
Chapter 2

Weak dependence

Many authors have used one of the two following type of dependence: on the
one hand mixing properties, introduced by Rosenblatt (1956) [166], on the other
hand martingales approximations or mixingales, following the works of Gordin
(1969, 1973) [97], [98] and Mc Leisch (1974, 1975) [127], [129]. Concerning
strongly mixing sequences, very deep and elegant results have been established:
for recent works, we mention the books of Rio (2000) [161] and Bradley (2002)
[30]. However many classes of time series do not satisfy any mixing condition
as it is quoted e.g. in Eberlein and Taqqu (1986) [83] or Doukhan (1994) [61].
Conversely, most of such time series enter the scope of mixingales but limit
theorems and moment inequalities are more difficult to obtain in this general
setting.
Between those directions, Bickel and Bühlmann (1999) [18] and simultaneously
Doukhan and Louhichi (1999) [67] introduced a new idea of weak dependence.
Their notion of weak dependence makes explicit the asymptotic independence
between ‘past’ and ‘future’; this means that the ‘past’ is progressively forgotten.
In terms of the initial time series, ‘past’ and ‘future’ are elementary events
given through finite dimensional marginals. Roughly speaking, for convenient
functions f and g, we shall assume that

Cov (f(‘past’), g(‘future’))

is small when the distance between the ‘past’ and the ‘future’ is sufficiently
large. Such inequalities are significant only if the distance between indices of
the initial time series in the ‘past’ and ‘future’ terms grows to infinity. The
convergence is not assumed to hold uniformly on the dimension of the ‘past’ or
‘future’ involved.
The main advantage is that such a kind of dependence contains lots of pertinent
examples and can be used in various situations: empirical central limit theorems
are proved in Doukhan and Louhichi (1999) [67] and Borovkova, Burton and
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10 CHAPTER 2. WEAK DEPENDENCE

Dehling (2001) [25], while applications to Bootstrap are given by Bickel and
Bühlmann (1999) [18] and Ango Nzé et al.(2002) [6] and to functional estima-
tion (Coulon-Prieur & Doukhan, 2000 [40]).
In this chapter a first section introduces the function spaces necessary to de-
fine the various dependence coefficients of the second section. They are classi-
fied in separated subsections. We shall first consider noncausal coefficients and
then their causal counterparts; in both cases the subjacent spaces are Lipschitz
spaces. A further case associated to bounded variation spaces is provided in the
following subsection. Projective measure of dependence are included in the last
subsection.

2.1 Function spaces

In this section, we give the definitions of some function spaces used in this book.

• Let m be any measure on a measurable space (Ω,A). For any p ≥ 1, we
denote by L

p(m) the space of measurable functions f from Ω to R such
that

‖f‖p,m =
(∫

|f(x)|pm(dx)
)1/p

< ∞,

‖f‖∞,m = inf
{
M > 0

/
m(|f | > M) = 0

}
< ∞, for p = ∞.

For simplicity, when no confusion can arise, we shall write L
p and ‖ · ‖p

instead of L
p(m) and ‖ · ‖p,m.

Let X be a Polish space and δ be some metric on X (X need not be Polish with
respect to δ).

• Let Λ(δ) be the set of Lipschitz functions from X to R with respect to the
distance δ. For f ∈ Λ(δ), denote by Lip (f), f ’s Lipschitz constant. Let

Λ(1)(δ) = {f ∈ Λ(δ) / Lip (f) ≤ 1}.

• Let (Ω,A,P) be a probability space. Let X be a Polish space and δ be a
distance on X . For any p ∈ [1,∞], we say that a random variable X with
values in X is L

p-integrable if, for some x0 in X , the real valued random
variable δ(X,x0) belongs to L

p(P).

Another type of function class will be used in this chapter: it is the class of
functions with bounded variation on the real line. To be complete, we recall,
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Definition 2.1. A σ-finite signed measure is the difference of two positive σ-
finite measures, one of them at least being finite. We say that a function h
from R to R is σ-BV if there exists a σ-finite signed measure dh such that
h(x) = h(0) + dh([0, x[) if x ≥ 0 and h(x) = h(0) − dh([x, 0[) if x ≤ 0 (h is left
continuous). The function h is BV if the signed measure dh is finite.

Recall also the Hahn-Jordan decomposition: for any σ-finite signed measure μ,
there is a set D such that

μ+(A) = μ(A ∩D) ≥ 0, −μ−(A) = μ(A\D) ≤ 0.

