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Summary. Many classification studies often times conclude with a summary table
which presents performance results of applying various data mining approaches on
different datasets. No single method outperforms all methods all the time. Further-
more, the performance of a classification method in terms of its false-positive and
false-negative rates may be totally unpredictable. Attempts to minimize any of the
previous two rates, may lead to an increase on the other rate. If the model allows for
new data to be deemed as unclassifiable when there is not adequate information to
classify them, then it is possible for the previous two error rates to be very low but,
at the same time, the rate of having unclassifiable new examples to be very high.
The root to the above critical problem is the overfitting and overgeneralization be-
haviors of a given classification approach when it is processing a particular dataset.
Although the above situation is of fundamental importance to data mining, it has
not been studied from a comprehensive point of view. Thus, this chapter analyzes
the above issues in depth. It also proposes a new approach called the Homogeneity-
Based Algorithm (or HBA) for optimally controlling the previous three error rates.
This is done by first formulating an optimization problem. The key development in
this chapter is based on a special way for analyzing the space of the training data
and then partitioning it according to the data density of different regions of this
space. Next, the classification task is pursued based on the previous partitioning of
the training space. In this way, the previous three error rates can be controlled in
a comprehensive manner. Some preliminary computational results seem to indicate
that the proposed approach has a significant potential to fill in a critical gap in
current data mining methodologies.
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1 Introduction

The importance of collecting enormous amounts of data related to science,
engineering, business, governance, and almost any endeavor of human activ-
ity or the natural world is well recognized today. Powerful mechanisms for
collecting and storing data and managing them in large datasets are in place
in many large and mid-range companies, not to mention research labs and
various agencies. There is, however, a serious challenge in making good use
of such massive datasets and trying to learn new knowledge of the system
or phenomenon that created these data. Human analysts cannot process and
comprehend such datasets unless they have special computational tools at
their disposal.

The emerging field of data mining and knowledge discovery seeks to de-
velop reliable and effective computational tools for analyzing large datasets for
the purpose of extracting new knowledge from the data. Such new knowledge
can be derived in the form of patterns that are embedded in the data.

Many applications of data mining involve the analysis of data that describe
the state of nature of a hidden system of interest to the analyst. Such a system
could be a natural or artificial phenomenon (such as the state of the weather
or the result of a scientific experiment), a mechanical system (such as the
engine of a car), an electronic system (such as an electronic device), and
so on. Each data point describes the state of the phenomenon or system in
terms of a number of attributes and their values for a given realization of
the phenomenon or system. Furthermore, each data point is associated with
a class value which describes a particular state of nature of this phenomenon
or system.

For instance, a bank administrator could be interested in knowing whether
a loan application should be approved or not based on some characteristics of
applicants for credit. Here the two classes are: “approve” or “do not approve”.
Attributes in this hypothetical scenario could be the age of the applicant, the
income level of the applicant, the education level, whether he/she has a per-
manent job, etc. Then, the goal of the data mining process might be to extract
any patterns that might be present in the data of successful credit applicants
and also patterns that might be present in the data of non-successful appli-
cants. By “successful applicants” we mean here those who can repay their
loans without any negative complications, while with “non-successful appli-
cants” we mean those who default their loans.

There could be many questions to be asked, but only a few of them would
be important for the decision. With the abundance of the data available in
this area, a careful analysis could provide a pattern that exposes the main
characteristics of reliable loan applicants. Then, the data mining analyst would
like to identify such patterns from past data for which we know the final
outcome and use those patterns to decide whether a new application for credit
should be approved or not.
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In other words, many applications of data mining involve the analysis
of data for which we know the class value of each data point. We wish to
infer some patterns from these data which in turn could be used to infer the
class value of new points for which we do not know their class value. These
patterns may be defined on the attributes used to describe the available data
(also known as the training data). For instance, for the previous bank example
the patterns may be defined on the level of education, years on the same job,
level of income, of the applicants.

This kind of data mining analysis is called classification or class prediction
of new data points because it uses patterns inferred from training data to aid
in the correct classification/class prediction of new data points for which we do
not know their class value. We only know the values of the attributes (perhaps
not all of them) of the new data points. This description implies that this type
of data mining analysis, besides the typical data definition, data collection,
and data cleaning steps, involves the inference of a model of the phenomenon
or system of interest to the analyst. This model is the patterns mentioned
above. The data involved in deriving this model are the training data. Next,
this model is used to infer the class value of new points.

There have been many theoretical and practical developments in the last
two decades in this field. Most recent methods include the Statistical Learning
Theory (Vapnik, 1998), Artificial Neural Networks (ANNs) (Hecht-Nielsen,
1989) and (Abdi, 2003), Decision Trees (DTs) (Quinlan, 1993), logic-based
methods (Hammer and Boros, 1994), (Triantaphyllou, 1994; and 2007), and
Support Vector Machines (SVMs) (Vapnik, 1979; and 1998) and (Cristianini
and John, 2003).

In many real-life or experimental studies of data mining, some classifica-
tion approaches work better with some datasets, while they work poorly with
other datasets for no apparent reason. For instance, DTs had some success
in the medical domain (Zavrsnik et. al., 1995). However, they also have had
some certain limitations when they were used in this domain, as described
for instance in (Kokol et. al., 1998) and (Podgorelec, 2002). Furthermore, the
success of SVMs has been shown in bioinformatics, such as in (Byvatov, 2003)
and (Huzefa et. al., 2005). At the same time, SVMs also did poorly in this field
(Spizer et. al., 2006). If the data mining approach is accurate, then the people
praise the mathematical model and claim that it is a good model. However,
there is no good understanding of why such models are accurate or not. Their
performance is often times coincidental.

A growing belief is that overfitting and overgeneralization problems may
cause poor performance of the classification/class prediction model. Overfit-
ting means that the extracted model describes the behavior of known data
very well but does poorly on new data points. Overgeneralization occurs when
the system uses the available data and then attempts to analyze vast amounts
of data that has not seen yet.

Assume that there are two classes which, arbitrarily, we will call the posi-
tive and the negative class. Then, one may infer the following two classification



394 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

models. The first model (which we will call the “positive” model) describes
patterns embedded in the positive examples and which do not exist in the
negative examples. In a similar manner, we define the “negative” model. For
instance, when developing a diagnosis system for some types of cancer one
may want to derive two models that can classify a new patient to either, posi-
tive (which means has cancer) or negative (which means does not have cancer)
cases.

The analyst may want one of the previous two models to be more “conser-
vative” while the other model to be more “liberal”. If both models are ultra
“conservative” then the implication is that they would only classify new cases
that are very closely related to cases they already have seen in the training
data. In this situation, the net effect would be many cases to be left as unclas-
sifiable by both systems. Similarly, if both systems are classifying new data
in a “liberal” manner, then they may contradict each other too often when
they are presented with new cases. Again, this situation might be undesirable.
Thus, a “liberal” behavior by a classification model means that the model has
a tendency for overgeneralization. A similar relationship exists between the
concept of “conservative” and overfitting

This chapter aims at finding a way to balance both fitting and generaliza-
tion in order to minimize the total misclassification cost of the final system.
By doing so, it is hoped that the classification/prediction accuracy of the in-
ferred models will be very high or at least as high as it can be achieved with
the available training data. We plan to achieve this by balancing the previous
two conflicting behaviors of the extracted systems.

The next section provides a preliminary description of the main research
problem. The third section gives a summary of the main developments in
the related literature. The proposed methodology is highlighted in the fourth
section. That section shows how a balance between fitting and generalization
has the potential to improve many existing classification algorithms. The fifth
section discusses some promising preliminary results. These pilot results give
an early indication of how this methodology may improve the performance of
existing classification algorithms. Finally, this chapter ends with some conclu-
sions.

2 Formal Problem Description

2.1 Some Basic Definitions

In order to help fix ideas, we first consider the hypothetical sample data
depicted in Figure 1. Let us assume that the “circles” and “squares” in this
figure correspond to sampled observations from two classes defined in 2-D.

