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Summary. Evolutionary Algorithms (EAs) are stochastic search algorithms in-
spired by the process of neo-Darwinian evolution. The motivation for applying EAs
to data mining is that they are robust, adaptive search techniques that perform
a global search in the solution space. This chapter first presents a brief overview
of EAs, focusing mainly on two kinds of EAs, viz. Genetic Algorithms (GAs) and
Genetic Programming (GP). Then the chapter reviews the main concepts and prin-
ciples used by EAs designed for solving several data mining tasks, namely: discovery
of classification rules, clustering, attribute selection and attribute construction. Fi-
nally, it discusses Multi-Objective EAs, based on the concept of Pareto dominance,
and their use in several data mining tasks.
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1 Introduction

The paradigm of Evolutionary Algorithms (EAs) consists of stochastic search
algorithms inspired by the process of neo-Darwinian evolution (Back et al.
2000; De Jong 2006; Eiben & Smith 2003). EAs work with a population of in-
dividuals, each of them a candidate solution to a given problem, that “evolve”
towards better and better solutions to that problem. It should be noted that
this is a very generic search paradigm. EAs can be used to solve many differ-
ent kinds of problems, by carefully specifying what kind of candidate solution
an individual represents and how the quality of that solution is evaluated (by
a “fitness” function).

In essence, the motivation for applying EAs to data mining is that EAs
are robust, adaptive search methods that perform a global search in the space
of candidate solutions. In contrast, several more conventional data mining
methods perform a local, greedy search in the space of candidate solutions.
As a result of their global search, EAs tend to cope better with attribute



80 Alex A. Freitas

interactions than greedy data mining methods (Freitas 2002a; Dhar et al.
2000; Papagelis & Kalles 2001; Freitas 2001, 2002c). Hence, intuitively EAs
can discover interesting knowledge that would be missed by a greedy method.

The remainder of this chapter is organized as follows. Section 2 presents
a brief overview of EAs. Section 3 discusses EAs for discovering classification
rules. Section 4 discusses EAs for clustering. Section 5 discusses EAs for two
data preprocessing tasks, namely attribute selection and attribute construc-
tion. Section 6 discusses multi-objective EAs. Finally, Section 7 concludes the
chapter. This chapter is an updated version of (Freitas 2005).

2 An Overview of Evolutionary Algorithms

An Evolutionary Algorithm (EA) is essentially an algorithm inspired by the
principle of natural selection and natural genetics. The basic idea is sim-
ple. In nature individuals are continuously evolving, getting more and more
adapted to the environment. In EAs each “individual” corresponds to a candi-
date solution to the target problem, which could be considered a very simple
“environment”. Each individual is evaluated by a fitness function, which mea-
sures the quality of the candidate solution represented by the individual. At
each generation (iteration), the best individuals (candidate solutions) have a
higher probability of being selected for reproduction. The selected individu-
als undergo operations inspired by natural genetics, such as crossover (where
part of the genetic material of two individuals are swapped) and mutation
(where part of the generic material of an individual is replaced by randomly-
generated genetic material), producing new offspring which will replace the
parents, creating a new generation of individuals. This process is iteratively
repeated until a stopping criterion is satisfied, such as until a fixed number
of generations has been performed or until a satisfactory solution has been
found.

There are several kinds of EAs, such as Genetic Algorithms, Genetic Pro-
gramming, Classifier Systems, Evolution Strategies, Evolutionary Program-
ming, Estimation of Distribution Algorithms, etc. (Back et al. 2000; De Jong
2006; Eiben & Smith 2003). This chapter will focus on Genetic Algorithms
(GAs) and Genetic Programming (GP), which are probably the two kinds of
EA that have been most used for data mining.

Both GA and GP can be described, at a high level of abstraction, by
the pseudocode of Algorithm 1. Although GA and GP share this basic pseu-
docode, there are several important differences between these two kinds of
algorithms. One of these differences involves the kind of solution represented
by each of these kinds of algorithms. In GAs, in general a candidate solution
consists mainly of values of variables – in essence, data. By contrast, in GP
the candidate solution usually consists of both data and functions. There-
fore, in GP one works with two sets of symbols that can be represented in an
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individual, namely the terminal set and the function set. The terminal set typ-
ically contains variables (or attributes) and constants; whereas the function
set contains functions which are believed to be appropriate to represent good
solutions for the target problem. In the context of data mining, the explicit
use of a function set is interesting because it provides GP with potentially
powerful means of changing the original data representation into a represen-
tation that is more suitable for knowledge discovery purposes, which is not
so naturally done when using GAs or another EA where only attributes (but
not functions) are represented by an individual. This ability of changing the
data representation will be discussed particularly on the section about GP for
attribute construction.

Note that in general there is no distinction between terminal set and func-
tion set in the case of GAs, because GAs’ individuals usually consist only of
data, not functions. As a result, the representation of GA individuals tend to
be simpler than the representation of GP individuals. In particular, GA indi-
viduals are usually represented by a fixed-length linear genome, whereas the
genome of GP individuals is often represented by a variable-size tree genome
– where the internal nodes contain functions and the leaf nodes contain ter-
minals.

Algorithm 1: Generic Pseudocode for GA and GP
1: Create initial population of individuals
2: Compute the fitness of each individual
3: repeat
4: Select individuals based on fitness
5: Apply genetic operators to selected individuals, creating new individuals
6: Compute fitness of each of the new individuals
7: Update the current population (new individuals replace old individuals)
8: until (stopping criteria)

When designing a GP algorithm, one must bear in mind two important
properties that should be satisfied by the algorithm, namely closure and suf-
ficiency (Banzhaf et al. 1998; Koza 1992). Closure means that every function
in the function set must be able to accept, as input, the result of any other
function or any terminal in the terminal set. Some approaches to satisfy the
closure property in the context of attribute construction will be discussed in
Subsection 5.2. Sufficiency means that the function set should be expressive
enough to allow the representation of a good solution to the target problem.
In practice it is difficult to know a priori which functions should be used to
guarantee the sufficiency property, because in challenging real-world problems
one often does not know the shape of a good solution for the problem. As a
practical guideline, (Banzhaf et al. 1998) (p. 111) recommends:
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“An approximate starting point for a function set might be the arithmetic
and logic operations: PLUS, MINUS, TIMES, DIVIDE, OR, AND, XOR.
. . . Good solutions using only this function set have been obtained on several
different classification problems,. . . ,and symbolic regression problems.”

We have previously mentioned some differences between GA and GP, in-
volving their individual representation. Arguably, however, the most impor-
tant difference between GAs and GP involves the fundamental nature of the
solution that they represent. More precisely, in GAs (like in most other kinds
of EA) each individual represents a solution to one particular instance of the
problem being solved. In contrast, in GP a candidate solution should repre-
sent a generic solution – a program or an algorithm – to the kind of problem
being solved; in the sense that the evolved program should be generic enough
to be applied to any instance of the target kind of problem.

To quote (Banzhaf et al. 1998), p. 6:

it is possible to define genetic programming as the direct evolution
of programs or algorithms [our italics] for the purpose of inductive
learning.

In practice, in the context of data mining, most GP algorithms evolve a
solution (say, a classification model) specific for a single data set, rather than
a generic program that can be applied to different data sets from different
application domains. An exception is the work of (Pappa & Freitas 2006),
proposing a grammar-based GP system that automatically evolves full rule
induction algorithms, with loop statements, generic procedures for building
and pruning classification rules, etc. Hence, in this system the output of a
GP run is a generic rule induction algorithm (implemented in Java), which
can be run on virtually any classification data set – in the same way that
a manually-designed rule induction algorithm can be run on virtually any
classification data set. An extended version of the work presented in (Pappa
& Freitas 2006) is discussed in detail in another chapter of this book (Pappa
& Freitas 2007).

