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Abstract 

TRAF2 and TRAF5 are closely related members of die TRAF family of proteins. They are 
important signal transducers for a wide range of TNF receptor superfamily members, 
including TNFR1, TNFR2, CD40 and other lymphocyte costimulatory receptors, RANK/ 

TRANCE-R, EDAR, LTpR, LMP-1 and IRE1. TRAF2 andTRAF5 therefore regulate diverse physi­
ological roles, ranging from T and B cell signaling and inflammatory responses to organogenesis and 
cell survival. The major pathways mediated by TRAF2 and TRAF 5 are the classical and alternative 
pathways of NF-KB activation, and MAPK and JNK activation. TRAF2 is heavily regulated by 
ubiquitin signals, and many of the signaling functions of TRAF2 are mediated through its RING 
domain and likely its own role as an E3 ubiquitin ligase. 

Introduction 
The focus of this chapter will be on TRAF2 and TRAF 5, which are closely related in both 

structure and function. Since they play important roles in mediating signals induced by the TNF 
receptor superfamily, the physiological roles of TRAF2 and TRAF 5 will be discussed in the context 
of the receptors that they associate with. In addition, TRAF2 has been reported to play roles in 
LMP-1 signaling and endoplasmic reticulum (ER) stress responses. These two signaling contexts 
will be discussed at the end of this chapter. 

TNF-associated factor 2 (TRAF2), a 56kD protein, was discovered through yeast two-hybrid 
screening for proteins interacting with the c-terminal region of human TNF receptor 2.1 Along with 
TRAF1, TRAF2 was one of the first members of the TRAF protein family to be identified. TRAF 5 
was later discovered through yeast two hybrid interaction, while screening for proteins binding to 
the cytoplasmic tail of CD40.2 Furthermore, TRAF5 was independendy identified as a protein 
interacting with the lymphotoxin p receptor (LTpR).3 

Like all TRAF family members, TRAF2 and TRAF 5 are characterized by a highly conserved 
carboxy-terminal TRAF domain, which can be further subdivided into TRAF-N and TRAF-C 
domains. The TRAF domain mediates receptor binding, interactions with a number of adapter 
and signaling molecules, self association, and interactions with other TRAF proteins. TRAF2 can 
oligomerize with itself or with TRAF1 or TRAF6.1'4 TRAF5 also associates with itself, but is also 
known to hetero-oligermize with TRAF3.5 In addition to the conserved TRAF domain, TRAF2 
and TRAF 5 each contain an N-terminal ring finger domain followed by five zinc fingers and a 
coiled-coil domain. 
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TRAF5 is highly similar to TRAF2 both structurally and functionally. However, whereas TRAF2 
is expressed ubiquitously, TRAF5 expression is only found at significant levels in lung, thymus, 
spleen, and kidney and at lower levels in brain and liver.1'2' This more restricted expression pattern 
may explain to some extent why deletion of TRAF2 leads to perinatal lethality whereas deletion of 
TRAF5 only leads to more specific defects in CD40 and CD27 mediated lymphocyte activation. 
On the other hand, double knockouts of TRAF2 and TRAP 5 suggest some functional redundancy 
between these two molecules in the context of TNF induced NF-KB activation. 

Mechanisms of TRAF2/5-Mediated Signal Transduction 
There have been many studies over the years that have examined TRAF2 signaling and regulation. 

TRAF5 has also been examined, albeit to a lesser extent, therefore, the focus of this section will be on 
TRAF2. 

TRAF2/5 and NF-KB Activation 
NF-KB is one of the primary pathways activated byTRAF2 andTRAF5. Since NF-KB activation 

is not significandy impaired in mouse embryonic fibroblasts derived from TRAF2 and TRAF5 
single knockouts, but is significandy reduced in TRAF2/TRAF5 double knockouts, there is some 
functional redundancy between the two molecules in this context.8 

Activation of most receptors, including TNFR1, result in the activation of the canonical NF-KB 
pathway. The canonical pathway generally depends on the activation of IKK0 and IKKy/NEMO by 
upstream kinases, including the involvement of the TAK1 kinase complex.9 The IKK complex, 
consisting of IKKa, IKK0 and IKKy/NEMO, then goes on to phosphorylate IKB, which targets the 
molecule for ubiquitination and proteasome-mediated degradation. As IKB normally binds and 
sequesters NF-KB in the cytoplasm, its degradation results in release and translocation of NF-KB to 
the nucleus. The canonical pathway results in the formation of primarily p65/RelA-p50 
heterodimers.10 

Early studies have indicated that an intact RING domain is important for TRAF2 functions, 
including activation of NF-KB and JNK. The RING presence of the domain also suggested a role for 
ubiquitination in TRAF2 function and regulation. Interestingly mutational analyses also indicated 
that the RING domain and fourth zinc finger are necessary for TRAF2 ubiquitination.15 Muta­
tional analyses have also identified that the amino-terminal ring finger and two adjacent zinc fingers 
of TRAF2 are required for NF-KB activation.16 Like TRAF2, TRAF5 contains a similar RING 
domain.2 