In general, a data point is a vector defined on n variables along with their
values. In the above figure, n is equal to 2 and the two variables are indicated
by the X and Y axis. Not all values may be known for a given data point.
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Data points describe the behavior of the system of interest to the analyst.
For instance, in the earlier bank application a given data point may describe
the level of education, years on the same job, level of income of a particular
applicant, etc. The variables may be continuous, binary, or categorical, etc.
All data are assumed to be deterministic and numeric at this point. The state
space is the universe of all possible data points. In terms of Figure 1, the state
space is any point in the X-Y plane.

We assume that there are only two classes. Arbitrarily, we will call one
of them the positive class while the other the negative class. Thus, a positive
data point, also known as a positive example, is a data point that has been
evaluated to belong to the positive class. A similar definition exists for negative
data points or negative examples.

Given a set of positive and negative examples, such as the ones depicted in
Figure 1, this set is called the training data (examples) or the classified exam-
ples. The remaining of the data from the state space is called the unclassified
data (examples).

2.2 Problem Description

We start the problem description with a simple analysis on the sample data
depicted in Figure 1. Suppose that a data mining approach (such as a DT,
ANN, or SVM) has been applied on these data. Next we assume that two
classification systems have been inferred from these data. Usually, such classi-
fication systems arrange the training data into groups described by the parts
of a decision tree or classification rules. In a way, these groups of training
data define the patterns inferred from the data after the application of a data
mining algorithm. For this hypothetical scenario, we assume that the data
mining algorithm has inferred the system patterns depicted in Figure 2.(a).

In general, one classification system describes the positive data (and thus
we will call it the positive system) while the other system describes the neg-
ative data (and thus we will call it the negative system). In Figure 2.(a) the
positive system corresponds to sets A and B (which define the positive pat-
tern) while sets C and D correspond to the negative system (and thus they
define the negative pattern).

In many real-life applications, there are two different penalty costs if one
erroneously classifies a true positive point as negative or if one classifies a true
negative point as positive. The first case is known as false-positive, while the
second case is known as false-negative. Furthermore, a closer examination of
Figure 2.(a) indicates that there are some unclassifiable points which either
are not covered by any of the patterns or are covered by patterns that belong
to both classes. For instance, point N (indicated as a triangle) is not covered
by any of the patterns, while point M (also a triangle) is covered by sets A
and C which belong to the positive and the negative patterns, respectively.

For the first case, as point N is not covered by any of the patterns, the
inferred system may declare it as an unclassifiable point. In the second case,
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Fig. 1. Sample data from two classes in 2-D.

there is a direct disagreement by the inferred system as the new point (i.e.,
point M) is covered simultaneously by patterns of both classes. Again, such
a point may be also declared as unclassifiable. Thus, in many real-life appli-
cations of data mining one may have to consider three different penalty costs
as follows: one cost for the false-positive case, one cost for the false-negative
case, and one cost for the unclassifiable case.

Next consider Figure 2.(b). Suppose that all patterns A, B, C and D have
been reduced significantly but still cover the original training data. A closer
examination of this figure indicates that now both points M and N are not
covered by any of the inferred patterns. In other words, these points and
several additional points which were classified before by the inferred systems
now become unclassifiable.

Furthermore, the data points which before were simultaneously covered
by patterns from both classes, and thus were unclassifiable, are now covered
by only one type of pattern or none at all. Thus, it is very likely that the
situation depicted in Figure 2.(b) may have a higher total penalty cost than
the original situation depicted in Figure 2.(a). If one takes this idea of reducing
the covering sets as much as possible to the extreme, then there would be one
pattern (i.e., just a small circle) around each individual training data point. In
this extreme case, the total penalty cost due to unclassifiable points would be
maximum as the system would be able to classify the training data only and
nothing else. The previous scenarios are known as overfitting of the training
data.

On the other hand, suppose that the original patterns depicted as sets A,
B, C and D (as shown in Figure 2.(a)) are now expanded significantly as in
Figure 2.(c). A closer examination of this figure demonstrates that points M

X axis 

Y axis 



The Impact of Overfitting and Overgeneralization 397

and N are now covered simultaneously by patterns of both classes. Also, more
points are now covered simultaneously by patterns of both classes. Thus, under
this scenario we also have lots of unclassifiable points because this scenario
creates lots of cases of disagreement between the two classification systems
(i.e., the positive and the negative systems). This realization means that the
total penalty cost due to unclassifiable points will also be significantly higher
than under the scenario depicted in Figure 2.(a). This scenario is known as
overgeneralization of the training data.

Fig. 2. An illustrative example of overfitting and overgeneralization.
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Thus, we cannot separate the control of fitting and generalization into two
independent studies. That is, we need to find a way to simultaneously balance
fitting and generalization by adjusting the inferred systems (i.e., the positive
and the negative systems) obtained from a classification algorithm. The bal-
ance of the two systems will target at minimizing the total misclassification
costs of the final system.

In particular, let us denote CFP , CFN , and CUC as the penalty costs for
the false-positive, the false-negative, and the unclassifiable cases, respectively.
Let RATE FP, RATE FN, and RATE UC be the false-positive, the false-
negative, and the unclassifiable rates, respectively. Then, the problem is to
achieve a balance between fitting and generalization that would minimize, or
at least significantly reduce, the total misclassification cost denoted as TC.
The problem is defined in the following expression:

TC = min (CFP ×RATE FP +CFN×RATE FN +CUC×RATE UC) (1)

This methodology may assist the data mining analyst to create classifica-
tion systems that would be optimal in the sense that their total misclassifica-
tion cost would be minimized.

In terms of Figures 2.(a), (b) and (c), let us now consider the situation
depicted in Figure 3. At this point assume that in reality point M is nega-
tive while point N is positive. Figure 3 shows different levels of fitting and
generalization for the two classification systems. For the sake of illustration,
sets C and D are kept the same as in the original situation (i.e., as depicted
in Figure 2.(a)) while set A has been reduced (i.e., it fits the training data
more closely) and now it does not cover point M. On the other hand, set B is
expanded (i.e., it generalizes the training data more) to cover point N. This
new situation may correspond to a total misclassification cost that is smaller
than those by any of the previous three scenarios. The following section will
give a summary of the main developments in the related literature.

3 Literature Review

Most of the classification algorithms have focused on the minimization of the
classification error of the training points. In this way, it is expected that new
points will be classified with higher prediction accuracy. This section is a
summary of the literature about ways that classification algorithms deal with
the overfitting and the overgeneralization problems.

3.1 Decision Trees (DTs)

There are two methods for controlling the overfitting problem in DTs: pre-
pruning methods in which the growing tree approach is halted by some early
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stopping rules before generating a fully grown tree, and post-pruning in which
the DT is first grown to its maximum size and then we trim some partitions
of the tree.

There was recently a lot of effort which has focused on improving the pre-
pruning methods. (Kohavi, 1996) proposed the NBTree (a hybrid of decision-
tree and naive- classifiers). The NBTree provides some early stopping rules by
comparing two alternatives: partitioning the instance-space further on (i.e.,
continue splitting the tree based on some gain ratio stopping criteria) versus
stopping the partition and producing a single Näıve Bayes classifier. (Zhou
and Chen, 2002) suggested the hybrid DT approach for growing a binary DT.
A feed-forward neural network is used to subsequently determine some early
stopping rules. (Rokach et. al., 2005) proposed the cluster-based concurrent
decomposition (CBCD) algorithm. That algorithm first decomposes the train-
ing set into mutually exclusive sub-samples and then uses a voting scheme to
combine these sub-samples for the classifier’s predictions. Similarly, (Cohen
et. al., 2007) proposed an approach for building a DT by using a homogeneity
criterion for splitting the space. However, the above approaches have a diffi-
culty in choosing the threshold value for early termination. A value which is
too high may result in underfitting models, while a too low threshold value
may not be sufficient to overcome overfitting models.