3 Evolutionary Algorithms for Discovering Classification
Rules

Most of the EAs discussed in this section are Genetic Algorithms, but it should
be emphasized that classification rules can also be discovered by other kinds
of EAs. In particular, for a review of Genetic Programming algorithms for
classification-rule discovery, see (Freitas 2002a); and for a review of Learning
Classifier Systems (a type of algorithm based on a combination of EA and
reinforcement learning principles), see (Bull 2004; Bull & Kovacs 2005).
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3.1 Individual Representation for Classification-Rule Discovery

This Subsection assumes that the EA discovers classification rules of the form
“IF (conditions) THEN (class)” (Witten & Frank 2005). This kind of knowl-
edge representation has the advantage of being intuitively comprehensible to
the user – an important point in data mining (Fayyad et al. 1996). A crucial
issue in the design of an individual representation is to decide whether the
candidate solution represented by an individual will be a rule set or just a
single classification rule (Freitas 2002a, 2002b).

The former approach is often called the “Pittsburgh approach”, whereas
the later approach is often called the “Michigan-style approach”. This latter
term is an extension of the term ”Michigan approach”, which was originally
used to refer to one particular kind of EA called Learning Classifier Sys-
tems (Smith 2000; Goldberg 1989). In this chapter we use the extended term
”Michigan-style approach” because, instead of discussing Learning Classifier
Systems, we discuss conceptually simpler EAs sharing the basic characteristic
that an individual represents a single classification rule, regardless of other
aspects of the EA.

The difference between the two approaches is illustrated in Figure 1. Fig-
ure 1(a) shows the Pittsburgh approach. The number of rules, m, can be either
variable, automatically evolved by the EA, or fixed by a user-specified param-
eter. Figure 1(b) shows the Michigan-style approach, with a single rule per
individual. In both Figure 1(a) and 1(b) the rule antecedent (the “IF part” of
the rule) consists of a conjunction of conditions. Each condition is typically
of the form <Attribute, Operator, Value>, also known as attribute-value (or
propositional logic) representation. Examples are the conditions: “Gender =
Female” and “Age < 25”. In the case of continuous attributes it is also com-
mon to have rule conditions of the form <LowerBound, Operator, Attribute,
Operator, UpperBound>, e.g.: “30K ≤ Salary ≤ 50K”.

In some EAs the individuals can only represent rule conditions with cate-
gorical (nominal) attributes such as Gender, whose values (male, female) have
no ordering – so that the only operator used in the rule conditions is “=”,
and sometimes “ 6=”. When using EAs with this limitation, if the data set con-
tains continuous attributes – with ordered numerical values – those attributes
have to be discretized in a preprocessing stage, before the EA is applied. In
practice it is desirable to use an EA where individuals can represent rule con-
ditions with both categorical and continuous attributes. In this case the EA
is effectively doing a discretization of continuous values “on-the-fly”, since by
creating rule conditions such as “30K ≤ Salary ≤ 50K” the EA is effectively
producing discrete intervals. The effectiveness of an EA that directly copes
with continuous attributes can be improved by using operators that enlarge
or shrink the intervals based on concepts and methods borrowed from the
research area of discretization in data mining (Divina & Marchiori 2005).

It is also possible to have conditions of the form <Attribute, Operator,
Attribute>, such as “Income > Expenditure”. Such conditions are associated
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with relational (or first-order logic) representations. This kind of relational
representation has considerably more expressiveness power than the conven-
tional attribute-value representation, but the former is associated with a much
larger search space – which often requires a more complex EA and a longer
processing time. Hence, most EAs for rule discovery use the attribute-value,
propositional representation. EAs using the relational, first-order logic rep-
resentation are described, for instance, in (Neri & Giordana 1995; Hekanaho
1995; Woung & Leung 2000; Divina & Marchiori 2002).

               Rule 1                           Rule m                                   Rule 

 IF cond …and…cond ...  IF cond …and …cond        IF cond …and …cond

                     (a) Pittsburgh approach                  (b) Michigan-style approach 

Fig. 1. Pittsburgh vs. Michigan-style approach for individual representation

Note that in Figure 1 the individuals are representing only the rule an-
tecedent, and not the rule consequent (predicted class). It would be possible
to include the predicted class in each individual’s genome and let that class be
evolved along with its corresponding rule antecedent. However, this approach
has one significant drawback, which can be illustrated with the following ex-
ample. Suppose an EA has just generated an individual whose rule antecedent
covers 100 examples, 97 of which have class c1. Due to the stochastic nature
of the evolutionary process and the ”blind-search” nature of the generic oper-
ators, the EA could associate that rule antecedent with class c2, which would
assign a very low fitness to that individual – a very undesirable result. This
kind of problem can be avoided if, instead of evolving the rule consequent, the
predicted class for each rule is determined by other (non-evolutionary) means.
In particular, two such means are as follows.

First, one can simply assign to the individual the class of the majority of
the examples covered by the rule antecedent (class c1 in the above example),
as a conventional, non-evolutionary rule induction algorithm would do. Sec-
ond, one could use the ”sequential covering” approach, which is often used
by conventional rule induction algorithms (Witten & Frank 2005). In this
approach, the EA discovers rules for one class at a time. For each class, the
EA is run for as long as necessary to discover rules covering all examples of
that class. During the evolutionary search for rules predicting that class, all
individuals of the population will be representing rules predicting the same
fixed class. Note that this avoids the problem of crossover mixing genetic
material of rules predicting different classes, which is a potential problem in
approaches where different individuals in the population represent rules pre-
dicting different classes. A more detailed discussion about how to represent
the rule consequent in an EA can be found in (Freitas 2002a).
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The main advantage of the Pittsburgh approach is that an individual rep-
resents a complete solution to a classification problem, i.e., an entire set of
rules. Hence, the evaluation of an individual naturally takes into account rule
interactions, assessing the quality of the rule set. In addition, the more com-
plete information associated with each individual in the Pittsburgh approach
can be used to design “intelligent”, task-specific genetic operators. An ex-
ample is the ”smart” crossover operator proposed by (Bacardit & Krasnogor
2006), which heuristically selects, out of the N sets of rules in N parents (where
N ≥ 2), a good subset of rules to be included in a new child individual. The
main disadvantage of the Pittsburgh approach is that it leads to long indi-
viduals and renders the design of genetic operators (that will act on selected
individuals in order to produce new offspring) more difficult.

The main advantage of the Michigan-style approach is that the individual
representation is simple, without the need for encoding multiple rules in an
individual. This leads to relatively short individuals and simplifies the design
of genetic operators. The main disadvantage of the Michigan-style approach
is that, since each individual represents a single rule, a standard evaluation
of the fitness of an individual ignores the problem of rule interaction. In the
classification task, one usually wants to evolve a good set of rules, rather than
a set of good rules. In other words, it is important to discover a rule set where
the rules “cooperate” with each other. In particular, the rule set should cover
the entire data space, so that each data instance should be covered by at least
one rule. This requires a special mechanism to discover a diverse set of rules,
since a standard EA would typically converge to a population where almost all
the individuals would represent the same best rule found by the evolutionary
process.

