

Sj .�; ı/S
T
j .�; ı/

i

(11.53)

where Sj .�; ı/ can be expressed as a linear function of vector ıj , i.e.,

Sj .�; ı/ D ATj ıj C Cj (11.54)

where Aj is a 3 � .p C 2/ matrix and Cj is a .p C 2/ � 1 vector. The expressions
of Aj and Cj can be found from (11.49). The dimension of vector ˇ is p. Since
var.ıj / and E.ıj / are known (given before), we can write

I.�/ D
n
X

jD1
E
�

ATj ıj ı
T
j Aj C ATj ıjC T

j C Cj ıTj Aj C CjCT
j

	

D
n
X

jD1
ATj E.ıj ı

T
j /Aj CATj E.ıj /C T

j C CjE.ıTj /Aj C CjCT
j (11.55)

where

E.ıj ı
T
j / D var.ıj /C E.ıj /E.ıTj / (11.56)

Definition of var.ıj / can be found in (11.31).

11.2.2 Variance Matrix of Estimated Parameters

The variance–covariance matrix of the estimated parameters can be approximated
by var. O�/ � I�1. O�/. However, a better approximation is to adjust the Fisher
information matrix by the variance–covariance matrix of the score vector, i.e.,

var. O�/ �
2

4I. O�/ �
n
X

jD1
varŒSj .�; ı/�

3

5

�1

(11.57)
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where

varŒSj .�; ı/� D var.Aj ıj / D ATj var.ıj /Aj (11.58)

This adjustment gives the Louis (1982) information matrix.

11.2.3 Hypothesis Test

The null hypothesis is that there is no segregation distortion. This has been
formulated as H0 W a D d D 0. The log likelihood function evaluated at � D O� is

L1. O�/ D
n
X

jD1
ln

�

X3

�D1 !j .�/T1.�;Mj /T2.�;Nj /

�

(11.59)

The log likelihood function evaluated under the null model is

L0.�/ D
n
X

jD1
ln

�

X3

�D1 ��T1.�;Mj /T2.�;Nj /

�

(11.60)

This is because under H0 W a D d D 0, we have !j .�/ D ��;8� D 1; 2; 3.
Given L0 and L1, the usual likelihood ratio test statistic LRT is used to test the null
hypothesis, where LRT D �2.L0 �L1/.

The liability model has two advantages over the probabilistic model: (1) Cofac-
tors can be removed from the analysis by fitting a ˇ vector in the model and (2) the
Wald (1943) test statistic may be used to test the null hypothesis.

11.3 Mapping QTL Under Segregation Distortion

Segregation distortion has long been treated as an error in the area of QTL mapping.
Its impact on the result of QTL mapping is generally considered detrimental.
Therefore, QTL mappers usually delete markers with segregation distortion before
conducting QTL mapping. However, a recent study (Xu 2008) shows that segrega-
tion distortion can help QTL mapping in some circumstances. Rather than deleting
markers with segregation distortion, we can take advantage of these markers in QTL
mapping. This section will combine QTL mapping and SDL mapping to map QTL
and SDL jointly. The method was recently published by Xu and Hu (2009).

11.3.1 Joint Likelihood Function

Consider that a QTL itself is also an SDL, i.e., the QTL is not necessarily
a Mendelian locus. We now go back to the probabilistic model for the SDL.
The parameter for SDL is ! D f!1; !2; !3g. Let yj be the phenotypic value of
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a quantitative trait (not the liability) measured from individual j . The probability
density of yj conditional on Gj D � for individual j is normal with mean
�j D Xjˇ CH�� and variance 	2, i.e.,

p.yj jGj D �/ D f�.yj / D 1p
2
	2

exp

�

� 1

2	2
.yj �Xjˇ �H��/

2

�

(11.61)

The conditional probability for the (flanking) markers is

p.Mj ;Nj jGj D �/ D T1.�;Nj /T2.�;Nj / (11.62)

The probability that Gj D � is

p.Gj D �/ D !� (11.63)

The joint likelihood function can be obtained by combining the three probabilities,

L.�/ D
n
X

jD1
ln

�

X3

�D1 p.Gj D �/p.yj jGj D �/p.Mj ;Nj jGj D �/
�

(11.64)

which is rewritten as

L.�/ D
n
X

jD1
ln

�

X3

�D1 !�f�.yj /T1.�;Mj /T2.�;Nj /

�

(11.65)

where the parameter vector is � D fˇ; �; !g.

11.3.2 EM Algorithm

Derivation of the EM algorithm is given by Xu and Hu (2009). Here we only provide
the final result. The expectation step of the EM algorithm requires computing
the expectation of ıj conditional on the data and � . Because ıj is a multivariate
Bernoulli variable, the expectation is simply the probability of ı.Gj ; �/ D 1, i.e.,

EŒı.Gj ; �/� D p.Gj D �/p.yj jGj D �/p.Mj ;Nj jGj D �/
P3

�0D1 p.Gj D �0/p.yj jGj D �0/p.Mj ;Nj jGj D �0/

D !�f�.yj /T1.�;Mj /T2.�;Nj /
P3

�0D1 !�0f�.yj /T1.�0;Mj /T2.�0; Nj /
(11.66)
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The maximization step of the EM algorithm involves the following equations:
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11.3.3 Variance–Covariance Matrix of Estimated Parameters

Let us define the complete-data log likelihood function for individual j as

Lj .�; ı/ D�1
2

ln.	2/� 1

2	2

3
X

�D1
ı.Gj ; �/.yj � Xjˇ �H��/

2

C
3
X

�D1
ı.Gj ; �/flnŒT1.�;Mj /�C lnŒT2.�;Nj /�g

C
3
X

�D1
ı.Gj ; �/ ln!� (11.68)

where !3 D 1�!1�!2 so that !3 is excluded from the parameter vector. Elements
of the score vector for individual j are
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@Lj .�; ı/
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D ı.Gj ; 1/ 1
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� ı.Gj ; 3/ 1

1� !1 � !2
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� ı.Gj ; 3/ 1

1� !1 � !2 (11.69)

Elements of the Hessian matrix are
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The score vector and the Hessian matrix provide the original material from which
�EŒH.�; ı/� and varŒS.�; ı/� are calculated (see Xu and Hu 2009). The Louis
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(1982) information matrix is

I.�/ D �EŒH.�; ı/� � varŒS.�; ı/� (11.74)

from which, we can get the variance matrix of the estimated parameters using
var. O�/ � I�1. O�/.

11.3.4 Hypothesis Tests

Hypothesis 1

There are several different hypotheses we can test. The first null hypothesis is H0 W
� D 0, i.e., there is no QTL for the quantitative trait. To test this hypothesis, we
need the full-model likelihood value as shown below:

L1. O�/ D
n
X

jD1
ln

(

3
X

�D1
!�f�.yj /T1.�;Mj /T2.�;Nj /

)

(11.75)

where the parameters in the right-hand side of the equation are replaced by the MLE.
The reduced-model likelihood value is calculated using
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2
ln.	2/ (11.76)

where � D 0 is enforced and OO� is the estimated parameter vector under the reduced
model. The usual likelihood ratio test statistic is then constructed using the two
likelihood values.

Hypothesis 2

The second hypothesis is H0 W ! D �, i.e., the population is Mendelian. The log
likelihood functions under the full model are

L1. O�/ D
n
X

jD1
ln

(

3
X

�D1
!�f�.yj /T1.�;Mj /T2.�;Nj /

)

(11.77)
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This is the same as that given in (11.75). The likelihood value under the reduced
model is

L1.
OO�/ D

n
X

jD1
ln

(

3
X

�D1
��f�.yj /T1.�;Mj /T2.�;Nj /

)

(11.78)

where! D � is enforced and OO� is the estimated parameter vector under the restricted
model. The usual likelihood ratio test statistic is then constructed using the two
likelihood values.

Hypothesis 3

The third hypothesis is H0 W � D 0 & ! D �, i.e., Mendelian population with no
QTL effect for the quantitative trait. The full model remains the same as that given
in (11.75) and (11.77). The reduced model is

L0.
OO�/ D

n
X

jD1
ln
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3
X

�D1
��T1.�;Mj /T2.�;Nj /

)

� 1

2	2
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.yj � Xjˇ/2 � n

2
ln.	2/ (11.79)

where OO� is the estimated parameter vector under the restricted model. This hypoth-
esis will be rejected if � ¤ 0 or ! ¤ � or both inequalities hold. This hypothesis
is particularly interesting for QTL mapping under selective genotyping. If the
F2 population is a Mendelian population, i.e., there is no segregation distortion,
individuals are only genotyped based on the extremity of the phenotype values.
Selective genotyping will lead to ! ¤ �, even if the original F2 population is
Mendelian.

11.3.5 Example

The mouse data introduced in Sect. 8.1 of Chap. 8 is used again for the joint QTL
and SDL analysis. The mouse genome is scanned for QTL of the 10th-week body
weight, the segregation distortion locus (SDL), and both QTL and SDL with a
1-cM increment for all the 19 chromosomes (excluding the sex chromosome) of
the genome. The LOD scores are depicted in Fig. 11.1. Let LOD D 3 be the
criterion of significance for gene detection. Two QTL appear to be significant, and
both are on chromosome 2. Three SDL are significant with one on chromosome 6
(LOD � 42:5), one on chromosome 14 (LOD � 5:5), and one on chromosome 18
(LOD � 3:5). The joint test has the highest LOD score across the entire genome.



170 11 Mapping Segregation Distortion Loci

Marker location (cM)

LO
D

 s
co

re

0 200 400 600 800 1000 1200 1400 1600 1800

0
5

15
25

35
45

LOD QTL
LOD SDL
LOD QTL−SDL

Fig. 11.1 The LOD test statistics profiles for the mouse genome (excluding the sex chromosome).
The three LOD score profiles represent (1) the LOD test for QTL of the 10th-week body weight
(blue), (2) the LOD score for SDL (segregation distortion locus, red), and (3) the LOD score for
both the QTL and SDL (black). The dashed horizontal line indicates the LOD D 3 criterion. The
19 chromosomes are separated by the vertical reference dotted lines
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Fig. 11.2 Estimated genotypic frequencies for the mouse genome. Frequencies of the three
genotypes are represented by areas with different patterns (A1A1 at top, A1A2 in the middle, and
A2A2 at the bottom). The chromosomes are separated by the reference lines on the horizontal axis.
The two reference lines on the vertical axis (0.25 and 0.75) divide the area into three parts based
on the Mendelian segregation ratio (0.25, 0.5, and 0.25)

The estimated frequencies of the three genotypes (A1A1, A1A2, and A2A2) are
shown in Fig. 11.2. The large SDL on chromosome 6 was extremely strong, and it
wiped out all heterozygotes and homozygotes of the other type. The allele of this
locus was fixed for the A2 allele.



Chapter 12
QTL Mapping in Other Populations

BC and F2 populations are the most commonly used populations for QTL mapping.
There are other populations which can also be used for QTL mapping. These include
recombinant inbred lines (RIL), double haploids (DH), four-way crosses, diallel
crosses, full-sib families, half-sib families, and random-mating populations with
pedigree structures. We are going to discuss a few of them in this chapter.

12.1 Recombinant Inbred Lines

Recombinant inbred lines are derived from repeated selfings of F2 individuals for
many generations until all progeny become homozygotes. In animals (except some
lower worms), selfing is impossible, and thus, RIL must be obtained by repeated
brother–sister matings. For large animals with long generation intervals, RIL cannot
be obtained within a reasonable amount of time. Therefore, only small laboratory
animals, e.g., fruit flies and mice, are possible to have RIL. An RIL generated
via selfing is called RIL1, while an RIL generated via brother–sister mating is
called RIL2.

RILs are obtained by systematic inbreeding (selfing and brother–sister mating).
As the number of generations increases, the inbreeding coefficient progressively
increases and eventually reaches unity (pure lines) in an asymptotic fashion.
Theoretically, there is no guarantee that an RIL line contains no heterozygous
loci. Residual heterozygosity always exists in RIL lines. An empirical criterion
of defining an inbred line is the less than 2 % residual heterozygosity rule,
corresponding to an inbreeding coefficient of 98 %. The two mating designs lead
to the desired level of heterozygosity in different speeds. Selfing requires about
seven generations, and brother–sister mating requires about 20 generations. We first
discuss systematic inbreeding via selfing. Starting from the F1 hybrid as generation
t D 1, the inbreeding coefficient at generation t is

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 12,
© Springer Science+Business Media, LLC 2013
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Ft D 1 �
�

1

2

�t�1
(12.1)

At generation t D 7, the inbreeding coefficient is F7 D 0:984375, which is higher
than the desired level of 98 %.

For brother–sister mating, the exact inbreeding coefficient at generation t must
be calculated using the following recurrent equation (Falconer and Mackay 1996):

Ft D 1

4
.1C 2Ft�1 C Ft�2/ (12.2)

where Ft and Ft�1 are the inbreeding coefficients at generation t and t � 1,
respectively. Like selfing, the F1 hybrid is designated as generation t D 1. Here, we
must set F0 D F1 D 0, and the recurrent equation must start with t D 2. At t D 20,
we get F20 D 0:983109, higher than 98 %. Although the recurrent equation is
exact, one must start at t D 2 and calculate the inbreeding coefficient for the next
generation based on the inbreeding coefficients of the previous two generations.
If we only need the inbreeding coefficient of generation t , there is an alternative
way of calculating Ft as a function of t . This alternative method is approximate and
differs from the exact method in the first few generations. As generations progress,
the difference becomes diminished. The approximate method is a general approach
and applies to all mating systems. The inbreeding coefficient at generation t is

Ft D 1 � .1 ��F /t�1 D 1 �
�

1 � 1
2Ne

	t�1
(12.3)

where �F D 1
2Ne

is the rate of inbreeding and Ne is the effective population
size. For brother–sister mating, the inbreeding rate is �F D 0:191 (Falconer and
Mackay 1996), leading to Ne D 2:618. Using (12.3), the approximate inbreeding
coefficient at generation 20 is F20 D 0:982169, much the same as the exact value of
0.983109.

The general approach also applies to selfing whenNe D 1 is used as the effective
population size. Interestingly, the general method is exact for selfing. Note that
(12.3) is different from the usual equation commonly seen in population genetics
textbooks (Falconer and Mackay 1996) where t�1 in the right-hand side of (12.3) is
substituted by t . This difference is due to our designation of F1 hybrid as generation
one. If we had designated F2 as generation one, we would get the same formula
as that of Falconer and Mackay (1996). Our notation has avoided some confusion
because Ft represents the inbreeding coefficient of the Ft generation.

Figure 12.1 shows the increase of inbreeding coefficient as the number of
generations increases for both selfing and brother–sister mating. Inbreeding co-
efficient represents the rate of allelic fixation. Selfing has a much faster rate of
allele fixation than brother–sister mating. Figure 12.2 compares the inbreeding
coefficients of the exact method and the approximate method under brother–sister
mating. The difference is barely noticeable after generation four. Therefore, it is
very safe to use the approximate method to calculate the inbreeding coefficient for
the brother–sister mating design.
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Fig. 12.1 Comparison of
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Fig. 12.2 Comparison of
inbreeding coefficient of the
exact method with that of the
approximate method under
brother–sister mating

There are two possible genotypes with an equal chance in an RIL population at
each locus, A1A1 and A2A2. The model is the same as that of the BC design,

yj D Xjˇ CZj � C �j (12.4)

except that

Zj D
� C1
�1

for A1A1
for A2A2

(12.5)

Methods for marker-trait association and interval mapping remain the same as
what we have learned in the BC design. However, the conditional probability of QTL
genotype given marker information is calculated using a modified recombination
fraction, which reflects the cumulation of many generations of crossovers. For
recombinant inbred lines generated via selfing (RIL1), the modified recombination
fraction between loci A and B is

cAB D 2rAB

1C 2rAB (12.6)
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where rAB is the usual recombination fraction defined earlier. For recombinant
inbred lines generated through brother–sister mating (RIL2), the modified recom-
bination fraction is (Haldane and Waddington 1931)

cAB D 4rAB

1C 6rAB (12.7)

Given cAB , we define a new 2 � 2 transition matrix between two loci by

TAB D
�

Pr.B D C1jA D C1/; Pr.B D �1jA D C1/
Pr.B D C1jA D �1/; Pr.B D �1jA D �1/

�

D
�

1 � cAB cAB

cAB 1 � cAB
�

(12.8)

This transition matrix is used to calculate the conditional probability of QTL
genotype given marker genotypes using either the three-point or multipoint analysis.
For example, let AQB be three ordered loci. The conditional probability of QTL
genotype given genotypes of markers A and B is

Pr.Q D C1jA D C1; B D �1/ D Pr.A D C1;Q D C1; B D �1/
Pr.A D C1; B D �1/

D Pr.Q D C1/ Pr.A D C1jQ D C1/ Pr.B D �1jQ D C1/
Pr.A D C1/ Pr.B D �1jA D C1/ (12.9)

Substituting the marginal and conditional probabilities by the values from the
transition matrix, we get

Pr.Q D C1jA D C1; B D �1/ D .1 � cAQ/cQB
cAB

(12.10)

There are two advantages of using RIL for QTL mapping compared to BC and F2
designs. One is that RIL can map QTL in a finer scale than both BC and F2. Note that
the modified recombination fraction is always greater than the usual recombination
fraction because RIL can take advantage of historically cumulative crossovers. This
can be demonstrated, e.g. for selfing, by

cAB D rAB

1=2C rAB > rAB (12.11)

because the denominator, 1=2 C rAB , is always less than unity. This phenomenon
is called genome expansion. Using an expanded genome can increase the resolution
of QTL mapping. The other advantage is that the variance of variableZj in the RIL
design is twice as large as that in the F2 design, i.e. 	2Z D 1 for the RIL whereas
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	2Z D 1
2

for the F2. A larger 	2Z means a smaller estimation error of the genetic
effect. Recall that

var. O�/ D 	2
P

.Z � NZ/2 D
	2

n
�

1
n

P

.Z � NZ/2� �
	2

n	2Z
(12.12)

where 	2 is the residual error variance and, as n �!1, 	2Z � 1
n

P

.Z � NZ/2. You
can verify by yourself that

	2Z D E.Z2/� E2.Z/ D 1 � 0 D 1
for the RIL design because Z takes C1 or �1 with an equal probability. One prob-
lem with the RIL design is the high cost due to the long time required to generate
the individual recombinant inbred lines. The other problem is the inability to detect
dominance effect, similar problem as that of the BC design.

A final comment on the two types of recombinant inbred lines (RIL1 and RIL2)
is that the resolution of QTL mapping using RIL2 (brother–sister mating) is higher
than that of using RIL1 (selfing). In other words, the expanded recombination
of RIL2 is higher than that of RIL1 because RIL2 cumulates more historical
recombinant events.

12.2 Double Haploids

Double haploids (DH) are obtained by doubling the gametes of F1 individuals
through some special cytogenetic treatment. DH can be achieved by a single
generation of cytogenetic manipulation, just like a BC population. However, a DH
individual is homozygous for all loci. Therefore, like RIL, a DH population contains
two possible genotypes,A1A1 and A2A2. The linear model for the phenotypic value
of individual j is the same as that in RIL. The Zj variable is also the same as
that defined in RIL. However, the conditional probability of QTL genotype given
marker genotypes is calculated using the same formula as that used in the BC design,
i.e., using the original recombination fraction (rAB ), not the modified recombination
fraction (cAB/: DH mapping is more powerful than BC and F2 due to the large 	2Z
compared to BC and F2.

12.3 Four-Way Crosses

The four-way (FW) cross design of QTL mapping was first proposed by Xu (1996,
1998b) and Xie and Xu (1999). The model and method described here follow closely
to that of Xu (1998b). Four-way cross design involves two families of crosses. An F1
derived from the cross of two parents (P1 and P2) is further crossed with an F1
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Fig. 12.3 Sketch of four-way
(FW) cross design of
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derived from the cross of two additional and independent parents (P3 and P4). A total
of four inbred lines are involved in a four-way cross. Figure 12.3 illustrates the four-
way cross design.

The genetic model of a four-way cross is different from that of an F2 design.
There are four alleles involved in a four-way cross, and only four out of 4.4C1/=2 D
10 allelic combinations occur in the four-way cross family. Let the F1 from the
first cross be the female parent of the four-way cross progeny and the F1 from the
second cross be the male parent. We relabel the four alleles by Ad1 D A1, Ad2 D A2,
As1 D A3, and As2 D A4, where the superscripts d and s stand for “dam” (mother)
and “sire” (father), respectively, and the subscripts 1 and 2 stand for the first and
second alleles, respectively, of each parent. The genotypes of the two F1 parents are
relabeled as Ad1A

d
2 and As1 A

s
2. A progeny of the four-way cross carries one of the

four possible genotypes,
˚

Ad1A
s
1; A

d
1A

s
2; A

d
2A

s
1; A

d
2A

s
2




Unlike the analysis of the F2 design, in the FW cross design, we assign each allele
a genetic value, called the allelic effect. No matter how many individuals in the FW
cross family, they inherit a total number of four alleles from their parents. The four
allelic values are denoted by as1, a

d
2 , as2, and ad2 , respectively, for the four alleles,

As1, A
d
2 , As2, and Ad2 . Corresponding to the four genotypes of the progeny in the FW

cross family, we denote the four genotypic values by

G11 D �C ad1 C as1 C d11 for Ad1A
s
1

G12 D �C ad1 C as2 C d12 for Ad1A
s
2

G21 D �C ad2 C as1 C d21 for Ad2A
s
1

G22 D �C ad2 C as2 C d22 for Ad2A
s
2 (12.13)
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where � is the population mean, ad1 and ad2 are the effects of the two alleles of the
dam, as1 and as2 are the effects of the two alleles of the sire, and dkl is the interaction
(dominance) effect between alleles Adk and Asl , 8k; l D 1; 2. The linear model for
the phenotypic value of individual j is

yj D �CGkl C �j D �C adk C asl C dkl C �j (12.14)

There are nine model effects, but we only have four possible genotypes, which are
not sufficient to allow us to estimate the nine model effects. We must make some
constraints on the model effects. Enforcing constraints on model effects is a typical
treatment in analysis of variance. The following constraints are commonly used in
such an analysis,

ad1 C ad2 D 0
as1 C as2 D 0

d11 C d12 C d21 C d22 D 0 (12.15)

Additional constraints are required for the dominance effects,

d11 C d12 D 0
d11 C d21 D 0
d12 C d22 D 0
d21 C d22 D 0 (12.16)

After enforcing these constraints, we have only three genetic parameters to estimate
(in addition to the population mean �), which are

˛d D 1

2
ad1 �

1

2
ad2

˛s D 1

2
as1 �

1

2
as2

ı D 1

4
d11 � 1

4
d12 � 1

4
d21 C 1

4
d22 (12.17)

The four estimable parameters (including�) can be expressed as linear functions of
the four genotypic values,

� D 1

4
G11 C 1

4
G12 C 1

4
G21 C 1

4
G22

˛d D 1

4
G11 C 1

4
G12 � 1

4
G21 � 1

4
G22

˛s D 1

4
G11 � 1

4
G12 C 1

4
G21 � 1

4
G22

ı D 1

4
G11 � 1

4
G12 � 1

4
G21 C 1

4
G22 (12.18)
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The reverse relationship of the above equations is

G11 D �C ad C as C ı
G12 D �C ad � as � ı
G21 D � � ad C as � ı
G22 D � � ad � as C ı (12.19)

Excluding �, we have three genetic effects to estimate: ˛d representing the
difference between the two alleles of the dam, ˛s representing the difference
between the two alleles of the sire, and ı representing the interaction between
the two allelic differences. The two allelic differences, ˛d and ˛s , may also be
called allelic substitution effects (Falconer and Mackay 1996. To be consistent with
the notation used early in the F2 design of experiment, we now denote ˇ D �,
� D f˛d ; ˛s; ıg, and Xj D 1;8j D 1; : : : ; n. The linear model for yj is now
rewritten as

yj D Xjˇ CZj � C �j (12.20)

where Zj is a 1 � 3 vector defined as

Zj D

8

ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
:

H1

H2

H3

H4

for A1A3

for A1A4

for A2A3

for A2A4

(12.21)

and Hk;8k D 1; : : : ; 4 is the kth row of matrixH , which is a 4 � 3 matrix defined
below,

H D

2

6

6

6

6

4

C1 C1 C1
C1 �1 �1
�1 C1 �1
�1 �1 C1

3

7

7

7

7

5

(12.22)

The linear model given in (12.20) is the same as that in the F2 mating design.
Assume that the residual error has a normal distribution with mean zero and variance
	2; the maximum likelihood method can be applied to the FW cross design. The EM
algorithm is also identical to that described in the F2 design except that now the
mixture distribution consists of four components instead of three. In the expectation
step, we need
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E.Zj / D
4
X

kD1
E
�

ı.Gj ; k/
�

Hk D
4
X

kD1
p�
j .k/Hk

E.ZT
j Zj / D

4
X

kD1
E
�

ı.Gj ; k/
�

HT
k Hk D

4
X

kD1
p�
j .k/H

T
k Hk (12.23)

where

E
�

ı.Gj ; k/
� D p�

j .k/ D
pj .k/fk.yj /

P4
k0 pj .k

0/fk0.yj /
(12.24)

is the posterior probability that Gj D k, i.e., individual j takes the k genotype
for k D 1; : : : ; 4. The posterior probability requires the probability density of the
phenotype

fk.yj / D 1p
2
	2

exp

�

�1
2
.yj �Xjˇ �Hk�/

2

�

(12.25)

and the probability of QTL genotype conditional on marker information is

pj .k/ D Pr.Gj D kjmarker/ (12.26)

This probability may be calculated using either two flanking markers (interval
mapping) or all markers on the same chromosome (multipoint mapping).

Using FW cross families for QTL mapping will face a problem of noninformative
markers. We have dealt with a perfect situation where four distinguished alleles are
present for every marker locus. In reality, we will see some markers that may only
have three or less distinguished alleles. For example, if the dam has a genotypeA1A1
and the sire has a genotype A2A3, we only observe three alleles and two genotypes
in the FW cross family. The two genotypes are A1A2 and A1A3. How do we use
the multipoint method to calculate the four probabilities of the QTL genotypes?
This situation has been discussed in Chap. 4 where we need to list all the four
ordered genotypes in the progeny, A1A2, A1A3, A1A2, and A1A3. We can see that
the first and the third ordered genotypes are not distinguishable, so are the second
and the fourth genotypes. When we code the genotype for a progeny using the J
matrix notation, an individual with observed genotype A1A3 should be coded as
J D f0; 1; 0; 1g. While the J notation can be used for coding the markers, how do
we deal with the QTL if there are less than four alleles at the QTL? Our assumption
for the QTL is that there are always four distinguished alleles. Therefore, the model
always contains three genetic effects, ˛d , ˛s , and ı. If a parent, say the dam, happens
to be homozygote at the QTL, ˛d still occurs in the model, but the estimated ˛d will
be close to zero if the sample size is sufficiently large. In fact, ˛d D 0 is treated the
same as no segregation for the two alleles of the dam.

The usual likelihood ratio test is adopted here to test the hypothesisH0 W � D 0.
Once a QTL is detected, we can further test the significance of the additive effects
H0 W ˛d D ˛s D 0 and the significance of the dominance effect H0 W ı D 0.
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The size of the QTL detected can be measured as the ratio of the genetic variance
component to the total phenotypic variance. The genetic variance is defined as

	2G D �T var.Z/� D �T � (12.27)

where

var.Z/ D E.ZTZ/ �E.ZT /E.Z/

D
 

1

4

4
X

kD1
HT
k Hk

!
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1

4

4
X

kD1
Hk

!

D I (12.28)

is the marginal variance matrix of Zj across all individuals in the FW family (not
the conditional variance matrix given marker information). This matrix happens to
be an identity matrix because the design of the FW cross model is orthogonal. The
total phenotypic variance is

	2P D �T � C 	2 (12.29)

Therefore, the size of the QTL expressed as the total phenotypic variance con-
tributed by the QTL is

H2 D 	2G
	2P
D �T �

�T � C 	2 D
.˛d /2 C .˛s/2 C ı2

.˛d /2 C .˛s/2 C ı2 C 	2 (12.30)

The FW cross design is a general design of line crosses for QTL mapping.
The F2 and BC designs can all be considered as special cases. For example, the
F2 design requires selfing of the F1 progeny of two inbred lines. From the FW cross
perspective, both the sire and the dam have exactly the same genotype for all loci,
A1A2 and A1A2. The four genotypes in the progeny are A1A1, A1A2, A2A1, and
A2A2. We can never distinguish the two phases of the heterozygote. In addition,
˛d D ˛s always holds. Therefore, to handle an F2 population using the FW cross
approach, we need a restriction in the parameters, that is, ˛d D ˛s . The BC design
requires crossing of the F1 back to one of the two inbred lines, say P1. From the FW
cross perspective, the dam is A1A1 and the sire is A1A2. This means that ˛d D 0

holds for all loci. Note that the dominance effect requires the interaction of the
allelic difference of the dam and the allelic difference of the sire. Because the allelic
difference of the dam is always absent, the dominance effect is always absent as
well. Therefore, to map QTL in a BC family using the FW cross approach, we need
two restrictions, ˛d D 0 and ı D 0.

Finally, an advantage of the FW cross design over the F2 design occurs in the
possible high level of polymorphism. In a F2 design, a QTL can only be detected
if it is segregating in the F2 family; that is, the two inbred lines initiating the cross
must carry two different alleles for the QTL. If the two lines are identical at the
QTL, the F1 is homozygote, and thus, the QTL does not segregate in the F2 progeny.
No matter how large the sample size is, the QTL will never be detected. People may
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argue that the so-called QTL is not actually a QTL if it is not segregating. This
argument may be right, but how do we call it if other people detected a QTL at the
same location of the genome but using a different inbred lines to initiate the cross?
This leads to two explanations for the failure of QTL detection. One is that a QTL
(genome location) is present, but it is not segregating. The other is that the QTL is
segregating, but it fails to be detected because either the effect is small or the sample
size is small. If a large QTL fails to be detected in an extremely large sample, this
type of error must be due the wrong choice of the inbred lines. We may loosely call
it the type I error due to genetic drift. To avoid this type of error, we may either
use different inbred lines to initiate the cross or use more inbred lines to initiate a
complicated crossing experiment. The FW cross design is one of such cross designs
involving more than two inbred lines. It combines two separate crosses. If a QTL
fails to segregate in one cross but it segregates in the other cross, we still have a
chance to detect such a QTL (assuming that the sample size is sufficiently large)
because if any one of the three equations (˛d D ˛s D ı D 0) fails, a QTL will
be claimed.

12.4 Full-Sib Family

When inbred lines are not available, e.g., in forest trees, it is impossible to initiate
a line crossing experiment for QTL mapping. Instead, we can collect seeds from
a single tree (female plant or dam) pollinated by another tree (male plant or
sire). The seeds are planted and grow into adult trees that can be genotyped and
phenotyped. The progeny from this family are full siblings. Since all trees are
outbred, we can treat the female parent and the male parent as two F1 plants from
crosses of different grandparents. Therefore, the full-sib family is similar to a four-
way cross family. Therefore, the statistical method described in the FW cross can be
directly adopted here for the full-sib family mapping. The only difference between
FW and full-sib family is that the marker linkage phases are not necessarily known
for the two parents of the full-sib family while the linkage phases are known in the
parents of the four-way cross progeny.

The simplest method to infer the linkage phases is the so-called two-point
analysis. Let us use a three-locus genome (ABC) as an example to demonstrate
the phase inference algorithm. Let A1A2B1B2C1C2 be the genotype for the female
parent and A3A4B3B4C3C4 be the genotype for the male parent. This type of
notation for genotype is phase unknown. The phase-known genotype can be written
as A1B1C1

A2B2C2
for the female parent. However, this is only one of many different possible

phases. Similarly, a possible linkage phase for the male parent is A3B3C3
A4B4C4

. The phases
of the first locus (A) are irrelevant, and thus, they can be arbitrarily assigned.
Let us arbitrarily assign the phase of the female parent for locus A as A1

A2
and

the phase of the male parent for locus A as A3
A4

. We now consider the phases for
locus B, ignoring locus C for the moment. There are two possible phases for locus
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B in each parent, leading to a total number of four possible phases, which are
n

A1B1
A2B2

; A1B2
A2B1

; A3B3
A4B4

; A3B4
A4B3

o

. Under each possible phase, say phase k for k D 1; : : : ; 4,

we calculate the likelihood value of all the progeny for the observed two-locus
genotypes given the phase and the recombination fraction between loci A and B.
The log likelihood value is L.rAB jk/ DPn

jD1 Lj .rAB jk/ where

Lj .rAB jk/ D ln Pr.AjBj jrAB/ D ln.J TDAj TABDBj J / (12.31)

The joint probability of marker genotypes for a particular individual can be found
in Chap. 4. The inferred linkage phase is the one that has the maximum L.rAB jk/
for k D 1; : : : ; 4. Once the phase for locus B is determined, we follow the same
approach to inferring the phase of locus C using the BC segment. We can infer
both B and C simultaneously using the three-point analysis, but the total number of
phases that need to be evaluated is 42 D 16. For m markers, the two-point analysis
only evaluates 4m different phases, while the m-point analysis must evaluate 4m

different phases.
Mapping QTL using full-sib families is the simplest design in QTL mapping for

outbred populations. Remember that using the full-sib design, we can only identify
the difference between the two alleles of each parent. It is impossible to identify
the allelic differences between the sire and the dam. Further crosses are required
to identify the difference between the two parents. Tree breeders sometimes choose
two phenotypically very different trees to cross and collect the full-sib progeny from
the cross for QTL mapping. Their intention for choosing the cross of two diversified
trees is to identify the allelic difference between the parental trees. However, they
may not realize that the full siblings are the hybrids (like F1), although their parents
are not inbred. This full-sib family can only be used to identify the allelic difference
within each parent, not the allelic difference between parents. Trees of the next
generation by crossing the full siblings to each other are the material for identifying
the difference between the diversified parental trees. If breeders can only manage to
cross for one generation, instead of crossing two diversified varieties, they should
select two trees from the same variety for crossing.

12.5 F2 Population Derived from Outbreds

In large animals, e.g., beef cattle, inbred lines are not available. We can still perform
QTL mapping using F2 derived from two different breeds. A breed in animals is
just like a line in plants except that a breed consists of a group of noninbred animals
who have the same genetic background. A group of female animals from breed 1
are crossed with a group of male animals from breed 2 to generate a group of F1
individuals. These F1 individuals are intercrossed to generate a large number of F2



12.6 Example 183

individuals, called an F2 population. They are called an F2 population rather than an
F2 family because these F2 progeny may come from many different families. These
F2 individuals are the experimental material for QTL mapping.

The optimal strategy to analyze such an F2 population is the mixed model
methodology proposed by Xu and Yi (2000). Their method was developed under the
general framework of pedigree analysis. The mixed model methodology partitions
the total genetic variance of a QTL into a between-breed variance and a within-breed
variance. Either variance being significant implies significance of the QTL. We will
not discuss this complicated method here; instead, we will introduce the simplified
method of Haley et al. (1994). The method is a combination of the F2 design and the
FW cross design. It adopts the F2 model for the QTL but with the FW cross approach
to inferring the QTL genotype probabilities. The F2 model assumes that there are
two alleles of the QTL, fixed alternatively in the two breeds. As a result, the classical
F2 model applies. The markers, however, are not necessarily fixed alternatively for
the two breeds. There may be multiple alleles per marker locus. Recall that the F2
population may consist of many full-sib families. The QTL model applies to all
the families (regardless of the family origin of individuals), but the way to infer
the QTL genotype probabilities is family dependent. Within each family, there are
a maximum of four alleles per marker locus. Using the parental marker genotypes
and the marker genotypes of a sibling, we can infer the QTL genotype probabilities
under the full-sib family design (if the linkage phases are unknown) or the four-way
cross design (if the linkage phases are known).

If the biallelic assumption (fixed alternatively in the two breeds) is violated, the
simplified method still works except that the power will be reduced. If the QTL
alleles are not fixed within the parental breeds, the within-breed genetic variance
will contribute to the total genetic variance, in addition to the between-breed
variance. The simplified analysis, however, will only capture the between-breed
genetic variance (fail to capture the within-breed variance) and thus will have a
lower power to detect the QTL. The justification of this simplified method is that
the two breeds are usually selected based on their diversified genetic backgrounds,
which indicates that the within-breed genetic variance is negligible compared to the
between-breed variance.

12.6 Example

This example demonstrates the application of the interval mapping method to a
double haploid population of barley. The data were originally published by Hayes
et al. (1993) and retrieved from

http://www.genenetwork.org/genotypes/SxM.geno

http://www.genenetwork.org/genotypes/SxM.geno
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Fig. 12.4 The LOD test statistic profile for QTL mapping of the barley yield trait. The seven
chromosomes are separated by the vertical dotted lines. The “bar-code”-like ticks on the horizontal
axis indicate the marker locations

for the genotypes and

http://wheat.pw.usda.gov/ggpages/SxM/phenotypes.html

for the phenotypes. The data consist of 150 double haploid (DH) lines derived from
the cross of two spring barley varieties, Steptoe and Morex. A total of eight quan-
titative traits, including grain yield (YIELD), heading date (HEAD), plant height
(HEIGHT), lodging (LODG), grain protein (PROTEIN), alpha amylase (ALPHA),
diastatic power (POWER), and malt extract (EXTRACT), were measured from
multiple environments with the number of environments ranging from 6 to as many
as 16. The average values of trait across the environments were considered as the
original phenotypic values for the QTL mapping experiment. QTL by environment
(Q � E) interaction is assumed to be absent. The total number of markers was 495
distributed along seven chromosomes of the barley genome. The genotypes of the
markers were denoted by A for the Steptoe parent and B for the Morex parent.
Missing values were designated by H . The mixture model maximum likelihood
method was used for the interval mapping. The entire genome was scanned with a
1-cM increment. Figure 12.4 gives the LOD score profile of the barley genome for
the grain yield (YIELD) trait. The highest LOD score occurs at marker ABC325
on chromosome 3 with a LOD score of 14.5. The QTL genotype was coded as
C1 for A and �1 for B . With this coding system, the estimated QTL effect for
this locus was 0.248 (see Fig. 12.5 for the QTL effect profile of the yield trait).

http://wheat.pw.usda.gov/ggpages/SxM/phenotypes.html
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Fig. 12.5 The QTL effect profile for the barley yield trait. The seven chromosomes are separated
by the vertical dotted lines. The “bar-code”-like ticks on the horizontal axis indicate the marker
locations

The estimated residual variance was 0.169. Therefore, the proportion of the yield
trait variance contributed by this single QTL is

h2 D 0:2482

0:2482 C 0:169 D 0:2668

This huge QTL should be very useful for marker-assisted selection to improve the
grain yield of barley.



Chapter 13
Random Model Approach to QTL Mapping

The mapping populations we have discussed so far are all initiated from crosses of
two or a few lines (breeds). As a result, the number of alleles is relatively small,
and thus the conclusion is drawn based on narrow genetic variation. In addition,
through control of the mating design, we can control the allele frequencies. Because
the number of alleles is determined by the number of inbred lines involved in
a line crossing experiment and the number of lines is small, we can estimate
and test the allelic effects or the average effects of allelic substitution. The linear
models that allow us to estimate and test the allelic effects are called fixed effect
models. Therefore, all methods we have learned so far are based on the fixed model
approach.

When designed matings are impossible, we must collect data as they exist and
use such data to conduct QTL mapping. Because the number of alleles involved in
the mapping population is unknown and we cannot control the allelic frequencies,
the fixed model approach is hard to implement. In this chapter, we introduce an
alternative approach of QTL mapping that involves multiple alleles, the random
model approach to QTL mapping. Under the random model framework, rather than
estimating and testing the effects of allelic substitution of QTL, we estimate and test
the variances of the allelic effects for the QTL.

The mapping population may consist of a few large pedigrees or many small
pedigrees (e.g., nuclear families). A pedigree is a collection of genetically related
individuals descending from a few ancestors. Two types of pedigrees are commonly
used in QTL mapping: complicated pedigrees and simple pedigrees. A complicated
pedigree is a collection of relatives that expand for multiple generations. Members
in a complicated pedigree can be inbred or outbred, and their relationships can be
arbitrarily complicated. A simple pedigree, however, consists of two outbred parents
and their children, and thus, it is also called a nuclear family. When the phenotypic
values of the parents are excluded from the analysis, the method is called full-sib
analysis. In this chapter, we only discuss the random model methodology using
multiple full-sib families. Extension of the method to QTL mapping for complicated
pedigrees will be mentioned briefly toward the end of this chapter.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 13,
© Springer Science+Business Media, LLC 2013
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A brief introduction to the milestones of the random model methodology of QTL
mapping is presented in this paragraph. The random model methodology is also
called variance component analysis (Searle et al. 1992). The parameters of interest
are variances of the random effects rather than the effects themselves. In terms of
QTL mapping, the parameter of interest is the variance of the allelic effects of the
locus under investigation in the mapping population. Early works of random model
QTL mapping include Goldgar (1990), Schork (1993), Amos (1994), and Xu and
Atchley (1995). These studies laid the foundation for the popular QTL mapping
procedures in human pedigrees (e.g., Almasy and Blangero 1998). Goldgar (1990)
partitioned the entire genome into many regions (chromosome segments) and used
a multipoint method to estimate the identity-by-descent (IBD) value shared by
pair of relatives (siblings) for the target region. Using the maximum likelihood
method, Goldgar (1990) was able to estimate the genetic variance explained by
that chromosome segment. Schork (1993) extended the method and proposed to
estimate variance components of multiple segments simultaneously. In addition,
Schork (1993) also included a common environmental effect shared by relatives
and estimated the common environmental variance. Amos’ (1994) model differs
from Goldgar (1990) in that fixed effects not relevant to genetics are included in the
model. Therefore, Amos’ (1994) method is a linear mixed model approach. Another
new feature of Amos’ (1994) model is that he replaced the IBD of a chromosome
region by the IBD of a marker. Xu and Atchley (1995) adopted the idea of interval
mapping (Lander and Botstein, 1989) to estimate the genetic variance of a particular
location of the genome using flanking markers. Using genome-wide markers, Xu
and Atchley (1995) were able to scan the entire genome for QTL under the random
model approach.

Prior to the maximum likelihood methods of QTL variance estimation, Haseman
and Elston (1972) developed a sib-pair regression method for estimating genetic
variance of a polymorphic marker. They found that the squared difference between
the phenotypic values of a sib pair is a linear function of the genetic variance
of a marker. Therefore, they regressed the squared phenotypic difference on the
IBD value of a sib pair to obtain an estimation of the genetic variance. Many
people believe that the regression model of Haseman and Elston (1972) is a
genius. However, the real creativity of Haseman and Elston (1972) comes from
the recognition of the variation of sib-pair IBD and the method to calculate the
conditional expectation of IBD values given marker information. It is the variance
of locus-specific IBD that allows the separation of the QTL variance from the
polygenic variance. The original sib-pair regression of Haseman and Elston (1972)
is still a marker analysis. It is the sib-pair interval mapping of Fulker and Cardon
(1994) that allows the entire genome to be scanned and thus puts QTL mapping
of random populations in the same framework as interval mapping of line crosses
(Lander and Botstein 1989).
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13.1 Identity by Descent

Identity by descent is a special terminology in quantitative genetics to describe the
relationship between two alleles. If two alleles are the same copy of an ancestral
allele in the past, the two alleles are said to be identical by descent (IBD). In
contrast, two alleles are said to be identical by state (IBS) if they have the same
allelic form, regardless of their origins. Without mutation, two alleles that are IBD
must also be IBS; however, the reverse is not necessarily true. We now use Fig. 13.1
(modified from Lynch and Walsh (1998)) to demonstrate the difference between
IBD and IBS. This diagram shows the paths of the four alleles of the parents to
the four alleles of the progeny. Such a diagram is called a descent graph. The
progeny in the left (sib 1) has two A1 alleles, but only A1 in the left is IBD to
the A1 allele carried by the progeny in the right (sib 2). All three A1 alleles in the
progeny are IBS. The term IBD is an event describing the relationship between
two alleles. In a diploid organism, however, an individual has two alleles at any
given locus. To describe the relationship between two individuals, we define the
IBD value as a proportion of the number of IBD alleles. Two individuals can share
two IBD alleles, one IBD allele or non-IBD allele. Therefore, the IBD proportion
between two individuals can be 2=2 D 1:0, 1=2 D 0:5, or 0=2 D 0:0, depending
on how many IBD alleles shared by the two individuals. IBD is the key of QTL
mapping under the random model methodology. We now discuss the IBD value
between siblings and the properties of the IBD value. Let As1A

s
2 and Ad1A

d
2 be the

genotypes of the father and the mother of a nuclear family, respectively, where As1
and As2 are the two alleles of the father and Ad1 and Ad2 are the two alleles of the
mother. Note that the two alleles carried by a parent are ordered. For example,
As1 and As2 represent the paternal and maternal alleles of the father, respectively.
Previously (Chap. 12), we used A1, A2, A3, and A4 to represent the four alleles
carried by the two parents. Now, these four alleles are represented by As1, A

s
2, A

d
1 ,

andAd2 , respectively. We use this new notation simply to represent the four different
origins of the alleles. These four alleles are not necessarily different in terms of the

A1 A2A1 A1

A1 A1 A1 A2

Sibling 1 Sibling 2

Father Mother

Fig. 13.1 Descent graph
showing the allelic
transmissions from the
parents to the progeny. Sib 1
has two A1 alleles, but only
A1 in the left is IBD to the A1
allele carried by sib 2. All
three A1 alleles in the
progeny are IBS
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Table 13.1 The 16 possible pairs of siblings and the numbers of IBD alleles (in
parentheses) shared by each sib pair

Sib two
Sib one As1A

d
1 As1A

d
2 As2A

d
1 As2A

d
2

As1A
d
1 As1A

d
1 -As1A

d
1 (2) As1A

d
1 -As1A

d
2 (1) As1A

d
1 -As2A

d
1 (1) As1A

d
1 -As2A

d
2 (0)

As1A
d
2 As1A

d
2 -As1A

d
1 (1) As1A

d
2 -As1A

d
2 (2) As1A

d
2 -As2A

d
1 (0) As1A

d
2 -As2A

d
2 (1)

As2A
d
1 As2A

d
1 -As1A

d
1 (1) As2A

d
1 -As1A

d
2 (0) As2A

d
1 -As2A

d
1 (2) As2A

d
1 -As2A

d
2 (1)

As2A
d
2 As2A

d
2 -As1A

d
1 (0) As2A

d
2 -As1A

d
2 (1) As2A

d
2 -As2A

d
1 (1) As2A

d
2 -As2A

d
2 (2)

allelic forms (states). For example, if bothAs1 andAs2 have the same allelic state, say
A1, then the actual genotype of the father is A1A1, a homozygote.

Four possible genotypes in terms of the allelic origins can be generated by
the mating pair, which are As1A

d
1 , As1A

d
2 , As2A

d
1 , and As2A

d
2 , each with an equal

probability. If we randomly sample a pair of siblings from the family, there will be
16 possible combinations of the sib pairs. These 16 sib-pair combinations are listed
in Table 13.1. We now evaluate each sib pair to see how many alleles are shared
by the siblings. Take sib-pair As1A

d
1 � As1Ad2 for example. The two siblings share

one common allele from their father, As1, but the two alleles from their mother are
different in origin. Since each individual has two alleles at any locus, the proportion
of IBD alleles shared by the siblings is 
 D 1=2 D 0:5. However, sib-pair
As1A

d
1 �As1Ad1 shares both alleles IBD, and thus, their IBD value is 
 D 2=2 D 1:0.

Although the two individuals are siblings, they behave like identical twins at the
locus of interest. Some sib pairs, e.g., As1A

d
1 � As2Ad2 , do not share any IBD allele,

and thus 
 D 0=2 D 0:0. For this locus, these two individuals act like strangers,
although they are actually siblings. We can see that the IBD proportion shared by
siblings, denoted by 
 , is a discrete variable, taking one of three possible values.
Among the 16 possible sib pairs, four of them (on the major diagonals) share two
IBD alleles (
 D 1:0), four of them (on the minor diagonals) share non-IBD allele
.
 D 0:0/, and the remaining eight sib pairs share one IBD allele .
 D 0:5/.
Therefore, the expectation of the IBD value is

E.
/ D 1

4
� 1:0C 1

2
� 0:5C 1

4
� 0:0 D 1

2
: (13.1)

The variance of the IBD value is

var.
/ D E.
2/� E2.
/ D 1

4
� 1:02 C 1

2
� 0:52 C 1

4
� 0:02 � 0:52 D 1

8
: (13.2)

If we consider the whole genome, siblings share half of their genome (genetic
material) and thus have a genome-wide IBD proportion of 0.5. However, if we
consider a single locus, the IBD proportion is a variable with an expectation of
1
2

and a variance of 1
8
. This variance is the key to the random model analysis of QTL

for outbred populations.
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13.2 Random Effect Genetic Model

Consider a mapping population consisting of n full-sib families each with two
siblings. Let yj1 and yj2 be the phenotypic values of a quantitative trait for the
two siblings in family j for j D 1; : : : ; n. The phenotypes can be described by the
following linear models:

yj1 D �C aj1 C �j1 C �j1
yj 2 D �C aj2 C �j2 C �j 2 (13.3)

where � is the population mean of the trait, �j1 and �j2 are the genetic effects of a
putative QTL for the two siblings, aj1 and aj2 are the polygenic effects (collective
effects of all loci of the genome), and �j1 and �j 2 are the residual errors for the two
siblings. These equations can be expressed in matrix notation as

�

yj1
yj2

�

D
�

�

�

�

C
�

aj1
aj 2

�

C
�

�j1
�j 2

�

C
�

�i1
�i2

�

(13.4)

The expectation of the array of phenotypic values is

E

�

yj1
yj2

�

D
�

�

�

�

(13.5)

and the variance–covariance matrix of the phenotypes is

var

�

yj1

yj2

�

D var

�

aj1

aj 2

�

C var

�

�j1

�j 2

�

C var

�

�j1

�j 2

�

; (13.6)

where

var

�

�i1
�i2

�

D
�

1 
j

j 1

�

	2� (13.7)

var

�

aj1
aj 2

�

D
�

1 0:5

0:5 1

�

	2a (13.8)

and

var

�

�j1

�j 2

�

D
�

1 0

0 1

�

	2 (13.9)

The three variance components, 	2a , 	2� , and 	2, are the polygenic variance,
the genetic variance of the QTL, and the residual variance, respectively. Note that
the covariance between the siblings at the QTL is cov.�j1; �j 2/ D 
j 	

2
� while the

covariance at the polygene is cov.aj1; aj 2/ D 0:5	2a . The siblings are assumed to
share no common environmental effect, and thus cov.�j1; �j 2/ D 0:0	2. The three
different coefficients, 
j , 0:5, and 0:0, in the covariance between siblings, allow us
to separate the three variance components and thus to estimate and test the QTL
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variance 	2� . Let yj D fyj1; yj 2g, �j D f�j1; �j 2g, aj D faj1; aj 2g, and �j D
f�j1; �j 2g be vector presentations of the corresponding contents. Let 1 D f1; 1g be a
unity vector. The linear models for the two siblings can be rewritten as

yj D 1�C aj C �j C �j : (13.10)

Let

˘j D
�

1 
j

j 1

�

(13.11)

be the IBD matrix for the QTL,

Aj D
�

1 0:5

0:5 1

�

(13.12)

be the additive relationship matrix for the polygene, and

I D
�

1 0

0 1

�

(13.13)

be the identity matrix for the residual error. The compact matrix representations for
the expectation and variance of yj are

E.yj / D 1� (13.14)

and

var.yj / D Vj D Aj	2a C˘j	
2
� C I	2; (13.15)

respectively. AlthoughAj is family independent, i.e., all families have the sameAj ,
we still use a subscript j for notational consistency. In addition, when we deal with
families with variable size, the dimension of Aj will be different from one family to
another. Variable family size will be dealt with in a later section.

13.3 Sib-Pair Regression

The Haseman and Elston (1972) sib-pair regression method does not use the original
phenotypic values as response variables; rather, the squared difference between the
phenotypic values of a sib pair is treated as the response variable. Define sj D
.yj1 � yj2/2 as the squared difference of sib-pair j . The expectation of sj is

E.sj / DE
�

.yj1 � yj2/2
�

D	2a C 2	2� C 2	2 � 2	2� 
j (13.16)
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Let ˇ D �2	2� be the regression coefficient and

˛ D 	2a C 2	2� C 2	2 (13.17)

be the intercept; the above model is rewritten as

sj D ˛ C ˇ
j C "j (13.18)

where "j is the residual for the linear model and the variance of "j is denoted by
	2" . The residual is not normally distributed, and the residual variance here is not
the environmental variance. Let Ǒ be the least square estimate of the regression
coefficient. The estimated genetic variance for the marker is

O	2� D �
1

2
Ǒ (13.19)

One may notice that the intercept given in (13.17) is different from that of Haseman
and Elston (1972), which is

˛ D 2	2� C 	2e (13.20)

The Haseman and Elston (1972) model assumes absence of polygenic effect, and
thus, 	2a is excluded. The environmental error defined in Haseman and Elston (1972)
is ej D �j1 � �j 2, the difference between the environmental errors of the sib pair.
Therefore, 	2e D 2	2, twice the environmental error variance defined in this chapter.

This regression analysis looks strange because the regression coefficient ˇ D
2	2� also appears in the intercept (as a component). The model can be revised to the
following form:

sj D ˛ C ˇ.
j � 1/C "j (13.21)

where ˛ is redefined as ˛ D 	2a C 2	2, which has excluded 2	2� . However, the
independent variable is 
j � 1, instead of 
j . The final estimation of the ˇ remains
the same.