μ+ and μ− are mutually singular, one of them at least is finite and μ = μ+−μ−.
The measure |μ| = μ+ + μ− is called the total variation measure for μ. The
total variation of μ writes as ‖μ‖ = |μ|(R).

Now we are in position to introduce

• BV1 the space of BV functions h : R → R such that ‖dh‖ ≤ 1.

2.2 Weak dependence

Let (Ω,A,P) be a probability space and let X be a Polish space. Let

F =
⋃

u∈N∗
Fu and G =

⋃

u∈N∗
Gu ,

where Fu and Gu are two classes of functions from X u to R.

Definition 2.2. Let X and Y be two random variables with values in X u and
X v respectively. If Ψ is some function from F ×G to R+, define the

(
F ,G,Ψ

)
-

dependence coefficient ε(X,Y ) by

ε(X,Y ) = sup
f∈Fu g∈Gv

|Cov(f(X), g(Y ))|
Ψ(f, g)

. (2.2.1)

Let (Xn)n∈Z be a sequence of X -valued random variables. Let Γ(u, v, k) be the
set of (i, j) in Z

u × Z
v such that i1 < · · · < iu ≤ iu + k ≤ j1 < · · · < jv. The

dependence coefficient ε(k) is defined by

ε(k) = sup
u,v

sup
(i,j)∈Γ(u,v,k)

ε((Xi1 , . . . , Xiu), (Xj1 , . . . , Xjv )) .

The sequence (Xn)n∈Z is (F ,G,Ψ)-dependent if the sequence (ε(k))k∈N tends to
zero. If F = G we simply denote this as (F ,Ψ)-dependence.

Remark 2.1. Definition 2.2 above easily extends to general metric sets of in-
dices T equipped with a distance δ (e.g. T = Z

d yields the case of random fields).
The set Γ(u, v, k) is then the set of (i, j) in T u × T v such that

k = min {δ(i�, jm) / 1 ≤ � ≤ u, 1 ≤ m ≤ v } .
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2.2.1 η, κ, λ and ζ-coefficients

In this section, we focus on the case where Fu = Gu. If f belongs to Fu, we
define df = u.
In a first time, Fu is the set of bounded functions from X u to R, which are
Lipschitz with respect to the distance δ1 on X u defined by

δ1(x, y) =
u∑

i=1

δ(xi, yi) . (2.2.2)

In that case:

• the coefficient η corresponds to

Ψ(f, g) = df‖g‖∞Lip (f) + dg‖f‖∞Lip (g) , (2.2.3)

• the coefficient λ corresponds to

Ψ(f, g) = df‖g‖∞Lip (f) + dg‖f‖∞Lip (g) + dfdgLip (f)Lip (g) . (2.2.4)

To define the coefficients κ and ζ, we consider for Fu the wider set of functions
from X u to R, which are Lipschitz with respect to the distance δ1 on X u, but
which are not necessarily bounded. In that case we assume that the variables
Xi are L

1-integrable.

• the coefficient κ corresponds to

Ψ(f, g) = dfdgLip (f)Lip (g) , (2.2.5)

• the coefficient ζ corresponds to

Ψ(f, g) = min(df , dg)Lip (f)Lip (g) . (2.2.6)

These coefficients have some hereditary properties. For example, let h : X → R

be a Lipschitz function with respect to δ, then if the sequence (Xn)n∈Z is η, κ,
λ or ζ weakly dependent, then the same is true for the sequence (h(Xn))n∈Z.
One can also obtain some hereditary properties for functions which are not
Lipschitz on the whole space X , as shown by Lemma 2.1 below, in the special
case where X = R

k equipped with the distance δ(x, y) = max1≤i≤k |xi − yi|.
Proposition 2.1 (Bardet, Doukhan, León, 2006 [11]). Let (Xn)n∈Z be a se-
quence of R

k-valued random variables. Let p > 1. We assume that there exists
some constant C > 0 such that max1≤i≤k ‖Xi‖p ≤ C. Let h be a function from
R
k to R such that h(0) = 0 and for x, y ∈ R

k, there exist a in [1, p[ and c > 0
such that

|h(x) − h(y)| ≤ c|x− y|(|x|a−1 + |y|a−1) .