In general the previously discussed approaches perform a ”direct” search
for rules, consisting of initializing a population with a set of rules and then
iteratively modifying those rules via the application of genetic operators. Due
to a certain degree of randomness typically present in both initialization and
genetic operations, some bad quality rules tend to be produced along the
evolutionary process. Of course such bad rules are likely to be eliminated
quickly by the selection process, but in any case an interesting alternative and
”indirect” way of searching for rules has been proposed, in order to minimize
the generation of bad rules. The basic idea of this new approach, proposed in
(Jiao et al. 2006), is that the EA searches for good groups (clusters) of data
instances, where each group consists of instances of the same class. A group
is good to the extent that its data instances have similar attribute values and
those attribute values are different from attribute values of the instances in
other groups. After the EA run is over and good groups of instances have
been discovered by the EA, the system extracts classification rules from the
groups. This seems a promising new approach, although it should be noted
that the version of the system described in (Jiao et al. 2006) has the limitation
of coping only with categorical (not continuous) attributes.
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In passing, it is worth mentioning that the above discussion on rule repre-
sentation issues has focused on a generic classification problem. Specific kinds
of classification problems may well be more effectively solved by EAs using
rule representations “tailored” to the target kind of problem. For instance,
(Hirsch et al. 2005) propose a rule representation tailored to document classi-
fication (i.e., a text mining problem), where strings of characters – in general
fragments of words, rather than full words – are combined via Boolean oper-
ators to form classification rules.

3.2 Searching for a Diverse Set of Rules

This subsection discusses two mechanisms for discovering a diverse set of
rules. It is assumed that each individual represents a single classification rule
(Michigan-style approach). Note that the mechanisms for rule diversity dis-
cussed below are not normally used in the Pittsburgh approach, where an
individual already represents a set of rules whose fitness implicitly depends
on how well the rules in the set cooperate with each other.

First, one can use a niching method. The basic idea of niching is to avoid
that the population converges to a single high peak in the search space and to
foster the EA to create stable subpopulations of individuals clustered around
each of the high peaks. In general the goal is to obtain a kind of “fitness-
proportionate” convergence, where the size of the subpopulation around each
peak is proportional to the height of that peak (i.e., to the quality of the
corresponding candidate solution).

For instance, one of the most popular niching methods is fitness sharing
(Goldberg & Richardson 1987; Deb & Goldberg 1989). In this method, the
fitness of an individual is reduced in proportion to the number of similar
individuals (neighbors), as measured by a given distance metric. In the context
of rule discovery, this means that if there are many individuals in the current
population representing the same rule or similar rules, the fitness of those
individuals will be considerably reduced, and so they will have a considerably
lower probability of being selected to produce new offspring. This effectively
penalizes individuals which are in crowded regions of the search space, forcing
the EA to discover a diverse set of rules.

Note that fitness sharing was designed as a generic niching method. By
contrast, there are several niching methods designed specifically for the dis-
covery of classification rules. An example is the “universal suffrage” selection
method (Giordana et al. 1994; Divina 2005) where – using a political metaphor
– individuals to be selected for reproduction are “elected” by the training data
instances. The basic idea is that each data instance “votes” for a rule that
covers it in a probabilistic fitness-based fashion. More precisely, let R be the
set of rules (individuals) that cover a given data instance i, i.e., the set of
rules whose antecedent is satisfied by data instance i. The better the fitness
of a given rule r in the set R, the larger the probability that rule r will re-
ceive the vote of data instance i. Note that in general only rules covering the
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same data instances are competing with each other. Therefore, this selection
method implements a form of niching, fostering the evolution of different rules
covering different parts of the data space. For more information about niching
methods in the context of discovering classification rules the reader is referred
to (Hekanaho 1996; Dhar et al. 2000).

Another kind of mechanism that can be used to discover a diverse set
of rules consists of using the previously-mentioned “sequential covering” ap-
proach – also known as “separate-and-conquer”. The basic idea is that the
EA discovers one rule at a time, so that in order to discover multiple rules
the EA has to be run multiple times. In the first run the EA is initialized
with the full training set and an empty set of rules. After each run of the EA,
the best rule evolved by the EA is added to the set of discovered rules and
the examples correctly covered by that rule are removed from the training
set, so that the next run of the EA will consider a smaller training set. The
process proceeds until all examples have been covered. Some examples of EAs
using the sequential covering approach can be found in (Liu & Kwok 2000;
Zhou et al. 2003; Carvalho & Freitas 2004). Note that the sequential covering
approach is not specific to EAs. It is used by several non-evolutionary rule
induction algorithms, and it is also discussed in data mining textbooks such
as (Witten & Frank 2005).

3.3 Fitness Evaluation

One interesting characteristic of EAs is that they naturally allow the evalua-
tion of a candidate solution, say a classification rule, as a whole, in a global
fashion. This is in contrast with some data mining paradigms, which evaluate
a partial solution. Consider, for instance, a conventional, greedy rule induc-
tion algorithm that incrementally builds a classification rule by adding one
condition at a time to the rule. When the algorithm is evaluating several can-
didate conditions, the rule is still incomplete, being just a partial solution,
so that the rule evaluation function is somewhat shortsighted (Freitas 2001,
2002a; Furnkranz & Flach 2003).

Another interesting characteristic of EAs is that they naturally allow the
evaluation of a candidate solution by simultaneously considering different
quality criteria. This is not so easily done in other data mining paradigms.
To see this, consider again a conventional, greedy rule induction algorithm
that adds one condition at a time to a candidate rule, and suppose one wants
to favor the discovery of rules which are both accurate and simple (short).
As mentioned earlier, when the algorithm is evaluating several candidate con-
ditions, the rule is still incomplete, and so its size is not known yet. Hence,
intuitively is better to choose the best candidate condition to be added to the
rule based on a measure of accuracy only. The simplicity (size) criterion is
better considered later, in a pruning procedure.

The fact that EAs evaluate a candidate solution as a whole and lend them-
selves naturally to simultaneously consider multiple criteria in the evaluation
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of the fitness of an individual gives the data miner a great flexibility in the
design of the fitness function. Hence, not surprisingly, many different fitness
functions have been proposed to evaluate classification rules. Classification
accuracy is by far the criterion most used in fitness functions for evolving clas-
sification rules. This criterion is already extensively discussed in many good
books or articles about classification, e.g. (Hand 1997; Caruana & Niculescu-
Mizil 2004), and so it will not be discussed here – with the exception of a brief
mention of overfitting issues, as follows. EAs can discover rules that overfit
the training set – i.e. rules that represent very specific patterns in the training
set that do not generalize well to the test set (which contains data instances
unseen during training). One approach to try to mitigate the overfitting prob-
lem is to vary the training set at every generation, i.e., at each generation a
subset of training instances is randomly selected, from the entire set of train-
ing instances, to be used as the (sub-)training or validation set from which
the individuals’ fitness values are computed (Bacardit et al. 2004; Pappa &
Freitas 2006; Sharpe & Glover 1999; Bhattacharyya 1998). This approach in-
troduces a selective pressure for evolving rules with a greater generalization
power and tends to reduce the risk of overfitting, by comparison with the
conventional approach of evolving rules for a training set which remains fixed
throughout evolution. In passing, if the (sub)-training or validation set used
for fitness computation is significantly smaller than the original training set,
this approach also has the benefit of significantly reducing the processing time
of the EA.

Hereafter this section will focus on two other rule-quality criteria (not
based on accuracy) that represent different desirables properties of discovered
rules in the context of data mining, namely: comprehensibility (Fayyad et al.
1996), or simplicity; and surprisingness, or unexpectedness (Liu et al. 1997;
Romao et al. 2004; Freitas 2006).