13.4 Maximum Likelihood Estimation

We assume that 
j is known for all j D 1; : : : ; n. This represents a situation where
we can observe the genotypes of the QTL. In QTL mapping, the genotype of a
QTL is not observable, but the distribution of the genotype can be inferred from
marker information. The IBD value of a putative QTL is then replaced by the IBD
value estimated from marker data. The likelihood function discussed in this section
is based on known IBD values. Method dealing with inferred IBD will be deferred
to a later section, where a multipoint method for estimating the IBD values will
also be introduced. The IBD values for all the sib pairs are treated as data. The data
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also include the phenotypic values of the siblings. The parameter vector is � D
f�; 	2� ; 	2a ; 	2g. The log likelihood function is

L.�/ D �1
2

n
X

jD1
ln jVj j � 1

2

n
X

jD1
.yj � 1�/T V �1

j .yj � 1�/: (13.22)

This likelihood function is complicated, and the explicit solution for the MLE of the
parameters is not available.

13.4.1 EM Algorithm

Xu and Atchley (1995) used the simplex algorithm (Nelder and Mead 1965) to
find the MLE of � . Here we introduce the EM algorithm to estimate � . Under the
random model framework, the parameters of interest are the variance components.
Although QTL effects and polygenic effects both appear in the linear models,
they are not the parameters of interest. Because of this, they do not appear in
the log likelihood function. If these genetic effects were observed, the genetic
variance components would have been estimated easily using a simple formula
of variance. This reminds us the EM algorithm, in which we can take advantage
of the simplicity of the variance formula by treating both the QTL effects and
the polygenic effects as missing values. In this section, we introduce the EM
algorithm for estimating variance components. Derivation of the method requires
some complicated matrix algebra and thus will not be provided here. We will simply
show the final iterative equation for each parameter. We start with all parameter
values at iteration t , denoted by �.t/ D f�.t/; 	2.t/a ; 	

2.t/
� ; 	2.t/g, and then proceed to

update each parameter in sequence conditional on �.t/. Let us denote Vj evaluated
at �.t/ by

V
.t/
j D ˘j	

2.t/
� C Aj 	2.t/a C I	2.t/ (13.23)

We now introduce the EM algorithm starting with � D �.t/. If the QTL and the
polygenic effects were observed for all individuals, the MLEs of the QTL and
polygenic variances would be calculated using

	2� D
1

2n

n
X

jD1
�Tj ˘

�1
j �j (13.24)

and

	2a D
1

2n

n
X

jD1
aTj A

�1
j aj (13.25)

respectively. The environmental error variance would be obtained using



13.4 Maximum Likelihood Estimation 195

	2 D 1

2n

n
X

jD1
yTj .yj � � � aj � �j / (13.26)

The EM algorithm takes advantage of these simple equations by replacing the terms
involving aj and �j by their expectations. However, to calculate the expectations,
we need to use the phenotypic values and the current values of the parameters. Such
expectations are called the posterior expectations. The EM algorithm starts with
calculation of these expectations (the E-step) and then uses the simple equations to
update the variance components (the M-step). In the M-step, the parameters at the
.t C 1/th iteration are calculated using the following iteration equations:

�.tC1/ D
"

n
X

iD1
1T.V

.t/
j /�11

#�12

4

n
X

jD1
1T.V

.t/
j /�1yj

3

5 (13.27)

	2.tC1/� D 1

2n

n
X

jD1
E.�Tj ˘

�1
j �j /

D 1

2n

n
X

jD1

n

E.�Tj /˘
�1
j E.�j /C tr

h

˘�1
j var.�j /

io

(13.28)

	2.tC1/a D 1

2n

n
X

jD1
E.aTj A

�1
j aj /

D 1

2n

n
X

jD1

n

E.aTj /A
�1
j E.aj /C tr

h

A�1
j var.aj /

io

(13.29)

	2.tC1/ D 1

2n

n
X

jD1
yTj
�

yj � 1�.tC1/ � E.aj / � E.�j /
�

(13.30)

These equations are the steps required in the M-step. We can see that these equations
contain the expectations and variances of QTL effects and the polygenic effects.
Calculating these expectations and variances is called the E-step. For the QTL effect,
we have

E.�j / D ˘j	
2
� V

�1
j .yj � �/

var.�j / D ˘j	
2
�

�

I � V �1
j ˘j 	

2
�

	

(13.31)

The expectation and variance for the polygenic effect are

E.aj / D Aj	2aV �1
j .yj � �/

var.aj / D Aj	2a
�

I � V �1
j Aj 	

2
a

	

(13.32)
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13.4.2 EM Algorithm Under Singular Value Decomposition

The EM algorithm is not always guaranteed to work because occasionally˘�1
j may

not exist. For example, if the two siblings share 2 IBD alleles at the QTL, 
j D 1,
then ˘j will be singular. To avoid this problem, we can take a different approach.
This approach requires a linear transformation of the genetic effects using singular
value decomposition. Let us define 
j as an upper triangular matrix so that 
 T

j 
j D
˘j . We call 
j the Cholesky decomposition. This decomposition exists even if
˘j is positive semidefinite (not necessarily positive definite). Using the Cholesky
decomposition, we can avoid inverting˘j because the inverse of ˘j does not exist
if˘j is not positive definite. Similarly, we can take the Cholesky decomposition for
the additive relationship matrix, denoted byHj , i.e.,HT

j Hj D Aj . For two siblings
per family, both 
j and Hj have explicit expressions,


j D
"

1 
j

0
q

1 � 
2j

#

(13.33)

and

Hj D
�

1 0:5

0
p
1� 0:52

�

(13.34)

We now rewrite the linear model as

yj D 1�CHT
j a

�
j C 
 T

j �
�
j C �j (13.35)

where a�
j � N.0; I	2a/ and ��

j � N.0; I	2� /. Note the difference between aj and
a�
j and the difference between �j and ��

j . After the transformation, aj D HT
j a

�
j and

�j D 
 T
j �

�
j , we now deal with vectors with independent elements. The expectation

and variance–covariance matrix remain the same as given before, i.e.,

E.yj / D 1� (13.36)

and

var.yj / D HT
j var.a�

j /Hj C 
 T
j var.��

j /
j C I	2

D HT
j Hj 	

2
a C 
 T

j 
j 	
2
� C I	2

D Aj	2a C˘j	
2
� C I	2 (13.37)

The EM algorithm after the singular value decomposition consists of the following
steps. For the maximization step, we have
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�.tC1/ D
"

n
X

iD1
1T.V

.t/
j /�11

#�12

4

n
X

jD1
1T.V

.t/
j /�1yj

3

5 (13.38)

	2.tC1/� D 1

2n

n
X

jD1
E.��T

j ��
j /

D 1

2n

n
X

jD1

n

E.��T
j /E.��

j /C tr
h

var.��
j /
io

(13.39)

	2.tC1/a D 1

2n

n
X

jD1
E.a�T

j a�
j /

D 1

2n

n
X

jD1

n

E.a�T
j /E.a�

j /C tr
h

var.a�
j /
io

(13.40)

	2.tC1/ D 1

2n

n
X

jD1
yTj

h

yj � 1�.tC1/ �HT
j E.a�

j /� 
 T
j E.��

j /
i

(13.41)

For the expectation step, we have

E.a�
j / D Hj	

2
aV

�1
j .yj � 1�/

var.a�
j / D 	2a

�

I �HjV
�1
j HT

j 	
2
a

	

(13.42)

and

E.��
j / D 
j	2� V �1

j .yj � 1�/
var.��

j / D 	2�
�

I � 
jV �1
j 
 T

j 	
2
�

	

(13.43)

Clearly, we have avoided using A�1
j and 
 �1

j under the singular value decomposi-
tion approach. This approach is general because it works regardless whether ˘j is
singular or not.

13.4.3 Multiple Siblings

The sib-pair approach we have discussed so far can only handle two siblings per
family. If a full-sib family contains more than two siblings, the extra siblings cannot
be used. Additional information from the extra siblings will be wasted. Extension of
the existing method to multiple siblings is quite straightforward under the general
framework of random model methodology. This extension is different from the
sib-pair regression approach proposed by Haseman and Elston (1972), which cannot
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be extended to multiple siblings. Let nj be the number of siblings for the j th
full-sib family. Assume that there are n full-sib families in the mapping population;
the total sample size is N D Pn

jD1 nj . The sib-pair approach is a special case
where nj D 2;8j D 1; : : : ; n. The only difference between multiple siblings and
the sib-pair situations under the random model approach is the dimensionality of
the matrices. For the sib-pair method, all matrices have a dimensionality of 2 � 2.
For multiple siblings, vectors yj , aj , �j , and �j all have a dimensionality of nj � 1,
and matrices Aj and ˘j have a dimensionality of nj � nj . For example, for three
siblings per family, the Aj and ˘j matrices are

Aj D

2

6

6

6

6

6

6

4

1
1

2

1

2
1

2
1

1

2
1

2

1

2
1

3

7

7

7

7

7

7

5

(13.44)

and

˘j D
2

4

1 
12 
13

12 1 
23

13 
23 1

3

5 (13.45)

where 
23 is the IBD value between sibs 2 and 3. The corresponding changes from
sib pair to multiple siblings in the EM algorithms occur in the following three places:

	2.tC1/� D 1
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	2.tC1/ D 1

N

n
X

jD1
yTj

h

yj � 1�.tC1/ �HT
j E.a�

j / � 
 T
j E.��

j /
i

(13.48)

If the ˘j matrix is the true IBD matrix for the nj siblings, ˘j is positive
semidefinite. The EM algorithm under the singular value decomposition will work
equally well as the sib-pair method. However, the ˘j matrix for a QTL is always
estimated using marker information, and the method of estimation for ˘j cannot
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guarantee the positive semidefinite property. Therefore, the EM algorithm may not
always work. As a result, the simplex method is highly recommended because the
method directly evaluates the log likelihood function, which only requires a positive
definite Vj D Aj	

2
a C ˘j	� C I	2. The property of positive definite for Vj is

guaranteed as long as 	2 is not too small. If˘j is positive semidefinite, Vj is always
positive definite because 	2 > 0 always holds. Another reason for using the simplex
method is that the EM algorithm is sensitive to the initial values of the parameters
while the simplex is robust to the initial values of the parameters. For example, using
the simplex method, the initial values for 	2a D 	2� D 0 usually work very well, but
the EM algorithm cannot take such initial values. Unfortunately, programming the
simplex algorithm is not as easy as writing the program code for the EM algorithm.

13.5 Estimating the IBD Value for a Marker

When a marker is not fully informative, the IBD values shared by siblings are
ambiguous. We need a special algorithm to estimate the IBD values. We assume that
every individual in a nuclear family has been genotyped for the marker, including
the parents. If parents are not genotyped, their genotypes must be inferred first from
the genotypes of the progeny. However, the method becomes complicated and will
not be dealt with in this chapter. There are four possible allelic sharing states for a
pair of siblings. The probabilities of the four states are denoted by Pr.s; d /, where
s D f1; 0g indicates whether or not the siblings share their paternal alleles (alleles
from the sire). If they share the paternal alleles, we let s D 1; otherwise, s D 0.
Similarly, d D f1; 0g indicates whether or not the siblings share the maternal alleles
(alleles from the dam). Once we have the four probabilities, the estimated IBD value
for the siblings is

O
 D 1

2
f2 Pr.1; 1/C 1ŒPr.1; 0/C Pr.0; 1/�g

D Pr.1; 1/C 1

2
ŒPr.1; 0/C Pr.0; 1/�: (13.49)

Therefore, the problem of estimating the IBD value becomes a problem of calculat-
ing the four probabilities of allelic sharing states. We first convert the numbers of
shared alleles for the 16 possible sib-pair combinations listed in Table 13.1 into a
4 � 4 matrix,

S D

2

6

6

6

6

4

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44

3

7

7

7

7

5

D

2

6

6

6

6

4

2 1 1 0

1 2 0 1

1 0 2 1

0 1 1 2

3

7

7

7

7

5

; (13.50)
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where Sij is the i th row and the j th column of matrix S . We then construct another
4� 4 matrix, denoted by P , to represent the probabilities of the 16 possible sibling-
pair combinations. To find matrix P , we need to find two 4�1 vectors, one for each
sibling. LetU D fU1; U2; U3; U4g be the vector for sib one and V D fV1; V2; V3; V4g
be the vector for sib two. Recall that each progeny can take one of four possible
genotype configurations. Each element of vector U is the probability that the
progeny takes that particular genotype. For example, if the sire and the dam of
the nuclear family have genotypes of A1A2 and A3A3, respectively, then the four
genotype configurations areA1A3,A1A3,A2A3, andA2A3. If sib one has a genotype
of A2A3, it matches the third and the fourth genotype configurations. Therefore,
U D f0; 0; 1

2
; 1
2
g. If sib two has a genotype of A1A3, then V D f 1

2
; 1
2
; 0; 0g.

Both U and V are defined as column vectors. The 4 � 4 matrix P is defined as
P D UV T , i.e.,

P D

2

6

6

6

6

4

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

3

7

7

7

7

5

D

2

6

6

6

6

4

U1

U2

U3

U4

3

7

7

7

7

5

�

V1 V2 V3 V4
�

; (13.51)

where Pij D UiVj is the i th row and the j th column of matrix P . In the above
example, U D f0; 0; 1

2
; 1
2
g and V D f 1

2
; 1
2
; 0; 0g, and therefore,

P D

2

6

6

6

6

4

0

0

1
2

1
2

3

7

7

7

7

5

�

1

2

1

2
0 0

�

D

2

6

6

6

6

6

6

4

0 0 0 0

0 0 0 0

1
4

1
4

0 0

1
4

1
4

0 0

3

7

7

7

7

7

7

5

: (13.52)

The two matrices, S and P , contain all information for estimating the IBD value
shared by the siblings. The probability that the siblings share both alleles IBD is

Pr.1; 1/ D P11 C P22 C P33 C P44; (13.53)

which is the sum of the diagonal elements of matrix P , called the trace of matrix P .
The probability that the siblings share one IBD allele from the sire is

Pr.1; 0/ D P12 C P21 C P34 C P43: (13.54)

The probability that the siblings share one IBD allele from the dam is

Pr.0; 1/ D P13 C P24 C P31 C P42: (13.55)

Although Pr.0; 0/ is not required in estimating the IBD value, it is the probability
that the siblings share no IBD allele. It is calculated using

Pr.0; 0/ D P14 C P23 C P32 C P41; (13.56)
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which is the sum of the minor diagonal elements of matrixP . In the above example,
the estimated IBD value is

O
 D Pr.1; 1/C 1

2
ŒPr.1; 0/C Pr.0; 1/� D 0C 1

2

�

0C 1

2

�

D 1

4
: (13.57)

In fact, we do not need to calculate Pr.s; d / for estimating the IBD value for a
marker. The IBD value may be simply estimated using

O
 D 1

2

4
X

iD1

4
X

jD1
SijPij : (13.58)

In matrix notation, O
 D 1
2
ŒJ 0.S#P/J �, where J D f1; 1; 1; 1g is a column vector of

unity and the symbol # represents element-wise matrix multiplication. The reason
that we develop Pr.s; d / is to infer the IBD value of a putative QTL using Pr.s; d /
of the markers.

13.6 Multipoint Method for Estimating the IBD Value

Multipoint method for QTL mapping is more important under the IBD-based
random model framework than that under the fixed model framework using a single
line cross. The reason is that fully informative markers are rare in a random-mating
population, in which parents are usually randomly sampled. This is in contrast to a
line crossing experiment, in which parents that initiate the cross are inbred and often
selected based on maximum diversity in both marker and phenotype distributions.
Consider five loci in the order of ABCDE, where locus C is a putative QTL and the
other loci are markers. Let rAB , rBC , rCD, and rDE be the recombination fractions
between pairs of consecutive loci. The purpose of the multipoint analysis is to
estimate the IBD value shared by siblings for locus C given marker information for
loci A, B, D, and E. It is not appropriate to use the estimated IBD values for markers
to estimate the IBD value of the QTL. Instead, we should use the probabilities of the
four possible IBD sharing states of the markers to estimate the four possible IBD
sharing states of the QTL, from which the estimated IBD value of the QTL can be
obtained.

Let us denote Pr.s; d / for a marker locus, say locus A, by PA.s; d/. We now
define PA D fPA.1; 1/; PA.1; 0/; PA.0; 1/; PA.0; 0/g as a 4 � 1 vector for the
probabilities of the four IBD sharing states of locus A. Because this locus is a
marker, the four probabilities are calculated based on information of the marker
genotypes. Let us define DA D diagfPA.1; 1/; PA.1; 0/; PA.0; 1/; PA.0; 0/g as a
diagonal matrix for locus A. Similar diagonal matrices are defined for all other
makers, i.e., DB , DD , and DE . These diagonal matrices represent the marker data,
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from which the multipoint estimate of the IBD of locus C is obtained. The transition
matrix between loci A and B is

TAB D

2

6

6

6

6

6

6

6

4

 2AB .1 �  AB/ AB  AB.1 �  AB/ .1 �  AB/2

.1�  AB/ AB  2AB .1 �  AB/2  AB.1 �  AB/
 AB.1�  AB/ .1 �  AB/2  2AB .1 �  AB/ AB
.1 �  AB/2  AB.1 �  AB/ .1 �  AB/ AB  2AB

3

7

7

7

7

7

7

7

5

;

(13.59)

where  AB D r2AB C .1 � rAB/2. The four conditional probabilities of IBD sharing
states for locus C are calculated using the following equations:

Pr.1; 1/ D J 0DATABDBTBCD.1/TCDDDTDEDEJ
P4

kD1 J 0DATABDBTBCD.k/TCDDDTDEDEJ
;

Pr.1; 0/ D J 0DATABDBTBCD.2/TCDDDTDEDEJ
P4

kD1 J 0DATABDBTBCD.k/TCDDDTDEDEJ
;

Pr.0; 1/ D J 0DATABDBTBCD.3/TCDDDTDEDEJ
P4

kD1 J 0DATABDBTBCD.k/TCDDDTDEDEJ
;

Pr.0; 0/ D J 0DATABDBTBCD.4/TCDDDTDEDEJ
P4

kD1 J 0DATABDBTBCD.k/TCDDDTDEDEJ
: (13.60)

The denominator can be simplified into J 0DATABDBTBCTCDDDTDEDEJ be-
cause

P4
kD1 D.k/ D I . Let 
 be the IBD value shared by the siblings at locus C.

The multipoint estimate of 
 using marker information is

O
 D Pr.1; 1/C 1

2
ŒPr.1; 0/C Pr.0; 1/�: (13.61)

For a family with nj siblings, there are 1
2
nj .nj �1/ sib pairs. Therefore, for each

locus, we need to calculate 1
2
nj .nj � 1/ IBD values, one per sib pair. These IBD

values are calculated one sib pair at a time. Because they are not calculated jointly,
the IBD matrix obtained from these estimated IBD values may not be positive
definite or positive semidefinite. As a result, the EM algorithm proposed early may
not always work because it requires the positive semidefinite property.

Before we proceed to the next section, it is worthy to mention a possible
extension of the additive variance component model to include the dominance
variance. The modified model looks like

yj D 1�C aj C �j C �j C �j (13.62)
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where �j � N.0;�j	
2
� / is a vector of dominance effects, 	2� is the dominance

variance, and �j is the dominance IBD matrix for the siblings in the j th family.
The dominance IBD matrix is

�j D
�

1 ıj
ıj 1

�

(13.63)

where ıj is a binary variable indicating the event of the siblings sharing IBD
genotype. If the two siblings share both IBD alleles (i.e., the same IBD genotype),
then ıj D 1; otherwise, ı D 0. The estimated ıj is

Oıj D Pr.1; 1/ (13.64)

the probability that the siblings share both IBD alleles.

13.7 Genome Scanning and Hypothesis Tests

For each putative QTL position, we calculate the estimated IBD value for each sib
pair, denoted by O
j for the j th family. We then construct the IBD matrix

Ŏ
j D

�

1 O
j
O
j 1

�

(13.65)

for the j th family. These estimated IBD matrices are used in place of the true IBD
matrices for QTL mapping.

The null hypothesis is H0 W 	2� D 0. Again, a likelihood ratio test statistic is
adopted here for the hypothesis test. The likelihood ratio test statistic is

� D �2
h

L0. OO�; OO	2a ; OO	2/ �L1. O�; O	2� ; O	2a ; O	2/
i

: (13.66)

Note that the MLE of parameters under the null model differs from the MLE of
parameters under the full model by wearing double hats.

The genome is scanned for every putative position with a one- or two-centiMorgan
increment. The test statistic will form a profile along the genome. The estimated
QTL position takes the location of the genome where the peak of the test statistic
profile occurs, provided that the peak is higher than a predetermined critical
level. The critical value is usually obtained with permutation test (Churchill and
Doerge 1994) that has been described in Chap. 7.

The random model approach to interval mapping utilizes a single QTL model.
When multiple QTL are present, the QTL variance will be overestimated. This bias
can be eliminated through fitting a multiple QTL model, which will be presented
in the next section. If the multiple QTL are not tightly linked, the interval mapping
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approach still provides reasonable estimates for the QTL variances. Multiple peaks
of the test statistic profile indicate the presence of multiple QTL. The positions of
the genome where the multiple peaks occur represent estimated positions of the
multiple QTL.

One difference between the random model approach and the fixed model
approach to interval mapping is that the variances of QTL in other chromosomes
will be absorbed by the polygenic variance in the random model analysis rather
than by the residual variance in the fixed model analysis. Therefore, the random
model approach of interval mapping handles multiple QTL better than the fixed
model approach.

13.8 Multiple QTL Model

Assume that there are p QTL in the model, the multiple QTL model is

yj D �C
p
X

kD1
�jk C �j (13.67)

where �jk � N.0;˘jk	
2
k / is an nj � 1 vector for the kth QTL effects, ˘jk is

an nj � nj IBD matrix for the kth QTL, and 	2k is the genetic variance for the
kth QTL. Previously, we had a polygenic effect in the single QTL model to absorb
effects of all other QTL not included in the model. With the multiple QTL model,
the polygenic effect has disappeared (not needed). The expectation of the model
remains the same, i.e., E.yj / D �. The variance matrix is

var.yj / D Vj D
p
X

kD1
˘jk	

2
k C I	2 (13.68)

The likelihood function and the maximum likelihood estimation of the parameters
can follow what has been described previously in the single QTL model.

The complications with the multiple QTL model come from the genome
locations of the QTL. Under the single QTL model, we can scan the genome to find
the peaks of the test statistic profile. Under the multiple QTL model, the multiple
dimensional scanning is hard to implement. Therefore, an entirely different method,
called the Bayesian method, is required to simultaneously search for multiple QTL.
The Bayesian method will be introduced in Chap. 15. An ad hoc method is discussed
here for parameter estimation when the QTL positions are assumed to be known.
We can put a finite number of QTL that evenly cover the entire genome and hope that
some proposed QTL will sit nearby a true QTL. We may put one QTL in every d cM,
say d D 20, of the entire genome. This may end up with too many proposed QTL
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(more than the actual number of QTL). Some of the proposed QTL may be nearby
one or more true QTL, and thus, they can absorb the QTL effects. These proposed
QTL are useful and must be included in the model. Majority of the proposed QTL
may not be able to pick up any information at all because they may not be close to
any QTL. These proposed QTL are fake ones and, theoretically, should be excluded
from the model. Therefore, model selection appears to be necessary to delete those
false QTL. However, the random model methodology introduced in this chapter is
special in the sense that it allows a model to include many proposed QTL without
encountering much technical problem. The number of proposed QTL can even be
larger than the sample size. This is clearly different from the fixed effect linear
model where the number of model effects must be substantially smaller than the
sample size to be able to produce any meaningful result.

Under the multiple QTL model, the parameter vector is � D f�; 	21 ; : : : ; 	2p; 	2g
with a dimensionality .p C 2/ � 1. The high dimensionality of � is a serious
problem with regard to choosing the appropriate algorithm for parameter estimation.
The majority of the proposed QTL are fake, and thus, their estimated variance
components should be near zero. Since the EM algorithm does not allow the
use of zero as the initial value for a variance component, it is not an option.
The simplex algorithm, although allows the use of zero as initial values, can only
handle a few variance components, say p D 20 or less. The easiest and simplest
algorithm is the sequential search with one component at a time (Han and Xu 2010).
We search for the optimal value of one component, conditional on the values of
all other components. When every variance component is sequentially optimized,
another round of search begins. The iteration continues until a certain criterion of
convergence is satisfied. The sequential search algorithm is summarized as follows
Han and Xu (2010):

1. Set t D 0, and initialize � D �.t/ D f�.t/; 	2.t/1 ; : : : ; 	
2.t/
p ; 	2.t/g, where

�.0/ D Ny

	2.0/ D 1

N

n
X

jD1
.yj � 1 Ny/T .yj � 1 Ny/

	
2.0/

k D 0;8k D 1; � � � ; p (13.69)

2. Define V .t/
j D

n
P

jD1
˘jk	

2.t/

k C I	2.t/, and update � by maximizing

L.�/ D �1
2

n
X

jD1
ln
ˇ

ˇ

ˇV
.t/
j

ˇ

ˇ

ˇ � 1
2

n
X

jD1




yj � 1�
�T
�

V
.t/
j

	�1 

yj � 1�

�

(13.70)



206 13 Random Model Approach to QTL Mapping

3. Define Vj .	2k / D V .t/
j �˘jk.	

2.t/

k � 	2k /, and update 	2k by maximizing

L.	2k / D�
1

2

n
X

jD1
ln
ˇ

ˇ

ˇVj .	
2
k /
ˇ

ˇ

ˇ

� 1
2

n
X

jD1




yj � 1�.t/
�T
V �1
j .	2k /




yj � 1�.t/
�

(13.71)

for all k D 1; : : : ; p
4. Define Vj .	2/ D V .t/

j � I.	2.t/ � 	2/, and update 	2 by maximizing

L.	2/ D� 1
2

n
X

jD1
ln
ˇ

ˇVj .	
2/
ˇ

ˇ

� 1
2

n
X

jD1




yj � 1�.t/
�T
V �1
j .	2/




yj � 1�.t/
�

(13.72)

5. Set t D tC1, and repeat from Steps 2 to 4 until a certain criterion of convergence
is satisfied.

The solution for � in Step 2 is explicit, as shown below:

� D
2

4

n
X

jD1
1T V

.t/
j 1

3

5

�12

4

n
X

jD1
1T V

.t/
j yj

3

5 (13.73)

However, the solutions for 	2k within Step 3 and 	2 within Step 4 must be
obtained via some numerical algorithm. Since the dimensionality is low (a single
variable), any algorithm will work well. The simplex algorithm, although designed
for multiple variable, works very well for a single variable.

Although the multiple QTL model implemented via the sequential search
algorithm can handle an extremely large number of QTL, most of the estimated
variance components will be close to zero. A QTL with a zero variance component is
equivalent to being excluded from the model. It is still a model selection strategy but
only conducted implicitly rather than explicitly. The caveat of the ad hoc sequential
search is that the estimated residual variance, 	2, approaches to zero as p grows.
This, however, does not affect the relative contribution of each identified QTL
because the relative contribution of the kth QTL is expressed as

h2k D
	2k

Pp

k0 	
2
k0 C 	2 (13.74)
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13.9 Complex Pedigree Analysis

The random model approach to QTL mapping can also be extended to handle
large families with complicated relationships. Such families are called pedigrees.
A pedigree may consist of relatives with arbitrary relationships, and the members
may expand for several generations. The model and algorithm remain the same as
the nuclear family analysis except that methods for calculating the IBD matrix for a
putative QTL are much more involved. The multiple regression method developed
by Fulker and Cardon (1994) for sib-pair analysis and later extended to pedigree
analysis by Almasy and Blangero (1998) can be adopted. The regression method
for calculating the IBD matrix, however, is not optimal. The Markov chain Monte
Carlo method for calculating the IBD matrix implemented in the software package
Lokie (Heath 1997) and the program named in SimWalk2 (Sobel et al., 2001) are
recommended.



Chapter 14
Mapping QTL for Multiple Traits

Multiple traits are measured virtually in all line crossing experiments of QTL
mapping. Yet, almost all data collected for multiple traits are analyzed separately
for different traits. Joint analysis for multiple traits will shed new light in QTL
mapping by improving the statistical power of QTL detection and increasing the
accuracy of QTL localization when different traits segregating in the mapping
population are genetically related. Joint analysis for multiple traits is defined as
a method that includes all traits simultaneously in a single model, rather than
analyzing one trait at a time and reporting the results in a format that appears
to be multiple-trait analysis. In addition to the increased power and resolution
of QTL detection, joint mapping can provide insights into fundamental genetic
mechanisms underlying trait relationships such as pleiotropy versus close linkage
and genotype by environment (G�E) interaction, which would otherwise be difficult
to address if traits are analyzed separately. Substantial work has been done in joint
mapping for multiple quantitative traits (Jiang and Zeng 1995; Mangin et al. 1998;
Almasy and Blangero 1998; Henshall and Goddard 1999; Williams et al. 1999;
Knott and Haley 2000; Hackett et al. 2001; Korol et al. 1995, 2001). In general,
there are two ways to handle joint mapping. One way is the true multivariate
analysis in which a multivariate normal distribution is assumed for the multiple
traits, and thus, a Gaussian model is applied to construct the likelihood function.
Parameter estimation is conducted via either the expectation-maximization (EM)
algorithm (Dempster et al. 1977) or the multiple-trait least-squares method (Knott
and Haley 2000). One problem with the multivariate analysis is that if the number
of traits is large, there will be too many hypotheses to test and interpretation of
the results will become cumbersome. The other way to handle multiple traits is to
utilize a dimension reduction technique, e.g., the principal component analysis, to
transform the data into fewer variables, i.e., “super traits,” that explain majority of
the total variation of the entire set of traits. Analyzing the “super traits” requires
little additional work (Mangin et al. 1998; Korol et al. 1995, 2001) compared to
the single-trait genetic mapping statistics. However, as pointed by Hackett et al.
(2001), inferences based on the “super traits” might result in detection of spurious
QTL. Furthermore, parameters of the super traits are often difficult to interpret
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biologically. Nevertheless, joint mapping provides a good opportunity to answer
more questions about the genetic architecture of complex trait sets and deserves
continued efforts from investigators in the QTL mapping community.

The previously reviewed methods are all based on the maximum likelihood
method except of Knott and Haley (2000) who took a least-squares approach.
Recently, Banerjee et al. (2008) and Xu et al. (2009) developed Bayesian methods
implemented via the Markov chain Monte Carlo algorithm for mapping multiple
quantitative traits. Xu et al. (2009) also included multiple binary trait mapping.
The Bayesian methods will not be described here. In the following sections, we will
only introduce the maximum likelihood method developed by Xu et al. (2005). This
method was originally proposed for mapping multiple binary traits. For multiple
quantitative traits, an additional step of estimating the residual variance–covariance
matrix is needed.

14.1 Multivariate Model

Let yj D y1; : : : ; ym be an 1 � m vector for the phenotypic values of m traits
measured from the j th individual of a mapping population. Note that yj is now
a row vector, not a column vector as presented earlier. Only F2 populations are
considered in the text. Methods for other mapping populations are simple extension
of that for the F2 population. The linear model for the m traits is

yj D Xjˇ CZj � C �j (14.1)

whereXj is a 1�p design matrix for some systematic effects (not related to QTL),
ˇ is a p � m matrix for the systematic effects, Zj D fZj1;Zj2g is a 1 � 2 vector
determined by the genotypes of a putative QTL, � is a 2 � m matrix for the QTL
effects, and �j is a 1�m vector for the residual errors. TheZ variables are defined as

Zj1 D

8

ˆ
ˆ
<

ˆ
ˆ
:

C1
0

�1

for A1A1

for A1A2

for A2A2

;Zj2 D

8

ˆ
ˆ
<

ˆ
ˆ
:

0

1

0

for A1A1

for A1A2

for A2A2

(14.2)

When Zj1 and Zj2 are written together as a vector, we have

Zj D

8

ˆ
ˆ
<

ˆ
ˆ
:

H1

H2

H3

for A1A1

for A1A2

for A2A2

(14.3)
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whereHi is the i th row of matrix

H D

2

6

6

4

C1 0
0 1

�1 0

3

7

7

5

(14.4)

The QTL effect matrix is

� D
"

a1 � � � am
d1 � � � dm

#

(14.5)

where ai and di are the additive and dominance effects, respectively, for the i th trait.
The vector of residual errors is assumed to be �j � N.0;˙/ where

˙ D

2

6

4

	21 � � � 	1m
:::
: : :

:::

	1m � � � 	2m

3

7

5 (14.6)

is an m �m variance matrix. Let

�jk D Xjˇ CHk� (14.7)

The log likelihood function for the j th individual is

Lj .�/ D �1
2

ln j˙ j C ln
3
X

kD1
pj .2 � k/ exp

�

�1
2
.yj � �jk/˙�1.yj � �jk/T

�

(14.8)

wherepj .2�k/ D Pr.Gj D kjmarker/ is the conditional probability that individual
j takes the kth genotype for the QTL given the marker information for k D 1; 2; 3.
The log likelihood function for the entire population is

L.�/ D
n
X

jD1
Lj .�/ (14.9)

which is the observed log likelihood function to be used in significance test.

14.2 EM Algorithm for Parameter Estimation

The missing value is Zj , which is redundantly expressed by ı.Gj ; k/. In other
words, if Zj D Hk , then ı.Gj ; k/ D 1; otherwise, ı.Gj ; k/ D 0. Let

pj .2 � k/ D Pr
�

ı.Gj ; k/ D 1jmarker
� D E

�

ı.Gj ; k/jmarker
�

(14.10)
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be the prior probability before yj is observed. The posterior probability that
ı.Gj ; k/ D 1 after yj is observed becomes

p�
j .2� k/ D E

�

ı.Gj ; k/
�

D
pj .2 � k/ exp

h

� 1
2




yj � �jk
�

˙�1 
yj � �jk
�T
i

P3
k0D1 pj .2 � k0/ exp

h

� 1
2




yj � �jk0

�

˙�1 
yj � �jk0

�T
i

(14.11)

This posterior probability will be used in calculating all expectation terms that
involve the missing value Zj . We introduce the formulas in the maximization step
first because the expectation step then follows naturally. The maximization step of
the EM algorithm consists of the following equations:

ˇ D
2

4

n
X

jD1
XT
j Xj

3

5

�12

4

n
X

jD1
XT
j




yj �E.Zj /�
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5

� D
2

4

n
X

jD1
E
�

ZT
j Zj

	

3

5

�12

4

n
X

jD1
E.ZT

j /



yj � Xjˇ
�

3

5

˙ D 1

n

n
X

jD1
E
h



yj � Xjˇ �Zj �
�T 


yj � Xjˇ �Zj �
�
i

(14.12)

where all the expectations in the above equations are taken with respect to
the missing value Zj using the posterior probability of QTL genotype. In the
expectation step, we calculate the following quantities:

E.Zj / D
3
X

kD1
p�
j .2 � k/Hk

E.ZT
j Zj / D

3
X

kD1
p�
j .2 � k/HT

k Hk (14.13)

and

E
h



yj�Xjˇ�Zj �
�T 


yj�Xjˇ�Zj �
�
i

D
3
X

kD1
p�
j .2�k/




yj��jk
�T 


yj��jk
�

(14.14)

Derivation of the formulas in the maximization step is deferred to the last section of
this chapter.
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14.3 Hypothesis Tests

The null hypothesis is H0 W � D 0. The log likelihood values under the full model
and the reduced model are

L1. Ǒ; O�; Ȯ / D
n
X

jD1
Lj . Ǒ; O�; Ȯ / (14.15)

and

L0. Ǒ; Ȯ / D
n
X

jD1
Lj . Ǒ; Ȯ / (14.16)

respectively. The MLE of ˇ and˙ under the reduced model is

Ǒ D
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n
X

jD1
XT
j Xj
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�12
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n
X

jD1
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j yj
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Ȯ D 1

n

n
X

jD1

�

yj � Xj Ǒ
	T �

yj � Xj Ǒ
	

(14.17)

There are many other interesting hypotheses that can be tested under the multivariate
QTL mapping framework. The most important one of them is the null hypothesis
that the genetic correlation of traits is caused by linkage (not by pleiotropy).
Recall that

� D
"

a1 a2 � � � am
d1 d2 � � � dm

#

(14.18)

which can be written as

�D ��1 �2 � � � �m
�

(14.19)

where

�i D
"

ai

di

#

(14.20)

is the vector of genetic effects for the i th trait. The null hypothesis is complicated
because there are many different situations for linkage. We may only want to test
the hypothesis for one pair of traits at a time. Let us take m D 2 as an example
to show various hypotheses. The pleiotropic model says �1 ¤ 0 and �2 ¤ 0.
The linkage model is stated as either �1 D 0 and �2 ¤ 0 or �0 ¤ 0 and �2 D 0.
For each null hypothesis, we need to estimate one set of parameters with another set
of parameters constrained. The likelihood ratio test statistic can be constructed for
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each test. For example, if the null hypothesis is �1 D 0 and �2 ¤ 0 , the new QTL
effects matrix under the constraint is

�� D
"

0 a2

0 d2

#

(14.21)

The two log likelihood functions used for construction of the likelihood ratio test are

L1. Ǒ; O�; Ȯ / D
n
X

jD1
Lj . Ǒ; O�; Ȯ / (14.22)

and

L0. Ǒ; O��; Ȯ / D
n
X

jD1
Lj . Ǒ; O��; Ȯ / (14.23)

respectively.
For more than two traits, the number of different likelihood functions to be

evaluated can be very large, tremendously increasing the computational burden.
Therefore, it is better to shift to the Wald tests (1943), where only the estimated
parameters from the full likelihood function are required. The Wald test, however,
requires calculation of the variance–covariance matrix of the estimated parameters.

14.4 Variance Matrix of Estimated Parameters

The general formula for the variance–covariance matrix is difficult to derive.
Fortunately, we can use some nonparametric method to calculate this matrix.
The bootstrap method (Efron 1979) is the ideal method for the nonparametric
estimation of the variance matrix. This method is a sampling-based method and
thus is time consuming. However, we do not need to calculate this matrix for every
point of the genome. Only points that show some evidence of QTL are needed
for estimating the variance–covariance matrix. The bootstrap method requires
repeated sampling of the original data. For n individuals, we sample n individuals
randomly with replacement from the original data. Sampling with replacement
means that some individuals may be selected several times while others may not
be selected at all in a particular sample. Once a bootstrap sample is collected,
the same procedure is used to estimate the parameter vector � . Suppose that we
sample R times to generate R bootstrap samples. For the r th sample, we estimate
the parameter vector, denoted by �.r/, for r D 1; : : : ; R. The sequence of � , denoted
by f�.1/; � .2/; : : : ; � .R/g, forms an empirical sample for the parameters. From this
parameter sample (with size R), a variance–covariance matrix is calculated. This
estimated variance matrix, denoted by
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var. O�/ D 1

R � 1
R
X

rD1
.�.r/ � N�/.�.r/ � N�/T ; (14.24)

is the bootstrap-estimated variance matrix for the MLE of � , where N� is the algebraic
mean of the sampled � . Given the variance matrix of O� , we can choose a subset of
this matrix, e.g., var.�i /, the variance matrix for QTL of the i th trait. The Wald
test forH0 W �i D 0 is then established using

W D O�Ti Œvar. O�i/��1 O�i (14.25)

The Wald tests can be converted into LOD scores for graphical presentation
of the mapping result. To calculate the Wald test, we only need the maximum
likelihood analysis of the full model. This can eliminate much computational load
compared to the likelihood ratio test, in which various reduced models must be
evaluated. On the other hand, the Wald test also requires the variance matrix of
estimated parameters. If the variance matrix is calculated for every point scanned
using the bootstrap method, the overall computational burden may even be higher
than that of the likelihood ratio test. For the first moment parameters, e.g., the QTL
effects, the estimated parameters are usually independent of the variances of the
estimated parameters. Therefore, the variance matrix for the estimated QTL effects
of a genome location may be roughly a constant across the genome provided that
the marker density is high and there are very few missing genotypes. In this case,
we may only need to calculate the variance matrices for a few points of the genome
and use the average as the variance matrix of the estimated QTL effects. This
average variance matrix can be used to construct the Wald-test statistic for whole
genome scanning of quantitative trait loci. The high marker density assumption is to
make sure that the information content of markers is approximately constant across
the genome because the marker information content affects the variance matrix of
the estimated QTL effects.

14.5 Derivation of the EM Algorithm

The EM algorithm does not directly maximize the observed log likelihood function;
rather it maximizes the expectation of the complete-data log likelihood function.
The latter is denoted by Q D E ŒL.�; ı/�, as shown below:

Q D �n
2

ln j˙ j � 1
2

n
X

jD1
E
�

.yj �Xjˇ �Zj �/˙�1.yj �Xjˇ �Zj �/T
�

(14.26)
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The equations involved in the maximization step are obtained by setting the partial
derivatives of the above function with respect to the parameters to zero and solving
for the parameters. The partial derivative of Q with respect to ˇ is

@Q
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h
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j .yj � Xjˇ �Zj�/˙�1i
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˙�1 (14.27)

Let
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˙�1 D 0 (14.28)

Multiplying both sides of the above equation by ˙ leads
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Solving for ˇ results in
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The partial derivative of Q with respect to � is

@Q
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˙�1 (14.31)

Let @Q
@ˇ
D 0; we get
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Therefore,

� D
2

4

n
X

jD1
E.ZT

j Zj /

3

5

�12

4

n
X

jD1
E.ZT

j /.yj �Xjˇ/
3

5 (14.33)



14.5 Derivation of the EM Algorithm 217

Let us rewrite the expected complete-data log likelihood function by

Q D �n
2

ln j˙ j � 1
2

tr



˙�1V
�

(14.34)

where

V D
n
X

jD1
E
�

.yj � Xjˇ �Zj �/.yj � Xjˇ �Zj�/T
�

(14.35)

The partial derivative of Q with respect to ˙ is
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@˙
tr.˙�1V / (14.36)

Based on the rules of matrix calculus (Steeb and Hardy 2011), we have

@

@˙
ln j˙ j D ˙�1 (14.37)

and
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tr.˙�1V / D �˙�1V ˙�1 (14.38)

Therefore,
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Setting @Q

@˙
D 0 yields

� n
2
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2
˙�1V ˙�1 D 0 (14.40)

Multiplying both sides of the equation by 2
n
˙ and making appropriate rearrange-

ment, we get
1

n
V ˙�1 D I (14.41)

Therefore,

˙ D 1

n
V D 1

n

n
X

jD1
E
�

.yj �Xjˇ �Zj �/.yj �Xjˇ �Zj �/T
�

(14.42)

This concludes the derivation of the EM algorithm.



218 14 Mapping QTL for Multiple Traits

14.6 Example

The barley data analyzed in Chap. 12 are used here again for demonstration of the
multivariate analysis. In addition to the yield trait, the authors (Hayes et al. 1993)
recorded seven additional quantitative traits. The eight traits recorded are Yield
(y1), Lodging (y2), Height (y3), Heading (y4), Protein (y5), Extract (y6), Amylase
(y7), and Power (y8). Details about the traits and the experiment can be found
from the original paper (Hayes et al. 1993). The genome was scanned using the
maximum likelihood method with a 1-cM increment. The LOD score profile for
the overall test (all eight traits simultaneously) is shown in Fig. 14.1. It appears
that there are many QTL controlling the variation of the eight traits. The highest
peak occurs on chromosome 2 at location 36.3 cM (overlapping with marker Tef4).
Figure 14.2 gives the LOD score profiles for individual traits, also from the joint
analysis. Figure 14.2 shows that this marker (Tef4) has a QTL controlling three
traits (Heading, Height, and Protein).

We now focus on this particular marker (Tef4) and present the estimated QTL
effects and other parameters. Since it is difficult to calculate the covariance matrix
of the estimated QTL effects, we used the bootstrap method to calculate the
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Fig. 14.1 The overall LOD score profile for the barley multivariate analysis for eight quantitative
traits. The chromosomes are separated by the vertical reference lines
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Fig. 14.2 The LOD score profiles for individual traits in the multivariate analysis of the barley
data. The chromosomes are separated by the vertical reference lines

Table 14.1 Estimated QTL effects (locus Tef4) and population means for the eight
quantitative traits of the barley experiment along with their standard errors generated
from 1,000 bootstrap samples

Trait LOD score QTL effect StdErr(QTL) Mean StdErr(Mean)

Yield 0.2887 0.0281 0.0348 5.2884 0.0353
Lodging 0.1518 0.7332 1.1890 37.3285 1.1957
Height 29.2368 �5:4817 0.4838 95.2229 0.4932
Heading 48.3004 �2:9150 0.1686 181.3121 0.1665
Protein 3.9084 �0.1663 0.0613 12.9244 0.0614
Extract 6.3618 �0:2956 0.0917 74.7246 0.0910
Amylase 4.4276 �0:7740 0.2571 29.0392 0.2611
Power 2.5375 �3:5541 1.3229 87.2563 1.3470

empirical covariance matrix. The standard error of any estimated parameter is the
square root of the bootstrap-generated variance for that parameter. Table 14.1 gives
the LOD scores, the estimated QTL effects, and the estimated population means
along with the bootstrap-generated standard errors of the corresponding estimates.
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The estimated residual variance–covariance matrix (˙) is given in Table 14.2.
Finally, the bootstrap-generated covariance matrix for the estimated QTL effects is
given in Table 14.3. Note that the standard errors of the estimated QTL effects
presented in Table 14.1 are the square roots of the diagonals of Table 14.3.



Chapter 15
Bayesian Multiple QTL Mapping

So far we have learned the least-squares method, the weighted least squares method,
and the maximum likelihood method for QTL mapping. These methods share a
common problem in handling multiple QTL, that is, the problem of multicollinear-
ity. Therefore, a model can include only a few QTL. Recently, Bayesian method has
been developed for mapping multiple QTL (Satagopan et al. 1996; Heath 1997;
Sillanpää and Arjas 1998; Sillanpää and Arjas 1999; Xu 2003; Yi 2004; Wang
et al. 2005b; Yi and Shriner 2008). Under the Bayesian framework, the model
can tolerate a much higher level of multicollinearity than the maximum likelihood
method. As a result, the Bayesian method can handle highly saturated model. This
chapter is focused on the Bayesian method via the Markov chain Monte Carlo
(MCMC) algorithm. Before introducing the methods of Bayesian mapping, it is
necessary to review briefly the background knowledge of Bayesian statistics.

15.1 Bayesian Regression Analysis

We will learn the basic principle and method of Bayesian analysis using a simple
regression model as an example. The simple regression model has the following
form:

yj D Xjˇ C �j ;8j D 1; : : : ; n (15.1)

where yj is the response (dependent) variable, Xj is the regressor (independent
variable), ˇ is the regression coefficient, and �j is the residual error with an assumed
N.0; 	2/ distribution. This model is a special case of

yj D ˛ CXjˇ C �j ;8j D 1; : : : ; n (15.2)

with ˛ D 0, i.e., regression through the origin. We use this special model to
derive the Bayesian estimates of parameters. In subsequent sections, we will extend

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 15,
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the model to the usual regression with nonzero intercept and also regression with
multiple explanatory variables (multiple regression). The log likelihood function is

L.�/ D �n
2

log.	2/� 1

2	2

n
X

jD1
.yj � Xjˇ/2 (15.3)

where � D fˇ; 	2g. The MLEs of � are

Ǒ D
�
Xn

jD1 X
2
j

	�1 �Xn

jD1 Xjyj
	

(15.4)

and

O	2 D 1

n

n
X

jD1
.yj � Xj Ǒ/2 (15.5)

In the maximum likelihood analysis, parameters are estimated from the data. Some-
times investigators have prior knowledge of the parameters. This prior knowledge
can be incorporated into the analysis to improve the estimation of parameters. This
is the primary purpose of Bayesian analysis. The prior knowledge is formulated as
a prior distribution of the parameters. Let p.ˇ; 	2/ be the joint prior density of � .
Usually, we assume that ˇ and 	2 are independent so that

p.ˇ; 	2/ D p.ˇ/p.	2/ (15.6)

The choice of p.ˇ/ and p.	2/ depends on investigator’s knowledge on the problem
and mathematical attractiveness. In the simple regression analysis, the following
priors are both legitimate and attractive, which are

p.ˇ/ D N.ˇj�ˇ; 	2ˇ/ (15.7)

and

p.	2/ D Inv� �2.	2j�; !/ (15.8)

where N.ˇj�ˇ; 	2ˇ/ is the notation for the normal density of variable ˇ with mean

�ˇ and variance 	2ˇ , and Inv � �2.	2j�; !/ is the probability density for the scaled

inverse chi-square distribution of variable 	2 with degree of freedom � and scale
parameter !. The notation for a distribution and the notation for the probability
density of the distribution are now consistent. For example, x � N.�; 	2/ means
that x is normally distributed with mean � and variance 	2, which is equivalently
described as p.x/ D N.xj�; 	2/. The exact forms of these distributions are

p.ˇ/ D N.ˇj�ˇ; 	2ˇ/ D
1

q

2
	2ˇ

exp

"

� 1

2	2ˇ
.ˇ � �ˇ/2

#

(15.9)
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and

p.	2/ D Inv� �2.	2j�; !/ D .�!=2/�=2


 .�=2/
.	2/�.�=2C1/ exp

�

� �!
2	2

	

(15.10)

where 
 .�=2/ is the gamma function with argument �=2. Conditional on the
parameter � , the data vector y has a normal distribution with probability density

p.yj�/ D
n
Y

jD1
N.yj j�; 	2/ / 1

.	2/n=2
exp

2

4� 1

2	2

n
X

jD1
.yj � Xjˇ/2

3

5(15.11)

We now have the probability density of the data and the density of the prior
distribution of the parameters. We treat both the data and the parameters as random
variables and formulate the joint distribution of the data and the parameters,

p.y; �/ D p.yj�/p.�/ (15.12)

where p.�/ D p.ˇ/p.	2/. The purpose of Bayesian analysis is to infer the
conditional distribution of the parameters given the data and draw conclusion about
the parameters from the conditional distribution. The conditional distribution of the
parameters has the form of

p.� jy/ D p.y; �/

p.y/
/ p.y; �/ (15.13)

which is also called the posterior distribution of the parameters. The denominator,
p.y/, is the marginal density of the data, which is irrelevant to the parameters and
can be ignored because we are only interested in the estimation of parameters. Note
that the above conditional density is rewritten as

p.ˇ; 	2jy/ D p.y; ˇ; 	2/

p.y/
/ p.y; ˇ; 	2/ (15.14)

which is still a joint posterior density with regard to the two components of the
parameter vector. The ultimate purpose of the Bayesian analysis is to infer the
marginal posterior distribution for each component of the parameter vector. The
marginal posterior density for ˇ is obtained by integrating the joint posterior
distribution over 	2,

p.ˇjy/ D
Z 1

0

p.ˇ; 	2jy/d	2 (15.15)
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The integration has an explicit form, which turns out to be the kernel of a
t-distribution with n C � � 1 degrees of freedom (Sorensen and Gianola 2002).
The ˇ itself is not a t-distributed variable. It is .ˇ � Q̌/=	 Q̌ that has a t-distribution,
where

E.ˇjy/ D Q̌ D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�10

@

Ǒ
	2Ǒ
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	2ˇ

1

A (15.16)

is the marginal posterior mean of ˇ and

var.ˇjy/ D 	2Q̌ D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�1

(15.17)

is the marginal posterior variance of ˇ. Both the mean and the variance contain Ǒ
and O	2, the MLEs of ˇ and 	2, respectively. The role that O	2 plays in the above
equations is through

	2Ǒ D
�Xn

jD1 X
2
j

	�1 O	2 (15.18)

The density of the t-distributed variable with mean Q̌ and variance 	2Q̌ is denoted by

p.ˇjy/ D tnC��1.ˇj Q̌; 	2Q̌/ (15.19)

The marginal posterior density for 	2 is obtained by integrating the joint posterior
over ˇ,

p.	2jy/ D
Z 1

�1
p.ˇ; 	2jy/dˇ (15.20)

which happens to be a scaled inverse chi-square distribution with

�� D nC � � 1 (15.21)

degrees of freedom and a scale parameter (Sorensen and Gianola 2002)

!� D �! CPn
jD1.yj �Xj Q̌/2
� C n � 1 (15.22)

The density of the new scaled inverse chi-square variable is denoted by

p.	2jy/ D Inv� �2.	2j��; !�/ (15.23)

The mean and variance of the above distribution are

E.	2jy/ D Q	2 D �! CPn
jD1.yj �Xj Q̌/2
� C n � 3 (15.24)
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and

var.	2jy/ D 2Œ�! CPn
jD1.yj �Xj Q̌/2�2

.� C n � 3/2.� C n � 5/ (15.25)

respectively (Sorensen and Gianola 2002).
The marginal posterior distribution of each parameter contains all the information

we have gathered for that parameter. The Bayesian estimate of that parameter
can be either the posterior mean, the posterior mode, or the posterior median,
depending on the preference of the investigator. The marginal posterior distribution
of a parameter itself can also be treated as an estimate of the parameter. Assume that
the marginal posterior mean of a parameter is considered as the Bayesian estimate
of that parameter. The Bayesian estimates of ˇ and 	2 are Q̌ and Q	2, respectively.

The simple regression analysis (regression through origin) discussed above is
the simplest case of Bayesian analysis where the marginal posterior distribution of
each parameter is known. In most situations, especially when the dimensionality of
the parameter � is high, the marginal posterior distribution of a single parameter
involves high-dimensional multiple integration, and often the integration does not
have an explicit expression. Therefore, the posterior distribution of a parameter often
has an unknown form, which makes the Bayesian inference difficult. Thanks to the
ever-growing computing power, we can perform multiple numerical integrations
very efficiently. We can even utilize Monte Carlo integration by repeatedly sim-
ulating multivariate random variables. For extremely high-dimensional problems,
Monte Carlo integration is perhaps the only way to implement the Bayesian method.

