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Abstract 

TNF-receptor associated factors (TRAFs) are the molecules that upon engagement of the 
TNF-receptor (TNFR) by a TNF-family ligand come first in contact with the activated 
TNFR, initially acting as docking molecules for kinases and other effector proteins that are 

recruited to the activated receptor. TRAFs later regulate the subcellular relocalization of the 
receptor-ligand complex and finally they modulate the extent of the response by controlling the 
degradation of key proteins in the pathway. 

In this chapter, we review the involvement of different TRAF family members in the etiology of 
a variety of pathologies and address the question of whether the use of TNFR-mimic-peptides or 
small molecule modulators targeting TRAFs niight be suitable for therapeutic intervention, discuss
ing the advantages and disadvantages of this strategy. 

TNF-Receptor Associated Factors (TRAFs) 
A total of seven TRAF-family members participate in the regulation of as many as 20 TNFRs. 

TRAF3 and TRAF6 are also involved in the regulation of different members of the Toll-like 
Receptor (TLR) and interleukin-1 receptor (IL-1R) family. Furthermore, TNFR-family members 
generally utilize more than one TRAF family member for signaling, often activating similar path
ways and even the same downstream effectors. Therefore, the levels of expression of the different 
TRAF-family members and downstream effectors will likely play an important role in the out
come of the response. 

The consensus amino-acid motif supporting binding of TRAF 1, TRAF2, TRAF3 and TRAF5 to 
TNFR-family proteins is (P/S/A/T)x(Q/E)E,12 implying that TRAF 1, 2, 3 and 5 potentially inter
act with the same TNFR family members and that they might compete among themselves for the 
binding. In contrast, the consensus sequence for TRAF6 is PxExx(Ar/Ac) (where the last amino-acid 
residue is aromatic or acidic).3 The binding motif for TRAF4 is yet to be identified. TRAF7 lacks a 
TRAF domain and does not direcdy interact with TNFRs. 

The crystal structures of TRAFs bound to different TNFR family members have confirmed 
that the peptide core motif provides the specificity of the binding. However, the actual composi
tion of the core motif as well as other amino-acids adjacent to this core can affect the interaction, 
by establishing molecular interactions with residues in the TRAF-domain, by decreasing the binding 
affinity by steric impediments or electrostatic repulsions, or by intramolecular interactions that 
affect the conformation of the TRAF-binding peptidyl motifs. These results provide a molecular 
explanation for the differences in binding specificity and affinity of the members of the TRAF 
family for the different TNFR family members.3'5"9 These results also imply that it would be 
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conceivable to design peptides that could act as agonist or antagonist of the function of different 
TNFR family members, either by modulating the binding of particular TRAF proteins to those 
receptors; or by activating TRAF-signaling pathways independently of the activation of the TNFR. 
In this regard, it has been shown that 11-residue linear peptides bearing the intracellular CD40/ 
TRAF binding motif were sufficient to induce NF-KB activation in WEHI-231 lymphoma cells,10 

thus indicating that small peptides can mimic TNFR signaling. Also, Ye et al3 using RANK pep
tides mimicking its TRAF6 docking site could block osteoclast differentiation in vitro in both 
primary cells and cell lines, without affecting cell viability. These results support the suitability of 
using peptides mimicking TRAF-binding motifs to modulate TRAF-family signaling and associ
ated biological functions. 

No nonpeptidyl small molecules that bind TRAFs have been described to date, though it con
ceivably should be possible to generate such molecules. Nonpeptidyl molecules could afford the 
advantage of superior cell permeability compared to peptides, and also probably better pharmaco
logical properties in terms of half-life, bioavailability and biodistribution. Structural studies however 
reveal that the pocket on the surface of TRAFs responsible for binding peptidyl motifs found in the 
cytosolic tails of TNF-family receptors is somewhat shallows,3'5"9 which may hinder the ability to 
generate high affinity antagonists. In this regard, peptides representing core motifs of the 
TRAF-binding sites of TNFRs typically bind to TRAFs with low affinity. For instance, the interac
tion between TRAF2 and monomeric receptors is relatively weak (IQ = 0.04-1.5 mM) which en
sures that TRAFs do not interact with nonactivated receptors and implyes that multivalency of 
TRAFs (note that TRAFs and TNFRs are functional as trimeric molecules) may play a large role in 
generating sufficient free energy to account for binding in vivo.1 