The former means that ideally the discovered rule(s) should be compre-
hensible to the user. Intuitively, a measure of comprehensibility should have
a strongly subjective, user-dependent component. However, in the literature
this subjective component is typically ignored (Pazzani 2000; Freitas 2006),
and comprehensibility is usually evaluated by a measure of the syntactic sim-
plicity of the classifier, say the size of the rule set. The latter can be measured
in an objective manner, for instance, by simply counting the total number of
rule conditions in the rule set represented by an individual.

However, there is a natural way of incorporating a subjective measure of
comprehensibility into the fitness function of an EA, namely by using an in-
teractive fitness function. The basic idea of an interactive fitness function is
that the user directly evaluates the fitness of individuals during the execu-
tion of the EA (Banzhaf 2000). The evaluation of the user is then used as
the fitness measure for the purpose of selecting the best individuals of the
current population, so that the EA evolves solutions that tend to maximize
the subjective preference of the user.
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An interactive EA for attribute selection is discussed e.g. in (Terano &
Ishino 1998, 2002). In that work an individual represents a selected subset
of attributes, which is then used by a classification algorithm to generate
a set of rules. Then the user is shown the rules and selects good rules and
rule sets according to her/his subjective preferences. Next the individuals
having attributes that occur in the selected rules or rule sets are selected as
parents to produce new offspring. The main advantage of interactive fitness
functions is that intuitively they tend to favor the discovery of rules that are
comprehensible and considered “good” by the user. The main disadvantage
of this approach is that it makes the system considerably slower. To mitigate
this problem one often has to use a small population size and a small number
of generations.

Another kind of criterion that has been used to evaluate the quality of
classification rules in the fitness function of EAs is the surprisingness of the
discovered rules. First of all, it should be noted that accuracy and compre-
hensibility do not imply surprisingness. To show this point, consider the fol-
lowing classical hypothetical rule, which could be discovered from a hospital’s
database: IF (patient is pregnant) THEN (gender is female). This rule is very
accurate and very comprehensible, but it is useless, because it represents an
obvious pattern.

One approach to discover surprising rules consists of asking the user to
specify a set of general impressions, specifying his/her previous knowledge
and/or believes about the application domain (Liu et al. 1997). Then the EA
can try to find rules that are surprising in the sense of contradicting some
general impression specified by the user. Note that a rule should be reported
to the user only if it is found to be both surprising and at least reasonably
accurate (consistent with the training data). After all, it would be relatively
easy to find rules which are surprising and inaccurate, but these rules would
not be very useful to the user.

An EA for rule discovery taking this into account is described in (Romao et
al. 2002, 2004). This EA uses a fitness function measuring both rule accuracy
and rule surprisingness (based on general impressions). The two measures are
multiplied to give the fitness value of an individual (a candidate prediction
rule).

4 Evolutionary Algorithms for Clustering

There are several kinds of clustering algorithm, and two of the most popular
kinds are iterative-partitioning and hierarchical clustering algorithms (Alden-
derfer & Blashfield 1984; Krzanowski & Marriot 1995). In this section we focus
mainly on EAs that can be categorized as iterative-partitioning algorithms,
since most EAs for clustering seem to belong to this category.
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4.1 Individual Representation for Clustering

A crucial issue in the design of an EA for clustering is to decide what kind
of individual representation will be used to specify the clusters. There are
at least three major kinds of individual representation for clustering (Freitas
2002a), as follows.

Cluster description-based representation – In this case each indi-
vidual explicitly represents the parameters necessary to precisely specify each
cluster. The exact nature of these parameters depends on the shape of clus-
ters to be produced, which could be, e.g., boxes, spheres, ellipsoids, etc. In any
case, each individual contains K sets of parameters, where K is the number
of clusters, and each set of parameters determines the position, shape and
size of its corresponding cluster. This kind of representation is illustrated,
at a high level of abstraction, in Figure 2, for the case where an individual
represents clusters of spherical shape. In this case each cluster is specified by
its center coordinates and its radius. The cluster description-based represen-
tation is used, e.g., in (Srikanth et al. 1995), where an individual represents
ellipsoid-based cluster descriptions; and in (Ghozeil and Fogel 1996; Sarafis
2005), where an individual represents hyperbox-shaped cluster descriptions.
In (Sarafis 2005), for instance, the individuals represent rules containing con-
ditions based on discrete numerical intervals, each interval being associated
with a different attribute. Each clustering rule represents a region of the data
space with homogeneous data distribution, and the EA was designed to be
particularly effective when handling high-dimensional numerical datasets.

specification of cluster 1                               specification of cluster K

    center 1       radius 1                                        center K        radius K

 coordinates                           .   .   .   .   .           coordinates 

Fig. 2. Structure of cluster description-based individual representation

Centroid/medoid-based representation – In this case each individ-
ual represents the coordinates of each cluster’s centroid or medoid. A centroid
is simply a point in the data space whose coordinates specify the centre of
the cluster. Note that there may not be any data instance with the same
coordinates as the centroid. By contrast, a medoid is the most “central” rep-
resentative of the cluster, i.e., it is the data instance which is nearest to the
cluster’s centroid. The use of medoids tends to be more robust against out-
liers than the use of centroids (Krzanowski & Marriot 1995) (p. 83). This
kind of representation is used, e.g., in (Hall et al. 1999; Estivill-Castro and
Murray 1997) and other EAs for clustering reviewed in (Sarafis 2005). This
representation is illustrated, at a high level of abstraction, in Figure 3. Each
data instance is assigned to the cluster represented by the centroid or medoid
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that is nearest to that instance, according to a given distance measure. There-
fore, the position of the centroids/medoids and the procedure used to assign
instances to clusters implicitly determine the precise shape and size of the
clusters.

             cluster 1                                                         cluster K 

  center 1 coordinates         .   .   .   .   .                center K  coordinates      

Fig. 3. Structure of centroid/medoid-based individual representation

Instance-based representation – In this case each individual consists
of a string of n elements (genes), where n is the number of data instances.
Each gene i, i=1,. . . ,n, represents the index (id) of the cluster to which the
i-th data instance is assigned. Hence, each gene i can take one out of Kvalues,
where K is the number of clusters. For instance, suppose that n = 10 and
K= 3. The individual <2 1 2 3 3 2 1 1 2 3> corresponds to a candidate
clustering where the second, seventh and eighth instances are assigned to
cluster 1, the first, third, sixth and ninth instances are assigned to cluster 2
and the other instances are assigned to cluster 3. This kind of representation
is used, for instance, in (Krishma and Murty 1999; Handl & Knowles 2004).
A variation of this representation is used in (Korkmaz et al. 2006), where
the value of a gene represents not the cluster id of a gene’s associated data
instance, but rather a link from the gene’s instance to another instance which
is considered to be in the same cluster. Hence, in this approach, two instances
belong to the same cluster if there is a sequence of links from one of them
to the other. This variation is more complex than the conventional instance-
based representation, and it has been proposed together with repair operators
that rectify the contents of an individual when it violates some pre-defined
constraints.

Comparing different individual representations for clustering –
In both the centroid/medoid-based representation and the instance-based rep-
resentation, each instance is assigned to exactly one cluster. Hence, the set of
clusters determine a partition of the data space into regions that are mutually
exclusive and exhaustive. This is not the case in the cluster description-based
representation. In the latter, the cluster descriptions may have some overlap-
ping – so that an instance may be located within two or more clusters – and
the cluster descriptions may not be exhaustive – so that some instance(s) may
not be within any cluster.