Let us now discuss the relationship between the joint distribution and the
marginal distribution. Let � D f�1; �2; : : : ; �mg be an m dimensional multiple vari-
ables. Let p.�/ D p.�1; : : : ; �mjy/ be the joint posterior distribution. The marginal
posterior distribution for the kth component is

p.�kjy/ D
Z

: : :

Z

p.�1; : : : ; �mjy/d�1 : : : d�k�1d�kC1 : : : d�m (15.26)

If the multiple integration has an explicit form and we can recognize the marginal
distribution of �k, i.e., p.�kjy/ is the density of a well-known distribution, then
the expectation (or mode) of this distribution is what we want to know in the
Bayesian analysis. Suppose that we know neither the joint posterior distribution
nor the marginal posterior distribution, but somehow we have a joint posterior
sample of multivariate � with size N . In other words, we are only given N joint
observations of � . The sample is denoted by f�.1/; � .2/; : : : ; � .N/g. We can imagine
that the data in the sample are arranged in a N � m matrix. Each row represents
an observation, while each column represents a variable. What is the estimated
marginal expectation of �k drawn from this sample? Remember that this sample is
supposed to be generated from the joint posterior distribution. The answer is simple;
we only need to calculate the algebraic mean of variable �k from this sample, i.e.,

N�k D 1

N

N
X

jD1
�
.j /

k (15.27)
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This average value of �k is an empirical marginal posterior mean of �k , i.e., a
Bayesian estimate of �k. We can see that as long as we have a joint sample of � ,
we can infer the marginal mean of a single component of � simply by calculating
the mean of that component from the sample. While calculating the mean only
requires knowledge learned from elementary school, generating the joint sample
of � becomes the main focus of the Bayesian analysis.

15.2 Markov Chain Monte Carlo

There are many different ways to generate a sample of � from the joint distribution.
The classical method is to use the following sequential approach to generate the first
observation, denoted by �.1/:

• Simulate �.1/1 from p.�1jy/
• Simulate �.1/2 from p.�2j�.1/1 ; y/

• Simulate �.1/3 from p.�3j�.1/1 ; �
.1/
2 ; y/

• : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

• Simulate �.1/m from p.�mj�.1/1 ; : : : ; �
.1/
m�1; y/

The process is simply repeated N times to simulate an entire sample of � .
Observations generated this way are independent. We can see that we still need the
marginal distribution for �1 and various levels of marginality of other components.
Only �m is generated from a fully conditional posterior, which does not involve any
integration. Therefore, this sequential approach of generating random sample is not
what we want.

The MCMC approach draws all variables from their fully conditional posterior
distributions. To draw a variable from a conditional distribution, we must have some
values of the variables that are conditioned on. For example, to draw y from p.yjx/,
the value of x must be known. Let �.0/ be the initial value of multivariate � . The
first observation of � is drawn using the following process:

• Simulate �.1/1 from p.�1j�.0/�1 ; y/
• Simulate �.1/2 from p.�2j�.0/�2 ; y/
• Simulate �.1/3 from p.�3j�.0/�3 ; y/
• : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

• Simulate �.1/m from p.�mj�.0/�m; y/

where �.0/�k is a subset of vector �.0/ that excludes the kth element, i.e.,

�
.0/

�k D f�.0/1 ; : : : ; �
.0/

k�1; �
.0/

kC1; : : : ; �
.0/
m g

This special notation (negative subscript) has tremendously simplified the
expressions of the MCMC sampling algorithm. The above process concludes the
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simulation for the first observation. The process is repeated N times to generate
a sample of � with size N . The sampled �.t/ depends on �.t�1/, i.e., the sampled
� in the current cycle only depends on the � in the previous cycle. Therefore, the
sequence

f�.0/ ! �.1/ ! � � � ! �.N/g
forms a Markov chain, which explains why the method is called Markov chain
Monte Carlo. Because of the Markov chain property, the observations are not
independent, and the first few hundred (or even thousand) observations highly
depend on the initial value �.0/ used to start the chain. Once the chain is stabilized,
i.e., the sampled � does not depend on the initial value, we say that the chain has
reached its stationary distribution. The period from the beginning to the time when
the stationary distribution is reached is called the burn-in period. Observations in
the burn-in period should be deleted. After the burn-in period, the observations
are presumably sampled from the joint distribution. The observations may still be
correlated; such a correlation is called serial correlation or autocorrelation. We can
save one observation in every sth cycle to remove the serial correlation, where
s D 20 or s D 50 or any other integers, depending on the particular problem.
This process is called trimming or thinning the Markov chain. After burn-in deleting
and chain trimming, we collect N � observations from the total of N observations
simulated. The sample of � with N � observations is the posterior sample (sampled
from the p.� jy/ distribution). Any Bayesian statistics can be inferred empirically
from this posterior sample.

Recall that the marginal posterior for ˇ is a t-distribution and the marginal
posterior for 	2 is a scaled inverse chi-square distribution. Both distributions have
complicated forms of expression. The MCMC sampling process only requires the
conditional posterior distribution, not the marginal posterior. Let us now look at
the conditional posterior distribution of each parameter of the simple regression
analysis.

As previously shown, the MLE of ˇ is

Ǒ D
�
Xn

jD1 X
2
j

	�1 �Xn

jD1 Xjyj
	

(15.28)

and the variance of the estimate is

	2Ǒ D
�
Xn

jD1 X
2
j

	�1
	2 (15.29)

Note that 	2Ǒ differs from that defined in (15.18) in that 	2 is used here in place

of O	2. So, just from the data without any prior information, we can infer ˇ. The
estimated ˇ itself is a variable, which follows a normal distribution denoted by

ˇ � N1. Ǒ; 	2Ǒ/ (15.30)



230 15 Bayesian Multiple QTL Mapping

The subscript 1 means that this is an estimate drawn from the first source
of information. Before we observed the data, the prior information about ˇ is
considered the second source of information, which is denoted by

ˇ � N2.�ˇ; 	2ˇ/ (15.31)

The posterior distribution of ˇ is obtained by combining the two sources of
information (Box and Tiao 1973), which remains normal and is denoted by

ˇ � N. Ň; 	2Ň/ (15.32)

where

Ň D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�10

@

Ǒ
	2Ǒ
C �ˇ

	2ˇ

1

A (15.33)

and

	2Ň D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�1

(15.34)

We now have the conditional posterior distribution for ˇ denoted by

p.ˇj	2; y/ D N.ˇj Ň; 	2Ň/ (15.35)

from which a random ˇ is sampled.
Given ˇ, we now evaluate the conditional posterior distribution of 	2. The prior

for 	2 is a scaled inverse chi-square distribution with � degrees of freedom and a
scale parameter !, denoted by

p.	2/ D Inv� �2.	2j�; !/ (15.36)

The posterior distribution remains a scaled inverse chi-square with a modified
degree of freedom and a modified scale parameter, denoted by

p.	2jˇ; y/ D Inv� �2.	2j��; !�/ (15.37)

where

�� D � C n (15.38)

and

!� D �! CPn
jD1 .yj � Xjˇ/2
� C n (15.39)

Note that !� defined here differs from that defined in (15.22) in that ˇ is used
here while Q̌ is used in (15.22). The conditional posterior of ˇ is normal, which
belongs to the same distribution family as the prior distribution. Similarly, the
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conditional posterior of 	2 remains a scaled inverse chi-square, also the same type
of distribution as the prior. These priors are called conjugate priors because they
lead to the conditional posterior distributions of the same type.

The MCMC sampling process is summarized as:

1. Initialize ˇ D ˇ.0/ and 	2 D 	2.0/
2. Simulate ˇ.1/ from N.ˇj Ň; 	2Ň/
3. Simulate 	2.1/ from Inv� �2.	2j��; !�/
4. Repeat Steps (2) and (3) until N observations of the posterior sample are

collected.

It can be seen that the MCMC sampling-based regression analysis only involves two
distributions, a normal distribution and a scaled inverse chi-square distribution. Most
software packages have built-in functions to generate random variables from some
simple distributions, e.g., N.0; 1/ and �2.�/. Let Z � N.0; 1/ be a realized value
drawn from the standardized normal distribution and X � �2.��/ be a realized
value drawn from a chi-square distribution with �� degrees of freedom. To sample
ˇ from N. Ň; 	2Ň/, we sample Z first and then take

ˇ D 	 ŇZ C Ň (15.40)

To sample 	2 from Inv� �2.��; !�/, we first sample X and then take

	2 D �� !�

X
(15.41)

In summary, the MCMC process requires sampling a parameter only from the
fully conditional posterior distribution, which usually has a simple form, e.g.,
normal or chi-square, and it draws one variable at a time. This type of MCMC
sampling is also called Gibbs sampling (Geman and Geman 1984). With the MCMC
procedure, we turn ourselves into experimentalists. Like plant breeders who plant
seeds, let the seeds grow into plants, and measure the average plant yield, we plant
the seeds of parameters in silico, let the parameters “grow,” and measure the average
of each parameter. The Bayesian posterior mean of a parameter simply takes the
algebraic mean of a parameter in the posterior sample collected from the in silico
experiment. Once the Bayesian method is implemented via the MCMC algorithm,
it is no longer owned by a few “Bayesians”; rather, it has become a popular tool that
can be used by people in all areas, including engineers, biologists, plant and animal
breeders, social scientists, and so on.

Before we move on to the next section, let us demonstrate the MCMC sampling
process using the simple regression as an example. The values of x and y for 20
observations are given in Table 15.1.

The model is
yj D Xjˇ C �j ; 8j D 1; : : : ; 20
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Table 15.1 Data used in the
text to demonstrate the
MCMC sampling process

x y x y

1 2:95 �1 �1:23
1 0:61 1 1:06

1 4:61 1 0:41

1 3:46 �1 �3:09
1 1:12 �1 �2:08
1 4:15 �1 �1:55
�1 �2:46 1 1:07

1 4:49 �1 �5:39
1 3:34 �1 �1:26
�1 �1:44 �1 �4:46

The sample size is n D 20. Before introducing the prior distributions, we provide
the MLEs of the parameters, which are

Ǒ D
�
Xn

jD1 X
2
j

	�1Xn

jD1 Xjyj D 2:5115

O	2 D 1

n

n
X

jD1
.yj � Xj Ǒ/2 D 2:3590

The variance of Ǒ is

	2Ǒ D
�
Xn

jD1 X
2
j

	�1 O	2 D 0:1180

Let us choose the following prior distributions:

p.ˇ/ D N.ˇj�ˇ; 	2ˇ/ D N.ˇj0:1; 1:0/

and

p.	2/ D Inv� �2.	2j�; !/ D Inv� �2.	2j3; 3:5/
The marginal posterior mean and posterior variance of ˇ are

E.ˇjy/ D Q̌ D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�10

@

Ǒ
	2Ǒ
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	2ˇ

1

A D 2:2571

and

var.ˇjy/ D 	2Q̌ D
0

@

1

	2Ǒ
C 1

	2ˇ

1

A

�1

D 0:1055

respectively. The marginal poster mean and posterior variance of 	2 are
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Fig. 15.1 Changes of the sampled parameters over the number of iterations since the MCMC
starts. The top panel is the change for ˇ, and the bottom panel is that for 	2

E.	2jy/ D Q	2 D �! CPn
jD1.yj � Xj Q̌/2
� C n � 3 D 2:8308

and

var.	2jy/ D 2Œ�! CPn
jD1.yj � Xj Q̌/2�2

.� C n � 3/2.� C n � 5/ D 0:8904

respectively.
We now use the MCMC sampling approach to generating the joint posterior

sample for ˇ and 	2 and calculate the empirical marginal posterior means and
posterior variances for the two parameters. For a problem as simple as this, the burn-
in period can be very short or even without burn-in. Figure 15.1 shows the first 500
cycles of MCMC sampler (including the burn-in period) for the two parameters,
ˇ and 	2. The chains converge immediately to the stationary distribution. To be
absolutely sure that we actually collect samples from the stationary distribution,
we set the burn-in period to 1,000 iterations (very safe), and the chain was
subsequently trimmed to save one observation in every 50 iterations after the burn-
in. The posterior sample size was 10,000. The total number of MCMC cycles was
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Table 15.2 Empirical
marginal posterior means and
posterior variances for the
two parameters, ˇ and 	2

Parameter Posterior mean Posterior variance

ˇ 2.2171 0.1320
	2 2.8489 0.9497

1; 000 C 50 � 10; 000 D 5; 01; 000. The empirical marginal posterior means and
marginal posterior variances for ˇ and 	2 are given in Table 15.2, which are very
close to the theoretical values given before.

15.3 Mapping Multiple QTL

Although interval mapping (under the single QTL model) can detect multiple QTL
by evaluating the number of peaks in the test statistic profile, it cannot provide
accurate estimates of QTL effects. The best way to handle multiple QTL is to use
a multiple QTL model. Such a model requires knowledge of the number of QTL.
Most QTL mappers consider that the number of QTL is an important parameter and
should be estimated in QTL mapping experiments. Therefore, model selection is
often conducted to determine the number of QTL (Broman and Speed 2002). Under
the Bayesian framework, model selection is implemented through the reversible
jump MCMC algorithm (Sillanpää and Arjas 1998). Xu (2003) and Wang et al.
(2005b) had a quite different opinion, in which the number of QTL is not considered
as an important parameter. According to Wang et al. (2005b), we can propose a
model that includes as many QTL as the model can handle. Such a model is called
an oversaturated model. Some of the proposed QTL may be real, but most of them
are spurious. As long as we can force the spurious QTL to have zero or close to zero
estimated effects, the oversaturated model is considered satisfactory. The selective
shrinkage Bayesian method can generate the result of QTL mapping exactly the
same as we expect, that is, spurious QTL effects are shrunken to zero while true
QTL have effects subject to no shrinkage.

15.3.1 Multiple QTL Model

The multiple QTL model can be described as

yj D
q
X

iD1
Xj iˇi C

p
X

kD1
Zjk�k C �j (15.42)

where yj is the phenotypic value of a trait for individual j for j D 1; : : : ; n and n
is the sample size. The non-QTL effects are included in vector ˇ D fˇ1; : : : ; ˇqg
with matrix Xj D fXj1; : : : ; Xjqg being the design matrix to connect ˇ and yj .
The effect of the kth QTL is denoted by �k for k D 1; : : : ; p where p is the
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proposed number of QTL in the model. Vector Zj D fZj1; : : : ; Zjpg is determined
by the genotypes of the proposed QTL in the model. The residual error �j is
assumed to be i.i.d. N.0; 	2/. Let us use a BC population as an example. For the
kth QTL, Zjk D 1 for one genotype and Zjk D �1 for the alternative genotype.
Extension to F2 population and adding the dominance effects are straightforward
(only requires adding more QTL effects and increasing the model dimension). The
proposed number of QTL is p, which must be larger than the true number of QTL to
make sure that large QTL will not be missed. The optimal strategy is to put one QTL
in every d cM of the genome, where d can be any value between 5 and 50. If d < 5,
the model will be ill conditioned due to multicollinearity. If d > 50, some genome
regions may not be visited by the proposed QTL even if there are true QTL located
in those regions. Of course, a larger sample size is required to handle a larger model
(more QTL).

15.3.2 Prior, Likelihood, and Posterior

The data involved in QTL mapping include the phenotypic values of the trait and
marker genotypes for all individuals in the mapping population. Unlike Wang et al.
(2005b) who expressed marker genotypes explicitly as data in the likelihood, here
we suppress the marker genotypes from the data to simplify the notation. The
linkage map of markers and the marker genotypes only affect the way to calculate
QTL genotypes. We first use the multipoint method to calculate the genotype
probabilities for all putative loci of the genome. These probabilities are then treated
as the prior probabilities of QTL genotypes, from which the posterior probabilities
are calculated by incorporating the phenotype and the current parameter values.
Therefore, the data used to construct the likelihood are represented by y D
fyj ; : : : ; yng. The vector of parameters is denoted by � , which consists of the
positions of the proposed QTL denoted by � D f�1; : : : ; �pg, the effects of the QTL
denoted by � D f�1; : : : ; �pg, the non-QTL effects denoted by ˇ D fˇ1; : : : ; ˇqg,
and the residual error variance 	2. Therefore, � D f�; ˇ; �;  ; 	2g, where  D
f	21 ; : : : ; 	2pg, will be defined later. The QTL genotypes Zj D fZj1; : : : ; Zjpg
are not parameters but missing values. The missing genotypes can be redundantly
expressed as ıj D fıj1; : : : ; ıjpg where

ıjk D ı.Gjk; �/

is the ı function. If Gjk D �, then ı.Gjk; �/ D 1, else ı.Gjk; �/ D 0, where Gjk is
the genotype of the kth QTL for individual j and � D 1; 2; 3 for an F2 population
(three genotypes per locus). The probability density of ı is

p.ıj j�/ D
p
Y

kD1
p.ıjkj�k/ (15.43)
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The independence of the QTL genotype across loci is due to the fact that they are
the conditional probabilities given marker information. So, the marker information
has entered here to infer the QTL genotypes. The prior for the ˇ is

p.ˇ/ D
q
Y

iD1
p.ˇi / D constant (15.44)

This is a uniform prior or, more appropriately, uninformative prior. The reason for
choosing uninformative prior for ˇ is that the dimensionality of ˇ is usually very
low so that ˇ can be precisely estimated from the data alone without resorting to
any prior knowledge. The prior for the QTL effects is

p.� j / D
p
Y

kD1
p.�kj	2k / D

p
Y

kD1
N.�kj0; 	2k / (15.45)

where 	2k is the variance of the prior distribution for the kth QTL effect. Collectively,
these variances are denoted by  D f	21 ; : : : ; 	2pg. This is a highly informative prior
because of the zero expectation of the prior distribution. The variance of the prior
distribution determines the relative weights of the prior information and the data.
If 	2k is very small, the prior will dominate the data, and thus, the estimated �k
will be shrunken toward the prior expectation, that is, zero. If 	2k is large, the data
will dominate the prior so that the estimated �k will be largely unaltered (subject
to no shrinkage). The key difference between this prior and the prior commonly
used in Bayesian regression analysis is that different regression coefficient has a
different prior variance and thus different level of shrinkage. Therefore, this method
is also called the selective shrinkage method (Wang et al. 2005b). The classical
Bayesian regression method, however, often uses a common prior for all regression
coefficients, i.e., 	21 D 	22 D � � � D 	2p D 	2� , which is also called ridge
regression (Hoerl and Kennard 1970). The problem with this selective shrinkage
method is that there are too many prior variances and it is hard to choose the
appropriate values for the variances. There are two approaches to choosing the prior
variances, empirical Bayesian (Xu 2007) and hierarchical modeling (Gelman 2006).
The empirical Bayesian approach attempts to estimate the prior variances under
the mixed model methodology by treating each regression coefficient as a random
effect. The hierarchical modeling treats the prior variances as parameters and assigns
a higher level prior to each variance component. By treating the variances as
parameters, rather than as hyperparameters, we can estimate the variances along
with the regression coefficients. Here, we take the hierarchical model approach and
assign each 	2k a prior distribution. The empirical Bayesian method will be discussed
in the next chapter. The scaled inverse chi-square distribution is chosen for each
variance component,

p.	2k / D Inv� �2.	2k j�; !/; 8k D 1; : : : ; p (15.46)
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The degree of freedom � and the scale parameter ! are hyperparameters, and
their influence on the estimated regression coefficients is much weaker because
the influence is through the 	2k ’s. It is now easy to choose � and !. The degree
of freedom � is also called the prior belief. Although the proper prior should have
� > 0 and ! > 0, our past experience showed that an improper prior works better
than the proper prior. Therefore, we choose � D ! D 0, which leads to

p.	2k / /
1

	2k
; 8k D 1; : : : ; p (15.47)

The joint prior for all the 	2k is

p. / D
p
Y

kD1
p.	2k / (15.48)

The residual error variance is also assigned to the improper prior,

p.	2/ / 1

	2
(15.49)

The positions of the QTL depend on the number of QTL proposed, the number of
chromosomes, and the size of each chromosome. Based on the average coverage per
QTL (e.g., 30 cM per QTL), the number of QTL allocated to each chromosome can
be calculated. Let pc be the number of QTL proposed for the cth chromosome.
These pc QTL should be placed evenly along the chromosome. We can let the
positions fixed throughout all the MCMC process so that the positions are simply
constants (not parameters of interest). In this case, more QTL should be proposed
to make sure that the genome is well covered by the proposed QTL. The alternative
and also more efficient approach is to allow QTL position to move along the genome
during the MCMC process. There is a restriction for the moving range of each QTL.
The positions are disjoint along the chromosome. The first QTL must move between
the first marker and the second QTL. The last QTL must move between the last
marker and the second last QTL. All other QTL must move between the QTL in the
left and the QTL in the right of the current QTL, i.e., the QTL that flank the current
QTL. Based on this search strategy, the joint prior probability is

p.�/ D p.�1/p.�2j�1/ : : : p.�pc j�pc�1/ (15.50)

Given the positions of all other QTL, the conditional probability of the position of
QTL k is

p.�k/ D 1

�kC1 � �k�1
(15.51)

If QTL k is located at either end of a chromosome, the above prior needs to be
modified by replacing either �k�1 or �kC1 by the position of the nearest end marker.
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We now have a situation where the prior probability of one variable depends on
values of other variables. This type of prior is called adaptive prior.

Since marker information has been used to calculate the prior probabilities of
QTL genotypes, they are no longer expressed as data. The only data appearing
explicitly in the model are the phenotypic values of the trait. Conditional on
all parameters and the missing values, the probability density of yj is normal.
Therefore, the joint probability density of all the yj ’s (called the likelihood) is

p.yj�; ı/ D
n
Y

jD1
p.yj j�; ıj /

D
n
Y

jD1
N
�

yj

ˇ

ˇ

ˇ

Xq

iD1 Xj iˇi C
Xp

kD1 Zjk�k; 	
2
	

(15.52)

The fully conditional posterior of each variable is defined as

p.�i j��i ; ı; y/ / p.�i ; ��i ; ı; y/ (15.53)

where �i is a single element of the parameter vector � and ��i is the collection of
the remaining elements. The symbol / means that a constant factor (not a function
of parameter �i ) has been ignored. The joint probability density p.�i ; ��i ; ı; y/ D
p.�; ı; y/ is expressed as

p.�; ı; y/ /p.yj�; ı/p.ıj�/p.�/
Dp.yj�; ı/p.ˇj /p. /p.ıj�/p.�/p.	2/ (15.54)

The fully conditional posterior probability density for each variable is simply
derived by treating all other variables as constants and comparing the kernel of the
density with a standard distribution. After some algebraic manipulation, we obtain
the fully conditional distribution for most of the unknown variables (including
parameters and missing values).

The fully conditional posterior for the non-QTL effect is

p.ˇi j : : : / D N.ˇi j Ǒi ; 	2Ǒ
i
/ (15.55)

The special notation p.ˇi j : : : / is used to express the fully conditional probability
density. The three dots (: : : ) after the vertical bar mean everything else except the
variable of interest. The posterior mean and posterior variance are calculated using
(15.58) and (15.59) given below:
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and
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The fully conditional posterior for the kth QTL effect is

p.�kj : : : / D N.�kj O�k; 	2O�k / (15.58)

where
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and
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Comparing the conditional posterior distributions of ˇi and �k, we notice the
difference between a normal prior and a uniform prior with respect to the effects
on the posterior distributions. When a normal prior is used, a shrinkage factor, 	

2

	2k
, is

added to
Pn

jD1 Z2
jk . If 	2k is very large, the shrinkage factor disappears, meaning no

shrinkage. On the other hand, if 	2k is small, the shrinkage factor will dominate over
Pn

jD1 Z2
jk , and in the end, the denominator will become infinitely large, leading

to zero expectation and zero variance for the conditional posterior distribution �k .
As such, the estimated �k is completely shrunken to zero. The conditional posterior
distribution for each of the variance component 	2k is a scaled inverse chi-square
variable with probability density

p.	2k j : : : / D Inv� �2
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where � D ! D 0. The conditional posterior density for the residual error
variance is
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The next step is to sample QTL genotypes, which determine the values of the Zj
variables. Let us again use a BC population as an example and consider sampling the
kth QTL genotype given that every other variable is known. There are two sources
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of information available to infer the probability for each of the two genotypes of the
QTL. One information comes from the markers denoted by pj .C1/ and pj .�1/,
respectively, for the two genotypes, where pj .C1/ C pj .�1/ D 1. These two
probabilities are calculated from the multipoint method (Jiang and Zeng 1997).
The other source of information comes from the phenotypic value. The connection
between the phenotypic value and the QTL genotype is through the probability
density of yj given the QTL genotype. For the two alternative genotypes of the
QTL , i.e., Zjk D 1 and Zjk D �1, the two probability densities are

p.yj jZjk D C1/ D N
�
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ˇ
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Xq

iD1 Xj iˇi C
Xp

k0¤k Zjk0�k0 C �k; 	2
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(15.64)

Therefore, the conditional posterior probabilities for the two genotypes of the
QTL are

p�
j .C1/ D

pj .C1/p.yj jZjk D C1/
pj .C1/p.yj jZjk D C1/C pj .�1/p.yj jZjk D �1/

p�
j .�1/ D

pj .�1/p.yj jZjk D �1/
pj .C1/p.yj jZjk D C1/C pj .�1/p.yj jZjk D �1/ (15.65)

where p�
j .C1/ D p.Zjk D C1j : : : / and p�

j .�1/ D p.Zjk D �1j : : : / are the
posterior probabilities of the two genotypes. The genotype of the QTL is Zjk D
2u � 1, where u is sampled from a Bernoulli distribution with probability p�

j .C1/.
So far we have completed the sampling process for all variables except the QTL
positions. If we place a large number of QTL evenly distributed along the genome,
say one QTL in every 10 cM, we can let the positions fixed (not moving) across
the entire MCMC process. Although this fixed-position approach does not generate
accurate result, it does provide some general information about the ranges where the
QTL are located. Suppose that the trait of interest is controlled by only 5 QTL and
we place 100 QTL evenly distributed on the genome, then majority of the assumed
QTL are spurious. The Bayesian shrinkage method allows the spurious QTL to
be shrunken to zero. This is why the Bayesian shrinkage method does not need
variable selection. A QTL with close to zero estimated effect is equivalent to being
excluded from the model. When the assumed QTL positions are fixed, investigators
actually prefer to put the QTL at marker positions because marker positions contain
the maximum information. This multiple-marker analysis is recommended before
conducting detailed fully Bayesian analysis with QTL positions moving. Result
of the detailed analysis is more or less the same as that of the multiple-marker
analysis. Further detailed analysis is only conducted after the investigators get a
general picture of the result.

We now discuss several different ways to allow QTL positions to move across
the genome. If our purpose of QTL mapping is to find the regions of the genome
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that most likely carry QTL, the number of QTL is irrelevant and so are the QTL
identities. If we allow QTL positions to move, the most important information we
want to capture is how many times a particular segment (position) of the genome is
hit or visited by nonspurious QTL. A position can be visited many times by different
QTL, but all these QTL have negligible effects; such a position is not of interest. We
are interested in positions that are visited repeatedly by QTL with large effects.
Keeping this in mind, we propose the first strategy of QTL moving, the random
walking strategy. We start with a “sufficient” number of QTL evenly placed on the
genome. How sufficient is sufficient enough? This perhaps depends on the marker
density and sample size of the mapping population. Putting one QTL in every 10 cM
seems to work well. Each QTL is allowed to travel freely between the left and the
right QTL, i.e., the QTL are distributed along the genome in a disjoint manner. The
positions of the QTL are moving but the order of the QTL is preserved. This is the
simplest method of QTL traveling. Let us take the kth QTL for example; the current
position of the QTL is denoted by �k . The new position can be sampled from the
following distribution:

��
k D �˙�� (15.66)

where �� � U.0; ı/ and ı is the maximum distance (in cM) that the QTL is
allowed to move away from the current position. The following restriction �k�1 <
��
k < �kC1 is enforced to preserve the current order of the QTL. Empirically,
ı D 2 cM seems to work well. The new position is always accepted, regardless
whether it is more likely or less likely to carry a true QTL relative to the current
position. The Markov chain should be sufficiently long to make sure that all putative
positions are visited a number of times. Theoretically, there is no need to enforce
the disjoint distribution for the QTL positions. The only reason for such a restriction
is the convenience of programming if the order is preserved. With the random walk
strategy of QTL moving, the frequency of hits by QTL at a position is not of interest;
instead, the average effect of all the QTL hitting that position is the important
information. The random walk approach does not distinguish “hot regions” (regions
containing QTL) and “cold regions” (regions without QTL) of the genome. All
regions are visited with equal frequency. The hot regions, however, are supposed
to be visited more often than the cold regions to get a more accurate estimate of
the average QTL effects for those regions. The random walk approach does not
discriminate against the cold regions and thus needs a very long Markov chain to
ensure that the hot regions are sufficiently visited for accurate estimation of the
QTL effects.

The optimal strategy for QTL moving is to allow QTL to visit the hot regions
more often than the cold regions. This sampling strategy cannot be accomplished
using the Gibbs sampler because the conditional posterior of the position of a QTL
does not have a well-known form of the distribution. Therefore, the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) is adopted here to
sample the QTL positions. Again, the new position is randomly generated in the
neighborhood of the old position using the same approach as used in the random
walk approach, but the new position ��

k is only accepted with a certain probability.
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The acceptance probability is determined based on the Metropolis–Hastings rule,
denoted by min

�

1; ˛.��
k ; �k/

�

. The new position ��
k has an 1 � min

�

1; ˛.��
k ; �k/

�

chance to be rejected, where
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lD�1;C1 Pr.Zjk D l j�k/p.yj jZjk D l/
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q.�kj��
k /

q.��
k j�k/

(15.67)

If it is rejected, the QTL remains at the current position, i.e., ��
k D �k . If the

new position is accepted, the old position is replaced by the new position, i.e.,
��
k D � ˙ ��. Whether the new position is accepted or not, all other variables

are updated based on the information from position ��
k , where Pr.Zjk D �1j�k/

and Pr.Zjk D C1j�k/ are the conditional probabilities that Zjk D �1 and
Zjk D C1, respectively, calculated from the multipoint method. These probabilities
depend on position �k . Previously, these probabilities were denoted by pj .�1/ D
Pr.Zjk D �1j�k/ and pj .C1/ D Pr.Zjk D C1j�k/, respectively. For the new
position ��

k , these probabilities are Pr.Zjk D �1j��
k/ and Pr.Zjk D C1j��

k /,
respectively. The proposal probabilities q.��

k j�k/ and q.�kj��
k / are usually equal

to 1
2ı

and thus are canceled out each other. However, once �k and ��
k are near the

boundaries, these two probabilities may not be the same. Since the new position is
always restricted to the interval where the old position occurs, the proposal density
q.��

k j�k/ and its reverse partner q.�kj��
k / may be different. Let us denote the

positions of the left and right QTL by �k�1 and �kC1, respectively. If �k is close
to the left QTL so that �k � �k�1 < ı, then the new position must be sampled from
��
k � U.�k��k�1; �kCı/ to make sure that the new position is within the required

sample space. Similarly, if �k is close to the right QTL so that �kC1 � �k < ı, then
the new position must be sampled from ��

k � U.�k � ı; �kC1/. In either case, the
proposal density should be modified. The general formula of the proposal density
after incorporating the modification is

q.�kj��
k / D

8

ˆ
<

ˆ
:

1
ıC.�k��k�1/

1
ıC.�kC1��k/

1
2ı

if �k � �k�1 < ı
if �kC1 � �k < ı

otherwise
(15.68)

The assumption of using the above proposal density is that the distance between any
two QTL must be larger than ı. The reverse partner of this proposal density is

q.��
k j�k/ D

8

ˆ
<

ˆ
:

1
ıC.��

k ��k�1/
1

ıC.�kC1���

k /
1
2ı

if ��
k � �k�1 < ı

if �kC1 � ��
k < ı

otherwise
(15.69)

The differences between sampling �k and sampling other variables are the follow-
ing: (1) The proposed new position may or may not be accepted, while the new
values of all other variables are always accepted, and (2) when calculating the
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acceptance probability for a new position, the likelihood does not depend on the
QTL genotype, while the conditional posterior probabilities of all other variables
depend on sampled QTL genotypes.

15.3.3 Summary of the MCMC Process

The MCMC process is summarized as follows:

1. Choose the number of QTL to be placed in the model, p.
2. Initialize parameters and missing values, � D �.0/ and Zj D Z.0/

j .

3. Sample ˇi from N.ˇi j Ǒi ; 	2Ǒ
i
/.

4. Sample �k from N.�kj O�k; 	2O�k /.
5. Sample 	2k from Inv� �2.	2k j1; �2k/.
6. Sample 	2 from Inv� �2.	2jn; S2e /.
7. Sample Zjk from its conditional posterior distribution.
8. Sample �k using the Metropolis–Hastings algorithm.
9. Repeat Step (3) to Step (8) until the chain reaches a desired length.

The length of the chain should be sufficiently long to make sure that, after
burn-in deleting and chain trimming, the posterior sample size is large enough to
allow accurate estimation of the posterior means (modes or medians) of all QTL
parameters. Methods and computer programs are available to check whether the
chain has converged to the stationary distribution (Gelfand et al. 1990; Gilks et al.
1996). Our past experience showed that the burn-in period may only contain a
few thousand observations. The trimming frequency of saving one in every 20
observations is sufficient. The posterior sample size of 1,000 usually works well.
However, if the model is not very large, it is always a good practice to delete more
observations for the burn-in and trim more observations to make the chain thinner.

15.3.4 Post-MCMC Analysis

The MCMC process is much like doing an experiment. It only generates data for
further analysis. The Bayesian estimates will only be available after summarizing
the data (posterior sample). The parameter vector � is very long, but not all
parameters are of interest. Unlike other methods in which the number of QTL is an
important parameter, the Bayesian shrinkage method uses a fixed number of QTL,
and thus, p is not a parameter of interest. Although the variance component for the
kth QTL, 	2k , is a parameter, it is also not a parameter of interest. It only serves as
a factor to shrink the estimated QTL effect. Since the marginal posterior of 	2k does
not exist, the empirical posterior mean or mode of 	2k does not have any biological
meaning. In some observations, the sampled 	2k can be very large, and in others,
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it may be very small. The residual error variance 	2 is meaningful only if the number
of QTL placed in the model is small to moderate. When p is very large, the residual
error variance will be absorbed by the very large number of spurious QTL. The only
parameters that are of interest are the QTL effects and QTL positions. However, the
QTL identity, k, is also not something of interest. Since the kth QTL may jump
all of places over the chromosome where it is originally placed, the average effect
�k does not have any meaningful biological interpretation. The only things left are
the positions of the genome that are hit frequently by QTL with large effects. Let
us consider a fixed position of a genome. A position of a genome is only a point
or a locus. Since the QTL position is a continuous variable, a particular point of
the genome that is hit by a QTL has a probability of zero. Therefore, we define a
genome position by a bin with a width of d cM, where d can be 1 or 2 or any other
suitable value. The middle point value of the bin represents the genome location.
For example, if d D 2 cM, the genome location 15 cM actually represents the bin
covering a region of the genome from 14 cM to 16 cM, where 14 D 15 � 1

2
d and

16 D 15C 1
2
d . Once we define the bin width of a genome location, we can count

the number of QTL that hit the bin. For each hit, we record the effect of that hit. The
same location may be hit many times by QTL with the same or different identities.
The average effect of the QTL hitting the bin is the most important parameter in
the Bayesian shrinkage analysis. Each and every bin of the genome has an average
QTL effect. We can then plot the effect against the genome location to form a QTL
(effect) profile. This profile represents the overall result of the Bayesian mapping.
In the BC example of Bayesian analysis, the kth QTL effect is denoted by �k . Since
the QTL identity k is irrelevant, it is now replaced by the average QTL effect at
position �, which is a continuous variable. The � without a subscript indicates a
genome location. The average QTL effect at position � can be expressed as �.�/ to
indicate that the effect is a function of the genome location. The QTL effect profile
is now represented by �.�/. If we use �.�/ to denote the posterior mean of QTL
effect at position �, we may use 	2.�/ to denote the posterior variance of QTL
effect at position �. If QTL moving is not random but guided by the Metropolis–
Hastings rule, the posterior sample size at position � should be a useful piece of
information to indicate how often position � is hit by a QTL. Let n.�/ be the
posterior sample size at �; the standard error of the QTL effect at � should be
	.�/=

p

n.�/. Therefore, another useful profile is the so-called t-test statistic profile
expressed as

t.�/ D
p

n.�/
�.�/

	.�/
(15.70)

The correspondingF -test statistic profile is

F.�/ D n.�/�
2.�/

	2.�/
(15.71)

The t-test statistic profile is more informative than the F -test statistic profile
because it also indicates the direction of the QTL effect (positive or negative) while
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the F -test statistic profile is always positive. On the other hand, the F -test statistic
can be extended to multiple effects per locus, e.g., additive and dominance in an
F2 design. Both the t-test and F -test statistic profiles can be interpreted as kinds of
weighted QTL effect profiles because they incorporated the posterior frequency of
the genome location.

Before moving on to the next section, let us use a simulated example to
demonstrate the behavior of the Bayesian shrinkage mapping and its difference from
the maximum likelihood interval mapping. The mapping population was a simulated
BC family with 500 individuals. A single chromosome of 2,400 cM in length was
evenly covered by 121 markers (20 cM per marker interval). The positions and
effects of 20 simulated QTL are demonstrated in Fig. 15.2 (top panel). In the
Bayesian model, we placed one QTL in every 25 cM to start the search. The QTL
positions constantly moved according to the Metropolis–Hastings rule. The burn-in
period was set at 2,000, and one observation was saved in every 50 iterations after
the burn-in. The posterior sample size was 1,000. We also analyzed the same data set
using the maximum likelihood interval mapping procedure. The QTL effect profiles
for both the Bayesian and ML methods are demonstrated in Fig. 15.2 also (see the
panels in the middle and at the bottom). The Bayesian shrinkage estimates of the
QTL effects are indeed smaller than the true values, but the resolution of the signal
is much clearer that the maximum likelihood estimates. The Bayesian method has
separated closely linked QTL in several places of the genome very well, which is
clearly in contrast to the maximum likelihood method. The ML interval mapping
provides exaggerated estimates of the QTL effects across the entire genome.

15.4 Alternative Methods of Bayesian Mapping

15.4.1 Reversible Jump MCMC

Reversible jump Markov chain Monte Carlo (RJMCMC) was originally developed
by Green (1995) for model selection. It allows the model dimension to change
during the MCMC sampling process. Most people believe that QTL mapping is
a model selection problem because the number of QTL is not known a priori.
Sillanpää and Arjas (1998, 1999) are the first people to apply the RJMCMC
algorithm to QTL mapping. They treated the number of QTL, denoted by p, as an
unknown parameter and infer the posterior distribution of p. The assumption is that
p is a small number for a quantitative trait and thus can be assigned a Poisson prior
distribution with mean �. Sillanpää and Arjas (1998) used the Metropolis–Hastings
algorithm to sample all parameters, even though most QTL parameters have known
forms of the fully conditional posterior distributions. The justification for use of
M–H sampling strategy is that it is a general sampling approach while the Gibbs
sampling is only a special case of the M–H sampling. The M–H sampler does not
require derivation of the conditional posterior distribution for a parameter. However,
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Fig. 15.2 Plots of QTL effect against genome location (QTL effect profiles) for the simulated BC
population. The top panel shows the true locations and effects of the simulated QTL. The panel
in the middle shows the Bayesian shrinkage estimates of the QTL effects. The panel at the bottom
gives the maximum likelihood estimates of the QTL effects
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the acceptance probability for a proposed new value of a parameter is usually less
than unity because the proposal distribution from which the new value is sampled
is a uniform distribution in the neighborhood of the old value and not from the
conditional posterior distribution. Therefore, the M–H sampler is computationally
less efficient. Yi and Xu (1999, 2000, 2001) extended RJMCMC to QTL mapping
for binary traits in line crosses and random mating populations using Gibbs sampler
for all parameters except the number of QTL and the location of QTL. In this
section, we only introduce the RJMCMC for sampling the number of QTL. All other
variables are sampled using the same method as described in the Bayesian shrinkage
analysis. Another difference between the RVJMCMC and the Bayesian shrinkage
method is that �k is assigned a uniform prior distribution for the RVJMCMC method
while aN.0; 	2k / prior is chosen for the shrinkage method. The conditional posterior
distribution of �k remains normal but with mean and variance defined as

O�k D
0

@

n
X

jD1
Z2
jk

1

A

�1
n
X

jD1
Zjk

0

@yj �
q
X

iD1
Xj iˇi �

p
X

k0¤k
Zjk0�k0

1

A (15.72)
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respectively.
We now introduce the reversible jump MCMC. The prior distribution for p is

assumed to be a truncated Poisson with mean � and maximum P . The probability
distribution function of p is

Pr.p/ D
�


 .P C 1; �/
P Š

��1 �
�pe��

pŠ

�

/ �pe��

pŠ
(15.74)

where 
 .P C 1; �/ is an incomplete Gamma function and


 .P C 1; �/
P Š

D
P
X

pD0
Pr.p/ (15.75)

is the cumulative Poisson distribution up to P , which is irrelevant to p and thus a
constant. We make a random choice among three move types of the dimensionality
change: (1) Do not change the dimension, but update all other parameters except p
with probability p0; (2) add a QTL to the model with probability pa; and (3) delete
a QTL from the model with probability pd . The three probabilities of move types
sum to one, i.e., p0 C pa C pd D 1. The following values of the probabilities may
be chosen, p0 D pa D pd D 1

3
. If no change is proposed, all other parameters are

sampled from their conditional posterior distributions. If adding a QTL is proposed,
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we choose a chromosome to place the QTL. The probability of each chromosome
being chosen is proportional to the size of the chromosome. Once a chromosome
is chosen, we place the proposed new QTL randomly on the chromosome. All
parameters associated with this new QTL are sampled from their prior distributions.
The new QTL is then accepted with a probability determined by minŒ1; ˛.pC1; p/�,
where

˛.p C 1; p/ D
Qn
jD1 p.yj jp C 1/
Qn
jD1 p.yj jp/

� �

p C 1 �
pd

.p C 1/pa (15.76)

There are three ratios occurring in the above equation. The first ratio is the likelihood
ratio, the second one is the prior ratio of the number of QTL, and the third ratio is
the proposal ratio. The likelihood is defined as

p.yj jp C 1/ D N
 

yj

ˇ

ˇ

ˇ

ˇ

ˇ

q
X

iD1
Xj iˇi C

p
X

kD1
Zjk�k CZj.pC1/�.pC1/; 	2

!

(15.77)

and
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(15.78)

The prior probability for p is

Pr.p/ D �pe��

pŠ
(15.79)

and the prior probability for p C 1 is

Pr.p C 1/ D �pC1e��

.p C 1/Š (15.80)

Therefore, the prior ratio is

Pr.p C 1/
Pr.p/

D �pC1e��

.p C 1/Š
pŠ

�pe�� D
�

p C 1 (15.81)

The proposal probability for adding a QTL is �.pC1; p/ D pa. The reverse partner
is �.p; pC1/ D pd

pC1 . It is easy to understand �.pC1; p/ D pa because we already
defined that pa is the probability of adding a QTL. However, the reverse partner is
not pd but pd=.p C 1/, which is hard to understand if we do not understand the
Hastings’ adjustment for the proposal probability. This probability says that if a
deletion has occurred (with probability pd ) given that we have p C 1 QTL in the
model, the probability that the newly added QTL (not any other QTL) is deleted is
1=.pC1/ due to the fact that each QTL has an equal chance to be deleted. Therefore,
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the probability that the newly added QTL (not others) is deleted is pd=.p C 1/. As
a result, the proposal ratio is

�.p; p C 1/
�.p C 1; p/ D

pd=.p C 1/
pa

D pd

.p C 1/pa (15.82)

Note that the proposal ratio is the probability of deleting a QTL to the probability
of adding a QTL, not the other way around. This Hastings’ adjustment is important
to prevent the Markov chain from being trapped at a particular QTL number. This
is the very reason for the name “reversible jump.” The dimension of the model can
jump in either direction without being stuck at a local value of p.

If deleting a QTL is proposed, we randomly select one of the p QTL to be
deleted. Suppose that the kth QTL happens to be the unlucky one. The number
of QTL would change from p to p � 1. The reduced model with p � 1 QTL is
accepted with probability minŒ1; ˛.p � 1; p/�, where

˛.p � 1; p/ D
Qn
jD1 p.yj jp/

Qn
jD1 p.yj jp � 1/

� p
�
� pap
pd

(15.83)

where

p.yj jp � 1/ D N
0

@yj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

q
X

iD1
Xj iˇi C

p
X

k0¤k
Zjk0�k0 ; 	2

1

A (15.84)

The prior ratio is

Pr.p � 1/
Pr.p/

D �p�1e��

.p � 1/Š
pŠ

�pe�� D
p

�
(15.85)

The proposal ratio is

�.p; p � 1/
�.p � 1; p/ D

pa

pd=p
D pap

pd
(15.86)

The reversible jump MCMC requires more cycles of simulations because of
the frequent change of model dimension. When a QTL is deleted, all parameters
associated with this QTL are gone. The chain does not memorize this QTL. In
the future, if a new QTL is added to the neighborhood of this deleted QTL, the
parameter associated to this added QTL must be sampled anew from the prior
distribution. Even if the newly added QTL occupies exactly the same location as
a previously deleted QTL, the information of the previously deleted QTL is gone
permanently and cannot be reused. An improved RJMCMC may be developed
to memorize the information associated with deleted QTL. If the position of a
deleted QTL is sampled again later in the MCMC process (a new QTL is added
to a previously deleted QTL), the parameters associated with that deleted QTL can
be used again to facilitate the sampling for the newly added QTL. The improved
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method can substantially improve the mixing of the Markov chain and speed up the
MCMC process. The tradeoff is the increased computer memory requirement for
the improved method.

With the RJMCMC, the QTL number is a very important parameter. Its posterior
distribution is always reported. Each QTL occurring in the model is deemed to be
important and counted. In addition, the positions of QTL are usually determined by
the so-called QTL intensity profile, which is simply the plot of a scaled posterior
sample at a particular location n.�/ against the genome location �.

15.4.2 Stochastic Search Variable Selection

Stochastic search variable selection (SSVS) is a variable selection strategy for
large models. The method was originally developed by George and McCulloch
(1993, 1997) and applied to QTL mapping for the first time by Yi et al. (2003).
The difference between this method and many other methods of model selection is
that the model dimension is fixed at a predetermined value, just like the Bayesian
shrinkage analysis. Model selection is actually conducted by introducing a series of
binary variables, one for each model effect, i.e., the QTL effect. For p QTL effects,
p indicator variables are required. Let �k be the indicator variable for the kth QTL.
If �k D 1, the QTL is equivalent to being included in the model, and the effect will
not be shrunken. If �k D 0, the effect will be forced to take a value closed to, but
not exactly equal to, zero. Essentially, the prior distribution of the kth QTL takes
one of two normals. The switching button is variable �k , as given below:

p.�k/ D �kN.�kj0;�/C .1 � �k/N.�kj0; ı/ (15.87)

where ı is a small positive number closed to zero, say 0.0001, and � is a large
positive value, say 1,000. The two variances (ı and�) are constant hyperparameters.
The indicator variable is not known, and thus, the above distribution is a mixture of
two normal distributions. Let p.�k D 1/ D � be the probability that �k comes from
the first distribution; the mixture distribution is

p.�k/ D �N.�kj0;�/C .1 � �/N.�kj0; ı/ (15.88)

The mixture proportion � is unknown and is treated as a parameter. When the
indicator variable (�k) is known, the posterior distribution of �k is p.�kj � � � / D
N.�kj O�k; 	2O�k /. The mean and variance of this normal are

O�k D
0

@

n
X

jD1
Z2
jk C

	2

�k

1

A

�1
n
X

jD1
Zjk

0

@yj �
q
X

iD1
Xj iˇi �

p
X

k0¤k
Zjk0�k0

1

A (15.89)
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and

	2O�k D
0

@

n
X

jD1
Z2
jk C

	2

�k

1

A

�1

	2 (15.90)

respectively, where

�k D �k�C .1 � �k/ı (15.91)

is the actual variance of the posterior distribution. Let the prior distribution for �k be

p.�k/ D Bernoulli.�kj�/ (15.92)

The conditional posterior distribution of �k D 1 is

p.�k D 1j � � � / D �N.�kj0;�/
�N.�kj0;�/C .1 � �/N.�kj0; ı/ (15.93)

There is another parameter � involved in the conditional posterior distribution.
Yi et al. (2003) treated � as a hyperparameter and set � D 1

2
. This prior works well

for small models but fails most often for large models. The optimal strategy is to
assign another prior to � so that � can be estimated from the data. Xu (2007) took a
beta prior for � , i.e.,

p.�/ D Beta.�j�0; �1/ D 
 .�0 C �1/

 .�0/
 .�1/

��1�1.1 � �/�0�1 (15.94)

Under this prior, the conditional posterior distribution for � remains beta,

p.�j � � � / D Beta
�

�
ˇ

ˇ

ˇ�0 C p �
Xp

kD1 �k; �1 C
Xp

kD1 �k
	

(15.95)

The values of the hyperparameters were chosen by Xu (2007) as �0 D 1 and �1 D 1,
leading to an uninformative prior for �, i.e.,

p.�/ D Beta.�j1; 1/ D constant (15.96)

The Gibbs sampler for 	2k in the Bayesian shrinkage analysis is replaced by sampling
�k from

p.�k j � � � / D Bernoulli

�

�k

ˇ

ˇ

ˇ

ˇ

�N.�kj0;�/
�N.�kj0;�/C .1 � �/N.�kj0; ı/

�

(15.97)

and sampling � from

p.�j � � � / D Beta
�

�
ˇ

ˇ

ˇ1C p �
Xp

kD1 �k; 1C
Xp

kD1 �k
	

(15.98)

in the SSVS analysis.
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The additional information extracted from SSVS is the probabilistic statement
about a QTL. If the marginal posterior mean of �k is large, say p.�kjdata/>95%,
the evidence of locus k being a QTL is strong. If the QTL position is allowed to
move, �k does not have any particular meaning. Instead, the number of hit of a
particular location of the genome by QTL with �.�/ D 1 is more informative.

15.4.3 Lasso and Bayesian Lasso

Lasso

Lasso refers to a method called least absolute shrinkage and selection operator
(Tibshirani 1996). The method can handle extremely large models by minimizing
the residual sum of squares subject to a predetermined constraint, the constraint that
the sum of absolute values of all regression coefficients is smaller than a predeter-
mined shrinkage factor. Mathematically, the solution of regression coefficients is
obtained by

min
�

n
X

jD1

�

yj �
Xp

kD1 Zjk�k
	2

(15.99)

subject to constraint
p
X

kD1
j�kj � t (15.100)

where t > 0. When t D 0, all regression coefficients must be zero. As t increases,
the number of nonzero regression coefficients progressively increases. As t ! 1,
the Lasso estimates of the regression coefficients are equivalent to the ordinary least-
squares estimates. Another expression of the problem is

min
�

2

4

n
X

jD1

�

yj �
Xp

kD1 Zjk�k
	2 C �

p
X

kD1
j�kj

3

5 (15.101)

where � � 0 is a Lagrange multiplier (unknown) which relates implicitly to the
bound t and controls the degree of shrinkage. The effect of � on the level of
shrinkage is just the opposite of t , with � D 0 being no shrinkage and � ! 1
being the strongest shrinkage where all �k are shrunken down to zero. Note that
the Lasso model does not involve Xjˇ, the non-QTL effect described earlier in the
chapter. The non-QTL effect in the original Lasso refers to the population mean.
For simplicity, Tibshirani (1996) centered yj and all the independent variables.
The centered yj is simply the original yj subtracted by Ny, the population mean.
The corresponding centered independent variables are also obtained by subtraction
of NZk from Zjk . The Lasso estimates of regression coefficients can be efficiently
computed via quadratic programming with linear constraints. An efficient algorithm
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called LARS (least angle regression) was developed by Efron et al. (2004) to
implement the Lasso method. The Lagrange multiplier � or the original t is
called the Lasso parameter. The original Lasso estimates � using the fivefold cross
validation approach. One can also use any other fold cross validations, for example,
the n-fold (leave-one-out) cross validation. Under each � value, the fivefold cross
validation is used to calculate the prediction error (PE),

PE D 1

n

n
X

jD1

�

yj �
Xp

kD1 Zjk O�k
	2

(15.102)

This formula appears to be the same as the estimated residual error variance.
However, the prediction error differs from the residual error in that the individ-
uals predicted do not contribute to parameter estimation. With the fivefold cross
validation, we use 4

5
of the sample to estimate �k and then use the estimated �k to

predict the errors for the remaining 1
5

sample. In other words, when we calculate



yj �Pp

kD1 Zjk O�k
�2

, the �k is estimated from 4
5

of the sample that excludes yj .
Under each �, the PE is calculated, denoted by PE.�/. We vary � from 0 to large
value. The � value that minimizes PE.�/ is the optimal value of �.

Bayesian Lasso

Lasso can be interpreted as Bayesian posterior mode estimation of regression
coefficients when each regression coefficient is assigned an independent double-
exponential prior (Tibshirani 1996; Yuan and Lin 2005; Park and Casella 2008).
However, Lasso provides neither the estimate for the residual error variance nor the
interval estimate for a regression coefficient. These deficiencies of Lasso can be
overcome by the Bayesian Lasso (Park and Casella 2008). The double-exponential
prior for �k is

p.�kj�/ D �

2
exp.��j�kj/ (15.103)

where � is the Lagrange multiplier in the classical Lasso method (see (15.101)).
This prior can be derived from a two-level hierarchical model. The first level is

p.�kj	2k / D N.�kj0; 	2k / (15.104)

and the second level is

p.	2k j�/ D
�2

2
exp

�

�	2k
�2

2

�

(15.105)
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Therefore,

p.�kj�/ D
Z 1

0

p.�kj	2k /p.	2k j�/d	2k D
�

2
exp.��j�kj/ (15.106)

The Bayesian Lasso method uses the same model as the Lasso method. However,
centralization of independent variables is not required, although it is still recom-
mended. The model is described as follows:

yj D
q
X

iD1
Xj iˇi C

p
X

kD1
Zjk�k C �j (15.107)

where ˇi remains in the model and can be estimated along with the residual variance
	2 and all QTL effects. Bayesian Lasso provides the posterior distributions for all
parameters. The marginal posterior mean of each parameter is the Bayesian Lasso
estimate, which is different from the posterior mode estimate obtained from the
Lasso analysis. The Bayesian Lasso differs from the Bayesian shrinkage analysis
only in the prior distribution for 	2k . Under the Bayesian Lasso, the prior for 	2k is

p.	2k j�/ D
�2

2
exp

�

�	2k
�2

2

�

(15.108)

The Lasso parameter � needs a prior distribution so that we can estimate � from the
data rather than choosing an arbitrary value a priori. Park and Casella (2008) choose
the following gamma prior for �2 (not �):

p.�2ja; b/ D Gamma.�2ja; b/ D ba


 .a/
.�2/a�1 exp


�b�2� (15.109)

The reason for choosing such a prior is to enjoy the conjugate property. The
hyperparameters, a and b, are sufficiently remote from 	2k and �k , and thus, their
values can be chosen in an arbitrary fashion. Yi and Xu (2008) used several different
sets of values for a and b and found no significant differences among those values.
For convenience, we may simply set a D b D 1, which is sufficiently different
from 0. Note that a D b D 0 produces an improper prior for �2. Once a and b
values are chosen, everything else can be estimated from the data.