TRAFs and Disease 
TRAFs are emerging as essential components of the TNFR-family signaling, acting as coordina

tors of the downstream signaling pathways and consequendy having a key role in the outcome of the 
response. Not surprisingly, growing evidence is pointing out a direct involvement of TRAFs in 
different pathologies. An overview of some of the pathologies where manipulation of TRAF activi
ties might have therapeutic interest is discussed below. 

TRAF2 and Chronic Lymphocytic Leukemia 
Recent results from our laboratory have revealed a tumor suppressor role for TRAF2 in B lym

phocytes. Transgenic mice with B cells lacking functional TRAF2 and overexpressing Bcl-2 devel
oped Small B cell lymphoma/Chronic Lymphocytic leukemia (SBL/CLL) with high incidence.11 

The mechanism underlying the tumor suppressor function of TRAF2 might involve its role in the 
control of apoptosis in B cells. In this regard, we and others have shown that TRAF2-deficient B 
cells are more resistant to various apoptotic stimuli11'12 and accordingly, the absence of functional 
TRAF2 increases B cells numbers in vivo.13 These results support an important role for TRAF2 in B 
cell homeostasis. In our transgenic mouse model of SBL/CLL, deregulation of TRAF2 might in
crease the resistance of subsets of B cells to apoptosis induced by TNF-family members, while 
overexpression of Bcl-2 increases the resistance of these cells to stimuli involving the mitochondrial 
pathway of apoptosis, ultimately resulting in the development of malignancies. 

Interestingly, TRAF2 is overexpressed in Reed-Sternberg cells from Hodgkin lymphoma pa
tients14'15 where it is located in cytosolic aggregates.16 However, TNF failed to induce both TRAF2 
translocation to the insoluble fraction and JNK activation in Hodgkin Reed-Sternberg L-428 cells,17 

strongly suggesting that TRAF2 is not fully functional in these cells. In contrast, Reed-Sternberg 
cells have aberrant constitutive activation of both the canonical and noncanonical N F K B path
ways,17"19 which is also similar to what has been observed in TRAF2-deficient B cells.12 

Altogether, these results suggest a role for TRAF2 in controlling B cell homeostasis and indicate 
that inhibition of TRAF2 increases development of B cell malignancies. Consequendy, devising 
strategies aimed to restore TRAF2 expression or function might prove useful for the treatment of 
certain types of cancer. 
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TRAF1 in B Cell Leukemia and Lymphoma 
Among the members of the TRAF family, TRAF1 shows the most striking deregulation of its 

expression in B cell malignancies. In normal physiological conditions, expression of TRAF 1 has a 
very restricted pattern. It is only found in some epithelia, dendritic cells and activated lympho
cytes.20'21 In contrast, TRAF1 expression is upregulated in a variety of hematopoietic malignancies, 
such as chronic lymphocytic leukemias (CLL),20 nonHodgkin lymphomas (NHL),22 Reed-Sternberg 
cells of Hodgkin disease, 15 LMP-1 positive post-transplant lymphoproliferative disease and 
HlV-associated lymphoma,23 strongly suggesting a possible role for TRAF1 in the etiology of these 
B cell malignancies. 