Unlike the other two representations, the instance-based representation
has the disadvantage that it does not scale very well for large data sets, since
each individual’s length is directly proportional to the number of instances
being clustered. This representation also involves a considerable degree of
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redundancy, which may lead to problems in the application of conventional
genetic operators (Falkenauer 1998). For instance, let n = 4 and K = 2, and
consider the individuals <1 2 1 2> and <2 1 2 1>. These two individuals
have different gene values in all the four genes, but they represent the same
candidate clustering solution, i.e., assigning the first and third instances to
one cluster and assigning the second and fourth instances to another cluster.
As a result, a crossover between these two parent individuals can produce
two children individuals representing solutions that are very different from
the solutions represented by the parents, which is not normally the case in
conventional crossover operators used by genetic algorithms. Some methods
have been proposed to try to mitigate some redundancy-related problems as-
sociated with this kind of representation. For example, (Handl & Knowles
2004) proposed a mutation operator that is reported to work well with this
representation, based on the idea that, when a gene has its value mutated
– meaning that the gene’s corresponding data instance is moved to another
cluster – the system selects a number of “nearest neighbors” of that instance
and moves all those nearest neighbors to the same cluster to which the mu-
tated instance was moved. Hence, this approach effectively incorporates some
knowledge of the clustering task to be solved in the mutation operator.

4.2 Fitness Evaluation for Clustering

In an EA for clustering, the fitness of an individual is a measure of the quality
of the clustering represented by the individual. A large number of different
measures have been proposed in the literature, but the basic ideas usually
involve the following principles. First, the smaller the intra-cluster (within-
cluster) distance, the better the fitness. The intra-cluster distance can be
defined as the summation of the distance between each data instance and
the centroid of its corresponding cluster – a summation computed over all
instances of all the clusters. Second, the larger the inter-cluster (between-
cluster) distance, the better the fitness. Hence, an algorithm can try to find
optimal values for these two criteria, for a given fixed number of clusters.
These and other clustering-quality criteria are extensively discussed in the
clustering literature – see e.g. (Aldenderfer and Blashfield 1984; Backer 1995;
Tan et al. 2006). A discussion of this topic in the context of EAs can be found
in (Kim et al. 2000; Handl & Knowles 2004; Korkmaz et al. 2006; Krishma
and Murty 1999; Hall et al. 1999).

In any case, it is important to note that, if the algorithm is allowed to
vary the number of discovered clusters without any restriction, it would be
possible to minimize intra-cluster distance and maximize inter-cluster distance
in a trivial way, by assigning each example to its own singleton cluster. This
would be clearly undesirable. To avoid this while still allowing the algorithm
to vary the number of clusters, a common response is to incorporate in the
fitness function a preference for a smaller number of clusters. It might also
be desirable or necessary to incorporate in the fitness function a penalty term
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whose value is proportional to the number of empty clusters (i.e. clusters to
which no data instance was assigned) (Hall et al. 1999).

5 Evolutionary Algorithms for Data Preprocessing

5.1 Genetic Algorithms for Attribute Selection

In the attribute selection task the goal is to select, out of the original set of
attributes, a subset of attributes that are relevant for the target data mining
task (Liu & Motoda 1998; Guyon and Elisseeff 2003). This Subsection assumes
the target data mining task is classification – which is the most investigated
task in the evolutionary attribute selection literature – unless mentioned oth-
erwise.

The standard individual representation for attribute selection consists sim-
ply of a string of N bits, where N is the number of original attributes and
the i-th bit, i=1,. . . ,N , can take the value 1 or 0, indicating whether or not,
respectively, the i-th attribute is selected. For instance, in a 10-attribute data
set, the individual “1 0 1 0 1 0 0 0 0 1” represents a candidate solution where
only the 1st, 3rd, 5th and 10th attributes are selected. This individual repre-
sentation is simple, and traditional crossover and mutation operators can be
easily applied. However, it has the disadvantage that it does not scale very
well with the number of attributes. In applications with many thousands of
attributes (such as text mining and some bioinformatics problems) an indi-
vidual would have many thousands of genes, which would tend to lead to a
slow execution of the GA.

An alternative individual representation, proposed by (Cherkauer & Shav-
lik 1996), consists of M genes (where M is a user-specified parameter), where
each gene can contain either the index (id) of an attribute or a flag – say
0 – denoting no attribute. An attribute is considered selected if and only if
it occurs in at least one of the M genes of the individual. For instance, the
individual “3 0 8 3 0”, where M = 5, represents a candidate solution where
only the 3rd and the 8th attributes are selected. The fact that the 3rd at-
tribute occurs twice in the previous individual is irrelevant for the purpose
of decoding the individual into a selected attribute subset. One advantage of
this representation is that it scales up better with respect to a large number
of original attributes, since the value of M can be much smaller than the
number of original attributes. One disadvantage is that it introduces a new
parameter, M , which was not necessary in the case of the standard individual
representation.

With respect to the fitness function, GAs for attribute selection can be
roughly divided into two approaches – just like other kinds of algorithms for
attribute selection – namely the wrapper approach and the filter approach. In
essence, in the wrapper approach the GA uses the classification algorithm to
compute the fitness of individuals, whereas in the filter approach the GA does
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not use the classification algorithm. The vast majority of GAs for attribute
selection has followed the wrapper approach, and many of those GAs have used
a fitness function involving two or more criteria to evaluate the quality of the
classifier built from the selected attribute subset. This can be shown in Table
1, adapted from (Freitas 2002a), which lists the evaluation criteria used in
the fitness function of a number of GAs following the wrapper approach. The
columns of that table have the following meaning: Acc = accuracy; Sens, Spec
= sensitivity, specificity; |Sel Attr| = number of selected attributes; |rule set|
= number of discovered rules; Info. Cont. = information content of selected
attributes; Attr cost = attribute costs; Subj eval = subjective evaluation of
the user; |Sel ins| = number of selected instances.

Table 1. Diversity of criteria used in fitness function for attribute selection

Reference Acc Sens,
Spec

|Sel
Attr|

|rule
set|

Info
cont

Attr
cost

Subj
eval

|Sel
ins|

(Bala et al. 1995) yes yes

(Bala et al. 1996) yes yes yes

(Chen et al. 1999) yes yes

(Cherkauer &
Shavlik 1996)

yes yes yes

(Emmanouilidis et
al. 2000)

yes yes

(Emmanouilidis et
al. 2002)

yes yes

(Guerra-Salcedo, Whitley
1998, 1999)

yes

(Ishibuchi &
Nakashima 2000)

yes yes yes

(Llora & Garrell 2003) yes

(Miller et al. 2003) yes

(Moser & Murty
2000)

yes yes

(Ni & Liu 2004) yes

(Pappa et al. 2002) yes yes

(Rozsypal &
Kubat 2003)

yes yes yes

(Terano & Ishino
1998)

yes yes yes

(Vafaie & DeJong
1998)

yes

(Yang & Honavar
1997, 1998)

yes yes

(Zhang et al 2003) yes
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A precise definition of the terms used in the titles of the columns of Table
1 can be found in the corresponding references quoted in that table. The table
refers to GAs that perform attribute selection for the classification task. GAs
that perform attribute selection for the clustering task can be found, e.g., in
(Kim et al. 2000; Jourdan 2003). In addition, in general Table 1 refers to GAs
whose individuals directly represent candidate attribute subsets, but GAs can
be used for attribute selection in other ways. For instance, in (Jong et al. 2004)
a GA is used for attribute ranking. Once the ranking has been done, one can
select a certain number of top-ranked attributes, where that number can be
specified by the user or computed in a more automated way.