Under the post-pruning approaches described in (Breiman et. al., 1984)
and (Quinlan, 1987), the pruning process eliminates some partitions of the
tree. The reduction on the number of partitions makes the remaining tree more
general. In order to help fix the main idea, we consider the simple example
depicted in Figure 4. Suppose that Figure 4.(a) shows a DT inferred from
some training examples. The pruning process eliminates some of the DT’s
nodes as depicted in Figure 4.(b). The remaining part of the DT, as shown in
Figure 4.(c), implies some rules which are more general. For instance, the left
most branch of the DT in Figure 4.(a) implies the rule “if D∧A∧B∧ C, then
. . . ” On the order hand, Figure 4.(c) implies the more general rule “if D∧ A,
then . . . ”

However, more generalization is not always required nor is it always bene-
ficial. A more complex arrangement of partitions has been proved to increase
the complexity of DTs in some applications. Furthermore, the treatment of
generalization of a DT may lead to overgeneralization since pruning conditions
are based on localized information.

Instead of the pruning methods, there have been some other developments
to improve the accuracy of DTs. (Webb, 1996) attempted to graft additional
leaves to a DT after its induction. This method does not leave any area of the
instance space in conflict, because each data point belongs to only one class.
Obviously, the overfitting problem may arise from this approach. (Mansour et.
al., 2000) proposed another way to deal with the overfitting problem by using
the learning theoretical method. In that method, the bounds on the error rate
for DTs depend both on the structure of the tree and on the specific sample.
(Kwok and Carter, 1990), (Schapire, 1990), (Wolpert, 1992), (Dietterich and
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Fig. 3. An illustrative example of a better classification.

Bakiri, 1994), (Ali et. al., 1994), (Oliver and Hand, 1995), (Nock and Gascuel,
1995) and (Breiman, 1996) allowed multiple classifiers used in a conjunction.
This method is similar to using a Disjunctive Normal Form (DNF) Boolean
function. Furthermore, (Breiman, 2001) also used the so-called random forest
approach for multiple classifiers. However, the above approaches might cre-
ate conflicts between the individual classifiers’ partitions, as in the situation
presented in C4.5 (Quinlan, 1993).

3.2 Rule-Based Classifiers

A rule-based classifier uses a collection of “if . . . then . . . ” rules that identify
key relationships between the attributes and the class values of a dataset.
There are two methods which infer classification rules: direct methods which
infer classification rules directly from the data, and indirect methods which
infer classification rules from other classification methods such as DTs, SVMs,
or ANNs and then they translate the final model into a set of classification
rules (Tan et. al., 2005). An extensive survey of rule-based methods can be
found in (Triantaphyllou and Felici, 2006). A new rule-based approach, which
is based on mathematical logic, is described in (Triantaphyllou, 2007).

A well-known algorithm of direct methods is the Sequence Covering al-
gorithm and its later enhancement, the CN2 algorithm (Clark and Niblett,
1989). To control the balance of fitting and generalization while generating
rules, these algorithms first use two strategies for growing the classification
rules: general-to-specific or specific-to-general. Then, the rules are refined by
using the pre and post-pruning methods mentioned in DTs.

Under the general-to-specific strategy, a rule is created by finding all pos-
sible candidates and use a greedy approach to choose the new conjuncts to
be added into the rule antecedent part in order to improve its quality. This
approach ends when some stopping criteria are met.
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Under the specific-to-general strategy, a classification rule is initialized by
randomly choosing one of the positive points as the initial step. Then, the rule
is refined by removing one of its conjuncts so that this rule can cover more
positive points. This refining approach ends when certain stopping criteria are
met. A similar way exists for the negative points.

There are some related developments regarding these strategies. Such de-
velopments include a beam search approach (Clark and Boswell, 1991) which
avoids the overgrowing of rules as result of the greedy behavior, the RIPPER
algorithm (Cohen, 1995) which uses a rule induction algorithm. However, the
use of the two strategies for growing classification rules has their drawbacks.
The complexity for finding optimal rules is of exponential size of the search
space. Although some rule pruning methods are used to improve their gener-
alization error, they also leave drawbacks as mentioned in the case of DTs.

3.3 K-Nearest Neighbor Classifiers

While DTs and rule-based classifiers are examples of eager learners, K-Nearest
Neighbor Classifiers (Cover, Hart, 1967) and (Dasarathy, 1979) are known as
lazy learners. That is, this approach finds K training points that are relatively
similar to attributes of a testing point to determine its class value.

The importance of choosing the right value for K directly affects the ac-
curacy of this approach. A wrong value for K may lead to the overfitting or
the overgeneralization problems (Tan et. al., 2005). One way to reduce the
impact of K is to weight the influence of the nearest neighbors according to
their distance to the testing point. One of the most well-known schemes is
the distance-weighted voting scheme (Dudani, 1976) and (Keller, Gray and
Givens, 1985).

However, the use of K-nearest neighbor classifiers has their drawbacks.
Classifying a test example can be quite expensive since we need to compute a
similarity degree between the test point and each training point. They are un-
stable since they are based on localized information only. Finally, it is difficult
to find an appropriate value for K to avoid model overfitting or overgeneral-
ization.

3.4 Bayes Classifiers

This approach uses the modeling probabilistic relationships between the at-
tribute set and the class variable for solving classification problems. There are
two well known implementations of Bayesian classifiers: Näıve Bayes (NBs)
and Bayesian Belief Networks (BBNs).

NBs assume that all the attributes are independent of each other and then
they estimate by using the class conditional probability. This independence
assumption, however, is obviously problematic because often times in many
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Fig. 4. An illustrative example of the DT pruning.

real applications there are strong conditional dependencies between the at-
tributes. Furthermore, when using the independence assumption, NBs may
suffer of overfitting since they are based on localized information.

Instead of requiring all attributes to be conditionally independent given
a class, a BBN (Duda and Hart, 1973) allows only for pairs of attributes
to be conditionally independent. We introduce this approach by discussing
an illustrative example. Suppose that we have a training dataset consisting
of the attributes: age, occupation, income, buy (i.e., buy some product X),
and interest (i.e., “interest in purchasing insurance for this product”). The
attributes age, occupation and income may determine if a customer will buy
some product X. Given is a customer who has bought product X. There
is an interest in buying insurance when we assume this is independent of
age, occupation, and income. These constraints are presented by the BBN
depicted in Figure 5. Thus, for a certain data point described by a 5-tuple
(age, occupation, income, buy, interest), its probability based on the BBN
should be:

P(age, occupation, income, buy, interest) =

P(age) × P(occupation) × P(income) × P(buy | age, occupation, income) ×
P(interest | buy).

There was a lot of effort which has focused on improving BBNs. This
effort follows two general approaches: selecting a feature subset (Langley and
Sage, 1994), (Pazzani, 1995), and (Kohavi and John, 1997) and relaxing the
independence assumptions (Kononenko, 1991) and (Friedman et. al., 1997).
However, these developments have the following drawbacks:

They require a large amount of effort when constructing the network.
They quietly degrade to overfitting because they combine probabilistically
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3.5 Artificial Neural Networks (ANNs)

Recall that an ANN is a model that is an assembly of inter-connected nodes
and weighted links. The output node sums up each of its input values ac-
cording to the weights of its links. The output node is compared against a
threshold value t. Such a model is illustrated in Figure 6. The ANN in this
figure consists of the three input nodes X1, X2, and X3 which correspond to
the weighted links w1, w2, and w3, respectively, and one output node Y . The
sum of the input nodes can be Y = sign

∑
i

(Xiwi − t), called the perceptron

model (Abdi, 2003).
In general, an ANN has a set of input nodes X1, X2, . . . , Xm and one out-

put node Y . Given are n values for the m-tuple (X1, X2, . . . , Xm). Let
∧
Y1,

∧
Y2,

. . . ,
∧
Yn be the predicted outputs and Y1, Y2, . . . , Yn be the expected outputs

from the n values, respectively. Let E =
n∑

i=1

[Yi −
∧
Yi]2denote the total sum of

the squared differences between the expected and the predicted outputs. The
goal of the ANN is to determine a set of the weights in order to minimize
the value of E. During the training phase of an ANN, the weight parameters
are adjusted until the outputs of the perceptron become consistent with the
true outputs of the training points. In the weight update process, the weights
should not be changed too drastically because E is computed only for the cur-
rent training point. Otherwise, the adjustments made during earlier iterations
may be undone.