In this regard, the known functions of TRAF 1 are consistent with a role in tumorigenesis. First, 
TRAF1 protects against apoptosis. TRAFTs anti-apoptotic role might be mediated by its interac
tion with various anti-apoptotic proteins that it helps to recruit to the activated TNFRs, including 
the NF-KB inhibitory protein A20, the inhibitor of apoptosis proteins (cIAP-) 1 and 2, and FADD-like 
interleukin-lp converting enzyme (FLICE)-like inhibitory protein (FLIP).24 Indeed, TRAF1 re
cruitment of cIAPl and cIAP2 to TNFR1 seems to inhibit receptor-mediated caspase-8 activa
tion.25 Consistent with the anti-apoptotic function of TRAF 1, epithelial cells lacking TRAF 1 were 
more sensitive to apoptosis induced by TNF,2 and TRAF 1-deficient dendritic cells displayed se
verely impaired survival in response to TNF and CD40L.27 Furthermore, enforced expression of 
TRAF1 in T cells blocks apoptosis of reactive T cells thus preventing antigen-induced tolerance.28 

TRAF1 overexpression was also able to partially protect TRAF2 -/- MEF cells from TNF-mediated 
• 29 

apoptosis. 
Second, considerable evidence supports a role for TRAF 1 in the regulation ofTRAF2 activities, 

with TRAF1 primarily operating as an antagonist of TRAF2. In this regard, TNF was able to induce 
NF-KB and JNK activation more efficiendy in 77&4i<7-deficient T cells than in normal T cells, an 
effect that was dependent on TNFR2 and would likely involve a more efficient TRAF2 recruit
ment to the activated receptor in the absence of TRAF 1. Furthermore, an excess of TRAF 1 abro
gated the interaction of TRAF2 and CD40, with the consequent inhibition of CD40-dependent 
NF-KB activation.30 Conversely, down-regulation of TRAF 1 with small interfering RNAs enhanced 
CD40/CD40L-induced NF-KB activation. Interestingly, TRAF1 expression disrupted the subcellu
lar relocalization of TRAF2 and its association to cytoskeleton in CD40-activated cells.27 

In summary, TRAF Is upregulation in leukemia and lymphoma, its anti-apoptotic functions, 
and its role as a TRAF2 inhibitor make it a likely candidate to be implicated in the etiology of B cell 
malignancies. Therefore, development of peptidomimetics or small molecule inhibitors that inter
fere with TRAF1 functions might be useful for treating those leukemias where upregulation of 
TRAFl is a hallmark, although additional research is needed to elucidate the actual role of TRAF 1 
in the etiology of these diseases. 

Caveats of Targeting TRAFl and TRAF2 
As indicated above, interfering with TRAF 1 function in B cell malignancies could hypotheticaUy 

improve the outcome of the disease by, for instance, sensitizing these malignancies to 
apoptosis-inducing cytokines and possibly other types of apoptosis inducers. However, mice defi
cient in TRAFl are hyper-responsive to TNF and, as a result, they display hyper-proliferation of T 
cells and suffer from skin epithelium apoptosis,2 as well as TNF-mediated acute liver injury.31 

Interfering with TRAFl function might consequendy enhance TNFR1 and TNFR2 responses and 
thus predispose to autoimmunity and chronic inflammation. In this regard, increased TNF pro
duced by reactive leukocytes is a common feature of several autoimmune diseases, including rheu
matoid arthritis (RA), Crohn's disease, ulcerative colitis and other chronic inflammatory diseases. 
For example, excessive production of TNF can drive synovial inflammation and degradation of 
articular cartilage and bone, which are common features of RA (reviewed in ref. 32). In Crohn's 
disease, high levels of TNF cause inflammation of the digestive track.33 Thus, even if TNF levels 
remain normal, targeting TRAFl might increase the responsiveness of T lymphocytes (and maybe 
other cell types) to this lymphokine, causing autoimmunity. These potential side-effects of TRAFl 
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antagonists might be counteracted by treating patients with commercial biological anti-TNF agents, 
such as etanercept, infliximab and adalimumab, but are nevertheless worrisome. 

TRAF2-deficient and TRAF2-dominant-negative (DN) mice have severe defects in T cell func
tion, and fail to mount a cytotoxic response in mixed lymphocyte reaction assays,3 thus high
lighting an important role for TRAF2 in the control of cytotoxic T-cell responses. Therefore, it is 
conceivable that blocking TRAF2 function might have positive implications for transplantation, 
ameliorating host versus graft disease.36 However, TRAF2-deficient macrophages produce increased 
amounts of nitric oxide and TNF in response to TNF stimulation35 and mice lacking TRAF2 also 
develop cachexia as a result of the increased levels of TNF.3 '35 Thus, enhancing the pro-inflammatory 
effects of macrophages by targeting TRAF2 would not be an acceptable outcome. 