Empirical comparisons between GAs and other kinds of attribute selec-
tion methods can be found, for instance, in (Sharpe and Glover 1999; Kudo
& Skalansky 2000). In general these empirical comparisons show that GAs,
with their associated global search in the solution space, usually (though not
always) obtain better results than local search-based attribute selection meth-
ods. In particular, (Kudo & Skalansky 2000) compared a GA with 14 non-
evolutionary attribute selection methods (some of them variants of each other)
across 8 different data sets. The authors concluded that the advantages of the
global search associated with GAs over the local search associated with other
algorithms is particularly important in data sets with a “large” number of
attributes, where “large” was considered over 50 attributes in the context of
their data sets.

5.2 Genetic Programming for Attribute Construction

In the attribute construction task the general goal is to construct new at-
tributes out of the original attributes, so that the target data mining task
becomes easier with the new attributes. This Subsection assumes the target
data mining task is classification – which is the most investigated task in the
evolutionary attribute construction literature.

Note that in general the problem of attribute construction is considerably
more difficult than the problem of attribute selection. In the latter the problem
consists just of deciding whether or not to select each attribute. By contrast,
in attribute construction there is a potentially much larger search space, since
there is a potentially large number of operations that can be applied to the
original attributes in order to construct new attributes. Intuitively, the kind
of EA that lends itself most naturally to attribute construction is GP. The
reason is that, as mentioned earlier, GP was specifically designed to solve
problems where candidate solutions are represented by both attributes and
functions (operations) applied to those attributes. In particular, the explicit
specification of both a terminal set and a function set is usually missing in
other kinds of EAs.
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Data Preprocessing vs. Interleaving Approach

In the data preprocessing approach, the attribute construction algorithm eval-
uates a constructed attribute without using the classification algorithm to be
applied later. Examples of this approach are the GP algorithms for attribute
construction proposed by (Otero et al. 2003; Hu 1998), whose attribute eval-
uation function (the fitness function) is the information gain ratio – a mea-
sure discussed in detail in (Quinlan 1993). In addition, (Muharram & Smith
2004) did experiments comparing the effectiveness of two different attribute-
evaluation criteria in GP for attribute construction – viz. information gain
ratio and gini index – and obtained results indicating that, overall, there was
no significant difference in the results associated with those two criteria.

By contrast, in the interleaving approach the attribute construction al-
gorithm evaluates the constructed attributes based on the performance of
the classification algorithm with those attributes. Examples of this approach
are the GP algorithms for attribute construction proposed by (Krawiec 2002;
Smith and Bull 2003; Firpi et al. 2005), where the fitness functions are based
on the accuracy of the classifier built with the constructed attributes.

Single-Attribute-per-Individual vs.
Multiple-Attributes-per-Individual Representation

In several GPs for attribute construction, each individual represents a sin-
gle constructed attribute. This approach is used for instance by CPGI (Hu
1998) and the GP algorithm proposed by (Otero et al. 2003). By default
this approach returns to the user a single constructed attribute – the best
evolved individual. However it can be extended to return to the user a set
of constructed attributes, say returning a set of the best evolved individuals
of a GP run or by running the GP multiple times and returning only the
best evolved individual of each run. The main advantage of this approach is
simplicity, but it has the disadvantage of ignoring interactions between the
constructed attributes.

An alternative approach consists of associating with an individual a set of
constructed attributes. The main advantage of this approach is that it takes
into account interaction between the constructed attributes. In other words,
it tries to construct the best set of attributes, rather than the set of best at-
tributes. The main disadvantages are that the individuals’ genomes become
more complex and that it introduces the need for additional parameters such
as the number of constructed attributes that should be encoded in one in-
dividual (a parameter that is usually specified in an ad-hoc fashion). In any
case, the equivalent of this latter parameter would also have to be specified in
the above-mentioned “extended version” of the single-attribute-per-individual
approach when one wants the GP algorithm to return multiple constructed
attributes.
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Examples of this multiple-attributes-per-individual approach are the GP
algorithms proposed by (Krawiec 2002; Smith & Bull 2003; Firpi et al. 2005).
Here we briefly discuss the former two, as examples of this approach. In (Kraw-
iec 2002) each individual encodes a fixed number K of constructed attributes,
each of them represented by a tree, so that an individual consists of K trees –
where K is a user-specified parameter. The algorithm also includes a method
to split the constructed attributes encoded in an individual into two sub-
sets, namely the subset of “evolving” attributes and the subset of “hidden”
attributes. The basic idea is that high-quality constructed attributes are con-
sidered hidden (or “protected”), so that they cannot be manipulated by the
genetic operators such as crossover and mutation. The choice of attributes to
be hidden is based on an attribute quality measure. This measure evaluates
the quality of each constructed attribute separately, and the best attributes
of the individual are considered hidden.

Another example of the multiple-attributes-per-individual approach is the
GAP (Genetic Algorithm and Programming) system proposed by (Smith &
Bull 2003, 2004). GAP performs both attribute construction and attribute
selection. The first stage consists of attribute construction, which is performed
by a GP algorithm. As a result of this first stage, the system constructs an
extended genotype containing both the constructed attributes represented in
the best evolved individual of the GP run and original attributes that have
not been used in those constructed attributes. This extended genotype is used
as the basic representation for a GA that performs attribute selection, so that
the GA searches for the best subset of attributes out of all (both constructed
and original) attributes.

Satisfying the Closure Property

GP algorithms for attribute construction have used several different ap-
proaches to satisfy the closure property (briefly mentioned in Section 2). This
is an important issue, because the chosen approach can have a significant im-
pact on the types (e.g., continuous or nominal) of original attributes processed
by the algorithm and on the types of attributes constructed by the algorithm.
Let us see some examples.

A simple solution for the closure problem is used in the GAP algorithm
(Smith and Bull 2003). Its terminal set contains only the continuous (real-
valued) attributes of the data being mined. In addition, its function set con-
sists only of arithmetic operators (+, –, *, %,) – where % denotes protected
division, i.e. a division operator that handles zero denominator inputs by re-
turning something different from an error (Banzhaf et al. 1998; Koza 1992) –
so that the closure property is immediately satisfied. (Firpi et al. 2005) also
uses the approach of having a function set consisting only of mathematical
operators, but it uses a considerably larger set of mathematical operators than
the set used by (Smith and Bull 2003).
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The GP algorithm proposed by (Krawiec 2002) uses a terminal set in-
cluding all original attributes (both continuous and nominal ones), and a
function set consisting of arithmetical operators (+, –, *, %, log), comparison
operators (<, >, =), an “IF (conditional expression)”, and an “approximate
equality operator” which compares its two arguments with tolerance given
by the third argument. The algorithm did not enforce data type constraints,
which means that expressions encoding the constructed attributes make no
distinction between, for instance, continuous and nominal attributes. Values
of nominal attributes, such as male and female, are treated as numbers. This
helps to solve the closure problem, but at a high price: constructed attributes
can contain expressions that make no sense from a semantical point of view.
For instance, the algorithm could produce an expression such as “Gender +
Age”, because the value of the nominal attribute Gender would be interpreted
as a number.

The GP proposed by (Otero et al. 2003) uses a terminal set including only
the continuous attributes of the data being mined. Its function set consists of
arithmetic operators (+, –, *, %,) and comparison operators (≥, ≤). In order
to satisfy the closure property, the algorithm enforces the data type restriction
that the comparison operators can be used only at the root of the GP tree, i.e.,
they cannot be used as child nodes of other nodes in the tree. The reason is that
comparison operators return a Boolean value, which cannot be processed by
any operator in the function set (all operators accept only continuous values as
input). Note that, although the algorithm can construct attributes only out of
the continuous original attributes, the constructed attributes themselves can
be either Boolean or continuous. A constructed attribute will be Boolean if
its corresponding tree in the GP individual has a comparison operator at the
root node; it will be continuous otherwise.