The fully conditional posterior distributions for most variables remain the same
as the Bayesian shrinkage analysis except that the following variables must be
sampled using the posterior distribution derived under the Bayesian Lasso prior
distribution. For the kth QTL variance, it is better to deal with ˛k D 1

	2k
. The

conditional posterior for ˛k is an inverse Gaussian distribution,

p.˛k j � � � / D Inv�Gassian

 

˛k

ˇ

ˇ

ˇ

ˇ

ˇ

s

�2	2

�2k
; �2

!

(15.110)
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Algorithm for sampling a random variable from an inverse Gaussian is available.
Once ˛k is sampled, 	2k simply takes the inverse of ˛k . The fully conditional
posterior distribution for �2 remains gamma because of the conjugate property of
the gamma prior,

p.�2j � � � / D Gamma

�

�2
ˇ

ˇ

ˇ

ˇ
p C a; 1

2

Xp

kD1 	
2
k C b

�

(15.111)

The Bayesian Lasso can potentially improve the estimation of regression coef-
ficients for the following reasons: (1) It assigns an exponential prior, rather than a
scaled inverse chi-square prior, distribution to 	2k , and (2) it increases the hierarchy
of the prior to another level so that the hyperparameters do not have strong influence
on the Bayesian estimates of the regression coefficients.

15.5 Example: Arabidopsis Data

The first example is the recombinant inbred line data of Arabidopsis data (Loudet
et al. 2002), where the two parents initiating the line cross were Bay-0 and Shahdara
with Bay-0 as the female parent. The recombinant inbred lines were actually F7
progeny of single-seed descendants of the F2 plants. Flowering time was recorded
for each line in two environments: long day (16-h photoperiod) and short day (8-h
photoperiod). We used the short-day flowering time as the quantitative trait for QTL
mapping. The two parents had very little difference in short-day flowering time.
The sample size (number of recombinant inbred lines) was 420. A couple of lines
did not have the phenotypic records, and their phenotypic values were replaced by
the population mean for convenience of data analysis. A total of 38 microsatellite
markers were used for the QTL mapping. These markers are more or less evenly
distributed along five chromosomes with an average 10.8 cM per marker interval.
The marker names and positions are given in the original article (Loudet et al. 2002).
We inserted a pseudomarker in every 5 cM of the genome. Including the inserted
pseudomarkers, the total number of loci subject to analysis was 74 (38 true markers
plus 36 pseudomarkers). All the 74 putative loci were evaluated simultaneously in a
single model. Therefore, the model for the short-day flowering time trait is

y D Xˇ C
74
X

kD1
Zk�k C �

where X is a 420 � 1 vector of unity, Zk coded as 1 for one genotype and 0 for the
other genotype for locus k. If locus k is a pseudomarker,Zk D Pr.genotype D 1/,
which is the conditional probabilities of marker k being of genotype 1. Finally,
�k is the QTL effect of locus k. For the original data analysis, the burn-in period
was 1,000. The thinning rate was 10. The posterior sample size was 10,000,
and thus, the total number of iterations was 1; 000 C 10; 000 � 10 D 101; 000.
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Fig. 15.3 The estimated QTL effects (black) and the permutation generated 1 % (blue) and 5 %
(red) confidence intervals for the Arabidopsis short-time flowering time trait. The dotted reference
lines separate the five chromosomes

We also performed a permutation analysis (Che and Xu 2010) to generate empirical
quantiles of the QTL effects under the null model. The posterior sample size in
permutation analysis was 80,000. The total number of iterations was 1; 000 C
80; 000� 10D 801; 000. The estimated QTL effects and the permutation generated
0.5 % and 99.5 % (corresponding to a type I error of 0.01) and 2.5 % and 97.5 %
(corresponding to a type I error of 0.05) are shown in Fig. 15.3. Based on the 0.01
criterion, a total of five QTL were detected on four chromosomes (1, 3, 4, and 5).



Chapter 16
Empirical Bayesian QTL Mapping

Empirical Bayesian is still a Bayesian method, but the hyperparameters (the
parameters of the prior distribution) are not preselected by the investigators; instead,
they are estimated from the same dataset as that used in the Bayesian analysis. Once
the hyperparameters are estimated, they are used in the usual Bayesian analysis
as if they were the true hyperparameters of the prior distributions. The data are
actually used twice, once for estimating the hyperparameters and once for estimating
the Bayesian posterior means of the parameters of interest. In QTL mapping, the
parameters of interest are the QTL effects. A normal prior distribution is assigned
to each QTL effect. The variance in the normal prior is a hyperparameter. In the
Bayesian shrinkage analysis described earlier, the variance is assigned a higher level
of prior distribution so that a posterior distribution of the variance parameter can be
derived and the variance is then sampled via the MCMC sampling algorithm. The
posterior distribution of the variance depends on the QTL effect. In the empirical
Bayesian analysis, we estimate the prior variance before the Bayesian analysis.
The estimated prior variance does not depend on the QTL effect. This is the key
difference between the Bayesian analysis and the empirical Bayesian analysis.
Elimination of the dependency of the variance on the QTL effect can increase the
probability of global convergence of QTL effects during the iteration process and
reduce the chance for parameters of being trapped in the locality of the initial values.

16.1 Classical Mixed Model

In the QTL mapping problem, the flat prior for ˇ does not have any hyperpa-
rameters. If uniform prior is used for the residual variance 	2, there is also no
hyperparameter for the uniform prior. Here, we only need to concern the prior for
each QTL effect. Let us assume independent normal prior,

p.�kj	2k / D N.�kj0; 	2k /;8k D 1; : : : ; p (16.1)
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Because it is a prior for �k , the parameter 	2k is called the hyperparameter. If the
number of QTL is p, we need to choose p hyperparameters. In the fully Bayesian
method under the hierarchical model, 	2k is estimated simultaneously along with �k .
In the empirical Bayes method, we estimate 	2k first, independent of �k , from the
same dataset. Recall that the linear model for yj is

yj D
q
X

iD1
Xj iˇi C

p
X

kD1
Zjk�k C �j (16.2)

where �j � N.0; 	2/ is assumed. The compact matrix notation of this model is

y D Xˇ C
p
X

kD1
Zk�k C � (16.3)

Since �k is treated as a random effect (due to the normal prior assigned to it), the
expectation of �k is zero. Therefore,

E.y/ D Xˇ (16.4)

The variance–covariance matrix of y is

var.y/ D V D
p
X

kD1
ZkZ

T
k 	

2
k C I	2 (16.5)

Let us define G D diag.	21 ; : : : ; 	
2
p/ and � D Œ�1; �2; : : : ; �p�

T so that the joint
normal prior for � is written as

p.� jG/ D N.� j0;G/ (16.6)

The variance–covariance matrix is rewritten as

var.y/ D V D ZGZT C I	2 (16.7)

Define � D fˇ; 	2;Gg as the parameter vector. The log likelihood function for the
parameters is

L.�/ D �1
2

ln jV j � 1
2
.y �Xˇ/T V �1.y �Xˇ/ (16.8)

Both ˇ and 	2 are assumed to have a uniformly distributed prior distribution.
Therefore, the maximum likelihood estimates of the parameters (�) can be obtained
by maximizingL.�/ with respect to � . The standard mixed model approach (Searle
et al. 1992) can be used to estimate the parameters. The mixed procedure in SAS
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(SAS Institute 2008b) is a typical program to estimate variance components. Here,
we introduce three special algorithms for the maximum likelihood estimation of the
parameters.

16.1.1 Simultaneous Updating for Matrix G

Here, we partition the parameters into three sets, ˇ, 	2, and G. Parameters within
each set are estimated simultaneously but conditional on parameter values of the
other sets. To update ˇ conditional on values of 	2 and G at the t th iteration, we
need to define

V .t/ D ZG.t/ZT C I	2.t/ (16.9)

which is not a function of ˇ. The log likelihood function expressed as a function of
ˇ is

L.ˇ/ D �1
2

ln jV .t/j � 1
2
.y � Xˇ/T .V .t//�1.y �Xˇ/ (16.10)

The partial derivative of L.ˇ/ with respect to ˇ is

@L.ˇ/

@̌
D XT .V .t//�1.y � Xˇ/ (16.11)

Setting @L.ˇ/

@ˇ
D 0 and solving for ˇ, we obtain the updated ˇ,

ˇ.t/ D ŒXT .V .t//
�1
X��1ŒXT .V .t//

�1
y� (16.12)

There are many different ways to update 	2, but all of which require current
values of � , the QTL effect vector. Any one of the existing methods can be adopted
here. The purpose of the empirical Bayesian analysis is to estimate the variance
components before � is estimated. Therefore, all existing methods of updating 	2

appear to be counterintuitive. Here we introduce a different method to update 	2

without relying on � . Let us rewrite V as

V D
�

1

	2
ZGZT C I

�

	2 (16.13)

When G and 	2 in the parentheses are substituted by G.t/ and 	2.t/, we get

V D .ZG.t/ZT C I	2.t// 	
2

	2.t/
D V .t/ 	

2

	2.t/
(16.14)
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The variance matrix is now expressed a function of 	2 and V .t/. The inverse and
determinant of V are

V �1 D .V .t//�1
	2.t/

	2
(16.15)

and

jV j D jV .t/j
�

	2.t/

	2

�n

(16.16)

respectively. Ignoring terms that are irrelevant to 	2, we get the following log
likelihood function:

L.	2/ D �n
2

log.	2/� 1

2	2
	2.t/.y �Xˇ.t//T .V .t//�1.y � Xˇ.t// (16.17)

The partial derivative of this log likelihood function with respect to 	2 is

@L.	2/

@	2
D � n

2	2
C 1

2	4
	2.t/.y �Xˇ.t//T .V .t//�1.y � Xˇ.t// (16.18)

Setting @L.	2/

@	2
D 0 and solving for 	2 yield

	2 D 	2.t/

n
.y � Xˇ.t//T .V .t//�1.y �Xˇ.t// (16.19)

This updating method was proposed by Xu (2007) who first introduced the empirical
Bayesian mapping procedure.

Once ˇ and 	2 are updated, their values are denoted by ˇ.t/ and 	2.t/ and treated
as known quantities for updating G. Using the Sherman–Morrison–Woodbury
matrix identities (Golub and Van Loan 1996), we reformulated V �1 and jV j by

V �1 D 1

	2
I � 1

	2
Z

�

ZTZ
1

	2
CG�1

��1
ZT 1

	2
(16.20)

and

jV j D .	2/n
ˇ

ˇ

ˇ

ˇ
ZTZ

1

	2
CG�1

ˇ

ˇ

ˇ

ˇ
jGj (16.21)

respectively. The log likelihood function for G conditional on 	2 and ˇ is

L.G/ D� 1
2

ln

ˇ

ˇ

ˇ

ˇ
ZTZ

1

	2
CG�1

ˇ

ˇ

ˇ

ˇ
� 1
2

ln jGj

C 1

2
.y � Xˇ/T 1

	2
Z

�

ZTZ
1

	2
CG�1

��1
ZT 1

	2
.y � Xˇ/ (16.22)
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where terms that are irrelevant to G have been ignored. Let

h D ZT 1

	2
.y �Xˇ/ (16.23)

and

s D ZTZ
1

	2
(16.24)

and further define

 D ZTZ
1

	2
CG�1 D s CG�1 (16.25)

The log likelihood function can be simplified into

L.G/ D �1
2

ln j j � 1
2

ln jGj C 1

2
hT  �1h

D �1
2

ln j j � 1
2

ln jGj C 1

2
tr.hhT  �1/ (16.26)

We now need matrix calculus to derive the solution for G. Note that

@ 

@G
D @G�1

@G
D �G�1G�1 (16.27)

The partial derivative of the log likelihood with respect to G is

@L.G/

@G
D 1

2
G�1 �1G�1 C 1

2
G�1 �1hhT  �1G�1 � 1

2
G�1

D 1

2
G�1. �1 C  �1hhT  �1/G�1 � 1

2
G�1 (16.28)

Setting @L.G/

@G
D 0 leads to

G�1. �1 C  �1hhT  �1/G�1 �G�1 D 0 (16.29)

Rearranging the above equation yields

G�1 D G�1. �1 C  �1hhT  �1/G�1 (16.30)

Pre- and post-multiplying the above equation by G give

GG�1G D GG�1. �1 C  �1hhT  �1/G�1G (16.31)

and thus

G D  �1 C  �1hhT  �1 (16.32)
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This equation is not explicit in terms ofG because �1 is a function ofG. It may be
used as an iterative equation to achieve a solution forG, as demonstrated later when
we deal with the hierarchical linear mixed model. We now try to find an explicit
solution forG. Pre- and post-multiplying both sides of the above equation by  , we
have

 G D  C hhT (16.33)

Substituting  by  D s C G�1 and simplifying the final equation yield the
following explicit solution:

G D s�1hhT s�1 � s�1 D s�1.hhT � s/s�1 (16.34)

The solution is explicit because s and h are not functions of G. The fact that G is a
diagonal matrix has not been taken into consideration. The solution given in (16.34)
does not guarantee the diagonality of G. More rigorous derivation should have G
restricted as a diagonal matrix. An ad hoc approach is simply to diagonalize G as

G D diagŒs�1.hhT � s/s�1� (16.35)

The iteration process is summarized as follows:

Step (1) Initialize � D �.t/ for t D 0.
Step (2) Update ˇ using (16.12).
Step (3) Update 	2 using (16.19).
Step (4) Update G using (16.35).
Step (5) Repeat Steps (2)–(4) until a certain criterion of convergence is reached.

There are a couple of limitations of the algorithm that need attention: (1) The
algorithm only works when the model dimension is small, say p < n, and (2) the
computational cost may be high for high-dimensional models.

16.1.2 Coordinate Descent Method

Recall that G has p diagonal elements and they are updated simultaneously using
the previous algorithm. With the coordinate descent algorithm, each element ofG is
updated conditional on all other elements of G and the other two sets of parameters
ˇ and 	2. The updating processes for ˇ and 	2 remain the same as described earlier,
and thus, they will not be redescribed here. We now update 	2k one at a time for all
k D 1; : : : ; p. After every element of G is updated, we have a new G denoted
by G.tC1/. Once ˇ, 	2, and G are updated, this only completes one cycle of the
iterations. The iteration will continue until the sequence roughly converges to a
constant value for each parameter. There is no inner loop for G in the iteration
process because, as demonstrated later, there is an explicit solution for each element
of G.
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We now describe the updating procedure for 	2k conditional on �.t/. Since 	2k
contributes to the log likelihood through V , we now express V as a function of 	2k
and V .t/. Define

Vk D
p
X

k0¤k
Zk0ZT

k0	
2.t/

k0 CZkZT
k 	

2
k C I	2.t/ (16.36)

as matrix V with all parameters being substituted by their values at iteration t
except that 	2k remains the current parameter. After some manipulation, we have
an alternative expression for Vk ,

Vk D
p
X

k0D1
Zk0ZT

k0	
2.t/

k0 C I	2.t/ CZkZT
k .	

2
k � 	2.t/k / (16.37)

Define

V .t/ D
p
X

k0D1
Zk0ZT

k0	
2.t/

k0 C I	2.t/ (16.38)

We now have the following expression for Vk :

Vk D V .t/ CZkZT
k .	

2
k � 	2.t/k / (16.39)

Now the log likelihood function for 	2k is

L.	2k / D �
1

2
ln jVkj � 1

2
.y � Xˇ.t//T V �1

k .y �Xˇ.t// (16.40)

Substituting V �1
k and jVkj by the Woodbury matrix identities (Golub and Van Loan

1996),

V �1
k D .V .t//�1� .	2k � 	2.t/k /

ZT
k .V

.t//
�1
Zk.	

2
k � 	2.t/k /C 1

.V .t//�1ZkZT
k .V

.t//�1 (16.41)

and

jVkj D
h

ZT
k .V

.t//
�1
Zk.	

2
k � 	2.t/k /C 1

i

jV .t/j (16.42)

and ignoring all terms irrelevant to 	2k , we get the following log likelihood:

L.	2k / DC
1

2

.	2k � 	2.t/k /.y � Xˇ.t//T .V .t//
�1
ZkZ

T
k .V

.t//
�1
.y �Xˇ.t//

ZT
k .V

.t//
�1
Zk.	

2
k � 	2.t/k /C 1

� 1
2

ln
h

ZT
k .V

.t//
�1
Zk.	

2
k � 	2.t/k /C 1

i

(16.43)
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Let us define
sk D ZT

k .V
.t//�1Zk (16.44)

and

hk D ZT
k .V

.t//�1.y � Xˇ.t// (16.45)

The above log likelihood function is simplified into

L.	2k / D �
1

2
ln
h

sk.	
2
k � 	2.t/k /C 1

i

C 1

2

.	2k � 	2.t/k /h2k

sk.	
2
k � 	2.t/k /C 1

(16.46)

The partial derivative of the likelihood with respect to 	2k is

@L.	2k /

@	2k
D� 1

2

sk

sk.	
2
k � 	2.t/k /C 1

C 1

2

h2k

sk.	
2
k � 	2.t/k /C 1

� 1
2

sk.	
2
k � 	2.t/k /h2k

Œsk.	
2
k � 	2.t/k /C 1�2

(16.47)

Setting
@L.	2k /

@	2k
D 0 and solving for 	2k lead to

	
2.tC1/
k D 	2.t/k C h2k � sk

s2k
(16.48)

The solution is explicit, and no inner iterations are required for updating 	2k . Several
characteristics of this algorithm need to be noticed: (1) The parameter 	2k should
be started at zero; (2) if h2k < sk , the iteration should stop, and the solution for 	2k
is 	2.t/k . In other words, the iteration process for 	2k is monotonically increasing;
(3) the computational cost may be high due to slow convergence for large models;
and (4) it can handle a very large model, say p > n, because the memory storage
requirement is minimum.

16.1.3 Block Coordinate Descent Method

This algorithm is a compromise between the above two methods. Here we divide
matrix G into several blocks, each containing more than one variance component.
We now update each block of G simultaneously. The updating process for ˇ and 	2

remains the same. We now introduce a special algorithm for the block updating.



16.1 Classical Mixed Model 265

Let b be the size of each block and p

b
D m be the number of blocks. If m is not

an integer, it should be adjusted as m D int.p
b
/C 1, and the last block should have

a size less than b. Let us rewrite the variance matrix as

V D
m
X

kD1
ZkGkZ

T
k C I	2 (16.49)

where Gk is the kth block of matrix G and Zk is an n � b submatrix of Z
corresponding to the kth block. Rewrite the variance matrix again as

V D
m
X

k0¤k
Zk0Gk0ZT

k0 C I	2 CZkGkZT
k (16.50)

Define V�k as matrix V with Gk removed, i.e.,

V�k D
m
X

k0¤k
Zk0Gk0ZT

k0 C I	2 (16.51)

which leads to
V D V�k CZkGkZT

k (16.52)

This partitioning enables us to derive the log likelihood function forGk conditional
on all other values of the parameters. Using the Woodbury matrix identities, we
obtain the inverse and determinant of V as

V �1 D V �1�k � V �1�k Zk.ZT
k V

�1�k Zk CG�1
k /�1ZT

k V
�1�k (16.53)

and
jV j D jV�k CZkGkZT

k j D jZT
k V

�1�k Zk CG�1
k jjV�kjjGkj (16.54)

The log likelihood function relevant to Gk is

L.Gk/ DC 1

2
.y �Xˇ/T V �1�k Zk.ZT

k V
�1�k Zk CG�1

k /�1ZT
k V

�1�k .y � Xˇ/

� 1
2

ln jZT
k V

�1�k Zk CG�1
k j �

1

2
ln jGkj (16.55)

Define
hk D ZT

k V
�1�k .y � Xˇ/ (16.56)

and
sk D ZT

k V
�1�k Zk (16.57)

Let
 k D ZT

k V
�1�k Zk CG�1

k D sk CG�1
k (16.58)
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The above log likelihood function is simplified into

L.Gk/ D �1
2

ln jsk CG�1
k j �

1

2
ln jGkj C 1

2
tr
h

hkh
T
k .sk CG�1

k /
�1i

D �1
2

ln j k j � 1
2

ln jGkj C 1

2
tr.hkhTk  

�1
k / (16.59)

The partial derivative of this log likelihood function with respect to Gk is

@L.Gk/

@Gk
D 1

2
G�1
k  �1

k G�1
k C

1

2
G�1
k  �1

k hkh
T
k  

�1
k G�1

k �
1

2
G�1
k

D 1

2
G�1
k




 �1
k C  �1

k hkh
T
k  

�1
k

�

G�1
k �

1

2
G�1
k (16.60)

Setting @L.Gk/

@Gk
D 0, we get the following equation:

Gk D  �1
k C  �1

k hkh
T
k  

�1
k (16.61)

Again, this is an implicit equation in terms of Gk because  k is a function of Gk .
An explicit equation can be found by further manipulation of the above equation, as
we did before for the simultaneous updating algorithm. The explicit equation is

Gk D s�1
k hkh

T
k s

�1
k � s�1

k D s�1
k .hkh

T
k � sk/s�1

k (16.62)

which has exactly the same form as (16.34), except that a subscript k has been added
to each symbol. The matrix needs to be diagonalized because Gk is diagonal. Note
that if the size of each block is one, the above equation has the following scalar
form:

Gk D h2k � sk
s2k

(16.63)

which is the coordinate descent algorithm. It differs from (16.48) because sk and hk
are defined differently. Equation (16.63) is the same as that given by Tipping (2001).

This algorithm requires repeated calculation of sk and hk , and it can be costly
because each one needs calculation of V �1�k . We now introduce an efficient method
to calculate sk and hk that does not require V �1�k . Let

V�k D V �ZkGkZT
k (16.64)

so that

V �1�k D V �1 � V �1Zk.ZT
k V

�1Zk �G�1
k /�1ZT

k V
�1 (16.65)

Pre- and post-multiplying the above equation by Zk and ZT
k lead to

ZT
k V

�1�k Zk D ZT
k V

�1Zk �ZT
k V

�1Zk.ZT
k V

�1Zk �G�1
k /�1ZT

k V
�1Zk (16.66)
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Pre- and post-multiplying (16.65) by Zk and Qy D y �Xˇ yield

ZT
k V

�1�k Qy D ZT
k V

�1 Qy �ZT
k V

�1Zk.ZT
k V

�1Zk �G�1
k /�1ZT

k V
�1 Qy (16.67)

Let us define
Hk D ZT

k V
�1.y � Xˇ/ (16.68)

and
Sk D ZT

k V
�1Zk (16.69)

which only involve inverse of V . Let us also define

�k D ZT
k V

�1Zk �G�1
k D Sk �G�1

k (16.70)

Recall that hk and sk are defined in (16.56) and (16.57), respectively. After
substitutions, we have the following equations:

sk D Sk � Sk��1
k Sk D Sk.S�1

k � ��1
k /Sk (16.71)

and
hk D Hk � Sk��1

k Hk D Sk.S�1
k � ��1

k /Hk (16.72)

where
��1
k D .GkSk � I /�1Gk D Gk.SkGk � I /�1 (16.73)

The block coordinate descent algorithm is a general approach. When the size
of each block is one, the method becomes the coordinate descent algorithm. When
the block size equals p, the method becomes the simultaneous updating algorithm.
In any particular situation, there is an optimal block size, which can maximize the
computational speed.

16.1.4 Bayesian Estimates of QTL Effects

The three algorithms introduced above are used for estimating the prior variance
components. We now treat the estimated G as the true prior matrix and provide a
Bayesian estimate of � . This Bayesian estimate is called the best linear unbiased
predictor (BLUP) if G is a preselected matrix. Since G is estimated from the
data, the BLUP of � is now called the empirical Bayesian estimate. The classical
Henderson’s mixed model equation (Henderson 1950) can be used. An alternative
form of the BLUP and the variance matrix of the BLUP are

O� D OGZT OV �1.y � X Ǒ/ (16.74)

and
var. O�/ D OG � OGZT OV �1Z OG (16.75)

respectively.
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For an individual QTL effect �k, the BLUP and the variance of the BLUP are

O�k D O	2kZT
k
OV �1.y �X Ǒ/ (16.76)

and
var. O�k/ D O	2k .1 �ZT

k
OV �1Zk O	2k / (16.77)

respectively. Let S O�k D
p

var. O�k/ be the standard error of the BLUP. A t-test
statistic is

tk D O�k
S O�k

(16.78)

which can be plotted against the genome location to produce a visual presentation
of the QTL effects. One may convert the t-test statistic into the Wald-test statistic,

Wk D O�2k
S2O�k

(16.79)

In genomic data analysis, it is common to use the LOD score test statistics,

LODk D Wk

2 ln.10/
(16.80)

16.2 Hierarchical Mixed Model

The classical mixed model approach may not work for extremely large models
because the degree of shrinkage may not be sufficiently strong. We now incorporate
a hyperprior distribution for 	2k . Since 	2k is already a prior variance, assigning a
prior to a prior involves multiple levels of prior assignments. This approach is called
hierarchical prior assignment. When applied to the mixed model analysis, the model
becomes a hierarchical mixed model. The scaled inverse chi-square prior (a special
case of the inverse gamma prior) is most commonly used for 	2k . An alternative prior
is the exponential prior (also called the Lasso prior). Both priors will be discussed
in this section. The hierarchical prior only affects estimation of G, and therefore,
updating ˇ and 	2 and the BLUP of � remain the same as described in the previous
section.

16.2.1 Inverse Chi-Square Prior

Assigning an independent inverse chi-square to each 	2k ,

p.	2k / D Inv� �2.	2k j�; !/ /



	2k
��.�C2/=2

exp

�

�1
2

!

	2k

�

(16.81)
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The joint prior is

p.G/ D
p
Y

kD1
p.	2k / /jGj�.�C2/=2 exp

h

�!
2

tr.G�1/
i

(16.82)

Let � D f�; !g be the vector of hyperparameters of the prior distribution. The log
prior is

L.�/ D �1
2
.� C 2/ ln jGj � !

2
tr.G�1/ (16.83)

which is also called the log likelihood function for the hyperparameters. Combining
the log likelihood and the log prior, we obtain the log posterior˚.�/ D L.�/CL.�/,
which expands as

˚.�/ D� 1
2

ln jV j � 1
2
.y � Xˇ/T V �1.y � Xˇ/

� 1
2
.� C 2/ ln jGj � !

2
tr.G�1/ (16.84)

The solution of � is obtained by maximizing the log posterior function. Therefore,
the estimate of the parameter vector is called the maximum a posteriori (MAP)
estimate of � . The domain of the parameter is � 2 ˝ where ˝ includes 	2k � 0 for
all k D 1; : : : ; p. It is important to note that 	2k D 0 is allowed in order to generate
a sparse model. Similar to the classical mixed model, we also adopt three different
updating procedures for G.

Simultaneous Updating

The log posterior expressed as a function of G is

˚.G/ D� 1
2

ln j j � 1
2

ln jGj C 1

2
tr.qqT  �1/

� 1
2
.� C 2/ ln jGj � 1

2
!tr.G�1/ (16.85)

The partial derivative of ˚.G/ with respect to G is

@˚.G/

@G
D 1

2
G�1. �1 C  �1hhT  �1 C !I/G�1 � 1

2
.� C 3/G�1 (16.86)

Setting @˚.G/

@G
D 0 leads to

.� C 3/G�1 D G�1. �1 C  �1hhT  �1 C !I/G�1 (16.87)
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Further manipulation of this equation yields

G D 1

� C 3. 
�1 C  �1hhT  �1 C !I/ (16.88)

This is an implicit equation for G because  is a function of G. Unfortunately,
an explicit solution is hard to derive unless .�; !/ D .�2; 0/, which is the classic
mixed model. Therefore, we must use (16.88) as an iterative equation to find the
solution iteratively. This iteration process is nested with an outer iteration process
that involves updating ˇ and 	2. Therefore, the iteration using (16.88) is an inner
iteration process. Let G.r/ be the value ofG at the r th inner iteration, and recall that

. .r//�1 D G.r/.sG.r/ C I /�1 D .G.r/s C I /�1G.r/ (16.89)

The inner iterative equation for G is

G.rC1/ D 1

� C 3diagŒ. .r//
�1 C . .r//�1hhT . .r//�1 C !I � (16.90)

Coordinate Descent Algorithm

In a previous section, we defined

V .t/ D
p
X

kD1
ZkZ

T
k 	

2.t/

k C I	2.t/ (16.91)

and
V D V .t/ CZkZT

k .	
2
k � 	2.t/k / (16.92)

The log posterior expressed as a function of 	2k is

˚.	2k / D�
1

2
ln
h

sk.	
2
k � 	2.t/k /C 1

i

C 1

2

.	2k � 	2.t/k /h2k

sk.	
2
k � 	2.t/k /C 1

� 1
2
.� C 2/ ln.	2k /�

1

2

!

	2k
(16.93)

where sk D ZT
k .V

.t//�1Zk and hk D ZT
k .V

.t//�1.y � Xˇ.t//. Xu (2007) stopped
at this stage and used the simplex algorithm (Nelder and Mead 1965) to update
	2k . Here we go beyond that by deriving an explicit updating equation. The partial
derivative of the log posterior with respect to 	2k is complicated (not shown here).
However, when we set @˚.	2k /=@	

2
k D 0, many complicated terms are canceled out.

The equation is cubic in terms of 	2k , as given below:

c3.	
2
k /
3 C c2.	2k /2 C c1	2k C c0 D 0 (16.94)
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where

c3 D �.� C 3/s2k
c2 D �.2� C 5/sk.1 � sk	2.t/k /C h2k C !s2k
c1 D �.� C 2/.1� sk	2.t/k /2 C 2.1� sk	2.t/k /!sk

c0 D .1 � sk	2.t/k /2! (16.95)

The cubic equation has three solutions. Only one solution gives the global maximum
of the log posterior. The MAP estimate of 	2k takes the largest real number if that
number is equal or greater than zero. Otherwise, we set 	2k D 0. The PolyRoot
function in SAS/IML (SAS Institute 2008a) package returns the three solutions
using the four coefficients of the polynomial as the input data.

If we set .�; !/ D .�; 0/, the polynomial equation becomes quadratic,

a.	2k /
2 C b	2k C c D 0 (16.96)

where

a D �.� C 3/s2k
b D �.2� C 5/sk.1 � sk	2.t/k /C h2k
c D �.� C 2/.1 � sk	2.t/k /2 (16.97)

There are two solutions for the quadratic equation, but the solution that maximizes
the log posterior is

	
2.tC1/
k D �b �

p
b2 � 4ac
2a

(16.98)

The solution exists only if b > 0 and b2 � 4ac � 0. When the condition does not
hold, we set 	2k D 0. Note that when ! D 0, the global solution for 	2k is always
zero. The one given in (16.98) is actually a local solution. In this situation, we must
take the local solution.

The special case, .�; !/ D .�2; 0/, corresponds to a uniform prior for 	2k . The
solution under this uniform prior is

	
2.tC1/
k D �b

a
D 	2.t/k C q2k � sk

s2k
(16.99)

This is equivalent to the result in the classical mixed model analysis, as seen
in (16.48). Since we start with 	2.0/k D0, the convergence sequence must be of mono-

tonic increase for 	2k . Therefore, q2k�sk�0; otherwise, we set 	2.tC1/k D 	2.t/k D 0.
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Block Coordinate Descent

Definitions and notations are the same as the ones given in the corresponding section
in the classical mixed model analysis. We are interested in updating the kth subset
of G, denoted by Gk , where each Gk contains b elements and the total number of
block is m.

The log likelihood function relevant to Gk is

L.Gk/ D �1
2

ln j kj � 1
2

ln jGkj C 1

2
tr.hkh

T
k  

�1
k / (16.100)

The log prior is

L.�/ D �1
2
.� C 2/ ln jGkj � 1

2
!tr.G�1

k / (16.101)

The log posterior is

˚.Gk/ D� 1
2

ln j kj � 1
2

ln jGkj C 1

2
tr.hkhTk  

�1
k /

� 1
2
.� C 2/ ln jGkj � 1

2
!tr.G�1

k / (16.102)

The partial derivative of this log posterior with respect to Gk is

@˚.Gk/

@Gk
D 1

2
G�1
k




 �1
k C  �1

k hkh
T
k  

�1
k C !I

�

G�1
k �

1

2
.� C 3/G�1

k (16.103)

Setting @˚.Gk/

@Gk
D 0, we get the following equation:

Gk D 1

� C 3diag



 �1
k C  �1

k hkh
T
k  

�1
k C !I

�

(16.104)

Because  k is a function of Gk , the above equation is iterative. The inner iterations
should converge before we can proceed to updating ˇ and 	2. Again, to avoid G�1

k ,
we must use the following approach to calculate  �1

k :

 �1
k D Gk.skGk C I /�1 D .Gksk C I /�1Gk (16.105)

16.2.2 Exponential Prior

The � Prior

The exponential prior for 	2k is
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p.	2k j�/ D
�2

2
exp

�

��
2

2
	2k

�

(16.106)

where � > 0 is the hyperparameter of the exponential prior. The joint prior for G is

p.Gj�/ D �2

2
exp

�

��
2

2
tr.G/

�

(16.107)

Although the three algorithms for updating G described earlier can all be cus-
tomized to handle the exponential prior, we only demonstrate the coordinate descent
approach here for the exponential prior. In a previous section, we introduced sk and
hk in two different forms. In the coordinate descent method, we defined

sk DZT
k .V

.t//�1Zk

hk DZT
k .V

.t//�1.y �Xˇ/ (16.108)

In the block coordinate descent method, they were defined as

sk DZT
k V

�1�1 Zk

hk DZT
k V

�1�k .y �Xˇ/ (16.109)

The first definition, (16.108), is introduced here mainly because it was used in the
original publication of the empirical Bayesian mapping (Xu 2007). Here, we use the
second definition of sk and hk , (16.109), for the coordinate descent algorithm. The
log posterior is

˚.	2k / D �
1

2
ln.sk	2k C 1/C

1

2

	2kh
2
k

sk	
2
k C 1

� 1
2
�2	2k (16.110)

The partial derivative of this log posterior with respect to 	2k is

@˚.	2k /

@	2k
D �1

2

sk

sk	
2
k C 1

C 1

2

h2k

.sk	
2
k C 1/2

� 1
2
�2 (16.111)

Setting
@˚.	2k /

@	2k
D 0 leads to

� �2s2k.	2k /2 � .s2k C 2�2sk/	2k C .h2k � sk � �2/ D 0 (16.112)

This is a quadratic equation with the three coefficients defined as
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a D ��2s2k
b D �.s2k C 2�2sk/
c D h2k � sk � �2 (16.113)

The solution is

	2k D
�b �pb2 � 4ac

2a
(16.114)

If b2 � 4ac < 0, we simply set 	2k D 0. The exponential prior appears to be much
simpler than the scaled inverse chi-square prior.

The .a; b/ Prior

This prior was introduced by Cai et al. (2011) to alleviate the problem of choosing
an inappropriate value for �. Here, we add another level to the hierarchical model
at which we assign a Gamma.�ja; b/ prior to � with a shape parameter a > 0 and
an inverse scale parameter b > 0. Cai et al. (2011) modified the � exponential prior
for 	2k as

p.	2k j�/ D � exp.��	2k / (16.115)

The .a; b/ prior is obtained by

p.	2k ja; b/ D
Z 1

0

p.	2k j�/p.�ja; b/d� D
a

b.
	2k
b
C 1/.aC1/

(16.116)

The � prior has been removed and replaced by the .a; b/ prior. We can now preselect
the values of .a; b/ for this prior. The log posterior for 	2k is

˚.	2k / D �
1

2
ln.sk	2k C 1/C

1

2

	2kh
2
k

sk	
2
k C 1

� .aC 1/ ln
	2k C b
b

(16.117)

The partial derivative is

@˚.	2k /

@	2k
D �1

2

sk

sk	
2
k C 1

C 1

2

h2k

.sk	
2
k C 1/2

� .aC 1/b
	2k C b

(16.118)

Setting
@˚.	2k /

@	2k
D 0 yields the following quadratic equation:

c1.	
2
k /
2 C c2	2k C c3 D 0 (16.119)
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where

c1 D �Œ2.aC 1/b C 1�s2k
c2 D �Œ4.aC 1/C sk�skb C .h2k � sk/
c3 D �Œ2.aC 1/� .h2k � sk/�b (16.120)

The solution is

	2k D
�c2 �

q

c22 � 4c1c3
2c1

(16.121)

16.2.3 Dealing with Sparse Models

In every cycle of the iteration, we need to calculate V �1. This can be costly if
the sample size is large. If the shrinkage is strong, most 	2k will be zero, and the
model can be very sparse. Let pr be the number of nonzero 	2k . Let us define Gr
as the subset of matrix G corresponding to the nonzero elements. Let Zr be the
corresponding subset of Z. When pr < n, we can use the following equation to
calculate V �1:

V �1 D 1

	2
I � 1

	2
Zr

�

ZT
r Zr

1

	2
CG�1

r

��1
ZT
r

1

	2
(16.122)

This equation only requires inverting a matrix of pr � pr . The cost saving can be
substantial if pr is substantially less than n. Of course, if n > pr , it is more efficient
to invert V directly. The computer program should have a switch to choose this
special algorithm if pr < n and invert V directly otherwise.

16.3 Infinitesimal Model for Whole Genome Sequence Data

Although the Bayesian method can handle high-density markers, the “high” cannot
be infinite. Ultimately, there is still a limit on the number of markers because sample
size is always finite. The actual limit of the marker density depends on the sample
size; larger sample size is required to handle more dense markers. In the genome
era, whole gene sequences will soon be available for many species, making the
number of markers (SNPs) virtually infinite. How to take advantage of the whole
genome sequence information to identify genes responsible for the genetic variation
of complex traits is a great challenge to statisticians. Two approaches may be taken
to deal with such a situation, (1) data trimming prior to the Bayesian analysis and (2)
new model development. The first approach does not involve new statistical methods
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and is more realistic and easy to implement. The second one, however, may require
a new model that is conceptually very different from all the linear models currently
available in statistics. Both approaches will be discussed here in this section.

16.3.1 Data Trimming

This approach only requires data preparation and does not involve new methods.
Since the marker density is too high, we can trim the markers prior to the Bayesian
analysis. If two or more markers (SNPs) co-segregate in a population, i.e., they have
exactly the same segregation patterns, only one of them should be used. A program
is needed to select all markers with unique segregation pattern to make sure that no
two markers co-segregate in the population. Depending on the sample size, this may
eliminate most SNPs in the dataset because most of them may be redundant. The
total number of uniquely segregated markers may still be over the limit that a model
can handle. In this case, we may increase the stringency of marker trimming so that
selected markers differ by at least two or more individuals, say %. This number % can
be adjusted by trial and error until the number of selected markers is manageable.
There might be some information loss if % is set too high. This marker trimming
approach may have already been practiced in genomic data analysis. Theoretical
work is definitely lacking, and further investigation is required for the optimal % for
a given sample size n.

16.3.2 Concept of Continuous Genome

Let us reintroduce the linear multiple QTL model for the phenotypic value of
individual j ,

yj D ˇ C
p
X

kD1
Zjk�k C "j (16.123)

where p is the number of markers included in the model. For whole genome
sequence data, p �1, and thus, the above model becomes

yj D ˇ C
1
X

kD1
Zjk�k C "j (16.124)

This is just a conceptual model because nobody can estimate parameters in the
model. In mathematics, the limit of summation is integral. Therefore, we may
propose the following continuous genome model by replacing the summation by
integration:

yj D ˇ C
Z L

0

Zj .�/�.�/d�C "j (16.125)
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where � is the genome location ranging from 0 toL (the size of the genome),Zj .�/
is the genotype indicator variable for individual j at location �, and �.�/ is the
genetic effect expressed as a function of �. Note that Zj .�/ is known because,
at any given location, we can observe the SNP genotypes for all individuals in the
mapping population. The function of genetic effect, �.�/, however, is unknown, and
estimating this function is the ultimate goal of the whole genome sequence analysis.
This model is called the continuous genome model. Since the entire genome is a
collection of C chromosomes, e.g., C D 23 for humans, this continuous genome
model is more precisely expressed by

yj D ˇ C
C
X

tD1

Z Lt

0

Zj .�/�.�/d�C "j (16.126)

where Lt is the size of chromosome t for t D 1; : : : ; C . Conceptually, we can
handle infinite number of SNPs using this continuous model. The greatest challenge
is how to estimate �.�/ given the phenotypes yj and the genotypes Zj .�/ of all
individuals. This continuous genome model may open a new area in genome data
analysis.

Prior to the development of a full theory of the infinitesimal mode, we may use
numerical integration to solve this problem. Let us go back to (16.125) where only
one chromosome (or a single continuous genome) is considered. Let us divide the
genome into p equal distance intervals and define

�� D L

p
(16.127)

as the length of the interval. A numerical presentation of the integral in (16.125) is

yj D ˇ C
p
X

kD1
Zj .�k/�.�k/��C "j (16.128)

where �k is the middle point of the kth interval. It appears that this model still has
not taken advantage of the infinite SNPs becauseZj .�k/ is still a value from a single
point of genome. We now revise this model so that

yj D ˇ C
p
X

kD1
NZjk Q�k C "j (16.129)

where

NZjk D
R �kC 1

2��

�k� 1
2��

Zj .�/d�

R �kC 1
2��

�k� 1
2��

d�
(16.130)
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is the mean Zj for the interval covering middle point �k and

Q�k D �.�k/�� (16.131)

is the sum of all effects within that interval. In real data analysis, NZjk simply takes
the average Zj for all markers genotyped in that interval. Comparing (16.129)
with (16.123), we can see that Zjk is replaced by the mean NZjk and �k is replaced
by the sum Q�k . We can now choose p according to the sample size n; a larger sample
size allows a higher value of p, which determines the resolution. Therefore, large
sample sizes lead to higher resolution of QTL mapping.

16.4 Example: Simulated Data

This example demonstrates the empirical Bayes estimates of QTL effects using a
simulated dataset (Xu 2007). A BC population of 600 individuals was simulated for
a single large chromosome of 1,800 cM. This giant chromosome was covered by
121 evenly spaced markers. Nine of the markers overlapped with QTL of the main
effects, and 13 out of the C2121D 7; 260 possible marker pairs had interaction effects.
In genetics terminology, interaction effects between loci are called epistatic effects
(Xu 2007). Although we have not dealt with epistatic effects yet, the empirical
Bayesian method developed here can be applied to epistatic effect detection without
any modification at all. The only difference of the epistatic model from the
pure additive model is the increase of model dimension. The true effects of the
markers and marker pairs are shown in Figs. 16.1 and 16.2, respectively. The true
population mean and residual variance were 5.0 and 10.0, respectively. The fixed
effect vector contains only the population mean. The genetic variance contributed
by all markers (including main and epistatic effects) was approximately 90.0.
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Fig. 16.1 Empirical Bayesian estimates of QTL main effects (red) compared with the true QTL
main effects (blue) for the simulated data
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Fig. 16.2 Empirical Bayesian estimates of QTL epistatic effects (red, left) compared with the true
QTL epistatic effects (blue, right) for the simulated data

The genetic contribution from the covariance terms was about 6.0, leading to a
phenotypic variance of about 106.0. The theoretical proportion of the phenotypic
variance contributed by an individual QTL was simply defined as the squared effect
divided by the phenotypic variance. In the simulation experiment, the proportion
of contribution from an individual QTL varied from 0.6 % to 20 %, whereas the
proportion of contribution from a pair of QTL ranged from 0.5 % to 15 %. Some of
the markers had main effects only, while others had both the main and the epistatic
effects. Many of the markers with epistatic effects had no main effects. The epistatic
model contained a total of 121.121C 1/=2 D 7381 effects, about 12 times as large
as the sample size. The program and the simulated data are available on request from
the author (Xu 2007). The hyperparameters were chosen as .�; !/ D .�1; 0:0005/.
Our past experience indicated that other values of the hyperparameters do not shrink
the parameters properly (Xu 2003; ter Braak et al. 2005). The estimated QTL main
effects along with the true values for the 121 markers are plotted in Fig. 16.1. It
is clear that the estimated effects are very close to the true values. The estimated
epistatic effects along with the true values are presented in Fig. 16.2 where the true
values are given in the right-hand side of the 3D plot and the estimated values are
given in the left-hand side of the 3D plot. The estimated and true epistatic effects
are almost identical both in effect and in location. No other methods have ever been
able to generate such a good result.



Part III
Microarray Data Analysis



Chapter 17
Microarray Differential Expression Analysis

Gene expression is the process by which mRNA, and eventually protein, is
synthesized from the DNA template of each gene. The level of gene expression
can be measured by a particular technology, called microarray technology (Schena
et al. 1995), in which we can measure the expression of thousands of different
RNA molecules at a given time point in the life of an organism, a tissue, or
a cell. Comparisons of the levels of RNA molecules can be used to decipher
the thousands of processes going on simultaneously in living organisms. Also,
comparing healthy and diseased cells can yield vital information on the causes of
the disease. The microarray technology has been successfully applied to several
biological problems, and as arrays become more easily accessible to researchers,
the popularity of these kinds of experiments will increase. The demand for good
statistical analysis regimens and tools tailored for microarray data analysis will
increase as the popularity of microarrays grows. The future will likely bring many
new microarray applications, each with its own demands for specialized statistical
analysis. Starting from this chapter, we will learn some of the basic statistical
methods for microarray data analysis.

17.1 Data Preparation

First, we need to understand the format of microarray data. The data are usually
arranged in a matrix form, with rows representing genes and the columns repre-
senting tissue samples. The expressing level of the i th gene in the j th sample is
denoted by yij ,8i D 1; : : : ; N I j D 1; : : : ;M , where N is the number of genes
and M is the number of tissue samples, as shown in the sample data (Table 17.1).
Each data point is assumed to have been properly transformed and normalized. Data
preparation includes such data transformation and normalization.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 17,
© Springer Science+Business Media, LLC 2013
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Table 17.1 A sample dataset of microarray gene expression

Gene Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 . . . Sample M

1 6.73293 7.02988 6.85878 6.94274 5.00395 . . . 7.80914
2 4.40305 5.06069 4.95442 4.83628 6.37724 . . . 5.76519
3 6.58147 6.66364 6.88531 6.90465 8.32814 . . . 5.38998
4 4.40183 5.14982 5.21494 5.11018 6.61258 . . . 4.18205
5 7.03632 6.55607 7.06851 6.79872 5.2776 . . . 5.48147
6 5.36317 5.90971 5.46848 5.76832 5.86363 . . . 5.36598
7 5.3303 5.22467 4.77238 5.06765 7.97398 . . . 5.18403
8 6.08199 6.32077 6.12796 6.11744 6.78004 . . . 4.53367
9 5.83802 5.45788 5.55721 5.8354 4.69592 . . . 5.38174
10 7.23807 7.10562 6.92991 7.03077 5.30231 . . . 5.94411
11 6.11014 5.56375 5.85536 6.09334 5.92345 . . . 5.76738
. . . . . . . . . . . . . . . . . . . . . . . .
N 8.03291 7.84023 7.65354 8.10648 5.43285 . . . 6.05514

17.1.1 Data Transformation

Most statistical methods require specific statistical models and distributions of the
errors. Linear model is the most commonly used model for microarray data analysis.
Normal distribution is most frequently assumed for the errors. However, data points
in the original form usually cannot be described by a linear model, and the errors
may not follow a normal distribution. Therefore, some type of data transformation
is usually recommended before the data analysis. Let wij be the original expression
level of the i th gene in the j th condition. The transformed value can be expressed as

y�
ij D f .wij / (17.1)

where f .:/ represents any monotonic function. All the statistical methods to be
described in the book are actually performed on the transformed data y�

ij , not the
raw data wij . There are many different ways to transform the data. We will list a few
most commonly used ones as examples.

17.1.1.1 Logarithmic Transformation

By far the most common transformation applied to microarray readings is the
logarithmic transformation

y�
ij D log.wij / (17.2)

The base of the logarithm may be 2, 10, or the natural logarithmic constant e.
The choice of base is largely a matter of convenient interpretation. The log
transformation tends to provide values that are approximately normally distributed
and for which conventional linear regression and ANOVA models are appropriate.
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Square Root Transformation

The square root transformation

y�
ij D pwij (17.3)

is a variance-stabilizing transformation. In other words, if the variance is propor-
tional to the mean, the square root transformation will correct this to some degree
so that the variance of the transformed values is independent of the mean of the
transformed values.

Box–Cox Transformation Family

The two transformations described above are members of the Box–Cox family of
transformations (Box and Cox 1964). This family is defined as

y�
ij D

wıij � 1
ı

(17.4)

where ı is the parameter of transformation chosen by the investigator. The square
root transformation corresponds to ı D 1

2
. The logarithmic transformation cor-

responds to the limit of this equation when ı �! 0. The case where ı D 1

corresponds to taking no transformation at all, except for a change in the origin.
The Box–Cox family provides a range of transformations that may be examined to
see which value of ı yields transformed values with the desired statistical properties.

17.1.2 Data Normalization

The laboratory preparation of each biological specimen on a microarray slide
introduces an arbitrary scale or dilution factor that is common to expression readings
for all genes. We usually correct the readings for the scale factor and other variations
using a process called normalization. The purpose of normalization is to minimize
extraneous variation in the measured gene expression levels of hybridized mRNA
samples so that biological differences (differential expression) can be more easily
distinguished.

Practical experience has shown that, in addition to array effects, other extraneous
sources of variation may be present that cloud differential gene expression if not
taken into account. These sources of variations are called systematic errors, e.g.,
the effects of dye colors. These systematic errors will mask the true biological
differences and should be removed before the data are analyzed.
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Normalization Across Genes

The normalization is done by subtracting the mean expression of all genes from the
individual gene expression. The normalized data point is

yij D y�
ij � y�

:j (17.5)

where y�
:j D 1

N

PN
iD1 y�

ij is the average expression of all genes in sample j . All
subsequent statistical analysis should be performed on the normalized values yij .

Normalization Across Tissue Samples

The normalization is done by subtracting the mean expression of all tissue samples
from the individual gene expression. The normalized data point is

yij D y�
ij � y�

i: (17.6)

where y�
i: D 1

M

PM
jD1 y�

ij is the average expression of all samples for gene
i . All subsequent statistical analysis should be performed on the normalized
values yij .

Normalization Across both Genes and Samples

The normalized data point is expressed as the deviation of the unnormalized value
from the mean of all genes in the particular sample and the mean of all samples for
the particular gene,

yij D y�
ij � y�

i: � y�
:j C y�

:: (17.7)

where y:: D 1
MN

PN
iD1

PM
jD1 y�

ij is the overall mean of gene expression across all
genes and samples.

Normalization via Analysis of Covariance

Analysis of covariance is an approach to removing the influence of systematic errors
on the effects of treatments in an ANOVA. If we ignore any systematic errors
(effects), we may write a linear model to describe the expression of the i th gene
in the j th treatment,

y�
ijk D �C ˛i C ˇj C �ij C �ijk (17.8)
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where subscript k represents the kth replicate of gene i in treatment j . In this
model, � is the grand mean, ˛i is the effect of the i th gene, ˇj is the effect of
the j th treatment, �ijk is the error term, and �ij is the interaction effect between
the i th gene and the j th treatment. The interaction term, �ij , actually reflects the
differential expression of gene i . A sufficiently large �ij indicates that the i th
gene expresses differently from one treatment level to another. It is �ij that we are
interested in. By formulating the above linear (ANOVA) model, we can separate
�ij (the interesting part of the model) from the other effects (the parts that are not
interesting to us). If we estimate the non-interesting effects and remove them from
y�
ijk , we have

yijk D y�
ijk �b� � b̨i �bˇj D �ij C �ijk (17.9)

The non-interesting effects can be estimated first and then removed from the model.
This is a generalized normalization process. It has normalized the gene expression
across both the genes and the treatments. The method of estimation for the non-
interesting effects can be the usual least-squares method from a simple two-way
ANOVA or the mixed model approach (Wolfinger et al. 2001) by treating the gene
and treatment effects as fixed and the interaction effects as random. One advantage
of using the mixed model approach for normalization over the previous method is
that the method can handle unbalanced data.

More importantly, we can incorporate systematic effects into the ANOVA linear
model as covariates and perform covariance analysis to remove the extraneous
systematic errors. For example, the dye color asymmetry has led to the use of
microarray study designs in which arrays are produced in pairs with the colors in
one array reversed relative to the colors in the second array in order to compensate
for the color differences. These are called reversed-color designs. In this kind of
design, the color effects, which are not of our interest, should be included in the
model. Therefore, the modified model incorporating the color effects appears

y�
ij lk D �C �l C ˛i C ˇj C .�˛/li C .�ˇ/lj C �ij C �ijlk (17.10)

where �l ;8l D 1; 2 is the color effect, .�˛/li is the interaction of the l th color with
the i th gene, and .�ˇ/lj is the interaction of the l th color with the j th treatment.
If we do not include these effects in the model, they will be absorbed by the error
term. With the above model, they can be estimated and removed from the analysis,
as shown below:

yijlk D y�
ij lk �b� �b�l � b̨i �bˇj � b.�˛/li � b.�ˇ/lj D �ij C �ijlk; (17.11)

leaving only �ij in the model. Therefore, analysis of covariance is a generalized
normalization approach to removing all non-interesting effects.