We define the sequence (Yn)n∈Z by Yn = h(Xn). Then,
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• if (Xn)n∈Z is η-weak dependent, then (Yn)n∈Z also, and

ηY (n) = O
(
η(n)

p−a
p−1

)
;

• if (Xn)n∈Z is λ-weak dependent, then (Yn)n∈Z also, and

λY (n) = O
(
λ(n)

p−a
p+a−2

)
.

Remark 2.2. The function h(x) = x2 satisfies the previous assumptions with
a = 2. This condition is satisfied by polynomials with degree a.

Proof of Proposition 2.1. Let f and g be two real functions in Fu and Fv respec-
tively. Denote x(M) = (x ∧M) ∨ (−M) for x ∈ R. Now, for x = (x1, . . . , xk) ∈
R
k, we analogously denote x(M) = (x(M)

1 , . . . , x
(M)
k ). Assume that (i, j) belong

to the set Γ(u, v, r) defined in Definition 2.2. Define Xi = (Xi1 , . . . , Xiu) and
Xj = (Xj1 , . . . , Xjv ). We then define functions F : R

uk → R and G : R
vk → R

through the relations:

• F (Xi) = f(h(Xi1), . . . , h(Xiu)), F (M)(Xi) = f(h(X(M)
i1

), . . . , h(X(M)
iu

)),

• G(Xj) = g(h(Xj1), . . . , h(Xjv )), G(M)(Xj) = g(h(X(M)
j1

), . . . , h(X(M)
jv

)).

Then:

|Cov(F (Xi), G(Xj))| ≤ |Cov(F (Xi), G(Xj) −G(M)(Xj))|
+|Cov(F (Xi), G(M)(Xj))|

≤ 2‖f‖∞ E|G(Xj) −G(M)(Xj))|
+2‖g‖∞ E|F (Xi) − F (M)(Xi)|
+|Cov(F (M)(Xi), G(M)(Xj))|

But we also have from the assumptions on h and Markov inequality,

E|G(Xj) −G(M)(Xj))| ≤ Lip g
v∑

l=1

E|h(Xjl) − h(X(M)
jl

)|

≤ 2cLip g
v∑

l=1

E
(
|Xjl |a1|Xjl

|>M
)
,

≤ 2c v Lip gCpMa−p.

The same thing holds for F . Moreover, the functions F (M) : R
uk → R and

G(M) : R
vk → R satisfy LipF (M) ≤ 2cMa−1Lip (f) and LipG(M) ≤ 2cMa−1
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Lip (g), and ‖F (M)‖∞ ≤ ‖f‖∞, ‖G(M)‖∞ ≤ ‖g‖∞. Thus, from the definition of
weak dependence of X and the choice of i, j , we obtain respectively, if M ≥ 1
∣
∣Cov

(
F (M)(Xi), G(M)(Xj)

)∣∣ ≤ 2c(uLip (f)‖g‖∞ + vLip (g)‖f‖∞)Ma−1η(r),

≤ 2c(dfLip (f)‖g‖∞ + dgLip (g)‖f‖∞)Ma−1λ(r)
+ 4c2dfdgLip (f)Lip (g)M2a−2λ(r).

Finally, we obtain respectively, if M ≥ 1:

|Cov(F (Xi), G(Xj))| ≤ 2c(uLip f‖g‖∞ + vLip g‖f‖∞)
×
(
Ma−1η(r) + 2CpMa−p),

≤ c(uLip f + vLip g + uvLip fLip g)
×(M2a−2λ(r) +Ma−p).

Choosing M = η(r)1/(1−p) and M = λ(r)−1/(p+a−2) respectively, we obtain the
result. �

In the definition of the coefficients η, κ, λ and ζ, we assume some regularity
conditions on Fu = Gu. In the case where the sequence (Xn)n∈Z is an adapted
process with respect to some increasing filtration (Mi)i∈Z, it is often more
suitable to work without assuming any regularity conditions on Fu. In that
case Gu is some space of regular functions and Fu �= Gu. This last case is called
the causal case. In the situations where both Fu and Gu are spaces of regular
functions, we say that we are in the non causal case.

2.2.2 θ and τ-coefficients

Let Fu be the class of bounded functions from Xu to R, and let Gu be the class
of functions from Xu to R which are Lipschitz with respect to the distance δ1
defined by (2.2.2). We assume that the variables Xi are L

1-integrable.