TRAF2 associates with the E2 ligase complex Ubcl3-UevlA to catalyze the synthesis of 
polyubiquitin chains through a lysine-63 (K63) linkage.15 K63 linkage poly-ubiquitin chains are 
found an TRAF2, TRAF6, RIP1 and NEMO, and are therefore important for signalling in TNFR 
family pathways. In TRAF2-deficient cells, K63 polyubiquitination of RIP 1 is defective, indicating 
that TRAF2 is likely the E3 ligase involved in RIP 1 ubiquitination.17 Alternatively, TRAF2 may be 
required for recruiting other E3 ligases, such as A20, to help processing and turnover (see Fig. 
I).18'19 Since recruitment of theTAKl kinase complex is dependent on ubiquitinated RIP1, TRAF2 
mediated ubiquitination is likely critical in activating the canonical NF-KB pathway.17 It as also 
been shown that TNFR1 activation of the IKK complex and NF-KB activation requires both RIP1 
and TRAF2, where RIP1 is responsible for IKK activation and TRAF2 is necessary for recruitment 
of IKK to the complex.11'20 Interestingly, while overexpression of TRAF2 RING domain mutants 
incapable of auto-ubiquitination suggested that the RING domain is not necessary for IKK activa­
tion, complete deletion the RING domain prevented IKK activation.15 Furthermore, TRAF2 is also 
known to complex with proteins such as TANK and the kinase T2K/TBK1, which have also been 
shown to play a role in NF-KB activation.21'22 

Activation of NF-KB may also occur through an alternative pathway. This pathway is primarily 
found in B cells; however, it can be present in other cell types as well. The noncanonical or alterna­
tive pathway depends on activation of NIK and IKKa. IKKa activation leads to NFKB2/pl00 
processing to p52 and the formation of p52/RelB-p50 heterodimers.23"27 
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Figure 1. TRAF2 and regulation by ubiquitin. TRAF2 is regulated by both K63 and K48 type ubiquitin chains. 
K63 linkage may be mediated byTRAF2 auto-ubiquitination, and is required for TRAF2 activation. A20 and 
CYLD can remove K63 ubiquitin chains to inhibit TRAF2 activity. c-IAPl and Siah2 are known E3 ligases 
that can K48-ubiquitinate TRAF2 to target it for proteasome-dependent degradation. TRAF2 may also act 
as an E3 ligase itself to modulate the activity of downstream molecules. RIP 1 may be a direct target forTRAF2 
mediated K63-ubiquitination. K48-ubiquitination, leading to degradation of RIP 1, may be mediated by 
TRAF2 recruitment of A20. TRAF3 may be a target forTRAF2 K48-ubiquitination as well. 

TRAF2 has been implicated in both activation and negative regulation of the noncanonical 
NF-KB pathway. As mentioned later in the discussion of the role of TRAF2 in CD40 signaling, 
conditional knockout of TRAF2 in B-cells results in high levels of alternative N F - K B pathway 
activation, suggesting thatTRAF2 can inhibit pl00/p52 processing.25 On the other hand, mutation 
of theTRAF2/5 binding site on CD40 abolished p52/RelB translocation to the nucleus, suggesting 
that TRAF2 and TRAF5 may be required for noncanonical NF-KB pathway activation as well.28 

Regulation of the alternative pathway by TRAF2 is complicated further by the involvement of 
TRAF3. In the context of CD40 signaling, TRAF3 overexpression has been recently found to 
inhibit of TRAF2/TRAF5 mediated activation of the alternative pathway, but not TRAF6 dependent 
activation of the canonical pathway.28 Interestingly, TRAF2-deficient B cells appear to have 
increased levels of TRAF3, indicating that TRAF2 helps target TRAF3 for ubiquitinantion and 
degradation(see Fig. 1). 

TRAF2 andJNKandMAPKActivation 
TRAF2 and TRAF5 also signal through MAPK induction, primarily through activation of JNK. 

TRAF2 has been found to interact with a variety of upstream MAP3Ks, including MEKK1 and 
ASK-1, germinal center kinase and germinal center kinase kinase.30"33 TRAF5-deficient cells do not, 
however, demonstrate detectable impairment in JNK activation in response to TNF.7 

K63 ubiquitination of TRAF2 appears to be critical for activation of JNK. TRAF2 is able to bind 
ASK1, GCK and GCKR through its RING domain, however, siRNA knockdown of Ubcl3 has 
shown that activation of GCKR and the SAPK/JNK pathway also depends on the presence of Ubcl3 
E2 ligase complex. Activation of ASK1, in contrast, only marginally depends on Ubcl 3, and neither 
p38 MAPK nor IKK0 activation is affected by knockdown of Ubcl 3.15'34 
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Regulation ofTRAF2 
TRAF2 signaling also appears to be regulated by translocation. Recruitment of TNFR1, TRADD, 

RIP and TRAF2 to plasma membrane lipid rafts is important for signalling NF-KB activation.35 

Furthermore, TRAF2 ubiquitination appears to coincide with the translocation of TRAF2 to the 
insoluble membrane/cytoskeletal fraction, and appears to have a role in regulating TRAF2 levels. 