In order to avoid overgeneralization or overfitting, the design for an ANN
must be considered. A network that is not sufficiently complex may fail to fully
detect the input in a complicated dataset, leading to overgeneralization. On
the other hand, a network that is too complex may not only fit the input but
also the noisy points, thus leading to overfitting. According to (Geman, Bi-
enenstock, and Doursat, 1992) and (Smith, 1996), the complexity of a network
is related both to the number of the weights and to the size of the weights.
Geman and Smith were directly or indirectly concerned with the number and
size of the weights. That is, the number of the weights relates to the number
of hidden units and layers. The more weights there are, relative to the number
of the training cases, the more overfitting amplifies noise in the classification
systems (Moody, 1992). Reducing the size of the weights may reduce the effec-
tive number of the weights leading to weight decay (Moody, 1992) and early
stopping (Weigend, 1994). In summary, ANNs have the following drawbacks:

It is difficult to find an appropriate network topology for a given problem
in order to avoid model overfitting and overgeneralization.

It takes lots of time to train an ANN when the number of hidden nodes is
large.
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3.6 Support Vector Machines (SVMs)

Another classification technique that has received considerable attention is
known as SVMs (Vapnik, 1995). The basic idea behind SVMs is to find a
maximal margin hyperplane, θ, that will separate points considered as vec-
tors in an m-dimensional space. The maximum margin hyperplane can be
essentially represented as a linear combination of the training points. Con-
sequently, the decision function for classifying new data points with respect
to the hyperplane only involves dot products between data points and the
hyperplane.

Fig. 5. An illustrative example of a BBN (Rada, 2004).

In order to help fix ideas, we consider the simple illustrative example de-
picted in Figure 7. Suppose that we have a training dataset defined on two
given classes (represented by the squares and circles) in 2-D. In general, the
approach can find many hyperplanes, such as B1 or B2, separating the train-
ing dataset into the two classes. The SVM, however, chooses B1 to classify
this training dataset since B1 has the maximum margin. Roughly speaking it
is in the middle of the distance between the two groups of training examples.

Decision boundaries with maximal margins tend to lead to better gener-
alization. Furthermore, SVMs attempt to formulate the learning problem as
a convex optimization problem in which efficient algorithms are available to
find a global solution. For many datasets, however, an SVM may not be able
to formulate the learning problem as a convex optimization problem because
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Fig. 6. An illustrative example of an ANN (Tan et. al., 2005).

it may be the cause of too many misclassifications. Thus, the attempts for
formulating the learning problem may lead to overgeneralization.

4 Proposed Methodology – The Homogeneity-Based
Algorithm (HBA)

4.1 Some Key Observations

In order to help motivate the proposed methodology, we first consider the
situation depicted in Figure 8.(a). This figure presents two inferred patterns.
These are the circular areas that surround groups of training data (shown as
small circles). Actually, these data are part of the training data shown earlier
in Figure 1 (please recall that the circles in Figure 1 represent positive points).
Moreover, in Figure 8.(a) there are two additional data points shown as small
triangles and are denoted as points P and Q. At this situation, it is assumed
that we do not know the actual class values of these two new points. We
would like to use the available training data and inferred patterns to classify
these two points. Because points P and Q are covered by patterns A and B,
respectively, both of these points may be assumed to be positive examples.

Let us look more closely at pattern A. This pattern covers regions of the
state space that are not adequately populated by positive training points.
Such regions, for instance, exist in the upper left corner and the lower part
of pattern A (see also Figure 8.(a)). It is possible that the unclassified points
which belong to such regions are erroneously assumed to be of the same class
as the positive training points covered by pattern A. Point P is in one of these
sparely covered regions under pattern A. Thus, the assumption that point P
is a positive point may not be very accurate.
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On the other hand, pattern B does not have such sparely covered regions
(see also Figure 8.(a)). Thus, it may be more likely that the unclassified points
covered by pattern B are more accurately assumed to be of the same class
as the positive training points covered by the same pattern. For instance, the
assumption that point Q is a positive point may be more accurate.

The above simple observations lead one to surmise that the accuracy of
the inferred systems can be increased if the derived patterns are, somehow,
more compact and homogenous.

According to the Wikipedia Dictionary (2007), given a certain class (i.e.,
positive or negative), a homogenous set describes a steady or uniform distri-
bution of a set of distinct points. That is, within the pattern there are no
regions (also known as bins) with unequal concentrations of classifiable (i.e.,
either positive or negative) and unclassified points. In other words, if a pat-
tern is partitioned into smaller bins of the same unit size and the density of
these bins is almost equal to each other (or, equivalently, the standard devi-
ation is small enough), then this pattern is a homogenous set. An axiom and
a theorem are derived from the definition of a homogenous set as follows:

Axiom 1. Given is an inferred pattern C of size one. Then, C is a homogenous
set.

This axiom is used later in Section 4.4.

Theorem 1. Let us consider a homogenous set C. If C is divided into two
parts, C1 and C2, then the two parts are also homogenous sets.

Proof. We prove Theorem 1 by using contradiction. Since C is a homogenous
set, there is a uniform random variable Z that represents the distribution of
points in C. Similarly, Z1 and Z2 are the two random variables that represent
the distribution of points in C1 andC2, respectively. Obviously, Z is the sum
of Z1 and Z2. Assume that either Z1 or Z2 is a non homogenous set. Thus, Z1

+ Z2 is not a uniform random variable. This contradicts the fact that Z is a
uniform random variable.

The pattern which is represented by the non homogenous A can be replaced
by two more homogenous sets denoted as A1 and A2 as in Figure 8.(b). Now
the regions covered by the two new smaller patterns A1 and A2 are more
homogenous than the area covered by the original pattern A. Given these
considerations, point P may be assumed to be an unclassifiable point while
point Q is still a positive point.

As presented in the previous paragraphs, the homogenous property of pat-
terns may influence the number of misclassification cases of the inferred classi-
fication systems. Furthermore, if a pattern is a homogenous set, then the num-
ber of training points covered by this pattern may be another factor which
affects the accuracy of the overall inferred systems. For instance, Figure 9
shows the case discussed in Figure 8.(b) (i.e., pattern A has been replaced by
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Fig. 7. An illustrative example of an SVM (Tan et. al., 2005).

two more homogenous sets denoted as A1 and A2). Suppose that all patterns
A1, A2 and B are homogenous sets and a new point S (indicated as a triangle)
is covered by pattern A1.

A closer examination of this figure shows that the number of points in
B is higher than those in A1. Although both points Q and S are covered
by homogenous sets, the assumption that point Q is a positive point may
be more accurate than the assumption that point S is a positive point. The
above simple observation leads one to surmise that the accuracy of the inferred
systems may also be affected by a density measure. Such a density could be
defined as the number of points in each inferred pattern per unit of area or
volume. Therefore, this density will be called the homogeneity degree.

In summary, a fundamental assumption here is as follows: if an unclassified
point is covered by a pattern that is a homogenous set which also happens to
have a high homogeneity degree, then it may be more accurately assumed to
be of the same class as the points covered by that pattern. On the other hand,
the accuracy of the inferred systems may be increased when their patterns are
more homogenous and have high homogeneity degrees.

4.2 Non Parametric Density Estimation

Please recall that a pattern C of size n is a homogenous set if the pattern can
be partitioned into smaller bins of the same unit size h and the density of these
bins is almost equal to each other (or, equivalently, the standard deviation is
small enough). In other words, if C is superimposed by a hypergrid of unit
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size h and the density of the bins inside C is almost equal to each other, then
C is a homogenous set.

As seen in the above, the density estimation of a typical bin plays an
important role in determining whether a set is a homogenous set or not.
According to (Duda et. al., 2001), the density estimation is the construction
of an estimate, based on the observed data and on an unobservable underlying
probability density function. There are two basic approaches to the density
estimation:

Parametric in which we assume a given form of the density function (i.e.,
Gaussian, normal, and so on) and its parameters (i.e., its mean and variance)
such that this function may optimally fit the model to the dataset.

Non parametric where we cannot assume a functional form for the den-
sity function, and the density estimates are driven entirely by the available
training data.