• The coefficient θ corresponds to

Ψ(f, g) = dg‖f‖∞Lip (g) . (2.2.7)

The coefficient θ has some hereditary properties. For example, Proposition 2.2
below gives hereditary properties similar to those given for the coefficients η
and λ in Lemma 2.1.

Proposition 2.2. Let (Xn)n∈Z be a sequence of R
k-valued random variables.

We define the sequence (Yn)n∈Z by Yn = h(Xn). The assumptions on (Xn)n∈Z

and on h are the same as in Lemma 2.1. Then,



2.2. WEAK DEPENDENCE 15

• if (Xn)n∈Z is θ-weak dependent, (Yn)n∈Z also, and

θY (n) = O
(
θ(n)

p−a
p−1

)
.

The proof of Proposition 2.2 follows the same line as the proof of Proposition
2.1 and therefore is not detailed.
We shall see that the coefficient θ defined above belongs to a more general class
of dependence coefficients defined through conditional expectations with respect
to the filtration σ(Xj , j ≤ i).

Definition 2.3. Let (Ω,A,P) be a probability space, and M be a σ-algebra of A.
Let X be a Polish space and δ a distance on X . For any L

p-integrable random
variable X (see § 2.1) with values in X , we define

θp(M, X) = sup{‖E(g(X)|M) − E(g(X))‖p / g ∈ Λ(1)(δ)}. (2.2.8)

Let (Xi)i∈Z be a sequence of L
p-integrable X -valued random variables, and let

(Mi)i∈Z be a sequence of σ-algebras of A. On X l, we consider the distance δ1
defined by (2.2.2). The sequence of coefficients θp,r(k) is then defined by

θp,r(k) = max
�≤r

1
�

sup
(i,j)∈Γ(1,�,k)

θp (Mi, (Xj1 , . . . , Xj�)) . (2.2.9)

When it is not clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

The two preceding definitions are coherent as proved below.

Proposition 2.3. Let (Xi)i∈Z be a sequence of L
1-integrable X -valued random

variables, and let Mi = σ(Xj , j ≤ i). According to the definition of θ(k) and to
the definition 2.3, we have the equality

θ(k) = θ1,∞(k). (2.2.10)

Proof of Proposition 2.3. The fact that θ(k) ≤ θ1,∞(k) is clear since, for any f
in Fu, g in Gv, and any (i, j) ∈ Γ(u, v, k),

∣
∣
∣Cov

(f(Xi1 , . . . , Xiu)
‖f‖∞

,
g(Xj1 , . . . , Xjv )

vLip (g)

)∣∣
∣

≤ 1
v

∥
∥
∥E
(g(Xj1 , . . . , Xjv )

Lip (g)

∣
∣
∣Miu

)
− E

(g(Xj1 , . . . , Xjv )
Lip (g)

)∥∥
∥

1
≤ θ1,∞(k).

To prove the converse inequality, we first notice that

θ(Mi, (Xj1 , . . . , Xjv ) = lim
k→−∞

θ (Mk,i, (Xj1 , . . . , Xjv )) , (2.2.11)
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where Mk,i = σ(Xj , k ≤ j ≤ i). Now, letting

f(Xk, . . . , Xi) = sign
{
E(g(Xj1 , . . . , Xjv )|Mk,i) − E(g(Xj1 , . . . , Xjv ))

}
,

we have that, for (i, j) in Γ(1, v, k) and g in Λ(1)(δ1),

‖E(g(Xj1 , . . . , Xjv )|Mk,i) − E(g(Xj1 , . . . , Xjv ))‖1

= Cov(f(Xk, . . . , Xi), g(Xj1 , . . . , Xjv )) ≤ vθ(k) .

We infer that
1
v
θ(Mk,i, (Xj1 , . . . , Xjv ) ≤ θ(k)

and we conclude from (2.2.11) that θ1,∞(k) ≤ θ(k). The proof is complete. �
Having in view the coupling arguments in § 5.3, we now define a variation of
the coefficient (2.2.8) where we exchange the order of ‖.‖p and the supremum.
This is the same step as passing from α−mixing to β−mixing, which is known
to ensure nice coupling arguments (see Berbee, 1979 [16]).