Studies have demonstrated that translocation to lipid rafts precedes ubiquitination, and have 
also suggested that compartments such as the endoplasmic reticulum may play roles in modulating 
TNFR signalling.35,36 Upon TNFR2 engagement, c-IAPl, an E3 ligase, can ubiquitinate TRAF2.37 

Recent research has shown that c-IAPl associates with the E2 ligase Ubc6, which is a an ER trans­
membrane protein. c-IAPl and Ubc6 are responsible for synthesis of K48 type ubiquitin chains on 
TRAF2 that target it for degradation in a proteasome-dependent manner.36'37 In addition to c-IAPl, 
the E3 ligase Siah2 has also been found to regulate TRAF2 levels through ubiquitination. Using 
Siah2-deficient cells from knockout mice, it was found that Siah2 targeted TRAF2 for degradation 
under stress conditions, including TNF stimulation with cyclohexamide and UV irradiation.38 

TRAF2 is also regulated by de-ubiquitinating enzymes. The tumour suppressor CYLD has be 
found to inhibit NF-KB activation. CYLD appears to regulate NF-KB by binding and removing 
ubiquitin chains on TRAF2, therefore preventing TRAF2 activation of the IKK complex.39"41 A20, 
aTNF-inducible gene, has also been found to interact with TRAF2 and inhibit NF-KB activation.18 

A20 has been found to possess both ubiquitin ligase and de-ubiquitination activity, and is known to 
downregulate NF-KB activity by removing K63 ubiquitin chains from RIP1 and by adding K48 
ubiquitin. It is probable that A20 is also involved in de-ubiquitinating and de-activating TRAF2.19 

Finally, it is also important to note that TRAF2 can target itself for degradation through K48 
ubiquitin chain synthesis. CD40 induced TRAF2 degradation, for example, requires an intact TRAF2 
RING domain. The duality of the TRAF2 E3 ligase, in that it is able to generate ubiquitin chains 
that lead to both activation (such as RIP1) or inactivation (such as TRAF3), gives this molecule a 
unique role depending what it interacts with (see Fig. 1). 

Receptors and Pathway Anchor Proteins That Utilize TRAF2 and TRAF5 

TNFR1 
The role of TRAF2 is perhaps best characterized for TNF signaling through TNF receptor 1 

(TNFR1). TNF is a major proinflammatory mediator, and can induce apoptosis under certain 
circumstances. It is responsible for not only immune response, but also development and tissue 
regeneration, and has been found to have pathophysiological roles in septic shock, autoimmune 
disease, and cancer. TNFR1 appears to be the key mediator of TNF signalling in the majority of cells. 

Upon TNF binding, TNFR1 recruits several signaling proteins to its cytoplasmic death domain. 
TNFR1-associated death domain protein (TRADD) is first recruited via its death domain to the 
death domain ofTNFRl, and acts as an adaptor molecule. Fas-associated death domain protein (FADD) 
interacts with the carboxy-terminal death domain of TRADD, which exposes the death effector do­
main of FADD, allowing FADD to recruit caspase 8/FLICE, which leads to the activation of the 
apoptotic cysteine protease cascade.43"47 RIP1 is a serine-threonine kinase that binds the carboxy-terminal 
death domain of TRADD in a TNF-dependent manner. TRADD also direcdy interacts with TRAF2 
via its amino-terminal halP3' 9 Recent studies have suggested that a complex involving TNFR1, 
TRADD, RIP1 and TRAF2 at the plasma membrane is formed first, and rapidly signals NF-KB 
activation and cell survival. A second complex consisting of TRADD, TRAF2, RIP1, FADD and 
caspase-8 is formed later in the cytoplasm to signal cell death under certain contexts.50 (see Fig. 2) 

Half of mice deficient in TRAF2 die at El4.5 with a similar phenotype to RelA deficient mice, 
whereas the rest are born normal but are runted and die prematurely with atrophy of the thymus and 
spleen, and show elevated serum TNF levels. Thymocytes and other hematopoietic cells also show 
extreme sensitivity to TNF induced cell death. These phenotypes suggest that TRAF2 plays an 
important physiological role in regulating cell survival, particularly in response to TNF, since TRAF2 
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Figure 2. The function of TRAF2 in TNFR1 signaling. TRAF2 is a key molecule in TNFR1 signaling. Upon 
receptor activation, TRAF2 is recruited via the adapter TRADD. TRAF2 can then go on to activate a variety 
of downstream MAPKs and JNK. Together with RIP1, TRAF2 is also important in activating the IKK 
complex. IKK phosphorylates and targets IKB for proteasome-dependent degradation to allow the release and 
nuclear translocation of the NF-KB. Transactivation of NF-KB target genes isimportant for cell survival and 
inflammatory signals. TRAF2 is also able to recruit c-IAPl and C-IAP2, which inhibit caspase activation and 
apoptosis. TRAF5 appears to play a similar and redundant role in this pathway. 