In addition, it is important to mention that the mechanism by which TRAF2 operates as a 
tumor suppressor in B cells is unknown, but could be related to its role as a regulator of 
TNFR-mediated apoptosis.2,37 However, the role of TRAF2 in controlling apoptosis might be cell 
dependent and/or TNFR dependent. In this regard, there is evidence supporting an anti-apoptotic 
function for TRAF2 in thymocytes,3 muscle38 and fibroblasts,39' further cautioning about the use 
of TRAF2 modulators in therapy. 

TRAF3 and EBV-Mediated Diseases 
Epstein Barr virus (EBV) is a member of the herpes virus family that infects over 90% of the 

world adult population. It persistently infects B lymphocytes, although rarely causing disease. 
However, immunosuppressed carriers infected with EBV might be prone to develop different 
pathologies of lymphoid origin, such as infectious mononucleosis, X-linked lymphoproliferative 
disease, B lymphoproliferative disease, Burkitts lymphoma Hodgkins disease and nasopharyn
geal carcinoma, among others.41 Different proteins encoded by the EBV genome are involved in 
the control of proliferation and survival of the infected cell, and therefore are essential for the 
persistence of the infection and eventually for the development of the overt pathology. However, 
latent membrane protein (LMP)-l is the only EBV-encoded protein that seems to be sufficient to 
induce oncogenic transformation of mammalian cells 2' 3 and to sustain the development of lym
phoma in at least one transgenic mouse model. ' 5 Furthermore, ample evidence exists support
ing a key role for LMP-1 in the etiology of EBV-associated lymphoproliferative disease and lym-
phomas.41'43'46'47 

Several reports demonstrate a role for TRAF-family members in LMP-1 signaling. TRAFs asso
ciate with LMP-1 through its C-terminal activating region (CTAR)-1, encompassing amino-acids 
194 to 232. 8"50 It has been suggested that LMP-1 mimics CD40 and utilizes similar signal trans
duction pathways (reviewed in refs. 47,51,52). However, LMP signals in a seemingly deregulated 
manner, leading to amplified and sustained B cell activation.53,54 Both CD40 and LMP-1 recruit 
TRAFs to lipid rafts, a class of nonionic detergent-insoluble, sphingolipid-enriched membrane 
microdomains.5 However, recent investigations have highlighted significant differences in the 
usage of TRAFs by CD40 and LMP-1. Thus, TRAF3 is more efflciendy recruited to LMP-1 than to 
CD40, while TRAF2 seems the opposite.49,57 Furthermore, the crystal structure of the LMP-1 pep
tide 204PQQATDD210 encompassing the CTAR-1 bound to TRAF358 shows that both LMP-1 and 
CD40 bind the same TRAF3 crevice.7 However, CTAR-1 also forms additional hydrogen bonds 
that stabilize its interaction with TRAF3. Thus, LMP-1 has a higher affinity for TRAF3 than CD40. 
These observations surest that LMP-1 mimicking peptides might be more potent as competitive 
antagonists of TRAF3, compared to peptidyl inhibitors based on the sequence of various TNF-family 
receptors. 

TRAF159 and TRAF660"62 have been also implicated in LMP-1 signaling, but additional in vivo 
data are necessary to determine the actual roles of these two TRAFs in LMP-1 signaling under 
physiological conditions. Overall, the available data are consistent with the critical role played by 
TRAF3 in LMP-1 signaling, as illustrated by the abrogation of LMP-1 signaling in TRAF3 deficient 
cells.63"65 If the essential role of TRAF3 in LMP-1 signaling is confirmed, targeting TRAF3 binding 
to LMP-1 would be a reasonable strategy for treating EBV-related diseases. 
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TRAF3 and Mantle Cell Lymphoma 
It has been recently reported that TRAF3 and TRAP 5 are upregulated in splenic marginal zone 

lymphoma (MZL).66 TRAF3 has been shown to be an inhibitor of TNFR-family mediated NF-KB 
activation.67 However, TRAF3 can form heterotrimers with TRAF5,68 and TRAF5 is able to induce 
NF-KB activation.69'70 Therefore, since both TRAF3 and TRAF5 are upregulated in MZL, the 
formation of these heterotrimers might be favored and support the induction of NF-KB activity. 
Also, it is important to note that TRAF3 seems to work as an inhibitor of various TRAF2-mediated 
functions71 and in some context, it might have functions similar to TRAF1. 