In order to satisfy the closure property, GPCI (Hu 1998) simply trans-
forms all the original attributes into Boolean attributes and uses a function
set containing only Boolean functions. For instance, if an attribute A is con-
tinuous (real-valued), such as the attribute Salary, it is transformed into two
Boolean attributes, such as “Is Salary > t?” and “Is Salary ≤ t?”, where t is
a threshold automatically chosen by the algorithm in order to maximize the
ability of the two new attributes in discriminating between instances of dif-
ferent classes. The two new attributes are named “positive-A” and “negative-
A”, respectively. Once every original attribute has been transformed into two
Boolean attributes, a GP algorithm is applied to the Boolean attributes. In
this GP, the terminal set consists of all the pairs of attributes “positive-A” and
“negative-A” for each original attribute A, whereas the function set consists of
the Boolean operators {AND, OR}. Since all terminal symbols are Boolean,
and all operators accept Boolean values as input and produce Boolean value
as output, the closure property is satisfied.

Table 2 summarizes the main characteristics of the five GP algorithms for
attribute construction discussed in this Section.
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Table 2. Summary of GP Algorithms for Attribute Construction

Reference Approach Individual rep-
resentation

Datatype of
input attrib

Datatype of
output attrib

(Hu 1998) Data prepro-
cessing

Single
attribute

Any (attributes
are
booleanised)

Boolean

(Krawiec 2002) Interleaving Multiple
attributes

Any (nominal
attrib. values
are interpreted
as numbers)

Continuous

(Otero et
al. 2003)

Data prepro-
cessing

Single
attribute

Continuous Continuous or
Boolean

(Smith &
Bull 2003,
2004)

Interleaving Multiple
attributes

Continuous Continuous

(Firpi et al.
2005)

Interleaving Multiple
attributes

Continuous Continuous

6 Multi-Objective Optimization with Evolutionary
Algorithms

There are many real-world optimization problems that are naturally expressed
as the simultaneous optimization of two or more conflicting objectives (Coello
Coello 2002; Deb 2001; Coello Coello & Lamont 2004). A generic example is
to maximize the quality of a product and minimize its manufacturing cost in
a factory. In the context of data mining, a typical example is, in the data pre-
processing task of attribute selection, to minimize the error rate of a classifier
trained with the selected attributes and to minimize the number of selected
attributes.

The conventional approach to cope with such multi-objective optimiza-
tion problems using evolutionary algorithms is to convert the problem into a
single-optimization problem. This is typically done by using a weighted for-
mula in the fitness function, where each objective has an associated weight
reflecting its relative importance. For instance, in the above example of two-
objective attribute selection, the fitness function could be defined as, say: “2/3
classification error + 1/3 Number of selected attributes”.

However, this conventional approach has several problems. First, it mixes
non-commensurable objectives (classification error and number of selected
attributes in the previous example) into the same formula. This has at least the
disadvantage that the value returned by the fitness function is not meaningful
to the user. Second, note that different weights will lead to different selected
attributes, since different weights represent different trade-offs between the
two conflicting objectives. Unfortunately, the weights are usually defined in
an ad-hoc fashion. Hence, when the EA returns the best attribute subset to
the user, the user is presented with a solution that represents just one possible
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trade-off between the objectives. The user misses the opportunity to analyze
different trade-offs.

Of course we could address this problem by running the EA multiple times,
with different weights for the objectives in each run, and return the multiple
solutions to the user. However, this would be very inefficient, and we would
still have the problems of deciding which weights should be used in each run,
how many runs we should perform (and so how many solutions should be
returned to the user), etc.

A more principled approach consists of letting an EA answer these ques-
tions automatically, by performing a global search in the solution space and
discovering as many good solutions, with as much diversity among them, as
possible. This can be done by using a multi-objective EA, a kind of EA which
has become quite popular in the EA community in the last few years (Deb
2001; Coello Coello 2002; Coello Coello & Lamont 2004). The basic idea in-
volves the concept of Pareto dominance. A solution s1 is said to dominate, in
the Pareto sense, another solution s2 if and only if solution s1 is strictly better
than s2 in at least one of the objectives and solution s1 is not worse than s2
in any of the objectives. The concept of Pareto dominance is illustrated in
Figure 4. This figure involves two objectives to be minimized, namely clas-
sification error and number of selected attributes (No attrib). In that figure,
solution D is dominated by solution B (which has both a smaller error and a
smaller number of selected attributes than D), and solution E is dominated by
solution C. Hence, solutions A, B and C are non-dominated solutions. They
constitute the best “Pareto front” found by the algorithm. All these three
solutions would be returned to the user.

The goal of a multi-objective EA is to find a Pareto front which is as
close as possible to the true (unknown) Pareto front. This involves not only
the minimization of the two objectives, but also finding a diverse set of non-
dominated solutions, spread along the Pareto front. This allows the EA to
return to the user a diverse set of good trade-offs between the conflicting
objectives. With this rich information, the user can hopefully make a more
intelligent decision, choosing the best solution to be used in practice.

At this point the reader might argue that this approach has the disad-
vantage that the final choice of the solution to be used depends on the user,
characterizing a subjective approach. The response to this is that the knowl-
edge discovery process is interactive (Brachman & Anand 1996; Fayyad et al.
1996), and the participation of the user in this process is important to obtain
useful results. The questions are when and how the user should participate
(Deb 2001; Freitas 2004). In the above-described multi-objective approach,
based on Pareto dominance, the user participates by choosing the best solu-
tion out of all the non-dominated solutions. This choice is made a posteriori,
i.e., after the algorithm has run and has returned a rich source of informa-
tion about the solution space: the discovered Pareto front. In the conventional
approach – using an EA with a weighted formula and returning a single so-
lution to the user – the user has to define the weights a priori, i.e., before



A Review of Evolutionary Algorithms for Data Mining 101

No_attrib 

A

      D 

B

                           E 

                 C           

                                            error 

Fig. 4. Example of Pareto dominance

running the algorithm, when the solution space was not explored yet. The
multi-objective approach seems to put the user in the loop in a better mo-
ment, when valuable information about the solution space is available. The
multi-objective approach also avoids the problems of ad-hoc choice of weights,
mixing non-commensurable objectives into the same formula, etc.