knockout mice can be rescued by crossing with TNF or TNFR1 knockout. '51 On the other hand, 
targeted disruption of TRAP 5 in mice does not lead to perinatal lethality, suggesting that it has a 
more minor role in TNF cytoprotection. Furthermore, hyperactivity of certain TNF responses, 
including increase NO and TNF production by macrophages, has also been observed in TRAF2 
knockout mice, indicating that TRAF2 also has an important role in regulating TNF mediated 
immune responses.51 

Activation of NF-KB and JNK/SAPK may be important pathways through which TRAF2 medi­
ates cytoprotection against TNF. From knockout studies, it is known that RIP1 is essential for 
N F - K B activation induced by TNF, and that N F - K B activation is essential for cell survival in 
response to TNF.13,52 However, as mentioned previously, TRAF2-deflcient cells are not significantly 
defective in NF-KB activation '52'53 even though overexpression of TRAF2 or TRAP5 can activate 
NF-KB in cells.2'3'5 TRAP2 and TRAF5 double knockout cells, however, do demonstrate more 
impaired NF-KB activation than single knockouts, suggesting that TRAP5 may compensate for the 
lack of TRAF2 in this signalling pathway.8 The TNFR1-TRADD-RIP1-TRAP2 signaling complex 
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primarily leads to induction of the classical NF-KB signalling pathway. As discussed in the previous 
section, this depends on the activation of IKKp and IKKy/NEMO, and results in the formation of 
primarily p65/RelA-p50 heterodimers. 

TRAF2 and TRAP 5 have also been implicated in MAPK activation and regulation of the AP-1 
transcription factor, as cells lacking TRAF2 also demonstrate severe impairment in JNK/SAPK acti­
vation upon TNFR1 stimulation. Cells deficient in both TRAF2 and TRAF5 have been found in 
some cases to demonstrate a delayed but prolonged MAPK activation in response to TNF, which has 
been linked to increased TNF-induced reactive oxygen species signalling and induction of cell death. 5 

TRAF2 also promotes survival in response to TNF by recruiting c-IAPl and C-IAP2 to the 
TNFR1 complex. c-IAPl and C-IAP2, both typical members of the BIR domain containing inhibi­
tors of apoptosis family, are able to prevent caspase-3 activation and apoptosis. '5 '5 7 

TNFR2 
Unlike TNFR1, TNFR2 does not possess a Carboxy-terminal death domain, and TRAF2 

direcdy binds to the cytoplasmic tail of TNFR2. While TRAF1 cannot bind direcdy to TNFR2, 
TRAF1 can be recruited to complex indirecdy via interaction with TRAF2, and may act as a negative 
regulator of TNFR2 signaling through TRAF2.1'58 TRAF5 has not been found to bind to the 
cytoplasmic tail of TNFR2.2 Signaling downstream of TNFR2 and TRAP2 is relatively similar to 
TNFR1. As mentioned previously, RIP1 can bind to TRAF2, and also associates with TNFR2. 
TNFR2 recruitment of TRAF2 is also involved in both NF-KB and MAPK activation, indicating 
that TRAF2 is important in the crosstalk between TNFR2 and TNFR1.59'60 

As mentioned previously, TRAF2 interacts with both c-IAPl and C-IAP2. This interaction was 
initially identified as part of TNFR2 complex. More recent studies looking at the TNFR2-TRAF2 
complex have demonstrated that the carboxy-terminal of c-IAPl acts as an E3 ubiquitin ligase that 
is able to ubiquitinate TRAF2 and target it for proteasomal degradation.37 As TRAF2 typically 
signals cell survival through NF-KB and JNK activation, this suggests a mechanism through which 
proteins recruited by TRAF2 can enhance TNF induced apoptosis, and that TNFR2 activation can 
help regulate TNFR1 signals. 

CD40 
CD40 is a TNFR family member that is expressed constitutively by antigen presenting cells, 

such as B-lymphocytes, macrophages and dendritic cells. Activation by its ligand, CD40L/CD154, 
induces a variety of effector functions, including upregulation of molecules involved in antigen 
presentation and B and T cell interactions, antibody production, isotype switching, cytokine secretion, 
and protection from apoptosis.62,63 

Both TRAF2 and TRAF5 have been implicated in CD40 signaling. Although TRAF5 was 
originally identified as a protein binding to the cytoplasmic domain of CD40, subsequent studies 
have shown that TRAF5 recruitment to CD40 is indirect through hetero-oligomerization with 
TRAF3. TRAF2, on the other hand, is able to direcdy associate with CD40.5 TRAF1, TRAF2, and 
TRAF3 associate with CD40 via a PVQET motif, wherease TRAF6 associates in a different region. 
Competition and different combinations of TRAF recruitment to CD40 may therefore contribute 
to modulating receptor signals across different cell types. 