The following sections will use the non parametric density estimation. That
is, the approach divides pattern C into a number of small bins of unit size h.
The density at the center xof each bin can be approximated by the fraction
of points in C that fall into the corresponding bin and the volume of the bin.
For instance, a bin in 3-D can be a cube of unit size h as depicted in Figure
10. Let n be the number of points in C and d(x) denote the x’s density, then:

d(x) =
1
n

[
the number of examples falling in the bin with center x

volume of the bin
]. (2)

The basic idea behind computing d(x) relies on the probability p that a
data point x, drawn from a distribution function, will fall in bin R.By using
this idea we arrive at the following obvious estimate for d(x):

d(x) ≈ k

n× V
, (3)

where x is a point within R; k is the number of points which fall in R; and V
is the volume enclosed by R.

The Parzen Windows approach (Duda and Hart, 1973) was introduced as
the most appropriate approach for the density estimation. That is, it tem-
porarily assumes that the region R is a D-dimensional hypercube of unit size
h. To find the number of points that fall within this region, the Parzen Win-
dows approach defines a kernel function ϕ(u) as follows:

ϕ(u) =
{

1, |u| ≤ 1/2.
0, otherwise.

(4)

It follows that the quantity ϕ(x−xi

h ) is equal to unity if the point xi is
inside the hypercube of unit size h and centered at x, and zero otherwise.
Therefore, k, the number of points in the hypercube is given by:
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k =
n∑

i=1

ϕ(
x− xi

h
) (5)

In the D-dimensional space, the kernel function can be presented as fol-
lows:

ϕ(
x − xi

h
) =

D∏
m=1

ϕ(
xm − xm

i

h
). (6)

By using (6) in Equation (3), one gets:

d(x) ≈ 1
n× hD

n∑

i=1

D∏
m=1

ϕ(
xm − xm

i

h
). (7)

Usually, but not always, ϕ(u) will be radically symmetric. Thus, the uni-
modal probability density function, for instance the multivariate Gaussian
density function, may be used to compute ϕ(u):

ϕ(u) =
1

(2× π)
D
2

exp(−1
2
utu). (8)

Choosing a value for h plays the role of a smoothing parameter in the
density estimation. That is, if h →∞, then the density at point x in C, d(x),
approaches a false density. As h →0, then the kernel function approaches the
Dirac Delta Function and d(x) approaches to the true density (Bracewell,
1999).

Suppose that we determine all distances between all possible pairs formed
by taking any two points from pattern C. For easy illustration, assume that
for pattern C which contains 5 points these distances are as follows: 6, 1, 2,
2, 1, 5, 2, 3, 5, 5. Then, we define S as a set of the distances which have the
highest frequency. For the previous illustrative example, we have set S equal
to {2, 5} as both distances 2 and 5 occur with frequency equal to 3. By using
the concept of the previous set S, Heuristic Rule 1 proposes a way for finding
an appropriate value for h when we estimate the density d(x). In particular,
it uses the minimum value in S (which is equal to 2 in this illustration) as
follows:

Heuristic Rule 1: If h is set equal to the minimum value in set S and
this value is used to compute d(x) by using Equation (7), then d(x) approaches
to a true density.

This heuristic rule is reasonable for the following reason. In practice, since
pattern C has a finite number of points the value for h cannot be made arbi-
trarily small. Obviously, an appropriate value for h is between the maximum
and the minimum distances that are computed by all pairs of points in pattern
C.If the value for h is the maximum distance, then C would be inside a single
bin. Thus, d(x) approaches to a false density. In contrast, if the value for h is
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the minimum distance, then the set of the bins would degenerate to the set
of the single points in C. This situation also leads to a false density.

According to (Bracewell, 1999), as h →0, then d(x) approaches to the true
density. Furthermore, a small value for h would be appropriate to approach
to the true density (Duda et. al., 2001). Thus, the value for h described in
Heuristic Rule 1 is a reasonable selection because it is close to the minimum
distance but simultaneously the bins would not degenerate to the single points
in C.

4.3 The Proposed Approach

Recall that in optimizing the total misclassification cost as defined in Equation
(1) for classification algorithms, one cannot separate the control of fitting
and generalization into two independent studies. Instead of this, the key idea
of the proposed methodology is to simultaneously balance both fitting and
generalization by adjusting the inferred systems through the use of the concept
of homogenous sets and the homogeneity degree. The proposed methodology
can be summarized in terms of the following three phases:

• Phase #1: Apply a classification approach (such as a DT, ANN, or SVM)
to infer the two classification systems (i.e., the positive and the negative
classification systems). Suppose that each classification system consists of
a set of patterns. Next, break the inferred patterns into hyperspheres.

• Phase #2: Determine whether the hyperspheres derived in Phase #1 are
homogenous sets or not. If so, then go to Phase #3. Otherwise, break a
non homogenous set into smaller hyperspheres. Repeat Phase #2 until all
of the hyperspheres are homogenous sets.

• Phase #3: For each homogenous set, if its homogeneity degree is greater
than a certain breaking threshold value, then expand it. Otherwise, break
it into smaller homogenous sets. The approach stops when all of the ho-
mogenous sets have been processed.

Suppose that given is a homogenous set C. Let HD(C) denote its homo-
geneity degree. There are five parameters which are used in the proposed
methodology:

• Two expansion threshold values α+ and α− to be used for expanding the
positive and the negative homogenous sets, respectively.

• Two breaking threshold values β+ and β− to be used for breaking the
positive and the negative patterns, respectively.

• A density threshold value γ to be used for determining whether either a
positive or a negative hypersphere is approximately a homogenous set or
not.

These three phases are also described in Algorithm 1 where they lead to
the formulation of six sub-problems as follows:
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Algorithm 1: The main algorithm.
Input: The training sets with the positive and the negative points.

A given classification algorithm.
Values of the control parameters α+, α−, β+, β−, and γ.

Output: New positive and negative classification systems.
1: Call Sub-Problem #1. {Phase #1}
2: Call Sub-Problem #2.
3: for all hypersphere C do {Phase #2}
4: Call Sub-Problem #3 with inputs C and γ.
5: if C is a non homogenous set then
6: Call Sub-Problem #4
7: Go To Step 3
8: end if
9: end for

10: Sort the homogeneity degrees in decreasing order.
11: for all homogenous set C do {Phase #3}
12: if HD(C) ≥ β+ (for positive sets) or HD(C) ≥ β− (for negative sets) then
13: Call Sub-Problem #5 with inputs HD(C) and α+ or α−.
14: else
15: Call Sub-Problem #6.
16: end if
17: end for

• Sub-Problem #1: Apply a data mining approach (such as a DT, ANN,
SVM) to infer the two classification systems.

• Sub-Problem #2: Break the inferred patterns into hyperspheres.
• Sub-Problem #3: Determine whether a hypersphere is a homogenous

set or not. If so, then its homogeneity degree is estimated.
• Sub-Problem #4: If a hypersphere is not a homogenous set, then break

it into smaller hyperspheres.
• Sub-Problem #5: Expand a homogenous set C by using the notion of

its homogeneity degree HD(C) and the corresponding expansion threshold
value plus some stopping conditions.

• Sub-Problem #6: Break a homogenous set C into smaller homogenous
sets.

To solve Sub-Problem #1, one simply applies a classification algorithm
and then derives the classification patterns. Furthermore, a solution to Sub-
Problem #2 is similar to solutions for Sub-Problem #4. Therefore, the follow-
ing sections present some procedures for solving Sub-Problems #2, #3, #5,
and #6.

4.4 Solving Sub-Problem # 2

In order to help motivate the solution to Sub-Problem #2, we first consider
the situation depicted in Figure 11.(a). This figure presents a set of positive
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Fig. 8. Pattern B is a homogenous set while pattern A is a non homogenous set.
Pattern A can be replaced by the two homogenous sets A1 and A2 as shown in part
(b).

training points and a set of negative training points in 2-D. Suppose that
Sub-Problem #1 has applied a DT algorithm on these sample data to infer
a decision tree as depicted in Figure 11.(b). This decision tree separates the
training data into the four groups described by the two solid lines depicted in
Figure 11.(c).

Next for each pattern somehow Sub-Problem #2 finds the minimum num-
ber of hyperspheres which cover all the points in the original patterns. For
instance, the above situation is depicted in Figure 11.(d) in which the positive
patterns and the bottom negative pattern are covered by the circles (please
note that in 2-D hyperspheres are circles): B, D and C, respectively. The top
negative pattern is covered by the two circles A and E.