TRAF3 and Autoimmunity 
Immune tolerance ensures an inability of the cellular components of the immune system to react 

to self-antigens while preserving defenses against pathogens. Several safeguard mechanisms are in 
place to protect the organism from autoreactive lymphocytes and autoantibodies, and their failure 
results in autoimmune diseases. One of these control mechanisms is the elimination of autoreactive 
B and T cells by apoptosis. Blockage of cell death pathways in the immune cells can therefore result 
in autoimmunity and/or cancer. 

The autoimmune pathologies caused by BAFF deregulation deserve special mention. BAFF 
(TNFSF13B) is aTNF-family member required for survival of transitional and mature B cells72'73 

and which is essential for later stages of B cell maturation and for Mande Zone (MZ) B cell differ
entiation (reviewed in ref. 74). BAFF expression is deregulated in several autoimmune diseases and 
other pathologies. For instance, BAFF levels are elevated in sera from patients with severe B cell 
autoimmune disorders, such as systemic lupus erythematosus (SLE) and Sjogren's syndrome.74 Higher 
levels of BAFF are also found in the sera of human immunodeficiency virus (HIV) patients, which 
are prone to develop SLE.75 Furthermore, BAPF and BAFF-R (TNFRSF13C) overexpression has 
been also described in several B cell malignancies, such as multiple myeloma,7'77 nonHodgkin's 
lymphoma78'79 and B-cell chronic lymphocytic leukemia (B-CLL). Indeed, most B-CLL cells ex
press BAFF-R mRNA and a subset display BAPF on the surface, suggesting that BAPF might oper
ate as an autocrine survival factor for B-CLL,80"82 in addition to promoting autoimmune manifesta
tions observed in B-CLL patients (review in ref. 83). Furthermore, chronic infection may also lead 
to the sustained release of BAPF and thus the emergence of autoimmunity. Consistent with these 
results, BAFF-transgenic mice developed immunoglobulin-based autoimmune disorders similar to 
systemic lupus erythematosus (SLE) and Sjogren's syndrome,8 "87 thus proving the direct involve
ment of BAPF in the development of autoimmunity. 

BAFF-mediated autoimmunity seems to be result of the preservation of maturing autoreactive 
T2 B cells which colonize forbidden follicular and marginal zone microenvironments.88'89 Survival 
of these cells causes a dramatic alteration of peripheral tolerance and the development of autoimmu
nity. Several lines of evidence indicate that among the different TNF-family receptors that can inter
act with BAPF, the BAFF-R (TNFRSF13C) protein is the one primarily responsible for increasing B 
cell survival (reviewed in ref. 74). 