While CD40 can induce p65RelA-p50 NF-KB activation, CD40 is also known to induce N F K B 2 / 
pi00 processing and the alternative NF-KB pathway.27 Dominant negative TRAF2, which lacks the 
amino-terminal RING finger domain, inhibits CD40 mediated NF-KB activation. Studies using 
TRAF2-deficient B cell lines expressing mutant CD40 defective in TRAF6 binding have also shown 
that NF-KB pathway activation, as demonstrated through IKB phosphorylation and degradation, is 
impaired when both TRAF2 and TRAF6 binding are absent. However, neither TRAF2 nor TRAF6 
binding alone are indispensable for CD40-induced NF-KB activation.29 

More recent studies looking at conditional knockout of TRAF2 in B-cells have shown that while 
TRAF2 is necessary for canonical activation of NF-KB in response to CD40, deficiency in TRAF2 
actually results in hyperactivity of the alternative N F - K B pathway. TRAF2-deficient B-cells 
demonstrated a survival advantage and upregulation of CD21/35. TRAF2 can therefore act as a 
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Figure 3. The function ofTRAF2 andTRAF5 in CD40 signaling. Unlike TNFR1, but similar to the majority 
of TNF superfamily receptors, CD40 is able to recruit TRAFs directly to its cytoplasmic domain. TRAF2, 
TRAF5 and TRAF6 have all been implicated in NF-KB activation. Interestingly, TRAF2 has been found to 
activate and inhibit the alternative NF-KB pathway mediated through NIK and IKKa, resulting in pi00 
processing to p52. TRAF3 may compete with and inhibit TRAF2. 

negative regulator of pl00/p52 processing.25 In contrast to TRAF2, deficiency in TRAF5 does not 
affect NF-KB or JNK signalling in response to CD40.7 (see Fig. 3) 

TRAF2 has also been found to be important in B-cell receptor (BCR) and CD40 synergy. 
Antigen stimulation of BCR leads to activation of a variety of downstream signalling molecules and 
second messengers, including members of the protein kinase C family (PKC) and protein kinase D 
(PKD). Pharmacological inhibition of PKD in B-lymphocytes was found to prevent CD40 and 
BCR synergy. B cells expressing a mutant CD40 defective in TRAF2 binding also demonstrate a 
BCR-CD40 synergy defect, however, overexpression of constitutively active PKD in these cells is 
unable to overcome the defect observed, indicating that TRAF2 is required for PKD-mediated 
enhancement of BCR-CD40 signals.29'65'66 
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Deficiencies in either TRAF2 or TRAP 5 > however, demonstrated CD40 signaling defects in 
vivo. Crossing with TNF or TNFR1-knockout mice aids the survival of TRAF2-knockout mice and 
has allowed the investigation of TRAF2-deficiency on CD40 responses in lymphocytes. 
TRAF2-deficiency results in impaired isotype switching and failure to mount IgG responses 
induced by vesicular stomatitis viral infection. TRAF2-deficiency also leads to defective CD40 
mediated proliferation and NF-KB activation in splenocytes.51 TRAF5-deficient mice reveal 
impairment of CD40 stimulated B-cell proliferation and upregulation of surface markers, and also 
show mild defects in affinity maturation of IgG antibodies.7 

TACI, BCMA 
BCMA (B-cell maturation antigen) and TACI (transmembrane activator and CAML interactor) 

are TNF receptor superfamily members that share the ligands BAFF (B-cell activating factor) and 
APRIL. Both receptors are expressed primarily on B-lymphocytes. TRAF2, TRAF 5 and TRAF6 
have been shown to associate with TACI. TRAF2 and TRAF5 share a binding motif, but the majority 
of positive clones from yeast-two hybrid were TRAF2-TACI interactions, suggesting that TRAF2 
may play a more prominent role. Like other TNF receptor superfamily members interacting with 
TRAFs, activation of TACI also results in NF-KB and JNK activation. 

TRAF1, TRAF2 and TRAF3 interact with the cytoplasmic region of BCMA Analyses of deletion 
mutants of the TRAF binding domain in BCMA demonstrated that TRAF association is required 
for NF-KB, Elk-1 and JNK activation in response to BCMA.67'68 However, although BAFF stimu­
lation is important for B cell survival and proliferation, the phenotypes of mice deficient in TACI 
and BCMA indicated that these receptors are not responsible for the survival signal. There is no 
obvious phenotype for the BCMA knockout,69'70 and TACI-deficient mice actually show increased 
numbers of B-cells.71 The survival signal was actually found to be mediated primarily through TRAF3 
by BAFF activation of BAFF-R. Furthermore, while activation of BAFF-R leads to alternative NF-KB 
pathway activation, which has been implicated in B-cell survival, activation of BCMA or TACI does 
not.71,72 Therefore, signalling through BCMA or TACI through TRAF2 appears to mediate signals 
other than BAFF-R signals. 