Table 3 lists the main characteristics of multi-objective EAs for data min-
ing. Most systems included in Table 3 consider only two objectives. The excep-
tions are the works of (Kim et al. 2000) and (Atkinson-Abutridy et al. 2003),
considering 4 and 8 objectives, respectively. Out of the EAs considering only
two objectives, the most popular choice of objectives – particularly for EAs
addressing the classification task – has been some measure of classification ac-
curacy (or its dual, error) and a measure of the size of the classification model
(number of leaf nodes in a decision tree or total number of rule conditions –
attribute-value pairs – in all rules). Note that the size of a model is typically
used as a proxy for the concept of “simplicity” of that model, even though
arguably this proxy leaves a lot to be desired as a measure of a model’s sim-
plicity (Pazzani 2000; Freitas 2006). (In practice, however, it seems no better
proxy for a model’s simplicity is known.) Note also that, when the task being
solved is attribute selection for classification, the objective related to size can
be the number of selected attributes, as in (Emmanouilidis et al. 2000), or the
size of the classification model built from the set of selected attributes, as in
(Pappa et al. 2002, 2004). Finally, when solving the clustering task a popular
choice of objective has been some measure of intra-cluster distance, related to
the total distance between each data instance and the centroid of its cluster,
computed for all data instances in all the clusters. The number of clusters is
also used as an objective in two out of the three EAs for clustering included
in Table 3. A further discussion of multi-objective optimization in the context
of data mining in general (not focusing on EAs) is presented in (Freitas 2004;
Jin 2006).
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Table 3. Main characteristics of multi-objective EAs for data mining

Reference Data mining task Objectives being
Optimized

(Emmanouilidis et al.
2000)

attribute selection
for classification

accuracy, number of
selected attributes

(Pappa et al 2002, 2004) attribute selection
for classification

accuracy, number of
leafs in decision tree

(Ishibuchi & Namba
2004)

selection of
classification rules

error, number of rule
conditions (in all rules)

(de la Iglesia 2007) selection of
classification rules

confidence, coverage

(Kim et al. 2004) classification error, number of leafs in
decision tree

(Atkinson-Abutridy et
al. 2003)

text mining 8 criteria for evaluating ex-
planatory knowledge across
text documents

(Kim et al. 2000) attribute selection
for clustering

Cluster cohesiveness,
separation between
clusters, number of
clusters, number of
selected attributes

(Handl & Knowles
2004)

clustering Intra-cluster deviation
and connectivity

(Korkmaz et al. 2006) clustering Intra-cluster variance
and number of clusters

7 Conclusions

This chapter started with the remark that EAs are a very generic search
paradigm. Indeed, the chapter discussed how EAs can be used to solve several
different data mining tasks, namely the discovery of classification rules, clus-
tering, attribute selection and attribute construction. The discussion focused
mainly on the issues of individual representation and fitness function for each
of these tasks, since these are the two EA-design issues that are more depen-
dent of the task being solved. In any case, recall that the design of an EA
also involves the issue of genetic operators. Ideally these three components –
individual representation, fitness function and genetic operators – should be
designed in a synergistic fashion and tailored to the data mining task being
solved.

There are at least two motivations for using EAs in data mining, broadly
speaking. First, as mentioned earlier, EAs are robust, adaptive search methods
that perform a global search in the solution space. This is in contrast to other
data mining paradigms that typically perform a greedy search. In the context
of data mining, the global search of EAs is associated with a better ability
to cope with attribute interactions. For instance, most “conventional”, non-
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evolutionary rule induction algorithms are greedy, and therefore quite sensitive
to the problem of attribute interaction. EAs can use the same knowledge
representation (IF-THEN rules) as conventional rule induction algorithms,
but their global search tends to cope better with attribute interaction and
to discover interesting relationships that would be missed by a greedy search
(Dhar et al. 2000; Papagelis & Kalles 2001; Freitas 2002a).

Second, EAs are a very flexible algorithmic paradigm. In particular, bor-
rowing some terminology from programming languages, EAs have a certain
“declarative” – rather than “procedural” – style. The quality of an individual
(candidate solution) is evaluated, by a fitness function, in a way independent
of how that solution was constructed. This gives the data miner a considerable
freedom in the design of the individual representation, the fitness function and
the genetic operators. This flexibility can be used to incorporate background
knowledge into the EA and/or to hybridize EAs with local search methods
that are specifically tailored to the data mining task being solved.

Note that declarativeness is a matter of degree, rather than a binary con-
cept. In practice EAs are not 100% declarative, because as one changes the
fitness function one might consider changing the individual representation and
the genetic operators accordingly, in order to achieve the above-mentioned
synergistic relationship between these three components of the EA. However,
EAs still have a degree of declarativeness considerably higher than other data
mining paradigms. For instance, as discussed in Subsection 3.3, the fact that
EAs evaluate a complete (rather than partial) rule allows the fitness function
to consider several different rule-quality criteria, such as comprehensibility,
surprisingness and subjective interestingness to the user. In EAs these quality
criteria can be directly considered during the search for rules. By contrast, in
conventional, greedy rule induction algorithms – where the evaluation func-
tion typically evaluates a partial rule – those quality criteria would typically
have to be considered in a post-processing phase of the knowledge discovery
process, when it might be too late. After all, many rule set post-processing
methods just try to select the most interesting rules out of all discovered rules,
so that interesting rules that were missed by the rule induction method will
remain missing after applying the post-processing method.

Like any other data mining paradigm, EAs also have some disadvantages.
One of them is that conventional genetic operators – such as conventional
crossover and mutation operators – are ”blind” search operators in the sense
that they modify individuals (candidate solutions) in a way independent from
the individual’s fitness (quality). This characteristic of conventional genetic
operators increases the generality of EAs, but intuitively tends to reduce their
effectiveness in solving a specific kind of problem. Hence, in general it is im-
portant to modify or extend EAs to use task specific-operators.

Another disadvantage of EAs is that they are computationally slow, by
comparison with greedy search methods. The importance of this drawback
depends on many factors, such as the kind of task being performed, the size
of the data being mined, the requirements of the user, etc. Note that in some
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cases a relatively long processing time might be acceptable. In particular,
several data mining tasks, such as classification, are typically an off-line task,
and the time spent solving that task is usually less than 20% of the total time
of the knowledge discovery process. In scenarios like this, even a processing
time of hours or days might be acceptable to the user, at least in the sense
that it is not the bottleneck of the knowledge discovery process.

In any case, if necessary the processing time of an EA can be significantly
reduced by using special techniques. One possibility is to use parallel pro-
cessing techniques, since EAs can be easily parallelized in an effective way
(Cantu-Paz 2000; Freitas & Lavington 1998; Freitas 2002a). Another possibil-
ity is to compute the fitness of individuals by using only a subset of training
instances – where that subset can be chosen either at random or using adap-
tive instance-selection techniques (Bhattacharyya 1998; Gathercole & Ross
1997; Sharpe & Glover 1999; Freitas 2002a).

An important research direction is to better exploit the power of Genetic
Programming (GP) in data mining. Several GP algorithms for attribute con-
struction were discussed in Subsection 5.2, and there are also several GP
algorithms for discovering classification rules (Freitas 2002a; Wong & Leung
2000) or for classification in general (Muni et al. 2004; Song et al. 2005; Folino
et al. 2006). However, the power of GP is still underexplored. Recall that the
GP paradigm was designed to automatically discover computer programs, or
algorithms, which should be generic “recipes” for solving a given kind of prob-
lem, and not to find the solution to one particular instance of that problem
(like in most EAs). For instance, classification is a kind of problem, and most
classification-rule induction algorithms are generic enough to be applied to
different data sets (each data set can be considered just an instance of the
kind of problem defined by the classification task). However, these generic rule
induction algorithms have been manually designed by a human being. Almost
all current GP algorithms for classification-rule induction are competing with
conventional (greedy, non-evolutionary) rule induction algorithms, in the sense
that both GP and conventional rule induction algorithms are discovering clas-
sification rules for a single data set at a time. Hence, the output of a GP for
classification-rule induction is a set of rules for a given data set, which can be
called a “program” or “algorithm” only in a very loose sense of these words.

A much more ambitious goal, which is more compatible with the general
goal of GP, is to use GP to automatically discover a rule induction algorithm.
That is, to perform algorithm induction, rather than rule induction. The first
version of a GP algorithm addressing this ambitious task has been proposed
in (Pappa & Freitas 2006), and an extended version of that work is described
in detail in another chapter of this book (Pappa & Freitas 2007).
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