Litde is known about the signal transduction pathways utilized by BAFF-R. TRAP3 might be 
the only member of the TRAF family that interacts with BAFF-R.90'91 The specificity of this inter
action seems to be mediated by the sequence motifl 2PVPAT , which is different from the ca
nonical TRAF 1 /2/3/5-binding motif. Furthermore, other amino-acids in the cytosolic tail of BAFF-R 
participate in the stabilization of the complex.9'90'91 It is well established that BAFF-R signaling 
induces the activation of the noncanonical NF-KB pathway.92'93 However, the role of TRAF3 in this 
process is conflicting. Experiments involving TRAF3 overexpression indicate that it inhibits 
BAFF-R-mediated NF-KB activation and IL-10 production, thus supporting a role forTRAF3 as a 
negative regulator of at least some of the signaling events mediated by BAFF-R.90 Conversely, muta
tions in the 162PVPAT166 motif that abolished TRAF3 interaction with BAFF-R abrogated BAFF-R 
ability to activate the noncanonical NF-KB pathway.91 These seemingly opposite results could be 
explained if the activation of the noncanonical NF-KB pathway by BAFF-R requires receptor-mediated 
degradation of TRAF3.94 
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It is worth noting that Hauer and coworkers67 have recently shown that TRAF3 is a general 
inhibitor of TNFR-mediated noncanonical NF-KB activation, which may preclude its use as a drug 
target. However, if TRAF3 is indeed the only member of the TRAF family that regulates BAFF-R 
signaling, thenTRAF3 would be a worthy target for therapeutic intervention against SLE and Sjogren's 
syndrome. Resolution of the question of whether TRAF3 is the only TRAF-family member capable 
of binding BAFF-R thus is required to direct future possible therapeutic strategies. 

Caveats of Targeting TRAF3 
Mice lacking TRAF3 have hypoglycemia and high glucocorticoid levels in serum, which results 

in depletion of peripheral white cells. These mice also develop cachexia and die by day 10 after birth. 
TRAF3 is prominendy expressed in adrenocorticotropin hormone (ACTH)-secreting cells in the 
hypophysis.95 Altogether, these results strongly support a role for TRAF3 in the regulation of ACTH 
production. Consequently, targeting TRAF3 might result in severe alterations in the metabolism of 
glucocorticoids. 

TRAF3 and TRAF6in Infections and Septic Shock 
Toll Receptors (TLR) are key players in the regulation of innate immune responses.96"98 Ten 

TLR family members have been identified in humans. These receptors recognize pathogen-associated 
molecular patters (PAMPs), triggering host defense responses as part of innate immunity. Different 
TLRs recognize distinct PAMPs. Thus, bacterial lipoproteins are recognized by TLR2, double stranded 
DNA by TLR3, bacteria lipopolysaccharide by TLR4, flagellin by TLR5, single-stranded viral RNA 
by TLR7, and unmethylated CpG DNA of bacteria and viruses by TLR9 (reviewed in ref. 97). 
Important for the host responses against pathogens are also the members of the IL-1R family, which 
regulate inflammation responses.9'100 

Alterations in TLR structure, expression, and function have been implicated in several diseases. 
In this regard, polymorphisms of proteins in the TLR pathways are related to anomalous responses 
against pathogens, and have been correlated with immunoinsufficiency (i.e., chronic infection), 
atherosclerosis, cancer, and asthma.101 

TRAF6 is a common and critical mediator of signal transduction by the TLR/IL-1R family.96'102 

This is well illustrated in traffc deficient mice, which have severely impaired TLR-mediated responses 
to various PAMPs103,104 and fail to properly respond to IL-1 stimulation.103'105 

TRAF6 does not direcdy interact with either TLRs or IL-Rs. Instead, TIR domain adaptors, like 
MyD88, TIRAP, TRIF and TRAM, as well as IRAK-family proteins, mediate its recruitment to the 
receptors. Then, IRAKs and TRAF6 dissociate from the complex, allowing TRAF6 to interact with 
ubiquitin conjugating enzymes Ubcl3 and UevlA. These enzymes covalendy attach noncanonical 
poly-ubiquitin chains to TRAF6, in which the isopeptide bond occurs at the lysine 63 residue in 
ubiquitin, instead of lysine 48. This form of polyubiquitin does not target TRAF6 for degradation, 
but rather induces TRAF6 to associate with a complex composed by TAB1, TAB2 and transforming 
growth factor p activating kinase (TAK)-1, resulting in TAK1 phosphorylation and activation. Acti
vated TAK-1 then activates the IKB kinase kinase (IKK) complex and also activates MAP kinase 
kinase (MKK)-6, resulting in NF-KB and c-JUN (AP-1) activation, and the induction of expression 
of multiple proinflammatory genes.1'107 