The problem of finding the minimum number of hyperspheres that can
cover a pattern C of size N is similar to a form of the set cover problem, an
NP-complete problem (Karp, 1972). In this research, a heuristic algorithm is
proposed as depicted in Algorithm 2.

The algorithm starts by first estimating the densities of the N points by
using Equation (7). Assume that the value for K is going from 1 to N . The
algorithm will pick K points in C with the highest densities. Next, it uses
these K points as centroids in the K-means clustering approach. If the K
hyperspheres which are obtained from the clustering approach cover C, then
the algorithm will stop. Otherwise, we repeat the algorithm with the value for
K increased by one. Obviously, the algorithm will stop after some iterations
because of Axiom 1. For instance, in Figure 11.(d) the algorithm determines
at least two circles which can cover the two positive patterns while it uses
three circles for the two negative patterns.

Recall that Sub-Problem #4 is to decompose a non homogenous set C into
smaller hyperspheres in order to minimize the number of the hyperspheres
which cover pattern C. We can use a similar algorithm as the one depicted in
Algorithm 2.
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Fig. 9. An illustrative example of homogenous sets.

Algorithm 2: The algorithm for Sub-Problem 2
Input: Pattern C of size N .
Output: K hyperspheres.
1: Estimate the densities of the N points by using Equation (7).
2: for K=1 to N do
3: Pick Kpoints in C with the highest densities.
4: Use the K-means clustering approach to find K hyperspheres.
5: if the K hyperspheres cover C then
6: STOP
7: else
8: K = K + 1
9: end if

10: end for

4.5 Solving Sub-Problem #3

Let consider some hypersphere C. Sub-Problem #3 determines whether or not
hypersphere C is a homogenous set. By using the idea of the non parametric
density estimation described in Section 4.2, C is divided into a number of
small bins of unit size h and approximates the density at the center xof each
bin. If the densities at the centers are approximately equal to each other, then
C is a homogenous set.

In order to help motivate the algorithm for Sub-Problem #3, we first
consider the situation depicted in Figure 12. The left side of this figure presents
two positive circles, called A and B in 2-D.
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Fig. 10. A bin of unit size h and the center x in 3-D.

Algorithm 3: The algorithm for Sub-Problem 3
Input: Hypersphere C and density threshold value γ.
Output: Decide whether or not hypersphere C is a homogenous set.
1: Compute the distances between all pairs of points in C.
2: Let h be the distance mentioned in Heuristic Rule 1.
3: Superimpose C into hypergrid V of unit size h.
4: Approximate the density at the center xof each bin.
5: Compute the standard deviation of the densities at the centers of the bins.
6: if the standard deviation is ≤ess than or equal to γ, then
7:

using Equation (9).
8: else
9: C is not a homogenous set.

10: end if

h 

h 

h 

x 

C is a homogenous set and its homogeneity degree HD(C) is computed by
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Fig. 11. An Illustrative example of Phase 1

Suppose that both circles A and B are superimposed by the same hypergrid
V of unit size h equal to one. This situation is depicted in the right side of
Figure 12. By using Equation (7), the right figures show that all bins in circle
A are of the same density equal to 1

16×12 =0.0625. In contrast, the density
of some of the bins in circle B is equal to 0

16×12 =0. Thus, circle A is a
homogenous set while circle B is not.

Furthermore, instead of the strict condition which requires the same den-
sity at the centers of the bins, we may apply a softer condition. That is, if the
standard deviation of the densities at the centers of the bins is approximately
less or equal to γ, say for γ = 0.01, then hypersphere C may be considered to
be a homogenous set. The algorithm for Sub-Problem #3 is given in Algorithm
3.

As mentioned in Section 4.1, the homogeneity degree HD(C) is a factor
that may affect the total misclassification cost of the inferred classification
systems. If an unclassified point is covered by a homogenous set C which has
a higher homogeneity degree, then it may more accurately be assumed to be
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Fig. 12. Illustrative examples of the homogenous set (at the top part) and the non
homogenous set (at the bottom part).

of the same class as the points covered by the homogenous set C. Thus, a
definition for HD(C) is an important step in improving the accuracy of the
classification systems.

As discussed in Section 4.1, the concept of the homogeneity degree HD(C)
is defined as the number of points inside the homogenous set C per unit of
C’s volume. This definition, however, has its drawbacks. For instance, let us
look at circles A and E as the one depicted in Figure 11. According to the
above definition, HD(A) is equal to 16

2×1.52×π ≈ 1.1318, while HD(E) is equal
to 4

2×0.52×π ≈ 2.5465. This means that pattern E is denser than pattern A.
This is an apparent contradiction since in reality pattern A has more points
and covers a wider region than pattern E. Thus, we need to find an appropriate
definition for the homogeneity degree.

Intuitively, HD(C) depends on the value h defined in Heuristic Rule 1
and the number of points in C, denoted by nC . If nC increases, then HD(C)
would slightly increase since the volume of C does not change and C has more
points. Furthermore, if h increases, then the average distance between pairs of
points in homogenous set C increases. Obviously, this leads to;D(C) decreases.
Hence, HD(C) is inversely proportional to h while is directly proportional to
nC . We use the function ln(nC) to show the slight effect of nC to HD(C).

HD(C) =
ln(nC)

h
. (9)

For instance, HD(A) as depicted in Figure 12 is equal to ln(16)
1 ≈ 2.77.

Let us consider the illustrative example depicted in Figure 11. Now we have
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Fig. 13. An illustrative example of Sub-Problem 5.

HD(A) equal to ln(16)
1 ≈ 2.77, HD(B) equal to ln(9)

1 ≈ 2.19, HD(C) = HD(E)
equal to ln(4)

1 ≈ 1.38, and HD(D) equal to ln(10)
2 ≈ 1.151.

4.6 Solving Sub-Problem #5

Recall that the control of fitting and generalization for classification systems
may be achieved by expanding or breaking the inferred homogenous sets by
using their homogeneity degrees. Suppose that we are given a positive ho-
mogenous set F with its homogeneity degree HD(F), the breaking threshold
value β+, and the expansion threshold value α+. A similar definition exists
for a negative homogenous set. According to the main algorithm depicted in
Algorithm 1, if HD(F) is greater than or equal to β+, then the homogenous
set F will be expanded by using the expansion threshold value α+. Otherwise,
we will break the homogenous set F into smaller hyperspheres.

In order to help motivate this stage, we consider the example depicted in
Figure 11. Please recall that the homogeneity degrees of circles A, B, C, D,
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Fig. 14. An illustrative example of the radial expansion.

and E are HD(A)=2.77, HD(B)=2.19, HD(C)=1.38, and HD(D)=1.15, and
HD(E)=1.38, respectively. Suppose that the two breaking threshold values
β+ and β− are equal to 1.00 and 1.50, respectively. Furthermore, let the two
expansion threshold values α+ and α− be equal to 2.00. As depicted in Figure
13, the homogenous sets A, B, and D are expanded (the expanded regions are
indicated by the solid line circles), while C and E are broken into four smaller
circles (the broken regions are indicated by the small solid line circles). Please
note that the breaking
approach, i.e., Sub-Problem #6, is described in Section 4.7.

There are two types of expansion: a radial expansion in which a homoge-
nous set F is expanded in all directions and a linear expansion in which a
homogenous set F is expanded in a certain direction. For instance, in Figure
13 the homogenous sets A, B, and D have used the radial expansion approach.
The following sections discuss in detail these two expansion types.
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Fig. 15. An illustrative example of the linear expansion.