Definition 2.4. Let (Ω,A,P) be a probability space, and M a σ-algebra of A.
Let X be a Polish space and δ a distance on X . For any L

p−integrable (see
§ 2.1)) X -valued random variable X, we define the coefficient τp by:

τp(M, X) =

∥
∥
∥∥
∥

sup
g∈Λ(1)(δ)

{∫
g(x)PX|M(dx) −

∫
g(x)PX(dx)

}∥∥
∥∥
∥
p

(2.2.12)

where PX is the distribution of X and PX|M is a conditional distribution of X
given M. We clearly have

θp(M, X) ≤ τp(M, X) . (2.2.13)

Let (Xi)i∈Z be a sequence of L
p-integrable X -valued random variables. The

coefficients τp,r(k) are defined from τp as in (2.2.9).

2.2.3 α̃, β̃ and φ̃-coefficients.

In the case where X = (Rd)r, we introduce some new coefficients based on
indicator of quadrants. Recall that if x and y are two elements of R

d, then
x ≤ y if and only if xi ≤ yi for any 1 ≤ i ≤ d.

Definition 2.5. Let X = (X1, . . . , Xr) be a (Rd)r-valued random variable and
M a σ-algebra of A. For ti in R

d and x in R
d, let gti,i(x) = 1x≤ti −P(Xi ≤ ti).

Keeping the same notations as in Definition 2.4, define for t = (t1, . . . , tr) in
(Rd)r,

LX|M(t) =
∫ r∏

i=1

gti,i(xi)PX|M(dx) and LX(t) = E

r∏

i=1

gti,i(Xi).

Define now the coefficients
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1. α̃(M, X) = sup
t∈(Rd)r

‖LX|M(t) − LX(t)‖1.

2. β̃(M, X) =
∥
∥∥ sup
t∈(Rd)r

|LX|M(t) − LX(t)|
∥
∥∥

1
.

3. φ̃(M, X) = sup
t∈(Rd)r

‖LX|M(t) − LX(t)‖∞.

Remark 2.3. Note that if r = 1, d = 1 and δ(x, y) = |x − y|, then, with the
above notation,

τ1(M, X) =
∫

‖LX|M(t)‖1dt .

The proof of this equality follows the same lines than the proof of the coupling
property of τ1 (see Chapter 5, proof of Lemma 5.2).

In the definition of the coefficients θ and τ , we have used the class of func-
tions Λ(1)(δ). In the case where d = 1, we can define the coefficients α̃(M, X),
β̃(M, X) and φ̃(M, X) with the help of bounded variation functions. This is
the purpose of the following lemma:

Lemma 2.1. Let (Ω,A,P) be a probability space, X = (X1, . . . , Xr) a R
r-

valued random variable and M a σ-algebra of A. If f is a function in BV1, let
f (i)(x) = f(x) − E(f(Xi)). The following relations hold:

1. α̃(M, X) = sup
f1,...,fr∈BV1

∥
∥
∥∥
∥
E

(
r∏

i=1

f
(i)
i (Xi)

∣
∣∣M
)

− E

(
r∏

i=1

f
(i)
i (Xi)

)∥∥
∥∥
∥

1

.

2. β̃(M, X) =

∥
∥
∥∥
∥

sup
f1,...,fr∈BV1

∣
∣
∣∣
∣

∫ r∏

i=1

f
(i)
i (xi)

(
PX|M − PX

)
(dx)

∣
∣
∣∣
∣

∥
∥
∥∥
∥

1

.

3. φ̃(M, X) = sup
f1,...,fr∈BV1

∥
∥
∥∥
∥
E

(
r∏

i=1

f
(i)
i (Xi)|M

)

− E

(
r∏

i=1

f
(i)
i (Xi)

)∥∥
∥∥
∥
∞

.

Remark 2.4. For r = 1 and d = 1, the coefficient α̃(M, X) was introduced
by Rio (2000, equation 1.10c [161]) and used by Peligrad (2002) [140], while
τ1(M, X) was introduced by Dedecker and Prieur (2004a) [45]. Let α(M, σ(X)),
β(M, σ(X)) and φ(M, σ(X)) be the usual mixing coefficients defined respectively
by Rosenblatt (1956) [166], Rozanov and Volkonskii (1959) [187] and Ibragimov
(1962) [110]. Starting from Definition 2.5 one can easily prove that

α̃(M, X) ≤ 2α(M, σ(X)), β̃(M, X) ≤ β(M, σ(X)), φ̃(M, X) ≤ φ(M, σ(X)).
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Proof of Lemma 2.1. Let fi be a function in BV1. Assume without loss of
generality that fi(−∞) = 0. Then

f
(i)
i (x) = −

∫
(1x≤t − P(Xi ≤ t)) dfi(t) .