TRAF6's role as a mediator of TLR/IL1R family signaling, makes it an attractive drug target for 
possible use in treatment of a wide variety of acute and chronic inflammatory conditions. Septic 
shock provides a good example. Studies in traf6-/- mice have shown profound impairment of 
TLR-mediated responses to different PAMPs103'104 supporting the notion that TRAF6 might be a 
suitable target in severe cases of infection. In this regard, the lethal consequence of systemic bacterial 
invasion have been linked to overstimulation of the TLR pathways, resulting in massive production 
of pro-inflammatory cytokines, causing severe systemic inflammation that may progress to multiple 
organ failure and death even after the bacterial infection has been clinically controlled.108"111 Septic 
shock is associated with a 30-50% death rate in severe cases,109'110 accounting for over 100,000 
deaths annually in the United States alone.101 
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Interestingly, recently it was reported that TRAF3 deficient cells fail to induce type I interferons 
and anti-inflammatory cytokines in response to TLR activation, which has led to the identification 
of a newTRAF3 dependent pathway involved in the control of innate immunity.112'113 Similar to 
TRAF6, the TRAF3 protein could be recruited to the TLRs through MyD88 and IRAKI and 4, but 
rather than activating MAP3K and IKK, which induce pro-inflammatory cytokines, TRAF3 en
gages TRIF-dependent signaling pathways leading to activation of TBK-1 and IKK-e, inducing the 
expression of type I interferons and the anti-inflammatory IL-10.112'113 Thus, TRAF3 may play 
important roles both in interferon-dependent responses to viral pathogens, as well as in 
down-regulating innate immune responses via its effects on IL-10 production. Therefore, by phar
macologically modulating the recruitment of either TRAF3 or TRAF6 to the activated TLR, or by 
interfering with their downstream functions, it may be possible to manipulate the type of response 
emanating from TLRs, depending on the pathogen, stage of infection, or other scenarios. 

TRAF4 might also function as a silencer of TLR-signal transduction through its association to 
TRAF6 and TRIF,114 but additional in vivo data using TRAF4 deficient cells or TRAF4 knock-out 
mice would be required to ascertain the role of TRAF4 in innate immunity. 

TRAF6and Other Diseases 
The analysis of the phenotype developed by TRAF6-deficient mice has highlighted a seminal 

role of TRAF6 in the regulation of signaling by various TNFR-family members. These results sug
gest additional avenues for the usage of TRAF6 agonists and/or antagonists as therapeutics. For 
instance, TRAF6 is a critical regulator of RANK. This TNFR family member is essential for the 
differentiation and activation of osteoclasts, the cells responsible for bone resorption.115,116 This is 
demonstrated by the phenotype developed by mice deficient in RANK or its ligand (RANKL), 
which are osteopetrotic as the result of lack of bone resorption and remodeling caused by function
ally deficient osteoclasts.1 TRAF6 is essential for RANK signaling and consequendy it is required 
for osteoclast cytoskeletal organization and resorptive function.117 Accordingly, TRAF6 deficient 
mice lack functional osteoclasts and develop severe osteopetrosis.103'105 

X-linked hypohidrotic ectodermal dysplasia is a genetic disorder characterized by lack or anoma
lous formation of hair follicles, teeth and sweat and sebaceous glands. Affected children have a 
reduced ability to sweat, which can result in life-threatening high fever.118'119 This disease is caused 
by mutations of the ectodysplasin A gene (Eda) encoding the TNF family ligands EDA-1 and EDA-2, 
which interact with the TNFR-family members EDAR and XEDAR, respectively.120'122 Besides 
EDAR and XEDAR, the TNFR family member TROY might also regulate the development of 
these epidermal appendages.12 TRAF6 deficient mice also develop a phenotype similar to 
hypohidrotic ectodermal dysplasia.124 In this regard, TRAF6 interaction and regulation of XEDAR 
and TROY has been reported.123'125 However, given the total absence of sweat glands in trafS -/-
mice, it is suspected that TRAF6 might also participate in the control of EDAR activities. 2 

Caveats of Targeting TRAF6 
In summary, the key role of TRAF6 in innate immune responses, as well as in bone formation 

and resorption, and hair follicle formation opens the possibility of using TRAF6 modulators for 
treating diseases such as septic shock, osteoporosis, arthritis, periodontal disease, cancer-induced 
bone lesions and even alopecia.1 However, blocking TRAF6-mediated signaling would increase 
the risk of opportunistic bacterial infections, which might preclude the use of drugs targeting TRAF6 
for chronic diseases and immunosuppressed patients. On the other hand, as a short-term treatment, 
it might prove helpful for reducing the mortality associated with septic shock by shutting down 
TLR-mediated induction of pro-inflammatory cytokines. 