Once the data are properly transformed and normalized, they are ready to be
analyzed using any of the statistical methods described in subsequent sections.
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17.2 F -test and T -test

Assume that we collect tissues from M1 mice affected by some particular disease
and tissues from M2 mice that have the same diseases but treated with a newly
developed drug. The tissue of each mouse is microarrayed, and the expression of
N genes are measured. The purpose of the experiment is to find which genes have
different levels of expression between the untreated and treated groups of mice,
i.e., to find genes responding to the drug treatment. The data matrix has N rows
and M D M1 C M2 columns. However, each data point (gene expression level)
is better denoted by variable y with three subscripts, yijk , where i D 1; : : : ; N

indexes genes, j D 1; : : : ; P indexes the level of treatment (P D 2 in the case of
two levels of treatment), and k D 1; : : : ;M=P indexes the replication within each
treatment group. The number of replicates within each treatment group is assumed
to be Mj D M=P for all j D 1; : : : ; P . If the data are not balanced, i.e., M1 ¤
M2, the replication index k should be subscripted with j so that kj D 1; : : : ;Mj .
The t-test statistic of differential expression for the i th gene is

ti D jyi1: � yi2:j
syi1:�yi2:

; (17.12)

where

yij: D
1

Mj

Mj
X

kD1
yijk ; 8j D 1; 2 (17.13)

syi1:�yi2: D
q

s2i1=M1 C s2i2=M2 (17.14)

and

s2ij D
1

Mj � 1
Mj
X

kD1
.yijk � yij:/2;8j D 1; 2: (17.15)

One can rank ti across all i D 1; : : : ; N and select all genes with ti > tdf;1�˛
as differentially expressed genes, where tdf;1�˛ is the critical value chosen by the
investigator, df D M1 CM2 � 2 is the degrees of freedom, and 0 < ˛ < 1 is a
probability that controls the type I error rate of the experiment (discussed later).

The t-test only applies to situations where there are two levels of treatment.
For multiple levels of treatment, an F -test must be used. Let P be the number of
levels of treatment. For example, if there are four groups of mice with the first group
being the untreated group and the remaining three groups being treated with three
different doses of a particular drug, then P D 4. The F -test statistic for the i th gene
is calculated from the ANOVA table (see Table 17.2), where

SST D
P
X

jD1
Mj .yij: � yi::/2 (17.16)
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Table 17.2 Analysis of variance (ANOVA) table for differential gene expression
analysis

Variation df SS MS F -test statistic

Treatment dfT D P � 1 SST MST D SST
dfT

MST
MSE

Error dfE D PP
jD1.Mj � 1/ SSE MSE D SSE

dfE

and

SSE D
P
X

jD1

Mj
X

kD1
.yijk � yij:/2 (17.17)

The F -test statistic for the i th gene is defined as

Fi D MST

MSE
(17.18)

The critical value used to declare significance is FdfT ;dfE ;1�˛ , which is the 1 � ˛
quantile of the F-distribution with degrees of freedom dfT and dfE . All genes with
Fi > FdfT ;dfE ;1�˛ are called significant. Again, the value of ˛ is chosen by the
investigator (discussed later).

17.3 Type I Error and False Discovery Rate

In the previous section, the critical value for a test statistic used to select the list of
significant genes is denoted by tdf;1�˛ for the t-test or FdfT ;dfE ;1�˛ for the F -test.
The ˛ value is called the type I error. A small ˛ means a large critical value and
thus generates a short list of significant genes, while a large ˛ will produce a long
list of significant genes. Therefore, type I error determines the list of significant
genes. Let H0 denote the null hypothesis that a gene is not differentially expressed
and H1 denote the alternative hypothesis that the gene is differentially expressed.
When we perform a statistical test on a particular gene, we may make errors if
the sample size is small. There are two types of errors we can make. If a gene is
not differentially expressed but our test statistic is greater than the chosen critical
value, we will make the type I error whose probability is denoted by ˛ as mentioned
before. On the other hand, if a gene is differentially expressed but our test statistic is
less than the chosen critical value, we will make the type II error whose probability
is denoted by ˇ. In other words, we will make the type I error ifH0 is true butH1 is
accepted and make the type II error if H1 is true but H0 is accepted. The type I and
type II errors are also called false-positive and false-negative errors, respectively.
These two errors are negatively related, i.e., a high type I error leads to a low type
II error.
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The probability thatH1 is accepted whileH1 is indeed true is called the statistical
power. Therefore, the statistical power is simply ! D 1 � ˇ. A gene can be
differentially expressed or not differentially expressed. So, if we use an indicator
variable h to denote the true status of the gene, we have h D H0 or h D H1. After
the statistical test, the gene will have one of two outcomes, significant or not. Let Oh
be the outcome of the statistical test of the gene, then Oh D H0 if H0 is accepted and
Oh D H1 if H1 is accepted. We can now define the type I error as

˛ D Pr. Oh D H1jh D H0/ (17.19)

and the type II error as

ˇ D Pr. Oh D H0jh D H1/: (17.20)

The statistical power is

! D Pr. Oh D H1jh D H1/: (17.21)

So far, we only discussed the type I error rate for a single test. In microarray
data analysis, we have to test the differential expression for every gene. Therefore,
a microarray experiment with N genes involves N hypothesis tests. The type I
error for a single test needs to be adjusted to control the type I error of the entire
experiment. The Bonferroni correction introduced in Sect. 8.5 of Chap. 8 applies
here. If the experiment-wise type I error is � , the nominal type I error rate after
correcting for multiple tests should be

˛ D �

N
(17.22)

Assume that a microarray experiment involves N D 1;000 genes collected from
M1 D 10 cases and M2 D 10 controls. A t-test statistic has been calculated for
each of the N genes. We want to find the critical value for the t-test to compare so
that the experiment-wise type I error is controlled at � D 0:05. First, we need to
find out the nominal type I error rate using the Bonferroni correction,

˛ D �

N
D 0:05

1; 000
D 0:00005

If the p-values are already given in the differential expression analysis, one may
simply compare the gene-specific p-values to 0.00005, declaring significance if the
p-value is less than 0.00005. If the p-values are not given, we need to find the
critical value used to declare significance using

tdf;1�˛=2 D t18;0:999975 D 5:2879056 (17.23)

Any genes with t-test statistics greater than 5.2879 will be declared as significant.
Bonferroni correction usually provides a very conservative result of tests, i.e., re-
ports less genes than the actual number of significant genes. In practice, Bonferroni
is rarely used because of the conservativeness; instead, people often use permutation
test to draw an empirical critical value. This will be discussed in the next section.
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Another related performance measure in multiple testing is the so-called false
discovery rate (FDR) developed by Benjamini and Hochberg (1995). The FDR
measure looks at error controls from a different perspective. Instead of conditioning
on the true but unknown state of whether a gene is differentially expressed or not,
the FDR is defined as the probability that the test statistic indicates that the gene is
differentially expressed but in fact it is not. This probability, denoted by ı, is

ı D Pr.h D H0j Oh D H1/ (17.24)

We can control the value of FDR (ı) and use the fixed FDR value to select the list
of significant genes.

17.4 Selection of Differentially Expressed Genes

Data transformation is to ensure that the residual errors of gene expressions follow
a normal distribution. A normal distribution will make the t-test or F -test statistic
follow the expected t- or F-distribution under the null model. For most microarray
data, transformation can only improve the normality and rarely make the residual
errors perfectly normal. Therefore, the critical value for a test statistic drawn
from the expected t- or F-distribution is problematic. In addition, the multiple test
adjustment using the Bonferroni correction is far too conservative when N is very
large. Therefore, the optimal way of finding the critical value perhaps relies on some
empirical methods that are data dependent. In other words, different datasets should
have different critical values, reflecting the particular nature of the data.

17.4.1 Permutation Test

Permutation test is a way to generate the distribution of the test statistic under
the null model. In differential expression analysis, the null model is that no genes
are differentially expressed. ConsiderM tissue samples with M1 samples being the
control and M2 being the treatment for M1 C M2 D M . Each sample is labeled
as 0 for the control and 1 for the treatment. If the tissue samples and the labels are
randomly shuffled, the association between the gene expressions and the labels will
be destroyed. The distribution of the test statistic will mimic the distribution under
the null model.

The total number of ways of shuffling is

T D MŠ

M1ŠM2Š
; (17.25)
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equivalent to the number of ways of randomly samplingM1 orM2 items from a total
of M items. When M is large, T may be extremely large, making the permutation
analysis very difficult. In practice, one may only use a proportion of the reshuffled
samples to draw the null distribution of the test statistic.

This type of random shuffling may not generate the null distribution accurately
because there is a chance that all M1 tissue samples in a reshuffled dataset are
actually from the control and M2 samples from the treatment. If some genes
are indeed differentially expressed, then the test statistics of these genes are not
drawn from the null distribution. Tusher et al. (2001) proposed a balanced shuffling
approach that can avoid this problem. In the balanced random shuffling, each
group in the reshuffled dataset contains the samples from the original groups in
proportion. Take the case-control experiment for example; in the reshuffled dataset,
theM1 controlled group should contain M1

M1CM2
M1 samples from the original control

group and M2

M1CM2
M1 samples from the original treatment group. Similarly, the M2

treatment group in the reshuffled dataset should contain M1

M1CM2
M2 samples from

the original control groups and M2

M1CM2
M2 from the original treatment group. Under

this restriction, we guarantee that the test statistics for all genes are sampled from
the null distribution. The balanced shuffling is not easy to conduct if any one of
M1

M1CM2
M1,

M2

M1CM2
M1,

M1

M1CM2
M2, and M2

M1CM2
M2 is not an integer. It is convenient

to conduct the balanced shuffling if M1 is an even number and M1 D M2. In this
case, the total number of reshuffled datasets will be

T D M1Š

. 1
2
M1/Š.

1
2
M1/Š

M2Š

. 1
2
M2/Š.

1
2
M2/Š

: (17.26)

For example, assume thatM D 8 andM1 D M2 D 4; the total number of reshuffled
datasets without restriction is 8Š

4Š4Š
D 70, while the number of reshuffled datasets

with the balance restriction is 4Š
2Š2Š

4Š
2Š2Š
D 36.

For the kth reshuffled dataset, for k D 1; : : : ; T , the F -test statistics for the N
genes are ranked in descending order so that

F k
.1/ > F

k
.2/ > � � � > F k

.N/; (17.27)

where F k
.j / is the j th largest F -test statistic of the kth reshuffled dataset. Let NF.i/ D

1
T

PT
kD1 F k

.j / be the average of the i th largest F -test statistic across the reshuffled
datasets so that

NF.1/ > NF.2/ > � � � > NF.N/: (17.28)

The empirical critical value drawn from this permutation test is NF.C/, where C is
chosen such that C

N
D � and � is a preset experiment-wise type I error rate. Let

F.1/ > F .2/ > � � � > F.N/ (17.29)

be the list of ranked F -test statistics calculated from the original dataset. All genes
with a ranked F.i/ > NF.C/ are selected as significant genes.
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Table 17.3 The rank of 20
hypothetical genes

Gene Ranking.i/ F.i/ NF.i/
6 1 43.6478 5.9448
4 2 17.3289 5.1476
14 3 9.8718 4.7502
9 4 6.7659 4.4627
12 5 5.9085 4.2743
1 6 5.4049 4.1099
13 7 5.1551 3.9715
15 8 4.8471 3.8872
11 9 4.4245 3.7793
7 10 4.0889 3.6800
10 11 4.0834 3.5990
3 12 4.0557 3.5371
8 13 3.9786 3.4796
17 14 3.9667 3.4209
18 15 3.9480 3.3653
5 16 3.9219 3.3272
16 17 3.9102 3.2711
19 18 3.9101 3.2242
20 19 3.8748 3.1811
2 20 3.8736 3.1357

Table 17.3 gives an example of 20 hypothetical genes and their test statistics
(ranked). The table also provides the ranked average test statistics obtained from a
permutation test.

Assume that we want to control the experimental type I error rate at � D 2=20 D
0:10. Therefore, C D 2 and NF.2/ D 5:1476 is the critical value. Since F.i/ > NF.2/
for i D 1; : : : ; 7, seven genes are selected as differentially expressed. The list of
the significant genes is f6; 4; 14; 9; 12; 1; 13g. The permutation test also allows us
to estimate the empirical FDR. Since seven genes are detected, among which two
genes are expected to be false positive, the empirical FDR is ı D 2=7 D 0:2857.

17.4.2 Selecting Genes by Controlling FDR

The permutation test given in the above example shows that when we set � D 0:10,
the empirical FDR is ı D 0:2857. This suggests a way to select significant genes
by controlling the FDR rather than the type I error rate. Let �.i/ D i=N , for i D
1; : : : ; N , denote the type I error rate when NF.i/ is used as the critical value. The list
of significant genes includes all genes with F.i 0/ > NF.i/, for i 0 D 1; : : : ; S.i/, where
S.i/ is the largest i 0 such that F.i 0/ > NF.i/. The number of significant genes under
�.i/ is then S.i/. Therefore, the empirical FDR under �.i/ is ı.i/ D i=S.i/. The �.i/
and ı.i/ values for the 20 hypothetical genes are listed in Table 17.4.
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Table 17.4 Empirical FDR of the 20 hypothetical genes

Gene Ranking .i/ F.i/ NF.i/ �.i/ S.i/ ı.i/

6 1 43.6478 5.9448 0.05 4 0.2500
4 2 17.3289 5.1476 0.10 7 0.2857
14 3 9.8718 4.7502 0.15 8 0.3750
9 4 6.7659 4.4627 0.20 8 0.5000
12 5 5.9085 4.2743 0.25 9 0.5556
1 6 5.4049 4.1099 0.30 9 0.6667
13 7 5.1551 3.9715 0.35 13 0.5833
15 8 4.8471 3.8872 0.40 18 0.4444
11 9 4.4245 3.7793 0.45 20 0.4500
7 10 4.0889 3.6800 0.50 20 0.5000
10 11 4.0834 3.5990 0.55 20 0.5500
3 12 4.0557 3.5371 0.60 20 0.6000
8 13 3.9786 3.4796 0.65 20 0.6500
17 14 3.9667 3.4209 0.70 20 0.7000
18 15 3.9480 3.3653 0.75 20 0.7500
5 16 3.9219 3.3272 0.80 20 0.8000
16 17 3.9102 3.2711 0.85 20 0.8500
19 18 3.9101 3.2242 0.90 20 0.9000
20 19 3.8748 3.1811 0.95 20 0.9500
2 20 3.8736 3.1357 1.00 20 1.0000

If we want to set the FDR at ı D 0:375, we will select eight significant genes.
The type I error corresponding to this FDR is � D 0:15 with a critical value of
NF3 D 4:7502. There are eight genes with test statistics larger than 4.7502. The list

of the eight significant genes is f6; 4; 14; 9; 12; 1; 13; 15g.
The empirical method for selecting significant genes by controlling the FDR may

not work for some datasets. The problem is that the relationship between �.i/ and
ı.i/ may not be monotonic, leading to multiple values of � corresponding to the
same ı value. For example, both �.4/ and �.10/ correspond to ı D 0:50. Therefore,
the empirical method by controlling FDR is not recommended.

Although it is hard to select genes using the exact FDR control, Benjamini and
Hochberg (1995) suggest to control FDR, not at ı but at< ı. This approach does not
require permutation test. It only requires calculation of the p-values corresponding
to the test statistics. Genes are then ranked in ascending order based on their
p-values. Significant genes under FDR < ı are selected in the following steps:

1. Rank genes based on the p-values in ascending order,

p.1/ � p.2/ � � � � � p.N/
Let g.i/ be the gene corresponding to p-value p.i/.

2. Let imax be the largest i for which
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Table 17.5 False discovery
rate of the 20 hypothetical
genes (ı D 0:05)

Gene Ranking p.i/
i
N

i
N
ı

1 1 0.00036084 0.05 0.0025
7 2 0.00172817 0.10 0.0050
9 3 0.01443942 0.15 0.0075
15 4 0.02210477 0.20 0.0100
4 5 0.02354999 0.25 0.0125
3 6 0.03488643 0.30 0.0150
6 7 0.03488643 0.35 0.0175
5 8 0.03906270 0.40 0.0200
8 9 0.03927667 0.45 0.0225
10 10 0.04195647 0.50 0.0250
2 11 0.04934124 0.55 0.0275
13 12 0.10373490 0.60 0.0300
14 13 0.17910006 0.65 0.0325
20 14 0.28077512 0.70 0.0350
16 15 0.34277900 0.75 0.0375
19 16 0.35010501 0.80 0.0400
12 17 0.36536933 0.85 0.0425
11 18 0.40129684 0.90 0.0450
18 19 0.47260844 0.95 0.0475
17 20 0.48037560 1.00 0.0500

p.i/ � i

N
ı

3. Declare significance for gene g.i/ 8i D 1; : : : ; imax. The nominal type I error rate
is ˛ D p.imax/.

Table 17.5 shows an example with N D 20 genes under FDR < ı D 0:05. It
shows that imax D 2. Therefore, two genes (g.1/ D 1 and g.2/ D 7/ are selected as
significant with a nominal type I error of ˛ D 0:00172817.

Note that the FDR control is not a new statistical method for parameter
estimation; rather, it is simply a different way provided by statisticians for biologists
to decide the cutoff point for the “significant” genes.

17.4.3 Problems of the Previous Methods

The simple t-test or F -test described above is not optimal for differential expression
analysis when the sample size is small. The current microarray technology is still
not sufficiently effective to allow investigators to microarray a large number of tissue
samples in a single microarray experiment. Therefore, microarray data are in general
conducted with a very small sample size, although many genes can be measured
from each tissue sample. When the sample size is small, the t-test or F -test statistics
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are not stable. Although both the numerator (the estimated difference between the
control and the treatment) and the denominator (the estimated standard error of the
difference) are subject to large estimation errors, the error in the denominator is
more sensitive to the small sample size. One solution is to modify the estimation of
the denominator to make it less sensitive to the small sample size. This can be done
by sharing information between different genes when estimating the denominator
of the t-test statistics. The genes are measured simultaneously within the same
tissues. Therefore, the test statistics of the genes are correlated. This information
has not been incorporated into the estimation of the standard error of the expression
difference between the control and the treatment in the simple t- or F -test statistic.

17.4.4 Regularized T-test

Baldi and Long (2001) developed a Bayesian method to test differentially expressed
genes. Instead of using the observed standard error of the control-treatment differ-
ence as the denominator for the t-test, they used a Bayesian method to estimate this
standard error. The Bayesian estimate for the error variance is a weighted average
of the observed variance and a prior variance set by the investigator. This modified
t-test is called the regularized t-test. Similar idea has been proposed by Efron et al.
(2001) and Tusher et al. (2001), who added a constant to the observed standard error
as a new denominator to modify the calculated t-test statistic. The modified t-test in
Efron et al. (2001) and Tusher et al. (2001) is

ti D jyi1: � yi2:j
syi1:�yi2: C s0

; (17.30)

where s0 is a constant added to the denominators of the t-tests for all genes. This
constant is analogous to the prior standard deviation of Baldi and Long (2001).
The constant s0 is often chosen in such a way that it depends on the entire data
of the microarray experiment. Because the value of s0 depends on the entire data,
information sharing occurs between genes. Efron et al. (2001) ranked the observed
standard deviation across genes and select the 95 percentile of this empirical
distribution as the value of s0.

The regularized t-test of Baldi and Long (2001) has been implemented in a
software package called Cyber-T (www.genomics.uci.edu/software.html). The sig-
nificance analysis of microarrays of Tusher et al. (2001) has been implemented in a
software called SAM (http://www-stat-class.standford.edu/SAM/SAMSevervlet).

17.5 General Linear Model

The t-test or the regularized t-test method only applies to two levels of a treatment,
i.e., the case-control study. When the treatment has more levels, only two levels are
considered at a time. In this section, we introduce a general linear model that can

www.genomics.uci.edu/software.html
http://www-stat-class.standford.edu/SAM/SAMSevervlet
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handle differential expression analysis with an arbitrary number of treatment levels.
In addition, all genes are analyzed simultaneously under a single general linear
model so that information of data is shared among genes. This will automatically
generate a more accurate estimation of the error variance for each gene. The method
was developed by Smyth (2004) who also provided a program named Limma
(Linear Models for Microarray Data) along with the method.

Under the general linear model framework, all equations are written in matrix
forms. It is more convenient to denote the microarray dataset by a matrix with
rows and columns flipped (from the original dataset) so that each row represents a
sample and each column represents a gene. This transposed dataset is now anM�N
matrix, where M is still the number of samples and N still represents the number
of genes. Note that the data matrix is assumed to have been properly transformed
and normalized prior to the data analysis. Let yj D fy1j ; : : : ; yMj gT denote the j th
column of the data matrix, i.e., it stores the expressions of the j th gene for all the
M samples. We now use the following linear model to describe yj :

yj D ˇ CZ�j C �j ;8j D 1; : : : ; N (17.31)

where ˇ is anM � 1 vector for the mean expressions across all genes, �j is a P � 1
vector .P < M/ of latent variables for P different groups of tissue samples, i.e.,
the effects for P groups, and �j is an M � 1 vector for the residual errors. Finally,
Z is an M � P design matrix. For example, if there are M D 6 tissue samples and
P D 3 types of tissues and assume that the first two samples are from the first type
of tissue, the second two samples from the second type of tissue, and the last two
samples from the third type of tissue, then a class variable is denoted by a vector
G D f1; 1; 2; 2; 3; 3g and the design matrix Z D design.G/ has the form of

Z D
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(17.32)

Detailed view of the linear model is
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Note that ˇi for i D 1; : : : ;M is the mean of expression levels for all genes
measured in the i th tissue sample. Assume that �j has a multivariate N.0; I	2j /
distribution. We now present two methods for the general linear model (GLM)
analysis.

17.5.1 Fixed Model Approach

The fixed model approach of the GLM is simply an alternative way to perform
the F -test (described early), except that the GLM provides more flexible way for the
F -test. Under the fixed model framework, information sharing only occurs with the
mean expressions (vector ˇ). In fact, vector ˇ may be removed before the analysis
in the normalization step. In that case, the model is simply represented by yj D
Z�j C �j , where vector yj has been normalized. The GLM analysis is so general
that we can estimate ˇ simultaneously along with �j and other parameters. Here
we emphasize simultaneous analysis, and thus, all genes are included in the same
model. The log likelihood function for gene j is

Lj .ˇ; �j ; 	
2
j / D �

1

2
ln.	2j / �

1

2	2j
.yj � ˇ �Z�j /T .yj � ˇ �Z�j / (17.34)

Assume that all genes are independent (this assumption may often be violated); the
overall log likelihood function is

L.ˇ; �;  / D �1
2

N
X

jD1
ln.	2j / �

N
X

jD1

1

2	2j
.yj � ˇ �Z�j /T .yj � ˇ �Z�j /

(17.35)

where � D f�j gNjD1 and  D
n

	2j

oN

jD1. The maximum likelihood estimates of ˇ

and � can be obtained explicitly. However, using the following iterative approach
simplifies the estimation:

ˇ D 1

N

N
X

jD1
.yj �Z�j /

�j D .ZTZ/�1ZT .yj � ˇ/;8j D 1; : : : ; N (17.36)

The iteration process converges quickly to produce the MLE of ˇ and � , denoted by
Ǒ and O� . The MLE of 	2j is

O	2j D
1

M
.yj � Ǒ �Z O�j /T .yj � Ǒ �Z O�j /;8j D 1; : : : ; N (17.37)
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The variance of the MLE of �j can be approximated using

var. O�j / D .ZTZ/�1 O	2j ;8j D 1; : : : ; N (17.38)

The next step is to perform statistical tests for differentially expressed genes.
For three treatment groups, there are two orthogonal linear contrasts, which can be
expressed as

˛j D LT �j D
"

1 � 1
2
� 1
2

0 1 �1

#

2

6

4

�1j

�2j

�3j

3

7

5 D
"

�1j � 1
2
�2j � 1

2
�3j

�2j � �3j

#

(17.39)

where

L D
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(17.40)

The null hypothesis for H0 W ˛j D 0 can be tested using

Fj D 1

r
ǪTj var�1. Ǫj / Ǫj (17.41)

where r D r.L/ D 2 is the rank of matrix L and

var. Ǫj / D var.LT O�j / D LT var. O�j /L D LT .ZTZ/�1L O	2j (17.42)

Therefore,

Fj D 1

r
ǪTj var�1. Ǫj / Ǫj D 1

r O	2j
O�Tj L.LT .ZTZ/�1L/�1LT O�j (17.43)

There is not much advantage of this GLM-generated F -test over the F -test
described earlier, except that one can choose different linear contrast matrix L to
perform different biologically meaningful tests.

As mentioned earlier, information sharing is not obvious for the fixed model
approach of F -test. The problem for the sensitivity of O	2j to small sample size
remains unsolved. A slight modification can resolve this problem. Let us now make
the assumption of

�j � N.0; I	2/;8j D 1; : : : ; N (17.44)

which states that all genes share a common residual error variance. The MLE
estimate of 	2 becomes

O	2 D 1

MN

N
X

jD1
.yj � Ǒ �Z O�j /T .yj � Ǒ �Z O�j / (17.45)
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After this slight modification, the F -test statistic is

Fj D 1

r O	2 O�
T
j L.L

T .ZTZ/�1L/�1LT O�j (17.46)

This is a much more robust test statistic. However, it is questionable for the validity
of the assumption of common residual error variance across all genes.

17.5.2 Random Model Approach

We now modify the model to allow all other non-interesting effects to be included
in the model, which is

yj D Xˇ CZ�j C �j (17.47)

where X is an M � q design matrix and ˇ is a q � 1 vector. Under the fixed model
approach, we simply assume that X D I (an identity matrix). Now this assumption
has been relaxed, although the fixed model approach can handle X ¤ I equally
well. We now still assume �j � N.0; I	2j /;8j D 1; : : : ; N . In addition, we make
another assumption, �j � N.0;˘/;8j D 1; : : : ; N , where ˘ is a p � p positive
definite matrix, an unknown matrix subject to estimation. With this assumption, the
model becomes a random model or mixed model considering ˇ being fixed effects.
The variance–covariance matrix˘ is shared by all genes, which is what we call the
information sharing among genes. Under the mixed model framework, we estimate
parameters � D fˇ;˘; g using the ML method, while � D f�j g are predicted
rather than estimated because they are no longer called parameters. We may use a
two-step approach to predict � . The first step is to estimate the parameters, and the
second step is to predict � given the estimated parameters and the data. Vector yj
now follows a multivariate normal distribution

yj � N
�

Xˇ;Z˘ZT C I	2j
	

(17.48)

The log likelihood function for gene j is

Lj .�/ D� 1
2

ln jZ˘ZT C I	2j j

� 1
2
.yj �Xˇ/T

�

Z˘ZT C I	2j
	�1

.yj �Xˇ/ (17.49)

which leads to an overall log likelihood function of

L.�/ D
N
X

jD1
Lj .�/ (17.50)
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The two-step approach can be combined into a single step but with an iterative
mechanism for the solution. The EM algorithm is such an algorithm with explicit
expression of the solution in each iterative cycle. In the E-step, we predict �j
conditional on the parameters and the data,

O�j D E.�j / D
�

˘�1	2j CZTZ
	�1

ZT .yj � Xˇ/ (17.51)

and

˙j D var. O�j / D
�

˘�1	2j CZTZ
	�1

	2j (17.52)

These allow us to calculate

E.�j �
T
j / D var.�j /C E.�j /E.�Tj / D ˙j C O�j O�Tj (17.53)

which is required in the M-step. In the M-step, we calculate the parameter values
using the quantities obtained in the E-step,

ˇ D 1

N
.XTX/�1XT

N
X

jD1
.yj �Z O�j /

˘ D 1

N

N
X

jD1
E.�j �

T
j / D

1

N

N
X

jD1
.˙j C O�j O�Tj /

	2j D
1

M
EŒ.yj �Xˇ �Z�j /T .yj �Xˇ �Z�j /� (17.54)

where the residual variance can be further expressed as

	2j D
1

M
yTj .yj �Xˇ �Z O�j / (17.55)

The E-step and M-step are alternated until a certain criterion of convergence is
reached. Once the EM iteration converges, the predicted �j and the variance of
the prediction are obtained as shown below:

O�j D
� Ŏ �1 O	2j CZTZ

	�1
ZT .yj � X Ǒ/ (17.56)

and

˙j D
� Ŏ �1 O	2j CZTZ

	�1 O	2j (17.57)
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The F -test forH0 W LT � D 0 is given by

Fj D1
r
O�Tj L.LT˙jL/

�1LT O�j

D 1

r O	2j
O�Tj L

�

LT
� Ŏ �1 O	2j CZTZ

	�1
L

��1
LT O�j (17.58)

We now compare the F -tests under the random model and that under the fixed
model,

Fj .random model/ D 1

r O	2j
O�Tj L

�

LT
� Ŏ �1 O	2j CZTZ

	�1
L

��1
LT O�j

Fj .fixed model/ D 1

r O	2j
O�Tj L.LT .ZTZ/�1L/�1LT O�j (17.59)

The difference is obvious; an extra term Ŏ �1 O	2j occurs in the random model F -test.
This illustrates the information sharing across genes. Further manipulation on the
variance–covariance matrix of the predicted �j , we get

˙j D
� Ŏ �1 O	2j CZTZ

	�1 O	2j D
 

Ŏ �1 C 1

O	2j
ZTZ

!�1
(17.60)

The first term Ŏ �1 is shared for all genes, and the second term ZTZ= O	2j is gene
specific. This idea is the same as the regularized t-test except that the shrinkage
factor Ŏ �1 is a matrix and it is estimated from the data rather than chosen by
the investigator a priori.



Chapter 18
Hierarchical Clustering of Microarray Data

Sometimes a microarray experiment is aimed at identifying different groups of
genes. Genes within a group show similar expression patterns across samples, while
different groups of genes show different expression patterns. There are sufficient
evidences showing that genes with similar expression patterns across samples tend
to share similar functions (Eisen et al. 1998). Therefore, clustering genes into
different groups may provide a clue to uncover gene functions. Biologists are more
interested in identifying gene functions by clustering genes into different groups
based on differential expression patterns across samples. Medical professionals, on
the other hand, may be more interested in clustering specimens (tissue samples)
into different clusters based on differential expression patterns across genes for the
purpose of disease diagnosis. The assumption is that different tissues (e.g., cancer
vs normal) tend to have different expression patterns across genes. In this chapter,
we will learn two important methods of cluster analysis, UPGMA and NJ. Both
methods belong to a general hierarchical clustering system because the final result
of each method is represented by a treelike structure or phylogeny in terms of
evolutionary studies.

18.1 Distance Matrix

A number of distance measures are available for comparing proximities of expres-
sion vectors in the gene space. The most popular measurement of distance is the
Euclidean distance. The Euclidean distance between gene i and j is defined as

dij D
"

1

M

M
X

kD1
.yki � ykj /2

# 1
2

(18.1)
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These distances are stored in a symmetric matrix with the diagonals equal to zero

D D

2

6

6

6

4

0 d12 � � � d1N
d21 0 � � � d2N
:::

:::
: : :

:::

dN1 dN2 � � � 0

3

7

7

7

5

(18.2)

This property of a distance matrix is represented by dij D 0 for i D j and dij D dj i
for i; j D 1; : : : ; N: This distance matrix is the input data for the cluster analysis
methods described in this chapter.

18.2 UPGMA

UPGMA is an abbreviation of a method called unweighted pair group method
using arithmetic mean (a very ugly name). It is also called the average distance
method. UPGMA is the simplest method for cluster analysis. The method was
originally developed by Sokal and Michener (1958) for constructing a dendrogram
(or phenogram) as shown in Fig. 18.1. However, it is used most often by evolution-
ary biologists to construct phylogenetic trees. Eisen et al. (1998) first applied this
method to cluster genes. We now use a simple example of five genes to demonstrate
the UPGMA algorithm. The example was obtained from Swofford et al. (1996) for
phylogenetic reconstruction. In the terminology of phylogeny, each gene is called
an OTU (operational taxonomic unit). In this example, the five “genes” are actually
five bacterium species or five OTUs. They are Bacillus subtilis (Bsu), Bacillus
stearothermophilus (Bst), Lactobacillus viridescens (Lvi), Acholeplasma modicum
(Amo), and Micrococcus luteus (Mlu). These five species are represented by OTUs
1, 2, 3, 4, and 5, respectively. Since we are dealing with genes rather than OTUs, we
will no longer use the term OTU hereafter. The original distance matrix of the five
genes and distance matrices of reduced dimension are given in Table 18.1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Bst

Bsu

Lvi

Mlu

Amo

Average Distance

Fig. 18.1 UPGMA tree for
five bacterium strains (genes).
The data were obtained from
Swofford et al. (1996)
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Table 18.1 The original
distance matrix of five genes
and subsequent distance
matrices of reduced
dimension in the UPGMA
clustering process

Gene 1 2 3 4 5

1 – 0.1715 0.2147 0.3091 0.2326
2 d12 – 0.2991 0.3399 0.2058
3 d13 d23 – 0.2795 0.3943
4 d14 d24 d34 – 0.4289
5 d15 d25 d35 d45 –

Gene (1,2) 3 4 5

(1,2) – 0.2569 0.3245 0.2192
3 d.1;2/3 – 0.2795 0.3943
4 d.1;2/4 d34 – 0.4289
5 d.1;2/5 d35 d45 –

Gene ((1,2),5) 3 4

((1,2),5) – 0.3027 0.3593
3 d..1;2/;5/3 – 0.2795
4 d..1;2/;5/4 d34 –

Gene ((1,2),5) (3,4)

((1,2),5) – 0.3310
(3,4) d..1;2/;5/.3;4/ –

The UPGMA algorithm starts with the full matrix for the five genes (5�5 distance
matrix). The actual values of the distance matrix are listed in the upper-right triangle
and the symbols of the distances are given in the lower-left triangle (see the first
distance matrix in Table 18.1). First, we find two genes with the smallest distance,
which are genes 1 and 2. We then merge the two genes as a single “gene,” denoted by
gene (1,2). We now calculate the average distance of “gene” (1,2) with the remaining
genes using the following equations:

d.1;2/3 D 1

2
.d13 C d23/ D 1

2
.0:2147C 0:2991/ D 0:2569

d.1;2/4 D 1

2
.d14 C d24/ D 1

2
.0:3091C 0:3399/ D 0:3245

d.1;2/5 D 1

2
.d15 C d25/ D 1

2
.0:2326C 0:2058/ D 0:2192 (18.3)

We now have reduced the number of genes by one. The new distance matrix with
four genes is given in the second block in Table 18.1. We treat “gene” (1,2) as
a single gene and start merging the next two closest genes. The smallest distance
occurs between “gene” (1,2) and gene 5. Therefore, we combine (1,2) and 5 as a
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single “gene” denoted by gene ((1,2),5). The new distances of this cluster with the
remaining genes are

d..1;2/;5/3 D 1

3
.d13 C d23 C d35/ D 1

3
.0:2147C 0:2991C 0:3943/ D 0:3027

d..1;2/;5/4 D 1

3
.d14 C d24 C d45/ D 1

3
.0:3091C 0:3399C 0:4289/ D 0:3593

(18.4)

We now construct a new reduced distance matrix with three genes, which is given in
the third block of Table 18.1. The smallest distance occurs between genes 3 and 4,
which are merged into a new gene denoted by “gene” (3,4). The average distance
between clusters ((1,2),5) and (3,4) is

d..1;2/;5/.3;4/ D 1

3 � 2.d13 C d23 C d35 C d14 C d24 C d45/

D 1

6
.0:2147C 0:2991C 0:3943C 0:3091C 0:3399C 0:4289/

D 0:3310 (18.5)

At this moment, we have two clusters, ((1,2),5) and (3,4). The last step is to
merge the two clusters together to complete the clustering analysis. The final cluster
contains all the five genes represented by (((1,2),5),(3,4)). The dendrogram for this
clustering result is given in Fig. 18.1.

The general formula for calculating the distance between cluster X and cluster
Y is

dXY D 1

nXnY

nX
X

iD1

nY
X

jD1
dij (18.6)

where nX and nY are the numbers of genes in clusters X and Y, respectively, and i
and j index the genes contained in clusters X and Y. A cluster can be a single gene or
multiple genes that are joined in a previous step of the UPGMA analysis. UPGMA
is only one of many different methods available for constructing a phylogenetic
tree. Many software packages are available to perform cluster analysis and draw
phylogenetic trees, e.g., the cluster and tree procedures in SAS (SAS Institute
2008b).

18.3 Neighbor Joining

The neighbor-joining (NJ) method was developed by Saitou and Nei (1987) for
reconstructing phylogenies. It is so far the most popular method for constructing
evolutionary trees. It can be used to cluster genes, although we have not seen a single
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Amo
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16

8

0.112

0.073
0.049

0.05
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0.141

Fig. 18.2 Neighbor-joining
tree for five bacterium strains
(genes). Data were obtained
from Swofford et al. (1996)

publication that uses NJ to cluster genes based on expression levels. The method
is more comprehensive than the UPGMA method. The advantage of NJ over
UPGMA is that it does not assume constant evolutionary rate across lineages (the
molecular clock assumption). The final result of the clustering remains a bifurcating
tree (unrooted tree), but different branches are allowed to have different lengths.
The method takes the same input distance matrix as that used in the UPGMA
method, but it uses a different criterion to combine genes. We will first introduce
the idea of neighbor joining and then describe the NJ algorithm in detail. For the
same distance matrix of the five genes used in the section of UPGMA, the neighbor-
joining tree is illustrated in Fig. 18.2. For a set of genes, neighbors are defined as a
pair of genes that join together before they connect with other genes. For example,
in the NJ tree (Fig. 18.2), genes Bst and Mlu are neighbors because they join each
other first before joining the remaining three genes. The NJ algorithm will find all
neighbors in sequence to form a final bifurcating tree.

18.3.1 Principle of Neighbor Joining

The algorithm starts with a star phylogeny defined in Fig. 18.3a, where the internal
node of the star phylogeny is denoted by Y. There is only one internal node for a star
phylogeny. The length of this star phylogeny is defined as the sum of the lengths of
all branches. For N genes, the length of the star phylogeny is

SN D
N
X

kD1
LkY D 1

N � 1
N
X

i<j

dij (18.7)
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Fig. 18.3 Star phylogeny of
five genes and decomposition
of the star phylogeny. (a)
The star phylogeny of five
genes; (b) a decomposed
phylogeny with 3 and 4 being
chosen as a pair of neighbors
and forming a node X. The
remaining three genes, 1, 2,
and 5, and node X form a new
star phylogeny with four
genes. Node X is a synthetic
“new” gene consisting of 3
and 4

where LkY is the length of the branch connecting gene k to node Y. The above
relationship is due to the fact that the distance between gene i and gene j is

dij D LiY C LjY (18.8)

which leads to

N
X

i<j

dij D
N
X

i<j

.LiY C LjY / D .N � 1/
N
X

kD1
LkY D .N � 1/SN (18.9)

When adding up all the distances, each branch is counted N � 1 times, which
explains why the total length of the star phylogeny is the sum of all the distances
divided by N � 1. From the star phylogeny, the NJ algorithm tries to find a pair
of neighbors to decompose the star phylogeny. For a star phylogeny with N genes,
there are N.N � 1/=2 possible pairs of neighbors for consideration. Let us assume
that genes 3 and 4 are candidate pair of neighbors. The decomposed phylogeny is
demonstrated in Fig. 18.3b, where there is one more internal node, denoted by X.
Node X is a new “gene,” which replaces genes 3 and 4. The new gene (node X) and
the remaining genes form a new star phylogeny with the number of genes reduced
by one. Let the length of the new star phylogeny (X and the remaining genes) be
denoted by SN�1. The length of the decomposed phylogeny (Fig. 18.3b) is

S3;4 D SN�1 C d34 (18.10)

The notation Si;j represents the length of the phylogeny that is decomposed from
the star phylogeny of N genes with i and j chosen as the pair of neighbors. The
question is now turned into how to calculate SN�1. Let us further partition Fig. 18.3b
into two starlike phylogenies as shown in Fig. 18.4.
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Fig. 18.4 Two starlike
phylogenies obtained from
the decomposed phylogeny
given in Fig. 18.3b. (a) Star
phylogeny with four genes
f1,2,3,5g, (b) star phylogeny
with four genes f1,2,4,5g

From Fig. 18.4a, we obtain the length of this star phylogeny by

SN�1 CL3X D 1

N � 2
N
X

i<j;i¤4;j¤4
dij D 1

N � 2

0

@

N
X

i<j

dij �
N
X

kD1
d4k

1

A (18.11)

Similarly, we obtain the length of the star phylogeny shown in Fig. 18.4b by

SN�1 C L4X D 1

N � 2
N
X

i<j;i¤3;j¤3
dij D 1

N � 2

0

@

N
X

i<j

dij �
N
X

kD1
d3k

1

A (18.12)

Adding the two equations together, we obtain

2SN�1 C d34 D 1

N � 2

0

@2

N
X

i<j

dij �
N
X

kD1
d4k �

N
X

kD1
d3k

1

A (18.13)

Note that L3X C L4X D d34. The right-hand side of the above equation involves
distances only and thus is computable from the data. Solving for SN�1 yields

SN�1 D 1

2.N � 2/

0

@2

N
X

i<j

dij �
N
X

kD1
d4k �

N
X

kD1
d3k

1

A � 1
2
d34 (18.14)

Substituting (18.14) into (18.10), we get

S3;4 D 1

2.N � 2/

0

@2

N
X

i<j

dij �
N
X

kD1
d3k �

N
X

kD1
d4k

1

AC 1

2
d34 (18.15)
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Rearrangement of the above equation yields

S3;4 D 1

2
d34 � 1

2.N � 2/

 

N
X

kD1
d3k C

N
X

kD1
d4k

!

C 1

N � 2
N
X

i<j

di;j (18.16)

In general, the total length of a phylogeny with N genes and one internal branch
that separates genes p and q from the remaining genes (see Fig. 18.3b) can be
expressed as

Sp;q D 1

2
dpq � 1

2.N � 2/

 

N
X

kD1
dpk C

N
X

kD1
dqk

!

C 1

N � 2
N
X

i<j

dij (18.17)

Understanding how to calculate the length of a phylogeny decomposed from a
starlike phylogeny (one internal branch and two internal nodes) is the key to perform
the NJ method for tree reconstruction. ForN genes, there are a total ofN.N �1/=2
possible ways to choose a potential pair of neighbors, and all of them have to be
evaluated. The pair of neighbors that have the minimum length of the tree topology,
i.e., the minimum Sp;q value, is considered as neighbors and joined together at this
stage. Once genes p and q are joined, they are represented by an internal node X.
This node is considered as a new “gene,” which, together with the remaining genes,
forms a new star phylogeny with a total number of N � 1 genes (N � 2 individual
genes plus a combined “gene” X). We then calculate the pairwise distances between
all the N � 1 genes to form a new distance matrix. The distances between node X
(formed from joining p and q) and a remaining gene, say gene k, for k ¤ p; q, are

dkX D 1

2
.dpk C dqk � dpq/ (18.18)

The derivation of this equation is given below, assuming that p D 3 and q D 4.
From Fig. 18.3b, we can see that

d3k D L3X C dkX
d4k D L4X C dkX (18.19)

Adding these two equations, we get

d3k C d4k D d34 C 2dkX (18.20)

Rearrangement of this equation leads to

dkX D 1

2
.d3k C d4k � d34/ (18.21)
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Fig. 18.5 The recurrent process of neighbor joining. (a) The star phylogeny, (b) the decomposed
phylogeny with 3 and 4 being chosen as a pair of neighbors and forming a node X, (c) the final
resolved phylogeny with 1 and node X being combined into node Z, which is connected with 2 and
5 by node Y. Note that Y always is treated as the center of a star phylogeny. In this case, (a) is a
star phylogeny with five genes (1, 2, 3, 4, 5), (b) is a start phylogeny with four genes (1, 2, 5 , X),
(c) is a star phylogeny with three genes (2, 5, Z)

The distances between pairs of genes that exclude p and q remain the same as the
distances in the original distance matrix. This new distance matrix (with dimension
N � 1) is used as the input data for further decomposition of the star phylogeny.
The process continues until N � 1 D 3 because such a star phylogeny cannot be
further decomposed. The entire process of the NJ algorithm for the sample data
of five bacterium strains (see the section of UPGMA) is illustrated in Fig. 18.5,
where Fig. 18.5a shows the original star phylogeny with N D 5 genes, Fig. 18.5b
shows a decomposed phylogeny with one internal branch and two internal nodes,
and Fig. 18.5c shows the final resolved phylogeny with two internal branches and
three internal nodes.

The original NJ algorithm developed by Saitou and Nei (1987) evaluates the
branch lengths sequentially during the tree building process. For example, when
genes 3 and 4 are joined, the branch lengths L3X and L4X are estimated from the
phylogeny given in Fig. 18.3b by the following process. Adding (18.11) to (18.12)
and subtracting (18.12) from (18.11), we generate the following two simultaneous
equations:

L3X C L4X D d34

L3X � L4X D 1

N � 2

 

N
X

kD1
d3k �

N
X

kD1
d4k

!

(18.22)
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Solving the two equations for L3X and L4X , we obtain

L3X D 1

2
d34 C 1

2.N � 2/

 

N
X

kD1
d3k �

N
X

kD1
d4k

!

L4X D 1

2
d34 C 1

2.N � 2/

 

N
X

kD1
d4k �

N
X

kD1
d3k

!

(18.23)

The general formula for estimating the lengths of the two branches coming from
node X is

LpX D 1

2
dpq C 1

2.N � 2/

 

N
X

kD1
dpk �

N
X

kD1
dqk

!

LqX D 1

2
dpq C 1

2.N � 2/

 

N
X

kD1
dqk �

N
X

kD1
dpk

!

(18.24)

18.3.2 Computational Algorithm

The original NJ algorithm of Saitou and Nei (1987) calculates Sp;q;8p < q for
all possible pairs of N genes. The pair of genes that have the minimum Sp;q (see
(18.17)) is chosen as the neighbors and is thus subject to merging. Note that the
last term of (18.17) is invariant with respect to p and q. It is the sum of all the
distances (upper triangle of the distance matrix with N genes) divided by N � 2.
Computationally, calculating this term for all possible pairs of genes is simply a
waste of time because it is a constant regardless of which pair of genes is evaluated.
Therefore, Studier and Keppler (1988) modified the clustering criterion by deleting
this common term. Swofford et al. (1996) further revised Studier and Keppler’s
(1988) modification to define the clustering criterion by

d�
pq D dpq �

1

N � 2

 

N
X

kD1
dpk C

N
X

kD1
dqk

!

(18.25)

The relationship between d�
pq and Sp;q is

d�
pq D 2Sp;q �

1

N � 2
N
X

i<j

dij (18.26)

The reverse relationship is
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Sp;q D 1

2
d�
pq C

1

N � 2
N
X

i<j

dij (18.27)

This simple linear relationship means that if d�
pq is minimum across all possible

pairs of genes, then Sp;q should also be minimum. Therefore, the clustering result
will be identical regardless whether d�

pq or Sp;q is used. Let rp D PN
kD1 dpk and

rq D PN
kD1 dqk , which are called the net divergences of genes p and q from other

genes, respectively (Swofford et al. 1996). Equation (18.25) can be expressed by

d�
pq D dpq �

rp C rq
N � 2 (18.28)

Swofford et al. (1996) called d�
ij the rate-corrected distance. Upon replacement of

the original distance matrix by the rate-corrected distance matrix, the modified NJ
algorithm is identical to the UPGMA algorithm. The modified NJ algorithm is now
summarized as follows:

1. For N genes, calculate the net divergence of gene j using

rj D
N
X

kD1
djk;8j D 1; : : : ; N (18.29)

2. Calculate the rate-corrected distance between p and q using

d�
pq D dpq �

rp C rq
N � 2 ;8p ¤ q (18.30)

3. Find the minimum d�
pq for all p < q, and join p and q to form an internal node

X, which replaces p and q.
4. Calculate the distances between X and each remaining gene using

dkX D 1

2
.dpk C dqk � dpq/;8k ¤ p; q (18.31)

5. Remove the distance from p to node X and the distance from q to node X, and
construct a distance matrix with N � 1 genes (genes p and q are joined as a
combined “gene”).

6. Go back to Step 1 recurrently unless the star phylogeny is completely resolved.

The recurrent process continues until a fully resolved bifurcating tree is
generated. Table 18.2 shows the detailed process of the NJ algorithm for the five
strain bacterium example. WhenN D 5, the smallest rate-corrected distance occurs
between genes 3 and 4. Therefore, genes 3 and 4 form a new “gene” denoted by
node X. In the next step with 4 genes, the smallest rate-corrected distance occurs
between gene 1 and node X. However, it also occurs between genes 2 and 5. In such
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Table 18.2 The distance and rate-corrected distance matrices of five genes and subsequent
distance matrices of reduced dimension in the NJ clustering process

Gene 1 2 3 4 5 R

1 – 0.1715 0.2147 0.3091 0.2326 0.9279
2 �0:4766 – 0.2991 0.3399 0.2058 1.0163
3 �0:4905 �0:4356 – 0.2795 0.3943 1.1876
4 �0:4527 �0:4514 �0:5689 – 0.4289 1.3574
5 �0:4972 �0:5535 �0:4221 �0:4441 – 1.2616

Gene 1 2 5 X(3,4) R
1 – 0.1751 0.2326 0.1222 0.5263
2 �0:3701 – 0.2058 0.1797 0.5571
5 �0:3856 �0:4278 – 0.2719 0.7103
X(3,4) �0:4278 �0:3856 �0:3701 – 0.5739

Gene 2 5 Z(1,(3,4)) R
2 – 0.2.58 0.1146 0.3204
5 �0:5116 – 0.1912 0.3970
Z(1,(3,4)) �0:5116 �0:5116 – 0.3058

Gene 5 Y(2,(1,(3,4)))
5 – 0.1412
Y(2,(1,(3,4))) – –

The upper-right triangle gives the distance matrix, and the lower-left triangle gives the
rate-corrected distance matrix

a tie situation, one of them is arbitrarily chosen. We decided to join gene 1 and node
X to form a new node Z. The next step involves 3 genes, and thus, we can stop here.
However, continuing to reduce the dimension allows us to calculate the lengths of
the three branches emerging from node Y.

At each step, two branches from a new node are generated. The lengths of
the two branches are estimated immediately after they emerge. In the first step,
branches L3X and L4X emerged from node X, and the estimated lengths of the two
branches are

L3X D 1

2
d34 C r3 � r4

2.N � 2/ D
1

2
� 0:2795C 1:1876� 1:3574

2 � .5� 2/ D 0:1114

L4X D 1

2
d34 C r4 � r3

2.N � 2/ D
1

2
� 0:2795C 1:3574� 1:1876

2 � .5� 2/ D 0:1681

In the second step, branches L1Z and LXZ emerged, whose lengths are estimated
from
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L1Z D 1

2
d1X C r1 � rX

2.4� 2/ D
1

2
� 0:1222C 0:5263� 0:5739

2 � .4 � 2/ D 0:0492

LXZ D 1

2
d1X C rX � r1

2.4� 2/ D
1

2
� 0:1222C 0:5739� 0:5263

2 � .4 � 2/ D 0:0730

The next recurrent step provides estimated lengths of branches L2Y and LZY,
which are

L2Y D 1

2
d2Z C r2 � rZ

2.3� 2/ D
1

2
� 0:1146C 0:3204� 0:3058

2 � .3 � 2/ D 0:0646

LZY D 1

2
d2Z C rZ � r2

2.3� 2/ D
1

2
� 0:1146C 0:3058� 0:3204

2 � .3 � 2/ D 0:0500

The last step gives the estimated length of L5Y, which is

L5Y D d5Y D 0:1412

The lengths of all branches obtained above are illustrated in Fig. 18.2.
Saitou and Nei (1987) proved that the estimated branch lengths given in each

step are the least-squares estimates of the decomposed star phylogeny at that step.
For example, L3X and L4X are estimated from the first step. They are the least-
squares estimates of the decomposed star phylogeny given in Fig. 18.3b. We can
see that these estimated branches (obtained from each step) are not the least-
squares estimates of the branches from the final resolved phylogeny (Fig. 18.2).
The differences, however, are very small. Now let us reestimate all the branches
from the final phylogeny using the least-squares method. We can define each
distance as the sum of several branches plus a random error, as shown below.
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In a compact matrix notation for the above equations, we have

d D ALC e (18.33)

where matrix A contains values of zeros and ones. The least-squares estimate of
vector L is

L D .ATA/�1AT d (18.34)

The estimated branch lengths for the bacterium example are
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The total length of the final phylogeny is

OL.5;.2;.1;.3;4//// D L2Y CL5Y C LYZ C L1Z CLXZ C L3X CL4X D 0:6574
(18.36)

The lengths of branches obtained from the original NJ algorithm are
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(18.37)

The total length of the final phylogeny calculated from the above estimated branch
lengths is

QL.5;.2;.1;.3;4//// D L2Y CL5Y C LYZ C L1Z CLXZ C L3X CL4X D 0:6575
(18.38)

We can see that OL.5;.2;.1;.3;4//// is remarkably close to QL.5;.2;.1;.3;4////. Therefore, we
can use either way to calculate the lengths of the branches in the final resolved
phylogeny. If the number of genes is large, calculating the branch lengths with the
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recurrent process may be time consuming. Therefore, it is recommended to calculate
the branch lengths after the tree is fully resolved using the least-squares method
given in (18.34).