Hence,

∫ k∏

i=1

f
(i)
i (xi)PX|M(dx) = (−1)k

∫ ( ∫ k∏

i=1

gti,i(xi)PX|M(dx)
) k∏

i=1

dfi(ti) ,

and the same is true for PX instead of PX|M. From these inequalities and the
fact that |dfi|(R) ≤ 1, we infer that

sup
f1,...,fk∈BV1

∣
∣
∣
∫ k∏

i=1

f
(i)
i (xi)PX|M(dx) −

∫ k∏

i=1

f
(i)
i (xi)PX(dx)

∣
∣
∣

≤ sup
t∈Rr

|LX|M(t) − LX(t)| .

The converse inequality follows by noting that x �→ 1x≤t belongs to BV1 . �
The following proposition gives the hereditary properties of these coefficients.

Proposition 2.4. Let (Ω,A,P) be a probability space, X an R
r-valued, random

variable and M a σ-algebra of A. Let g1, . . . , gr be any nondecreasing functions,
and let g(X) = (g1(X1), . . . , gr(Xr)). We have the inequalities α̃(M, g(X)) ≤
α̃(M, X), β̃(M, g(X)) ≤ β̃(M, X) and φ̃(M, g(X)) ≤ φ̃(M, X). In particu-
lar, if Fi is the distribution function of Xi, we have α̃(M, F (X)) = α̃(M, X),
β̃(M, F (X)) = β̃(M, X) and φ̃(M, F (X)) = φ̃(M, X).

Notations 2.1. For any distribution function F , we define the generalized
inverse as

F−1(x) = inf
{
t ∈ R

/
F (t) ≥ x

}
. (2.2.14)

For any non-increasing càdlàg function f : R → R we analogously define the
generalized inverse

f−1(u) = inf{t/f(t) ≤ u}.

Proof of Proposition 2.4. The fact that α̃(M, g(X)) ≤ α̃(M, X) is immedi-
ate, from its definition. We infer that α̃(M, F (X)) ≤ α̃(M, X). Applying
the first result once more, we obtain that α̃(M, F−1(F (X))) ≤ α̃(M, F (X)).
To conclude, it suffices to note that F−1 ◦ F (X) = X almost surely, so that
α̃(M, X) ≤ α̃(M, F (X)). Of course, the same arguments apply to β̃(M, X)
and φ̃(M, X). �
We now define the coefficients α̃r(k), β̃r(k) and φ̃r(k) for a sequence of σ-
algebras and a sequence of R

d-valued random variables.
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Definition 2.6. Let (Ω,A,P) be a probability space. Let (Xi)i∈Z be a sequence
of R

d-valued random variables, and let (Mi)i∈Z be a sequence of σ-algebras of
A. For r ∈ N

∗ and k ≥ 0, define

α̃r(k) = max
1≤l≤r

sup
(i,j)∈Γ(1,l,k)

α̃(Mi, (Xj1 , . . . , Xjl)) . (2.2.15)

The coefficients β̃r(k) and φ̃r(k) are defined in the same way. When it is not
clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

2.2.4 Projective measure of dependence

Sometimes, it is not necessary to introduce a supremum over a class of functions.
We can work with the simple following projective measure of dependence

Definition 2.7. Let (Ω,A,P) be a probability space, and M a σ-algebra of A.
Let p ∈ [1,∞]. For any L

p−integrable real valued random variable define

γp(M, X) = ‖E(X |M) − E(X)‖p. (2.2.16)

Let (Xi)i∈Z be a sequence of L
p−integrable real valued random variables, and

let (Mi)i∈Z be a sequence of σ-algebras of A. The sequence of coefficients γp(k)
is then defined by

γp(k) = sup
i∈Z

γp(Mi, Xi+k) . (2.2.17)

When it is not clearly specified, we shall always take Mi = σ(Xk, k ≤ i).

Remark 2.5. Those coefficients are defined in Gordin (1969) [97], if p ≥ 2 and
in Gordin (1973) [98] if p = 1. Mc Leish (1975a) [128] and (1975b) [129] uses
these coefficients in order to derive various limit theorems. Let us notice that

γp(M, X) ≤ θp(M, X) . (2.2.18)