Radial Expansion

In the radial type, a homogenous setF is expanded in all directions. Let M
be a region expanded from F . Let RF and RM denote the radiuses of F and
M , respectively.In the radial expansion approach RF is increased by a certain
amount denoted as T , called a step-size increase. Thus, one gets:

RM = RF + T (10)

Following a dichotomous search methodology, we assume that there exists
a hypersphere G which covers the homogenous set F . Furthermore, without
loss of generality, let us assume that the radius RGmay be computed by:

RG = 2× RF (11)

+  + 

+

+

+ +

+

+

+

+

+

+ +

++

A 

U 

(a)

+  

+

+ 

+

+

+ +

+

+

+

+

+

+ +

++

A 

U 

(b)

X 

+  

+

+ 

+

+

+ +

+

+

+

+

+

+ +

++

A 

U 

(c)

X 

+  

+

+ 

+

+

+ +

+

+

+

+

+

+ +

++

A 

U 

(d)

X 

Y Y



420 Huy Nguyen Anh Pham and Evangelos Triantaphyllou

By using RG and RF , we can derive the step-size increaseT . That is, T
must depend on the difference between RG and RF . One of the ways that T
may be determined is as follows:

T =
RG −RF

2
. (12)

At the same time, T should depend on HD(F ) because of the dichotomous
search methodology. That is, if HD(F) gets higher, then T should get smaller.
This means that HD(F) is inversely proportional to T . We may use a threshold
value L to ensure that HD(F ) is always greater than one. Thus, the value for
Tmay be defined as follows:

T =
RG −RF

2
× 1

L×HD(F )
. (13)

If we substitute back into Equation (10), RM becomes:

RM = RF +
RG −RF

2
× 1

L×HD(F )
. (14)

In order to help motivate the radial expansion algorithm, we consider the
example indicated in Figure 14. This example uses the same hypothetical
data as the ones depicted in Figure 11.(d). Assume that L is equal to one.
A closer examination of Figure 14 indicates that the hypersphere A (i.e., the
one-line circle with RA=2.121) is covered by the three circles: a double-line
circle which depicts circle G with RG = 2.121 × 2 = 4.242, a solid line circle
which shows the final expanded region, and a dotted line circle which presents
the hypersphere M whose radius is computed as follows:

RM = RF + RG−RM

2 × 1

L×w(A)
= 2.121 + 4.242−2.121

2 × 1
1×2.77 ≈ 2.5.

Similarly, Equation (14) computes the following values for RM in four it-
erations: 2.8, 3.06, 3.23, and 3.25, respectively, until RM satisfies the stopping
conditions mentioned next in Section 4.6. The final expanded region is the
solid line circle depicted in Figure 14. Furthermore, this figure also shows
that a part of the state space which has been inferred as a positive region by
the DT algorithm. However, now it is derived as a negative region after using
the HBA. This illustration indicates that the HBA may derive better clas-
sification systems. The radial expansion algorithm is depicted in Algorithm
4.

Linear Expansion

The linear approach expands a homogenous set F in a certain direction. There
is a difference between the method presented in the previous section and
the one presented in this section (i.e., linear vs. radial). That is, now the
homogenous set F is first expanded to hypersphere M by using the radial
expansion. Then, hypersphere M is expanded in a given direction by using
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Algorithm 4: The algorithm for the radial expansion.
Input: Homogenous set F with HD(F), RF , and α+

Output: An expanded region E.
1: Set M = F (i.e., RF = RM ).
2: Set hypersphere G covering M with radius RG = 2 × RM .
3: repeat
4: Set E = M (i.e., RE = RM ).
5: Expand M by using Equation (14).
6: until RM M =RG.
7: if RM satisfies stopping conditions then
8: STOP.
9: else

10: go to Step 2.
11: end if

the radial approach until it satisfies the stopping conditions mentioned next
in Section 4.6. The final region is the union of all the expanded regions.

In order to help motivate the linear expansion approach, we consider the
homogenous set A depicted in Figure 15. Suppose that by using the radial
expansion for the homogenous set A with the expansion threshold value equal
to 2.00, we get the hypersphere U (i.e., the two-line circle depicted in Figure
15.(a)). Next, we divide the hypersphere U in the X axis into two parts. The
radial expansion approach would expand each one of the parts as the solid lines
depicted in Figure 15.(b). A similar approach exists for the Y axis depicted
in Figure 15.(c). The final expanded region is the region which is defined by
the union of the solid lines depicted in Figure 15.(d).

Description of the Stopping Conditions

This section presents the stopping conditions for the radial expansion ap-
proach for expanding a homogenous set F . That is, the stopping conditions
must satisfy the following requirements:

Depend on the homogeneity degree. This has been mentioned in the fun-
damental assumption of the proposed approach.

Stop when an expanded region reaches other patterns. We can use a softer
condition in which the expanded region can accept several noisy data points.
If the homogeneity degree is high, then the expanded region can accept more
noisy data.

To address the first stopping condition, an upper bound for RM should
be directly proportional to the homogeneity degree HD(F ), the expansion
threshold value α+, and the original radius RF . The second stopping condition
can be determined while expanding. Furthermore, an upper bound on the
number of noisy points should be directly proportional to HD(F ) and the size
of F , which is denoted as nF . The stopping conditions are summarized as
follows (a similar way exists for the expansion threshold value α−):

satisfies stopping conditions discussed in Section 4.6 or R
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RM ≤ HD(F )×RF × α+ and the number of noisy points ≤ HD(F )× α+

nF
(15)

4.7 Solving Sub-Problem #6

Suppose that given is a positive homogenous set F . Recall that if its homo-
geneity degree HD(F ) is less than β+, then the homogenous set F is broken
into sub-patterns. According to Theorem 1, the sub-patterns are also homoge-
nous sets. Thus, they can be expanded or broken down even more.

In order to help motivate this problem, we consider the example depicted
in Figure 13. In this figure the two threshold values β+ and β− are equal
to 1.00 and 1.50, respectively. Therefore, the homogenous sets C and E are
broken down into four smaller circles for each set. Then, these smaller circles
are considered to be homogenous sets with their homogeneity degrees equal
to zero. Thus, they should not be expanded.

5 Some Computational Results

5.1 Datasets and Parametric Analysis

Please recall that this chapter aims at better understanding the performance
of the HBA in balancing both fitting and generalization by adjusting the in-
ferred systems through the use of the concept of homogenous sets and the
homogeneity degree. The balance will target at minimizing the total misclas-
sification costs, TC, of the final system:

TC = min (CFP×RATE FP+CFN×RATE FN+CUC×RATE UC).

Please note that the penalty costs: CFP , CFN , and CUC depend on each
individual application. In the following experiments, we used some 2-D syn-
thetic datasets which were divided into a training set and a testing set as
described in Table 1.These data points were determined as follows. At first
the map of VietNam was considered. Next some data points were generated
randomly in 2-D. A data point would be a positive point, if it fell inside the
map of VietNam. Otherwise, that point was defined as a negative point. The
HBA attempted to use the training set to infer the map of VietNam (i.e., the
positive and the negative systems). Then, we used the inferred map to test
the testing set. The four parameters used in the HBA are as follows:

• Two expansion threshold values α+ and α− to be used for expanding the
positive and the negative homogenous sets, respectively.
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Table 1. Characteristics of the 2-D synthetic datasets

Name Number of training points Number of testing points

D1 63 16

D2 89 28

D3= D1∪D2 144 44

• Two breaking threshold values β+ and β− to be used for breaking the
positive and the negative patterns, respectively.

Furthermore, it was also assumed that β+ and β− were in [0, 2] while
α+ and α− were in [0, 10]. Given is a certain 3-tuple of the penalty costs
(CFP , CFN , CUC). By using exhaustive search in the above ranges the HBA
found the optimal combinations of α+, α−, β+,and β− in order to minimize
the TC value.On the other hand, given are different values for the 3-tuple
(CFP , CFN , CUC). We expect that the value for TC after controlling the
fitting and generalization problems would be less than or at most equal to
what was achieved by the original algorithms.

5.2 Experimental Results

The experiments were ran on a PC with 2.8GHZ speed and 1GB RAM un-
der the Windows XP operating system. The original classification algorithms
used in these experiments are based on SVMs, ANNs, and DTs. There were
thirteen experiments done on the three datasets D1, D2, and D3with different
values for the 3-tuple (CFP , CFN , CUC). Furthermore, we used the libraries
in Neural Network Toolbox 6.0 and Statistics Toolbox 6.0 (Matlab, 2004) for
implementing the classification algorithms, the K-means clustering algorithm,
and the density estimation approach. The experimental details are as follows:

Case 1: At first we studied the case of a 3-tuple (CFP , CFN , CUC) in which
the application would penalize much more for the false-positive cases than for
the other types of error. Thus, the objective function in this case was assumed
to be:

TC = 6×RATE FP + 3×RATE FN + RATE UC .