CD30 
CD30 is a cell surface receptor characteristic of activated T-lymphocytes. CD30 stimulation can 

lead to cell proliferation, survival, difFerention, or cell death, depending on cell type and costimulation. 
CD30 is also an important marker for Hodgkins and other lymphomas, and is upregulated in 
several virally transformed cell lines.7 

Like many other TNFR family members, signalling through CD30 is transduced through TRAFs 
and can lead to activation of NF-KB and MAPKs.74-7STwo different regions in the c-terminal tail of 
CD30 are capable of binding TRAFs. The more N-terminal domain in the tail can bind TRAF3, 
TRAF2, and TRAF5, whereas the more C-terminal domain can bind TRAF1, TRAF2 and TRAF5. 
Expression of a dominant negative TRAF2 or TRAF 5 resulted in impaired CD30 mediated NF-KB 
activation. While TRAF2 andTRAF5 are both implicated in NF-KB activation in response to CD30 
stimulation, mutation of a more membrane proximal domain that is not known to bind TRAFs can 
also abrogate CD30 induced NF-KB activation.74'75'77'78 

CD27 
CD27 is a receptor expressed on T, B, and NK cells. CD27 plays an important role in T cell 

interactions andT and B cell interactions, and provides an important costimulatory signal for 
proliferation.73 Both TRAF2 and TRAF5 interact with the cytoplasmic tail of CD27. Deletion 
analysis of the cytoplasmic domain identified a critical motif that is necessary for CD27 mediated 
NF-KB and JNK activation, and that this motif coincides with the binding site for TRAF2 and 
TRAF5. Overexpression of dominant negative TRAF2 or TRAF5 was also found to block NF-KB 
activation.79'80 In vivo, thymocytes from TRAF5-deficient mice demonstrate defects in CD27 
costimulation of CD3-induced T cell proliferation. However, NF-KB and JNK activation are not 
noticeably altered in these cells, which may be due to either compensation from other TRAFs or a 
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role forTRAF5 in CD27 signaling that does not require NF-KB or JNK.7 Furthermore, since CD27 
has been implicated in regulation of humoral responses, the effect of TRAF deficiency on both 
CD40 and CD27 responses may contribute to observed lymphocyte phenotypes. 

Ox40 
Ox40 is another TNFR superfamily member involved in costimulation, and is expressed on 

activated T cells. Studies from Ox40-deficient mice demonstrate important roles for this receptor in 
regulating the number of effector T cells during primary immune response, and the number of 
memory T cells that develop and remain.73 

TRAF1, TRAF2, TRAF3 and TRAF5 have all been found to associate with the cytoplasmic 
domain of Ox40. NF-KB activation in response to Ox40 stimulation appears to depend on TRAF2 
and TRAF 5 as deletion of the TRAF binding site in Ox40 or overexpression of dominant negative 
TRAF2 or TRAF5 can block NF-KB activation. In contrast, TRAF3 appears to act as a negative 
modulator.81'82 In vivo, TRAF2 has been implicated in Ox40-mediated memory T cell expansion. T 
cells from OVA-specific TCR transgenic mice crossed with dominant negative TRAF2 mice were 
adoptively transferred to naive BALB/c recipients, and stimulated with antibody to Ox40. The 
increase in antigen-specific T cells after Ox40 engagement was reduced with TRAF2 deficiency, and 
Ox40 engagement only enhanced the survival of antigen specific cells in wildtype but not mutant 
cells expressing dominant negative TRAF2.83 TRAF5 has also recently been implicated in regulating 
T cell differentiation to Thl and Th2 lineages by modulating Ox40 stimulation. Immunization of 
TRAF5-deficient mice with protein in adjuvant plus anti-Ox40 antibody leads to increased Th2 
development.8 

4-1BB 
4-IBB, like CD27 and OX40, is another T cell costimulatory molecule, and is thought be be 

involved in antigen presentation, generation and long term survival of cytotoxic T lymphocytes, and 
induction of helper T cell anergy.73 

TRAF1, TRAF2 andTRAF3 are known to bind to the cytoplasmic domain of 4-IBB. Like many 
other TNF receptor superfamily members, activation of 4-IBB leads to NF-KB activation. However, 
expression of dominant negative TRAF2 can inhibit 4-IBB induction of NF-KB. 8 1 , 8 5 Furthermore, 
while 4-1BB engagement results in activation of N F - K B and IL-2 production in wild-type 
T-lymphocytes, TRAF2-deficient lymphocytes are defective in this response.8 4-1 BB induced TRAF2 
dependent IL-2 production, however, appears to be mediated primarily through JNK activation 
through ASK-1.87 TRAF2 has also been shown to be required for p38 MAPK activation in response 
to 4-1 BB, which is thought to be critical for the development of Thl and Th2 reponses.88 