18.4 Other Methods

There are many other methods available for phylogeny reconstruction. The UPGMA
and NJ methods described previously belong to a class of methods called distance
matrix-based method because the input data is a distance matrix. These methods
are computationally efficient and thus can handle a relatively large number of
genes. Another class of methods are called sequence data (or raw data)-based
methods. These methods include the parsimony method (Sober 1983), the maximum
likelihood method (Felsenstein 1981a,b), and the Bayesian method (Huelsenbeck
et al. 2001). Because the sequence data-based methods use the raw data without con-
version to distance data, these methods may capture more information from the data.
Therefore, the sequence data-based methods have a better chance to recover the true
phylogeny. The tradeoff is that these methods are computationally more demanding
than the distance matrix-based methods, especially the maximum likelihood and
Bayesian methods, which are very time consuming. Therefore, sequence data-based
methods can only handle a small number of genes. In microarray data analysis, we
usually have to deal with 10,000 or 20,000 genes simultaneously. Therefore, the
sequence data-based methods are not the first choice for microarray data analysis.

The parsimony method (Sober 1983) uses particular criteria to define the
optimality of a phylogeny. For example, the length of a tree can be used as a
criterion of optimality. The length of a tree equals the sum of the lengths of all
branches. The length of a branch, however, is defined as the number of “mutations”
(changes in nucleotides of a DNA sequence or changes in amino acids of a protein
sequence) occurred in that lineage during evolution. A parsimony tree is the one that
has the minimum length. The maximum likelihood method adopts an evolutionary
model for mutation and calculates the likelihood function for each possible tree.
The one with the maximum likelihood value is the maximum likelihood tree. So, the
criterion in the ML method is the likelihood function, rather than the length of a tree.
Investigators can choose different evolutionary models for different data to construct
the likelihood function for a tree. While evaluating the likelihood function of a tree,
we also estimate parameters involved in the model. Therefore, the ML method
is a kind of model-based method. The Bayesian method is also a model-based
method and thus requires a model and parameters to define the model. In addition,
the parameters are assigned a prior distribution (another model to describe the
distribution of the parameters). The tree topology is considered as one of the
parameters, and thus, a prior distribution of a topology can be assigned. Combining
the data (sequence or other raw data) and the evolutionary model, we can build the
likelihood function. Combining the likelihood function with the prior distribution
of the parameters, we obtain the joint distribution of the data and the parameters.
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From the joint distribution, the posterior distribution of the parameters given the
data can be derived, from which realized parameter values are sampled, including
the tree topology. The topology that has the maximum posterior probability is the
Bayesian tree.

The parsimony and ML methods require an algorithm to find the optimal tree.
The safest algorithm is the exhaustive search where all possible tree topologies
have to be evaluated to find the optimal topology. The branch and bound algorithm
used in map construction described in Chap. 2 is better than the exhaustive search
method because most often a small percentage of the trees are evaluated and the
algorithm guarantees to find the “best” tree. The Bayesian method does not require
evaluation of all possible trees; instead, it samples a topology at each iteration
of the Bayesian sampling process. If the model is correct, the true topology will
be sampled more often than other tree topologies. The topologies that are close
in appearance to the true topology will also have high chances to be sampled.
Because both the ML and the Bayesian methods require estimating (or sampling)
parameters, they are computationally more demanding than the parsimony method.
The Bayesian method is the most time-consuming method because it requires
repeated sampling of parameters (including the tree topology). To make sure that
the posterior sample represents the true posterior distribution, the posterior sample
must be sufficiently large.

For the microarray gene clustering analysis, ML and Bayesian methods may
not be the choice at all. The parsimony method may be possibly considered if
the number of genes does not exceed 100. Therefore, UPGMA and NJ may be
the only methods for consideration in the hierarchical cluster analysis of expressed
genes. Unfortunately, even though UPGMA and NJ are computationally efficient,
they still cannot handle more than a thousand genes simultaneously. The large
number of genes may be prescreened before conducting the cluster analysis. For
example, majority of the genes may not be differentially expressed at all, i.e., their
expression levels are constant across the samples. These genes should be eliminated.
Alternatively, investigators may have some prior knowledge of the functions of some
genes, and clustering those genes only may allow the investigators to answer some
specific biological questions.

18.5 Bootstrap Confidence

The final clustering result (the tree) does not have a confidence support. A common
property of the hierarchical clustering methods is that they all generate a bifurcating
tree. In a bifurcating tree, each internal branch separates the genes into two clusters.
A confidence support can be put on each internal branch to indicate the confidence
of the separation of the two clusters. A statistical resampling method developed
by Efron (1979), called the bootstrap method, can be applied here to construct the
confidence support for each internal branch (Felsenstein 1985).
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First, we need to generate bootstrap samples using a random number generator.
Recall that the data matrix is an M � N matrix, where M is the number of tissue
samples and N is the number of genes. If we denote the gene expression data for
the i th tissue by a row vector

yi D Œyi1; yi2; : : : ; yiN � (18.39)

The entire dataset can be expressed by an M �N matrix
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(18.40)

A bootstrap sample contains a randomly selected M rows of matrix y with
replacement to form a new M �N matrix, denoted by
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(18.41)

where y.i/ is the i th row of the bootstrap data matrix and it is selected randomly from
the original data matrix with replacement. Because of the replacement sampling,
some rows of the original data matrix may appear in the bootstrap sample many
times, and some may not be present at all. We use a superscript .k/ to indicate that
y.k/ is the kth bootstrap sample because we need to repeat the sampling process
many times (say S D 100 times). For each bootstrap sample (dataset), we do the
clustering analysis and draw a tree. After all the S bootstrap samples have been
analyzed, we count the number of times that a particular internal branch has been
preserved in the bootstrap samples. For example, assume that the internal branch
separating genes f3, 4g from genes f1, 2, 5g shown in the final NJ tree (Fig. 18.5c)
is the current internal branch for evaluation. From the S D 100 bootstrap trees,
we count how many trees that separate genes f3,4g from genes f1,2,5g (branch
connecting Y and Z is reserved). This number divided by S D 100 is the confidence
of this internal branch, regardless how the genes within each of the bifurcating
groups are organized. Each internal branch should be evaluated for the confidence.
The confidence measurement is a percentage and thus has a value between 0 and 1.
A tree with high confidences for most internal branches is more reliable than a tree
with low confidences for most of the internal branches.



Chapter 19
Model-Based Clustering of Microarray Data

19.1 Cluster Analysis with the K-means Method

The K-means method (MacQueen 1967; Hartigan 1975; Hartigan and Wong 1979)
is not a model-based clustering method. It is a data-partitioning method that divides
the entire data into K disjoint groups. The idea is similar to the multivariate Gaussian
mixture model analysis (a model-based method). Both deal with the problem of
data partitioning and thus are in clear contrast to the hierarchical clustering methods
described in Chap. 18. The K-means method is simple but very useful in microarray
data analysis. As a result, it earns a section here in this chapter, even though it is not
a model-based clustering method.

In the contest of microarray data analysis, the aim of the K-means algorithm is to
divide all N genes in M dimensions into K clusters so that the within-cluster sum
of squares is minimum. It is not practical to require that the solution has minimal
within-cluster sum of squares against all partitions, except whenN andM are small
andK D 2. We seek, instead, a “local” optimum, a solution such that no movement
of a gene from one cluster to another will reduce the within-cluster sum of squares.

The algorithm requires a data matrix y with N genes in M dimensions (i.e., y
is an M � N matrix) and a matrix of K initial cluster centers (center is also called
centroid) denoted by an M � K matrix �. The number of genes in cluster k is
denoted by Nk for k D 1; : : : ; K and

PK
kD1 Nk D N . Let d.j; k/ be the Euclidean

distance between gene j and the centroid of cluster k. The general procedure is
to search for a K-partitioning of local minimum within-cluster sum of squares by
moving genes from one cluster to another. The within-cluster sum of squares is
defined as

Q D
K
X

kD1

Nk
X

jD1
d 2.j; k/ (19.1)
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where the Euclidean distance d.j; k/ between gene j and the centroid of cluster k
is defined as

d.j; k/ D kyj � �kk D
q

.yj � �k/T .yj � �k/ (19.2)

Note that yj is an M � 1 vector of the expression levels for gene j and �k is the
centroid (anM � 1 vector) of cluster k.

The K-means algorithm can be summarized as:

1. Choose an initial centroid matrix � D f�.0/1 ; : : : ; �.0/K g.
2. Calculate d.j; k/ for all j D 1; : : : ; N and k D 1; : : : ; K .
3. Assign gene j into cluster k if d.j; k/ D minfd.j; 1/; : : : ; d.j;K/g.
4. When all genes have been assigned, recalculate � D f�1; : : : ; �Kg, where �k D

1
Nk

PNk
jD1 yj is the mean of all yj that belong to cluster k.

5. Repeat Step 2 to Step 4 until the centroid matrix � no longer changes. This
produces a separation of the genes into K distinct clusters.

The remaining question in the K-means method is how to determine K and the
initial centroid matrix �. The number of clusters is set by the investigator a priori.
Since the K-means algorithm is computationally fast, one can perform the method
using different K values and select the one that produces the most “meaningful”
result. Alternatively, the investigator may already have some idea about how many
clusters the data should fall into, say K0. Only a few differentK values around K0

may be evaluated. The initial value of the centroid matrix can be chosen arbitrarily.
Since the method only finds a local optimum, different initial values of � may
generate different results. Therefore, multiple initial values of � should be tried to
make sure that the optimum obtained is close to the global optimum. One approach
to choosing the initial value of � is to randomly partition the data into K clusters
and use the mean value of each cluster to form the centroid matrix �. Another
approach is to handpick K genes which appear to be very “different” and use the
expression levels of these genes as the centroids. The K-means method that updates
the centroids constantly based on the expression levels of the genes included in
each cluster is called unsupervised K-means. The final centroid matrix � is entirely
determined by the data.

In some applications of the K-means method, the entire set of genes are divided
into two categories. In one category, the genes are already assigned a priori into K
clusters based on prior knowledge of the investigators. The other category contains
genes whose cluster identities are not known. The purpose of the K-means analysis
is to assign each of the genes in category two to one of the K clusters defined by
genes in category one. This type of analysis is called supervised cluster analysis.
Genes in category one are called the training sample, while genes in category two
are called the testing sample. The training sample is only used to provide the initial
centroid matrix �.0/. Let Sk be the number of genes in cluster k of the training
sample for k D 1; : : : ; K and

PK
kD1 Sk D S , where S is the total number of genes
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Microarray
(N=2000)

Cluster 1 (N1=400)

Cluster 2 (N2=400)

Cluster 3 (N3=400)

Cluster 4 (N4=400)

Cluster 5 (N5=400)

Fig. 19.1 K-means
clustering analysis for
N D 2; 000 genes with
K D 5 clusters each having
Nk D 400 genes

in the training sample. In the supervised K-means analysis, the updated centroid
matrix is calculated using

�k D 1

Nk C Sk
�

Sk�
.0/ C

XNk

jD1 yj
�

(19.3)

where j now indexes all genes in cluster k of the testing sample. The new �k
will never replace �.0/, but it is updated constantly using the above equation.
The iteration process stops when further moving genes from one cluster to another
does not change the centroid. Figure 19.1 illustrates schematically the result of a K-
means clustering analysis for N D 2; 000 genes with K D 5 clusters each having
Nk D 400 genes.

In contrast to the hierarchical clustering analysis, which can only handle a few
hundred genes at a time, the K-means method, along with the model-based methods
to be introduced later, can handle almost unlimited number of genes.

19.2 Cluster Analysis Under Gaussian Mixture

In contrast to the hierarchical clustering methods, the model-based clustering
analysis classifies genes into distinct clusters. Among clusters, genes show different
patterns of expression, but within clusters, genes share the same patterns of
expression. The method requires specific statistical models to fit the data, and the
errors of fitness are supposed to follow some specific distributions. Theory and
method of Gaussian mixture can be found in McLachlan and Peel (2000) and Fraley
and Raftery (2002). The Gaussian mixture models have been widely applied to
microarray data analysis (Ghosh and Chinnaiyan 2002; McLachlan et al. 2002; Pan
et al. 2002; Ouyang et al. 2004; Qu and Xu 2004, 2006; McNicholas and Murphy
2010).



324 19 Model-Based Clustering of Microarray Data

19.2.1 Multivariate Gaussian Distribution

Before we introduce the mixture model of microarray data analysis, we will
review the basic definition of multivariate normal distribution, which is also called
multivariate Gaussian distribution. Let us denote the expression of the j th gene
across M samples by a column vector yj . Assume that yj follows a multivariate
Gaussian distribution denoted by

yj � N.�;˙/ (19.4)

where � is an M � 1 vector of means (not the centroid matrix appearing in the
K-means method) and ˙ is an M � M symmetrical and positive definite matrix
expressed as
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The multivariate normal density is

�.yj j�;˙/ D 1

.2
/M=2j˙ j1=2 exp

�

�1
2
.yj � �/T˙�1.yj � �/

�

(19.6)

To estimate the parameters, � D f�;˙g, we construct the following log
likelihood function:

L.�/ D �N
2

log j˙ j � 1
2

N
X

jD1
.yj � �/T˙�1.yj � �/ (19.7)

The parameters can be estimated using the maximum likelihood method by setting

@

@�
L.�/ D @

@˙
L.�/ D 0 (19.8)

and solving for � . This requires rules for matrix derivatives (beyond the scope of
this class), but the final result for � is

@

@�
L.�/ D �1

2

@

@�

N
X

jD1
.yj � �/T˙�1.yj � �/

D ˙�1
N
X

jD1
.yj � �/

D ˙�1
N
X

jD1
yj �N˙�1� (19.9)
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Setting @
@�
L.�/ D 0 and solving for � lead to

O� D 1

N

N
X

jD1
yj (19.10)

The partial derivative of the log likelihood function with respect to ˙ is
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.yj � �/.yi � �/T˙�1 (19.11)

Setting @
@˙
L.�/ D 0 and solving for ˙ yield

Ȯ D 1

N

N
X

jD1
.yj � O�/.yj � O�/T (19.12)

The MLE of the parameters can be solved explicitly without resorting to any
iterative algorithm.

19.2.2 Mixture Distribution

Assume that these genes are sampled from K multivariate normal distributions
(clusters), but we do not know which gene comes from which cluster. The problem
becomes a mixture model problem. Let Gj D k be the cluster index for the j th
gene, i.e., if the j th gene is from the kth cluster, then Gj D k;8k D 1; : : : ; K .
Let us redefine � D f�1; : : : ; �Kg as an M � K matrix (similar to the centroid in
the K-means analysis), where�k is anM �1 vector for the mean of cluster k. Let us
define ˙k as the covariance matrix of cluster k. Given that the j th gene is from the
kth cluster, the density of yj is multivariate normal with mean �k and variance
matrix˙k , i.e., yj jGj D k � N.�k;˙k/;8k D 1; : : : ; K . The conditional density
of yj given Gj D k is

�k.yj j�k;˙k/ D 1

.2
/M=2j˙kj1=2 exp

�

�1
2
.yj � �k/T˙�1

k .yj � �k/
�

(19.13)
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Let 
k > 0 be the proportion of genes belonging to the kth cluster, where
PK

kD1 
k D 1. These proportions are also called the mixing proportions. They are
treated as the prior probability that a randomly sampled gene is from the kth cluster.
The density of the mixture distribution is

f .yj j�/ D
K
X

kD1

k�k.yj j�k;˙k/ (19.14)

where

� D f
1; : : : ; 
K; �1; : : : ; �K;˙1; : : : ; ˙Kg (19.15)

is the vector of parameters. The overall log likelihood function is

L.�/ D
N
X

jD1
ln f .yj j�/ (19.16)

The likelihood function for the mixture model is messy, and thus, no explicit
solution for � is available. Therefore, we resort to a numerical algorithm for
estimating the MLE of � .

19.2.3 The EM Algorithm

The EM algorithm for parameter estimation largely remains the same as that in the
segregation analysis except that the dimension of parameters becomes multivariate.
Instead of re-deriving the EM algorithm, we simply provide detailed steps of the EM
algorithm. With the EM algorithm, we assign each gene into one of the K clusters
with a certain probability denoted by


jk D Pr.Gj D kjyj ; �/ (19.17)

This probability is called the posterior probability of Gj D k given the data and the
parameter values. The EM algorithm starts with some initial values of all unknown
parameters and iteratively updates each parameter conditional on the parameter
values in the previous round of iteration. The iteration process is summarized as
follows:

1. Set t D 0 and initialize all parameters �.t/, including



.t/

k D 1=K;8k D 1; : : : ; K (19.18)

2. Update the posterior probabilities of cluster assignments,
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.t/

jk D


.t/
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k /
PK

k0D1 

.t/

k0 �k0.yj j�.t/k0 ; ˙
.t/

k0 /
(19.19)

for all j D 1; : : : ; N and k D 1; : : : ; K .
3. Update the mean vectors by

�
.tC1/
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	�1 N
X
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.t/

jk yj ;8k D 1; : : : ; K (19.20)

4. Update the covariance matrices by
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(19.21)

for all k D 1; : : : ; K .
5. Update the mixing proportions,



.tC1/
k D 1

N

N
X

jD1


.t/

jk ;8k D 1; : : : ; K (19.22)

6. Increment t by t C 1, and repeat Step 2 to Step 5 until a certain criterion of
convergence is reached.

Once the EM iteration converges, the parameter values are the maximum
likelihood estimates, denoted by O� . The conditional posterior probability of gene
j from cluster k is denoted by O
jk . Gene j will be assigned to the kth cluster if

O
jk D maxf O
j1; : : : ; O
jKg (19.23)

One can also set a cutoff point for cluster assignment. For example, assign gene j
into cluster k if O
jk D maxf O
j1; : : : ; O
jKg > ˛, where 0 < ˛ < 1 is the cutoff
point. Those genes whose maximum posterior probability is less than ˛ are claimed
to be unassigned. This flexibility of the model-based method is an advantage over
the K-means method.

19.2.4 Supervised Cluster Analysis

In the supervised cluster analysis, we know the functions of genes in the training
sample and thus know which gene belongs to which cluster in the training sample.
The purpose of the supervised cluster analysis is to assign genes in the testing
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sample (contains genes with unknown functions) into one of the clusters defined
in the training sample. The method was developed by Qu and Xu (2004). Let S be
the training sample size, which is partitioned intoK clusters with the sample size for
the kth cluster being Sk, for

PK
kD1 Sk D S . From the training sample, we estimate

Q� D f Q�1; : : : ; Q�Kg and e˙ D fe˙1; : : : ; e˙Kg, where Q�k is an M � 1 vector for the
mean of cluster k and e˙k is an M �M variance–covariance matrix for cluster k.
The estimated Q� and e˙ obtained from the training sample are used to guide the
cluster analysis for the testing sample. Equations (19.10) and (19.12) introduced
in a previous section are used to estimate Q�k and e˙k , respectively, except that the
sample size N in those equations is now replaced by Sk because the sample size for
cluster k in the training sample is Sk. This concludes the first step of the supervised
cluster analysis.

The second step of the supervised cluster analysis is to update the estimated
parameters from genes in the testing sample and assign each of the N genes in the
testing sample to one of the K clusters. We will again use the EM algorithm to
update the parameters, which is described as follows:

1. Set t D 0 and initialize all parameters, including

�
.t/

k D Q�k; ˙.t/

k D e˙k and 
.t/k D
Sk CN=K
S CN ;8k D 1; : : : ; K

2. Update the posterior probabilities of cluster assignments,



.t/

jk D


.t/

k �k.yj j�.t/k ;˙.t/

k /
PK

k0D1 

.t/

k0 �k0.yj j�.t/k0 ; ˙
.t/

k0 /
(19.24)

for all 8j D 1; : : : ; N and k D 1; : : : ; K .
3. Update the mean vectors by

�
.tC1/
k D

2

4Sk C
N
X

jD1


.t/

jk

3

5

�1 2

4Sk Q�k C
N
X

jD1


.t/

jk yj

3

5 (19.25)

for all k D 1; : : : ; K .
4. Update the variance–covariance matrices by

˙
.tC1/
k D

2

4Sk C
N
X

jD1


.t/

jk

3

5

�1

�
2

4Ske˙k C
N
X

jD1


.t/

jk .yj � �.tC1/k /.yj � �.tC1/k /T

3

5 (19.26)

for all k D 1; : : : ; K .
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5. Update the mixing proportions,



.tC1/
k D 1

S CN

2

4Sk C
N
X

jD1


.t/

jk

3

5 ;8k D 1; : : : ; K (19.27)

6. Increment t by tC1 and repeat Steps 2–5 until a certain criterion of convergence
is reached.

19.2.5 Semisupervised Cluster Analysis

It is possible that genes in the training sample may not cover all possible clusters in
the testing sample. In other words, some genes in the testing sample may not belong
to any of the clusters in the training sample. In this case, the supervised cluster
analysis may be combined with the unsupervised cluster analysis, which is called the
semisupervised cluster analysis. Assume that we want to classify allN genes intoK
clusters. Among the K clusters, K 0 < K of them are defined in the training sample
where K �K 0 clusters occur only in the testing sample. The algorithm is identical
to that of the supervised algorithm except that Sk D 0 for k D K 0 C 1; : : : ; K .
In other words, we set each of the additional clusters that are not included in the
training sample empty. No further modification is required. The values of Q�k and
e˙k for k D K 0 C 1; : : : ; K are arbitrary, e.g., Q�k D 0 and e˙k D 0, because they
do not affect the EM estimates of the parameters.

19.3 Inferring the Number of Clusters

The number of clusters K is usually unknown. The EM algorithm described above
is based on a fixed value of K . In the unsupervised and semisupervised methods,
the K value needs to be estimated from the data. Note that in the supervised cluster
analysis, K is determined exclusively by the training sample, and thus it is given.
In this section, we will introduce a special method to infer K , called the Bayesian
information criterion (BIC), which was proposed by Schwarz (1978), although there
are many other methods available in the literature. For the unsupervised cluster
analysis, the BIC for K clusters is given by

�.K/ D �2L.� jK/C dim.� jK/ ln.N / (19.28)

where

L.� jK/ D
N
X

jD1
ln

K
X

kD1

k�k.yj j�k;˙k/ (19.29)
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is the log likelihood function evaluated at � D O� and

dim.� jK/ D MK C 1

2
M.M C 1/K CK � 1 (19.30)

is the dimension of parameter vector � . Recall that

� D f�1; : : : ; �K;˙1; : : : ; ˙k; 
1 : : : ; 
Kg
where the dimension for the�’s isMK , the dimension for the˙’s is 1

2
M.MC1/K ,

and the dimension for the 
’s is K � 1. The K � 1 comes from the fact that only
K�1 of the 
’s are independent parameters because 
K D 1�PK�1

kD1 
k . Using the
BIC as the criterion of optimality, the K value that minimizes �.K/ is the optimal
number of clusters.

The BIC for the semisupervised clustering for K clusters is also given by
(19.28). The dimension of the parameters remains the same as that given in (19.30).
However, the log likelihood function is different from (19.29). The correct log
likelihood function for the semisupervised clustering is

L.� jK/ D
N
X

jD1
ln

K
X

kD1

k�k.yj j�k;˙k/

C
K
X

kD1

Sk
X

jD1
ln�k.y�

j j�k;˙k/ (19.31)

where y�
j indicates data from the training sample. The additional information gained

from the training sample appears in the second term of the right-hand side of
(19.31).

19.4 Microarray Experiments with Replications

Recall that in the microarray experiment without replication,

yj D fy1j ; : : : ; yMj g
is an M � 1 vector for the expression level of gene j in all M conditions. Let
us assume that each condition represents a subject (e.g., a human, an animal, or a
plant). Assume that the i th subject of the experiment is replicated ri times and the
mean value of the ri replications is entered into the dataset. In this case, the i th row
and the j th column of matrix y are actually Nyij , a mean of ri replications. We now
use a linear model to describe a single measurement yij by

yij D �ij C �ij (19.32)
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where �ij is the true expression of subject i for gene j and �ij is a measurement
error with an assumedN.0; 	2/ distribution. If Nyij is the mean of ri replications, the
model becomes

Nyij D �ij C N�ij (19.33)

where N�ij is the mean error with an N.0; 	2=ri / distribution. We now assume that
vector �j D f�1j ; : : : ; �Mj g has a mixture of K multivariate Gaussian distributions
with the kth component (cluster) being �j � N.�k;˙k/. Now let us define N�j D
fN�1j ; : : : ; N�Mj g as a vector of the mean errors and Nyj D f Ny1j ; : : : ; NyMj g as a vector
for the mean expression of gene j . We can write the following model to describe

Nyj D �j C N�j (19.34)

where N�j � N.0;D	2/ andD is an M �M diagonal matrix,

D D

2

6

6

6

6

6

4

1
r1
0 : : : 0

0 1
r2
: : : 0

:::
:::
: : :

:::

0 0 : : : 1
rM

3

7

7

7

7

7

5

(19.35)

This leads to a multivariate Gaussian mixture distribution for Nyj ,

Nyj �
K
X

kD1

kN.�k;˙k CD	2/ (19.36)

Comparing this distribution to the multivariate Gaussian distribution in the unrepli-
cated experiment introduced before, we can see that there is an extra parameter
	2 involved, which represents the variance of repeated measurement errors. The
parameter vector now is defined as

� D f
1; : : : ; 
K; �1; : : : ; �K;˙1; : : : ; ˙K; 	
2g

The log likelihood function is

L.�/ D
N
X

jD1
ln

K
X

kD1

k�k. Nyj j�k;˙k CD	2/ (19.37)

The EM algorithm for the MLE of parameters is summarized below:

1. Set t D 0 and initialize all parameters �.t/, including 	2.t/ and



.t/

k D 1=K;8k D 1; : : : ; K
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2. Update the posterior probabilities of cluster assignments,



.t/

jk D


.t/

k �k. Nyj j�.t/k ;˙.t/

k CD	2.t//
PK

k0D1 

.t/

k0 �k0. Nyj j�.t/k0 ; ˙
.t/

k0 CD	2.t//
(19.38)

for all j D 1; : : : ; N and k D 1; : : : ; K .
3. Update the mean vectors using

�
.tC1/
k D

2

4

N
X

jD1


.t/

jk V
�1
k

3

5

�12

4

N
X

jD1


.t/

jk V
�1
k Nyj

3

5 (19.39)

where Vk D ˙k CD	2.t/;8k D 1; : : : ; K .
4. Update the covariance matrices by

˙
.tC1/
k D

�

N

.t/

k

	�1 N
X

jD1


.t/

jkE
h

.�j � �.tC1/k /.�j � �.tC1/k /T
i

(19.40)

for all k D 1; : : : ; K .
5. Update 	2 by

	2.tC1/ D 1

MN

N
X

jD1

K
X

kD1


.t/

jkE
�

. Nyj � �j /TD�1. Nyj � �j /
�

(19.41)

6. Update the mixing proportions by



.tC1/
k D 1

N

N
X

jD1


.t/

jk ;8k D 1; : : : ; K (19.42)

7. Increment t by tC1 and repeat Steps 2–6 until a certain criterion of convergence
is reached.

In the above EM iteration process, �j appears twice, all in the expected quadratic
forms. The first appearance is

EŒ.�j � �k/.�j � �k/T � D E.�j � �k/E.�j � �k/T C var.�j � �k/ (19.43)

and the second appearance is

E
�

.�j� Nyj /TD�1.�j� Nyj /
� D E.�j� Nyj /TD�1E.�j� Nyj /Ctr

�

D�1var.�j� Nyj /
�

(19.44)
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Although the cluster label k does not occur explicitly in (19.44), this equation is
cluster specific. For the kth cluster, we have

E.�j � Nyj / D E.�j � �k/C E.�k � Nyj / D E.�j � �k/C .�k � Nyj / (19.45)

and

var.�j � Nyj / D var.�j � �k/C var.�k � Nyj / D var.�j � �k/ (19.46)

This result is due to E.�k � Nyj / D .�k � Nyj /, and var.�k � Nyj / D 0 as �k � Nyj is
not a function of variable �j . Now there are only two terms that need our attention,
which are E.�j � �k/ and var.�j � �k/. They are the posterior mean and posterior
variance of �j for cluster k given below:

E.�j � �k/ D ˙k.˙k CD	2/�1. Nyj � �k/ (19.47)

and

var.�j � �k/ D ˙k �˙k.˙k CD	2/�1˙k (19.48)

The optimal number of clusters can be found using the BIC criterion (see 19.29).
The dimension of the parameters, however, is

dim.� jK/ DMK C 1

2
M.M C 1/K CK (19.49)

which is one shy that of the experiment without replication.
One caveat of the model-based cluster analysis is the “identifiability” problem,

which occurs as two or more clusters having identical distributions (i.e., same cluster
mean and the same cluster variance matrix). Several approaches can be used to solve
this problem. One ad hoc approach (adopted by Qu and Xu (2006)) is to introduce
a small noise vector to each �k at each iteration. This small perturbation will
eventually separate all �k from each other. Another approach is to revise the model
so that all clusters share the same variance matrix, i.e., ˙k D ˙;8k D 1; : : : ; K .
The most effective approach is the stochastic EM algorithm (SEM), in which the
cluster label for each gene is randomly sampled from the posterior distribution
rather than taking the posterior mean (Zhan et al. 2011). The SEM algorithm will be
described in the next chapter (Chap. 20). Conceptually, this approach is the same as
the ad hoc method, but statistically it is more rigorous and should generate the best
result of clustering.



Chapter 20
Gene-Specific Analysis of Variances

In the differential expression analysis, the subjects are divided into two groups, case
and control. A generalization of the differential expression analysis is the situation
where the subjects are divided into multiple treatment groups. In addition, there
may be multiple factors with possible interactions among different factors, e.g.,
the factorial design. This chapter deals with microarray data analysis under the
factorial design.

20.1 General Linear Model

We now use an example to demonstrate the linear model for a factorial design
with two factors and their interaction effects. Suppose that M D 12 subjects are
microarrayed for N genes. The 12 subjects come from three age groups (A) and
two genders (B). The original design is demonstrated in Table 20.1 (see next page).

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 20,
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Table 20.1 Factorial design
with two factors and six
factor interactions

Subject Age (A) Gender (B)

1 Young (A1) Male (B1)
2 Young (A1) Male (B1)
3 Young (A1) Female (B2)
4 Young (A1) Female (B2)
5 Middle age (A2) Male (B1)
6 Middle age (A2) Male (B1)
7 Middle age (A2) Female (B2)
8 Middle age (A2) Female (B2)
9 Old age (A3) Male (B1)
10 Old age (A3) Male (B1)
11 Old age (A3) Female (B2)
12 Old age (A3) Female (B2)

The design matrices and the linear model are shown below for each of the
N genes:
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(20.1)

This linear model can be rewritten in a compact matrix notation as

yj D 1�j CZ˛˛j CZˇˇj CZ��j C "j (20.2)

where the design matrices are not of full rank because the sum of columns of
each design matrix equals 1, which is the design matrix of the population mean.
This presents no problem here because the model effects, ˛j , ˇj , and �j , will be
treated as random effects. The residual errors are assumed to be N.0; I	2j / with an
unknown 	2j for each gene. The population mean �j is not something of interest
and is assigned a single normal prior distribution

p.�j / D N.�j j0;˙�/ (20.3)

where˙� is an unknown variance. The age and gender effects and their interactions
are assigned a Gaussian mixture prior apiece, i.e,

p.˛j / D 
˛N.˛j j0;˙˛/C .1 � 
˛/N.˛j j0;˙0/ (20.4)

where 
˛ is the mixing proportion, ˙˛ is an unknown 3 � 3 variance–covariance
matrix, and ˙0 D 10�8 � I is a constant matrix with a small positive value in the
diagonal. Genes classified into the ˛ cluster are associated with the age. Similarly,
we assign a Gaussian mixture to the gender effects

p.ˇj / D 
ˇN.ˇj j0;˙ˇ/C .1 � 
ˇ/N.ˇj j0;˙0/ (20.5)

where˙0 D 10�8� I is again a constant matrix with a dimensionality of 2�2. The
interaction effects are also assigned a Gaussian mixture prior

p.�j / D 
�N.�j j0;˙�/C .1 � 
� /N.�j j0;˙0/ (20.6)
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The parameter vector in the above model is

� D ˚
˛; 
ˇ; 
� ;˙�;˙˛;˙ˇ;˙� ; 	
2
1 ; : : : ; 	

2
N




(20.7)

Let us define �˛j D f0; 1g, �ˇj D f0; 1g, and ��j D f0; 1g as the class labels (binary
indicator variables) for the three effects, and they are missing values. Denote �j D
Œ�˛j �

ˇ
j �

�
j � as a vector of the class labels. Given �j , the expectation and variance

matrix of yj are E.yj / D 0 and

var.yj / D Vj D 1˙�1
T CZ˛�˛

j Z
T
˛ CZˇ�ˇ

j Z
T
ˇ CZ���

j Z
T
� C I	2j (20.8)
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˙0 (20.9)

are the prior variance matrices for the two factors and the factor interactions.
The problem is a little more complicated than differential expression analysis.
Therefore, we need a special algorithm called stochastic EM algorithm (McLachlan
et al. 2002).

20.2 The SEM Algorithm

The SEM algorithm is a hybrid technology combining the EM algorithm and Monte
Carlo simulation (McLachlan and Peel 2000). If �j is known, all parameters can be
estimated using the EM algorithm. The stochastic EM algorithm takes advantage
of the EM property by introducing a stochastic step to sample �j from its posterior
distribution. The posterior probability of �˛j D 1 is calculated as follows:
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j

	 (20.10)

where


 ˛
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j Z
T
� C I	2j (20.11)
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The two variance matrices differ by one term, that is, ˙˛ and ˙0. Similarly, the
posterior probability of �ˇj D 1 is calculated as follows:
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	 (20.12)

where
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Again, the two variance matrices differ by ˙ˇ and ˙0. Finally, the posterior
probability of ��j D 1 is calculated as follows:
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where
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j D 1˙�1

T CZ˛�˛
j Z

T
˛ CZˇ�ˇ

j Z
T
ˇ CZ�˙0Z

T
� C I	2j (20.15)

Note that the two variance matrices differ by˙� and˙0. In the stochastic step, �j D
Œ�˛j �

ˇ
j �

�
j � are sampled from their Bernoulli posterior distributions. The EM steps

for updating other parameters are all derived based on the sampled �j . The SEM
steps are now summarized below:

1. Initialize all parameters.
2. Sample �j D Œ�˛j �ˇj ��j � from

p.�˛j j � � � / D Bernoulli.�˛j j�˛j /;8j D 1; : : : ; N
p.�

ˇ
j j � � � / D Bernoulli.�ˇj j�ˇj /;8j D 1; : : : ; N

p.�
�
j j � � � / D Bernoulli.��j j��j /;8j D 1; : : : ; N (20.16)

3. Update 
 D �
˛ 
ˇ 
�
�

from


˛ D 1

N

N
X

jD1
�˛j


ˇ D 1

N

N
X

jD1
�
ˇ
j


� D 1

N

N
X

jD1
�
�
j (20.17)
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4. Calculate the posterior expectation and variance for each of
˚

�j ˛j ˇj �j



using

O�j D E.�j j � � � / D ˙�1
T V �1

j yj ;8j D 1; : : : ; N
Ǫj D E.˛j j � � � / D �˛

j Z
T
˛ V

�1
j yj ;8j D 1; : : : ; N

Ǒ
j D E.ˇj j � � � / D �ˇ

j Z
T
ˇ V

�1
j yj ;8j D 1; : : : ; N

O�j D E.�j j � � � / D ��
j Z

T
� V

�1
j yj ;8j D 1; : : : ; N (20.18)

and

OMj D var.�j j � � � / D ˙� �˙�1
T V �1

j 1˙�

OAj D var.˛j j � � � / D �˛
j ��˛

j Z
T
˛ V

�1
j Z˛�

˛
j

OBj D var.ˇj j � � � / D �ˇ
j ��ˇ

j Z
T
ˇ V

�1
j Zˇ�

ˇ
j

OGj D var.�j j � � � / D ��
j ���

j Z
T
� V

�1
j Z��

�
j (20.19)

5. Update each of the
˚

˙� ˙˛ ˙ˇ ˙�




using
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N
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E
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�
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ǑT
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X
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�
�
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�j �
T
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D 1
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N
X

jD1
�
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j
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O�j O�Tj C OGj
	

(20.20)

6. The residual error variance is updated using

	2j D
1

M
yTj

�

y � 1 O�j � �˛jZ˛ Ǫj � �ˇjZˇ Ǒj � ��jZ� O�j
	

;8j D 1; : : : ; N
(20.21)

7. Return to Step 2 until all parameters have converged to their stationary distribu-
tions.

The convergence criterion for the SEM is different from that of the EM algorithm.
Because of the Monte Carlo sampling, the parameters do not converge to a constant
vector; rather, they converge to a stationary distribution. We need to monitor the
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iteration process of each parameter by looking at the trace plot (parameter values
against the iteration). Once all parameters are stabilized, we can take the values
from the last T iterations and calculate the average values. These average parameter
values across iterations are the SEM estimates of the parameters.

20.3 Hypothesis Testing

Genes are selected based on their posterior probabilities of the cluster labels.
For example, all genes with �˛j � 0:9 may be declared as significantly associated
with age. Similar criterion may be used for declaration of association with the
gender and age by gender interaction. In addition, we can also present the F -test
statistics for each gene. The F -test statistics for associations with the age, gender,
and age by gender interaction for gene j are

F ˛
j D

1

3
ǪTj
�

�˛
j ��˛

j Z
T
˛ V

�1
j Z˛�

˛
j

	�1 Ǫj

F
ˇ
j D

1

2
ǑT
j

�

�
ˇ
j ��ˇ

j Z
T
ˇ V

�1
j Zˇ�

ˇ
j

	�1 Ǒ
j

F
�
j D

1

6
O�Tj
�

�
�
j ���

j Z
T
� V

�1
j Z��

�
j

	�1 O�j (20.22)

where

�˛
j D �˛j˙˛ C

�

1 � �˛j
	

˙0

�
ˇ
j D �ˇj ˙ˇ C

�

1 � �ˇj
	

˙0

�
�
j D ��j˙� C

�

1 � ��j
	

˙0

(20.23)

Note that (20.23) differ from (20.9) by replacing the missing � by the expectation �.
An overall F -test for association of gene j with all effects can also be presented.
Let us define

�Tj D
h

˛Tj ˇ
T
j O�Tj

i

(20.24)

as the vector of all effects and

Z D Z˛jjZˇjjZ� (20.25)

as the horizontal concatenation of the three matrices that represent the design matrix
for all the effects. Let

�j D BlockDiag
n

�˛
j ;�

ˇ
j �

�
j

o

(20.26)
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Define

Vj D 1˙�1
T CZ�jZT C I	2j (20.27)

The overall F -test statistic is

Fj D 1

11
O�Tj
�

�j ��jZT V �1
j Z�j

	�1 O�j (20.28)

where the denominator, 11, is the total number of effects (3 for age, 2 for gender,
and 6 for age by gender interaction).



Chapter 21
Factor Analysis of Microarray Data

In differential expression analysis, the subjects are divided into two groups, the
treatment group and the control group. In the gene-specific analysis of variance
(ANOVA), the subjects are divided into multiple groups, each corresponding to
a particular treatment. Sometimes, the subjects may not be grouped based on
any criteria. They are simply selected randomly from a population for microarray
analysis. The purpose of the microarray analysis is simply to find gene networks that
coexpress in a system. Although the model-based cluster analysis can be applied
directly to the subjects, genes are classified into several clusters based on their
different expression profiles across the subjects. When the number of subjects is
large, the analysis is not efficient because there are too many parameters to estimate.
Factor analysis is a more efficient way to perform the model-based cluster analysis
by clustering genes based on the factor loadings of some hidden factors. This chapter
is focused on factor analysis of microarray expression data. It is equivalent to
differential expression analysis or ANOVA without knowing the identities of case
and control or the group labels of the treatments.

21.1 Background of Factor Analysis

21.1.1 Linear Model of Latent Factors

We use the model and the method given by McLachlan and Peel (2000). Let yj be
an M � 1 vector for expressions of gene j measured from M subjects. The linear
model involved in the factor analysis is

yj D �CBuj C "j D �C
r
X

lD1
Blujl C "j (21.1)

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 21,
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where � is an M � 1 vector for the mean, B is an M � r unknown matrix called
the factor loading, uj is an r � 1 vector of factors, and "j is an M � 1 vector
of the residual errors. The r � 1 vector of factors uj is unknown variables with
an assumed multivariate normal distribution N.0; I /, where I is an r � r identity
matrix. This assumption means that the r factors are independent and each one
has a standardized normal distribution. The residual error vector is assumed to be
distributed as N.0;D/ where D D diagŒd1; d2; : : : ; dr � is a diagonal matrix. The
number of factors r is arbitrary but should be less than M . This linear model of
factors is the standard one commonly seen in the literature (McLachlan and Peel
2000). We will revise this model later when dealing with various computational
algorithms of the factor analysis. The unknown parameters in the standard factor
analysis are � D f�;B;Dg. The strength of the relationship between the factors
and the gene expressions is represented by the factor loading matrix B . If BD0
or close to 0, the factors are irrelevant to gene expressions. In factor analysis,
the relationship between the factors and the gene expressions is described by the
covariance structure,


 D Bvar.uj /B
T CD D BBT CD (21.2)

21.1.2 EM Algorithm

The observed log likelihood function is

L.�/ D �N
2

log jBBT CDj � 1
2

N
X

jD1
.yj � �/T .BBT CD/�1.yj � �/

(21.3)

However, the log likelihood function to be maximized in the EM algorithm is the
expectation of the complete-data log likelihood function,

EŒL.�; u/� D �1
2

N
X

jD1
EŒ.yj � � � Buj /

T D�1.yj � � � Buj /�

�N
2

log jDj (21.4)

where the expectation is taken with respect to factors uj for j D 1; : : : ; N . The E-
steps involve calculating various terms of expectations related to uj . These include

Ouj D E.uj j � � � / D Œ.BTD�1B/�1 C I ��1BTD�1.yj � �/ (21.5)
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and

OSj D var.uj j � � � / D Œ.BTD�1B/�1 C I ��1 (21.6)

An alternative expressions of these are

Ouj D E.uj j � � � / D BT 
 �1.yj � �/ (21.7)

and

OSj D var.uj j � � � / D I � BT
 �1B (21.8)

The M-steps involve maximization of the expected complete-data log likelihood
function. The partial derivative of EŒL.�; u/� with respect to � is

@E.L.�; u/�

@�
D

N
X

jD1
D�1.yj � �� B Ouj / (21.9)

Setting this partial derivative to zero and solving the equation lead to

� D 1

N

N
X

jD1
.yj � B Ouj / (21.10)

where Ouj D E.uj j � � � / is the conditional expectation of uj given in (21.7). The
partial derivative of EŒL.�; u/� with respect to B is

@EŒL.�; u/�

@B
D

N
X

jD1
E
h

D�1.yj � � � Buj /u
T
j

i

D
N
X

jD1
E
h

D�1.yj � �/uTj
i

�
N
X

jD1
D�1BE

�

ujuTj
	

(21.11)

Setting @EŒL.�; u/�=@B D 0 , we get

N
X

jD1
.yj � �/E.uTj j � � � / � B

N
X

jD1
E.ujuTj j � � � / D 0 (21.12)

Therefore,

B D
2

4

N
X

jD1
.yj � �/OuTj

3

5

2

4

N
X

jD1
.Ouj OuTj C OSj /

3

5

�1

(21.13)
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Defining

� D
N
X

jD1
.yj � �/.yj � �/T (21.14)

and substituting (21.7) and (21.8) into (21.13), we have

B D Œ�
 �1B�ŒBT 
 �1�
 �1B CN.I � BT
 �1B/��1 (21.15)

The last M-step is to solve matrixD by setting @EŒL.�; u/�=@D D 0. Let us rewrite
EŒL.�; u/� as

EŒL.�; u/� D� 1
2

N
X

jD1
trfD�1EŒ.yj � � � Buj /.yj � � � Buj /

T �g

� N
2

log jDj (21.16)

The partial derivative of the above likelihood with respect to D is

@EŒL.�; u/�

@D
D �1

2

N
X

jD1

@

@D
trfD�1EŒ.yj � � � Buj /.yj � � � Buj /

T �g

�N
2

@ log jDj
@D

(21.17)

where

@ log jDj
@D

D D�1 (21.18)

and

@

@D
trfD�1EŒ.yj � � � Buj /.yj � � � Buj /

T �g

D �D�1EŒ.yj � � � Buj /.yj � � � Buj /
T �D�1 (21.19)

Substituting (21.18) and (21.19) into (21.17), we get

@EŒL.�; u/�

@D
D C1

2
D�1

N
X

jD1
EŒ.yj � �� Buj /.yj � �� Buj /

T �D�1

�N
2
D�1 (21.20)

Setting @EŒL.�; u/�=@D D 0 and solving forD lead to
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D D 1

N
diag

8

<

:

N
X

jD1
EŒ.yj � � � Buj /.yj � � � Buj /

T �

9

=

;

(21.21)

where

EŒ.yj � �� Buj /.yj � � � Buj /
T �

D .yj � � � B Ouj /.yj � �� B Ouj /T C B OSjBT (21.22)

Therefore,

D D 1

N
diag

8

<

:

N
X

jD1
Œ.yj � � � B Ouj /.yj � � � B Ouj /T C B OSjBT �

9

=

;

(21.23)

The diagonal operator appears in the equation becauseD is a diagonal matrix. Note
that the EM algorithm requires repeatedly inversion of matrix 
 D BBT CD and
it can be time consuming if M is large. Because 
 is a highly structured matrix, we
can use the following Woodbury matrix identity to invert this matrix:

.BBT CD/�1 D D�1 �D�1B.I C BTD�1B/�1BTD�1 (21.24)

The computing time saved can be substantial if r is much smaller than M because
D is a diagonal matrix whose inverse is simply

D�1 D diagŒd�1
1 ; : : : ; d�1

r � (21.25)

and I C BTD�1B is an r � r matrix and r is small.
The EM algorithm is now summarized in the following steps:

1. Initialize all parameters.
2. Calculate the expectation and variance of uj using (21.7) and (21.8).
3. Update � using (21.10).
4. Update B using (21.15).
5. Update matrixD using (21.23).
6. Repeat Steps (2)–(5) until the iteration process converges to a satisfactory level.

The E-step is represented by Step (2), whereas the M-step consists of Steps (3)–(5)
of the EM algorithm. The convergence criterion is determined by

jj�.tC1/ � �.t/jj � 10�8 (21.26)

where �.tC1/ and �.t/ are the parameter values in two consecutive iterations of the
EM algorithm and the small number 10�8 is an arbitrary positive number set by the
investigator.
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21.1.3 Number of Factors

The number of factors can be determined using the Bayesian information criterion
(BIC),

BIC D �2L.�/C .2M C rM/ ln.N / (21.27)

whereL.�/ is the observed log likelihood function, � D f�;B;Dg is the parameter
vector, N is the number of genes, and p D 2M C rM is the total number of
parameters involved in the model. Note that � and D each has a dimension of M
and the dimension of B is M � r , leading to a total number of free parameters
2MCM�r . The optimal number of factors is the one that minimizes the BIC value.

21.2 Cluster Analysis

We now perform cluster analysis on the genes based on the covariance structures to
find a few coregulated networks. Let C be the total number of clusters and �j D
1; : : : ; C be the cluster label for gene j . A multivariate representation of �j is

ıj D Œ ıj1 � � � ıjC � (21.28)

where ıj� is a Bernoulli variable defined as

ıj� D
(

1

0

for

for

�j D �
�j ¤ � (21.29)

We now use the stochastic expectation and maximization (SEM) algorithm to
perform the cluster analysis. The SEM algorithm is largely the same as the EM
algorithm except that the unknown class label for each gene is sampled from the
posterior probability before each of the EM cycles starts. Let us define


 D Œ 
1 � � � 
C � (21.30)

as the mixing proportions and

�j D Œ �j1 � � � �jC �;8j D 1; : : : ; N (21.31)

as the posterior probability of ıj . Let �� be the mean of cluster � and


� D B�BT
� CD�;8� D 1; : : : ; C (21.32)

is the cluster-specific covariance matrix. The posterior probability of ıj� is calcu-
lated using
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�j� D 
�N.yj j��; 
�/
PC

�0D1 
�0N.yj j��0 ; 
�0/
;8� D 1; : : : ; C (21.33)

The SEM algorithm is summarized as follows:

1. Initialize all parameters.
2. Sample ıj from

p.ıj j � � � / D Multinomial.ıj j1; �j /;8j D 1; : : : ; N (21.34)

3. Update 
 using


� D 1

N

N
X

jD1
ıj�;8� D 1; : : : ; C (21.35)

4. Calculate E.uj j � � � / and var.uj j � � � / using

Ouj D E.uj j � � � / D
C
X

�D1
ıj�B

T
� 


�1.yj � ��/ (21.36)

and

OSj D var.uj j � � � / D
C
X

�D1
ıj�.I � BT

� 

�1
� B�/ (21.37)

5. Update �� using

�� D 1


�N

N
X

jD1
ıj�.yj � B� Ouj /;8� D 1; : : : ; C (21.38)

6. Update B� using

B� D
2

4

N
X

jD1
ıj�.yj � ��/OuTj

3

5

2

4

N
X

jD1
ıj�.Ouj OuTj C OSj /

3

5

�1

(21.39)

for all � D 1; : : : ; C .
7. Update D� using

D� D 1


�N
diag

2

4

N
X

jD1
ıj�.SSj� CB� OSjBT

� /

3

5 (21.40)

where

SSj� D .yj � �� � B� Ouj /.yj � �� � B� Ouj /T (21.41)

8. Repeat Steps (2)–(7) until all parameters have converged to their perspective
stationary distributions.
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21.3 Differential Expression Analysis

A differential expression analysis can be performed even though there are no “case”
and “control” labels for the subjects. We can classify each gene into one of two
clusters; one is the neutral cluster in which the mean and covariance structure are�0
and
0 D D0, respectively. The other cluster is defined by�1 and 
1 D B1BT

1 CD1.
The mixture distribution for gene j is

p.yj / D 
N.yj j�1; 
1/C .1 � 
/N.yj j�0; 
0/ (21.42)

where 
 is the proportion of genes belonging to cluster 1. Let �j D f0; 1g be the
cluster label for gene j . We now use the stochastic expectation and maximization
(SEM) algorithm to perform the cluster analysis. Let �j D E.�j j � � � / be the
conditional posterior probability of �j D 1, which is calculated using

�j D 
N.yj j�1; 
1/

N.yj j�1; 
1/C .1 � 
/N.yj j�0; 
0/ (21.43)

The SEM algorithm is summarized as follows:

1. Initialize all parameters.
2. Sample �j from

p.�j j � � � / D Bernoulli.�j j�j /;8j D 1; : : : ; N (21.44)

3. Update 
 using


 D 1

N

N
X

jD1
�j (21.45)

4. Calculate E.uj j : : : / and var.uj j : : : / for those genes that come from cluster
1 using

Ouj D E.uj j � � � / D BT
1 


�1
1 .yj � �1/ (21.46)

and

OSj D var.uj j � � � / D I � BT
1 


�1
1 B1 (21.47)

5. Update �� using

�1 D 1


N

N
X

jD1
�j .yj � B1 Ouj / (21.48)

and

�0 D 1

.1 � 
/N
N
X

jD1
.1� �j /yj (21.49)
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6. Update B1 using

B1 D
2

4

N
X

jD1
�j .yj � �1/OuTj

3

5

2

4

N
X

jD1
�j .Ouj OuTj C OSj /

3

5

�1

(21.50)

7. Update D1 and D0 using

D0 D 1

.1 � 
/N diag

2

4

N
X

jD1
.1 � �j /.yj � �0/.yj � �0/T

3

5 (21.51)

and

D1 D 1


N
diag

2

4

N
X

jD1
�j

�

SSj CB1 OSjBT
1

	

3

5 (21.52)

where

SSj D .yj � �1 � B1 Ouj /.yj � �1 � B1 Ouj /T (21.53)

8. Repeat Steps (2)–(7) until all parameters have converged to their perspective
stationary distributions.

21.4 MCMC Algorithm

We only examine the MCMC algorithm for the differential expression analysis
(the two-cluster analysis). In Bayesian analysis, we need to assign a prior distribu-
tion for each parameter. For the mixing proportion, we assign p.
/ D Beta.
j1; 1/.
Each of the cluster means is assigned an uninformative prior, p.�0/ D p.�1/ D 1.
The prior for B1 is also uninformative, p.B1/ D 1. The only parameter left is D.
We now assign each element ofD a scaled inverse chi-square distribution

p.di / D Inv� �2.di j�; !/;8i D 1; : : : ;M (21.54)

The posterior distribution of each variable involved in the analysis has an explicit
form, and thus, the Gibbs sampler approach can be used for the MCMC analysis.
The MCMC algorithm is summarized below:

1. Sample all variables from their prior distributions.
2. Sample �j from the following Bernoulli distribution:

p.�j j � � � / D Bernoulli.�j j�j /;8j D 1; : : : ; N (21.55)
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3. Simulate 
 from the following beta distribution:

p.
j � � � / D Beta

�




ˇ

ˇ

ˇ

ˇ
1C

XN

jD1 �j ; 1CN �
XN

jD1 �j
�

(21.56)

4. Sample factors uj in cluster 1 from the following normal distribution:

p.uj j � � � / D N.uj jOuj ; OSj / (21.57)

where

Ouj D E.uj j � � � / D BT
1 


�1
1 .yj � �1/ (21.58)

and

OSj D var.uj j � � � / D I � BT
1 


�1
1 B1 (21.59)

5. Simulate �0 and �1 from their perspective normal distributions,

p.�1j � � � / D N
2

4�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1


N

N
X

jD1
�j .yj � B1 Ouj /; 1


N
D1

3

5 (21.60)

and

p.�0j � � � / D N
2

4�0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

.1 � 
/N
N
X

jD1
.1 � �j /yj ; 1

.1 � 
/N D0

3
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6. Let B1l be the l th column of matrix B1 D ŒB11 B12 � � � B1r �, which is sampled
from the following normal distribution:
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(21.62)

where ujl is the l th element of vector uj and

y�
j D yj � �1 �

r
X

l 0¤l
B1l 0 ujl 0 (21.63)

is yj adjusted by the mean and values of other factors (also called the offset
of yj ).