Perspectives 
The various phenotypes of the TRAF-specific knock-out and TRAF-transgenic mice have brought 

to light the pleiotropic roles of TRAFs in cell physiology and have warned of the adverse effects of 
dysregulating their expression and function. Studies of genetically engineered mice, however, have 
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also uncovered the participation of TRAFs in processes relevant to several human diseases for which 
new therapeutic approaches are desperately needed (Fig. 1). 

Despite the difficulty in identifying small molecule modulators that can either disrupt or en
hance specific protein-protein interactions, the development of new screening and structure-based 
drug design technologies raises optimism. Thus, the application of high throughput screening tech
nologies to test large synthetic and natural chemical compound libraries, as well as structured-based 
drug design will likely identify compounds capable of interfering with the functions of specific 
members of the TRAF family or other proteins in the pathways that are dependent on TRAFs. In 
this regard, recent articles have shown the potential of these technologies for modulating the activity 
of TNF-family proteins. Thus, Takasaki and coworkers127 have identified exocyclic small 
peptidomimetics corresponding to critical binding sites in the TNFR1 that prevent TNF-mediated 
apoptosis. He and coworkers12 have identified a small-molecule inhibitor of TNF that binds trim-
eric TNF and promotes subunit disassembly and its functional inhibition. Also, Fournel and co
workers129 have reported the structure-based design of small molecules with C3 symmetry that 
mimic CD40L and act as agonist of CD40 functions. Altogether, these results provide proof of 
concept that similar approaches could result in the identification of compounds that modulate 
TRAF-trimerization or their association with TNFRs and other proteins in the pathway. 

Figure 1. TRAFs regulate both the acquired and innate immune systems, as well as certain additional physiological 
processes. Deregulation of these immune pathways is causative of cancer, autoimmunity and inflammation. 
Targeting the function of specific TRAF family members could provide novel approaches to restoring normal 
immune system function, but caution must be taken to avoid unwanted side-effects. 
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Development of TNFR-mimic peptides that target the function of specific members of the 
TRAF-family is a complementary approach that might yield significant success. Indeed, the suit
ability of TNFR-mimic peptides to interfere with TRAF activities has been already shown in cell 
cultures.3'10 The crystal structures of different TRAF-family members bound to TRAF-binding pep
tides from several members of the TNFR family support the notion that development of 
peptidomimetics that preferentially interact with and modulate the function of particular members 
of the TRAF family is feasible and worth exploring for therapeutic purposes. Recent advances in cell 
permeable peptide technology, improving cellular penetration and stability130"132 also raises opti
mism that peptidomimetics could be eventually translated to the clinic. 

Alternatively, enzymes that associate with TRAFs may be attractive and more pharmaceutically 
tractable targets for drug discovery. For instance, inhibitors of Ubcl3, the unique E2 that associates 
with the RING domains of TRAF, would be predicted to short-circuit signal transduction mediated 
by many of these adapter proteins. Similarly, the protein kinases recruited to TRAFs could also be 
targeted. The relative advantages and disadvantages of these various targets from the perspective of 
efficacy and toxicity, however, are beyond the scope of this review. 

While the pleiotropic effects of TRAF-family proteins and the partner proteins with which they 
associate caution against the use of pharmacological TRAF modulators, at least for chronic diseases, 
rapidly evolving new drug delivery systems and nanodevices that restrict drugs to sites of disease 
forecast emerging opportunities to consider therapeutic approaches for either enhancing or inhibit
ing the activities of TRAFs for future drug development. 
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