LTfiR 
Lymphotoxin (LT) a and P can heterotrimerize to form three distinct ligands for lymphotoxin p 

receptor (LTpR). LIGHT is another ligand for LTpR, but also interacts with HVEM. The signalling 
pathways controlled by these receptors and ligands are involved in lymphoid tissue development 
and organization, adaptive and innate immune responses, and central tolerance.89 LTs can also bind 
TNFR1 andTNFR2. While LTpR andTNFRl/2 activation elicit distinct downstream signals, they 
also have complementary and overlapping functions, and employ shared mechanisms of signal 
propagation, including TRAF2 and TRAF5. LT0R is also known to bind TRAF3.3'90'91 

TRAF2 is able to interact directly with the cytoplasmic domain of LTpR.92 Recent studies have 
shown that LT|3R stimulation is able to activate the alternative NF-KB pathway.93'94 NF-KB2/pl00 
knockout and LTpR knockout have similar phenotypes—both showing aberrant development of 
peripheral lymphoid organs—indicating that alternative pathway activation significandy contrib­
utes to the physiological role of LTpR signalling.95"97 TRAF2 appears to participate direcdy in LT|3R 
mediated induction of both classical and alternative NF-KB pathways. However, TRAF2-deficient 
animals do not show defects in lympho-organogenesis. JNK activation induced by LIGHT stimula­
tion of LTpR is also absent in TRAF2-deficient cells. Interestingly, unlike TNF signalling, LIGHT 
induced NF-KB and JNK activation are normal in both TRAF5-deficient and RIP 1-deficient cells.90 
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HVEM/ATAR 
The other receptor bound by LIGHT and LTa is the herpes virus entry mediator HVEM, 

which is expressed on lymphocytes. HVEM activation generally confers anti-apoptotic and pro­
liferative signals to cells, and is thought to be important in T-cell costimulation, activation and 
modulation.73'89 

Yeast two hybrid analyses have shown that HVEM interacts directly with TRAF2 and TRAF5 
but not TRAF3.98 Like other TNF receptor super family members discussed so far, recruitment of 
TRAF2 and TRAF5 to HVEM leads to NF-KB, JNK and AP-1 activation.98'99 Remarkably, 
coexpression of HVEM with TRAF5, but not TRAF2, leads to synergistic NF-KB activation,98 

suggesting that TRAF2 and TRAF5 may play different roles downstream of HVEM. 

RANK/TRANCER 
TRANCE/RANKL/OPGL, a survival factor for activated dendritic cells, binds TRANCE-R/ 

RANK. More importandy, RANK signalling is crucial for osteoclast activation and differentiation 
and therefore critical for maintaining bone homeostasis.100'101 

TRAF2 and TRAF5, in addition to TRAF1 and TRAF3, can interact with the cytoplasmic tail of 
RANK via two different motifs.102 TRAF6 also binds RANK, but in a distinct region more proximal 
to the membrane.103 RANK signalling leads to NF-KB activation and JNK activation that is medi­
ated through TRAFs. Dominant negative forms of TRAF2, TRAF 5 and TRAF6 are all able to 
inhibit NF-KB activation induced through RANK.1 TRAF6, however, is likely the key adapter for 
TRANCE-R, as TRAF6-deficient mice are phenotypically similar to TRANCE-R-deficient mice. 
Unlike TRAF6-deficient mice, however, neither TRAF2 nor TRAF5-deficient mice exhibit osteo­
petrosis, suggesting a more minor role for these TRAFs in osteoclastogenesis induced by RANK 
signalling.105'106 

EDAR 
Mutation of the ectodysplasin-A (Eda) receptor (EDAR) or the X-linked Eda receptor (XEDAR) 

leads to hypohidrotic ectodermal dysplasia (HED), a disease characterized by loss of hair, sweat 
glands and teeth.107 

Unlike XEDAR, which can asscociate directly with TRAF3 and TRAF6, EDAR is similar to 
TNFR1 and unable to bind to TRAFs directly. EDAR utilizes the adaptor EDARADD, which 
associates via its death domain to the cytoplasmic death domain of EDAR. EDARADD is then 
able to recruit TRAF1, TRAF2 and TRAF3, and possibly with TRAF5 and TRAF6 as well.108'109 

There is considerable evidence suggesting that NF-KB is important for EDAR signalling. Hy-
pomorphic mutations that inhibit IKKy/NEMO activity result in defects similar to those seen 
in HED.110'111 Although it is likely that TRAF2 and TRAF5 are involved in EDAR induced 
NF-KB activation, it is currently unknown whether these TRAFs play a role in ectodermal 
organ development. 