7. Simulate matrixD1 one element at a time using the following distribution. Let vi
be the i th diagonal element of the followingM �M matrix:

V D
N
X

jD1
�j Œ.yj � �1 � B1uj /.yj � �1 � B1uj /T � (21.64)
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Let di be the i th diagonal element of matrix D1. We now simulate di from the
following scaled inverse chi-square distribution:

p.di j � � � / D Inv� �2.di j� C 
N;! C vi /;8i D 1; : : : ;M (21.65)

8. Simulate matrix D0 one element at a time using the following distribution.
Redefine vi as the i th diagonal element of matrix

V D
N
X

jD1
.1 � �j /.yj � �0/.yj � �0/T (21.66)

and define di as the i th diagonal element of matrixD0. We now simulate di from
the following scaled inverse chi-square distribution:

p.di j � � � / D Inv� �2.di j� C .1� 
/N;! C vi /;8i D 1; : : : ;M (21.67)

9. Go back to Step (2) and repeat the sampling process until a desired length of the
Markov chain is reached.

Let T be the posterior sample size and �.t/j be the t th observation of the sampled
cluster label for gene j for t D 1; : : : ; T . Define

N�j D 1

T

T
X

tD1
�
.t/
j (21.68)

as the posterior mean of �j across all the posterior sample. Gene j will be classified
into the differentially expressed cluster if N�j � 0:9, where 0.9 is an arbitrarily set
cutoff point.



Chapter 22
Classification of Tissue Samples Using
Microarrays

Classification of tissue samples is an important aspect of disease diagnosis and
treatment (Golub et al. 1999; Zhu and Hastie 2004; Liao and Chin 2007). Conven-
tional diagnosis of disease has been based on examination of the morphological
appearance of stained tissue specimens under light microscopy. However, this
method is subjective and highly depends on trained pathologists. Microarray
technology offers an alternative approach of disease diagnosis, and it can be
more objective and accurate than the conventional diagnosis. This chapter intro-
duces tissue sample classification using microarrays. Numerous studies have been
reported using microarrays to classify disease states and cancer types (Lee and
Lee 2003; Yeung and Bumgarner 2003; Statnikov et al. 2005; Jirapech-Umpai and
Aitken 2005; Dagliyan et al. 2011). The support vector machine (SVM) is one
of the methods that have been successfully applied to cancer diagnosis problem
(Lee and Lee 2003). However, we will use the model-based logistic regression
method developed by Zhu and Hastie (2004) as the theoretical basis to develop
our own penalized logistic regression classifier. The penalized logistic regression
method has an advantage of providing an estimate of the underlying probability of
disease occurrence.

22.1 Logistic Regression

We will introduce the logistic regression for classification of tissue samples under
two states of the disease phenotype, affected (case) and normal (control). In contrast
to the microarray data analysis described in previous chapters, we now use anM�N
matrixZ to denote the microarray data whereM is the number of subjects andN is
the number of transcripts (genes). The disease “phenotype” is denoted by anM � 1
vector y with yj D 0 for control and yj D 1 for case where j D 1; : : : ;M indexes
the subjects. We first review the basic principles of logistic regression analysis and
then develop a penalized regression method to select genes. Finally, we will use the
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selected genes to predict disease phenotypes for future samples. Before collecting
more samples, we can evaluate the method using cross validation analysis to obtain
some confidence about the predictability of the method.

The probability distribution for yj is

p.yj / D �yjj .1 � �j /1�yj (22.1)

where

�j D E.yj / D e�j

1C e�j
(22.2)

is the expectation of yj and �j is a linear predictor described as

�j D Xjˇ C
N
X

kD1
Zjk�k D Xjˇ CZj � (22.3)

Note that the genes are now indexed by k rather than j . The relationship between
the expectation and the linear predictor is the logit link function

�j D logit.�j / D ln
�j

1 � �j D Xjˇ C
N
X

kD1
Zjk�k (22.4)

where Xj is a design matrix for some effects not related to the gene expression and
�k is the effect of gene k on the binary disease status. The gene expression levelZjk
is standardized prior to the analysis, i.e., it is subtracted by the mean expression of
gene k and divided by the standard deviation. Theoretically, the standardization is
not required, but in practice, it is useful because the expression levels may not be in
the same scale. The variation in the scale will cause computational problems for the
logistic model. When there is no systematic effects other than the gene expressions,
the design matrix Xj is simply equal to one, and ˇ simply represents the intercept
of the logistic regression. The logit link function is one of a few link functions we
can choose. An alternative link function is the probit link function commonly used
in the threshold model of quantitative genetics (Falconer and Mackay 1996; Lynch
and Walsh 1998).

The traditional logistic regression is performed by maximizing the following log
likelihood function:

L.�/ D
M
X

jD1

h

yj ln�j C .1 � yj / ln.1 � �j /
i

(22.5)

where �Dfˇ; �g is the parameter vector and � D �

�1 � � � �N
�T

is the vector of
gene effects. The iteratively reweighted least-squares method for generalized linear
models (Wedderburn 1974) can be used to estimated the parameters. The method
requires the first- and second-order partial derivatives of the likelihood function with
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respect to the linear predictor. The first partial derivative of L.�/ with respect to the
parameters is
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and the second-order partial derivative is
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(22.7)
where

Wj .�/ D �j .1 � �j /;8j D 1; : : : ;M (22.8)

is the variance of the data point. The intercept ˇ and gene effect � can be estimated
sequentially or jointly using the Newton–Raphson iteration. For the sequential
approach, ˇ is estimated conditional on � , and then � is estimated conditional on ˇ.
The Newton–Raphson iteration for ˇ is
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where

y�
j D Xjˇ.t/ CW �1

j .�.t//.yj � �j / (22.10)

is called the adjusted response or pseudodata. It is written in the form of weighted
regression analysis on the pseudodata. The corresponding Newton–Raphson itera-
tion for � conditional on ˇ is
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where

y�
j D Zj �.t/ CW �1

j .�.t//.yj � �j / (22.12)

is the pseudodata corresponding to � .

Once the parameters are estimated, denoted by O� D
n Ǒ; O�

o

, the disease outcome

can be predicted using

O�j D eXj ǑCZj O�

1C eXj ǑCZj O� (22.13)

which is the probability of yj D 1 given the expression levels for N genes. Of
course, the probability of yj D 0 is

1 � O�j D 1

1C eXj ǑCZj O� (22.14)

The traditional logistic regression analysis applied to microarray data has two
problems: (1) The sample size M is usually small, e.g., M < 200 is typical in
the current microarray experiments. (2) The number of genes is usually large, e.g.,
N > 20; 000 is common. With the traditional regression analysis, we cannot handle
all the N genes simultaneously because the model will be overfit and thus will
loose the desired predictability. Therefore, a preliminary treatment of the data is
required prior to the analysis. Among the N genes, majority of the genes will not
be differentially expressed. These genes can be detected by visual inspection of
the expression profiles (the plot of the gene expression against the subjects). These
genes can be immediately eliminated in the preprocessing stage. The genes that
cannot be eliminated in this stage will be subject to further analysis. The following
discussion assumes that all the N genes have survived the preprocessing and thus
N may be in the order of a few hundred to one or two thousand. Even with a few
hundred genes, we still have to face the overfitting problem because the sample size
M is not sufficiently large. Therefore, we perform a penalized logistic regression
analysis as described in the following section.

22.2 Penalized Logistic Regression

The penalized logistic regression is a generalization of the Bayesian shrinkage pos-
terior mode estimation for quantitative traits to the binary traits (disease outcome).
The penalized log likelihood function is defined as

 .�/ D
M
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jD1

h

yj ln�j C .1 � yj / ln.1 � �j /
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C
N
X

kD1
lnN.�kj0; �k/ (22.15)
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where the quadratic penalty, also called the L2 penalty, is used and it is equivalent
to assigning each regression coefficient to a normal prior. Other penalties can also
be used, e.g., the L1 penalty used in the Lasso regression analysis (Tibshirani 1996;
Friedman et al. 2010). The penalty involves �k whose values need to be determined
prior to the data analysis. We now introduce a higher level prior to each �k and
include the log density of the hyperprior in the penalty also. The scaled inverse
chi-square distribution is chosen as the hyperprior. We now revise the parameter
vector to include the �k , i.e., � D fˇ; �; �g where � D f�kg is the collection of all
the �k’s. The penalized log likelihood for the hierarchical model is redefined as

 .�/ D
M
X

jD1

h

yj ln�j C .1 � yj / ln.1� �j /
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kD1
lnN.�kj0; �k/
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ln Inv� �2.�kja; b/ (22.16)

where .a; b/ D .0; 0/ are the hyperparameter values. Of course, alternative
parameter values can also be selected. The first part of the above penalized log
likelihood function is the usual log likelihood function L.�/; the second and third
parts represent the penalty and denoted by P.�/. Therefore, the penalized log
likelihood is expressed as

 .�/ D L.�/C P1.�/C P2.�/ (22.17)

The solution of the penalized likelihood can be obtained by maximizing  .�/ with
respect to � . Theoretically, any algorithm can be adopted for the maximization.
Practically, it is difficult due to the large number of parameters involved in the
log likelihood function. The dimensionality of the parameters for the hierarchical
model is 1 C 2N , including one intercept, N gene effects, and N variance
components. We now introduce the following coordinate descent algorithm for
parameter estimation.

22.3 The Coordinate Descent Algorithm

This algorithm starts with some initial values of the parameters and then maximizes
the penalized log likelihood function with one parameter at a time conditional on
the values of other parameters at their previous values. Let  .ˇj � � � / D L.ˇj � � � /
be the conditional penalized log likelihood function for ˇ conditional on the values
of other parameters. Note that the intercept is not penalized and thus the conditional
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likelihood does not include the penalty. The conditional solution for ˇ is obtained
using the Newton–Raphson algorithm as described in the previous section,
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where

y�
j D Xjˇ.t/ CW �1

j .�.t//.yj � �j / (22.19)

is the pseudodata point. Let

 .�k j � � � / D L.�kj � � � /C P1.�kj � � � / (22.20)

be the penalized log likelihood function for �k conditional on the values of other
parameters. The Newton–Raphson iteration is
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where

y�
j D Zjk�.t/k CW �1

j .�.t//.yj � �j / (22.22)

is the pseudodata point. Let

 .�k j � � � / D P1.�kj � � � /C P2.�kj � � � / (22.23)

be the conditional log likelihood of �k given all other parameters. This variance
parameter only appears in the penalty. The partial derivative is

@ .�kj � � � /
@�k

D �aC 3
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ln.�k/�
�2k C b
2�k

(22.24)

Setting the partial derivative to zero, we can solve for �k , and the solution happens
to have the following explicit form:

�k D �2k C b
aC 3 (22.25)

After each component of � is updated, we complete one iteration. The process
repeats for many iterations until a certain criterion of convergence is satisfied.
The final solution of the parameter vector, denoted by O� , is the penalized estimate.
When .a; b/ D .0; 0/, the above solution becomes �k D �2k=3, and the shrinkage is
very strong. Choosing .a; b/ D .�2; 0/ leads to �k D �2k , which corresponds to the
uniform prior for �k , and the shrinkage is weak.
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22.4 Cross Validation

The penalized maximum likelihood method requires hyperparameters a and b in
the scaled inverse chi-square distribution. The .a; b/ D .0; 0/ choice is called the
Jeffreys’ prior for a variance component. This prior is not necessarily optimal. We
need some criteria to evaluate the optimality of the hyperparameters. The most
reliable measure of the model fit is the average prediction error (PE) defined as

˝ D 1

M

M
X

jD1
.yj � O�j /2 (22.26)

where

O�j D eXj ǑCZj O�

1C eXj ǑCZj O� (22.27)

is the predicted outcome of sample j and . Ǒ; O�/ are estimated parameters from the
population that excludes the j th sample. This type of cross validation is called
the leave-one-out cross validation or n-fold cross validation where the n means
the sample size. In the contest of microarray data analysis in this chapter, the
sample size is denoted by M , and thus, it should be called the M -fold cross
validation. In general, one can choose any K-fold cross validation to select the
optimal hyperparameter values, where K D 2; : : : ;M . The basic principle of cross
validation is that individuals predicted do not contribute to parameter estimation.
Under each selection of .a; b/, we can calculate the PE, denoted by ˝.a; b/, as a
function of .a; b/. The value of .a; b/ that minimizes˝.a; b/ is the optimal choice
of the hyperparameters.

22.5 Prediction of Disease Outcome

The ultimate purpose of the logistic regression is to predict the disease outcome of
new subjects using the microarray data. Let X�

j and Z�
j be the design matrices for

the tissue sample from a new subject. Based on the estimated parameters . Ǒ; O�/, we
can calculate the probability of the unknown disease outcome of individual j using

Pr.y�
j D 1/ D ��

j D
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j O�

1C eX
�

j
ǑCZ�

j O�

where y�
j is the unknown disease outcome. This probability can help physicians to

make recommendation to patients regarding how to prevent the disease.
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22.6 Multiple-Category Classification

Multiple-category classifications using microarray data have been extensively
studied (Lee and Lee 2003; Yeung and Bumgarner 2003; Dagliyan et al. 2011).
We now extend binary classification into multiple-category classification using the
penalized logistic regression analysis. Assume that there are C categories of the

tissue samples. Let yj D
�

yj1 � � � yjC
�T

be the outcome of the disease category for
the j th tissue sample, where

yjc D
(

1

0

if j belongs to category c

if j belongs to category c0 (22.28)

where c0 ¤ c. Let

E.yj / D �j D
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(22.29)

be the expectation of vector yj , where

�jc D eˇcC
PN
kD1 Zjk �kc
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c0D1 eˇc0 CPN

kD1 Zjk �kc0
(22.30)

For each category, there is an intercept and a set of regression coefficients.
We now define

ˇ D �ˇ1 � � � ˇC
�T

(22.31)

and

�k D
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(22.32)

The penalized likelihood function is defined as
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A simple extension of the binary penalized logistic regression to the multiple-
category case can be made. The sequential estimate of each parameter set is shown
below. Let

Wj .�/ D diag
�

�j1 � � � �jC
� � ��j1 � � � �jC

�T �

�j1 � � � �jC
�

(22.34)
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be the variance–covariance matrix of yj , and define the generalized inverse of
Wj .�/ as

W �1
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h

��1
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(22.35)

Conditional on all other parameters, the intercept is updated using
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where
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is the pseudodata point. The regression coefficients for gene k are updated using
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where

y�
j D Zjk�.t/k CW �1

j .�.t//.yj � �j / (22.39)

is the pseudodata point. Given �k, the updated �k happens to have the following
explicit form:

�k D �Tk �k C b
aC C C 2 (22.40)

Iterations are required, and the penalized logistic estimates of the parameters take
the converged values of the parameters.

To predict the outcomes of a new tissue sample, we use the estimated parameters
and the new gene expression Z�

jk data to calculate
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;8c D 1; : : : ; C (22.41)

The j th sample will be classified into the class which has the maximum probability.



Chapter 23
Time-Course Microarray Data Analysis

In a time-course microarray experiment, each condition or sample represents a time
point after a particular treatment on tissue samples. Because mRNA abundance of
different time points are correlated, we may express the mRNA abundance as a
function of time. This function is usually nonlinear, and the visual plot of this
function against time is called gene expression profile. Similar to time-course
microarray experiment, each condition or sample may represent a particular dose
of a drug injection. We may also express the mRNA abundance as a function of
the dosage. This kind of experiment is called dose-response microarray experiment.

23.1 Gene Expression Profiles

Cluster analysis of time-course or dose-response microarray data may be performed
based on the functional relationships of gene expression and the time points, rather
than based on the original expression levels of different time points. Because a curve
is governed by a few parameters, cluster analysis is actually performed based on
the parameters that generate the curves. Gene expression profiles can have many
different shapes; each different shape may be described by a different function,
e.g., linear, quadratic, exponential, or logistic. However, orthogonal polynomial
is a method of curve fitting that can be applied to more complicated functional
relationships (Seber 1977; Narula 1979).

B-spline is another commonly used curve fitting approach (de Boor 1978;
Welham et al. 2007). Unlike the orthogonal polynomial curve fitting that a particular
degree of polynomial is fit to the entire range of the time course, the B-spline fits
a particular degree of polynomial to multiple ranges of the time course. A B-spline
function is a piecewise polynomial function, i.e., the entire curve is divided into
many different pieces and the curve in each piece is a polynomial. All the piecewise
polynomials have exactly the same degree (order) and are connected smoothly at
the joint points whose abscissa values, referred to as knots, are prespecified. We can
use B-spline functions to fit curves to a wide variety of data, not limited to time
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course. Like the orthogonal polynomial where we use the polynomial function to
describe the relationship between the time point and the response variable, the
B-spline uses the B-spline function to describe the relationship. Both B-spline and
orthogonal polynomial will be discussed in this chapter, but more detail will be
given to the polynomial cure fitting with a very brief description on the B-spline.

Recent methodology developments and applications in time-course microarray
data can be found in Cullinan et al. (1995), Peddada et al. (2003), Park et al. (2003),
Schliep et al. (2003), Luan and Li (2003), Glonek and Solomon (2004), Ma et al.
(2006), and Storey et al. (2005). The method we will introduce in this chapter
follows that of Luan and Li (2003). Although Luan and Li (2003) used B-splines, we
will adopt their method of clustering in both B-splines and orthogonal polynomials.

23.2 Orthogonal Polynomial

Let t be the time point and y be the gene expression. The polynomial relationship
between y and t is expressed as

y D f .t/C " D �0 C t�1 C t2�2C; : : : ;Ctd �d C " (23.1)

where �r , 8r D 0; : : : ; d is the polynomial coefficient and d is the degree of the
polynomial. We can choose d to reflect the complexity of the curve. For example,
d D 1 and d D 2 represent linear and quadratic curves, respectively. The
polynomial coefficients can be estimated from the data. One desirable property of
the polynomial function is that the function is linear on the parameters, leading to
an easy way to estimate the parameters.

Let tk , 8k D 1; : : : ;M , be the actual time point for the kth condition and ykj
be the expression level of gene j at time tk . For example, if gene expressions are
measured at five time points with equal time interval, say, 0 min, 20 min, 40 min,
60 min, and 80 min, then t1 D 0; t2 D 20; t3 D 40; t4 D 60, and t5 D 80. Note that
the expression data are stored in anM �N matrix with the j th column representing
the expressions of gene j across M time points. To fit the orthogonal polynomial,
we need to rescale the actual time points into time points in a standardized scale so
that the range of the standardized time points runs from �1 to C1. The standardize
time point is defined as

�k D 2 .tk � tmin/

.tmax � tmin/
� 1 (23.2)

where (tmin; tmax/ is the actual range of the time points. The standardized time points
need to be transformed again before used to fit the orthogonal polynomial. The
transformed time point is denoted by  r.�k/; 8r D 0; 1; : : : ; d .

Note that we are dealing with thousands of genes, each of which is fitted by a
polynomial model. For the j th gene, the polynomial model is

ykj D  0.�k/�0j C  1.�k/�1j C � � � C  d.�k/�dj C "kj (23.3)
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where  0.�k/ D 1;8k D 1; : : : ;M . The orthogonal property is reflected by

M
X

kD1
 r.�k/ s.�k/ D 0 (23.4)

for all r ¤ s and

M
X

kD1
 r .�k/ D 0 (23.5)

for r D 1; : : : ; d . The coefficients of orthogonal polynomial can be obtained in a
number of ways. We used the Hayes’ (1974) three-term recurrence relationship,

 rC1.�k/ D 2.�k � ar/ r.�k/ � br r�1.�k/ (23.6)

Beginning with initial polynomials  0.�k/ D 1,  1.�k/ D 2.�k � a0/, ar and br are
chosen to make the orthogonal relations hold, namely,

ar D
PN

kD1 �k 2r .�k/
Pn

kD1  2r .�k/
and br D

Pn
kD1  2r .�k/

PN
kD1  2r�1.�k/

(23.7)

where r D 0; : : : ; d �1, b0 D 0 and a0 D 1
M

PM
kD1 �k . The transformed time points

can be used as the independent variables for data analysis. The a and b vector, each
with dimension d C 1, will be used later when we predict the gene expression for
any time point within the range of the time course. After all the  r.�k/ are found,
we may estimate the regression coefficients �j , classify the genes based on their �j
values, and predict the curves for each gene in each cluster. Now let us define the
following variables using a matrix notation so that the model can be rewritten in a
compact matrix form. Let

yj D
�

y1j y2j : : : yMj
�T

(23.8)

be an M � 1 vector of expressions for the j th gene,

�j D
�

�0j �1j : : : �dj
�T

(23.9)

be an .d C 1/ � 1 vector of the regression coefficients,

"j D
�

"1j "2j : : : "Mj
�T

(23.10)

be an M � 1 vector of the residual errors, and

 .�/ D

2

6

6

6

4

 0.�1/  1.�1/ : : :  d .�1/

 0.�2/  1.�2/ : : :  d .�2/

: : : : : : : : : : : :

 0.�M /  1.�M / : : :  d .�M /

3

7

7

7

5

(23.11)
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be an M � .d C 1/ matrix for the orthogonal polynomial coefficients. The linear
model of expression for gene j in matrix notation is

yj D  .�/�j C "j (23.12)

The residual error vector is assumed to be normally distributed "j � N.0; I	2/

where 	2 is a common residual variance shared by all time points. We now use an
example to demonstrate the polynomial coefficient matrix  .�/. Let M D 6 be the
number of time points and

t D �0 20 40 50 60 80 � (23.13)

be the original time point vector. The standardized time points are

� D ��1:00 �0:50 0:00 C0:25 C0:50 C1:00 � (23.14)

Let d D 3 be the degree of the polynomial to be fit. The polynomial coefficient
matrix is

 .�/ D

2

6

6

6

6

6

6

6

6

6

6

4

1 �2:083333 2:1428571 �1:363636
1 �1:083333 �0:785714 2:7000000
1 �0:083333 �1:714286 0:4909091
1 0:4166667 �1:428571 �1:090909
1 0:9166667 �0:642857 �1:990909
1 1:9166667 2:4285714 1:2545455

3

7

7

7

7

7

7

7

7

7

7

5

(23.15)

The values of vector a and b are

a D

2

6

6

6

6

4

0:0416667

0:0000000

�0:077381
0:1038961

3

7

7

7

7

5

and b D

2

6

6

6

6

4

0:0000000

1:7013889

1:6163265

0:0000000

3

7

7

7

7

5

(23.16)

which will be used later to calculate the orthogonal polynomial coefficients for new
time points. For example, suppose that we want to predict gene expressions for three
new time points in addition to the existing six time points. The new time sequence
will be

t D �0 10 20 30 40 50 60 70 80 �

After standardization, the time points in the standardized scale are

� D ��1:00 �0:75 �0:50 �0:25 0:00 0:25 0:50 0:75 1:00 �

The new time points that are not observed are 10, 30, and 70. Using the updated list
of time points with the new time points and the existing a and b vectors calculated



23.2 Orthogonal Polynomial 369

before, we get the new  .�/ matrix,

 .�/ D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 �2:083333 2:1428571 �1:363636
1 �1:583333 0:4285714 1:8272727
1 �1:083333 �0:785714 2:7000000
1 �0:583333 �1:500000 2:0045455
1 �0:083333 �1:714286 0:4909091
1 0:4166667 �1:428571 �1:090909
1 0:9166667 �0:642857 �1:990909
1 1:4166667 0:6428571 �1:459091
1 1:9166667 2:4285714 1:2545455

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(23.17)

Some software packages, e.g., the SAS/IML program (SAS Institute 2008a), have an
intrinsic function to calculate the orthogonal polynomial coefficients. Users provide
the observed time points and the degree of the polynomial and call the orthogonal
polynomial function  .�/ D OrPol.�; d /. The returned value of  .�/, however,
will be different from what is calculated using the Hayes’ three-term recurrent
algorithm. For example, calling the orthogonal polynomial function using the six-
time-point sequence with degree of three will return a  .�/ matrix

 .�/ D

2

6

6

6

6

6

6

6

6

6

6

4

0:4082483 �0:652051 0:527535 �0:339657

0:4082483 �0:339066 �0:193429 0:6725208

0:4082483 �0:026082 �0:422028 0:1222765

0:4082483 0:1304101 �0:35169 �0:271726

0:4082483 0:2869023 �0:15826 �0:495899

0:4082483 0:5998866 0:597873 0:3124844

3

7

7

7

7

7

7

7

7

7

7

5

(23.18)

The difference between matrix (23.18) and matrix (23.15) is due to the normalization
of the OrPol function in SAS. The normalization process is expressed as

 r.�k/ D  r.�k/
q

PN
kD1  2r .�k/

;8r D 0; 1; : : : ; d (23.19)
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with order three given
in (23.20)

where the  r.�k/ values in the right-hand side of (23.19) are those calculated from
the Hayes’ algorithm and the r.�/ in the left-hand side of (23.19) is the normalized
value. After the normalization, the sum of squares of each column of  .�/ equals
unity, i.e.,

PM
kD1  2r .�k/ D 1. Rescaling of the time points for the polynomial

analysis is necessary, but normalization of the polynomial coefficients should be
avoided because we cannot calculate the polynomial coefficients correctly for new
time points after the normalization.

We now use the time points (rescaled) given in (23.14) as an example to
demonstrate the smooth polynomial function for a given set of parameters (� ).
Using the � vector and d D 3, we already calculated vectors a and b as shown
in (23.16). Once the a and b vectors are calculated, the time point vector � is no
longer useful for drawing a smooth curve. This original time point vector is only
used to find polynomial coefficient matrix  .�/ for parameter estimation (discussed
later). Let us create a new vector of time points ranging from �1 to C1 with 0:01
as a constant step of increment. This new vector of time points has 201 elements.
For each element (time point), say �k , we used (23.6) to calculate

 .�k/ D
�

 0.�k/  1.�k/  2.�k/  3.�k/
�

Let

� D � �0 �1 �2 �3
�T D �0:01 0:50 1:00 0:50 �T

be the parameter values (either given or estimated from data). The predicted gene
expression at time �k is then obtained through

Qy.�k/ D �0 0.�k/C �1 1.�k/C �2 2.�k/C �3 3.�k/ (23.20)

We then calculated the predicted gene expression for all k D 1; : : : ; 201 to form a
vector Qy. The plot of Qy against the new � vector (with 201 elements) forms a smooth
curve as shown in Fig. 23.1.
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23.3 B-spline

The B-spline bases are equivalent to the orthogonal polynomial coefficients, and
they are derived before a B-spline function is fit. For a B-spline with d degrees and
s internal knots, there will be p D dCsC1 B-spline bases, excluding the intercept.
An internal knot value must be taken between (but not including) the minimum
and maximum values of the time points. Using the same notation as the orthogonal
polynomial, let  r.�/, for r D 0; 1; : : : ; p, be the r th B-spline base at time � that is
defined either in the standardized scale or in the original scale, the B-spline function
is defined as

yj .�/ D  0.�/�0j C  1.�/�1j C � � � C  p.�/�pj (23.21)

where  0.�/ D 1, �0j is the intercept and �1j ; � � � ; �pj are the regression
coefficients. The B-spline bases

 .�/ D � 1.�/ � � �  p.�/
�

(23.22)

are calculated using the algorithm given by de Boor (1978). The algorithm is not too
difficult to code, but it is hard to express in the current notation system within the
text. Some software package has a function to create the B-spline bases given the
degree and the knots, such as the B-spline function in the SAS/IML language (SAS
Institute 2008a). What we need to know is to define the knots and call the B-spline
function to create the p vectors of the B-spline bases. There are two ways to define
the knots given the range of the time points; one is to select the knots manually, and
the other is to select equally spaced knots. We now use an example to show how to
select the knots. Assume that the time points are

� D � �1 �2 �3 �4
� D �2:5 3:0 4:5 5:1 �

The knot sequence must contain s interval knots, d external knots below the
minimum time point, and d external knots above the maximum time point for
d � 1. The minimum and maximum time points cannot be included in the selected
knot sequence. The total number of knots in the sequence is s C 2d . Let us assume
that d D 3 and we want to choose s D 3 internal knots. The following knot
sequence is legal:

� D �0 1 2 3 4 5 6 7 8 �

where the three internal knots are 3, 4, and 5. The three external knots below 2.5
(the minimum time point) are 0, 1, and 2, and the three external knots above 5.1
(the maximum time point) are 6, 7, and 8. When we call the B-spline function in
SAS/IML  .�/ D Bspline.�; d; �/, we will get
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 .�/ D

2

6

6

6

6

4

0:02083 0:47917 0:47917 0:02083 0 0 0

0 0:16667 0:66667 0:16667 0 0 0

0 0 0:02083 0:47917 0:47917 0:02083 0

0 0 0 0:1215 0:65717 0:22117 0:00017

3

7

7

7

7

5

(23.23)

To define equally spaced knot sequence, we first need to specify the number of
internal knots, say s D 3 , and find the three interval knots, which are

Œmin.�/C space;min.�/C 2 � space;min.�/C 3 � space�

where

space D Œmax.�/ �min.�/�

s C 1 D 5:1 � 2:5
3C 1 D 0:65 (23.24)

Let ! D 10�12 be a small positive number. The d external knots below min.�/ are

Œmin.�/ � ! � 2 � space;min.�/ � ! � space;min.�/ � !�
and the d external knots above max.�/ are

Œmin.�/C !;min.�/C ! C space;min.�/C ! C 2 � space�

The small number ! added or subtracted in the external knots is to make sure that
the external knots do not include the maximum and minimum values of the time
points. Adding all the external and internal knots together, we get the overall knot
sequence

� D � 1:20� ! 1:85� ! 2:50 � ! 3:15 3:80 4:45 5:10C ! 5:75C ! 6:40C ! �

We then call the B-spline function in SAS  .�/ D Bspline.�; d; �/; we will get

 .�/ D

2

6

6

6

6

4

0:16667 0:66667 0:16667 0 0 0 0

0:00205 0:30253 0:61956 0:07586 0 0 0

0 0 0 0:13109 0:66098 0:20786 0:00008

0 0 0 0 0:16667 0:66667 0:16667

3

7

7

7

7

5

(23.25)

We can also rely on the B-spline function to compute a knot vector. For example,
the above B-spline bases (matrix (23.25)) can also be generated using the  .�/ D
Bspline.�; d; :; s/ function in SAS, where the knot sequence � has been replaced by
a missing value (represented by a period) and the number of equally spaced internal
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knots s D 3. The B-spline function actually generates the same knot sequence � and
then uses this sequence to create the B-spline bases. Note that the knot sequence is
only determined by the minimum and maximum values of the actual time points in
the � vector, i.e., the interval values of vector � are irrelevant to the knot sequence.

Special properties of the B-spline bases include the following: (1) The sum of
each row equals one, and (2) each row has at most d C 1 D 4 nonzero values.
Although B-spline can fit data to more complicated curves, the B-spline bases do not
have a meaningful statistical property such as linear or quadratic interpretation of
the curve. This property, however, holds for the orthogonal polynomial coefficients
where the first column of  .�/ corresponds to linear, the second column of  .�/
corresponds quadratic, etc. On the other hand, when predicting gene expression for
a new time point, we can use exactly the same B-spline function to call the new
 .�/ matrix. Consider the time points

� D �2:5 3:0 4:5 5:1 �

and the knot sequence

� D �0 1 2 3 4 5 6 7 8 �

We now want to calculate the  .�/ matrix by adding two new time points so that

� D �2:5 3:0 3:5 4:5 5:0 5:1 �

Using the same knot sequence and the same degree of the polynomial to call the
B-spline function, we get

 .�/ D

2

6

6

6

6

6

6

6

6

6

6

4

0:02083 0:47917 0:47917 0:02083 0 0 0

0 0:16667 0:66667 0:16667 0 0 0

0 0:02083 0:47917 0:47917 0:02083 0 0

0 0 0:02083 0:47917 0:47917 0:02083 0

0 0 0 0:16667 0:66667 0:16667 0

0 0 0 0:12150 0:65717 0:22117 0:00017

3

7

7

7

7

7

7

7

7

7

7

5

(23.26)

Comparing this matrix (matrix (23.26)) with the one without the new points
(matrix (23.23)), we can see that the values corresponding to the observed time
points remain the same.

Note that the  .�/ matrix returned from the B-spline function call does not have
the intercept. We now have to add an additional column of unity  0.�/ D 1 to
the left of matrix  .�/ to make it an M � .p C 1/ matrix so that the intercept �0j
can also be estimated along with the regression coefficients.

Let � be a vector of time points ranging from �1 to C1 with 0:01 as a constant
step of increment. This vector of time points has 201 elements, the same � used
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to demonstrate the polynomial curve (Fig. 23.1). We want to create B-spline bases
using this � with s D 2 equally spaced internal knots between �1 and C1 and
d D 3 degrees of each polynomial segment. The number of B-spline bases is p D
d C s C 1 D 6. Including the intercept, we should have seven  .�k/ coefficients
for each time point �k for k D 1; : : : ; 201. The  corresponding to the intercept is
denoted by  0.�k/ D 1. The six B-spline bases are calculated using the B-spline
function in SAS as  .�/ D Bspline.�; d; :; s/ where d D 3 and s D 2. Let

� D Œ�0; �1; �2; �3; �4; �5; �6� D Œ0; 5; 0; 2;�3; 0; 8�

be the parameters (regression coefficients) either given or estimated from data. The
predicted gene expression at time �k is obtained through

Qy.�k/ D
6
X

rD0
�r r .�k/ (23.27)

We then calculated the predicted gene expression for all k D 1; : : : ; 201 to form
a vector Qy. The plot of Qy against � that forms a smooth B-spline curve is shown
in Fig. 23.2.

23.4 Mixed Effect Model

This section only presents some models for parameter estimation. The actual
computational algorithms will be given in later sections. Instead of clustering genes
based on yj (with dimension M ), we now try to cluster genes based on �j .
The dimension of �j is dC1 for polynomial and pC1 for B-spline. Both dC1 and
pC1 can be substantially smaller thanM . Assume that these �j ’s are sampled from
C multivariate normal distributions (clusters). Let �j D 1; : : : ; C be the cluster
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index, i.e., if the j th gene belongs to the �th cluster, then �j D �. If we know that
�j belongs to cluster �, we can use the following model to describe �j :

�j j�jD� D �� C ˛j (23.28)

where

�� D
�

�0� �1� : : : �d�
�T

(23.29)

is the mean vector for cluster � and

˛j D
�

˛0j ˛1j : : : ˛dj
�T

(23.30)

is a vector of random deviations of �j from the mean, called the random effects. As a
vector of random effects, we assume ˛j � N.0;˙�/, where˙� is a .dC1/�.dC1/
covariance matrix. We now rewrite (23.12) as

yj j�jD� D  .�/�� C  .�/˛j C "j (23.31)

This is a mixed effect model because �� now represents the fixed effect and ˛j
represents the random effect. A model containing both the fixed and random effects
is called a mixed effect model, or simply mixed model. Note that mixed model and
mixture model are completely different concepts. Conditional on the cluster label
�j D �, the model is a mixed model.

23.5 Mixture Mixed Model

When the cluster label is unknown, the model becomes a mixture model. Overall,
we have to deal with a situation with a mixture of several mixed models. To es-
timate parameters using the original gene expression data, we must examine the
distribution of yj j�jD� , which turns out to be multivariate normal with mean

E.yj j�j D �/ D  .�/�� (23.32)

and variance

var.yj j�j D �/ D V� D  .�/˙� 
T .�/C I	2 (23.33)

The multivariate normal density can be expressed as

p.yj j�j D �/ D N.yj j .�/�� ; V�/

D 1

jV� j1=2 exp

�

�1
2
Œyj �  .�/���T V �1

� Œyj �  .�/���
�

(23.34)
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The mixture distribution can be written as

p.yj j�/ D
C
X

�D1

�N.yj j .�/��; V�/ (23.35)

where 
�;8� D 1; : : : ; C is the mixing proportion. The overall log likelihood
function is

L.�/ D
M
X

jD1
lnp.yj j�/ (23.36)

where

� D f
1; : : : ; 
C ; �1; : : : ; �C ;˙1; : : : ; ˙C ; 	
2g (23.37)

is a vector containing all the parameters.
Numerous algorithms are available to estimate the parameters. We will introduce

two algorithms in this chapter, which are the expectation-maximization (EM) algo-
rithm and the stochastic expectation-maximization (SEM) algorithm. The Bayesian
method can also be applied here, but we defer it to Chap. 24 when we deal with
quantitative trait-associated microarray data analysis.

23.6 EM Algorithm

The EM algorithm cluster analysis developed by Luan and Li (2003) is adopted
here. The algorithm is summarized by the following steps:

1. Set t D 0 and initialize the mixing proportions by


.t/� D
1

C
;8� D 1; : : : ; C (23.38)

and the probabilities of cluster assignments by

�
.t/
j� D 
.t/� ;8j D 1; : : : ; N & � D 1; : : : ; C (23.39)

where N is the number of genes.
2. Update the fixed effects (mean vectors) by

�.t/� D
�

N
.t�1/�  T .�/V �1
�  .�/

��1
 T .�/V �1

�

M
X

jD1


.t�1/
j� yj (23.40)

where

V� D  .�/˙.t�1/
�  T .�/C I	2.t�1/ (23.41)

for all � D 1; : : : ; C .
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3. Update the random effects by

˛
.t/
j D ˙.t�1/

�  T .�/V �1
�




yj �  .�/�.t/�
�

(23.42)

and compute the conditional covariance matrix of ˛j

S
.t/
j D ˙.t�1/

� �˙.t�1/
�  T .�/V �1

�  .�/˙.t�1/
� (23.43)

for all j D 1; : : : ; N & � D 1; : : : ; C .
4. Update the covariance matrices by

˙.t/
� D

1

N

.t�1/
�

2

4

N
X

jD1
�
.t�1/
j� E.˛j ˛

T
j /

3

5

D 1

N

.t�1/
�

2

4

M
X

jD1
�
.t�1/
j�

�

S
.t/
j C ˛.t/j .˛.t/j /T

	

3

5 (23.44)

5. Update the residual variance by

	2.t/ D 1

NM

N
X

jD1
yTj

"

yj �
C
X

�D1
�
.t�1/
j�  .�/

�

�.t/� C ˛.t/j
	

#

(23.45)

6. Update the posterior probabilities of cluster assignments,

�
.t/
j� D



.t�1/
� N.yj j .�/�.t/� ;  .�/˙.t/

�  
T .�/C I	2.t//

PC
�0 


.t�1/
�0 N.yj j .�/�.t/�0 ;  .�/˙

.t/
�  T .�/C I	2.t//

(23.46)

for all j D 1; : : : ; N & � D 1; : : : ; C .
7. Update the mixing proportions,


.t/� D
1

N

N
X

jD1
�
.t/
j� ;8� D 1; : : : ; C (23.47)

8. Increment t by 1, and repeat Steps 2–7 until a certain criterion of convergence is
reached.

The most important information from this analysis is the cluster label ��j . We can
use the

�j� D maxf�j1; : : : ; �jC g (23.48)

rule to decide that gene j should be classified into cluster �. Alternatively, we can
set a cutoff point, say 0:9. When �j� > 0:9, gene j is classified into cluster �;
otherwise, it is declared as not resolved.
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23.7 Best Linear Unbiased Prediction

Once the parameters are estimated, they can be used to predict the gene expression
profiles using a method called the best linear unbiased prediction (Henderson 1975;
Robinson 1991). The observed expression for gene j at time point �k is yj .�k/ D
yjk ; we can plot yjk against �k to see the profile (the change of gene expression
across the time points). This plot is called the observed expression profile. Using
the BLUP method, we can draw a predicted profile that is a smooth curve covering
observed time points as well as time points between any two observed time points.
Assume that gene j has been classified into cluster �, and let

O�rj D O�r� C Ǫrj ;8r D 0; : : : ; d (23.49)

be the estimated effects for gene j . The BLUP profile for gene j is

Oyj .�/j�jD� D  0.�/ O�0j C  1.�/ O�1j C � � � C  d.�/ O�jd (23.50)

where the standardize time point can take any value within the range �1 � � �
C1. An example of the BLUP profile is illustrated in Fig. 23.3, showing both the
observed and the predicted gene expression profiles.

Figure 23.4 illustrates the mean profiles of four clusters and the expression
profiles of individual genes within each cluster.

In practice, most genes will be classified into a “neutral cluster,” which represents
all genes whose expressions do not change during the time course. Such a neutral
cluster contains all genes with a constant expression profile. Mathematically, it is
possible to exclusively define such a neutral cluster, say cluster 1, by forcing
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Fig. 23.4 Mean expression profiles of four clusters (black) and the expression profiles of 100
genes within each cluster (green)

�1 D
�

�01 �11 � � � �d1
�T D ��01 0 � � � 0

�T
(23.51)

where only �01, the intercept, is estimated from the data. None of the genes
classified into this cluster are differentially expressed. Therefore, the time-course
microarray gene expression analysis can also be used to detect differentially
expressed genes.

23.8 SEM Algorithm

The traditional EM algorithm converges to a local solution of the parameters. For a
problem as complicated as gene clustering under the Gaussian mixture, the number
of local solutions for the parameters is unknown. We often noticed that some clusters
identified using the EM algorithm have cluster means very close to each other. This
implies that there might be multiple solutions for the parameters and the one we
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obtained may be just one of many local solutions. To separate two clusters with
similar mean vectors, we can adopt the SEM algorithm, which is a hybrid method
between the Markov chain Monte Carlo (MCMC) and the EM algorithm.

23.8.1 Monte Carlo Sampling

Let us define a vector of indicator variables of cluster assignment for gene j as

ıj D
�

ıj1 ıj 2 � � � ıjC
�

(23.52)

where

ıj� D
(

1

0

for �j D �
for �j ¤ �

(23.53)

This indicator variables are multinomial of sample size 1 with probabilities

�j D
�

�j1 �j 2 � � � �jC
�

(23.54)

These probabilities are calculated as the posterior probabilities described in the
EM algorithm. Rather than using the multinomial probabilities to update all other
parameters, we use them to sample the unknown ıj vector. Once sampled, the ıj
vector is used in place of the posterior probabilities for updating other parameters.
The SEM steps are similar to the EM steps described in the previous section but
with an additional step of sampling the class label for each gene.

23.8.2 SEM Steps

1. Initialize the mixing proportions by


.0/� D
1

C
;8� D 1; : : : ; C (23.55)

and the probabilities of cluster assignments by

�
.0/
�j D 
.0/� ;8j D 1; : : : ; N & � D 1; : : : ; C (23.56)

where N is the number of genes and C is the number of clusters.
2. Sample ıj from

ıj � Multinomial.1; �j1 � � ��jC / (23.57)
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3. Update the fixed effects (mean vectors) by

�.t/� D
�

N
.t�1/�  T .�/V �1
�  .�/

��1
 T .�/V �1

�

N
X

jD1
ıj�yj (23.58)

where

V� D  .�/˙.t�1/
�  T .�/C I	2.t�1/ (23.59)

for all � D 1; : : : ; C .
4. Update the random effects by

˛
.t/
j D E.˛j j�j D �/ D ˙.t�1/

�  T .�/V �1
�




yj �  .�/�.t/�
�

(23.60)

and compute the conditional covariance matrix of ˛j

S
.t/
j D var.˛j j�j D �/ D ˙.t�1/

� �˙.t�1/
�  T .�/V �1

�  .�/˙.t�1/
� (23.61)

for all j D 1; : : : ; N & � D 1; : : : ; C .
5. Update the covariance matrices by

˙.t/
� D

1

N

.t�1/
�

2

4

N
X

jD1
ıj�E.˛j ˛

T
j /

3

5

D 1

N

.t�1/
�

2

4

M
X

jD1
ıj�

�

S
.t/
j C ˛.t/j .˛.t/j /T

	

3

5 (23.62)

6. Update the residual variance by

	2.t/ D 1

NM

N
X

jD1
yTj

"

yj �
C
X

�D1
ıj� .�/.�

.t/
� C ˛.t/j /

#

(23.63)

7. Update the posterior probabilities of cluster assignments,

�
.t/
j� D



.t�1/
� N.yj j .�/�.t/� ;  .�/˙.t/

�  
T .�/C I	2.t//

PC
�0 


.t�1/
�0 N.yj j .�/�.t/�0 ;  .�/˙

.t/
�  T .�/C I	2.t//

(23.64)

for all j D 1; : : : ; N & � D 1; : : : ; C .
8. Update the mixing proportions,


.t/� D
1

N

N
X

jD1
ıj�;8� D 1; : : : ; C (23.65)

9. Increment t by 1, and repeat Steps 2–8 until a certain criterion of convergence is
reached.
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Recall that the SEM algorithm does not converge to a constant; rather, each
parameter converges to a stationary distribution. We need to collect a sample of
values for each parameter to obtain an empirical mean. This empirical mean value
is the SEM estimate of that parameter.



Chapter 24
Quantitative Trait-Associated Microarray
Data Analysis

Differential expression analysis often applies to discrete phenotypes (primarily
dichotomous phenotypes). The phenotype is often defined as “normal” or “affected.”
If a phenotype is measured quantitatively, it is often converted into two or a
few discrete phenotype groups so that a differential expression analysis or an
ANOVA method for multiple comparisons can be applied. It is obvious that
such discretization will result in loss of information. The current microarray data
analysis technique has not been able to efficiently analyze the association of
gene expression with a continuous phenotype. Pearson correlation between gene
expression and a continuous phenotype has been proposed. Blalock et al. (2004)
ranked genes according to the correlation coefficients of gene expression with
MMSE, a quantitative measurement of the severity of Alzheimer disease, and
detected many genes that are associated with Alzheimer disease. Pearson correlation
is intuitive and easy to calculate. However, it may not be optimal because (1) the
correlation coefficient may not be the best indicator of the association, (2) higher
order association cannot be detected, (3) data are analyzed individually with one
gene at a time, and (4) the method cannot be extended to association study of gene
expression with multiple continuous phenotypes. Potokina et al. (2004) investigated
the association of gene expression with six malting quality phenotypes (quantitative
traits) of ten barley cultivars. They compared the distance matrix of each gene
expression among the ten cultivars with each of the distance matrix calculated from
the phenotypes using the G-test statistic. The distance matrix comparison approach
may have the same flaws as the correlation analysis. Recently, we proposed to
use the regression coefficient of the expression on a continuous phenotype as the
indicator of the strength of association (Jia and Xu 2005). Instead of analyzing one
gene at a time, we took a model-based clustering approach to studying all genes
simultaneously. Qu and Xu (2006) extended the model-based clustering algorithm
to capture genes with higher order association with the phenotype.

S. Xu, Principles of Statistical Genomics, DOI 10.1007/978-0-387-70807-2 24,
© Springer Science+Business Media, LLC 2013
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24.1 Linear Association

24.1.1 Linear Model

Let Z D �

Z1 � � � ZM
�T

be the phenotypic values of a quantitative trait (a continu-
ous variable) for M individuals who are also microarrayed for N genes. Let yj D
�

y1j � � � yMj
�T

be the expressions of the j th genes on all the M individuals for
j D 1; : : : ; N where N is the total number of genes. The linear model for gene
expression associated with the phenotype is

yj D 1ˇj CZ�j C "j (24.1)

where 1 is a vector of unity with dimensionM � 1, ˇj is the intercept, and �j is the
regression coefficient representing the association of gene j with the phenotype
under investigation. The residual error "j is an M � 1 vector with an assumed
N.0; I	2/ distribution. Since ˇj is irrelevant to the association study, it can be
eliminated from the model. The simplest way to eliminate ˇj is to centralize the
expression by yj D yj � Nyj , where

Nyj D 1

M

M
X

kD1
ykj (24.2)

The phenotypic value should also be centralized using Z D Z � NZ where

NZ D 1

M

M
X

kD1
Zk (24.3)

The linear model for the centralized gene expression becomes

yj D Z�j C "j (24.4)

Through centralization, we have eliminated ˇj from the model. We can now focus
on �j because it represents the strength of the association of yj with Z.

24.1.2 Cluster Analysis

Clustering genes based on the regression coefficients of gene expressions on a
quantitative trait was first proposed by Jia and Xu (2005). We now use a Gaussian
mixture with C components to describe the regression coefficients,

p.�j / D
C
X

�D1

�N.�j j��;˙/ (24.5)
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where �� is the mean of cluster � for � D 1; : : : ; C and ˙ is a common variance
(a single value, not a matrix). Again, the same EM algorithm described in the
time-course microarray data analysis can be applied here, except that  .�/ in
the time-course microarray is now replaced by Z in the quantitative trait-associated
microarray data analysis.

The number of clustersC can be inferred using the BIC analysis (Schwarz 1978).
Most genes will be classified into the “neutral cluster” in which the cluster mean is
close to zero.

24.1.3 Three-Cluster Analysis

We now use a Gaussian mixture with C D 3 components to describe the regression
coefficients,

p.�j / D
3
X

�D1

�N.�j j��;˙/ (24.6)

where �� is the mean of cluster � for � D 1; 2; 3 and ˙ is a common variance.
The means of the three clusters are restricted with �1 > 0, �2 D 0, and �3 < 0.
Under these restrictions, the neutral cluster is cluster 2 because �2 D 0. All genes
classified into this neutral cluster are neutral genes (not associated with the trait),
while all other genes are differentially expressed or associated with the trait.

The usual EM algorithm is incapable of dealing with such a cluster analysis with
constrained cluster means. Therefore, we adopted the stochastic EM algorithm. The
SEM steps are similar to those described in the time-course microarray data analysis
with the step of updating the cluster means modified to constrain the means within
their defined domains. Let

ıj D
�

ıj1 ıj 2 ıj 3
�

(24.7)

be the cluster indicator variables for the j th gene and

�j D
�

�j1 �j 2 �j 3
�

(24.8)

be the corresponding posterior probabilities of ıj . Note that the proportions of genes
belonging to cluster � are denoted by 
� for all � D 1; 2; 3. Let

var.yj / D V D Z˙�1ZT C I	2 (24.9)

be the variance–covariance matrix of yj . The cluster label ıj is missing, and thus, it
is sampled from its posterior distribution, a multinomial distribution of sample size
one and a probability vector �j . If we ignore the constraints, the posterior mean and
posterior variance of �� would be

�� D .
�NZT V �1Z/�1
N
X

jD1
ıj�Z

T V �1yj (24.10)
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and

'2� D .
�NZT V �1Z/�1 (24.11)

respectively, for � D 1; 3. The constrained estimate of �1 > 0 is

�1 D �1 C '1
�
�

0��1
'1

	

� �
�1��1

'1

	

˚
�1��1

'1

	

�˚
�

0��1
'1

	 D �1 C '1
�
�

�1
'1

	

˚
�

�1
'1

	 (24.12)

where �.x/ and ˚.x/ are the standardized normal density and the standardized
normal function, respectively. The constrained estimate for �3 < 0 is obtained
through

�3 D �3 C '3
�
��1��3

'3

	

� �
�

0��3
'3

	

˚
�

0��3
'3

	

� ˚
��1��3

'3

	 D �3 � '3
�
�

�3
'3

	

1 �˚
�

�3
'3

	 (24.13)

Equations (24.12) and (24.13) were derived following the theory of truncated
normal distribution given by Cohen (1991). By definition, the mean of the neutral
cluster is always �2 D 0, and no estimation is required for �2. Originally, the class
label for the j th gene was denoted by �j , which is assigned �j D � if gene j
belongs to cluster �, for � D 1; 2; 3. The �j variable was eventually converted into
a 1 � 3 vector ıj , a multinomial variable with sample size one. Given �j D �, we
now rewrite the linear model in the form of a mixed model

yj j�jD� D Z�� CZ˛j C "j (24.14)

and perform the SEM iterations by sampling ıj and updating the parameters. The
SEM steps are summarized as follows:

1. Initialize all parameters within their legal domains.
2. Calculate the posterior probability that gene j belonging to cluster � using

�j� D 
�N.yj jZ��; V /
P3

�0D1 
�0N.yj jZ��0 ; V /
(24.15)

3. Sample ıj from

p.ıj / D Multinomial.ıj j1; �j / (24.16)

4. Update the cluster means �� using the means of the truncated normal distribu-
tions given in (24.12) for �1 and (24.13) for �3 while forcing �2 D 0.

5. Calculate the posterior mean and posterior variance for ˛j using

Ǫj D E.˛j j�j D �/ D ˙ZT V �1ıj�.yj �Z��/ (24.17)
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and

OSj D var.˛j j�j D �/ D ˙ �˙ZT V �1Z˙ (24.18)

6. Update the common variance of all clusters using

˙ D 1

N

N
X

jD1

3
X

�D1
ıj�

�

Ǫ 2j C OSj
	

(24.19)

7. Update the residual error variance using

	2 D 1

MN

N
X

jD1

3
X

�D1
ıj�y

T
j .yj �Z�� �Z Ǫj / (24.20)

8. Update the proportion of genes for each cluster using


� D 1

N

N
X

jD1
ıj� (24.21)

9. Repeat Steps 2–8 until all parameters converge to their stationary distributions.

After the SEM analysis, genes will be classified based on their posterior
distributions of the clusters, i.e., gene j will be classified into cluster � if

�j� D max.�j1; �j 2; �j 3/ (24.22)

Genes classified into the neutral cluster, � D 2 , will be excluded from the list
of associated genes. Assume that gene j is classified into cluster �; the predicted
expression for gene j is calculated via

Oyj j�jD� D Z. O�� C Ǫj / (24.23)

where O�� and Ǫj are the estimated values obtained from the SEM analysis.
Figure 24.1 illustrates the predicted gene expressions for the three designated
clusters with �1 D 0:5, �2 D 0, �3 D �0:5, and ˙ D 0:01.