Next, we ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and
α+ and α− divided into {0, 2, 4, 6, 8, 10}. Recall that RATE FP, RATE FN,
and RATE UC are the false-positive, the false-negative, and the unclassi-
fiable rates, respectively. Table 2 shows these three rates and the value of
TC obtained from the algorithms. The notation “SVM-HBA” means that the
HBA used the classification models first obtained by using the SVM algorithm
before controlling the fitting and generalization problems. The two similar no-
tations exist for DT-HBA (the Decision Tree algorithm and the HBA) and
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Table 2. Results for minimizing TC = 6×RATE FP + 3×RATE FN + RATE UC
on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 13

DT 3 0 5 23

ANN 1 0 7 13

SVM-HBA 0 1 5 8

DT-HBA 0 1 5 8

ANN-HBA 0 1 5 8

ANN-HBA (the Artificial Neural Network algorithm and the HBA). Table 2
presents that SVM-HBA, DT-HBA, and ANN-HBA found the optimal TC
to be equal to 8. This value was less than the value of TC achieved by the
original algorithms (i.e., the SVM, DT, and ANN) by about 39%.

Table 3 presents information for the four specific parameter values when
SVM-HBA found the optimal TC. The execution time in this case was ap-
proximately equal to 1 hour and 3 minutes.

Table 3. Values for the four parameters when the SVM-HBA ran on D1 and found
the optimal TC.

β+ α− β− α+

1 10 2 4

1 10 2 6

1 10 2 8

1 10 2 10

An even lower TC was found once we divided β+ and β− into {0, 1, 2}
and divided α+ and α− into {0 to10}. These results are presented in Table 4.

Table 4. Results for minimizing TC = 6×RATE FP + 3×RATE FN + RATE UC
on D1 with the smaller ranges.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 13

DT 3 0 5 23

ANN 1 0 7 13

SVM-HBA 0 0 7 7

DT-HBA 0 0 7 7

ANN-HBA 0 0 7 7

Table 4 shows that if we split the four parameters into smaller ranges,
then the HBA could find a lower TC. This may lead to a new strategy in
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which one can develop an approach for determining optimal combinations of
the four parameter values by successively considering higher resolution.

Case 2: Now we consider a case in which the application would penalize
much more for the unclassifiable cases than for the other types of error. Thus,
the objective function in this case was assumed to be:

TC = RATE FP + 3×RATE FN +6×RATE UC .

We ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0 to 10}. Table 5 shows that SVM-HBA, DT-HBA,
and ANN-HBA found an optimal TC which was less than the value of TC
achieved by the original algorithms by about 53%.

Table 5. Results for minimizing TC = RATE FP + 3×RATE FN +6×RATE UC
on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 43

DT 3 0 5 33

ANN 1 0 7 43

SVM-HBA 1 1 4 28

DT-HBA 2 1 2 17

ANN-HBA 1 1 4 28

Case 3: Now we consider a case in which the application would penalize
the same way for the false-positive, the false-negative, and the unclassifiable
cases. Thus, the objective function in this case was assumed to be:

TC = 3.3×RATE FP + 3.3×RATE FN +3.3×RATE UC .

We ran the HBA on D1 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0, 2, 4, 6, 8, 10}. Table 6 shows that SVM-HBA, DT-
HBA, and ANN-HBA found two possible cases for each algorithm where the
optimal value for TC was less than the value of TC achieved by the original
algorithms by about 33%.

A similar result for TC once we ran the HBA on D3, which had more
training points, also divided β+ and β− into {0, 1, 2}, and α+ and α− into
{0, 2, 4, 6, 8, 10}. These results are presented in Table 7.

Table 7 shows that SVM-HBA, DT-HBA, and ANN-HBA found the op-
timal TC which was less than the value of TC achieved by the original al-
gorithms by about 47%. The execution time in this case was approximately
equal to 12 hours and 50 minutes.
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Table 6. Results for minimizing TC = 3.3×RATE FP + 3.3×RATE FN
+3.3×RATE UC on D1.

Algorithm RATE FP RATE FN RATE UC TC

SVM 1 0 7 26.4

DT 3 0 5 26.4

ANN 1 0 7 26.4

SVM-HBA
0 1 5 19.8
1 1 4 19.8

DT-HBA
1 1 3 16.5
2 1 2 16.5

ANN-HBA
0 1 5 19.8
1 1 4 19.8

Table 7. Results for minimizing TC = 3.3×RATE FP + 3.3×RATE FN +
3.3RATE UC on D3

Algorithm RATE FP RATE FN RATE UC TC

SVM 5 3 26 112.2

DT 8 3 24 115.5

ANN 5 2 27 112.2

SVM-HBA 4 7 7 59.40

DT-HBA 7 7 9 75.90

ANN-HBA 4 7 7 59.40

Case 4: Now we consider a case in which the application would penalize
much more for the false-negative cases than for the other types of error. Fur-
thermore, the penalty cost for unclassifiable cases was equal to zero Thus, the
objective function in this case was assumed to be:

TC = 2×RATE FP + 20×RATE FN +0×RATE UC .

We ran the HBA on D2 with β+ and β− divided into {0, 1, 2} and α+

and α− divided into {0, 2, 4, 6, 8, 10}. Table 8 shows that SVM-HBA, DT-
HBA, and ANN-HBA found an optimal TC equal to 0. This value was equal
to the value of TC achieved by the original algorithms. However, SVM-HBA
achieved an unclassifiable rate of 21 versus 28 for the original algorithms. A
similar result existed for DT-HBA and ANN-HBA. The execution time in this
case was approximately equal to 5 hours and 24 minutes.

We also experimented with the following different objective functions on
the dataset D1:

TC = 6×RATE FP + 2×RATE FN +2×RATE UC ,

TC = 4×RATE FP + 2×RATE FN +4×RATE UC , and
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Table 8. Results for minimizing TC = 2×RATE FP +20×RATE FN on D2.

Algorithm RATE FP RATE FN RATE UC TC

SVM 0 0 28 0

DT 0 0 28 0

ANN 0 0 28 0

SVM-HBA 0 0 21 0

DT-HBA 0 0 24 0

ANN-HBA 0 0 22 0

TC = 3×RATE FP + 6×RATE FN +1×RATE UC .

Similarly, we experimented with the following different objective functions
on the dataset D2:

TC = 2×RATE FP + 20×RATE FN +0×RATE UC,

TC = 6×RATE FP + 3×RATE FN +1×RATE UC, and

TC = 50×RATE FP + 60×RATE FN +1×RATE UC.

We also experimented with the following different objective functions on
the dataset D3:

TC =RATE FP + 3×RATE FN + 6×RATE UC, and

TC = 20×RATE FP + 2×RATE FN +0×RATE UC.

In all these tests we concluded that the HBA always found the optimal
combinations of α+, α−, β+,and β− in order to minimize the value of TC.
Furthermore, the value for TC in all these cases was significantly less than or
at most equal to what was achieved by the original algorithms.

6 Conclusions

The performance of a classification method in terms of the false-positive, the
false-negative, and the unclassifiable rates may be totally unpredictable and
depend on the application at hand. Attempts to minimize one of the previous
rates, lead to increases on the other two rates. The root to the above crit-
ical problems is the overfitting and overgeneralization behaviors of a given
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classification approach when it is processing a particular dataset. This chap-
ter identified a gap between fitting and generalization with current algorithms
and also defined the desired goal as an optimization problem. Next, it provided
a new approach, called the Homogeneity-Based Algorithm (HBA), which ap-
pears to be very promising. There are some future research goals. For example,
the HBA needs to be tested with higher dimensions and more data. This is
ongoing research by our group. Currently we are implementing a GA (Genetic
Algorithm) for finding the optimal values of the controlling threshold values
α+, α−, β+,and β−. Some preliminary results seem to suggest that by using
the GA one can achieve even better values for the various objectives functions
at a fraction of the original CPU time (often times by spending between 50%
to 80%).;
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