The common neurotrophin receptor p75 is unusual as it binds dimeric neurotrophins, 
unlike the majority of TNF receptor superfamily members which bind trimeric ligands. Signaling 
through this receptor controls apoptosis in neurons under conditions such as neurotrophin 
withdrawal or exposure to inappropriate neurotrophins.112 

All six TRAF proteins have been shown to bind p75NTR in vitro. Curiously, TRAF2 appears to 
bind preferentially to the monomeric form of the receptor, unlike TRAF4 or TRAF6. Interactions 
with different TRAFs also have different effects—whereas coexpression ofP75NTRwithTRAF2 
appears to enhance cell death, coexpression with TRAF6 is cytoprotective. Both TRAF2 and TRAF6 
are able to induce NF-KB activation, albeit to a lesser extent by TRAF2.113 

TAJ/TROY 
TAJ/TROY is a TNF superfamily orphan receptor, recendy identified to have a role in regulation 

of axonal regeneration, via association with Nogo-66 receptor 1. Earlier coimmunoprecipitation 
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experiments have shown that TAJ/TROY is capable of binding TRAFs 1, 2, 3 and 5 in vitro. TAJ 
was also shown to activate the JNK pathway, however, dominant negative TRAF2 or TRAF5 is 
unable to block TAJ mediated JNK activation,115 so these TRAFs may be involved in other TAJ 
signalling pathways. 

GITR 
Glucocorticoid-induced TNFR-related receptor (GITR) is a TNFR superfamily member 

expressed on T lymphocytes, and is activated by GITRL, which is expressed mainly on endothelial 
and antigen presenting cells. GITR is thought to have a role in augmenting T cell responses and a 
pathophysiological role in autoimmune disease.73'1 

TRAF1, TRAF2, TRAF3, andTRAF4 have been found to interact with the cytoplasmic domain 
of GITR in a ligand-dependent manner. GITR stimulation also leads to activation of NF-KB, and 
this was found to require TRAF recruitment. However, recent studies have also shown that TRAF2 
can have an inhibitory effect on NF-KB activation in response to GITR signalling.117'118 

LMP-1 
Epstein Barr Virus is an etiological factor in many lymphomas, including Burkitt s lymphoma 

and Hodgkin's disease. The latent membrane protein 1 (LMP-1) of Epstein Barr Virus is crucial for 
B-lymphocyte transformation, and is known to have transforming effects on nonlymphoid cells as 
well.119 It was found that LMP-1 essentially a constitutively active TNF receptor family member, 
and able to associate with TRAF1, TRAF2 and TRAF3. LMP-1 induction of NF-KB appears to 
partially depend on TRAF1 and TRAF2, since dominant negative TRAF2 is able to block NF-KB 
activation.120'121 

ER stress and IRE1 
TRAF2 also has a unique role in endoplasmic reticulum (ER) stress pathways. Misfolded 

proteins in the ER, induced by stress conditions such as starvation or hypoxia, can induce cellular 
stress responses. These responses are mediated by IRE Is, which are ER membrane receptors that 
sense stress through their lumenal domains and transduce the signal across the ER via their cytoplasmic 
domains, leading to JNK activation. IRE1 was originally identified in yeast as the inositol auxotrophy 
gene, and mammalian homologs have been recendy identified.122"12 

Induction of IRE 1 leads to JNK activation that is dependent on TRAF2. TRAF2 was found to 
bind the cytoplasmic region of IRE 1, a dominant negative TRAF2 is able to inhibit IRE1 induction 
of JNK.125 Additional studies have shown that JNK inhibitory kinase (JIK) also associates with 
IRE1 and TRAF2 in a complex to modulate IRE1-TRAF2 activation of the JNK pathway. Further­
more, in this pathway, TRAF2 is capable of binding and inducing oligomerization of caspase-12 and 
therefore its cleavage and activation. Activation of caspase-12 then promotes an apoptosis in re­
sponse to ER stress.1 

Conclusion 
TRAF2, and to a lesser extent TRAF 5, play critical roles in the signalling of many TNF receptor 

superfamily members. As these pathways share TRAF2 and TRAF 5, these proteins are likely critical 
for signal integration and crosstalk. TRAF2 has a particularly diverse set of functions, as it is able to 
act as an activator or as an inhibitor under different contexts, in addition to its role as an adaptor 
protein. 

The diverse set of receptors that rely on TRAF2 and TRAF 5 for signal transduction also high­
lights their importance in the regulation of a wide range of physiological processes, including adap­
tive and innate immunity, inflammation, development, and cell survival. Dysregulation of these 
signalling pathways can result in pathophysiological states such as autoimmune disease and cancer. 
Since effective strategies for therapy may be derived from targeting molecules in these pathways, an 
understanding of the key roles played by TRAF2 andTRAF5 is critical. 
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