24.1.4 Differential Expression Analysis

An alternative method to detect genes associated with quantitative trait is through
the differential expression analysis. This time, we use a Gaussian mixture with two
components to model the distribution of the regression coefficients,

p.�j / D 
N.�j j0;˙1/C .1 � 
/N.�j j0;˙0/ (24.24)
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Fig. 24.1 Predicted expressions of 50 genes from each of the three designated clusters with
�1 D 0:5, �2 D 0, �3 D �0:5, and ˙ D 0:01. The lines in green color represent the predicted
expressions for individual genes, and the line in black within each cluster represents the mean
profile of the cluster

where both clusters have the same mean (zero value) but the two clusters have
different cluster variances,˙0 and˙1. Let cluster 0 be the neutral cluster and cluster
1 be the differentially expressed cluster where ˙1 is treated as a parameter and
˙0 is set to a small constant, say ˙0 D 10�5. The proportion of genes coming
from cluster 1 is denoted by 
 . The distributions of the two components of the
Gaussian mixture are illustrated in Fig. 24.2. All genes with � classified into the
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Fig. 24.2 Gaussian mixture
with two components. The
sharp curve represents
N.� j0;˙0/, the density of
cluster 0, and the flat curve
represents N.� j0;˙1/, the
density of cluster 1

distribution represented by the flat curve are associated with the trait, while the
remaining genes (with � classified into the distribution represented by the sharp
curve) are neutral genes.

Under this model, the usual EM algorithm works well for parameter estimation.
However, the SEM algorithm is preferred because of the high chance of finding
the global maximum likelihood estimates of the parameters. Let �j be an indicator
variable with a value of one if gene j belongs to cluster 1 and zero if the gene
belongs to cluster 0. Let �j be the posterior probability of �j D 1. Define

var.yj j�j / D Vj D Z
�

�j˙1 C .1 � �j /˙0

�

ZT C I	2 (24.25)

as the variance–covariance matrix of yj . The SEM steps are summarized as follows:

1. Initialize all parameters within their legal domains.
2. Calculate the posterior probability that gene j belonging to cluster 1 using

�j D 
N.yj j0; 
1/

N.yj j0; 
1/C .1 � 
/N.yj j0; 
0/ (24.26)

where


1 D Z˙�1
1 ZT C I	2 (24.27)

and


0 D Z˙�1
0 ZT C I	2 (24.28)

3. Sample �j from the following Bernoulli distribution:

p.�j / D Bernoulli.�j j�j / (24.29)

4. Calculate the posterior mean and posterior variance for �j using

O�j D E.�j j � � � / D �jZT V �1
j yj (24.30)



390 24 Quantitative Trait-Associated Microarray Data Analysis

and

OSj D var.�j j � � � / D �j ��jZT V �1
j Z�j (24.31)

where

�j D �j˙1 C .1 � �j /˙0 (24.32)

5. Update the variance of cluster one using

˙1 D 1


N

N
X

jD1
�jE.�

2
j / D

1


N

N
X

jD1
�j

�

O�2j C OSj
	

(24.33)

6. Update the residual error variance

	2 D 1

MN

N
X

jD1
yTj .yj � �jZ O�j / (24.34)

7. Update the proportion of genes for cluster 1 using


 D 1

N

N
X

jD1
�j (24.35)

8. Repeat Steps 2–7 until all parameters converge to their stationary distributions.

After the SEM analysis, genes will be classified based on their posterior
distributions of the clusters, i.e., gene j will be classified into cluster 1 if �j � 0:9.
All genes classified into cluster 1 will be declared as being associated with the
phenotype.

Before we proceed to the next section, a comment on the second step of the SEM
algorithm is helpful to inexperienced students. This step is used to calculate the
posterior probability of gene j belonging to cluster 1 (the differentially expressed
cluster). One would have thought to use the following equation:

�j D 
N.�j j0;˙1/


N.�j j0;˙1/C .1 � 
/N.�j j0;˙0/
(24.36)

because it is simpler than the one used in Step 2. However, the densities of the two
distributions for �j require value of �j , which is a missing quantity. We cannot
simply replace the missing �j by the conditional expectation like we did for
the other quantities that involve the missing �j . Therefore, we cannot use any
probability densities containing missing parameters to calculate the conditional
posterior probabilities of clustering assignment. In the next section, we will discuss
the MCMC-implemented Bayesian method, in which �j will be sampled. With the
sampled �j , we can use the distributions of �j to calculate �j .
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24.2 Polynomial and B-spline

The linear association analysis cannot detect genes that are associated with the trait
in higher orders. Although most associated genes may show linear relationship with
the trait, some genes may show nonlinear association with the trait. Figure 24.3
shows various forms of associations of genes with a quantitative trait. The polyno-
mial and B-spline analyses can be used for detecting these genes. The procedure is
identical to that described in the time-course microarray data analysis by replacing
the time points with the phenotypic values of the quantitative trait, and thus, no
further discussion will be given here for the EM and SEM algorithm. The intercepts
can be included in the analysis or excluded from the analysis via centralization. This
section will focus on the Bayesian analysis implemented via the MCMC algorithm.
In addition, we will deal with differential expression analysis, in which only two
clusters are considered, one is the neutral cluster and the other is the differentially
expressed cluster.
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Fig. 24.3 Various forms of associations of gene expressions with a quantitative trait
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Let � be the scaled phenotypic value ranging from �1 toC1 and d be the degree
of the polynomial to be fit. The linear model is

yj D  .�/�j C "j (24.37)

where  .�/ is an M � d orthogonal polynomial coefficient matrix and

�j D
�

�1j � � � �dj
�T

(24.38)

are the regression coefficients. Again, we use a Gaussian mixture with two
components to describe the regression coefficients

p.�j / D 
N.�j j0;˙1/C .1 � 
/N.�j j0;˙0/ (24.39)

where both clusters have a mean zero, but with cluster-specific variance–covariance
matrices,˙1 and˙0, each is a d � d matrix. Let cluster 0 be the neutral cluster and
cluster 1 be the differentially expressed cluster where ˙1 is treated as a parameter
matrix and˙0 D 10�5Id�d be a constant matrix with diagonal values taking a value
of virtually zero. Again, let �j be the cluster label and �j be the posterior probability
of gene j coming from cluster 1. Define

�j D �j˙1 C .1 � �j /˙0 (24.40)

and

var.yj j�j / D Vj D  .�/�j .�/T C I	2 (24.41)

Under the Bayesian framework, we need to assign prior distributions to ˙1 and 	2.
The residual error variance is assigned a scaled inverse chi-square distribution,

p.	2/ D Inv� �2.	2j�; !/ (24.42)

where ! D � D 0 (the Jeffreys’ prior). The covariance matrix ˙1 is assigned a
multivariate version of the scaled inverse chi-square distribution named the inverse
Wishart distribution,

p.˙1/ D Inv�Wishart.˙1j�; !/ (24.43)

where � > d � 1 is a prior degree of belief and ! > 0 is a d � d scale matrix.
We simply set � D d and ! D 10�5Id�d . Another parameter in the analysis is the
mixing proportion denoted by 
 . A beta prior is assigned to 
 ,

p.
/ D Beta.
j1; 1/ (24.44)

These priors are conjugate, and thus, the posterior distributions of these parameters
have the same forms of distributions as the priors.
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The MCMC sampling process is summarized as follows:

1. Sample all unknown variables and parameters from their prior distributions.
2. Sample �j from Bernoulli distribution,

p.�j j � � � / D Bernoulli.�j j1; �j / (24.45)

where �j is a posterior probability calculated using

�j D 
N.�j j0;˙1/


N.�j j0;˙1/C .1 � 
/N.�j j0;˙0/
(24.46)

3. Sample �j from its posterior distribution, which is multivariate normal

p.�j j � � � / D N
h

�j j�j .�/T V �1
j yj ;�j ��j .�/T V �1

j  .�/�j

i

(24.47)

4. Sample the variance matrix from

p.˙1j � � � / D Inv�Wishart
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A (24.48)

5. Sample the residual error variance from

p.	2j � � � / D Inv��2
2

4	2
ˇ

ˇ

ˇ

ˇ
� CNM;! C

N
X

jD1
yTj .yj � �j .�/�j /

3

5

(24.49)

6. Sample the mixture proportion from

p.
j � � � / D Beta
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�j ; 1CN �
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X

jD1
�j

1

A (24.50)

7. Repeat Steps 2–6 until a desired length of the Markov chain is reached.

After the post-MCMC analysis (burn-in deletion and autocorrelation thinning),
genes will be classified based on their posterior distributions of the clusters, i.e.,
gene j will be classified into cluster 1 if �j > 0:9. All genes classified into cluster
1 will be declared as being associated with the phenotype. Further analysis may be
conducted on the Bayesian estimate of �j for all the differentially expressed genes.
For example, we can use the K-means method to cluster all the �j into a few clusters.
Different clusters represent different patterns (curves) of the expression profiles.
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The MCMC algorithm developed for polynomial analysis also applies to B-spline
analysis. The only difference is the dimension of the model. In the polynomial
analysis, the dimension of �j is d � 1, and the dimension for  .�/ is M � d .
In the B-spline analysis, the dimension for �j is p � 1, and the dimension for  .�/
is M � p, where p D d C s C 1 and d is the degree of the piecewise polynomial
and s is the number of internal knots.

24.3 Multiple-Trait Association

It is possible to study the association of genes with multiple quantitative traits. Let

Zr D
�

Zr1 � � � ZrM
�T

(24.51)

be the phenotypic values of trait r collected from all the M individuals microar-
rayed. Denote the regression coefficient of gene j on the r th trait by �rj for r D
1; : : : ; T , where T is the number of traits. Assume that all gene expressions have
been centralized and the phenotypic values of all the T traits have be standardized
(centralized and normalized). The linear model for yj can be expressed as

yj D
T
X

rD1
Zr�jr C "j D Z�j C "j (24.52)

where

Z D �Z1 � � � ZT
�

(24.53)

is an M � T matrix and

�j D
�

�j1 � � � �jT
�T

(24.54)

be a T � 1 vector.
Cluster analysis can be used to classify all genes into different clusters, depending

on their associations with the multiple traits. Methods for the time-course mi-
croarray analysis and the single-trait polynomial and/or B-spline association study
apply to the multiple-trait association study. The only difference is in the notation
where  .�/ in the polynomial analysis is replaced by matrix Z in the multiple-
trait analysis. Note that all the associations are linear in the multiple-trait analysis.
Extension to nonlinear association of multiple traits is possible, but it is difficult to
implement. One has to define the degree of polynomial for each trait, and different
traits may be modeled using different degrees. If the degrees of polynomials are the
same for all traits, the total number of effects in the �j vector is T �d for polynomial
analysis and T � p for B-spline analysis where p D d C s C 1.



Chapter 25
Mapping Expression Quantitative Trait Loci

The transcript abundance can be treated as a classical quantitative trait, and thus,
mapping can be done on the transcript (Brem et al. 2002; Cheung and Spielman
2002; Schadt et al. 2003). Mendelian loci in the genome that control the expression
levels of transcripts are called expression quantitative trait loci (eQTL). In eQTL
analysis, an expression trait is mapped to genomic locations represented by cis- or
trans-loci. The cis-eQTL represent sequence variants that encode transcriptional
differences. The trans-eQTL, however, represent remote genes that regulate the
expression of the gene being transcribed. The purpose of a linkage study is to
identify the cis- and trans-eQTL for each transcript. Results from the eQTL analysis
may provide more detailed information about the biological processes of the gene
network than the classical quantitative trait analysis (Emilsson et al. 2008; Cookson
et al. 2009). The usual quantitative traits are often gross clinical measurements and
may be far remote from the biological processes giving rise to clinical traits.

In eQTL analysis, we often deal with thousands of expression traits simulta-
neously. Methods developed for multiple quantitative trait QTL mapping may not
apply here because of the high dimensionality of the model. Two naive approaches
may be taken in eQTL analysis: (1) individual transcript analysis in which a
single expression trait is mapped at a time and the entire eQTL mapping involves
separate analysis of thousands of traits and (2) individual marker analysis where
differentially expressed transcripts are detected based on their association with the
segregation pattern of an individual marker and the entire analysis requires scanning
markers of the entire genome. The first naive approach requires only a single-
trait QTL mapping procedure, e.g., the interval mapping (Lander and Botstein
1989), the composite interval mapping (Zeng 1994), or the multiple QTL mapping
(Kao et al. 1999). A common practice for handling thousands of transcript traits is
to select a small number of target transcripts based on some criterion of preselection
and map QTL only for these prescreened transcripts. The second naive approach
requires only a method for differential expression analysis, e.g., the regularized
t-test, the hierarchical mixture model of Newton et al. (2004), or the model-based
cluster analysis (Pan et al. 2002). In differential expression analysis, one requires
samples from at least two conditions, the control and the treatment. When applied to
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expression-marker association studies, the conditions become the marker genotypes,
e.g., individuals carrying one genotype are arbitrarily designated to the control and
those carrying the other genotype to the treatment.

It appears that eQTL mapping has been treated as either a QTL mapping problem
for multiple traits or a microarray differential expression problem for multiple
treatment comparisons. Prior to the method described in Kendziorski et al. (2006)
and Kendziorski and Wang (2006), there has been no unique method particularly
designed for eQTL analysis. Neither the first nor the second aforementioned naive
approach is optimal because data are not analyzed jointly. The mixture over marker
(MOM) approach developed by Kendziorski et al. (2006) is the first attempt to
analyze transcripts and markers jointly. The method is called MOM because the
expression level of a transcript is described by a mixture model over markers.
A transcript is either associated with a marker or not associated with any markers at
all. Given that the transcript is associated with a marker, it is associated with one and
only one of the markers. We believe that the assumption of a transcript associated
with at most one marker is too stringent and needs to be relaxed. The MOM
approach is able to detect either the cis-locus or one of the trans-loci but not both.
This will seriously limit the application of the MOM method. Only until recently,
more advanced statistical methods have been developed. All these methods are
related to Bayesian shrinkage statistics. These methods include the Bayesian method
of Jia and Xu (2007), the sparse partial least-squares regression of Chun and Keles
(2009), and the Bayesian method of Bottolo et al. (2011).

The method of Bottolo et al. (2011) was developed based on Jia and Xu’s
(2007) model but with improved prior distributions. Their method is more powerful
than the original Bayesian method. The Bayesian method combines the two naive
approaches into a single step of analysis so that parameters are inferred using
multiple transcripts and multiple markers simultaneously. This joint approach will
capture the maximum information from the microarray experiment. Like a regular
quantitative trait, a transcript can be mapped to many different locations, including
cis- and trans-loci. In multiple QTL mapping, we face a variable selection problem.
To avoid variable selection, we have adopted the Bayesian shrinkage analysis, in
which marker loci of the entire genome are evaluated simultaneously (Wang et al.
2005b). Markers with small effects are forced to shrink their effects to zero, and
markers with large effects are subject to no shrinkage. The shrinkage estimation is
made possible through the Bayesian hierarchical modeling (Gelman 2005, 2006;
Gelman et al. 2008). In this chapter, we will first review the second naive method
and then describe the Bayesian method of Jia and Xu (2007). The chapter ends with
a brief description of the HESS algorithm of Bottolo et al. (2011).

25.1 Individual Marker Analysis

Let N be the number of transcripts and yj for j D 1; : : : ; N be an M � 1 vector
for the expressions of the j th transcript measured from M subjects of a mapping
population. We use an F2 mapping population as an example to demonstrate the
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method, which, of course, can be applied to other mapping populations, such as
BC, RIL, DH, and FW, with very little modification. Assume that there are p
markers available for the analysis and each is genotyped for all the M individuals.
The analysis is focused on one marker at a time. Let Zk be an M � 1 vector for the
genotypes of all individuals at marker k for k D 1; : : : ; p. For the individual marker
analysis, one analyzes each marker at a time, and the entire analysis is conducted p
times, one for each marker. The following description focuses on one marker only,
and thus, the subscript k is dropped for simplicity. The linear model for yj is

yj D 1ˇj CZ�j C "j (25.1)

where 1 is anM �1 vector of unity, ˇj is the intercept, �j is the eQTL effect for the
particular marker under study, and "j is anM � 1 vector for the residual errors with
an assumed multivariate N.0; I	2/ distribution. Let us assign a normal distribution
to ˇj so that

p.ˇj / D N.ˇj j�ˇ;˙ˇ/ (25.2)

where �ˇ and ˙ˇ are the unknown mean and unknown variance of ˇj for j D
1; : : : ; N . Describe �j by a Gaussian mixture distribution with two components,

p.�j / D .1 � 
/N.�j j0;˙0/C 
N.�j j0;˙1/ (25.3)

where 
 is the proportion of genes belonging to cluster one (the associated cluster),
˙1 is an unknown variance representing the associated cluster, and ˙0 D 10�5 is
a small positive number (constant) representing the neutral cluster. Gene detection
and parameter estimation are conducted using one of two approaches, the SEM
algorithm and the MCMC algorithm.

25.1.1 SEM Algorithm

The SEM algorithm is the same as that described in the quantitative trait-associated
microarray data analysis except that we now fit an intercept to the model. Let �j be
the class label for gene j , i.e., �j D 0 if gene j belongs to the neutral cluster and
�j D 1 otherwise. Conditional on �j , we have

E.yj j�j / D 1�ˇ (25.4)

and

var.yj j�j / D Vj D 1˙ˇ1
T CZ�jZT C I	2 (25.5)

where

�j D �j˙1 C .1 � �j /˙0 (25.6)
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This variance matrix is gene specific because it depends on �j . Let us define


1 D 1˙ˇ1
T CZ˙1Z

T C I	2 (25.7)

and


0 D 1˙ˇ1
T CZ˙0Z

T C I	2 (25.8)

The stochastic sampling step involves sampling the cluster label �j from its
conditional posterior distribution,

�j D 
N.yj j1�ˇ; 
1/

N.yj j1�ˇ; 
1/C .1 � 
/N.yj j1�ˇ; 
0/ (25.9)

Combining this step with the EM algorithm leads to the following SEM algorithm:

1. Initialize all parameters.
2. Calculate �j using (25.9), and sample �j from

p.�j j � � � / D Bernoulli.�j j�j / (25.10)

3. Update �ˇ using

�ˇ D
0

@

N
X

jD1
1T V �1

j 1
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A
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jD1
1T V �1

j yj

1

A (25.11)

4. Calculate the posterior mean and posterior variance for ˇj using

Ǒ
j D E.ˇj j � � � / D ˙ˇ1

T V �1
j .yj � 1�ˇ/ (25.12)

and

OWj D var.ˇj j � � � / D ˙ˇ �˙ˇ1
T V �1

j 1˙ˇ (25.13)

5. Update ˙ˇ using

˙ˇ D 1

N

N
X

jD1
E
h

.ˇj � �ˇ/.ˇj � �ˇ/T
i

D 1

N

N
X

jD1

h

. Ǒj � �ˇ/. Ǒj � �ˇ/T C OWj

i

(25.14)

6. Calculate the posterior mean and posterior variance for �j using

O�j D E.�j j � � � / D �jZT V �1
j .yj � 1�ˇ/ (25.15)
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and

OSj D var.�j j � � � / D �j ��jZT V �1
j Z�j (25.16)

where Vj and �j are defined in (25.5) and (25.6), respectively, prior to the
SEM steps.

7. Update the variance of the associated cluster ˙1 using

˙1 D 1


N

N
X

jD1
�jE.�

2
j / D

1


N

N
X

jD1
�j . O�2j C OSj / (25.17)

8. Update the residual error variance using

	2 D 1

MN

N
X

jD1
yTj .yj � 1 Ǒj � �jZ O�j / (25.18)

9. Update the mixing proportion of gene clustering using


 D 1

N

N
X

jD1
�j (25.19)

10. Repeat Steps 2–9 until all parameters have converged to their stationary
distributions.

After the analysis, genes with �j � 0:9 will be claimed as being associated
with the current marker under investigation. The 0.9 criterion is arbitrary, and
other criteria can be used, depending on the preference of the investigator. To scan
markers of the entire genome, the above analysis is repeated for each marker. This
process mimics the individual marker analysis or interval mapping for QTL of a
quantitative trait. The only difference is that here the quantitative trait is represented
by the expressions of N microarrayed transcripts. When the marker density is
sufficiently high, the genotype indicator variable Z will be observed. For sparse
marker maps, the conditional probabilities of marker genotypes will be calculated
using the multipoint method described in Chap. 4. These probabilities will then
be used to calculate the conditional expectations of U D E.Z/ so that Z will be
replaced by U in the eQTL analysis.

25.1.2 MCMC Algorithm

The MCMC-implemented Bayesian method requires prior distribution for each
parameter. The parameters that have not been described with a prior distribution
in the SEM algorithm include 
 , �ˇ , ˙ˇ , ˙1, and 	2. A beta prior can be assigned
to 
 , i.e., p.
/ D Beta.
j1; 1/. The overall population mean �ˇ can be assigned a
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flat prior distribution p.�ˇ/ D 1. Each of the variance parameters can be assigned
a scaled inverse chi-square distribution, e.g.,

p.˙ˇ/ D Inv� �2.˙ˇj�; !/ (25.20)

The fully conditional posterior distributions of all the variables (including the
parameters) are conjugate, and thus, the Gibbs sampler algorithm is used to simulate
every variable involved in the process. We now describe the fully conditional poste-
rior distributions in the order in which they will be sampled in the MCMC process.

1. The fully conditional posterior distribution for 
 is beta with updated parameters
given below:

p.
j � � � / D Beta
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2. Once 
 is sampled, we need to calculate �j using the Bayes’ theorem,

�j D 
N.�j j0;˙1/


N.�j j0;˙1/C .1 � 
/N.�j j0;˙0/
(25.22)

3. The fully conditional posterior of �j is Bernoulli with parameter �j

p.�j j � � � / D Bernoulli.�j j�j / (25.23)

4. The overall mean �ˇ has a normal fully conditional posterior distribution,

p.�ˇj � � � / D N
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A (25.24)

where

y�
j D yj � 1.ˇj � �ˇ/� �jZ�j (25.25)

is an adjusted gene expression vector by subtraction of all other model effects
except �ˇ from the original observed gene expression.

5. The gene-specific intercept ˇj has a normal fully conditional posterior distribu-
tion,

p.ˇj j � � � / D N.ˇj j Ǒj ; OWj / (25.26)

where

Ǒ
j D

�

N

	2
C 1
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��1  1T y�
j

	2
C �ˇ

˙ˇ

!

(25.27)

and

OWj D var.ˇj j � � � / D
�

N

	2
C 1

˙ˇ

��1
(25.28)
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The offset for yj , denoted by y�
j , is redefined as

y�
j D yj � �jZ�j (25.29)

6. The fully conditional posterior distribution of �j is normal as given below:

p.�j j � � � / D N.�j j O�j ; OSj / (25.30)

where

O�j D
�

ZTZ C 	2��1
j

	�1
ZT y�

j (25.31)

and

OSj D
�

ZTZ C 	2��1
j

	�1
	2 (25.32)

The offset y�
j is redefined as

y�
j D yj � 1ˇj (25.33)

7. The fully conditional posterior of ˙ˇ remais a scaled inverse chi-square
distribution,

p.˙ˇj � � � / D Inv� �2
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8. The variance of the associated cluster also has a fully conditional posterior
distribution of scaled inverse chi-square,

p.˙1j � � � / D Inv� �2
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9. Finally, the residual variance has the following scaled inverse chi-square
distribution:

p.	2j � � � / D Inv� �2 
	2j� CMN;! C SS� (25.36)

where

SS D
N
X

jD1
.yj � 1ˇj � �jZ�j /T .yj � 1ˇj � �jZ�j / (25.37)

is the sum of squares of the residuals.

Post-MCMC analysis is performed using the MCMC-generated posterior sample of
all the variables.
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25.2 Joint Analysis of All Markers

Joint analysis of all markers refers to an analysis that the marker effects of the
entire genome are estimated simultaneously in a single model. With the current
molecular technology, genomes of many important species have been saturated by
markers, especially, SNP markers. The optimal approach of eQTL mapping is the
joint analysis using markers of the entire genome. There is a limitation with the
joint analysis, that is, the analysis cannot handle markers that are cosegregating, i.e.,
perfectly correlated marker genotypes across the mapping population. Therefore,
a preliminary screening of the markers is required prior to eQTL mapping.
The conventional strategy for marker screening is to select one putative position
in every d centiMorgan, where d can be 2 cM, 5 cM, or any other values, depending
on the sample size of the experiment. Larger samples sizes allow us to handle
markers with higher density. If a putative position happens to be located in an
existing marker, the genotypes of the putative position are observed; otherwise,
the genotypes of the putative position are inferred from neighboring markers.
The conditional expectations of the genotype indicator variables are then used
instead.

25.2.1 Multiple eQTL Model

Let Zk be an M � 1 vector for the genotype indicator variables of marker k for
k D 1; : : : ; p, where p is the total number of markers or putative positions included
in the model. The following linear model is used to describe the expressions of gene
j measured from all M individuals:

yj D 1ˇj C
p
X

kD1
Zk�jk C "j (25.38)

where yj is an M � 1 vector for the expressions of all individuals, 1 is an M � 1
vector of unity, ˇj is the intercept, �jk is the eQTL effect for gene j at marker
k for k D 1; : : : ; p, and "j is an M � 1 vector for the residual errors with an
assumed multivariate N.0; I	2j / distribution. Note that the residual error variance
is gene specific, i.e., each gene has its own residual variance. In the individual
marker analysis, we have assumed that all genes share the same error variance.
That assumption is not necessary, and it is introduced simply for convenience of
presentation. We now relax this assumption and introduce this gene-specific error
variance. Let us assign a normal distribution to ˇj so that

p.ˇj / D N.ˇj j�ˇ;˙ˇ/ (25.39)

where �ˇ and ˙ˇ are the unknown mean and unknown variance of these ˇj ’s.
Describe �kj by a Gaussian mixture distribution with two components,
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p.�jk/ D .1 � 
k/N.�jkj0;˙0/C 
kN.�jkj0;˙k/ (25.40)

where 
k is the proportion of genes belonging to cluster one (the cluster containing
all associated genes), ˙k is an unknown variance for the associated cluster, and
˙0 D 10�5 is a small positive number (constant) representing the neutral cluster.
Again, we will take one of two approaches for the analysis, the SEM algorithm and
the MCMC algorithm.

25.2.2 SEM Algorithm

Let �jk be the class label for gene j at locus k, i.e., �jk D 0 if gene j belongs to
the neutral cluster and �jk D 1 otherwise. Let

�j D
�

�j1 � � � �jp
�T

(25.41)

be a p � 1 vector of the class label indicators for gene j . Conditional on �j , we can
write the variance of �jk as

var.�jkj�jk/ D �jk D �jk˙k C .1 � �jk/˙0 (25.42)

The expectation and variance of yj given �j are

E.yj j�j / D 1�ˇ (25.43)

and

var.yj j�j / D Vj D
p
X

kD1
Zk�jkZ

T
k C I	2j (25.44)

respectively. The stochastic sampling step involves sampling the cluster label �jk
from its conditional posterior distribution,

�jk D 
kN.yj j1�ˇ; 
jk/

kN.yj j1�ˇ; 
jk/C .1 � 
k/N.yj j1�ˇ; 
j0/ (25.45)

where


jk D
p
X

k0¤k
Zk0�jk0ZT

k0 CZk˙kZ
T
k C I	2j (25.46)

and


j0 D
p
X

k0¤k
Zk0�jk0ZT

k0 CZk˙0Z
T
k C I	2j (25.47)
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Combining this step with the EM algorithm leads to the following SEM algorithm:

1. Initialize all parameters.
2. Calculate �jk using (25.45), and sample �jk from

p.�jkj � � � / D Bernoulli.�jkj�jk/ (25.48)

3. Update �ˇ using
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4. Calculate the posterior mean and posterior variance for ˇj using

Ǒ
j D E.ˇj j � � � / D ˙ˇ1

T V �1
j .yj � 1�ˇ/ (25.50)

and

OWj D var.ˇj j � � � / D ˙ˇ �˙ˇ1
T V �1

j 1˙ˇ (25.51)

5. Update ˙ˇ using
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(25.52)

6. Calculate the posterior mean and posterior variance for �jk using

O�jk D E.�jkj � � � / D �jkZT
k V

�1
j .yj � 1�ˇ/ (25.53)

and

OSjk D var.�jkj � � � / D �jk ��jkZT
k V

�1
j Zk�jk (25.54)

where �jk and Vj are defined in (25.42) and (25.44), respectively, prior to the
SEM steps.

7. Update the variance of the associated cluster ˙k using

˙k D 1
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(25.55)

8. Update the residual error variance for gene j using
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Fig. 25.1 Proportion of associated genes 
.�/ against genome location .�/
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(25.56)

9. Update the proportion of genes in the associated cluster using


k D 1

N

N
X

jD1
�jk (25.57)

10. Repeat Steps 2–9 until all parameters have converged to their stationary
distributions.

After the analysis, genes with �jk � 0:9 will be claimed to be associated with
marker k. The 0.9 criterion is arbitrary, and other criterion can be used, depending
on the preference of the investigator. An important parameter in eQTL mapping is

k , the proportion of genes associated with marker k. If k is replaced by the genome
position of marker k, say �, we can plot 
.�/ against � to form a 
 profile. This
profile can show all the “hot” spots of the genomes, where a “hot” spot represents a
location of the genome containing many associated genes (transcripts). Figure 25.1
illustrates such a 
 profile of a hypothetical genome. There are four “hot” spots in
the genome. About 30% of the genes are associated with a wide range of genome
around 75 cM. Almost 80% of the genes are associated with a narrow region around
230 cM of the genome.

25.2.3 MCMC Algorithm

The parameters that have not been assigned a prior distribution include 
k , �ˇ ,
˙ˇ , ˙k , and 	2j . A beta prior is assigned to the 
k , i.e., p.
k/ D Beta.
kj1; 1/.
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The overall population mean �ˇ is assigned a flat prior distribution p.�ˇ/ D 1.
Each of the variance parameters is assigned a scaled inverse chi-square distribution,
e.g., p.	2j / D Inv � �2.	2j j�; !/. Any variance–covariance matrix is assigned an
inverse Wishart distribution, e.g., p.˙ˇ/ D Inv � Wishart.˙ˇj�; !/. The fully
conditional posterior distributions of all the variables (including the parameters) are
conjugate, and thus, the Gibbs sampler is used to simulate every variable involved
in the process. We now describe the fully conditional posterior distributions in the
order in which they are sampled in the MCMC process.

1. The fully conditional posterior distribution for
k is beta with updated parameters
given below:

p.
kj � � � / D Beta

0

@
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1C
N
X

jD1
�jk; 1CN �

N
X

jD1
�jk

1

A (25.58)

2. Once 
k is sampled, we calculate �jk using the Bayes’ theorem,

�jk D 
kN.�jkj0;˙k/


kN.�kj j0;˙k/C .1 � 
k/N.�jkj0;˙0/
(25.59)

3. The fully conditional posterior of �jk is Bernoulli with parameter �jk

p.�jkj � � � / D Bernoulli.�jkj�jk/ (25.60)

4. The overall mean �ˇ has a normal conditional posterior distribution,

p.�ˇj � � � / D N
2

4�ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A�1
0

@

N
X

jD1

1

	2j
1T y�

j

1

A ; A�1
3

5 (25.61)

where

A DM
N
X

jD1

1

	2j
(25.62)

and

y�
j D yj � 1.ˇj � �ˇ/ �

p
X

kD1
�jkZk�jk (25.63)

is an adjusted gene expression vector by subtraction of all other model effects
except �ˇ from the original observed vector of gene expressions.

5. The gene-specific intercept ˇj has a normal fully conditional posterior distribu-
tion as given below:

p.ˇj j � � � / D N.ˇj j Ǒj ; OWj / (25.64)



25.2 Joint Analysis of All Markers 407

where
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(25.65)

and

OWj D var.ˇj j � � � / D
�

N

	2
C 1

˙ˇ

��1
(25.66)

where the offset is redefined as

y�
j D yj �

p
X

kD1
�kjZk�jk (25.67)

6. Each of the �jk effects has a normal distribution,

p.�jkj � � � / D N.�jkj O�jk; OSjk/ (25.68)

where

O�jk D
�

ZT
k Zk C 	2j��1

jk

	�1
ZT
k y

�
j (25.69)

and

OSkj D
�

ZT
k Zk C 	2j��1

kj

	�1
	2j (25.70)

The adjusted vector of gene expression y�
j is redefined as

y�
j D yj � 1ˇj �

p
X

k0¤k
�jk0Zk0�jk0 (25.71)

7. The fully conditional posterior of ˙ˇ is an inverse Wishart distribution,

p.˙ˇj � � � / D Inv�Wishart
�

˙ˇ

ˇ

ˇ� CN;! C SSˇ
�

(25.72)

where

SSˇ D
N
X

jD1
.ˇj � �ˇ/.ˇj � �ˇ/T (25.73)

is the sum of squares of all the ˇj ’s.
8. The variance of the associated cluster for marker k has a fully conditional

posterior distribution of scaled inverse chi-square,

p.˙kj � � � / D Inv� �2
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9. Finally, the fully conditional posterior distribution for the residual variance is the
following scaled inverse chi-square:

p.	2j j � � � / D Inv� �2 
	2j
ˇ

ˇ� CM; ! C SSj
�

(25.75)

where

SSj D
 

yj � 1ˇj �
p
X

kD1
�jkZk�jk

!T  

yj � 1ˇj �
p
X

kD1
�jkZk�jk

!

(25.76)

is the residual sum of squares for gene j .

The MCMC sampling process generates posterior samples for all variables. Burn-in
deletion and chain thinning apply to the samples prior to the post-MCMC analysis.
An important parameter is the proportion of genes associated with each marker 
k .
Replacing k by the genome location �, we can draw a profile of associated genes

.�/ against �.

25.2.4 Hierarchical Evolutionary Stochastic Search

Most recently, Bottolo et al. (2011) developed a hierarchical model for eQTL
mapping. The model is similar to that of Jia and Xu (2007) but with a set of new
hierarchical priors. Their method is more powerful than the original method due
to the use of improved prior distributions. Because their prior is complicated, the
usual MCMC sampling process is not efficient. The authors then used an improved
sampling strategy called hierarchical evolutionary stochastic search (HESS) algo-
rithm. This algorithm is an extension of the evolutionary stochastic search (ESS)
algorithm developed by Bottolo and Richardson (2010). We will briefly introduce
this new method and state the differences of it from the Bayesian method of Jia and
Xu (2007).

The multiple eQTL model remains the same as that of Jia and Xu (2007) given
in (25.38), but it is rewritten in a more compact form as given below:

yj D 1ˇj CZ�j C "j (25.77)

where p is the number of markers, �j D
�

�j1; : : : ; �jp
�T

is a p � 1 vector of
eQTL effects for gene j , and Z D �

Z1; : : : ; Zp
�

is an M � p matrix for the
marker genotype indicator variables. The residual error is assumed to be N.0; 	2j /
distributed. The difference between Bottolo et al. (2011) hierarchical model and that
of Jia and Xu (2007) comes from the prior setup. Recall that �j D

�

�j1; : : : ; �jp
�

is

a vector of indicator variables for inclusion of �j D
�

�j1; : : : ; �jp
�T

in the model.
Given �j , the prior distribution for �j is
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p
�

�j j�j ; ˛; 	2j
	

D N
�

�j

ˇ

ˇ

ˇ

ˇ
0; ˛

�

ZT
� Z�

	�1
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(25.78)

where ˛ is a shrinkage parameter and 	2j is the residual variance for gene j . The
new design matrix Z� is a subset of matrix Z that contains only the columns
corresponding to nonzero �j . Accordingly, �j is a subset of �j corresponding the
nonzero elements indicated by vector �j . This particular prior will capture the
covariance structure of the marker genotypes.

The hierarchical model completes by specifying priors for 	2j and ˛. The prior
for 	2j is

p
�

	2j

	

D Inv-Gamma
�

	2j ja; b
	

(25.79)

where a > 0 and b > 0 are hyperparameters. This prior is different from the inverse
chi-square prior used by Jia and Xu (2007). The prior for ˛ is

p.˛/ D Inv-Gamma



˛j 1
2
; M
2

�

(25.80)

This prior leads to a heavy-tailed normal distribution for �j , called the Cauchy
distribution,

p
�

�j j�j ; 	2j
	

D Cauchy

�

�j

ˇ
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�
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� Z�

	�1
	2j

�

(25.81)

For the indicator variable �jk , they assign a Bernoulli prior

p.�jkj�jk/ D Bernoulli.�jkj�jk/ (25.82)

which is the same as that of Jia and Xu (2007). However, Bottolo et al. (2011)
decomposed �jk into

�jk D 
j � 'k; 8j D 1; : : : ; N & k D 1; : : : ; p (25.83)

where 
j and 'k represent “row” and “column” effects, respectively, and 0 � 
j �
1 and 'k � 0. The idea of this decomposition is to control the level of sparsity
for gene j through a suitable choice of the hyperparameters .aj ; bj / of the beta
distribution for 
j ,

p.
j / D Beta.
j jaj ; bj / (25.84)

Note that 
j defined here is different from 
k used in (25.40). Here, 
j represents
the proportion of markers that affect gene j , while 
k defined before represents the
proportion of genes that are affected by marker k. The newly defined 'k here more
or less serves the same role as 
k in the MCMC sampling algorithms because a
large 'k indicates that marker k is most likely a hot spot (affecting the expressions
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of many genes). Bottolo et al. (2011) concluded their prior setup by specifying a
prior for 'k as

p.'k/ D Gamma.'kjc; d/ (25.85)

The hierarchical model eventually ends up with hyperparameters .aj ; bj / for 
j
where j D 1; : : : ; N and hyperparameters .c; d / for 'k where k D 1; : : : ; p.
Selection of the hyperparameters remains a challenging task, and some suggestions
can be found in Bottolo et al. (2011).

The prior setup of Bottolo et al. (2011) has a nice property of allowing explicit
integrations for many parameters, e.g., ˇj , �jk , and 	2j . After integration of these
parameters, the parameters left are ˛, �, and � where

� D f�jk;8j D 1; : : : ; N & k D 1; : : : ; pg

and

� D f�jk;8j D 1; : : : ; N & k D 1; : : : ; pg
The joint density of parameters and data is

p.y;Z; ˛; �; �/ D p.yjZ; �; ˛/p.�j�/p.�/p.˛/ (25.86)

where

p.yjZ; �; ˛/ D
N
Y

jD1
p.yj jZ; �j ; ˛/; (25.87)

p.�j�/ D
N
Y

jD1

p
Y

kD1
p.�jk j�jk/ (25.88)

and

p.�/ D
N
Y

jD1
p.
j /

p
Y

kD1
p.'k/ (25.89)

As described earlier, p.˛/ has an inverse gamma prior (see (25.80)). The posterior
distribution is proportional to the above joint distribution, and thus, MCMC
sampling can be conducted using (25.86) as the target distribution.

Sampling � is very challenging since the complex structures inZ create problems
of multimodality of the model space even for a single gene. Here the computational
challenge is even higher because we are dealing with a huge model space of
dimension .2p/N . Bottolo and Richardson (2010) proposed the ESS sampling
algorithm, which has been adopted to the hierarchical model, named HESS, by
Bottolo et al. (2011) for eQTL mapping. The idea of HESS is that for each gene
(response), HESS relies on running multiple chains with different “temperature”
in parallel. These chains exchange information for some covariates. Since chains
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with high temperatures flatten the posterior density, global moves (between chains)
allow the algorithm to jump from one local mode to another. Local moves (within
chains) permit fine exploration of alternative models, resulting in a combined
algorithm ensuring that the chains mix efficiently and do not become trapped locally.
The entire MCMC sampling process involves the ESS step and the Metropolis steps.
A brief summary of the iteration process is given below:

1. Given � and ˛, update � according to the ESS procedure using global and local
moves.

2. Given � and ˛, sample 
j and 'k using a random walk Metropolis step with
adaptive proposals.

3. Given � and �, sample ˛ using a random walk Metropolis step with a fixed
proposal.

4. Go back to Step (1) to Step (3) until the chains reach a desired length.

The HESS algorithm concludes with the post-MCMC analysis. The most
important information in the analysis is the posterior propensity of each marker
to be a “hot spot.” We can declare marker k as a hot spot if

Pr.'kjy;Z/ � t (25.90)

where t D 0:8 or another number defined by the investigator. Another interesting
quantity is the “linkage” for the .j; k/ pair. One may define the marginal probability
of �jk D 1 and declare a linkage if

Pr.�jk D 1jy;Z/ � t (25.91)

The HESS algorithm is much too complicated to describe fully here. We only
introduced the prior setup and the concept of HESS. The description provided here
is certainly not sufficient for readers to code the HESS algorithm. Interested readers
should read the original studies (Bottolo and Richardson 2010; Bottolo et al. 2011)
for detailed information.
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F -test, 65, 99, 288
Z-test, 75
ı function, 235
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BC1, 12
BC0
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F1, 11–13, 63
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t -distribution, 226
t -test, 64, 99, 288
Šidák correction, 103
cis - eQTL, 395
trans - eQTL, 395

A
adaptive prior, 238
additive distance, 6
additive effect, 55, 63, 75, 179
additive relationship matrix, 192
additive variance, 58
allele frequency, 54
allelic effect, 56, 57
allelic fixation, 172
allelic substitution, 178
Alzheimer disease, 383
analysis of covariance, 286
ANOVA, 99, 288, 343
Arabidopsis data, 255
autocorrelation, 229
average distance method, 304
average effect of allelic substitution, 57, 59

B
B-spline, 365, 371, 391
B-spline bases, 371
B-spline function, 366
backcross, 11
balanced random shuffling, 292
barley, 183, 218
Bayesian information criterion, 329, 348
Bayesian Lasso, 253, 254
Bayesian mapping, 223
Bayesian method, 223
Bayesian shrinkage analysis, 244
Bayesian shrinkage method, 240
Bayesian statistics, 223
BC, 42
BC design, 36
Bernoulli distribution, 85, 148, 240
Bernoulli prior, 409
best linear unbiased prediction, 378
best linear unbiased predictor, 267
Beta distribution, 409
Beta prior, 251, 392
between breed variance, 183
biallelic population, 53
bifurcating tree, 307, 313, 318
binary data, 133, 148
binary trait, 141
binomial distribution, 14
block coordinate descent algorithm, 264, 272
BLUP, 378
Boltsman constant, 28
Bonferroni correction, 102, 290
bootstrap, 33
bootstrap method, 214, 218, 318
Box–Cox transformation, 285
branch and bound, 29–33
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branch and bound algorithm, 318
breeding value, 57
broad sense heritability, 58
brother–sister mating, 171
burn-in, 243
burn-in period, 229

C
cancer diagnosis, 355
candidate gene, 61, 96
Cauchy distribution, 409
centiMorgan, 3, 6, 8, 9
centroid, 321
cluster analysis, 304, 306, 348
coefficient of coincidence, 7
coefficient of incidence, 8
coefficient of interference, 7
complete-data log likelihood

function, 84, 143, 154,
156, 166

complicated pedigree, 187
conditional distribution, 225
conjugate prior, 231
continuous genome model, 276, 277
coordinate descent algorithm, 262, 266,

270
correlation coefficient, 108
cross validation, 356
crossover, 3, 5, 6
Cyber-T, 296

D
data normalization, 285
data transformation, 284
data trimming, 276
degree of dominance, 159
degree of polynomial, 368
dendrogram, 304, 306
descent graph, 189
differential expression, 290
differential expression analysis, 350
diploid organism, 53
disease diagnosis, 355
distance matrix, 303
dominance deviation, 57
dominance effect, 55, 62, 63, 77, 179
dominance marker, 43
dominance variance, 58
dose-response microarray experiment,

365
double exponential prior, 253
double haploid, 175, 183

E
EM algorithm, 21, 22, 81, 82, 84, 121, 139,

141, 147, 153, 161, 194
empirical Bayes, 236, 257
empirical Bayes method, 278
empirical Bayesian mapping, 260
empirical critical value, 103, 105
environmental deviation, 55
eQTL, 395
eQTL mapping, 402
ESS, 410
estimating equation, 109
Euclidean distance, 303
evolutionary stochastic search, 408
exhaustive search, 25, 318
expected complete-data log likelihood

function, 84
expected relative fitness, 160
experiment-wise Type I error, 102, 290
exponential prior, 272
expression quantitative trait loci, 395
expression trait, 395
external knot, 371

F
factor analysis, 343
factor loading, 343, 344
factorial design, 335
false discovery rate, 291
female sterility, 147
Fisher information matrix, 162
Fisher scoring algorithm, 109, 115, 116
Fisher’s scoring algorithm, 17, 18
Fisher’s scoring method, 20, 22
fitness, 54
fixed model, 187, 298
flanking markers, 44, 48
flowering time, 255
four-way cross, 40, 42, 175
full model, 100
full-sib analysis, 187
full-sib family, 181
fully conditional posterior distribution, 231
FW, 41, 43

G
gametic transition matrix, 38
Gamma function, 225
Gamma prior, 410
Gaussian mixture, 79, 323
gene, 3
gene expression, 283
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gene expression profile, 365
gene frequency, 54
general linear model, 296
generalized linear model, 133
generalized inverse, 133
generalized linear model, 131, 140, 356
GeneStat, 131
genetic effect, 54, 55, 63, 74
genetic map, 3, 5, 23
genetic mapping, 3
genetic variance, 58
genome expansion, 174
genome scanning, 96, 105
genome wise Type I error, 106
genotype by environment interaction, 209
genotype frequency, 54
genotype indicator variable, 67, 75, 98
genotypic frequency, 54
genotypic value, 55
Gibbs sampler, 400
Gibbs sampling, 231
GLM, 131

H
Haldane map function, 6, 9, 24, 49
haploid, 53
Hardy–Weinberg equilibrium, 54, 56, 59
Henderson’s mixed model equation, 267
heritability, 74
HESS, 411
Hessian matrix, 15, 89, 118, 143, 157, 167
heterogeneous variance, 147
heterogeneous variance model, 137, 148
heuristic search, 26, 27
hierarchical clustering, 303
hierarchical evolutionary stochastic search,

408
hierarchical mixed model, 268
hierarchical modeling, 236
homogeneous variance, 136, 147
homogeneous variance model, 135, 148
hot spot, 405
hyper parameter, 257
hyper-parameter, 237, 279
hypothesis test, 64

I
IBD, 189, 199
IBD matrix, 192
IBS, 189
identical-by-state, 189
identity-by-descent, 188, 189

improper prior, 237, 254
inbreeding coefficient, 171, 172
incomplete Gamma function, 247
individual marker analysis, 96
infinitesimal model, 275
information, 15, 65
information matrix, 116, 118, 134, 145, 156
interaction effect, 337
interference, 6, 9
internal knot, 371
interval mapping, 109, 127, 129, 148
inverse chi-square distribution, 224, 226
inverse Gaussian distribution, 254
inverse transformation method, 145
inverse Wishart distribution, 392
iteratively reweighted least squares, 109, 114,

356

J
Jeffreys’ prior, 361
joint distribution, 227
joint mapping for QTL and SDL, 164

K
K-fold cross validation, 361
K-means, 321
knots, 365
Kosambi map function, 6, 9, 24

L
Lagrange multiplier, 93, 154, 155, 252
Lasso parameter, 253
least absolute shrinkage and selection operator,

252
least angle regression, 253
least squares, 62, 64, 109, 110, 132
least squares estimate, 315
leave-one-out cross validation, 361
liability, 139, 141, 145
liability model, 152, 159, 161, 164
likelihood function, 14, 18
likelihood ratio, 16, 17, 23, 248
likelihood ratio test, 88, 90, 100, 106, 155, 179
Limma, 297
linkage disequilibrium, 95
locus, 3
LOD, 16, 17, 23, 96, 100, 102, 148, 268
logarithmic transformation, 284
logistic analysis, 147
logistic model, 146
logistic regression, 355
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logit link function, 146, 356
Lokie, 207
Louis information, 122
Louis information matrix, 143, 145, 164

M
major gene, 61, 65, 79
major gene detection, 62, 65
map construction, 23
map function, 6, 7, 9, 10
marginal distribution, 225, 227
marginal posterior distribution, 227
marker-trait association, 95
Markov chain, 35, 36, 43, 229
Markov chain Monte Carlo, 228, 229, 243
maternal parent, 53
mating type, 61, 63
maximum a posteriori, 269
maximum likelihood, 12, 13, 109, 120
MCMC, 351, 391, 399
meiosis, 3, 5, 10
Mendelian locus, 53, 61
Mendelian ratio, 63, 70, 151
Mendelian segregation, 80, 153
Metropolis algorithm, 28
Metropolis–Hastings algorithm, 241
Metropolis–Hastings rule, 242
microarray, 283
microsatellite marker, 96, 255
midpoint value, 55, 56
missing marker, 44, 47, 98
missing value, 140, 143, 157
mixed bivalent, 9
mixed model, 188, 258, 287, 300, 375
mixing proportion, 80, 93, 326, 392
mixture distribution, 80, 120, 250
mixture model, 81, 132, 137, 147, 148, 324,

325
mixture over marker, 396
MLE, 14, 16–18, 20
model-based clustering, 323
model-based clustering method, 321
MOM, 396
Monte Carlo, 28, 145
Morgan, 5–9
mouse data, 96, 169
multiallelic population, 53
multicollinearity, 223
multinomial probability, 153
multiple eQTL model, 408
multiple imputation, 131
multiple integration, 227

multiple QTL, 223
multiple QTL model, 204, 234
multiple traits, 209
multipoint analysis, 35, 47–49, 174
multipoint method, 129, 201
multivariate analysis, 209
multivariate Gaussian distribution, 324
multivariate Gaussian mixture distribution, 331

N
narrow sense heritability, 58
neighbor joining, 306
neutral cluster, 378, 385
Newton method, 18–20
Newton–Raphson, 81, 88, 116, 357
nominal Type I error, 102, 103, 290
non-parametric method, 214
normal test, 76
normalized fitness, 161
nuclear family, 187, 189

O
observed log likelihood function, 83, 86, 156
oligogenic model, 79
Operational Taxonomic Unit, 304
ordinal trait, 131
orthogonal polynomial, 365, 366, 392
orthogonal polynomial coefficient, 368
outbred population, 190
over saturated model, 234

P
parental gamete, 5, 6
parsimony method, 317
partially informative genotype, 41
partially informative marker, 47
paternal parent, 53
pedigree, 11, 61, 187
penalized logistic regression, 355, 358
permutation analysis, 256
permutation test, 103–105, 290, 291
phylogenetic tree, 304
phylogentic tree, 306
phylogeny, 304
physical map, 3
piecewise polynomial function, 365
Piepho’s approximation, 106
pleiotropic model, 213
pleiotropy, 209
Poisson distribution, 148
Poisson prior, 245
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polygenic model, 79
polynomial, 391
polynomial equation, 271
population genetics, 54
population mean, 56, 63
posterior distribution, 225
posterior mean, 227
posterior median, 227
posterior mode, 227
posterior sample, 229, 233, 243
precision, 65
predicted gene expression, 370, 374
prediction error, 253, 361
principal component analysis, 209
prior distribution, 224
prior ratio, 248
probabilistic model, 152, 164
probit, 146
probit analysis, 147
probit link function, 132, 356
PROC QTL, 96
proper prior, 237
proposal density, 242
proposal ratio, 248
pseudo data, 360
pseudo marker, 255

Q
QTL, 53, 95, 107, 121
QTL effect profile, 97
QTL identity, 244
QTL intensity profile, 250
quadratic equation, 271, 273
quadratic penalty, 359
quadratic programming, 252
quadrivalent pairing, 9
quantitative genetics, 54
quantitative trait, 53, 55, 61, 62, 79, 95, 384
quantitative trait associated microarray data

analysis, 385

R
random mating, 54
random model, 187, 189, 300
random walking strategy, 241
rate-corrected distance, 313
recombinant, 5, 6
recombinant inbred line, 171
recombination fraction, 6, 7, 9, 11–14, 16, 21,

23–25, 46, 107
recombination frequency, 5–8, 10, 11
reduced model, 100

regression, 62
regression coefficient, 62–64, 108
regularized t -test, 296
relative fitness, 159, 160
restricted model, 100
reversed-color design, 287
reversible jump MCMC, 234, 245, 247
RIL1, 171, 175
RIL2, 171, 175

S
SAM, 296
SAS, 131, 146
satellite marker, 23
scale parameter, 226
score function, 15, 19, 89
score vector, 116, 117, 134, 157
segregating population, 12, 13
segregation analysis, 79
segregation distortion, 9, 36, 63, 151, 159,

164
segregation distortion locus, 151
selection coefficient, 159
selection intensity, 159
selective shrinkage, 234, 236
selfing, 12, 63
SEM algorithm, 338, 348, 382, 389, 398,

404
semi-supervised cluster analysis, 329
sequential search, 205
serial correlation, 229
Sherman-Morrison-Woodbury matrix

identities, 260
sib-pair regression, 188, 192
simple pedigree, 187
simplex algorithm, 161, 194
simplex method, 47, 199
simulated annealing, 28, 29
simultaneous updating algorithm, 269
SimWalk2, 207
spikelet, 148
square root transformation, 285
standard error, 65
star phylogeny, 307, 311
stationary distribution, 229, 233
statistical genomics, 95
statistical power, 71, 72, 74, 76, 290
stochastic EM algorithm, 333, 338
stochastic search variable selection, 250
super traits, 209
supervised cluster analysis, 322, 327
support vector machine, 355
systematic error, 285
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T
Taylor series, 19, 20
test statistic profile, 96
test-wise Type I error, 102
testing sample, 322
tetraploid, 10
thinning, 229
three-point analysis, 35
three-term recurrent algorithm, 369
threshold, 141
time-course microarray experiment, 365
tissue sample classification, 355
trace plot, 341
training sample, 322
transition matrix, 38, 40, 43, 46, 47, 174, 202
trimming, 229, 243
truncated normal distribution, 145
truncated normal variable, 144
truncation selection, 160
Type I error, 16, 65, 71–73, 76, 289
Type II error, 71, 72, 74, 76, 289

U
unbiased, 14, 15
uniform prior, 236

uninformative locus, 41
uninformative prior, 236, 251
unrooted tree, 307
unsupervised cluster analysis, 329
UPGMA, 304

V
variance component analysis, 188
variance–covariance matrix, 88, 90, 102, 116,

137, 163, 214
viability locus, 151
viability selection, 151, 159

W
Wald-test statistic, 67, 72, 73
weighted estimating equation, 131
wheat, 147
within breed variance, 183
Woodbury matrix identities, 263, 265

Z
zygotic transition matrix, 38
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